TW202240143A - 銀奈米線之配向性之測量方法、聚乙烯醇薄膜、聚乙烯醇薄膜之加工方法及聚乙烯醇薄膜之製造方法 - Google Patents

銀奈米線之配向性之測量方法、聚乙烯醇薄膜、聚乙烯醇薄膜之加工方法及聚乙烯醇薄膜之製造方法 Download PDF

Info

Publication number
TW202240143A
TW202240143A TW110146920A TW110146920A TW202240143A TW 202240143 A TW202240143 A TW 202240143A TW 110146920 A TW110146920 A TW 110146920A TW 110146920 A TW110146920 A TW 110146920A TW 202240143 A TW202240143 A TW 202240143A
Authority
TW
Taiwan
Prior art keywords
polyvinyl alcohol
alcohol film
silver nanowires
aforementioned
alignment
Prior art date
Application number
TW110146920A
Other languages
English (en)
Other versions
TWI808568B (zh
Inventor
Yasunao Miyamura
門脇靖
山竹邦明
山木繁
大籏英樹
Original Assignee
日商昭和電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商昭和電工股份有限公司 filed Critical 日商昭和電工股份有限公司
Publication of TW202240143A publication Critical patent/TW202240143A/zh
Application granted granted Critical
Publication of TWI808568B publication Critical patent/TWI808568B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/19Dichroism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C2037/90Measuring, controlling or regulating
    • B29C2037/906Measuring, controlling or regulating using visualisation means or linked accessories, e.g. screens, printers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2029/00Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
    • B29K2029/04PVOH, i.e. polyvinyl alcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • B29K2105/122Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles microfibres or nanofibers
    • B29K2105/124Nanofibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • B29K2305/08Transition metals
    • B29K2305/14Noble metals, e.g. silver, gold or platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2505/00Use of metals, their alloys or their compounds, as filler
    • B29K2505/08Transition metals
    • B29K2505/14Noble metals, e.g. silver, gold or platinum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8477Investigating crystals, e.g. liquid crystals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/86Investigating moving sheets
    • G01N2021/869Plastics or polymeric material, e.g. polymers orientation in plastic, adhesive imprinted band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)

Abstract

本發明之銀奈米線之配向性之評價方法,係聚乙烯醇薄膜所含之銀奈米線的配向性之測量方法,且係藉由近紅外線之直線偏光,測量包含銀奈米線之聚乙烯醇薄膜中,對於與前述銀奈米線之配向方向垂直之偏光的第1穿透率T1及對於與前述銀奈米線之配向方向平行之偏光的第2穿透率T0,前述第1穿透率T1相對於前述第2穿透率T0之比(T1/T0)愈大於1,則判斷為配向性愈高,愈接近1則判斷為配向性愈低。

Description

銀奈米線之配向性之測量方法、聚乙烯醇薄膜、聚乙烯醇薄膜之加工方法及聚乙烯醇薄膜之製造方法
本發明有關包含銀奈米線之聚乙烯醇薄膜中之銀奈米線之配向性之測量方法以及包含具有特定配向性的銀奈米線之聚乙烯醇薄膜、聚乙烯醇薄膜之加工方法及聚乙烯醇薄膜之製造方法。 本申請案主張基於2020年12月16日於日本提出申請之日本特願2020-208084號之優先權,其內容援用於本文。
專利文獻1揭示一種測量方法,其係測量包含針狀物質的材料中前述針狀物質之配向性的方法,前述配向性係藉由測量前述材料的小角度X射線散射,基於該散射向量之數據而求出。專利文獻1的實施例6中,揭示以上述測量方法測量的S值為0.30之銀奈米線的聚乙烯醇薄膜。
非專利文獻1中揭示銀奈米線藉由表面電漿子共振而於長軸方向具有近紅外吸收。 [先前技術文獻] [專利文獻]
[專利文獻1] 日本特開2019-168386號公報 [非專利文獻]
[非特許文獻1] ACS Nano, 2009, VOL.3 NO.1 P21-26.
[發明欲解決之課題]
然而,小角度X射線散射之測量裝置為較大規模之裝置。另一方面,在聚乙烯醇薄膜之製造現場,需要一種以更簡便方法檢查製品之方法,以穩定地生產包含具有更高配向性之銀奈米線的聚乙烯醇薄膜(測量配性向之方法)。
本發明之一態樣,係鑒於上述情況,目的在於提供可以更簡便方法測量銀奈米線之配向性的方法及包含具有更高配向性之銀奈米線之聚乙烯醇薄膜。 [用以解決課題之手段]
亦即本發明係具備以下所示之構成者。
[1] 第一態樣係一種銀奈米線之配向性之測量方法,其係聚乙烯醇薄膜所含之銀奈米線之配向性之測量方法,其係藉由近紅外線之直線偏光, 測量包含銀奈米線之聚乙烯醇薄膜中, 對於與前述銀奈米線之配向方向垂直之偏光的第1穿透率T1,及 對於與前述銀奈米線之配向方向平行之偏光的第2穿透率T0, 前述第1穿透率T1相對於前述第2穿透率T0之比(T1/T0),愈大於1則判斷為配向性愈高,愈接近1則判斷為配向性愈低。 [2] 第二態樣係一種聚乙烯醇薄膜,其係包含銀奈米線之聚乙烯醇薄膜,前述銀奈米線以前項[1]之方法測量之前述比(T1/T0)為4以上。 [3] 一種包含銀奈米線之聚乙烯醇薄膜之加工方法,其具備: 使前述聚乙烯醇薄膜於前述銀奈米線之配向方向延伸之步驟, 以前項[1]之方法測量延伸後之前述聚乙烯醇薄膜之前述比(T1/T0), 前述比(T1/T0)較預先設定之閾值大之情況,則加速使前述聚乙烯醇薄膜延伸之速度,前述比(T1/T0)較預先設定之閾值小之情況,則減慢使前述聚乙烯醇薄膜延伸之速度。 [4] 如前項[3]之包含銀奈米線之聚乙烯醇薄膜之加工方法,其中前述閾值為4以上之數值。 [5] 如前項[3]或[4]之包含銀奈米線之聚乙烯醇薄膜之加工方法,其中使前述奈米線延伸之速度係每秒,相對於延伸前之前述聚乙烯醇薄膜之延伸方向的長度之5%以上。 [6] 第三態樣係一種聚乙烯醇薄膜之製造方法,其係具有1或複數次以第二態樣之聚乙烯醇薄膜之加工方法加工聚乙烯醇薄膜之步驟。 [發明效果]
可簡便地測量聚乙烯醇薄膜中之銀奈米線之配向性。
以下,針對本發明之實施形態加以說明,但本發明在不變更其要點之範圍內可適當變更而實施。在不偏離本發明精神之範圍內,關於數、材料、量、形狀、數值、比率、位置、構成等可進行變更、附加、省略、替換等。
(銀奈米線之配向性的測量方法) 本實施形態之銀奈米線之配向性之測量方法係測量聚乙烯醇薄膜中所含之銀奈米線的配向性之方法,例如依序包含穿透率測量步驟與判斷步驟。本實施形態之銀奈米線之配向性之測量方法於穿透率測定步驟之前可進而包含檢測步驟。 本實施形態之銀奈米線之配向性之測量方法,係藉由近紅外線之直線偏光,測量包含銀奈米線之聚乙烯醇薄膜(以下有時簡稱為「薄膜」)中,對於與前述銀奈米線之配向方向垂直之偏光的第1穿透率T1,及對於與前述銀奈米線之配向方向平行之偏光的第2穿透率T0,前述第1穿透率T1相對於前述第2穿透率T0之比(T1/T0),愈大於1則判斷為配向性愈高,愈接近1則判斷為配向性愈低。 以下,為了便於說明,有時將穿透率T1稱為第1穿透率T1,將穿透率T0稱為第2穿透率T0。
如非專利文獻1所記載,銀奈米線藉由表面電漿子共振而於長軸方向具有近紅外吸收。因此,包含經配向之銀奈米線之聚乙烯醇薄膜可作為近紅外之偏光濾光片發揮功能。
(穿透率測量步驟) 穿透率測量步驟具有第1穿透率測量步驟與第2穿透率測量步驟。穿透率測量步驟中,第1穿透率測量步驟及第2穿透率測量步驟之順序為任意。 第1穿透率測量步驟例如係對聚乙烯醇薄膜進行近紅外線之直線偏光,測量對於與銀奈米線之配向方向垂直方向的偏光之第1穿透率T1。 第2穿透率測量步驟例如係對聚乙烯醇薄膜進行近紅外線之直線偏光,測量對於與銀奈米線之配向方向平行方向的偏光之第2穿透率T0。
本文中,銀奈米線之配向方向若為某程度延伸之聚乙烯醇薄膜,則即使不進行檢測步驟亦可判斷。例如於配向方向未知時,例如藉由後述之檢測步驟進行檢測。如上述,為了使包含銀奈米線之聚乙烯醇薄膜可作為近紅外偏光濾光片發揮功能,第2穿透率T0與第1穿透率T1產生差異。第1穿透率T1相對於第2穿透率T0之比(T1/T0)係若無配向則為1,若配向性越高則值越大。
測量第2穿透率T0及第1穿透率T1的光,只要可於銀奈米線產生表面電漿子共振即可,通常為近紅外光(波長700~2500nm)。於薄膜中若有銀奈米線以外之添加劑,則亦可選擇不易受其影響之近紅外光的波長。又,近紅外光之直線偏光可藉偏光濾光片自無偏光之近紅外光中獲得。亦即,亦可於發出近紅外光之光源與聚乙烯醇薄膜之間配置偏濾光片,對聚乙烯醇薄膜照射無偏光之近紅外光。
(檢測步驟) 檢測步驟於銀奈米線之配向方向未知之情況等,根據需要而實施。銀奈米線之配向方向若為某程度延伸之聚乙烯醇薄膜時,亦可判斷為不進行檢測步驟。檢測步驟中,例如,於聚乙烯醇薄膜面內方向改變偏光方向並測量厚度方向之穿透率,於與透射率最低之偏光方向平行之面內方向中之任一方向作為配向方向即可。聚乙烯醇薄膜之面內方向係聚乙烯醇薄膜擴展之方向,係垂直於厚度方向之任意方向。用以測量穿透率之光可使用與上述穿透率測量步驟相同的光。檢測步驟係例如於聚乙烯醇薄膜之面內方向中,將角度連續變更180°,比較所得厚度方向之穿透率而決定配向方向。檢測步驟另外亦可藉由顯微鏡或專利文獻1之方法進行。
(判斷步驟) 判斷步驟例如於第1穿透率T1相對於第2穿透率T0之比(T1/T0)愈大於1判斷為配向性愈高,愈接近1判斷為配向性愈低。
第1穿透率T1相對於第2穿透率T0之比(T1/T0),如後述實施例及比較例所示,與以專利文獻1之方法表示配向性之S值相關。因此,於欲簡便地測量配向性時等可較佳地替換專利文獻1之方法。
又,本實施形態之配向性之測量方法由於可即時測量,故亦可較佳地使用於連續製造步驟之監測等。
(包含銀奈米線之聚乙烯醇薄膜之加工方法) 本實施形態之包含銀奈米線之聚乙烯醇薄膜之加工方法係例如加工包含銀奈米線之聚乙烯醇薄膜,製造配向性更提高之聚乙烯醇薄膜的方法。以下,有時簡稱為聚乙烯醇薄膜之加工方法。
本實施形態之聚乙烯醇薄膜之加工方法包含將包含經定向之銀奈米線的聚乙烯醇薄膜沿配向方向延伸之步驟,測定於以上述配向性之測量方法拉伸後之聚乙烯醇薄膜之第1穿透率T1相對於第2穿透率T0的比(T1/T0),於比(T1/T0)大於預先設定之閾值時,加速延伸速度,於比(T1/T0)小於預先設定之閾值時,減慢延伸速度。以下有時將測量此等比(T1/T0)稱為「穿透率比測量」,如此有時將控制延伸速度簡稱為「延伸速度控制」。 穿透率比測量及延伸速率控制可與聚乙烯醇薄膜之延伸一起進行,亦可依序進行聚乙烯醇薄膜之延伸、穿透率比測量、延伸速度控制、聚乙烯醇薄膜之延伸。
又,關於預先設定之閾值,加速延伸速度之閾值(比(T1/T0)之上限側的閾值)與減慢延伸速度之閾值(比(T1/T0)之下限側的閾值)可相同,但亦可不同。加速延伸速度之閾值(比(T1/T0)之上限側的閾值)與減慢延伸速度之閾值(比(T1/T0)之下限側的閾值),基於穩定生產之觀點,較佳設有遲滯性(hysteresis),可在不偏離所需薄膜之T1/T0的上限值與下限值之範圍內設定前述兩個閾值。
加速延伸速度之閾值(比(T1/T0)之上限側的閾值)與減慢延伸速度之閾值(比(T1/T0)之下限側的閾值)係根據期望之配向性任意選擇,但加速延伸速度之閾值(比(T1/T0)之上限側的閾值)例如為2以上5以下之數值,較佳為3以上之數值,更佳為4以上之數值。且,減慢延伸速度之閾值(比(T1/T0)之下限側的閾值)例如為1以上4以下之數值,可為2以上3以下。 加速延伸速度之閾值(比(T1/T0)之上限側的閾值)例如為期望之比(T1/T0)+0.2之數值,亦可為期望之比(T1/T0)+ 0.1之數值。減慢延伸速度之閾值(比(T1/T0)之下限側的閾值)例如為{期望之比(T1/T0)-0.2}之數值,亦可為{期望之比(T1/T0)-0.1}之數值。
一般延伸包含針狀物質之樹脂時,針狀物質之配向性變高。然而,聚乙烯醇薄膜中之銀奈米線,容易因延伸而產生彎折或斷裂,有越延伸配向性越較低之情況,不易獲得高的配向性。為了抑制彎折或斷裂,只要減慢延伸速度,減小施加於銀奈米線之應力即可,但生產性降低。
本實施形態中,若將期望之配向性設為前述閾值,則可控制延伸速率,而抑制前述彎折或斷裂獲得高的配向性,同時不過度減慢延伸速度而將生產性之降低抑制在最小限度。
延伸速度控制中之延伸速率的增減,若製造步驟為分批處理,則對每批次進行,若為連續步驟則可即時進行。 亦即,本實施形態之聚乙烯醇薄膜之加工方法亦可具有如下步驟:於分批處理時,將聚乙烯醇薄膜沿銀奈米線之配向方向延伸之步驟;測量延伸後之聚乙烯醇薄膜之比(T1/T0)的測量步驟;進行延伸速度控制將下一批次之聚乙烯醇薄膜沿銀奈米線之配向方向延伸之步驟。 又,若為連續步驟,則本實施形態之聚乙烯醇薄膜之上述延伸步驟亦可包含上述測量步驟,亦可與將聚乙烯醇薄膜沿銀奈米線之配向方向延伸之同時測量比(T1/T0),即時進行延伸速度控制。
延伸聚乙烯醇薄膜之速度,例如每秒,相對於延伸前之前述聚乙烯醇薄膜之延伸方向的長度,為1%以上100%以下,或為3%以上或5%以上。延伸聚乙烯醇薄膜之速度每秒,相對於延伸前之前述聚乙烯醇薄膜之延伸方向的長度,為X%時,n秒後之聚乙烯醇薄膜之長度例如為{(延伸前之最初聚乙烯醇薄膜之長度)×(1+0.01×X×n)}。
延伸速度控制只要單純與閾值比較,每次增減一定量即可,但基於快速收斂延伸速度之觀點,較佳於一次加速量與減速量之間設有差,更佳為一者為另一者之2~5倍。此外,延伸速度控制,基於穩定生產之觀點,更佳為利用閾值與比(T1/T0)之差量值之比例控制,特別是於連續製造步驟中,基於抑制過度射料之觀點,更佳為PID控制(比例性微積分控制(Proportional Integral Differential Control))。
薄膜之製造步驟中,延伸步驟有複數個時,本實施形態可適用於任一延伸步驟,但基於容易獲得配向性更高的薄膜之觀點,較佳適用於更多延伸步驟,又更佳適用於所有延伸步驟。
(聚乙烯醇薄膜之製造方法) 本實施形態之聚乙烯醇薄膜之製造方法具有1或複數個以上述實施形態之聚乙烯醇薄膜之加工方法加工聚乙烯醇薄膜之步驟。根據本實施形態,可製造具有配向性更高的聚乙烯醇薄膜。 [實施例]
以下藉由實施例及比較例更具體說明本發明,但本發明並非僅限於以下實施例。
(實施例1) 將分散有0.1質量%之銀奈米線的聚乙烯醇5質量%水溶液,以不夾帶氣泡之方式以每秒0.5mL之速度合計5mL滴加至水平的聚對苯二甲酸乙二酯之基材上。於基材上擴展之液膜於大氣下以25℃乾燥3天,製作直徑約10cm之圓形的包含銀奈米線之聚乙烯醇薄膜。
將該薄膜中心與外緣部之中間部切出複數個約1cm見方,該等為試料A。
進行該等試料之配向性測量。 (配向性之測量) 以波長1600nm之紅外光的偏光測量薄膜狀試料之厚度方向的穿透率。首先,求出試料之面內方向的配向方向。亦即,於試料面內方向邊改變偏光方向邊測量穿透率,將與穿透率最低之偏光方向平行之方向設為試料之配向方向。其次,測量面內方向中,對於與試料之配向方向垂直之偏光的第1穿透率T1,與對於與試料之配向方向平行之偏光的第2穿透率T0,求出第1穿透率T1與第2穿透率T0之比,亦即比(T1/T0)。又,於即使於試料之面內方向改變偏光方向穿透率亦不變之情況,為無配向,亦即比(T1/T0)為1。 結果,實施例1之試料係比(T1/T0)均為2。又,針對試料A以專利文獻1之方法測量後,S值均為0.24。
將複數片試料A之1片浸入飽和硼砂水溶液中1秒,相對於同試料之配向方向,將原長度設為100%時,以每秒10%之延伸速度延伸,直到長度為150%。將此作為試料B,以前述配向性之測量中記載之手段測量比(T1/T0),而測量銀奈米線之配向性。
測量之比(T1/T0)為3.8以下時,將前述延伸速度每秒減慢2%,於大於4.1時,前述延伸速度每秒加速1%,直到延伸速度不再減慢,針對新的試料A,自前述硼砂水溶液之浸漬開始重複。亦即測量的比(T1/T0)為3.8以下時,將前述延伸速度每秒減慢2%,大於4.1時,將前述延伸速度每秒加速1%調整延伸速度。
如此控制對於不同批次之聚乙烯醇薄膜的延伸速率之結果,以每秒5%之延伸速度獲得比(T1/T0)為4之試料B。且,針對試料B以與上述方法相同的方法測量試料B之S值為0.45。
將試料B二等分,以配向方向成平行或直角之方式重疊,比較對於波長1600nm之無偏光的穿透率後,平行地重疊時之穿透率相對於以直角重疊時之穿透率的比為2.5,確認可應用作為偏光板。
(比較例1) 除了未分散(不含)有銀奈米線以外,與實施例1同樣獲得試料A。針對該試料A進行配向性測量結果,T1/T0為1。又,針對試料A以與上述手段相同方法測量之S值為0。 [產業上之可利用性]
本實施形態所得之薄膜可較佳地使用作為近紅外線偏光板等之光學元件。

Claims (6)

  1. 一種銀奈米線之配向性之測量方法,其係聚乙烯醇薄膜所含之銀奈米線之配向性之測量方法,其係藉由近紅外線之直線偏光, 測量包含銀奈米線之聚乙烯醇薄膜中, 對於與前述銀奈米線之配向方向垂直之偏光的第1穿透率T1,及 對於與前述銀奈米線之配向方向平行之偏光的第2穿透率T0, 前述第1穿透率T1相對於前述第2穿透率T0之比(T1/T0),愈大於1則判斷為配向性愈高,愈接近1則判斷為配向性愈低。
  2. 一種聚乙烯醇薄膜,其係包含銀奈米線之聚乙烯醇薄膜, 前述銀奈米線以如請求項1之方法測量之前述比(T1/T0)為4以上。
  3. 一種包含銀奈米線之聚乙烯醇薄膜之加工方法,其係加工包含銀奈米線之聚乙烯醇薄膜,而提高前述銀奈米線之配向性之加工方法,其具備: 使前述聚乙烯醇薄膜於前述銀奈米線之配向方向延伸之步驟, 以如請求項1之方法測量延伸後之前述聚乙烯醇薄膜之前述比(T1/T0), 前述比(T1/T0)較預先設定之閾值大之情況,則加速使前述聚乙烯醇薄膜延伸之速度, 前述比(T1/T0)較預先設定之閾值小之情況,則減慢使前述聚乙烯醇薄膜延伸之速度。
  4. 如請求項3之聚乙烯醇薄膜之加工方法,其中前述閾值為4以上之數值。
  5. 如請求項3或4之聚乙烯醇薄膜之加工方法,其中使前述聚乙烯醇薄膜延伸之速度係每秒,相對於延伸前之前述聚乙烯醇薄膜之延伸方向的長度之5%以上。
  6. 一種聚乙烯醇薄膜之製造方法,其係具有1或複數次以如請求項3至5中任一項之聚乙烯醇薄膜之加工方法加工聚乙烯醇薄膜之步驟。
TW110146920A 2020-12-16 2021-12-15 銀奈米線之配向性之測量方法、聚乙烯醇薄膜、聚乙烯醇薄膜之加工方法及聚乙烯醇薄膜之製造方法 TWI808568B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-208084 2020-12-16
JP2020208084 2020-12-16

Publications (2)

Publication Number Publication Date
TW202240143A true TW202240143A (zh) 2022-10-16
TWI808568B TWI808568B (zh) 2023-07-11

Family

ID=82057619

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110146920A TWI808568B (zh) 2020-12-16 2021-12-15 銀奈米線之配向性之測量方法、聚乙烯醇薄膜、聚乙烯醇薄膜之加工方法及聚乙烯醇薄膜之製造方法

Country Status (7)

Country Link
US (1) US20240060888A1 (zh)
EP (1) EP4265394A1 (zh)
JP (1) JPWO2022131286A1 (zh)
KR (1) KR20230121068A (zh)
CN (1) CN116568484A (zh)
TW (1) TWI808568B (zh)
WO (1) WO2022131286A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090052029A1 (en) * 2006-10-12 2009-02-26 Cambrios Technologies Corporation Functional films formed by highly oriented deposition of nanowires
JP2012014001A (ja) * 2010-07-01 2012-01-19 Nitto Denko Corp 偏光子の製造方法、偏光子、偏光板、光学フィルムおよび画像表示装置
CN108139526B (zh) * 2015-10-27 2021-09-10 三菱化学株式会社 聚乙烯醇系薄膜、及使用其的偏光膜、偏光板、以及聚乙烯醇系薄膜的制造方法
JP6865428B2 (ja) * 2016-10-25 2021-04-28 国立研究開発法人産業技術総合研究所 カーボンナノチューブゴム複合材料
JP6910931B2 (ja) * 2016-12-02 2021-07-28 住友化学株式会社 偏光フィルム及び偏光性積層フィルムの製造方法
JP7241272B2 (ja) * 2018-03-26 2023-03-17 株式会社レゾナック 材料中の針状物質の配向性の測定方法

Also Published As

Publication number Publication date
KR20230121068A (ko) 2023-08-17
TWI808568B (zh) 2023-07-11
EP4265394A1 (en) 2023-10-25
JPWO2022131286A1 (zh) 2022-06-23
US20240060888A1 (en) 2024-02-22
WO2022131286A1 (ja) 2022-06-23
CN116568484A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
Durgashyam et al. Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method
CN104407060B (zh) 一种复合材料孔隙率对比试块的制造方法
KR101784042B1 (ko) 폴리비닐알코올계 중합체 필름 및 그 제조 방법
Griffete et al. Photonic crystal pH sensor containing a planar defect for fast and enhanced response
Jin et al. Adhesion force mapping on wood by atomic force microscopy: influence of surface roughness and tip geometry
KR102141666B1 (ko) 압력센서용 유전체 및 그 제조방법과 정전용량형 압력센서
Mansoor et al. Polyvinyl alcohol (PVA) based super-hydrophilic anti-fogging layer assisted by plasma spraying for low density polyethylene (LDPE) greenhouse films
KR102422592B1 (ko) 광변색성 착색제를 포함하는 변형 계측 고분자
TWI808568B (zh) 銀奈米線之配向性之測量方法、聚乙烯醇薄膜、聚乙烯醇薄膜之加工方法及聚乙烯醇薄膜之製造方法
Slee et al. The transport of oxygen through oriented poly (ethylene terephthalate)
Jabbarzadeh et al. Surface induced crystallization of polymeric nano-particles: Effect of surface roughness
Robles et al. Dimensional accuracy of 3D-printed acrylonitrile butadiene styrene: effect of size, layer thickness, and infill density
Padilha et al. Effect of solvents on the morphology of PMMA films fabricated by spin-coating
JP2006150659A (ja) 延伸フィルムの製造方法及び位相差フィルム
Poyraz Influence of build direction and post processes on the material and part attributes of hard resins fabricated by photopolymerization based additive manufacturing
CN110779849B (zh) 一种非晶态二氧化硅比表面积的测定方法
JP2015203632A (ja) 試料の評価方法及び試料の評価装置
JP7175406B2 (ja) ポリマー組成物の製造方法
US20230025211A1 (en) Method for evaluating orientation of nanowire in transparent material, method for managing steps in which said method is used, and method for producing resin cured article
Sergeev et al. Investigation of humidity influence upon waveguide features of chitosan thin films
CN109119355B (zh) 断面倾斜角检测装置
A Lieberzeit et al. From metal ions to biospecies: template-assisted synthesis as a strategy to generate artificial receptor materials
Aslamazova et al. Dissipative Processes in Irradiated Latex Polymers
JP2016111327A (ja) インプリント装置及び方法、並びに物品の製造方法
Shimokita et al. Development of a simultaneous measurement system for SAXS–WAXD and the thickness of coating films during film formation by solvent evaporation