CN116568484A - 银纳米线的取向性的测定方法、聚乙烯醇膜、聚乙烯醇膜的加工方法及聚乙烯醇膜的制造方法 - Google Patents

银纳米线的取向性的测定方法、聚乙烯醇膜、聚乙烯醇膜的加工方法及聚乙烯醇膜的制造方法 Download PDF

Info

Publication number
CN116568484A
CN116568484A CN202180084325.0A CN202180084325A CN116568484A CN 116568484 A CN116568484 A CN 116568484A CN 202180084325 A CN202180084325 A CN 202180084325A CN 116568484 A CN116568484 A CN 116568484A
Authority
CN
China
Prior art keywords
polyvinyl alcohol
alcohol film
orientation
transmittance
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180084325.0A
Other languages
English (en)
Inventor
宫村泰直
门胁靖
山竹邦明
原真尚
山木繁
大籏英树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lishennoco Co ltd
Original Assignee
Lishennoco Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lishennoco Co ltd filed Critical Lishennoco Co ltd
Publication of CN116568484A publication Critical patent/CN116568484A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/19Dichroism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C2037/90Measuring, controlling or regulating
    • B29C2037/906Measuring, controlling or regulating using visualisation means or linked accessories, e.g. screens, printers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2029/00Use of polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals or derivatives thereof as moulding material
    • B29K2029/04PVOH, i.e. polyvinyl alcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • B29K2105/122Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles microfibres or nanofibers
    • B29K2105/124Nanofibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2305/00Use of metals, their alloys or their compounds, as reinforcement
    • B29K2305/08Transition metals
    • B29K2305/14Noble metals, e.g. silver, gold or platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2505/00Use of metals, their alloys or their compounds, as filler
    • B29K2505/08Transition metals
    • B29K2505/14Noble metals, e.g. silver, gold or platinum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8477Investigating crystals, e.g. liquid crystals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/86Investigating moving sheets
    • G01N2021/869Plastics or polymeric material, e.g. polymers orientation in plastic, adhesive imprinted band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)

Abstract

本发明提供一种银纳米线的取向性的评价方法,其是聚乙烯醇膜中所含的银纳米线的取向性的测定方法,通过近红外的线性偏振,测定在含有银纳米线的聚乙烯醇膜中,相对于所述银纳米线的取向方向垂直的偏振光的第1透射率T1、和相对于所述银纳米线的取向方向平行的偏振光的第2透射率T0,所述第1透射率T1相对于所述第2透射率T0之比(T1/T0)越大于1则判定为取向性越高,越接近1则判定为取向性越低。

Description

银纳米线的取向性的测定方法、聚乙烯醇膜、聚乙烯醇膜的加 工方法及聚乙烯醇膜的制造方法
技术领域
本发明涉及含有银纳米线的聚乙烯醇膜中的银纳米线的取向性的测定方法、以及含有具备特定取向性的银纳米线的聚乙烯醇膜、聚乙烯醇膜的加工方法及聚乙烯醇膜的制造方法。
本申请基于2020年12月16日在日本申请的特愿2020-208084号主张优先权,并将其内容援引于此。
背景技术
专利文献1中公开了一种测定方法,是测定含有针状物质的材料中所述针状物质的取向性的方法,其特征在于,测定所述材料的小角X射线散射,根据其散射矢量的数据求出所述取向性。在专利文献1的实施例6中,公开了含有通过上述测定方法测定的S值为0.30的银纳米线的聚乙烯醇膜。
非专利文献1中公开了银纳米线通过表面等离激元共振而在长轴方向具有近红外吸收。
现有技术文献
专利文献
专利文献1:日本特开2019-168386号公报
非专利文献
非专利文献1:ACS Nano,2009,VOL.3NO.1P21-26.
发明内容
发明所要解决的问题
但是,小角X射线散射的测定装置是较大型的装置。另一方面,在聚乙烯醇膜的制造现场,为了稳定地生产含有具备更高取向性的银纳米线的聚乙烯醇膜,需要用更简便的方法检查制品的方法(测定取向性的方法)。
鉴于上述情况,本发明的一个实施方式的目的在于提供一种以更简便的方法测定银纳米线的取向性的方法及含有具备更高取向性的银纳米线的聚乙烯醇膜。
解决问题的手段
即,本发明具备以下所示的构成。
[1]第一方面是银纳米线的取向性的测定方法,其为聚乙烯醇膜中所含的银纳米线的取向性的测定方法,
通过近红外的线性偏振,测定在含有银纳米线的聚乙烯醇膜中,相对于所述银纳米线的取向方向垂直的偏振光的第1透射率T1、和相对于所述银纳米线的取向方向平行的偏振光的第2透射率T0,
所述第1透射率T1相对于所述第2透射率T0之比(T1/T0)越大于1则判定为取向性越高,越接近1则判定为取向性越低。
[2]第二方面是含有银纳米线的聚乙烯醇膜,其为含银纳米线的聚乙烯醇膜,所述银纳米线,利用前项[1]所述的方法测定的所述比(T1/T0)为4以上。
[3]含有银纳米线的聚乙烯醇膜的加工方法,其具有将所述聚乙烯醇膜沿银纳米线的取向方向进行拉伸的工序,利用前项[1]所述的方法测定拉伸后所述聚乙烯醇膜中的所述比(T1/T0),在所述比(T1/T0)大于预设阈值的情况下,加快拉伸所述聚乙烯醇膜的速度,在所述比(T1/T0)小于预设阈值的情况下,减慢拉伸所述聚乙烯醇膜的速度。
[4]前项[3]所述的含有银纳米线的聚乙烯醇膜的加工方法,所述阈值为4以上的数值。
[5]前项[3]或[4]所述的含有银纳米线的聚乙烯醇膜的加工方法,相对于拉伸前的所述聚乙烯醇膜的拉伸方向的长度,拉伸所述纳米线的速度为每秒5%以上。
[6]第三方面为聚乙烯醇膜的制造方法,其具有1个或多个利用第二方面的聚乙烯醇膜的加工方法对聚乙烯醇膜进行加工的工序。
发明效果
能够简便地测定聚乙烯醇膜中银纳米线的取向性。
具体实施方式
以下,对本发明的实施方式进行说明,但本发明可以在不改变其主旨的范围内进行适当变化而实施。可以在不背离本发明意图的范围内,对数目、材料、数量、形状、数值、比率、位置、结构等进行改变、增加、省略、替换等。
(银纳米线的取向性的测定方法)
本实施方式的银纳米线的取向性的测定方法是测定聚乙烯醇膜所含的银纳米线的取向性的方法,例如,依次具备透射率测定工序和判定工序。本实施方式的银纳米线的取向性的测定方法可以在透过率测定工序之前进一步具备检测工序。
本实施方式的银纳米线的取向性的测定方法,是通过近红外的线性偏振,测定在含有银纳米线的聚乙烯醇膜(以下,有时简称为“膜”。)中,相对于银纳米线的取向方向垂直的偏振光的透射率T1、和相对于银纳米线的取向方向平行的偏振光的透射率T0,透射率T1相对于透射率T0的比(T1/T0)越大于1,则判定为取向性越高,越接近1,则判定为取向性越低。
以下,为了便于说明,有时将透射率T1称为第1透射率T1,将透射率T0称为第2透射率T0。
如非专利文献1所记载,银纳米线通过表面等离激元共振而在长轴方向具有近红外吸收。因此,含有取向的银纳米线的聚乙烯醇膜作为近红外的偏振滤光片发挥作用。
(透射率测定工序)
透射率测定工序具备第1透射率测定工序和第2透射率测定工序。在透射率测定工序中,第1透射率测定工序和第2透射率测定工序的顺序是任意的。
第1透射率测定工序,例如对聚乙烯醇膜进行近红外的线性偏振,测定相对于银纳米线的取向方向垂直的方向的偏振光的第1透射率T1。
第2透射率测定工序,例如对聚乙烯醇膜进行近红外的线性偏振,测定相对于银纳米线的取向方向平行的偏振光的第2透射率T0。
此处,银纳米线的取向方向,只要是拉伸了一定程度的聚乙烯醇膜,即使不进行检测工序也能够判断。在取向方向不明的情况下,例如在后述的检测工序中进行检测。如上所述,含有银纳米线的聚乙烯醇膜作为近红外的偏振滤光片发挥作用,因此第2透射率T0与第1透射率T1产生差值。第1透射率T1相对于第2透射率T0的比(T1/T0),若无取向则为1,取向性越高则为越大的值。
测定第2透射率T0及第1透射率T1的光,只要在银纳米线产生表面等离激元共振即可,通常为近红外光(波长700~2500nm)。若膜中有银纳米线以外的添加物,则也可选择不易受其影响的近红外光的波长。另外,近红外的线性偏振光也可以利用偏振滤光片等由无偏光的近红外光得到。即,也可以在发出近红外光的光源与聚乙烯醇膜之间配置偏振滤光片,对聚乙烯醇膜照射无偏振的近红外光。
(检测工序)
检测工序是在银纳米线的取向方向不明的情况下等,根据需要实施的工序。银纳米线的取向方向,只要是拉伸了一定程度的聚乙烯醇膜,即使不进行检测工序也能够判断。在检测工序中,例如在聚乙烯醇膜面内方向上改变偏振方向来测定厚度方向上的透射率,将与透射率最低的偏振方向平行的、面内方向中的任一方向作为取向方向即可。聚乙烯醇膜的面内方向是聚乙烯醇膜延展的方向,是与厚度方向垂直的任意方向。用于测定透射率的光可以使用与上述透射率测定工序同样的光。在检测工序中,例如,在聚乙烯醇膜的面内方向中,将角度连续地变更180°,对得到的厚度方向的透射率进行比较来确定取向方向。此外,检测工序也可以通过显微镜观察或专利文献1的方法来进行。
(判定工序)
在判定工序中,例如,第1透射率T1相对于第2透射率T0之比(T1/T0)越大于1,则判定为取向性越高,越接近1,则判断为取向性越低。
如后述的实施例、比较例所示,第1透射率T1相对于第2透射率T0之比(T1/T0)与在专利文献1的方法中表示取向性的S值具有相关性。因此,在想要简便地测定取向性等情况下,可以优选替换专利文献1的方法。
另外,本实施方式的取向性的测定方法可以实时测定,因此也可以优选用于连续制造工序中的监测等。
(含有银纳米线的聚乙烯醇膜的加工方法)
本实施方式的含有银纳米线的聚乙烯醇膜的加工方法,例如,是对含有银纳米线的聚乙烯醇膜进行加工,制造取向性进一步提高的聚乙烯醇膜的方法。以下,有时简称为聚乙烯醇膜的加工方法。
本实施方式所涉及的聚乙烯醇膜的加工方法,包括将包含取向的银纳米线的聚乙烯醇膜沿取向方向拉伸的工序,利用上述取向性的测定方法测定拉伸后聚乙烯醇膜的第1透射率T1相对于第2透射率T0的比(T1/T0),在比(T1/T0)大于预设的阈值的情况下,加快拉伸的速度,在比(T1/T0)小于预设的阈值的情况下,减慢拉伸的速度。以下,有时将如此测定比(T1/T0)称为“透射率比测定”,有时将如此控制拉伸速度简称为“拉伸速度控制”。
透射率比测定和拉伸速度控制可以与聚乙烯醇膜的拉伸同时进行,也可以按照聚乙烯醇膜的拉伸、透射率比测定、拉伸速度控制、聚乙烯醇膜的拉伸的顺序来进行。
另外,关于预设的阈值,使拉伸的速度变快的阈值(比(T1/T0)的上限侧的阈值)与使拉伸的速度变慢的阈值(比(T1/T0)的下限侧的阈值)可以是相同的值,也可以不同。从稳定生产的角度考虑,使拉伸速度变快的阈值(比(T1/T0)的上限侧的阈值)和使拉伸速度变慢的阈值(比(T1/T0)的下限侧的阈值)优选设置滞后,可以在不脱离期望的膜的T1/T0的上限值和下限值的范围内设置上述两个阈值。
使拉伸速度变快的阈值(比(T1/T0)的上限侧的阈值)和使拉伸速度变慢的阈值(比(T1/T0)的下限侧的阈值),根据所期望的取向性来任意选择,使拉伸速度变快的阈值(比(T1/T0)的上限侧的阈值),例如为2以上且5以下的数值,优选为3以上的数值,更优选为4以上的数值。另外,使拉伸的速度变慢的阈值(比(T1/T0)的下限侧的阈值)例如为1以上且4以下的数值,也可以为2以上且3以下。
使拉伸的速度变快的阈值(比(T1/T0)的上限侧的阈值),例如为期望的比(T1/T0)+0.2的数值,也可以为期望的比(T1/T0)+0.1的数值。使拉伸的速度变慢的阈值(比(T1/T0)的下限侧的阈值),例如为{期望的比(T1/T0)-0.2}的数值,也可以为{期望的比(T1/T0)-0.1}的数值。
通常,若对包含针状物质的树脂拉伸,则针状物质的取向性变高。但是,聚乙烯醇膜中的银纳米线容易因拉伸而发生弯折、断裂,有时越拉伸取向性越降低,难以得到高取向性。为了抑制弯折或断裂,使拉伸速度变慢,使施加于银纳米线的应力变小即可,但生产率降低。
在本实施方式中,如果将期望的取向性设定为上述阈值,则可以控制拉伸速度,抑制上述弯折、断裂,得到高取向性,同时,拉伸速度不会过度变慢,生产率的降低被抑制在大致最小限度内。
关于拉伸速度控制中的拉伸速度增减,如果制造工序为分批处理,则可以按批次进行,如果制造工序为连续工序,则可以实时地进行。
即,本实施方式所涉及的聚乙烯醇膜的加工方法,在分批处理中可以具有将聚乙烯醇膜在银纳米线的取向方向上拉伸的工序、测定拉伸后的聚乙烯醇膜中的比(T1/T0)的测定工序、以及进行拉伸速度控制而将下一批聚乙烯醇膜在银纳米线的取向方向上拉伸的工序。
另外,若为连续工序,则本实施方式所涉及的聚乙烯醇膜的上述拉伸工序可以包含上述测定工序,也可以在将聚乙烯醇膜沿银纳米线的取向方向拉伸的同时测定比(T1/T0),实时地进行拉伸速度控制。
拉伸聚乙烯醇膜的速度,例如,相对于拉伸前的所述聚乙烯醇膜的拉伸方向上的长度为每秒1%以上且100%以下,可以为每秒3%以上、5%以上。若拉伸聚乙烯醇膜的速度,相对于拉伸前的所述聚乙烯醇膜的拉伸方向上的长度为每秒X%,则n秒后聚乙烯醇膜的长度例如为{(拉伸前的最初的聚乙烯醇膜的长度)×(1+0.01×X×n)}。
拉伸速度控制,可以是单纯地与阈值进行比较而每次仅进行恒定量的增减速,但从快速收敛拉伸速度的角度考虑,优选在1次的增速量与减速量之间设置差值,更优选设定为一方是另外一方的2~5倍。进而,从稳定生产的角度考虑,拉伸速度控制进一步优选利用阈值与比(T1/T0)的差值的比例控制,特别是从抑制连续制造工序中的过冲的角度考虑,更优选PID控制(Proportional Integral Differential Control比例积分微分控制)。
在膜的制造工序中存在多个拉伸工序的情况下,可以将本实施方式应用于任意一个拉伸工序中,但从容易得到取向性更高的膜的角度考虑,优选应用于更多的拉伸工序中,进一步优选应用于全部的拉伸工序中。
(聚乙烯醇膜的制造方法)
本实施方式所涉及的聚乙烯醇膜的制造方法,具有1个或多个利用上述实施方式所涉及的聚乙烯醇膜的加工方法对聚乙烯醇膜进行加工的工序。根据本实施方式,可以制造取向性进一步提高的聚乙烯醇膜。
实施例
以下,通过实施例和比较例对本发明进行更具体地说明,但本发明并不仅仅局限于以下的实施例。
实施例1
将分散有银纳米线0.1质量%的聚乙烯醇5质量%水溶液共计5mL,在不产生气泡的情况下以每秒0.5mL的速度滴加到水平的聚对苯二甲酸乙二醇酯基材上。将铺展在基材上的液膜在空气中和25℃下干燥3天,由此制成直径约10cm的圆形的含有银纳米线的聚乙烯醇膜。
从该膜的中心与外缘之间的部分切出多个约1cm见方的部分,将它们作为试样A。
对这些试样进行取向性的测定。
(取向性的测定)
利用波长1600nm的红外光的偏振光测定膜状试样的厚度方向的透射率。首先,找出试样的面内方向的取向方向。即,一边在试样的面内方向上改变偏振方向一边测定透射率,将与透射率最低的偏振方向平行的方向作为试样的取向方向。接着,在面内方向中,测定相对于试样的取向方向垂直的偏振光的第1透射率T1和相对于试样的取向方向平行的偏振光的第2透射率T0,求出第1透射率T1相对于第2透射率T0之比、即比(T1/T0)。需要说明的是,在试样的面内方向上即使改变偏振方向透射率也不改变时,为无取向,即将比(T1/T0)视为1。
其结果是实施例1的试样的比(T1/T0)均为2。另外,利用专利文献1的方法对试样A进行了测定,结果S值均为0.24。
将多片试样A中的1片在饱和硼砂水溶液中浸渍1秒,相对于该试样的取向方向,将原来的长度指定为100%时,以每秒10%的拉伸速度进行拉伸直至长度成为150%。将其作为试样B,利用上述取向性的测定中记载的手段,测定比(T1/T0),由此测定银纳米线的取向性。
在所测定的比(T1/T0)为3.8以下的情况下,使所述拉伸速度每秒减慢2%,在大于4.1的情况下,使所述拉伸速度每秒加快1%,对于新的试样A,从前述硼砂水溶液的浸渍开始反复进行,直至拉伸速度不再减慢。即,在所测定的比(T1/T0)为3.8以下的情况下,调整拉伸速度使上述拉伸速度每秒减慢2%,在大于4.1的情况下,调整拉伸速度使上述拉伸速度每秒加快1%。
就这样对不同批次的聚乙烯醇膜控制拉伸速度,结果以每秒5%的拉伸速度得到比(T1/T0)为4的试样B。另外,对于试样B,通过与上述手段同样的方法测定的S值为0.45。
将试样B二等分,以取向方向成为平行或直角的方式重叠,比较对波长1600nm的无偏振光的透射率,结果平行重叠时的透射率相对于直角重叠时的透射率之比为2.5,确认了能够作为偏振片应用。
比较例1
除了没有分散银纳米线(不含有)以外,按照与实施例1同样的方式得到试样A。对该试样A进行取向性的测定,结果T1/T0为1。另外,对于该试样A,通过与上述手段同样的方法测定的S值为0。
产业上可利用性
通过本实施方式得到的膜可以优选用作近红外的偏振片等光学元件。

Claims (6)

1.一种银纳米线的取向性的测定方法,其是聚乙烯醇膜中所含的银纳米线的取向性的测定方法,
通过近红外的线性偏振,测定在含有银纳米线的聚乙烯醇膜中,
相对于所述银纳米线的取向方向垂直的偏振光的第1透射率T1、和相对于所述银纳米线的取向方向平行的偏振光的第2透射率T0;
所述第1透射率T1相对于所述第2透射率T0之比T1/T0越大于1则判定为取向性越高,越接近1则判定为取向性越低。
2.一种聚乙烯醇膜,是含有银纳米线的聚乙烯醇膜,所述银纳米线,利用权利要求1所述的方法测定的所述比T1/T0为4以上。
3.一种含有银纳米线的聚乙烯醇膜的加工方法,其为对含有银纳米线的聚乙烯醇膜进行加工,提高所述银纳米线的取向性的加工方法,具有将所述聚乙烯醇膜沿所述银纳米线的取向方向进行拉伸的工序,利用权利要求1所述的方法测定拉伸后所述聚乙烯醇膜中的所述比T1/T0,在所述比T1/T0大于预设阈值的情况下,加快拉伸所述聚乙烯醇膜的速度,在所述比T1/T0小于预设阈值的情况下,减慢拉伸所述聚乙烯醇膜的速度。
4.根据权利要求3所述的聚乙烯醇膜的加工方法,所述阈值为4以上的数值。
5.根据权利要求3或4所述的聚乙烯醇膜的加工方法,相对于拉伸前所述聚乙烯醇膜的拉伸方向的长度,拉伸所述纳米线的速度为每秒5%以上。
6.一种聚乙烯醇膜的制造方法,其具有1个或多个利用权利要求3~5中任一项所述的聚乙烯醇膜的加工方法对聚乙烯醇膜进行加工的工序。
CN202180084325.0A 2020-12-16 2021-12-15 银纳米线的取向性的测定方法、聚乙烯醇膜、聚乙烯醇膜的加工方法及聚乙烯醇膜的制造方法 Pending CN116568484A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020-208084 2020-12-16
JP2020208084 2020-12-16
PCT/JP2021/046239 WO2022131286A1 (ja) 2020-12-16 2021-12-15 銀ナノワイヤの配向性の測定方法、ポリビニルアルコールフィルム、ポリビニルアルコールフィルムの加工方法及びポリビニルアルコールフィルムの製造方法

Publications (1)

Publication Number Publication Date
CN116568484A true CN116568484A (zh) 2023-08-08

Family

ID=82057619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180084325.0A Pending CN116568484A (zh) 2020-12-16 2021-12-15 银纳米线的取向性的测定方法、聚乙烯醇膜、聚乙烯醇膜的加工方法及聚乙烯醇膜的制造方法

Country Status (7)

Country Link
US (1) US20240060888A1 (zh)
EP (1) EP4265394A1 (zh)
JP (1) JPWO2022131286A1 (zh)
KR (1) KR20230121068A (zh)
CN (1) CN116568484A (zh)
TW (1) TWI808568B (zh)
WO (1) WO2022131286A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090052029A1 (en) * 2006-10-12 2009-02-26 Cambrios Technologies Corporation Functional films formed by highly oriented deposition of nanowires
JP2012014001A (ja) * 2010-07-01 2012-01-19 Nitto Denko Corp 偏光子の製造方法、偏光子、偏光板、光学フィルムおよび画像表示装置
KR102543171B1 (ko) * 2015-10-27 2023-06-14 미쯔비시 케미컬 주식회사 폴리비닐 알코올계 필름 및 이를 사용한 편광막, 편광판, 및 폴리비닐 알코올계 필름의 제조 방법
JP6865428B2 (ja) * 2016-10-25 2021-04-28 国立研究開発法人産業技術総合研究所 カーボンナノチューブゴム複合材料
JP6910931B2 (ja) * 2016-12-02 2021-07-28 住友化学株式会社 偏光フィルム及び偏光性積層フィルムの製造方法
JP7241272B2 (ja) 2018-03-26 2023-03-17 株式会社レゾナック 材料中の針状物質の配向性の測定方法

Also Published As

Publication number Publication date
US20240060888A1 (en) 2024-02-22
JPWO2022131286A1 (zh) 2022-06-23
TW202240143A (zh) 2022-10-16
EP4265394A1 (en) 2023-10-25
KR20230121068A (ko) 2023-08-17
TWI808568B (zh) 2023-07-11
WO2022131286A1 (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
Durgashyam et al. Experimental investigation on mechanical properties of PETG material processed by fused deposition modeling method
JP4887502B2 (ja) 金属構造体およびその製造方法
KR102163827B1 (ko) 편광 필름 및 그 제조 방법
TWI502007B (zh) 聚乙烯醇系聚合物薄膜及其製造方法
Jin et al. Adhesion force mapping on wood by atomic force microscopy: influence of surface roughness and tip geometry
Slee et al. The transport of oxygen through oriented poly (ethylene terephthalate)
US11112314B2 (en) Infrared absorptive material, infrared sensor, wavelength selective light source, and radiation cooling system
CN116568484A (zh) 银纳米线的取向性的测定方法、聚乙烯醇膜、聚乙烯醇膜的加工方法及聚乙烯醇膜的制造方法
CN107074576A (zh) 高分散性碱土金属化合物微粉末、光学膜、图像显示装置和高分散性碱土金属化合物微粉末的制造方法以及微粉末分散性评价方法和微粉末分散性评价装置
Mulholland et al. Development of a one-micrometer-diameter particle size standard reference material
Padilha et al. Effect of solvents on the morphology of PMMA films fabricated by spin-coating
Khlayboonme et al. RF-sputtered V2O5 thin films on two different glass substrates
Kochervinskii et al. Surface topography and crystal and domain structures of films of ferroelectric copolymer of vinylidene difluoride and trifluoroethylene
Cui et al. A novel apparatus combining polymer extrusion processing and x-ray scattering
Tong et al. pH and thermoresponsive Ag/polyelectrolyte hybrid thin films for tunable metal-enhanced fluorescence
Ok et al. Basic characterization and investigation of a fluorinated terpolymer in pure state and in mixtures with kaolinite at solid interphases of thin films prepared by facile solution cast and nonsolvent methods
Nieto‐Villena et al. Atomic force microscopy as a tool for binder identification in ancient photographic processes
US20230027915A1 (en) Production method for polymer composition
US20230025211A1 (en) Method for evaluating orientation of nanowire in transparent material, method for managing steps in which said method is used, and method for producing resin cured article
Rice et al. Control of slanting angle, porosity, and anisotropic optical constants of slanted columnar thin films via in situ nucleation layer tailoring
Sergeev et al. Investigation of humidity influence upon waveguide features of chitosan thin films
US20130170032A1 (en) DEVICE FOR PRODUCING POLARIZING FILM AND METHOD OF PRODUCING THE SAME (As Amended)
Kaygusuz et al. Nanoscopic investigation on TiO2-SiO2-GLYMO nanocomposite coated and plasma treated leathers
Schubert et al. Binary and Ternary Blends of Polypropylene Types–Influence on the Homogeneity of Biaxial‐Oriented Films
Rumyantsev et al. Optical Activity of a Nonideal 1D Photonic Crystal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination