TW202227681A - 引晶位置的檢測方式 - Google Patents

引晶位置的檢測方式 Download PDF

Info

Publication number
TW202227681A
TW202227681A TW110100966A TW110100966A TW202227681A TW 202227681 A TW202227681 A TW 202227681A TW 110100966 A TW110100966 A TW 110100966A TW 110100966 A TW110100966 A TW 110100966A TW 202227681 A TW202227681 A TW 202227681A
Authority
TW
Taiwan
Prior art keywords
image
seed crystal
crucible
aperture
molten soup
Prior art date
Application number
TW110100966A
Other languages
English (en)
Other versions
TWI758065B (zh
Inventor
程俊翰
王興邦
蔡佳琪
Original Assignee
環球晶圓股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 環球晶圓股份有限公司 filed Critical 環球晶圓股份有限公司
Priority to TW110100966A priority Critical patent/TWI758065B/zh
Application granted granted Critical
Publication of TWI758065B publication Critical patent/TWI758065B/zh
Publication of TW202227681A publication Critical patent/TW202227681A/zh

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一種引晶位置的檢測方式,包括:提供坩堝於晶體生長爐中,且坩堝內具有第一熔湯;使第一晶種與第一熔湯的接觸位置形成第一光圈;以相機拍攝第一晶種以及第一熔湯,以獲取第一圖像;藉由第一晶種生長出第一晶棒;分析第一圖像中之第一光圈的位置;提供第二熔湯於坩堝中;使第二晶種與第二熔湯的接觸位置形成第二光圈;以相機拍攝第二晶種以及第二熔湯,以獲取第二圖像;分析第二圖像中之第二光圈的位置;以及藉由第二晶種生長出第二晶棒。

Description

引晶位置的檢測方式
本發明是有關於一種引晶位置的檢測方式,且特別是有關於一種分析圖像以檢測引晶位置的方式。
近年來,半導體產業蓬勃發展,其中矽晶圓為半導體產業最基本的必需品。矽晶圓成長的方式包括浮熔帶長晶法(Floating Zone Method)、雷射加熱提拉長晶法(Laser Heated Pedestal Growth)以及柴氏長晶法(Czochralski Method,簡稱CZ method)等。其中柴氏長晶法因具有較佳的經濟效益,故成為目前大尺寸晶圓的主要生長方式。
在CZ法的單晶生長(growth of single crystal)中,在維持成減壓下的惰性氣體環境的腔室內,將晶種(seed crystal)浸漬於坩堝(crucible)內所積存的矽的原料熔湯中,並將所浸漬的晶種緩慢提拉,藉此於晶種的下方生長出單晶矽。
本發明提供一種引晶位置的檢測方式,能維持長晶製程的穩定性,並能確保晶棒的品質。
本發明的一實施例提供一種引晶位置的檢測方式,包括:提供晶體生長爐;提供坩堝於晶體生長爐中,並對該坩堝加熱;提供第一熔湯於坩堝中;使第一晶種觸碰第一熔湯;使第一晶種與第一熔湯的接觸位置形成第一光圈;以相機拍攝第一晶種以及第一熔湯,以獲取第一圖像;藉由第一晶種生長出第一晶棒;分析第一圖像中之第一光圈的位置,其中以第一圖像中的第一角落為原點,第一圖像中之第一光圈的中心的座標位置為(X1, Y1),其中第一圖像中之第一晶種沿著Y軸方向生長;提供第二熔湯於坩堝中,且第二熔湯在坩堝內的液面高度等於第一熔湯在坩堝內的液面高度;使第二晶種觸碰第二熔湯;使第二晶種與第二熔湯的接觸位置形成第二光圈;以相機拍攝第二晶種以及第二熔湯,以獲取第二圖像;分析第二圖像中之第二光圈的位置,其中以第二圖像中相應於第一角落的第二角落為原點,第二圖像中之第二光圈的中心的座標位置為(X2, Y2),其中第二圖像中之第二晶種沿著Y軸方向生長;計算(Y2-Y1)/Y1;計算(X2-X1)/X1;以及藉由第二晶種生長出第二晶棒。
請參考圖1,晶體生長爐10包括爐壁100、坩鍋托盤110、加熱器120、熱帷幕130、坩堝140、相機150以及吊線160。
加熱器120以及熱帷幕130設置於爐壁100中。坩堝140設置於坩鍋托盤110上,且坩堝140設置於加熱器120中。熱帷幕130設置於坩堝140上。相機150設置於爐壁100上。在一些實施例中,相機150設置於爐壁100外,並透過爐壁上的觀測窗來監控坩堝140內的情況。
於坩堝140中加入晶體材料。旋轉坩堝140並加熱晶體材料,以使晶體材料熔化為熔湯200。熔湯200例如包括矽。在一些實施例中,旋轉坩堝140的轉速約為8 rpm~ 14 rpm。
相機150例如是CCD相機、CMOS相機或其他種類的相機。在一些實施例中,相機150的解析度約為200萬畫素至500萬畫素。
晶種300固定於吊線160上。吊線160可用於提升或下降晶種300。在使晶種300下降並接觸熔湯200時,以相機150拍攝晶種300與熔湯200,以確認晶種300的位置。
圖2A是依照本發明的一實施例的一種第一圖像的示意圖。
請參考圖2A,使第一晶種300a觸碰坩堝(例如圖1的坩堝140)中的第一熔湯200a,如圖3的步驟S1。在一些實施例中,第一晶種300a伸入第一熔湯200a中。第一晶種300a與第一熔湯200a的接觸位置會形成第一光圈310a,如圖3的步驟S2。以相機(例如圖1的相機150)拍攝第一晶種300a以及第一熔湯200a,以獲取第一圖像P1,如圖3的步驟S3。
在獲取第一圖像P1後,以提拉的方式藉由第一晶種300a於第一熔湯200a中生長出第一晶棒,如圖3的步驟S4。在本實施例中,以第一晶種300a生長出之第一晶棒符合所預期之晶棒的尺寸或/和符合所預期之晶體品質,因此,第一晶種300a與第一熔湯200a接觸的位置被判定為理想的引晶位置。
為了確認理想的引晶位置,分析第一圖像P1中之第一光圈310a的位置,如圖3的步驟S5。在第一圖像P1中,第一光圈310a的中心C1(例如幾何中心或形心)的座標位置為(X1, Y1)。座標的單位長度例如等於畫素的大小。第一圖像P1中的第一角落(例如左上角)為原點(0, 0),且第一圖像P1中之第一晶種300a沿著X及Y軸方向生長。
在形成第一晶棒之後,將第一晶種300a自吊線(例如圖1的吊線160)取下,並於吊線上裝設第二晶種300b。第一晶種的尺寸等於或不等於第二晶種的尺寸。
圖2B是依照本發明的一實施例的一種第二圖像的示意圖。
請參考圖2B,提供第二熔湯200b於坩堝(例如圖1的坩堝140)中。在一些實施例中,形成第一晶棒會消耗坩堝內的熔湯,可以藉由連續投料機或其他類似的方式持續添加原料(例如矽)於坩堝中,使第二熔湯200b在坩堝內的液面高度實質上等於第一熔湯200a在坩堝內的液面高度。第一熔湯200a與第二熔湯200b例如都包括矽。
使第二晶種300b觸碰第二熔湯200b,如圖3的步驟S6。在一些實施例中,第二晶種300b伸入第二熔湯200b中。第二晶種300b與第二熔湯200b的接觸位置會形成第二光圈310b,如圖3的步驟S7。以相機(例如圖1的相機150)拍攝第二晶種300b以及第二熔湯200b,以獲取第二圖像P2,如圖3的步驟S8。在拍攝第一圖像P1以及第二圖像P2時,相機的位置是固定不變的。第一圖像P1的解析度等於第二圖像P2的解析度。
分析第二圖像P2中之第二光圈310b的位置,如圖3的步驟S9。第二圖像P2中之第二角落(左上角)相應於第一圖像P1中的第一角落之為原點(0, 0),第二圖像P2中之第二晶種300b沿著X及Y軸方向生長。第二圖像P2中之第二光圈310b的中心C2(例如幾何中心或形心)的座標位置為(X2, Y2)。
在獲得(X2, Y2)之後,分析Y軸的誤差值,如圖3的步驟S10。Y軸的誤差值的分析方式如圖4所示。
請參考圖4,計算(Y2-Y1)/Y1。
在(Y2-Y1)/Y1<10%時,判斷為Y軸未偏移,此時確認坩堝的堝位在Y軸上的位置,並維持坩堝的位置。
在(Y2-Y1)/Y1>10%時,判斷為Y軸偏移。
在判斷坩堝在Y軸上偏移後,使坩堝往上移動或往下移動。坩堝往上移動時,第二光圈在相機所拍攝之圖像中的位置會沿著圖像的Y軸往上移動。坩堝往下移動時,第二光圈在相機所拍攝之圖像中的位置會沿著圖像的Y軸往下移動。
請參考圖2C,在移動坩堝後以相機拍攝第二晶種300b以及第二熔湯200b,以獲取第三圖像P3。第三圖像中P3的第三角落(例如左上角)相應於第一圖像P1的第一角落為原點(0, 0),且第三圖像P3中的第二晶種300b沿著X及Y軸方向生長。第三圖像P3的解析度等於第二圖像P2的解析度。
坩堝在第三圖像P3中相較於坩堝在第二圖像P2中沿著Y軸方向移動。換句話說,第二光圈310b在第三圖像P3中相較於第二光圈310b在第二圖像P2中沿著Y軸方向移動。第三圖像中之第二光圈310b的中心C2的位置為(X3, Y3),其中Y3不等於Y2。在本實施例中,Y3相較於Y2更接近Y1。在一些實施例中,X3等於X2。
移動坩堝使(Y3-Y1)/Y1<10%。在(Y3-Y1)/Y1<10%時,判斷為Y軸未偏移,此時確認坩堝,堝位在Y軸的位置,並維持坩堝的位置。換句話說,藉由移動坩堝以改善之第二光圈310b的中心C2在Y軸偏移的問題。
在確認坩堝,堝位在Y軸的位置之後,分析X軸的誤差值,如圖3的步驟S11。X軸的誤差值的分析方式如圖5所示。
請參考圖5,計算(X2-X1)/X1或(X3-X1)/X1。
在(X2-X1)/X1<10%或(X3-X1)/X1<10%時,判斷為X軸未偏移,此時確認坩堝,堝位在X軸的位置,並維持坩堝的位置。在確認坩堝,堝位在X軸的位置之後,藉由第二晶種於第二熔湯中生長出第二晶棒,然後再確認第二晶棒的品質,如圖3的步驟S12。
在(X2-X1)/X1>10%或(X3-X1)/X1>10%時,判斷為X軸偏移。藉由電腦自動判斷並紀錄偏移位置(X2-X1)或(X3-X1)。機台發出警示,接著判斷在X軸偏移的情況下是否可以正常生長晶棒,例如所在位置之空間是否足夠讓晶棒繼續生長。當判斷為X軸偏移的情況在誤差範圍內(例如(X2-X1)/X1或(X3-X1)/X1為10%),且晶棒仍能正常生長時,確認坩堝的堝位在X軸上的位置之後,藉由第二晶種於第二熔湯中生長出第二晶棒,接著確認第二晶棒的品質。當判斷為X軸偏移的情況在誤差範圍外,且晶棒不能生長時,自動調整晶棒的生長尺寸(例如降低晶棒的生長尺寸),接著藉由第二晶種於第二熔湯中生長出第二晶棒,然後再確認第二晶棒的品質,如圖3的步驟S12。
在一些實施例中,在(X2-X1)/X1>10%或(X3-X1)/X1>10%時,在生長第二晶棒之前,例如已判斷前一晶棒生長位置為X軸偏移且(X2-X1)/X1>10%或(X3-X1)/X1>10%,或在生長第二晶棒之後,且(X2-X1)/X1>10%或(X3-X1)/X1>10%,停止運作晶體生長爐,並依據電腦所記錄之偏移位置調整用於固定第二晶種310b之吊線(例如圖1的吊線160)的水平位置,以降低後續晶種在X軸偏移的機率,例如下一晶棒生長位置可更準確。藉此,能維持長晶製程的穩定性,並能確保晶棒的品質。
圖6是依照本發明的一實施例的一種是判斷是否形成光圈的流程圖。圖7是依照本發明的一實施例的一種判斷是否形成光圈的圖像的示意圖。
以第二晶種310為例,請參考圖6與圖7,使第二晶種300b碰觸坩堝中的第二熔湯200b,接著放置T1時間。在一些實施例中,在使第二晶種300b碰觸第二熔湯200b之前或之後,旋轉坩堝。旋轉坩堝的轉速約為 8 rpm~ 14 rpm。
在放置T1時間後,以相機拍攝第二晶種310b與第二熔湯200b的接觸位置,以獲取圖像。接著藉由圖像判斷是否形成第二光圈。
藉由圖像判斷是否形成第二光圈的方法包括:於圖像中第二晶種310b與第二熔湯200b的接觸位置定義出一個扇形區域FA,其中扇形區域FA的輪廓是由兩個在同一平面的同心的半圓相連而成,,此平面可以是平行溶湯之平面,且兩個在同一平面的同心的半圓的直徑L1、L2分別等於第二晶種310b的直徑W的1/2倍以及2倍。將扇形區域FA沿著兩個在同一平面的同心的半圓區分成多個檢測區TA,也可以說扇形區域FA是由多個檢測區TA排列在一起所構成。舉例來說,扇形區域FA是由50個至100個檢測區TA排列在一起所構成。當第二晶種310b與第二熔湯200b的接觸位置處產生的光圈佔據全部檢測區TA之數量的七成以上,則判定為第二光圈310b已形成,且第二光圈310b重疊於檢測區TA之數量佔據全部檢測區TA之數量的七成以上。當第二晶種310b與第二熔湯200b的接觸位置處產生的光圈佔據全部檢測區TA之數量不到七成,則判定為第二光圈310b尚未形成。在判定第二光圈310b尚未形成後,降低坩堝的轉速,例如降低至 6 rpm~ 8 rpm,並使第二晶種300b觸碰第二熔湯310b一段時間。在放置T2時間後,以相機拍攝第二晶種310b與第二熔湯200b的接觸位置,以獲取圖像。接著藉由圖像再次判斷是否形成第二光圈。
在判定為第二光圈310b已形成之後,分析第二光圈310b於圖像(即第二圖像)中的位置。舉例來說,分析第二光圈310b的中心C2於圖像中的位置。
雖然圖6與圖7是以第二光圈為例說明,判斷是否形成第一光圈方法亦如同判斷是否形成第二光圈方法,因此不再贅述判斷是否形成第一光圈方法。
圖8是依照本發明的一實施例的一種圖像。
請參考圖8,在一些實施例中,以十字準心作為輔助,使操作人員能更清楚的判斷晶種的偏移位置。
圖9A是依照本發明的一些實施例的坩堝堝位分佈的盒鬚圖。圖9B是依照本發明的一些實施例的坩堝堝位分佈的曲線圖。
請參考圖9A與圖9B,執行多次長晶製程,並記錄每次長晶製程的堝位。在圖9A中,縱軸為堝位(單位:毫米)。在圖9B中,縱軸為頻率,即出現次數,橫軸為堝位(單位:毫米)。
表1是一些實施例的坩堝堝位分佈。 表1
改善前(毫米) 改善後(毫米)
-28 -27.3
-31 -24.2
-25 -24.5
-30 -25.2
-24 -28.7
-33 -26.2
-24 -24
在未使用前述實施例所揭露之引晶位置的檢測方式時(圖9A、圖9B以及表1中標記為改善前),單純以人的肉眼確認堝位位置,堝位位置容易偏移。在使用前述實施例所揭露之引晶位置的檢測方式時(圖9A、圖9B以及表1中標記為改善後),堝位偏移量可以被控制於5毫米以內,且堝位的分佈也能較為集中,因此,晶棒品質能夠更加穩定,長晶良率可大幅提升,降低製造成本及時間,而且在晶棒生長過程中即可判斷長晶位置是否異常,並能立即做調整,且利用影像進行長晶位置的判斷,更可改善以往的人為誤判,增加準確度。
綜上所述,本發明能維持長晶製程的穩定性,並能確保晶棒的品質。
10:晶體生長爐 100:爐壁 110:坩鍋托盤 120:加熱器 130:熱帷幕 140:坩堝 150:相機 160:吊線 200:熔湯 200a:第一熔湯 200b:第二熔湯 300:晶種 300a:第一晶種 300b:第二晶種 310a:第一光圈 310b:第二光圈 C1、C2、C3:中心 L1、L2:直徑 FA:扇形區域 P1:第一圖像 P2:第二圖像 P3:第三圖像 S1~S12:步驟 TA:檢測區 W:寬度 X:X軸 Y:Y軸
圖1是依照本發明的一實施例的一種晶體生長爐的剖面示意圖。 圖2A是依照本發明的一實施例的一種第一圖像的示意圖。 圖2B是依照本發明的一實施例的一種第二圖像的示意圖。 圖2C是依照本發明的一實施例的一種第三圖像的示意圖。 圖3是依照本發明的一實施例的一種引晶位置的檢測方式的流程圖。 圖4是依照本發明的一實施例的一種引晶位置的檢測方式的流程圖。 圖5是依照本發明的一實施例的一種引晶位置的檢測方式的流程圖。 圖6是依照本發明的一實施例的一種判斷是否形成光圈的流程圖。 圖7是依照本發明的一實施例的一種判斷是否形成光圈的圖像的示意圖。 圖8是依照本發明的一實施例的一種圖像。 圖9A是依照本發明的一些實施例的坩堝堝位分佈的盒鬚圖。 圖9B是依照本發明的一些實施例的坩堝堝位分佈的曲線圖。
S1~S12:步驟

Claims (10)

  1. 一種引晶位置的檢測方式,包括: 提供一晶體生長爐; 提供一坩堝於該晶體生長爐中,並對該坩堝加熱 提供一第一熔湯於該坩堝中; 使一第一晶種觸碰該第一熔湯; 使該第一晶種與該第一熔湯的接觸位置形成一第一光圈; 以一相機拍攝該第一晶種以及該第一熔湯,以獲取一第一圖像; 藉由該第一晶種生長出一第一晶棒; 分析該第一圖像中之該第一光圈的位置,其中以該第一圖像中的一第一角落為原點,該第一圖像中之該第一光圈的中心的座標位置為(X1, Y1),其中該第一圖像中之該第一晶種沿著X軸及Y軸方向生長; 提供一第二熔湯於該坩堝中,且該第二熔湯在該坩堝內的液面高度實質上等於該第一熔湯在該坩堝內的液面高度; 使一第二晶種觸碰該第二熔湯; 使該第二晶種與該第二熔湯的接觸位置形成一第二光圈; 以該相機拍攝該第二晶種以及該第二熔湯,以獲取一第二圖像; 分析該第二圖像中之該第二光圈的位置,其中以該第二圖像中相應於該第一角落的一第二角落為原點,該第二圖像中之該第二光圈的中心的座標位置為(X2, Y2),其中該第二圖像中之該第二晶種沿著X軸及Y軸方向生長; 計算(Y2-Y1)/Y1; 計算(X2-X1)/X1;以及 藉由該第二晶種生長出一第二晶棒。
  2. 如請求項1所述的引晶位置的檢測方式,其中該第一晶種的尺寸實質上等於該第二晶種的尺寸。
  3. 如請求項1所述的引晶位置的檢測方式,其中(X2-X1)/X1<10%,且(Y2-Y1)/Y1<10%,維持該坩堝的位置。
  4. 如請求項1所述的引晶位置的檢測方式,其中(Y2-Y1)/Y1>10%,且該引晶位置的檢測方式更包括: 使該坩堝往上移動或往下移動,並在移動該坩堝後以該相機拍攝該第二晶種以及該第二熔湯,以獲取一第三圖像; 以該第三圖像中相應於該第一角落的一第三角落為原點,且該第三圖像中的該第二晶種沿著X軸及Y軸方向生長,該第三圖像中之該第二光圈的中心的位置為(X3, Y3),其中Y3不等於Y2; (Y3-Y1)/Y1<10%。
  5. 如請求項1所述的引晶位置的檢測方式,其中(X2-X1)/X1>10%,且所述引晶位置的檢測方式更包括: 調整用於固定該第二晶種之吊線的水平位置。
  6. 如請求項1所述的引晶位置的檢測方式,更包括: 於該第二圖像中該第二晶種與該第二熔湯的接觸位置定義出一個扇形區域,其中該扇形區域的輪廓是由兩個在同一平面的同心的半圓相連而成,且該兩個在同一平面的同心的半圓的直徑分別等於該第二晶種的寬度的1/2倍以及2倍; 將該扇形區域沿著該兩個在同一平面的同心的半圓區分成多個檢測區; 該第二晶種與該第二熔湯的接觸位置處的該第二光圈重疊於該些檢測區之數量佔據全部該些檢測區之數量的七成以上。
  7. 如請求項1所述的引晶位置的檢測方式,其中在使該第二晶種觸碰該第二熔湯之前,更包括: 旋轉該坩堝。
  8. 如請求項7所述的引晶位置的檢測方式,其中在形成該第二光圈之前,更包括: 降低該坩堝的轉速,並使該第二晶種觸碰該第二熔湯一段時間。
  9. 如請求項1所述的引晶位置的檢測方式,其中該第一熔湯以及該第二熔湯包括矽。
  10. 如請求項1所述的引晶位置的檢測方式,其中該第一圖像的解析度等於該第二圖像的解析度。
TW110100966A 2021-01-11 2021-01-11 引晶位置的檢測方式 TWI758065B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110100966A TWI758065B (zh) 2021-01-11 2021-01-11 引晶位置的檢測方式

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110100966A TWI758065B (zh) 2021-01-11 2021-01-11 引晶位置的檢測方式

Publications (2)

Publication Number Publication Date
TWI758065B TWI758065B (zh) 2022-03-11
TW202227681A true TW202227681A (zh) 2022-07-16

Family

ID=81710669

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110100966A TWI758065B (zh) 2021-01-11 2021-01-11 引晶位置的檢測方式

Country Status (1)

Country Link
TW (1) TWI758065B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089500B2 (ja) * 2003-05-06 2008-05-28 株式会社Sumco 単結晶引き上げ装置内の融液の液面位置測定方法
CN110257903A (zh) * 2019-06-24 2019-09-20 内蒙古中环协鑫光伏材料有限公司 自动降籽晶过程中自动定位至原生籽晶处终止下降的方法
CN110207010A (zh) * 2019-07-08 2019-09-06 深圳融科半导体装备有限公司 一种移动式供气柜
CN112160023A (zh) * 2020-10-09 2021-01-01 西安奕斯伟硅片技术有限公司 用于将籽晶旋转杆与坩埚旋转基座对中的方法及系统

Also Published As

Publication number Publication date
TWI758065B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
JP6078974B2 (ja) シリコン単結晶の製造方法
KR101416093B1 (ko) 차열 부재 하단면과 원료 융액면 사이의 거리 측정방법 및 그 거리 제어방법
TWI596243B (zh) 單結晶的製造方法及裝置
TWI588304B (zh) Single crystal manufacturing method
TWI675131B (zh) 單結晶的製造方法及裝置
TWI592524B (zh) 單晶矽之製造方法及製造系統
JP6465008B2 (ja) シリコン単結晶の製造方法
KR20100083717A (ko) 실리콘 단결정의 제조방법
JP2012001387A (ja) 遮熱部材下端面と原料融液面との間の距離の測定方法、遮熱部材下端面と原料融液面との間の距離の制御方法、シリコン単結晶の製造方法
JP4930487B2 (ja) 融液面と炉内構造物の下端部との距離の測定方法、及びこれを用いた融液面位置の制御方法、並びに単結晶の製造方法及び単結晶製造装置
TW202140865A (zh) 單結晶製造裝置及單結晶的製造方法
CN107130290B (zh) 单晶的制造方法和制造装置
JP6645406B2 (ja) 単結晶の製造方法
JP6477356B2 (ja) 単結晶の製造方法および製造装置
JP6939714B2 (ja) 融液面と種結晶の間隔測定方法、種結晶の予熱方法、及び単結晶の製造方法
TWI758065B (zh) 引晶位置的檢測方式
JP2014166932A (ja) 半導体単結晶棒の製造方法
JP7221484B1 (ja) 単結晶引き上げ方法および単結晶引き上げ装置
KR101080569B1 (ko) 잉곳 성장 과정에서 용융 간격 측정 및 제어 방법
TWI782726B (zh) 單結晶的製造方法
TW202344722A (zh) 矽單晶的製造方法及裝置和矽晶圓的製造方法
JP7318738B2 (ja) 単結晶製造システム及び単結晶製造方法
TWI828140B (zh) 單結晶的製造方法及單結晶製造裝置
JP2011032136A (ja) 液面高さレベル把握方法