TW202217511A - 為電力閘控域提供洩漏降低的系統和方法 - Google Patents
為電力閘控域提供洩漏降低的系統和方法 Download PDFInfo
- Publication number
- TW202217511A TW202217511A TW110132923A TW110132923A TW202217511A TW 202217511 A TW202217511 A TW 202217511A TW 110132923 A TW110132923 A TW 110132923A TW 110132923 A TW110132923 A TW 110132923A TW 202217511 A TW202217511 A TW 202217511A
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage level
- voltage
- power supply
- reference voltage
- coupled
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/06—Modifications for ensuring a fully conducting state
- H03K17/063—Modifications for ensuring a fully conducting state in field-effect transistor switches
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/462—Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic
- G05F1/465—Internal voltage generators for integrated circuits, e.g. step down generators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/263—Arrangements for using multiple switchable power supplies, e.g. battery and AC
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/28—Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/30—Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/14—Modifications for compensating variations of physical values, e.g. of temperature
- H03K17/145—Modifications for compensating variations of physical values, e.g. of temperature in field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/22—Modifications for ensuring a predetermined initial state when the supply voltage has been applied
- H03K17/223—Modifications for ensuring a predetermined initial state when the supply voltage has been applied in field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0008—Arrangements for reducing power consumption
- H03K19/0013—Arrangements for reducing power consumption in field effect transistor circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/0008—Arrangements for reducing power consumption
- H03K19/0016—Arrangements for reducing power consumption by using a control or a clock signal, e.g. in order to apply power supply
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/06—Modifications for ensuring a fully conducting state
- H03K2017/066—Maximizing the OFF-resistance instead of minimizing the ON-resistance
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0063—High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0081—Power supply means, e.g. to the switch driver
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Power Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Electromagnetism (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Semiconductor Integrated Circuits (AREA)
- Direct Current Feeding And Distribution (AREA)
- Logic Circuits (AREA)
- Control Of Eletrric Generators (AREA)
Abstract
一種系統包括:第一電力供應;第二電力供應;被設置在第一電力供應與邏輯電路裝置之間的頭部開關;將第二電力供應耦接到頭部開關的控制端子的致能驅動器;以及能夠被操作以回應於第一電力供應的第一電壓位準超過參考電壓位準而調節從第二電力供應到頭部開關的控制端子的控制電壓的電壓產生器。
Description
本申請要求於2020年9月9日提交的美國專利申請第17/015,466號的優先權和權益,該申請的全部內容通過引用併入本文,如同在下文中所完全闡述的並且用於所有適用目的。
本申請總體上涉及電力閘控域,並且更具體地涉及降低電力閘控開關中的洩漏。
常規的計算設備(例如,智慧型電話、平板電腦等)可以包括片上系統(SOC),SOC具有處理器和其他操作電路。SOC可以從電池接收其電力,並且因此常規設計可以平衡SOC性能和電力使用以向用戶遞送期望體驗,同時要求盡可能少的電池充電。
電力閘控是一種在某些情況下可以用於節省電力的技術。一些系統可以使用電力閘控來節省電力的一種方式是實現處理核的某些部分的電力崩潰(使用第一電力多工器和第一電力域),同時向處理核的其他部分提供電力(使用第二電力多工器和第二電力域)。一些常規系統可以使用電力閘控的另一種方式是從第一電力供應切換到第二電力供應以為中央處理單元(CPU)記憶體供電,並且然後調節第二電力供應以過驅動CPU記憶體。該技術可以通過允許SOC選擇性地升高某些元件處的電壓而不升高其他元件處的電壓來節省電力。當然,電力閘控還可以包括簡單地使在沒有處於使用狀態的一個或多個元件處的電力崩潰並且然後在稍後恢復電力。
一些電力閘控電路可以使用頭部開關或腳部開關,每種開關具有電晶體。電晶體可以被關斷以使處理核或其他處理邏輯的對應部分電力崩潰。然而,即使電晶體被關斷,它仍然可以允許一些漏電流。例如,利用P通道金屬氧化物半導體(PMOS)頭部開關,當其閘-源電壓大於或等於零時,它被關斷。真實世界中的PMOS頭部開關並不是理想的開關,並且即使在截止狀態下也可能存在漏電流。洩漏可能會轉換為從常開電力供應汲取的電力,從而導致電池壽命縮短。因此,需要用於降低洩漏的電路和技術。
各種實現提供了用於降低電力閘控開關的洩漏的電路和技術。在一個示例實現中,PMOS頭部開關在其處於斷開時被保持在超截止狀態。超截止狀態可以包括至少在一些電壓範圍內向電晶體提供正閘-源電壓。此外,在該示例中,當源極電壓超過閾值時,系統可以將閘-源電壓調節至近似為零,使得電晶體被保持在截止狀態,但不處於超截止狀態。
根據一種實現,一種系統包括:第一電力供應;第二電力供應;頭部開關,被設置在第一電力供應與邏輯電路裝置之間;致能驅動器,將第二電力供應耦接到頭部開關的控制端子;以及電壓產生器,能夠被操作以回應於第一電力供應的第一電壓位準超過參考電壓位準而調節從第二電力供應到頭部開關的控制端子的控制電壓。
根據另一實現,一種方法包括:致能頭部開關以將電流從第一電力供應傳導到邏輯電路裝置;以及通過禁用頭部開關來關斷電流,包括:回應於將第一電壓位準與第二電壓位準進行比較,從第一電壓位準和第二電壓位準中選擇第一電壓位準;以及將第一電壓位準從第二電力供應施加給頭部開關的閘極。
根據另一實現,一種電路包括:第一電力軌,耦接到第一電力供應;第二電力軌,耦接到第二電力供應;電力閘控開關,耦接在第一電力軌與中央處理單元(CPU)的邏輯電路裝置的部分之間;以及用於回應於第一電力供應的第一電壓位準低於參考電壓位準而選擇從第二電力軌到電力閘控開關的控制端子的控制電壓的構件。
本文中提供的各種實現包括用於為邏輯電路提供電力閘控的系統和方法,與其他實現相比具有減少的洩漏。一個示例包括第一電力供應,該第一電力供應被耦接到電晶體的源極。第二電力供應被耦接到電晶體的控制端子(例如,閘極)。可以包括頭部開關的電晶體本身被設置在第一電力供應與邏輯電路裝置(circuitry)之間(例如,電晶體的汲極可以被耦接到邏輯電路裝置)。諸如具有反相器的緩衝器的致能驅動器可以將第二電力供應耦接到電晶體的閘極。
繼續該示例,該系統還可以包括電壓產生器,該電壓產生器能夠被操作以調節從第二電力供應到電晶體的控制端子的控制電壓。電壓產生器回應於第一電力供應的電壓位準超過參考電壓位準而調節控制電壓。參考電壓位準可以被設置為任何適當的值,該值可以通過試錯法、模擬等來選擇。在該示例實現中,參考電壓位準被設置為使得控制電壓的電位降低或避免閘極引發汲極洩漏(gate induced drain leakage, GIDL)。
因此,在該示例中,在電晶體的截止狀態期間,電晶體可以被保持在其中閘極電壓高於源極電壓的超截止狀態。然而,電晶體可以具有工作區,在該工作區中,達到高於特定閘極電壓位準的正閘-源電壓實際上可能增加洩漏而不是減少洩漏。這種增加的洩漏被稱為GIDL。如果源極電壓發生變化並且可能達到將決定會引起GIDL的閘極電壓的電位,則在電晶體的截止狀態期間維持正閘-源電壓可能無效。
在一個示例中,所提出的系統和方法通過提供電壓產生器來降低或消除GIDL,該電壓產生器調節從第二電力供應到電晶體的閘極的控制電壓。當來自第一電力供應的源極電壓超過參考電壓位準時,電壓產生器可以調節來自第二電力供應的控制電壓,使其近似等於源極電壓。
換言之,當來自第一電力供應的源極電壓超過參考電壓位準時,電壓產生器可以調節控制電壓,使得閘-源電壓為零或近似為零。如上所述,處於零的閘-源電壓仍可能導致洩漏,但該系統可以被設計為使得由於閘-源電壓為零而導致的洩漏小於由於GIDL而經歷的洩漏。
在一個示例中,電壓產生器包括比較器,該比較器具有第一輸入和第二輸入,所述第一輸入耦接到第一電力供應,所述第二輸入耦接到參考電壓。電壓產生器還可以包括能夠被操作以回應於比較器的輸出而在(第一電力供應的)第一電壓位準與第二電壓位準(參考電壓位準)之間調節控制電壓的電路裝置。例如,如果第一電力供應的電壓位準超過參考電壓位準,則電壓產生器可以輸出第一電力供應的電壓位準作為控制電壓。另一方面,如果第一電力供應的電壓位準低於參考電壓位準的電壓位準,則電壓產生器可以輸出參考電壓位準作為控制電壓。
各種實現還可以包括方法。一種示例方法包括:致能頭部開關以將電流從第一電力供應傳導到邏輯電路裝置。當頭部開關處於導通狀態並且將電流傳導到邏輯電路裝置時,邏輯電路裝置不會電力崩潰。該方法還可以包括:通過禁用頭部開關來關斷電流,從而使邏輯電路裝置電力崩潰。關斷電流可以包括:回應於將第一電壓位準與第二電壓位準進行比較而從第一電壓位準和第二電壓位準中選擇第一電壓位準。例如,第一電壓位準可以包括源極電壓,並且第二電壓位準可以包括參考電壓,因此該方法包括:選擇源極電壓或參考電壓以作為控制電壓施加到電晶體的閘極。
各種實現可以包括優於其他系統的優勢。一個優勢包括通過對電力閘控開關應用超截止狀態來降低洩漏。超截止狀態可以將洩漏降低,該洩漏的降低超出可以通過簡單地使電力閘控開關截止來實現的洩漏。此外,與其他替代方案相比,本文中描述的電路可以使用更少的矽面積來實現超截止狀態。具體地,本文中描述的一些實現可以使用運算放大器(op amp)和多個電晶體來提供電壓選擇,與之前考慮的其他洩漏降低替代方案相比,這具有更少的開銷。
圖1是示出了根據一種實現的用於電力閘控邏輯電路裝置120的示例系統100的簡化圖。示例系統100包括致能驅動器102,致能驅動器102向頭部開關108的控制端子(閘極)提供控制電壓。該示例中的頭部開關108包括被設置在第一電力供應(Vdd_ext)與邏輯電路裝置120之間的P通道金屬氧化物半導體(PMOS)電晶體。具體地,頭部開關108的源極被耦接到電力供應106,當頭部開關108導通時,電力供應106向邏輯電路裝置120供電。頭部開關108的汲極被耦接到電力閘控供應軌110,電力閘控供應軌110向邏輯電路裝置120供電。
頭部開關108的行為使得當其閘-源電壓大於或等於零時,頭部開關108關斷,從而使邏輯電路裝置120電力崩潰。類似地,當其閘-源電壓為負時,頭部開關108開啟,從而從電力軌106向邏輯電路裝置120供電。
致能驅動器102被耦接到第二電力供應104(Vdd_Drvr)。致能驅動器102還被耦接到電位移位器112和致能控制電路裝置114。當致能訊號(Sw_enable)為高時,致能驅動器102將零驅動到頭部開關108的閘極,從而開啟頭部開關108。當致能訊號為低時,致能驅動器將邏輯一驅動到頭部開關108的閘極,從而關斷頭部開關108。電位移位器112以與第二電力供應104相同的電壓(Vdd_Drvr)輸出致能訊號。致能控制電路裝置114確定致能訊號是高還是低,並且可以與其他元件通信,諸如在中央處理單元(CPU)核的作業系統的內核中運行的自我調整電力程式,該CPU核可以包括或可以不包括邏輯電路裝置120。
如上所述,致能訊號處於與第二電力供應104相同的電壓,並且致能驅動器102輸出與在被耦接到電力供應104的電力軌上接收到的電壓相同的電壓。因此,當頭部開關108截止時,致能訊號變為零,這將Vdd_Drvr(數位1)傳遞到頭部開關108的閘極。現在,在閘極與源極之間的電壓差(閘-源電壓)為Vdd_Drvr減去Vdd_ext。如下所述,各種實現可以改變Vdd_Drvr,使得它可以高於Vdd_ext以將頭部開關108的PMOS電晶體置於超截止狀態。
現在參考圖2,圖2是示出了在頭部開關108的汲極電流(在Y軸上)與頭部開關108的閘極電壓(在x軸上)之間的示例關係的圖。圖2的圖假定了第一電力供應106處的電壓Vdd_ext等於0.6V。應當注意,本文中討論的各種電壓僅是示例,並且針對用於頭部開關108的特定電晶體視情況而定,其他應用可以針對頭部開關108的閘極或源極使用不同電壓。
汲極電流大多較高並且為正,直到閘極電壓等於源極電壓,或換言之,閘-源電壓等於零。這在201處示出。然而,當閘-源電壓等於零時,汲極處的電流並不完全為零。相反,可以進一步減小汲極電流,如點204處所示,其中閘極電壓為0.7V。圖200中閘-源電壓為正的部分被稱為電晶體的超截止狀態。點201處的電流近似為點204處的電流的七倍,從而說明超截止狀態可以進一步降低圖1的系統中的漏電流。此外,應當注意,隨著閘極電壓增加超過點205(閘極電壓近似為0.8V),GIDL增加,從而抵消將電晶體置於超截止狀態的增益的部分或全部。因此,本文中描述的各種實現可以調節從第二電力供應104到頭部開關108的控制端子的控制電壓以實現電晶體的超截止狀態,同時還避免GIDL。這將在下面更詳細地描述。
圖3中進一步示出了超截止狀態和GIDL的概念。圖3是示出了根據圖2的實現的在閘極電壓與源極電壓之間的示例關係的圖。此外,圖3示出了在電晶體(諸如圖1的頭部開關108的電晶體)的截止狀態或超截止狀態期間不同水準的漏電流。示出了三種不同水準的漏電流:低並且可接受、更高但可接受、以及高並且不可接受。當然,這些標記僅作為示例,特定閘極和源極電壓也是如此。其他實現可以使用不同電壓並且針對漏電流具有不同容限,使得針對其他實現,可接受與不可接受之間的差異可以向上或向下移動。
在圖3中,在該示例中,約0.9V以上的閘極電壓提供不可接受的漏電流量,並且漏電流隨著閘極電壓的增加而增加。相比之下,約0.9V以下的閘極電壓在可接受範圍內,並且漏電流量隨著閘極電壓的減小而減小。圖3的圖的下限是閘-源電壓為零時,這在該示例中被表示為更高但可接受。
看圖1和圖3的示例,各種實現可以通過將頭部開關108維持在超截止狀態來防止洩漏。然而,如果第一電力供應(Vdd_ext)變化,則Vdd_ext的電位可能上升到閘極電壓(Vdd_Drvr)將引起不可接受水準的漏電流的點,該閘極電壓足夠高以將頭部開關108維持在超截止狀態。因此,圖1的系統的一些實現可以調節控制電壓Vdd_Drvr,使得它針對一些Vdd_ext電位將頭部開關108維持在超截止狀態,但是如果Vdd_ext超過閾值,則該系統可以使控制電壓Vdd_Drvr等於Vdd_ext,使得閘-源電壓為零並且漏電流仍在可接受的範圍內。
因此,示例實現包括選擇參考電壓,諸如圖4中示出為Vdd1的電壓。參考電壓Vdd1被選擇為一電位,高於此電位預期閘極電壓將經歷不可接受的GIDL。當然,這因每個應用而異,因為某些應用通常對GIDL或洩漏的容忍度更高。圖4的示例針對圖3所示的關係,示出了某些可接受的洩漏水準和其他不可接受的洩漏水準。具體地,參考電壓Vdd1的電位被設置在0.7V與0.8V之間,這對應於圖3的示例中具有可接受洩漏水準的閘極電壓。在一些實現中,特定電位的Vdd1未以高精度水準進行設置,而是基於實驗或模擬來進行設置,並且可以被設置在閘極電壓導致可接受的洩漏水準的範圍內。因此,圖3的示例還可以由高達0.85V的參考電壓位準Vdd1來服務。
曲線401示出了與圖1的第一電力供應106相關聯的Vdd_ext的時變電位。曲線402示出了參考電壓位準Vdd1,其被設置為在0.7V與0.8V之間的電位。曲線403示出了與第二電力供應104相關聯的Vdd_Drvr的電位,因為它回應於Vdd_ext的電位的變化而隨時間變化。為了便於說明,圖4示出了關於曲線401垂直向下移動的曲線403,並且其不旨在示出Vdd_Drvr的絕對電壓位準。
在時間T1之前,Vdd_ext低於電壓位準Vdd1。因此,在圖1的邏輯電路裝置120電力崩潰的情況下,圖1的系統通過施加等於Vdd1的控制電壓Vdd_Drvr來將頭部開關108維持在超截止狀態。這由左手側在Vdd1和Vdd_Drvr周圍的橢圓表示。再次,Vdd_ext與第一電力供應106相關聯並且是源極電壓。因此,在時間T1之前,閘-源電壓為正。
在時間T1處,Vdd_ext等於參考電壓Vdd1。如上所述,Vdd_ext可以是時變電壓,因此系統針對Vdd_Drvr使用動態設置。在時間T1之後,如果控制電壓Vdd_Drvr被保持在Vdd1的值,則閘-源電壓將為負,從而開啟頭部開關108。因此,為了將頭部開關108維持在截止狀態,該系統使Vdd_Drvr等於Vdd_ext,從而使閘-源電壓為零並且將頭部開關108保持在截止狀態。
此外,預期在時間T1之後維持頭部開關108的超截止狀態會由於GIDL而引起不可接受的洩漏,因為閘極電壓將在0.7V-0.8V之上,如上文關於圖3所述。因此,該系統在時間T1之後使用處於零的閘-源電壓以將頭部開關108保持在截止狀態並且具有可接受的洩漏量。
圖5是根據一種實現而適配的示例電壓產生器500的圖示。電壓產生器500能夠被操作以響應於Vdd_ext的電壓位準超過參考電壓位準Vdd1而調節從第二電力供應104到頭部開關108的控制端子的控制電壓Vdd_Drvr。簡而言之,當Vdd1高於Vdd_ext時,電壓產生器500選擇Vdd1並且將其傳遞給Vdd_Drvr。當Vdd1低於Vdd_ext時,電壓產生器選擇Vdd_ext並且將其傳遞給Vdd_Drvr。根據一種實現,電壓產生器500的輸出可以被耦接到與電力供應104相關聯的電力軌。
電壓產生器500包括比較器501(例如,運算放大器或op amp),比較器501在其正端(+)輸入處接收參考電壓Vdd1並且在其反相輸入處接收來自第一電力供應106的電壓Vdd_ext。比較器501的輸出是數位「1」或數位「0」,該數位「1」或數位「0」由電壓位準移位器502被轉換到與電晶體510和512相容的電壓域中。當Vdd1高於Vdd_ext時,比較器輸出數位「1」,並且數位「1」使PMOS電晶體510關斷並且使PMOS電晶體512開啟,從而使Vdd1出現在Vdd_Drvr處。
當Vdd_ext高於Vdd1時,這使數位「0」出現在比較器501的輸出處。這開啟PMOS 510並且關斷PMOS 512,從而使Vdd_ext出現在Vdd_Drvr處。這引起一個電壓位準(Vdd_ext)對另一電壓位準(Vdd1)的選擇以作為Vdd_Drvr進行輸出。如上所述,在系統的設計期間,Vdd1被選擇以被設置為等於或低於實驗或模擬表明會發生GIDL的電位。因此,電壓產生器500使Vdd_Drvr遵循圖4的示例,從而通過將頭部開關108的電晶體保持在超截止狀態或閘-源電壓為零的狀態(至少當頭部開關108截止時)來在頭部開關108的截止狀態期間降低洩漏量。
繼續圖5的示例,它還包括在電壓位準移位器502與電晶體510、512之間協調的超控機制503。在該示例中,超控機制503能夠被操作來迫使電壓產生器500以等於Vdd_ext的電壓輸出Vdd_Drvr。在一些示例中,當超控機制503超控比較器501的輸出時,比較器501和電壓位準移位器502可以被關斷。在某些情況下,可能更希望閘-源電壓為零而不是改變閘-源電壓。例如,可以存在其中Vdd_ext可以為零的睡眠模式,並且通常也更希望使閘極電壓Vdd_Drvr為零以將晶片置於深度睡眠。在一些示例中,超控機制503可以利用軟體來實現。當然,實現的範圍不限於在任何特定場景中使用軟體超控。超控機制503可以包括具有經程式設計的軟體控制暫存器的邏輯電路裝置,或者可以包括將多個輸入進行組合的邏輯塊,該多個輸入指示系統100在特定時間點處的狀態。在一種實現中,超控機制503可以包括用於基於來自比較器501的輸出和來自系統100內的另一源的超控訊號(未示出)的狀態來為電晶體510、512生成致能訊號的邏輯電路裝置。這樣的邏輯電路裝置可以被稱為超控電路裝置。
圖6是根據一種實現的示例系統600的圖示。圖6是一個簡化圖,示出了圖1的系統可以被重複以使邏輯的多個部分電力崩潰。例如,系統600包括致能驅動器102a至102N,其中N是大於1的整數。事實上,N可以是任何適當的整數。致能驅動器102中的每個致能驅動器被耦接到第二電力供應104。
示例系統600還包括多個頭部開關108a至108N,其中N再次是大於1的整數。在該示例中,存在N個致能驅動器102和N個頭部開關108,但在其他實現中,每個致能驅動器102可以驅動多個頭部開關108,這取決於致能驅動器102的大小和頭部開關108的大小。此外,頭部開關108可以被汲極耦接,如圖600所示,但在其他實現中,汲極可以是未耦接的。
電力崩潰域602可以包括邏輯電路裝置的多個部分(例如,邏輯電路裝置120的多個實例)。邏輯電路裝置的各個部分可以是同類的或異類的,並且邏輯電路裝置的各部分的數目可以是任何適當的數目。例如,系統600可以用於適當地使整個域或部分域電力崩潰。
應當理解,圖6為了便於說明而省略了一些特徵。例如,儘管圖1示出了電位移位器112和致能控制114,但應理解,相同或相似的特徵可以通過將軟體致能訊號電位移位元至等於Vdd_Drvr來在圖6的系統600中實現,並且軟體致能訊號可以通過致能控制電路裝置114來被控制為高或低。
圖6中的電路根據上述原理進行操作。例如,Vdd_Drvr可以由諸如圖5所示的產生器提供。因此,Vdd_Drvr電壓可以基於頭部開關108的源極處的電壓(Vdd_ext)來選擇。因此,當頭部開關108被置於截止狀態時,它們可以被維持在超截止狀態或零閘-源電壓狀態,這取決於Vdd_ext相對於參考電壓的水準。當域602未電力崩潰時,則頭部開關108導通,從而經由其相應汲極從第一電力供應106向域602供電。邏輯(諸如致能控制114)可以基於任何標準和任何電力演算法使域602電力崩潰或向域602提供電力。
圖7是根據一種實現的用於生成參考電壓Vdd1的參考電壓電路700的圖示。圖7的示例假定針對Vdd1的適當電位是07.V至0.8V,並且如上所述,各種實現可以針對頭部開關的閘極或源極使用不同電壓位準。因此,其他實現可以針對參考電壓Vdd1使用不同電位,並且可以理解,圖7所示的特定架構可以適於生成任何適當的參考電壓位準。此外,針對電力供應VddA和VddB的電壓位準僅是示例性的,並且應當理解,其他實現可以具有不同可用的電壓位準並且可以適於使用這些電壓位準來輸出適當的參考電壓位準。
開關S1和S2可以被實現為PMOS開關、N通道金屬氧化物半導體(NMOS)開關或任何其他電晶體技術。該示例中的VddA是高電壓軌,諸如1.8V。低壓差(LDO)電壓調節器701可以包括將電壓降低到0.7V-0.8V的電阻降。當開關S1閉合時,它將電壓從LDO 701置於軌道708上以生成Vdd1。VddB表示在0.7-0.8V可用的另一供應電壓。然而,它可能不是一直可用,因此,電路700使用VddA和VddB兩者來在各種時間和操作模式下提供可靠Vdd1。例如,VddB可以是間歇性可用的,諸如如果它是可以低於或超過期望範圍的可變電壓,則它可能不可用。當VddB可用時,電路700可以開啟開關S2以將VddB置於電力軌708上以生成Vdd1。
在該示例中,至少在電路700通電時,開關S1和S2是互補的,使得一次始終只有一個開關打開並且一次始終只有一個開關閉合。電流方向控制盒702、703確保當從一個電力軌切換到另一電力軌時電流不會從VddB倒流到VddA(或反之亦然)。開關S1和S2在實踐中並不理想,因此即使開關S1、S2是互補的,也有可能存在從一個軌道到另一軌道的電流,這通常是不希望的。
電流方向控制盒702、703可以像二極體一樣簡單(或更複雜),並且它們降低或防止反向電流從一個軌道流到另一軌道。電流方向控制器707在不使用時將電流方向控制盒702、703切換為接通或關斷以節省電力。
電力控制器706是主控制器,其瞭解VddA和VddB的電位並且基於不同電壓位準的狀態來控制開關Sl和S2。例如,如果VddB不可用,則電力控制器706可以向開關控制器704發送訊號以接通S1並且關斷S2。另一方面,如果VddB在針對Vdd_Drvr的期望電位下是可用的,則電力控制器706可以向開關控制器704發送訊號以接通S2並且關斷S1。
各種實現可以包括優於其他系統的一個或多個優勢。例如,一些系統可以在關斷狀態的整個持續時間內使用零閘-源電壓來將頭部開關置於關斷狀態。然而,如上所述,系統仍可能經歷不希望的洩漏,因為零閘-源電壓狀態可能不如超截止狀態有效。相比之下,本文中描述的實現可以在適當的時候使用超截止狀態,從而至少在一些電壓下經歷更少的洩漏。
此外,當預期零電壓狀態與超截止狀態相比將引起更少的洩漏時,本文中描述的實現可以從超截止狀態變為零閘-源電壓狀態。因此,各種實現可以比其他系統經歷更少的總洩漏,從而增加電池壽命。此外,本文中描述的各種實現可以在矽面積增加相對較少的情況下提供減少的洩漏。
本文中描述的各種實現可以適用於片上系統(SOC)。SOC的示例包括其中具有多個處理器件的半導體晶片,包括圖形處理單元(GPU)、中央處理單元(CPU)、數據機單元、相機單元等。在一些示例中,SOC可以被包括在晶片封裝內、被安裝在印刷電路板上以及被設置在可擕式設備(諸如智慧型電話或平板電腦)內。然而,實現的範圍不限於在平板電腦或智慧型電話內實現的晶片,因為其他應用也是可能的。
SOC可以包括具有多個核的CPU,並且這些核中的一個或多個核可以執行提供作業系統內核的功能性的電腦可讀代碼。此外,示例作業系統內核可以包括電力管理軟體,該電力管理軟體可以在SOC上的邏輯的部分沒有使用時將其斷電,並且可以在SOC上的邏輯的那些部分預期被使用時對其通電。因此,上面關於圖1至圖7描述的原理可以在SOC中實現,並且更具體地,圖1和圖5至圖7所示的電路可以在SOC中實現以提供電力崩潰功能性。
例如,在多核CPU中,核中的一些核在給定時間可能未使用,並且電力管理軟體可能使那些未使用的核電力崩潰。繼續本文中的示例,給定核可以由一個或多個頭部開關服務,諸如上面關於圖1和圖6所述。電力管理軟體可以使頭部開關關斷以提供電力崩潰並且在預期使用時使其接通。
給定核可以由單個頭部開關服務(如圖1所示),或者可以具有由多個頭部開關服務的多個部分(如圖6所示)。當然,實現的範圍不限於使CPU的核電力崩潰,因為SOC中的其他邏輯電路(諸如相機、數據機、GPU等)也可能電力崩潰。
圖8中示出了在多個電力供應之間進行多工的示例方法800的流程圖。在一個示例中,方法800由圖1和圖5至圖7所示的電路執行。該電路可以在電力管理單元的控制下進行操作,電力管理單元可以包括由圖1和圖5至圖7的電路服務的計算設備的處理器(例如,CPU)處的硬體和/或軟體功能性。在一些示例中,電力管理單元包括處理電路裝置,該處理電路裝置執行電腦可讀指令以對邏輯電路裝置通電或使邏輯電路裝置電力崩潰。
在動作810,實現頭部開關以將電流從第一電力供應傳導到邏輯電路裝置。圖1中示出了一個示例,其中頭部開關108可以將來自第一電力供應106的電流通過其汲極提供給邏輯電路裝置120。繼續該示例,電流在電壓Vdd_ext下被提供。該示例中的頭部開關108通過向其控制端子(其閘極)施加邏輯0來實現,這可以包括負閘-源電壓。
動作820和830示出了通過禁用頭部開關來關斷電流。例如,動作820包括從第一電壓位準和第二電壓位準中選擇第一電壓位準。圖5中給出了一個示例,其中針對Vdd_Drvr的電壓產生器在參考電壓Vdd1與源極電壓Vdd_ext之間進行選擇。
在圖5的示例中,比較器501將Vdd1和Vdd_ext進行比較。如果Vdd1處於Vdd_ext以上的電位,則電壓產生器500選擇Vdd1以作為Vdd_Drvr進行輸出。另一方面,如果Vdd_ext高於Vdd1,則電壓產生器500選擇Vdd_ext(源極電壓)以作為Vdd_Drvr進行輸出。
此外,在該示例中,Vdd1是參考電壓,該參考電壓被設置為一電位,高於該電位,預期閘極電壓將經歷不期望的GIDL。因此,電壓產生器500使Vdd_Drvr等於Vdd_ext,使得在GIDL將引起洩漏的情況下閘-源電壓為零。另一方面,在閘極電壓(低於其,GIDL將是不期望的)下,電壓產生器500施加Vdd1作為Vdd_Drvr,從而將頭部開關維持在超截止狀態,這與閘-源電壓為零的情況相比預期將引起較少洩漏。
在動作530,電路將第一電壓位準從第二電力供應施加到頭部開關的閘極。繼續該示例,圖5的電路使Vdd1或Vdd_ext被第二電力供應(Vdd_Drvr)施加到頭部開關的閘極。
實現的範圍不限於圖8所示的特定動作。相反,其他實現可以添加、省略、重新佈置或修改一個或多個動作。在一個示例中,在計算設備的正常操作期間,實現可以在如動作810中的對邏輯電路通電與如動作820、830中的將邏輯斷電之間進行切換多次。例如,當邏輯電路被用於執行代碼時,邏輯電路可以被通電,而當邏輯電路空閒時,它可以被斷電。
正如本領域的一些技術人員現在將理解的,並且取決於手頭的特定應用,在不脫離本公開的精神和範圍的情況下,可以對本公開的器件的材料、裝置、配置和使用方法進行很多修改、替換和變化。鑒於此,本公開的範圍不應當限於本文中示出和描述的特定實現的範圍,因為它們僅作為其一些示例,更準確地說,本公開的範圍應當與所附申請專利範圍及其功能對等的範圍完全相稱。
100:系統
102,102a,102N:致能驅動器
104:第二電力供應
106:第一電力供應/電力軌
108,108a,108N:頭部開關
110:電力閘控供應軌
112:電位移位器
114:致能控制電路裝置
120:電力閘控邏輯電路裝置
200:圖
201,204,205:點
401,402,403:曲線
500:電壓產生器
501:比較器
502:電壓位準移位器
503:超控機制
510,512:電晶體
600:系統
602:電力崩潰域/域
700:參考電壓電路/電路
702,703:電流方向控制盒
704:開關控制器
706:電力控制器
707:電流方向控制器
708:電力軌/軌道
800:方法
810,820,830:動作
圖1是示出了根據一種實現的用於電力閘控邏輯電路裝置的示例系統的簡化圖。
圖2是示出了根據一種實現的在圖1的頭部開關的汲極電流與頭部開關的閘極電壓之間的示例關係的圖。
圖3是示出了根據圖2的實現的在閘極電壓與源極電壓之間的示例關係的圖。
圖4是用於在圖1的實現中使用的各種電壓位準的圖示。
圖5是根據一種實現而適配的示例電壓產生器的圖示。
圖6是根據一種實現的示出了圖1的系統可以被重複以使邏輯的多個部分電力崩潰的簡化圖。
圖7是根據一種實現的用於生成參考電壓的參考電壓電路的圖示。
圖8是根據一種實現的在多個電力供應之間進行多工的方法的圖示。
100:系統
102:致能驅動器
104:第二電力供應
106:第一電力供應/電力軌
108:頭部開關
110:電力閘控供應軌
112:電位移位器
114:致能控制電路裝置
120:電力閘控邏輯電路裝置
Claims (21)
- 一種系統,包括: 第一電力供應; 第二電力供應; 頭部開關,被設置在所述第一電力供應與邏輯電路裝置之間; 致能驅動器,將所述第二電力供應耦接到所述頭部開關的控制端子;以及 電壓產生器,能夠被操作以響應於所述第一電力供應的第一電壓位準超過參考電壓位準而調節從所述第二電力供應到所述頭部開關的所述控制端子的控制電壓。
- 根據請求項1所述的系統,還包括: 超控電路裝置,被耦接到所述電壓產生器,並且能夠被操作以迫使所述電壓產生器達到所述第一電壓位準。
- 根據請求項1所述的系統,其中所述第一電力供應包括電力軌。
- 根據請求項1所述的系統,其中所述頭部開關的源極端子被耦接到所述第一電力供應。
- 根據請求項1所述的系統,其中所述電壓產生器包括: 比較器,具有耦接到所述第一電力供應的第一輸入和耦接到生成所述參考電壓位準的參考電壓電路的第二輸入; 第一電晶體,在所述參考電壓下被耦接到第一電力軌,所述第一電晶體通過反相器被閘耦接到所述比較器的輸出;以及 第二電晶體,被耦接到所述第一電力供應,所述第二電晶體被閘耦接到所述比較器的輸出。
- 根據請求項5所述的系統,其中所述參考電壓電路包括: 第一開關,被耦接到第一參考電壓源; 第二開關,被耦接到第二參考電壓源;以及 開關控制器,能夠被操作以在所述第一參考電壓源與所述第二參考電壓源之間進行選擇。
- 根據請求項5所述的系統,其中所述頭部開關包括正通道金屬氧化物半導體PMOS電晶體,所述PMOS電晶體具有被耦接到所述邏輯電路裝置的汲極,並且其中所述控制端子包括所述PMOS電晶體的閘極。
- 一種方法,包括: 致能頭部開關以將電流從第一電力供應傳導到邏輯電路裝置;以及 通過禁用所述頭部開關來關斷所述電流,包括: 回應於將第一電壓位準與第二電壓位準進行比較,從所述第一電壓位準和所述第二電壓位準中選擇所述第一電壓位準;以及 將所述第一電壓位準從第二電力供應施加給所述頭部開關的閘極。
- 根據請求項8所述的方法,其中施加所述第一電壓位準包括:將所述頭部開關維持在超截止狀態。
- 根據請求項8所述的方法,其中施加所述第一電壓位準包括:在閘-源電壓為零的情況下,將所述頭部開關維持在截止狀態。
- 根據請求項8所述的方法,其中選擇所述第一電壓位準是對所述第一電壓位準高於所述第二電壓位準的回應,其中所述第一電壓位準對應於參考電壓。
- 根據請求項8所述的方法,其中選擇所述第一電壓位準是對所述第一電壓位準高於所述第二電壓位準的回應,進一步地,其中所述第一電壓位準對應於時變電力軌電壓,並且所述第二電壓位準對應於參考電壓。
- 根據請求項8所述的方法,其中關斷所述電流包括:在緩衝器處接收致能訊號,其中所述致能訊號處於與所述第一電壓位準相同的電壓位準。
- 一種電路,包括: 第一電力軌,被耦接到第一電力供應; 第二電力軌,被耦接到第二電力供應; 電力閘控開關,耦接在所述第一電力軌與中央處理單元CPU的邏輯電路裝置的部分之間;以及 用於回應於所述第一電力供應的第一電壓位準低於參考電壓位準而選擇從所述第二電力軌到所述電力閘控開關的控制端子的控制電壓的構件。
- 根據請求項14所述的電路,還包括:用於回應於致能訊號而將所述控制電壓施加給所述控制端子的構件。
- 根據請求項15所述的電路,其中用於施加所述控制電壓的構件包括反相緩衝器,所述反相緩衝器被配置為接收所述致能訊號,其中所述致能訊號處於與所述參考電壓位準相同的電壓位準。
- 根據請求項14所述的電路,其中所述電力閘控開關包括正通道金屬氧化物半導體PMOS電晶體頭部開關。
- 根據請求項14所述的電路,其中所述選擇構件包括: 比較器,具有第一輸入和第二輸入,所述第一輸入被耦接到所述第一電力軌,所述第二輸入被耦接到用於生成所述參考電壓位準的構件;以及 用於回應於所述比較器的輸出而在所述第一電壓位準與所述參考電壓位準之間調節所述控制電壓的構件。
- 根據請求項18所述的電路,其中用於生成所述參考電壓位準的所述構件包括: 第一開關,被耦接到第一參考電壓源; 第二開關,被耦接到第二參考電壓源;以及 用於在所述第一參考電壓源與所述第二參考電壓源之間進行選擇以向所述第二輸入施加的構件。
- 根據請求項14所述的電路,還包括: 超控電路裝置,被耦接到所述選擇構件,並且能夠被操作以迫使所述選擇構件達到所述第一電壓位準。
- 根據請求項14所述的電路,其中所述選擇構件包括:用於從所述第二電力軌施加處於所述參考電壓位準的所述控制電壓的構件。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/015,486 US11237580B1 (en) | 2020-09-09 | 2020-09-09 | Systems and methods providing leakage reduction for power gated domains |
US17/015,486 | 2020-09-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202217511A true TW202217511A (zh) | 2022-05-01 |
Family
ID=78087517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110132923A TW202217511A (zh) | 2020-09-09 | 2021-09-03 | 為電力閘控域提供洩漏降低的系統和方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11237580B1 (zh) |
EP (1) | EP4211798A1 (zh) |
KR (1) | KR102569363B1 (zh) |
CN (1) | CN116508262A (zh) |
BR (1) | BR112023003693A2 (zh) |
TW (1) | TW202217511A (zh) |
WO (1) | WO2022055787A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102666510B1 (ko) * | 2023-09-21 | 2024-05-17 | 주식회사 스카이칩스 | 전원 관리 장치 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10261946A (ja) * | 1997-03-19 | 1998-09-29 | Mitsubishi Electric Corp | 半導体集積回路 |
US7812647B2 (en) | 2007-05-21 | 2010-10-12 | Advanced Analogic Technologies, Inc. | MOSFET gate drive with reduced power loss |
CN101714778A (zh) * | 2009-11-22 | 2010-05-26 | 苏州佳世达电通有限公司 | 电源切换装置 |
US8395440B2 (en) * | 2010-11-23 | 2013-03-12 | Arm Limited | Apparatus and method for controlling power gating in an integrated circuit |
US20130107651A1 (en) * | 2011-10-27 | 2013-05-02 | Cold Brick Semiconductor, Inc. | Semiconductor device with reduced leakage current and method for manufacture the same |
US9337660B1 (en) * | 2011-12-13 | 2016-05-10 | Marvell Israel (M.I.S.L) Ltd. | Switching arrangement for power supply from multiple power sources |
US8804449B2 (en) | 2012-09-06 | 2014-08-12 | Micron Technology, Inc. | Apparatus and methods to provide power management for memory devices |
US9488996B2 (en) * | 2014-05-29 | 2016-11-08 | Qualcomm Incorporated | Bias techniques and circuit arrangements to reduce leakage current in a circuit |
US10236873B2 (en) * | 2015-03-17 | 2019-03-19 | Xilinx, Inc. | Analog switch having reduced gate-induced drain leakage |
US9893723B1 (en) * | 2016-07-22 | 2018-02-13 | Micron Technology, Inc. | Apparatuses and methods for reducing off state leakage currents |
US10003325B2 (en) * | 2016-08-01 | 2018-06-19 | Samsung Electronics Co., Ltd. | System and method for providing an area efficient and design rule check (DRC) friendly power sequencer for digital circuits |
US10103626B1 (en) * | 2017-07-12 | 2018-10-16 | Qualcomm Incorporated | Digital power multiplexor |
US10630290B2 (en) * | 2017-09-27 | 2020-04-21 | Apple Inc. | Low leakage power switch |
US10454476B2 (en) * | 2018-09-28 | 2019-10-22 | Intel Corporation | Calibrated biasing of sleep transistor in integrated circuits |
US11004480B2 (en) * | 2019-01-21 | 2021-05-11 | Mediatek Inc. | Leakage current reduction in a dual rail device |
-
2020
- 2020-09-09 US US17/015,486 patent/US11237580B1/en active Active
-
2021
- 2021-09-02 WO PCT/US2021/048867 patent/WO2022055787A1/en active Application Filing
- 2021-09-02 BR BR112023003693A patent/BR112023003693A2/pt unknown
- 2021-09-02 KR KR1020237007295A patent/KR102569363B1/ko active IP Right Grant
- 2021-09-02 EP EP21790658.5A patent/EP4211798A1/en active Pending
- 2021-09-02 CN CN202180054062.9A patent/CN116508262A/zh active Pending
- 2021-09-03 TW TW110132923A patent/TW202217511A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
CN116508262A (zh) | 2023-07-28 |
KR102569363B1 (ko) | 2023-08-21 |
KR20230035155A (ko) | 2023-03-10 |
US11237580B1 (en) | 2022-02-01 |
WO2022055787A1 (en) | 2022-03-17 |
EP4211798A1 (en) | 2023-07-19 |
BR112023003693A2 (pt) | 2023-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6744301B1 (en) | System using body-biased sleep transistors to reduce leakage power while minimizing performance penalties and noise | |
US8395440B2 (en) | Apparatus and method for controlling power gating in an integrated circuit | |
US7292061B2 (en) | Semiconductor integrated circuit having current leakage reduction scheme | |
US6693412B2 (en) | Power savings in a voltage supply controlled according to a work capability operating mode of an integrated circuit | |
KR101229508B1 (ko) | 복수의 파워도메인을 포함하는 반도체 집적 회로 | |
US7046074B2 (en) | Internal voltage generator | |
TWI454876B (zh) | 用於電壓定標之設備,系統,及處理器 | |
JP2010519612A (ja) | 選択的なバックバイアスを使用する動的リーク制御回路 | |
Ganesh | Implementation of Power Management in High Speed Electronic Devices | |
US9310878B2 (en) | Power gated and voltage biased memory circuit for reducing power | |
JP2007148952A (ja) | 半導体集積回路 | |
TWI621128B (zh) | 處理設備以及相關控制方法 | |
US7882376B2 (en) | Power control for a core circuit area of a semiconductor integrated circuit device | |
JP5211889B2 (ja) | 半導体集積回路 | |
KR100812936B1 (ko) | 스탠바이 모드에서 누설전류가 감소된 내부전원전압발생회로 | |
EP2557479A2 (en) | Adjustable body bias circuit | |
TW202217511A (zh) | 為電力閘控域提供洩漏降低的系統和方法 | |
US7394290B2 (en) | Semiconductor integrated circuit | |
US20190163257A1 (en) | Apparatus for Power Consumption Reduction in Electronic Circuitry and Associated Methods | |
US6873503B2 (en) | SSTL pull-up pre-driver design using regulated power supply | |
CN114144742B (zh) | 跨域功率控制电路 | |
US6914844B2 (en) | Deep power down switch for memory device | |
JP2002076874A (ja) | 出力インターフェース回路 | |
US9608625B2 (en) | Semiconductor device and semiconductor system | |
KR20140086675A (ko) | 데이터 출력 회로 |