TW202215501A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
TW202215501A
TW202215501A TW109135046A TW109135046A TW202215501A TW 202215501 A TW202215501 A TW 202215501A TW 109135046 A TW109135046 A TW 109135046A TW 109135046 A TW109135046 A TW 109135046A TW 202215501 A TW202215501 A TW 202215501A
Authority
TW
Taiwan
Prior art keywords
substrate
layer
silicon carbide
semiconductor device
epitaxial layer
Prior art date
Application number
TW109135046A
Other languages
Chinese (zh)
Other versions
TWI821604B (en
Inventor
莊志遠
華特 吳
施英汝
Original Assignee
環球晶圓股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 環球晶圓股份有限公司 filed Critical 環球晶圓股份有限公司
Priority to TW109135046A priority Critical patent/TWI821604B/en
Priority to CN202110977082.5A priority patent/CN114300431A/en
Publication of TW202215501A publication Critical patent/TW202215501A/en
Application granted granted Critical
Publication of TWI821604B publication Critical patent/TWI821604B/en

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

A semiconductor device and a method of manufacturing the same are provided. The semiconductor device includes a semiconductor substrate, at least one semiconductor element, a front-side source contact and a back-side contact metal layer. The semiconductor substrate has a through substrate hole, and includes a high-resistivity silicon carbide epitaxial layer and a gallium nitride epitaxial layer formed on a second surface of the high-resistivity silicon carbide epitaxial layer. The semiconductor element is formed on the gallium nitride epitaxial layer. The front-side source contact is formed on a surface of the gallium nitride epitaxial layer and covers the through substrate hole of the semiconductor substrate. The back-side contact metal layer is formed in the through substrate hole of the semiconductor substrate and directly contacts the front-side source contact.

Description

半導體裝置及其製造方法Semiconductor device and method of manufacturing the same

本發明是有關於一種半導體製造技術,且特別是有關於一種半導體裝置及其製造方法。The present invention relates to a semiconductor manufacturing technology, and more particularly, to a semiconductor device and a method for manufacturing the same.

由於以磊晶(Epitaxy)製程所形成的膜層具有純度高、厚度控制性佳等優點,因此已經廣泛應用於射頻(RF)元件或功率(power)元件的製造中,其中射頻元件可被應用於4G通訊、5G通訊、衛星通訊或5G前端模組(front-end module)。Since the film formed by the epitaxy process has the advantages of high purity and good thickness control, it has been widely used in the manufacture of radio frequency (RF) components or power (power) components, in which RF components can be applied For 4G communication, 5G communication, satellite communication or 5G front-end module.

然而,在射頻元件的製造過程中,通常會藉由研磨(grinding)或拋光(polishing)等製程將原本的基板厚度從一厚度薄化至比原本的厚度小數個級別的厚度,由於需要移除的基板厚度差距過大,因此容易導致最終基板厚度的變動(variation)範圍過大。舉例來說,基板厚度從約300 μm薄化至約50 μm,使得最終基板厚度的變動範圍約±20%。如此一來,對矽穿孔(Through Silicon Via,TSV)製程產生不良的影響,且容易產生元件匹配性(device matching)等問題,進而影響射頻元件的良率。However, in the manufacturing process of radio frequency components, the original substrate thickness is usually thinned from a thickness to a thickness several levels smaller than the original thickness by processes such as grinding or polishing. The difference between the thicknesses of the substrates is too large, so it is easy to cause the variation range of the final substrate thickness to be too large. For example, the substrate thickness is thinned from about 300 μm to about 50 μm, resulting in a variation of the final substrate thickness of about ±20%. As a result, the Through Silicon Via (TSV) process is adversely affected, and problems such as device matching are likely to occur, thereby affecting the yield of RF components.

本發明提供一種半導體裝置及其製造方法,其能夠解決基板厚度的變動範圍太大等問題,且射頻源阻抗(RF source impedance)和射頻正反面電容(RF front-to-backside capacitance)的變動範圍小。The present invention provides a semiconductor device and a manufacturing method thereof, which can solve the problems of too large variation range of substrate thickness, and the variation range of RF source impedance (RF source impedance) and RF front-to-backside capacitance (RF front-to-backside capacitance). Small.

本發明的半導體裝置,包括一半導體基板、至少一半導體元件、一正面源極接點以及一背面接觸金屬層。半導體基板具有一基板通孔(through substrate hole),且半導體基板包括具有一第一表面與一第二表面的一高阻碳化矽磊晶層(high-resistivity silicon carbide epitaxial layer)以及形成於高阻碳化矽磊晶層的第二表面的氮化鎵磊晶層,其中第一表面相對於第二表面。半導體元件形成於氮化鎵磊晶層。正面源極接點形成於氮化鎵磊晶層的表面並覆蓋半導體基板的基板通孔。背面接觸金屬層形成於半導體基板的基板通孔內,並與正面源極接點直接接觸。The semiconductor device of the present invention includes a semiconductor substrate, at least one semiconductor element, a front-side source contact and a back-side contact metal layer. The semiconductor substrate has a through substrate hole, and the semiconductor substrate includes a high-resistivity silicon carbide epitaxial layer with a first surface and a second surface, and a high-resistivity silicon carbide epitaxial layer formed on the high-resistance A gallium nitride epitaxial layer on the second surface of the silicon carbide epitaxial layer, wherein the first surface is opposite to the second surface. The semiconductor element is formed on the gallium nitride epitaxial layer. The front-side source contact is formed on the surface of the gallium nitride epitaxial layer and covers the substrate through hole of the semiconductor substrate. The back contact metal layer is formed in the substrate through hole of the semiconductor substrate and is in direct contact with the front source contact.

在本發明的另一實施例中,上述高阻碳化矽磊晶層的厚度在20 µm~50 µm之間。In another embodiment of the present invention, the thickness of the high-resistance silicon carbide epitaxial layer is between 20 μm and 50 μm.

在本發明的另一實施例中,上述正面源極接點包括一黏著層、一障壁層以及一高導電層。黏著層形成在氮化鎵磊晶層的表面。障壁層形成在黏著層的表面。高導電層形成在障壁層的表面。In another embodiment of the present invention, the front-side source contact includes an adhesive layer, a barrier layer, and a high-conductivity layer. The adhesion layer is formed on the surface of the gallium nitride epitaxial layer. The barrier layer is formed on the surface of the adhesive layer. A highly conductive layer is formed on the surface of the barrier layer.

在本發明的另一實施例中,上述黏著層包括厚度在2 nm~200 nm之間的Ti、TiW、TiN、Ta或TaN。上述障壁層包括厚度在2 nm~200 nm之間的Pt、Pd或Mo。上述高導電層包括厚度在50 nm~10 µm之間的Au、Al、Al-Cu或Cu。In another embodiment of the present invention, the above-mentioned adhesive layer includes Ti, TiW, TiN, Ta or TaN with a thickness between 2 nm and 200 nm. The above-mentioned barrier layer includes Pt, Pd or Mo with a thickness between 2 nm and 200 nm. The above-mentioned highly conductive layer includes Au, Al, Al-Cu or Cu with a thickness between 50 nm and 10 µm.

在本發明的另一實施例中,上述背面接觸金屬層包括一黏著層、一障壁層以及一高導電層。黏著層形成在基板通孔的表面。障壁層形成在黏著層的表面。高導電層形成在障壁層的表面。In another embodiment of the present invention, the back contact metal layer includes an adhesive layer, a barrier layer and a high conductive layer. The adhesive layer is formed on the surface of the through hole of the substrate. The barrier layer is formed on the surface of the adhesive layer. A highly conductive layer is formed on the surface of the barrier layer.

在本發明的另一實施例中,上述黏著層包括厚度在2 nm~200 nm之間的Ti、TiW、TiN、Ta或TaN。上述障壁層包括厚度在2 nm~200 nm之間的TiW、TiN或TaN。上述高導電層包括厚度在50 nm~10 µm之間的Au、Al、Al-Cu或Cu。In another embodiment of the present invention, the above-mentioned adhesive layer includes Ti, TiW, TiN, Ta or TaN with a thickness between 2 nm and 200 nm. The above-mentioned barrier layer includes TiW, TiN or TaN with a thickness between 2 nm and 200 nm. The above-mentioned highly conductive layer includes Au, Al, Al-Cu or Cu with a thickness between 50 nm and 10 µm.

在本發明的另一實施例中,上述基板通孔的側壁的截面與氮化鎵磊晶層的表面之間的夾角在45°~90°之間。In another embodiment of the present invention, the included angle between the cross section of the sidewall of the substrate through hole and the surface of the gallium nitride epitaxial layer is between 45° and 90°.

在本發明的另一實施例中,上述基板通孔的側壁的截面與氮化鎵磊晶層的表面之間的夾角在85°~90°之間。In another embodiment of the present invention, the angle between the cross section of the sidewall of the substrate through hole and the surface of the gallium nitride epitaxial layer is between 85° and 90°.

在本發明的另一實施例中,上述基板通孔為圓形基板通孔,且具有10 µm~85 µm的直徑。In another embodiment of the present invention, the above-mentioned through-substrate holes are circular through-substrate holes, and have a diameter of 10 μm˜85 μm.

在本發明的另一實施例中,上述基板通孔為橢圓形基板通孔,且所述橢圓形基板通孔的短軸長度乘以長軸長度為10 µm × 20 µm至50 µm × 120 µm。In another embodiment of the present invention, the above-mentioned through-substrate holes are elliptical through-substrate holes, and the length of the short-axis multiplied by the length of the long-axis of the oval-shaped through-substrate holes is 10 μm × 20 μm to 50 μm × 120 μm .

在本發明的另一實施例中,上述基板通孔的深度在10 µm~200 µm之間。In another embodiment of the present invention, the depth of the through hole in the substrate is between 10 µm and 200 µm.

在本發明的另一實施例中,上述基板通孔的截面為階梯式輪廓、階梯式輪廓加上傾斜輪廓、相同斜率的輪廓或不同斜率的輪廓。In another embodiment of the present invention, the cross-section of the substrate through hole is a stepped profile, a stepped profile plus an inclined profile, a profile with the same slope, or a profile with different slopes.

本發明的一種半導體基板的製造方法,包括在一N型碳化矽基板的第一表面磊晶成長一高阻碳化矽磊晶層與一氮化鎵磊晶層,以得到包含所述高阻碳化矽磊晶層與所述氮化鎵磊晶層的一半導體磊晶基板。在氮化鎵磊晶層的表面形成一正面源極接點(front-side source contact),並在氮化鎵磊晶層形成至少一半導體元件。在形成正面源極接點及至少一半導體元件之後,在氮化鎵磊晶層的表面接合一晶片載體。從N型碳化矽基板的第二表面施加雷射,以於N型碳化矽基板或半導體磊晶基板形成一損傷層,其中所述第二表面相對於N型碳化矽基板的第一表面,然後從所述損傷層分離N型碳化矽基板與半導體磊晶基板。以正面源極接點為蝕刻終止層,從半導體磊晶基板的底部蝕刻形成一基板通孔,直到暴露出部分正面源極接點,然後進行金屬化製程,以於所述基板通孔內形成一背面接觸金屬層(back-side contact metal)。A method of manufacturing a semiconductor substrate of the present invention includes epitaxially growing a high-resistance silicon carbide epitaxial layer and a gallium nitride epitaxial layer on a first surface of an N-type silicon carbide substrate, so as to obtain a high-resistance carbonized epitaxial layer comprising the high-resistance carbonization layer. A semiconductor epitaxial substrate of the silicon epitaxial layer and the gallium nitride epitaxial layer. A front-side source contact is formed on the surface of the gallium nitride epitaxial layer, and at least one semiconductor element is formed on the gallium nitride epitaxial layer. After forming the front-side source contact and at least one semiconductor element, a chip carrier is bonded to the surface of the gallium nitride epitaxial layer. A laser is applied from the second surface of the N-type silicon carbide substrate to form a damaged layer on the N-type silicon carbide substrate or the semiconductor epitaxial substrate, wherein the second surface is opposite to the first surface of the N-type silicon carbide substrate, and then The N-type silicon carbide substrate and the semiconductor epitaxial substrate are separated from the damaged layer. Using the front-side source contact as an etch stop layer, a substrate through hole is formed by etching from the bottom of the semiconductor epitaxial substrate until part of the front-side source contact is exposed, and then a metallization process is performed to form a substrate through-hole A back-side contact metal.

在本發明的一實施例中,形成上述正面源極接點的步驟包括在氮化鎵磊晶層的表面形成一黏著層,接著在黏著層的表面形成一障壁層,然後在障壁層的表面形成一高導電層。In an embodiment of the present invention, the step of forming the front-side source contact includes forming an adhesive layer on the surface of the gallium nitride epitaxial layer, then forming a barrier layer on the surface of the adhesive layer, and then forming a barrier layer on the surface of the barrier layer A highly conductive layer is formed.

在本發明的一實施例中,形成上述背面接觸金屬層的步驟包括在基板通孔的表面形成一黏著層,接著在黏著層的表面形成一障壁層,然後在障壁層的表面形成一高導電層。In an embodiment of the present invention, the step of forming the backside contact metal layer includes forming an adhesive layer on the surface of the substrate through hole, then forming a barrier layer on the surface of the adhesive layer, and then forming a highly conductive layer on the surface of the barrier layer. layer.

在本發明的一實施例中,上述N型碳化矽基板的第一表面相對於(0001)面具有不大於0°+/-8°範圍內的角度。In an embodiment of the present invention, the first surface of the N-type silicon carbide substrate has an angle within the range of not more than 0°+/-8° with respect to the (0001) plane.

在本發明的一實施例中,上述高阻碳化矽磊晶層的厚度變動率在5%~10%。In an embodiment of the present invention, the thickness variation rate of the high-resistance silicon carbide epitaxial layer is 5%˜10%.

在本發明的一實施例中,形成上述損傷層的方法包括從N型碳化矽基板的第二表面施加雷射到N型碳化矽基板內,以在N型碳化矽基板內形成損傷層。In an embodiment of the present invention, the method for forming the damaged layer includes applying a laser from the second surface of the N-type silicon carbide substrate into the N-type silicon carbide substrate to form the damaged layer in the N-type silicon carbide substrate.

在本發明的一實施例中,在分離N型碳化矽基板與半導體磊晶基板之後,還包括去除剩餘的所述N型碳化矽基板。In an embodiment of the present invention, after separating the N-type silicon carbide substrate and the semiconductor epitaxial substrate, the method further includes removing the remaining N-type silicon carbide substrate.

在本發明的一實施例中,形成上述損傷層的方法包括從N型碳化矽基板的第二表面施加雷射到高阻碳化矽磊晶層內,以在高阻碳化矽磊晶層內形成損傷層。In an embodiment of the present invention, the method for forming the above-mentioned damaged layer includes applying a laser from the second surface of the N-type silicon carbide substrate into the high-resistance silicon carbide epitaxial layer to form the high-resistance silicon carbide epitaxial layer damage layer.

在本發明的一實施例中,在形成背面接觸金屬層之後,還包括去除所述晶片載體以及進行單體化製程(die singulation)。In an embodiment of the present invention, after the backside contact metal layer is formed, the method further includes removing the wafer carrier and performing a die singulation.

基於上述,本發明的方法能縮減基板厚度的變動範圍,且通過在暴露出部分正面源極接點的基板通孔內形成背面接觸金屬層,而可改善正反面元件之間的電性連接,以製作出射頻源阻抗和射頻正反面電容的變動範圍小的元件。Based on the above, the method of the present invention can reduce the variation range of the thickness of the substrate, and can improve the electrical connection between the front and back elements by forming the back contact metal layer in the substrate through hole that exposes part of the front source contact. In order to make components with small fluctuation range of RF source impedance and RF front and back capacitance.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.

以下將參考圖式來全面地描述本發明的例示性實施例,但本發明還可按照多種不同形式來實施,且不應解釋為限於本文所述的實施例。在圖式中,為了清楚起見,各區域、部位及層的大小與厚度可不按實際比例繪製。為了方便理解,下述說明中相同的元件將以相同之符號標示來說明。Exemplary embodiments of the present invention will be fully described below with reference to the accompanying drawings, but the present invention may also be embodied in many different forms and should not be construed as limited to the embodiments described herein. In the drawings, for the sake of clarity, the size and thickness of various regions, parts and layers may not be drawn to scale. In order to facilitate understanding, the same elements in the following description will be denoted by the same symbols.

圖1A至圖1G是依照本發明的第一實施例的一種半導體裝置的製造剖面示意圖。1A to 1G are schematic cross-sectional views of the fabrication of a semiconductor device according to a first embodiment of the present invention.

請先參照圖1A,在一N型碳化矽基板100的第一表面100a磊晶成長一高阻碳化矽磊晶層104,其中N型碳化矽基板100的厚度例如在300 µm~725 µm之間,N型碳化矽基板100的第一表面100a相對於(0001)面的角度的範圍例如是0°+/-8°,較佳是0°+/-5°的範圍內,更佳是0°+/-3°的範圍內,最佳的是0°。N型碳化矽基板100的微管密度(micropipe density,MPD)小於1 ea/cm 2、基面差排(basal plane dislocation,BPD)小於3000 ea/cm 2以及貫穿式螺旋差排(threading screw dislocation,TSD)小於1000 ea/cm 2。N型碳化矽基板100的阻值大概在15 mohm-cm ~ 26 mohm-cm之間。在本實施例中,N型碳化矽基板100可重複被利用,而大幅降低材料成本。在本實施例中,高阻碳化矽磊晶層104在靠近N型碳化矽基板100側還具有一區域102。區域102例如是於磊晶成長高阻碳化矽磊晶層104時所成長的品質較差的區域。在一實施例中,區域102例如作為緩衝層,而在後續製程(如圖1D所示)中可保留或是移除。高阻碳化矽磊晶層104例如是半絕緣碳化矽(SI-SiC)等適用於射頻(RF)元件的半導體基板。高阻碳化矽磊晶層104的厚度可設在20 µm~100 µm之間,且高阻碳化矽磊晶層104的厚度變動率大概在5%~10%的範圍內。高阻碳化矽磊晶層104的表面相對於(0001)面例如具有0°+/-8°範圍內的角度、0°+/-5°範圍內的角度或0°+/-3°範圍內的角度,高阻碳化矽磊晶層104的微管密度(MPD)可小於0.5 ea/cm 2、基面差排(BPD)可小於10 ea/cm 2、貫穿式螺旋差排(TSD)可小於300 ea/cm 2。在本實施例中,高阻碳化矽磊晶層104的阻值例如大於1E5 ohm-cm。 1A, a high-resistance silicon carbide epitaxial layer 104 is epitaxially grown on a first surface 100a of an N-type silicon carbide substrate 100, wherein the thickness of the N-type silicon carbide substrate 100 is, for example, between 300 μm and 725 μm. , the range of the angle of the first surface 100a of the N-type silicon carbide substrate 100 relative to the (0001) plane is, for example, 0°+/-8°, preferably 0°+/-5°, more preferably 0° Within the range of °+/-3°, the optimum is 0°. The N-type silicon carbide substrate 100 has a micropipe density (MPD) of less than 1 ea/cm 2 , a basal plane dislocation (BPD) of less than 3000 ea/cm 2 and a threading screw dislocation (threading screw dislocation) , TSD) is less than 1000 ea/cm 2 . The resistance of the N-type silicon carbide substrate 100 is approximately between 15 mohm-cm and 26 mohm-cm. In this embodiment, the N-type silicon carbide substrate 100 can be reused, thereby greatly reducing the material cost. In this embodiment, the high-resistance silicon carbide epitaxial layer 104 also has a region 102 on the side close to the N-type silicon carbide substrate 100 . The region 102 is, for example, a region with poor quality grown during the epitaxial growth of the high-resistance silicon carbide epitaxial layer 104 . In one embodiment, the region 102 serves as a buffer layer, for example, and can be retained or removed in a subsequent process (as shown in FIG. 1D ). The high-resistance silicon carbide epitaxial layer 104 is, for example, a semiconductor substrate such as semi-insulating silicon carbide (SI-SiC) suitable for radio frequency (RF) devices. The thickness of the high-resistance silicon carbide epitaxial layer 104 can be set between 20 μm and 100 μm, and the thickness variation rate of the high-resistance silicon carbide epitaxial layer 104 is approximately in the range of 5% to 10%. The surface of the high-resistance silicon carbide epitaxial layer 104 has, for example, an angle in the range of 0°+/-8°, an angle in the range of 0°+/-5°, or a range of 0°+/-3° with respect to the (0001) plane The micro-pipe density (MPD) of the high-resistance silicon carbide epitaxial layer 104 can be less than 0.5 ea/cm 2 , the basal plane dislocation (BPD) can be less than 10 ea/cm 2 , the penetration spiral dislocation (TSD) May be less than 300 ea/cm 2 . In this embodiment, the resistance of the high-resistance silicon carbide epitaxial layer 104 is greater than 1E5 ohm-cm, for example.

然後,在高阻碳化矽磊晶層104上磊晶成長一氮化鎵磊晶層106,得到由所述高阻碳化矽磊晶層104與所述氮化鎵磊晶層106構成的半導體磊晶基板ES。Then, a gallium nitride epitaxial layer 106 is epitaxially grown on the high-resistance silicon carbide epitaxial layer 104 to obtain a semiconductor epitaxial layer composed of the high-resistance silicon carbide epitaxial layer 104 and the gallium nitride epitaxial layer 106 Crystal substrate ES.

之後,在氮化鎵磊晶層106的表面106a形成一正面源極接點(front-side source contact)108。正面源極接點108例如形成為單層或多層。在本實施例中,正面源極接點108例如形成為三層結構。舉例來說,形成正面源極接點108的步驟例如包括在氮化鎵磊晶層106的表面106a形成一黏著層108a,接著在黏著層108a的表面形成一障壁層108b,然後在障壁層108b的表面形成一高導電層108c,但本發明不限於此。在本實施例中,通過形成黏著層108a,可改善正面源極接點108與介電層和半導體元件之間的接觸。通過形成障壁層108b,可防止高導電層108c與黏著層108a的金屬互相混合。通過形成高導電層108c,能夠以低寄生損失(parasitic loss)的方式處理電流。黏著層108a例如由厚度在2 nm~200 nm之間的Ti、TiW、TiN、Ta或TaN構成。障壁層108b例如由厚度在2 nm~200 nm之間的Pt、Pd或Mo構成。高導電層108c例如由厚度在50 nm~10 µm之間的Au、Al、Al-Cu或Cu構成。在一實施例中,在黏著層108a與高導電層108c之間也可不形成障壁層108b,可以視設計需求而進行調整,於本發明並不加以限制。After that, a front-side source contact 108 is formed on the surface 106 a of the GaN epitaxial layer 106 . The front-side source contact 108 is formed as a single layer or multiple layers, for example. In this embodiment, the front-side source contact 108 is formed, for example, in a three-layer structure. For example, the steps of forming the front-side source contact 108 include, for example, forming an adhesive layer 108a on the surface 106a of the GaN epitaxial layer 106, then forming a barrier layer 108b on the surface of the adhesive layer 108a, and then forming a barrier layer 108b on the surface of the adhesive layer 108a. A highly conductive layer 108c is formed on the surface of the , but the present invention is not limited thereto. In this embodiment, by forming the adhesive layer 108a, the contact between the front-side source contact 108 and the dielectric layer and the semiconductor device can be improved. By forming the barrier layer 108b, the metals of the highly conductive layer 108c and the adhesion layer 108a can be prevented from mixing with each other. By forming the highly conductive layer 108c, current can be handled with low parasitic loss. The adhesive layer 108a is made of, for example, Ti, TiW, TiN, Ta or TaN with a thickness of 2 nm˜200 nm. The barrier layer 108b is made of, for example, Pt, Pd, or Mo with a thickness between 2 nm and 200 nm. The highly conductive layer 108c is made of, for example, Au, Al, Al-Cu, or Cu with a thickness of 50 nm to 10 µm. In one embodiment, the barrier layer 108b may not be formed between the adhesive layer 108a and the highly conductive layer 108c, which may be adjusted according to design requirements, which is not limited in the present invention.

而後,在氮化鎵磊晶層106中形成半導體元件等構件;為求清楚表示,於圖1A至圖1G中省略繪示所述構件。Then, components such as semiconductor elements are formed in the gallium nitride epitaxial layer 106 ; for the sake of clarity, the components are omitted in FIGS. 1A to 1G .

接著,請參照圖1B,在形成正面源極接點108及半導體元件(未繪示)之後,在氮化鎵磊晶層106的表面106a接合一晶片載體(carrier)114,其中晶片載體114的材料例如玻璃或藍寶石。Next, referring to FIG. 1B , after the front-side source contact 108 and the semiconductor element (not shown) are formed, a chip carrier 114 is bonded to the surface 106 a of the GaN epitaxial layer 106 , wherein the surface of the chip carrier 114 is Materials such as glass or sapphire.

然後,請參照圖1C,使用雷射110於N型碳化矽基板100內形成一損傷層112。在本實施例中,形成損傷層112的方法例如包括從N型碳化矽基板100的第二表面100b施加雷射110到N型碳化矽基板100內,以在N型碳化矽基板100中靠近高阻碳化矽磊晶層104側形成損傷層112,其中第二表面100b相對於N型碳化矽基板100的第一表面100a。藉由使用雷射110來形成損傷層112,可獲得晶片到晶片間以及內部晶片內的計算數據(wafer to wafer and within wafer calculation data)。Then, referring to FIG. 1C , a laser 110 is used to form a damaged layer 112 in the N-type silicon carbide substrate 100 . In the present embodiment, the method for forming the damaged layer 112 includes, for example, applying the laser 110 from the second surface 100 b of the N-type silicon carbide substrate 100 into the N-type silicon carbide substrate 100 , so as to be close to the height of the N-type silicon carbide substrate 100 . The damaged layer 112 is formed on the side of the blocking silicon carbide epitaxial layer 104 , wherein the second surface 100 b is opposite to the first surface 100 a of the N-type silicon carbide substrate 100 . By using the laser 110 to form the damaged layer 112, wafer to wafer and within wafer calculation data can be obtained.

之後,請參照圖1D,從損傷層112分離N型碳化矽基板100與半導體磊晶基板ES,且可能有部分N型碳化矽基板100殘留在高阻碳化矽磊晶層104的表面。因此,在一實施例中,可保留剩餘的N型碳化矽基板100;在另一實施例中,可例如藉由磨削等而去除剩餘的N型碳化矽基板100。如此一來,需磨削掉的碳化矽基板100的厚度變薄,使得最終基板厚度的變動範圍變小。1D , the N-type silicon carbide substrate 100 and the semiconductor epitaxial substrate ES are separated from the damaged layer 112 , and a part of the N-type silicon carbide substrate 100 may remain on the surface of the high-resistance silicon carbide epitaxial layer 104 . Therefore, in one embodiment, the remaining N-type silicon carbide substrate 100 may be retained; in another embodiment, the remaining N-type silicon carbide substrate 100 may be removed, for example, by grinding or the like. In this way, the thickness of the silicon carbide substrate 100 to be ground becomes thinner, so that the variation range of the final substrate thickness becomes smaller.

由於第一實施例的製程在形成正面源極接點108之後,才利用雷射110於N型碳化矽基板100中形成分離用的損傷層112,所以能夠確保高阻碳化矽磊晶層104與氮化鎵磊晶層106的結晶性品質。另外,在從損傷層112分離N型碳化矽基板100與半導體磊晶基板ES之後,還能保留充分厚度的N型碳化矽基板100,其中所謂充分厚度是指能夠承載在其之上所形成的膜層及構件且能夠承受後續製程的厚度。如此一來,使分離後的N型碳化矽基板100可重複被利用,而大幅降低材料成本。此外,由於能夠更精準地控制基板厚度,而可大幅降低寄生損失的產生。Since the laser 110 is used to form the damage layer 112 for separation in the N-type silicon carbide substrate 100 after the front-side source contact 108 is formed in the process of the first embodiment, the high-resistance silicon carbide epitaxial layer 104 and the The crystallinity quality of the GaN epitaxial layer 106 . In addition, after the N-type silicon carbide substrate 100 and the semiconductor epitaxial substrate ES are separated from the damaged layer 112, a sufficient thickness of the N-type silicon carbide substrate 100 can be retained, wherein the so-called sufficient thickness refers to the substrate formed on the N-type silicon carbide substrate 100 that can be supported thereon. The thickness of the film layer and components can withstand the subsequent process. In this way, the separated N-type silicon carbide substrate 100 can be reused, thereby greatly reducing the material cost. In addition, since the thickness of the substrate can be controlled more precisely, the generation of parasitic losses can be greatly reduced.

接著,請參照圖1E,以正面源極接點108為蝕刻終止層,從半導體磊晶基板ES的底部(例如位於區域102側)蝕刻形成一基板通孔TSH,直到暴露出部分正面源極接點108,其中基板通孔TSH的側壁的截面TSHa與氮化鎵磊晶層106的表面106a之間的夾角θ例如在45°~90°之間,較佳為在85°~90°之間。基板通孔TSH的深度D例如在10 µm~200 µm之間。基板通孔TSH可例如為圓形基板通孔或橢圓形基板通孔。在一實施例中,若基板通孔TSH為圓形基板通孔,則圓形基板通孔例如具有10 µm~85 µm的直徑;在另一實施例中,若基板通孔TSH為橢圓形基板通孔,則橢圓形基板通孔的短軸長度乘以長軸長度例如為10 µm × 20 µm至50 µm × 120 µm。在圖1E中,基板通孔TSH的截面雖繪製成相同斜率的輪廓,但在其他實施例中,基板通孔TSH的截面也可為階梯式輪廓、階梯式輪廓加上傾斜輪廓、或不同斜率的輪廓等輪廓,詳於後文說明。Next, referring to FIG. 1E , using the front-side source contact 108 as an etch stop layer, a through-substrate hole TSH is etched from the bottom of the semiconductor epitaxial substrate ES (eg, on the side of the region 102 ) until part of the front-side source contact is exposed. Point 108, wherein the angle θ between the cross section TSHa of the sidewall of the through-substrate hole TSH and the surface 106a of the GaN epitaxial layer 106 is, for example, between 45° and 90°, preferably between 85° and 90°. . The depth D of the through-substrate hole TSH is, for example, between 10 µm and 200 µm. The through-substrate holes TSH may be, for example, circular through-substrate holes or elliptical through-substrate holes. In one embodiment, if the through-substrate hole TSH is a circular through-substrate hole, the circular through-substrate hole has a diameter of, for example, 10 μm˜85 μm; in another embodiment, if the through-substrate hole TSH is an elliptical substrate Through holes, the length of the short axis multiplied by the length of the long axis of the oval substrate through hole is, for example, 10 µm × 20 µm to 50 µm × 120 µm. In FIG. 1E , although the cross-sections of the through-substrate holes TSH are drawn as contours with the same slope, in other embodiments, the cross-sections of the through-substrate holes TSH may also be stepped contours, stepped contours plus inclined contours, or different slopes. The contour and other contours will be described in detail later.

然後,請參照圖1F,進行金屬化製程,以於基板通孔TSH內形成一背面接觸金屬層(back-side contact metal)116。背面接觸金屬層116例如形成為單層或多層。在本實施例中,背面接觸金屬層116例如形成為三層結構。舉例來說,形成背面接觸金屬層116的步驟例如包括在基板通孔TSH的表面形成一黏著層116a,接著在黏著層116a的表面形成一障壁層116b,然後在障壁層116b的表面形成一高導電層116c,但本發明不限於此。形成背面接觸金屬層116的方法例如濺鍍(sputtering)、電鍍(electrical planting)或共形塗佈(conformal coating)等。在一實施例中,若欲形成一較厚厚度的背面接觸金屬層116可利用電鍍,而可進一步降低製造成本。在本實施例中,通過形成黏著層116a,可改善背面接觸金屬層116與半導體元件的側面和背面之間的接觸、以及與正面源極接點108之間的接觸。通過形成障壁層116b,可防止高導電層116c與黏著層116a內的金屬互相混合。通過形成高導電層116c,能夠以低寄生損失的方式處理電流。黏著層116a例如由厚度在2 nm~200 nm之間的Ti、TiW、TiN、Ta或TaN構成。障壁層116b例如由厚度在2 nm~200 nm之間的TiW、TiN或TaN構成。高導電層116c例如由厚度在50 nm~10 µm之間的Au、Al、Al-Cu或Cu構成。在另一實施例中,在黏著層116a與高導電層116c之間也可不形成障壁層116b,可以視設計需求而進行調整,於本發明並不加以限制。Then, referring to FIG. 1F , a metallization process is performed to form a back-side contact metal layer 116 in the through-substrate hole TSH. The back contact metal layer 116 is formed as a single layer or multiple layers, for example. In the present embodiment, the back contact metal layer 116 is formed, for example, in a three-layer structure. For example, the step of forming the backside contact metal layer 116 includes, for example, forming an adhesive layer 116a on the surface of the through-substrate via TSH, then forming a barrier layer 116b on the surface of the adhesive layer 116a, and then forming a barrier layer 116b on the surface of the barrier layer 116b. The conductive layer 116c, but the present invention is not limited thereto. A method of forming the back contact metal layer 116 is, for example, sputtering, electrical planting, or conformal coating. In one embodiment, if a thicker backside contact metal layer 116 is to be formed, electroplating can be used, which can further reduce the manufacturing cost. In this embodiment, by forming the adhesive layer 116a, the contact between the backside contact metal layer 116 and the side and backsides of the semiconductor element and the contact with the front-side source contact 108 can be improved. By forming the barrier layer 116b, the metals in the highly conductive layer 116c and the adhesion layer 116a can be prevented from mixing with each other. By forming the highly conductive layer 116c, current can be handled with low parasitic losses. The adhesive layer 116a is, for example, composed of Ti, TiW, TiN, Ta or TaN with a thickness of 2 nm˜200 nm. The barrier layer 116b is made of, for example, TiW, TiN, or TaN with a thickness between 2 nm and 200 nm. The highly conductive layer 116c is made of, for example, Au, Al, Al-Cu, or Cu with a thickness of 50 nm to 10 µm. In another embodiment, the barrier layer 116b may not be formed between the adhesive layer 116a and the highly conductive layer 116c, which may be adjusted according to design requirements, which is not limited in the present invention.

之後,請參照圖1G,在形成背面接觸金屬層116之後,還可將晶片載體114去除。在一實施例中,若於圖1A所示的製程中,在氮化鎵磊晶層106中形成多個半導體元件等構件,則在圖1G中,還例如包括單體化製程,但本發明不限於此。Then, referring to FIG. 1G , after the backside contact metal layer 116 is formed, the wafer carrier 114 may be removed. In one embodiment, if in the process shown in FIG. 1A , a plurality of semiconductor elements and other components are formed in the gallium nitride epitaxial layer 106 , in FIG. 1G , for example, a singulation process is also included, but the present invention Not limited to this.

由於第一實施例的製程是在基板通孔TSH暴露出部分正面源極接點108之後,才於基板通孔TSH內形成背面接觸金屬層116,所以能夠確保正面源極接點108與背面接觸金屬層116之間可直接接觸,進而改善正反面元件之間的電性連接。若應用於射頻元件上,則可進一步改善射頻源阻抗和射頻正反面電容,且可使射頻源阻抗和射頻正反面電容的變動範圍變小。In the process of the first embodiment, the backside contact metal layer 116 is formed in the through-substrate hole TSH after part of the front-side source contact 108 is exposed through the substrate hole TSH, so that the front-side source contact 108 can be ensured to be in contact with the backside. The metal layers 116 can be in direct contact, thereby improving the electrical connection between the front and back elements. If applied to RF components, the RF source impedance and the RF front and back capacitances can be further improved, and the variation ranges of the RF source impedance and the RF front and back capacitances can be reduced.

圖2A至圖2G是依照本發明的第二實施例的一種半導體裝置的製造剖面示意圖,其中使用與第一實施例相同的元件符號來表示相同或近似的構件,且相同或近似的構件也可參照第一實施例的相關說明,不再贅述。2A to FIG. 2G are schematic cross-sectional views of the fabrication of a semiconductor device according to a second embodiment of the present invention, wherein the same reference numerals as those in the first embodiment are used to denote the same or similar components, and the same or similar components may also be Reference is made to the relevant description of the first embodiment, which will not be repeated.

請先參照圖2A,在一N型碳化矽基板100的第一表面100a磊晶成長具有一區域102的一高阻碳化矽磊晶層104。然後,在高阻碳化矽磊晶層104上磊晶成長一氮化鎵磊晶層106,得到由所述高阻碳化矽磊晶層104與所述氮化鎵磊晶層106構成的半導體磊晶基板ES。在氮化鎵磊晶層106的表面106a形成一正面源極接點108。之後,在氮化鎵磊晶層106中形成半導體元件等構件;為求清楚表示,於圖2A至圖2G中省略繪示所述構件。Referring first to FIG. 2A , a high-resistance silicon carbide epitaxial layer 104 having a region 102 is epitaxially grown on a first surface 100 a of an N-type silicon carbide substrate 100 . Then, a gallium nitride epitaxial layer 106 is epitaxially grown on the high-resistance silicon carbide epitaxial layer 104 to obtain a semiconductor epitaxial layer composed of the high-resistance silicon carbide epitaxial layer 104 and the gallium nitride epitaxial layer 106 Crystal substrate ES. A front-side source contact 108 is formed on the surface 106a of the GaN epitaxial layer 106 . After that, components such as semiconductor elements are formed in the gallium nitride epitaxial layer 106 ; for the sake of clarity, the components are omitted in FIGS. 2A to 2G .

接著,請參照圖2B,在形成正面源極接點108及半導體元件(未繪示)之後,在氮化鎵磊晶層106的表面106a接合一晶片載體114。Next, referring to FIG. 2B , after the front-side source contact 108 and the semiconductor element (not shown) are formed, a chip carrier 114 is bonded to the surface 106 a of the GaN epitaxial layer 106 .

然後,請參照圖2C,使用雷射110於半導體磊晶基板ES內形成一損傷層200。在本實施例中,損傷層200例如形成於高阻碳化矽磊晶層104內,且位於相對於N型碳化矽基板100的區域102的一側。形成損傷層200的方法例如包括從N型碳化矽基板100的第二表面100b施加雷射110到高阻碳化矽磊晶層104內,以在高阻碳化矽磊晶層104內形成損傷層200。藉由使用雷射110來形成損傷層200,可獲得晶片到晶片間以及內部晶片內的計算數據(wafer to wafer and within wafer calculation data)。Then, referring to FIG. 2C , a laser 110 is used to form a damaged layer 200 in the semiconductor epitaxial substrate ES. In this embodiment, the damaged layer 200 is formed, for example, in the high-resistance silicon carbide epitaxial layer 104 and is located on one side of the region 102 opposite to the N-type silicon carbide substrate 100 . The method for forming the damaged layer 200 includes, for example, applying a laser 110 from the second surface 100b of the N-type silicon carbide substrate 100 into the high-resistance silicon carbide epitaxial layer 104 to form the damaged layer 200 in the high-resistance silicon carbide epitaxial layer 104 . By using the laser 110 to form the damaged layer 200, wafer to wafer and within wafer calculation data can be obtained.

之後,請參照圖2D,從損傷層200分離N型碳化矽基板100與半導體磊晶基板ES。在本實施例中,由於已完整移除區域102和N型碳化矽基板100,所以可不需進行磨削等製程,與第一實施例相比可進一步省略部分步驟,而能夠進一步降低製造成本。After that, referring to FIG. 2D , the N-type silicon carbide substrate 100 and the semiconductor epitaxial substrate ES are separated from the damaged layer 200 . In this embodiment, since the region 102 and the N-type silicon carbide substrate 100 have been completely removed, processes such as grinding are not required. Compared with the first embodiment, some steps can be further omitted, thereby further reducing the manufacturing cost.

由於第二實施例的製程中損傷層200形成於高阻碳化矽磊晶層104內,所以在從損傷層200分離N型碳化矽基板100與半導體磊晶基板ES之後,可保留完整的N型碳化矽基板100。如此一來,使分離後的N型碳化矽基板100可重複被利用,而大幅降低材料成本。Since the damaged layer 200 is formed in the high-resistance silicon carbide epitaxial layer 104 in the process of the second embodiment, after the N-type silicon carbide substrate 100 and the semiconductor epitaxial substrate ES are separated from the damaged layer 200 , the N-type silicon carbide substrate 100 and the semiconductor epitaxial substrate ES can remain intact. Silicon carbide substrate 100 . In this way, the separated N-type silicon carbide substrate 100 can be reused, thereby greatly reducing the material cost.

接著,請參照圖2E,以正面源極接點108為蝕刻終止層,從半導體磊晶基板ES的底部(例如位於高阻碳化矽磊晶層104側)蝕刻形成一基板通孔TSH,直到暴露出部分正面源極接點108。Next, referring to FIG. 2E , using the front source contact 108 as an etch stop layer, a through substrate hole TSH is formed by etching from the bottom of the semiconductor epitaxial substrate ES (eg, on the side of the high-resistance silicon carbide epitaxial layer 104 ) until it is exposed. Part of the front-side source contact 108 is removed.

然後,請參照圖2F,進行金屬化製程,以於基板通孔TSH內形成一背面接觸金屬層116。之後,請參照圖2G,在形成背面接觸金屬層116之後,還可將晶片載體114去除。在一實施例中,在形成有半導體元件的情況下,還可在後續進行例如單體化製程,但本發明不限於此。Then, referring to FIG. 2F , a metallization process is performed to form a back contact metal layer 116 in the through-substrate hole TSH. Then, referring to FIG. 2G , after the backside contact metal layer 116 is formed, the wafer carrier 114 may also be removed. In one embodiment, in the case where the semiconductor element is formed, for example, a singulation process may be performed subsequently, but the present invention is not limited thereto.

由於第二實施例的製程是在基板通孔TSH暴露出部分正面源極接點108之後,才於基板通孔TSH內形成背面接觸金屬層116,所以能夠確保正面源極接點108與背面接觸金屬層116之間可直接接觸,進而改善正反面元件之間的電性連接。若應用於射頻元件上,則可進一步改善射頻源阻抗和射頻正反面電容,且可使射頻源阻抗和射頻正反面電容的變動範圍變小。In the process of the second embodiment, the backside contact metal layer 116 is formed in the through substrate hole TSH after a part of the front side source contact 108 is exposed through the substrate hole TSH, so that the front side source contact 108 can be ensured to be in contact with the backside. The metal layers 116 can be in direct contact, thereby improving the electrical connection between the front and back elements. If applied to RF components, the RF source impedance and the RF front and back capacitances can be further improved, and the variation ranges of the RF source impedance and the RF front and back capacitances can be reduced.

圖3A是依照本發明的第三實施例的一種半導體裝置的剖面示意圖。3A is a schematic cross-sectional view of a semiconductor device according to a third embodiment of the present invention.

請參照圖3A,本實施例的半導體裝置300包括一半導體基板310、至少一半導體元件(未繪示)、一正面源極接點320、一背面接觸金屬層330。Referring to FIG. 3A , the semiconductor device 300 of this embodiment includes a semiconductor substrate 310 , at least one semiconductor element (not shown), a front-side source contact 320 , and a back-side contact metal layer 330 .

半導體基板310包括一高阻碳化矽磊晶層314、以及一氮化鎵磊晶層316。在本實施例中,半導體基板310為適用於射頻(RF)元件的半導體基板。The semiconductor substrate 310 includes a high-resistance silicon carbide epitaxial layer 314 and a gallium nitride epitaxial layer 316 . In this embodiment, the semiconductor substrate 310 is a semiconductor substrate suitable for radio frequency (RF) components.

高阻碳化矽磊晶層314具有一第一表面314a與一第二表面314b,其中第一表面314a相對於第二表面314b。在本實施例中,高阻碳化矽磊晶層314在第一表面314a側還具有一區域312。區域312例如是於磊晶成長高阻碳化矽磊晶層314時所成長的品質較差的區域。在一實施例中,區域312例如緩衝層,且緩衝層的厚度t1可小於1.5 µm;在另一實施例中,半導體基板可不具有區域312。高阻碳化矽磊晶層314例如半絕緣碳化矽(SI-SiC)。在本實施例中,高阻碳化矽磊晶層314的厚度t2例如在20 µm~50 µm之間,高阻碳化矽磊晶層314的第二表面314b相對於(0001)面具有0°+/-8°範圍內的角度,例如0°+/-5°的範圍內,較佳是0°+/-3°的範圍內。高阻碳化矽磊晶層314的微管密度(micropipe density,MPD)小於0.5 ea/cm 2、基面差排(basal plane dislocation,BPD)小於10 ea/cm 2以及貫穿式螺旋差排(threading screw dislocation,TSD)小於500 ea/cm 2。高阻碳化矽磊晶層314的阻值大於1E5 ohm-cm。高阻碳化矽磊晶層314的電阻變動率例如小於50%,所謂的「電阻變動率」是指電阻標準差除以電阻平均值的結果。 The high-resistance silicon carbide epitaxial layer 314 has a first surface 314a and a second surface 314b, wherein the first surface 314a is opposite to the second surface 314b. In this embodiment, the high-resistance silicon carbide epitaxial layer 314 further has a region 312 on the side of the first surface 314a. The region 312 is, for example, a region with poor quality grown during the epitaxial growth of the high-resistance silicon carbide epitaxial layer 314 . In one embodiment, the region 312 is, for example, a buffer layer, and the thickness t1 of the buffer layer may be less than 1.5 μm; in another embodiment, the semiconductor substrate may not have the region 312 . The high-resistance silicon carbide epitaxial layer 314 is, for example, semi-insulating silicon carbide (SI-SiC). In the present embodiment, the thickness t2 of the high-resistance silicon carbide epitaxial layer 314 is, for example, between 20 μm and 50 μm, and the second surface 314b of the high-resistance silicon carbide epitaxial layer 314 has 0°+ relative to the (0001) plane. / An angle in the range of -8°, for example in the range of 0°+/-5°, preferably in the range of 0°+/-3°. The micropipe density (MPD) of the high-resistance silicon carbide epitaxial layer 314 is less than 0.5 ea/cm 2 , the basal plane dislocation (BPD) is less than 10 ea/cm 2 and threading screw dislocation, TSD) is less than 500 ea/cm 2 . The resistance of the high-resistance silicon carbide epitaxial layer 314 is greater than 1E5 ohm-cm. The resistance variation rate of the high-resistance silicon carbide epitaxial layer 314 is, for example, less than 50%. The so-called "resistance variation rate" refers to the result of dividing the resistance standard deviation by the average resistance value.

氮化鎵磊晶層316則形成於高阻碳化矽磊晶層314的第二表面314b,且半導體元件(未繪示)形成於氮化鎵磊晶層316。在本實施例中,氮化鎵磊晶層316的厚度t3小於2 µm,且圖3A的結構可採用第一實施例或第二實施例所示的方法製造,並可依需求增加移除高阻碳化矽磊晶層314以外的殘留結構的步驟。所得到的氮化鎵磊晶層316經測試,其X光繞射分析(002)面的半高寬(FWHM)可小於100 arcsec,驗證所成長的是極佳品質之磊晶薄膜。The gallium nitride epitaxial layer 316 is formed on the second surface 314 b of the high-resistance silicon carbide epitaxial layer 314 , and the semiconductor element (not shown) is formed on the gallium nitride epitaxial layer 316 . In this embodiment, the thickness t3 of the gallium nitride epitaxial layer 316 is less than 2 μm, and the structure shown in FIG. 3A can be fabricated by the method shown in the first embodiment or the second embodiment, and the removal height can be increased as required. The step of blocking residual structures other than the silicon carbide epitaxial layer 314 . The obtained gallium nitride epitaxial layer 316 has been tested, and its X-ray diffraction analysis (002) plane has a full width at half maximum (FWHM) of less than 100 arcsec, which proves that the grown epitaxial film is of excellent quality.

在本實施例中,半導體基板310具有一基板通孔TSH1,其中基板通孔TSH1的側壁的截面與氮化鎵磊晶層316的表面316a之間的夾角θ1例如在45°~90°之間,較佳為在85°~90°之間。舉例來說,如圖3A中所示,基板通孔TSH1的側壁的截面與氮化鎵磊晶層316的表面316a之間的夾角θ1例如為90°。基板通孔TSH1的深度D例如在10 µm~200 µm之間。基板通孔TSH1可例如為圓形基板通孔或橢圓形基板通孔。在一實施例中,若基板通孔TSH1為圓形基板通孔,則圓形基板通孔例如具有10 µm~85 µm的直徑;在另一實施例中,若基板通孔TSH1為橢圓形基板通孔,則橢圓形基板通孔的短軸長度乘以長軸長度例如為10 µm × 20 µm至50 µm × 120 µm。在圖3A中,基板通孔TSH1的截面例示為相同斜率的輪廓。In this embodiment, the semiconductor substrate 310 has a through-substrate hole TSH1 , wherein the angle θ1 between the cross-section of the sidewall of the through-substrate hole TSH1 and the surface 316 a of the gallium nitride epitaxial layer 316 is, for example, between 45° and 90°. , preferably between 85° and 90°. For example, as shown in FIG. 3A , the angle θ1 between the cross section of the sidewall of the through-substrate hole TSH1 and the surface 316 a of the gallium nitride epitaxial layer 316 is, for example, 90°. The depth D of the through-substrate hole TSH1 is, for example, between 10 µm and 200 µm. The through substrate hole TSH1 may be, for example, a circular through substrate hole or an oval through substrate hole. In one embodiment, if the through-substrate hole TSH1 is a circular through-substrate hole, the circular through-substrate hole has a diameter of, for example, 10 μm˜85 μm; in another embodiment, if the through-substrate hole TSH1 is an oval substrate Through holes, the length of the short axis multiplied by the length of the long axis of the oval substrate through hole is, for example, 10 µm × 20 µm to 50 µm × 120 µm. In FIG. 3A , the cross-section of the through-substrate hole TSH1 is illustrated as a profile of the same slope.

正面源極接點320形成於氮化鎵磊晶層316的表面316a並覆蓋半導體基板310的基板通孔TSH1。正面源極接點320包括一黏著層322、一障壁層324以及一高導電層326。黏著層322形成在氮化鎵磊晶層316的表面316a。障壁層324形成在黏著層322的表面。高導電層326形成在障壁層324的表面。在本實施例中,黏著層322例如由厚度在2 nm~200 nm之間的Ti、TiW、TiN、Ta或TaN構成。障壁層324例如由厚度在2 nm~200 nm之間的Pt、Pd或Mo構成。高導電層326例如由厚度在50 nm~10 µm之間的Au、Al、Al-Cu或Cu構成。The front-side source contact 320 is formed on the surface 316 a of the GaN epitaxial layer 316 and covers the through-substrate hole TSH1 of the semiconductor substrate 310 . The front-side source contact 320 includes an adhesive layer 322 , a barrier layer 324 and a high-conductivity layer 326 . The adhesive layer 322 is formed on the surface 316 a of the GaN epitaxial layer 316 . The barrier layer 324 is formed on the surface of the adhesive layer 322 . The highly conductive layer 326 is formed on the surface of the barrier layer 324 . In this embodiment, the adhesive layer 322 is, for example, composed of Ti, TiW, TiN, Ta or TaN with a thickness of 2 nm˜200 nm. The barrier layer 324 is made of, for example, Pt, Pd, or Mo with a thickness between 2 nm and 200 nm. The highly conductive layer 326 is made of, for example, Au, Al, Al-Cu or Cu with a thickness of 50 nm˜10 μm.

背面接觸金屬層330形成於半導體基板310的基板通孔TSH1內,並與正面源極接點320直接接觸。背面接觸金屬層330包括一黏著層332、一障壁層334以及一高導電層336。黏著層332例如形成在基板通孔TSH1的表面。障壁層334例如形成在黏著層332的表面。高導電層336例如形成在障壁層334的表面。在本實施例中,黏著層332例如由厚度在2 nm~200 nm之間的Ti、TiW、TiN、Ta或TaN構成。障壁層334例如由厚度在2 nm~200 nm之間的TiW、TiN或TaN構成。高導電層336例如由厚度在50 nm~10 µm之間的Au、Al、Al-Cu或Cu構成。The backside contact metal layer 330 is formed in the through-substrate hole TSH1 of the semiconductor substrate 310 and is in direct contact with the frontside source contact 320 . The back contact metal layer 330 includes an adhesive layer 332 , a barrier layer 334 and a high conductive layer 336 . The adhesive layer 332 is formed on the surface of the substrate through hole TSH1, for example. The barrier layer 334 is formed, for example, on the surface of the adhesive layer 332 . The highly conductive layer 336 is formed, for example, on the surface of the barrier layer 334 . In the present embodiment, the adhesive layer 332 is, for example, composed of Ti, TiW, TiN, Ta or TaN with a thickness between 2 nm and 200 nm. The barrier layer 334 is made of, for example, TiW, TiN, or TaN with a thickness between 2 nm and 200 nm. The highly conductive layer 336 is made of, for example, Au, Al, Al-Cu, or Cu with a thickness between 50 nm and 10 µm.

圖3B是第三實施例的另一種半導體裝置的剖面示意圖,其中使用與圖3A相同的元件符號來表示相同或近似的構件,且相同或近似的構件也可參照圖3A的相關說明,不再贅述。3B is a schematic cross-sectional view of another semiconductor device according to the third embodiment, in which the same or similar components are represented by the same reference numerals as in FIG. 3A , and the same or similar components can also be referred to the related description of FIG. 3A , and no longer Repeat.

在圖3B中,基板通孔TSH2的截面例示為梯形狀輪廓。舉例來說,基板通孔TSH2的側壁的截面與氮化鎵磊晶層316的表面316a之間的夾角θ2例如為45°,且基板通孔TSH2的側壁的截面具有相同的斜率。In FIG. 3B , the cross-section of the through substrate hole TSH2 is illustrated as a trapezoidal profile. For example, the angle θ2 between the cross-section of the sidewall of the through-substrate hole TSH2 and the surface 316a of the GaN epitaxial layer 316 is, for example, 45°, and the cross-section of the sidewall of the through-substrate hole TSH2 has the same slope.

圖3C是第三實施例的再一種半導體裝置的剖面示意圖,其中使用與圖3A相同的元件符號來表示相同或近似的構件,且相同或近似的構件也可參照圖3A的相關說明,不再贅述。3C is a schematic cross-sectional view of another semiconductor device according to the third embodiment, in which the same or similar components are represented by the same reference numerals as in FIG. 3A , and the same or similar components can also be referred to the relevant description of FIG. 3A , and no longer Repeat.

在圖3C中,基板通孔TSH3的截面例示為階梯式輪廓。舉例來說,位於氮化鎵磊晶層316內的基板通孔TSH3的側壁的截面與氮化鎵磊晶層316的表面316a之間的夾角θ3例如為90°;位於高阻碳化矽磊晶層314內的基板通孔TSH3的側壁的截面與高阻碳化矽磊晶層314的第二表面314b之間的夾角θ3’例如為90°。位於氮化鎵磊晶層316內的基板通孔TSH3的截面的最大寬度L1例如小於位於高阻碳化矽磊晶層314內的基板通孔TSH3的截面的最大寬度L2。In FIG. 3C, the cross-section of the through substrate hole TSH3 is illustrated as a stepped profile. For example, the angle θ3 between the cross section of the sidewall of the through substrate hole TSH3 in the GaN epitaxial layer 316 and the surface 316a of the GaN epitaxial layer 316 is, for example, 90°; The angle θ3 ′ between the cross section of the sidewall of the through substrate hole TSH3 in the layer 314 and the second surface 314 b of the high-resistance silicon carbide epitaxial layer 314 is, for example, 90°. The maximum width L1 of the cross-section of the through-substrate hole TSH3 in the gallium nitride epitaxial layer 316 is, for example, smaller than the maximum width L2 of the cross-section of the through-substrate hole TSH3 in the high-resistance silicon carbide epitaxial layer 314 .

圖3D是第三實施例的又一種半導體裝置的剖面示意圖,其中使用與圖3A相同的元件符號來表示相同或近似的構件,且相同或近似的構件也可參照圖3A的相關說明,不再贅述。3D is a schematic cross-sectional view of another semiconductor device according to the third embodiment, in which the same or similar components are represented by the same reference numerals as in FIG. 3A , and the same or similar components can also be referred to the relevant description of FIG. 3A , and no longer Repeat.

在圖3D中,基板通孔TSH4的截面例示為階梯式輪廓加上傾斜輪廓。舉例來說,位於氮化鎵磊晶層316內的基板通孔TSH4的側壁的截面與氮化鎵磊晶層316的表面316a之間的夾角θ4例如為60°;位於高阻碳化矽磊晶層314內的基板通孔TSH4的側壁的截面與高阻碳化矽磊晶層314的第二表面314b之間的夾角θ4’例如為60°。位於氮化鎵磊晶層316內的基板通孔TSH4的截面的最大寬度L3例如小於位於高阻碳化矽磊晶層314內的基板通孔TSH4的截面的最大寬度L4。In FIG. 3D, the cross-section of the through substrate hole TSH4 is illustrated as a stepped profile plus a sloped profile. For example, the angle θ4 between the cross section of the sidewall of the through-substrate hole TSH4 located in the GaN epitaxial layer 316 and the surface 316a of the GaN epitaxial layer 316 is, for example, 60°; The angle θ4 ′ between the cross section of the sidewall of the through substrate hole TSH4 in the layer 314 and the second surface 314 b of the high-resistance silicon carbide epitaxial layer 314 is, for example, 60°. The maximum width L3 of the cross-section of the through-substrate hole TSH4 in the gallium nitride epitaxial layer 316 is, for example, smaller than the maximum width L4 of the cross-section of the through-substrate hole TSH4 in the high-resistance silicon carbide epitaxial layer 314 .

圖3E是第三實施例的又一種半導體裝置的剖面示意圖,其中使用與圖3A相同的元件符號來表示相同或近似的構件,且相同或近似的構件也可參照圖3A的相關說明,不再贅述。3E is a schematic cross-sectional view of another semiconductor device according to the third embodiment, in which the same or similar components are represented by the same reference numerals as in FIG. 3A , and the same or similar components can also be referred to the related description of FIG. 3A , and no longer Repeat.

在圖3E中,基板通孔TSH5的截面例示為不同斜率的輪廓。舉例來說,位於氮化鎵磊晶層316內的基板通孔TSH5的側壁的截面與氮化鎵磊晶層316的表面316a之間的夾角θ5例如為45°;位於高阻碳化矽磊晶層314內的基板通孔TSH5的側壁的截面與高阻碳化矽磊晶層314的第二表面314b之間的夾角θ5’例如為60°。位於氮化鎵磊晶層316內的基板通孔TSH5的截面的最大寬度L5例如小於位於高阻碳化矽磊晶層314內的基板通孔TSH5的截面的最大寬度L6。In FIG. 3E , the cross-sections of the through substrate holes TSH5 are illustrated as profiles with different slopes. For example, the angle θ5 between the cross section of the sidewall of the through substrate hole TSH5 in the GaN epitaxial layer 316 and the surface 316a of the GaN epitaxial layer 316 is, for example, 45°; The included angle θ5 ′ between the cross section of the sidewall of the through-substrate hole TSH5 in the layer 314 and the second surface 314 b of the high-resistance silicon carbide epitaxial layer 314 is, for example, 60°. The maximum width L5 of the cross-section of the through-substrate hole TSH5 in the GaN epitaxial layer 316 is, for example, smaller than the maximum width L6 of the cross-section of the through-substrate hole TSH5 in the high-resistance silicon carbide epitaxial layer 314 .

綜上所述,本發明藉由在N型碳化矽基板或高阻碳化矽磊晶層內形成損傷層,不但可成長結晶性品質佳的氮化鎵,還可因為損傷層的存在,保留大部分的N型碳化矽基板,使其能被重複使用,進而降低基板成本。並且,本發明藉由形成覆蓋半導體基板的基板通孔的正面源極接點之後,於基板通孔內形成背面接觸金屬層,而能夠改善正反面元件之間的電性連接,也可改善射頻源阻抗和射頻正反面電容,且使射頻源阻抗和射頻正反面電容的變動範圍變小。To sum up, by forming the damaged layer in the N-type silicon carbide substrate or the high-resistance silicon carbide epitaxial layer in the present invention, not only can the gallium nitride with good crystallinity quality be grown, but also due to the existence of the damaged layer, a large amount of gallium nitride can be retained. Part of the N-type silicon carbide substrate can be reused, thereby reducing the cost of the substrate. In addition, the present invention can improve the electrical connection between the front and back elements, and also improve the RF source impedance and RF front and back capacitance, and make the variation range of RF source impedance and RF front and back capacitance smaller.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the scope of the appended patent application.

100:N型碳化矽基板 100a、314a:第一表面 100b、314b:第二表面 102、312:區域 104、314:高阻碳化矽磊晶層 106、316:氮化鎵磊晶層 106a、316a:表面 108、320:正面源極接點 108a、116a、322、332:黏著層 108b、116b、324、334:障壁層 108c、116c、326、336:高導電層 110:雷射 112、200:損傷層 114:晶片載體 116、330:背面接觸金屬層 300:半導體裝置 310:半導體基板 D:深度 ES:半導體磊晶基板 L1~L6:最大寬度 t1、t2、t3:厚度 TSH、TSH1~TSH5:基板通孔 TSHa:截面 θ、θ1~θ5、θ3’~θ5’:夾角 100:N-type silicon carbide substrate 100a, 314a: first surface 100b, 314b: second surface 102, 312: Area 104, 314: High resistance silicon carbide epitaxial layer 106, 316: GaN epitaxial layer 106a, 316a: Surface 108, 320: front source contact 108a, 116a, 322, 332: Adhesive layer 108b, 116b, 324, 334: barrier layers 108c, 116c, 326, 336: Highly conductive layers 110: Laser 112, 200: Damage layer 114: Wafer Carrier 116, 330: backside contact metal layer 300: Semiconductor Devices 310: Semiconductor substrate D: depth ES: Semiconductor epitaxial substrate L1~L6: Maximum width t1, t2, t3: thickness TSH, TSH1 to TSH5: through-substrate vias TSHa: Section θ, θ1~θ5, θ3’~θ5’: included angle

圖1A至圖1G是依照本發明的第一實施例的一種半導體裝置的製造剖面示意圖。 圖2A至圖2G是依照本發明的第二實施例的一種半導體裝置的製造剖面示意圖。 圖3A是依照本發明的第三實施例的一種半導體裝置的剖面示意圖。 圖3B是第三實施例的另一種半導體裝置的剖面示意圖。 圖3C是第三實施例的再一種半導體裝置的剖面示意圖。 圖3D是第三實施例的又一種半導體裝置的剖面示意圖。 圖3E是第三實施例的又一種半導體裝置的剖面示意圖。 1A to 1G are schematic cross-sectional views of the fabrication of a semiconductor device according to a first embodiment of the present invention. 2A to 2G are schematic cross-sectional views illustrating the fabrication of a semiconductor device according to a second embodiment of the present invention. 3A is a schematic cross-sectional view of a semiconductor device according to a third embodiment of the present invention. 3B is a schematic cross-sectional view of another semiconductor device according to the third embodiment. 3C is a schematic cross-sectional view of still another semiconductor device according to the third embodiment. 3D is a schematic cross-sectional view of still another semiconductor device according to the third embodiment. 3E is a schematic cross-sectional view of still another semiconductor device according to the third embodiment.

102:區域 102: Area

104:高阻碳化矽磊晶層 104: High resistance silicon carbide epitaxial layer

106:氮化鎵磊晶層 106: GaN epitaxial layer

106a:表面 106a: Surface

108:正面源極接點 108: Front source contact

108a、116a:黏著層 108a, 116a: Adhesive layer

108b、116b:障壁層 108b, 116b: barrier layer

108c、116c:高導電層 108c, 116c: high conductive layer

116:背面接觸金屬層 116: backside contact metal layer

ES:半導體磊晶基板 ES: Semiconductor epitaxial substrate

TSH:基板通孔 TSH: Through Substrate Via

θ:夾角 θ: included angle

Claims (21)

一種半導體裝置,包括: 一半導體基板,具有一基板通孔(through substrate hole),所述半導體基板包括: 一高阻碳化矽磊晶層(high-resistivity silicon carbide epitaxial layer),具有一第一表面與一第二表面,所述第一表面相對於所述第二表面;以及 一氮化鎵磊晶層,形成於所述高阻碳化矽磊晶層的所述第二表面; 至少一半導體元件,形成於所述氮化鎵磊晶層; 一正面源極接點,形成於所述氮化鎵磊晶層的表面並覆蓋所述半導體基板的所述基板通孔;以及 一背面接觸金屬層,形成於所述半導體基板的所述基板通孔內,並與所述正面源極接點直接接觸。 A semiconductor device, comprising: A semiconductor substrate having a through substrate hole, the semiconductor substrate comprising: a high-resistivity silicon carbide epitaxial layer, having a first surface and a second surface, the first surface being opposite to the second surface; and a gallium nitride epitaxial layer formed on the second surface of the high-resistance silicon carbide epitaxial layer; at least one semiconductor element formed on the gallium nitride epitaxial layer; a front-side source contact formed on the surface of the GaN epitaxial layer and covering the through-substrate hole of the semiconductor substrate; and A back contact metal layer is formed in the substrate through hole of the semiconductor substrate and is in direct contact with the front source contact. 如請求項1所述的半導體裝置,其中所述高阻碳化矽磊晶層的厚度在20 µm~50 µm之間。The semiconductor device according to claim 1, wherein the thickness of the high-resistance silicon carbide epitaxial layer is between 20 µm and 50 µm. 如請求項1所述的半導體裝置,其中所述正面源極接點包括: 一黏著層,形成在所述氮化鎵磊晶層的所述表面; 一障壁層,形成在所述黏著層的表面;以及 一高導電層,形成在所述障壁層的表面。 The semiconductor device of claim 1, wherein the front-side source contact comprises: an adhesive layer formed on the surface of the gallium nitride epitaxial layer; a barrier layer formed on the surface of the adhesive layer; and A highly conductive layer is formed on the surface of the barrier layer. 如請求項3所述的半導體裝置,其中所述黏著層包括厚度在2 nm~200 nm之間的Ti、TiW、TiN、Ta或TaN;所述障壁層包括厚度在2 nm~200 nm之間的Pt、Pd或Mo;所述高導電層包括厚度在50 nm~10 µm之間的Au、Al、Al-Cu或Cu。The semiconductor device according to claim 3, wherein the adhesive layer comprises Ti, TiW, TiN, Ta or TaN with a thickness of 2 nm to 200 nm; the barrier layer comprises a thickness of 2 nm to 200 nm of Pt, Pd or Mo; the highly conductive layer includes Au, Al, Al-Cu or Cu with a thickness between 50 nm and 10 µm. 如請求項1所述的半導體裝置,其中所述背面接觸金屬層包括: 一黏著層,形成在所述基板通孔的表面; 一障壁層,形成在所述黏著層的表面;以及 一高導電層,形成在所述障壁層的表面。 The semiconductor device of claim 1, wherein the backside contact metal layer comprises: an adhesive layer formed on the surface of the through hole of the substrate; a barrier layer formed on the surface of the adhesive layer; and A highly conductive layer is formed on the surface of the barrier layer. 如請求項5所述的半導體裝置,其中所述黏著層包括厚度在2 nm~200 nm之間的Ti、TiW、TiN、Ta或TaN;所述障壁層包括厚度在2 nm~200 nm之間的TiW、TiN或TaN;所述高導電層包括厚度在50 nm~10 µm之間的Au、Al、Al-Cu或Cu。The semiconductor device of claim 5, wherein the adhesive layer comprises Ti, TiW, TiN, Ta or TaN with a thickness of 2 nm to 200 nm; the barrier layer comprises a thickness of 2 nm to 200 nm of TiW, TiN or TaN; the highly conductive layer includes Au, Al, Al-Cu or Cu with a thickness between 50 nm and 10 µm. 如請求項1所述的半導體裝置,其中所述基板通孔的側壁的截面與所述氮化鎵磊晶層的所述表面之間的夾角在45°~90°之間。The semiconductor device according to claim 1, wherein the included angle between the cross section of the sidewall of the substrate through hole and the surface of the gallium nitride epitaxial layer is between 45° and 90°. 如請求項7所述的半導體裝置,其中所述基板通孔的側壁的截面與所述氮化鎵磊晶層的所述表面之間的夾角在85°~90°之間。The semiconductor device according to claim 7, wherein the included angle between the cross section of the sidewall of the substrate through hole and the surface of the gallium nitride epitaxial layer is between 85° and 90°. 如請求項1所述的半導體裝置,其中所述基板通孔為圓形基板通孔,且具有10 µm~85 µm的直徑。The semiconductor device of claim 1, wherein the through-substrate vias are circular through-substrate vias and have a diameter of 10 µm to 85 µm. 如請求項1所述的半導體裝置,其中所述基板通孔為橢圓形基板通孔,且所述橢圓形基板通孔的短軸長度乘以長軸長度為10 µm × 20 µm至50 µm × 120 µm。The semiconductor device of claim 1, wherein the through-substrate hole is an elliptical through-substrate hole, and the length of the short axis multiplied by the length of the long axis of the elliptical through-substrate hole is 10 µm × 20 µm to 50 µm × 120 µm. 如請求項1所述的半導體裝置,其中所述基板通孔的深度在10 µm~200 µm之間。The semiconductor device according to claim 1, wherein the depth of the substrate through hole is between 10 µm and 200 µm. 如請求項1所述的半導體裝置,其中所述基板通孔的截面為階梯式輪廓、階梯式輪廓加上傾斜輪廓、相同斜率的輪廓或不同斜率的輪廓。The semiconductor device of claim 1, wherein the cross-section of the through-substrate via is a stepped profile, a stepped profile plus an inclined profile, a profile with the same slope, or a profile with different slopes. 一種半導體裝置的製造方法,包括: 在一N型碳化矽基板的第一表面磊晶成長一高阻碳化矽磊晶層與一氮化鎵磊晶層,以得到包含所述高阻碳化矽磊晶層與所述氮化鎵磊晶層的一半導體磊晶基板; 在所述氮化鎵磊晶層的表面形成一正面源極接點(front-side source contact); 在所述氮化鎵磊晶層形成至少一半導體元件; 在形成所述正面源極接點及所述至少一半導體元件之後,在所述氮化鎵磊晶層的所述表面接合一晶片載體; 從所述N型碳化矽基板的第二表面施加雷射,以於所述N型碳化矽基板或所述半導體磊晶基板形成一損傷層,其中所述第二表面相對於所述N型碳化矽基板的所述第一表面; 從所述損傷層分離所述N型碳化矽基板與所述半導體磊晶基板; 以所述正面源極接點為蝕刻終止層,從所述半導體磊晶基板的底部蝕刻形成一基板通孔,直到暴露出部分所述正面源極接點;以及 進行金屬化製程,以於所述基板通孔內形成一背面接觸金屬層(back-side contact metal)。 A method of manufacturing a semiconductor device, comprising: A high-resistance silicon carbide epitaxial layer and a gallium nitride epitaxial layer are epitaxially grown on the first surface of an N-type silicon carbide substrate to obtain the high-resistance silicon carbide epitaxial layer and the gallium nitride epitaxial layer a semiconductor epitaxial substrate of the crystal layer; forming a front-side source contact on the surface of the gallium nitride epitaxial layer; forming at least one semiconductor element on the gallium nitride epitaxial layer; bonding a chip carrier to the surface of the gallium nitride epitaxial layer after forming the front-side source contact and the at least one semiconductor element; A laser is applied from the second surface of the N-type silicon carbide substrate to form a damaged layer on the N-type silicon carbide substrate or the semiconductor epitaxial substrate, wherein the second surface is opposite to the N-type silicon carbide substrate the first surface of the silicon substrate; separating the N-type silicon carbide substrate and the semiconductor epitaxial substrate from the damaged layer; Using the front-side source contact as an etch stop layer, etching a substrate through hole from the bottom of the semiconductor epitaxial substrate until a part of the front-side source contact is exposed; and A metallization process is performed to form a back-side contact metal layer in the substrate through hole. 如請求項13所述的半導體裝置的製造方法,其中形成所述正面源極接點的步驟包括: 在所述氮化鎵磊晶層的所述表面形成一黏著層; 在所述黏著層的表面形成一障壁層;以及 在所述障壁層的表面形成一高導電層。 The method of manufacturing a semiconductor device according to claim 13, wherein the step of forming the front-side source contact comprises: forming an adhesive layer on the surface of the gallium nitride epitaxial layer; forming a barrier layer on the surface of the adhesive layer; and A highly conductive layer is formed on the surface of the barrier layer. 如請求項13所述的半導體裝置的製造方法,其中形成所述背面接觸金屬層的步驟包括: 在所述基板通孔的表面形成一黏著層; 在所述黏著層的表面形成一障壁層;以及 在所述障壁層的表面形成一高導電層。 The method for manufacturing a semiconductor device according to claim 13, wherein the step of forming the backside contact metal layer comprises: forming an adhesive layer on the surface of the substrate through hole; forming a barrier layer on the surface of the adhesive layer; and A highly conductive layer is formed on the surface of the barrier layer. 如請求項13所述的半導體裝置的製造方法,其中所述N型碳化矽基板的所述第一表面相對於(0001)面具有不大於0°+/-8°範圍內的角度。The method for manufacturing a semiconductor device according to claim 13, wherein the first surface of the N-type silicon carbide substrate has an angle within a range of not more than 0°+/-8° with respect to the (0001) plane. 如請求項13所述的半導體裝置的製造方法,其中所述高阻碳化矽磊晶層的厚度變動率在5%~10%。The method for manufacturing a semiconductor device according to claim 13, wherein the thickness variation rate of the high-resistance silicon carbide epitaxial layer is 5% to 10%. 如請求項13所述的半導體裝置的製造方法,其中形成所述損傷層的方法包括:從所述N型碳化矽基板的所述第二表面施加所述雷射到所述N型碳化矽基板內,以在所述N型碳化矽基板內形成所述損傷層。The method of manufacturing a semiconductor device according to claim 13, wherein the method of forming the damaged layer comprises: applying the laser to the N-type silicon carbide substrate from the second surface of the N-type silicon carbide substrate to form the damaged layer in the N-type silicon carbide substrate. 如請求項18所述的半導體裝置的製造方法,其中在分離所述N型碳化矽基板與所述半導體磊晶基板之後,更包括:去除剩餘的所述N型碳化矽基板。The method for manufacturing a semiconductor device according to claim 18, wherein after separating the N-type silicon carbide substrate and the semiconductor epitaxial substrate, further comprising: removing the remaining N-type silicon carbide substrate. 如請求項13所述的半導體裝置的製造方法,其中形成所述損傷層的方法包括:從所述N型碳化矽基板的所述第二表面施加所述雷射到所述高阻碳化矽磊晶層內,以在所述高阻碳化矽磊晶層內形成所述損傷層。The method for manufacturing a semiconductor device according to claim 13, wherein the method for forming the damaged layer comprises: applying the laser from the second surface of the N-type silicon carbide substrate to the high-resistance silicon carbide epitaxy The damaged layer is formed in the high-resistance silicon carbide epitaxial layer. 如請求項13所述的半導體裝置的製造方法,其中在形成所述背面接觸金屬層之後,更包括:去除所述晶片載體;以及進行單體化製程。The method for manufacturing a semiconductor device according to claim 13, wherein after forming the back contact metal layer, the method further comprises: removing the wafer carrier; and performing a singulation process.
TW109135046A 2020-10-08 2020-10-08 Semiconductor device and method of manufacturing the same TWI821604B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109135046A TWI821604B (en) 2020-10-08 2020-10-08 Semiconductor device and method of manufacturing the same
CN202110977082.5A CN114300431A (en) 2020-10-08 2021-08-24 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109135046A TWI821604B (en) 2020-10-08 2020-10-08 Semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW202215501A true TW202215501A (en) 2022-04-16
TWI821604B TWI821604B (en) 2023-11-11

Family

ID=80964052

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109135046A TWI821604B (en) 2020-10-08 2020-10-08 Semiconductor device and method of manufacturing the same

Country Status (2)

Country Link
CN (1) CN114300431A (en)
TW (1) TWI821604B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696630B2 (en) * 2011-09-21 2015-04-08 住友電気工業株式会社 Silicon carbide substrate and method for manufacturing the same
WO2013159083A1 (en) * 2012-04-20 2013-10-24 Ii-Vi Incorporated LARGE DIAMETER, HIGH QUALITY SiC SINGLE CRYSTALS, METHOD AND APPARATUS
US11538905B2 (en) * 2016-09-30 2022-12-27 Intel Corporation Nanowire transistors employing carbon-based layers
TWI681447B (en) * 2017-09-26 2020-01-01 穩懋半導體股份有限公司 Improved high temperature resistant backside metallization for compound semiconductors
US20190148498A1 (en) * 2017-11-13 2019-05-16 Win Semiconductors Corp. Passivation Structure For GaN Field Effect Transistor

Also Published As

Publication number Publication date
CN114300431A (en) 2022-04-08
TWI821604B (en) 2023-11-11

Similar Documents

Publication Publication Date Title
EP3080842B1 (en) Methods for forming microstrip transmission lines on thin silicon wafers
US8222078B2 (en) Chip scale surface mounted semiconductor device package and process of manufacture
US9917568B2 (en) Membrane substrate structure for single crystal acoustic resonator device
US20150221782A1 (en) Vertical gallium nitride schottky diode
US7955969B2 (en) Ultra thin FET
US11677372B2 (en) Piezoelectric acoustic resonator with dielectric protective layer manufactured with piezoelectric thin film transfer process
US6940157B2 (en) High frequency semiconductor module, high frequency semiconductor device and manufacturing method for the same
US11832521B2 (en) Methods of forming group III-nitride single crystal piezoelectric thin films using ordered deposition and stress neutral template layers
TW201904018A (en) Reduction of wafer bow during growth of epitaxial films
TW202215501A (en) Semiconductor device and method of manufacturing the same
JP6341056B2 (en) Submount and manufacturing method thereof, semiconductor laser device and manufacturing method thereof
JP2008258282A (en) Method of fabricating semiconductor wafer chips
US20190148217A1 (en) Method for Manufacturing a Semiconductor Device
TWI758562B (en) Semiconductor on insulator substrate and method for manufacturing the same
CN108428669B (en) Three-dimensional heterogeneous integrated system and manufacturing method thereof
US20230197446A1 (en) Manufacturing method for semiconductor element, and semiconductor device
WO2003096433A1 (en) 'A Planar Schottky Diode and Manufacturing Method'
US20240088860A1 (en) Methods of forming group iii-nitride single crystal piezoelectric thin films using ordered deposition and stress neutral template layers
KR102392556B1 (en) Method of manufacturing semiconductor devices
US11127652B2 (en) Semiconductor structures having reduced thermally induced bow
JP2001015827A (en) Gunn diode and manufacture thereof
US20210005444A1 (en) Method for manufacturing a silicon on nitride substrate
KR20220155353A (en) Methods of forming group III-nitride single crystal piezoelectric thin films
JP2023172730A (en) Manufacturing method for silicon carbide semiconductor device
CN114695503A (en) Semiconductor structure