TWI821604B - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
TWI821604B
TWI821604B TW109135046A TW109135046A TWI821604B TW I821604 B TWI821604 B TW I821604B TW 109135046 A TW109135046 A TW 109135046A TW 109135046 A TW109135046 A TW 109135046A TW I821604 B TWI821604 B TW I821604B
Authority
TW
Taiwan
Prior art keywords
substrate
layer
silicon carbide
hole
semiconductor device
Prior art date
Application number
TW109135046A
Other languages
Chinese (zh)
Other versions
TW202215501A (en
Inventor
莊志遠
華特 吳
施英汝
Original Assignee
環球晶圓股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 環球晶圓股份有限公司 filed Critical 環球晶圓股份有限公司
Priority to TW109135046A priority Critical patent/TWI821604B/en
Priority to CN202110977082.5A priority patent/CN114300431A/en
Publication of TW202215501A publication Critical patent/TW202215501A/en
Application granted granted Critical
Publication of TWI821604B publication Critical patent/TWI821604B/en

Links

Images

Abstract

A semiconductor device and a method of manufacturing the same are provided. The semiconductor device includes a semiconductor substrate, at least one semiconductor element, a front-side source contact and a back-side contact metal layer. The semiconductor substrate has a through substrate hole, and includes a high-resistivity silicon carbide epitaxial layer and a gallium nitride epitaxial layer formed on a second surface of the high-resistivity silicon carbide epitaxial layer. The semiconductor element is formed on the gallium nitride epitaxial layer. The front-side source contact is formed on a surface of the gallium nitride epitaxial layer and covers the through substrate hole of the semiconductor substrate. The back-side contact metal layer is formed in the through substrate hole of the semiconductor substrate and directly contacts the front-side source contact.

Description

半導體裝置及其製造方法Semiconductor device and manufacturing method thereof

本發明是有關於一種半導體製造技術,且特別是有關於一種半導體裝置及其製造方法。 The present invention relates to a semiconductor manufacturing technology, and in particular, to a semiconductor device and a manufacturing method thereof.

由於以磊晶(Epitaxy)製程所形成的膜層具有純度高、厚度控制性佳等優點,因此已經廣泛應用於射頻(RF)元件或功率(power)元件的製造中,其中射頻元件可被應用於4G通訊、5G通訊、衛星通訊或5G前端模組(front-end module)。 Since the film layer formed by the epitaxy process has the advantages of high purity and good thickness control, it has been widely used in the manufacturing of radio frequency (RF) components or power (power) components, among which RF components can be used In 4G communications, 5G communications, satellite communications or 5G front-end modules.

然而,在射頻元件的製造過程中,通常會藉由研磨(grinding)或拋光(polishing)等製程將原本的基板厚度從一厚度薄化至比原本的厚度小數個級別的厚度,由於需要移除的基板厚度差距過大,因此容易導致最終基板厚度的變動(variation)範圍過大。舉例來說,基板厚度從約300μm薄化至約50μm,使得最終基板厚度的變動範圍約±20%。如此一來,對矽穿孔(Through Silicon Via,TSV)製程產生不良的影響,且容易產生元件匹配性(device matching)等問題,進而影響射頻元件的良率。 However, in the manufacturing process of radio frequency components, the original substrate thickness is usually thinned from one thickness to a thickness several levels smaller than the original thickness through processes such as grinding or polishing. The difference in substrate thickness is too large, which easily leads to an excessive range of variation in the final substrate thickness. For example, the substrate thickness is thinned from about 300 μm to about 50 μm, so that the final substrate thickness varies within a range of about ±20%. As a result, it will have a negative impact on the through silicon via (TSV) process and easily cause problems such as device matching, thus affecting the yield of radio frequency components.

本發明提供一種半導體裝置及其製造方法,其能夠解決基板厚度的變動範圍太大等問題,且射頻源阻抗(RF source impedance)和射頻正反面電容(RF front-to-backside capacitance)的變動範圍小。 The present invention provides a semiconductor device and a manufacturing method thereof, which can solve the problem that the variation range of substrate thickness is too large, and the variation range of RF source impedance (RF source impedance) and RF front-to-backside capacitance (RF front-to-backside capacitance) Small.

本發明的半導體裝置,包括一半導體基板、至少一半導體元件、一正面源極接點以及一背面接觸金屬層。半導體基板具有一基板通孔(through substrate hole),且半導體基板包括具有一第一表面與一第二表面的一高阻碳化矽磊晶層(high-resistivity silicon carbide epitaxial layer)以及形成於高阻碳化矽磊晶層的第二表面的氮化鎵磊晶層,其中第一表面相對於第二表面。半導體元件形成於氮化鎵磊晶層。正面源極接點形成於氮化鎵磊晶層的表面並覆蓋半導體基板的基板通孔。背面接觸金屬層形成於半導體基板的基板通孔內,並與正面源極接點直接接觸。 The semiconductor device of the present invention includes a semiconductor substrate, at least one semiconductor element, a front source contact and a back contact metal layer. The semiconductor substrate has a through substrate hole, and the semiconductor substrate includes a high-resistivity silicon carbide epitaxial layer having a first surface and a second surface and a high-resistivity silicon carbide epitaxial layer formed on the and a gallium nitride epitaxial layer on a second surface of the silicon carbide epitaxial layer, wherein the first surface is opposite the second surface. Semiconductor elements are formed in gallium nitride epitaxial layers. The front source contact is formed on the surface of the gallium nitride epitaxial layer and covers the substrate through hole of the semiconductor substrate. The back contact metal layer is formed in the substrate through hole of the semiconductor substrate and is in direct contact with the front source contact.

在本發明的另一實施例中,上述高阻碳化矽磊晶層的厚度在20μm~50μm之間。 In another embodiment of the present invention, the thickness of the high-resistance silicon carbide epitaxial layer is between 20 μm and 50 μm.

在本發明的另一實施例中,上述正面源極接點包括一黏著層、一障壁層以及一高導電層。黏著層形成在氮化鎵磊晶層的表面。障壁層形成在黏著層的表面。高導電層形成在障壁層的表面。 In another embodiment of the invention, the front source contact includes an adhesive layer, a barrier layer and a highly conductive layer. An adhesion layer is formed on the surface of the gallium nitride epitaxial layer. The barrier layer is formed on the surface of the adhesive layer. A highly conductive layer is formed on the surface of the barrier layer.

在本發明的另一實施例中,上述黏著層包括厚度在2 nm~200nm之間的Ti、TiW、TiN、Ta或TaN。上述障壁層包括厚度在2nm~200nm之間的Pt、Pd或Mo。上述高導電層包括厚度在50nm~10μm之間的Au、Al、Al-Cu或Cu。 In another embodiment of the present invention, the above-mentioned adhesive layer includes a thickness of 2 Ti, TiW, TiN, Ta or TaN between nm~200nm. The above-mentioned barrier layer includes Pt, Pd or Mo with a thickness between 2nm and 200nm. The above-mentioned high conductive layer includes Au, Al, Al-Cu or Cu with a thickness between 50 nm and 10 μm.

在本發明的另一實施例中,上述背面接觸金屬層包括一黏著層、一障壁層以及一高導電層。黏著層形成在基板通孔的表面。障壁層形成在黏著層的表面。高導電層形成在障壁層的表面。 In another embodiment of the present invention, the back contact metal layer includes an adhesive layer, a barrier layer and a highly conductive layer. An adhesive layer is formed on the surface of the substrate through hole. The barrier layer is formed on the surface of the adhesive layer. A highly conductive layer is formed on the surface of the barrier layer.

在本發明的另一實施例中,上述黏著層包括厚度在2nm~200nm之間的Ti、TiW、TiN、Ta或TaN。上述障壁層包括厚度在2nm~200nm之間的TiW、TiN或TaN。上述高導電層包括厚度在50nm~10μm之間的Au、Al、Al-Cu或Cu。 In another embodiment of the present invention, the above-mentioned adhesive layer includes Ti, TiW, TiN, Ta or TaN with a thickness between 2 nm and 200 nm. The above-mentioned barrier layer includes TiW, TiN or TaN with a thickness between 2nm and 200nm. The above-mentioned high conductive layer includes Au, Al, Al-Cu or Cu with a thickness between 50 nm and 10 μm.

在本發明的另一實施例中,上述基板通孔的側壁的截面與氮化鎵磊晶層的表面之間的夾角在45°~90°之間。 In another embodiment of the present invention, the angle between the cross section of the side wall of the substrate through hole and the surface of the gallium nitride epitaxial layer is between 45° and 90°.

在本發明的另一實施例中,上述基板通孔的側壁的截面與氮化鎵磊晶層的表面之間的夾角在85°~90°之間。 In another embodiment of the present invention, the angle between the cross section of the side wall of the substrate through hole and the surface of the gallium nitride epitaxial layer is between 85° and 90°.

在本發明的另一實施例中,上述基板通孔為圓形基板通孔,且具有10μm~85μm的直徑。 In another embodiment of the present invention, the above-mentioned substrate through hole is a circular substrate through hole and has a diameter of 10 μm ~ 85 μm.

在本發明的另一實施例中,上述基板通孔為橢圓形基板通孔,且所述橢圓形基板通孔的短軸長度乘以長軸長度為10μm×20μm至50μm×120μm。 In another embodiment of the present invention, the above-mentioned substrate through hole is an elliptical substrate through hole, and the minor axis length multiplied by the major axis length of the elliptical substrate through hole is 10 μm×20 μm to 50 μm×120 μm.

在本發明的另一實施例中,上述基板通孔的深度在10μm~200μm之間。 In another embodiment of the present invention, the depth of the substrate through hole is between 10 μm and 200 μm.

在本發明的另一實施例中,上述基板通孔的截面為階梯 式輪廓、階梯式輪廓加上傾斜輪廓、相同斜率的輪廓或不同斜率的輪廓。 In another embodiment of the present invention, the cross-section of the above-mentioned substrate through hole is a step formula profile, stepped profile plus sloping profile, profile with the same slope or profile with different slopes.

本發明的一種半導體裝置的製造方法,包括在一N型碳化矽基板的第一表面磊晶成長一高阻碳化矽磊晶層與一氮化鎵磊晶層,以得到包含所述高阻碳化矽磊晶層與所述氮化鎵磊晶層的一半導體磊晶基板。在氮化鎵磊晶層的表面形成一正面源極接點(front-side source contact),並在氮化鎵磊晶層形成至少一半導體元件。在形成正面源極接點及至少一半導體元件之後,在氮化鎵磊晶層的表面接合一晶片載體。從N型碳化矽基板的第二表面施加雷射,以於N型碳化矽基板或半導體磊晶基板形成一損傷層,其中所述第二表面相對於N型碳化矽基板的第一表面,然後從所述損傷層分離N型碳化矽基板與半導體磊晶基板。以正面源極接點為蝕刻終止層,從半導體磊晶基板的底部蝕刻形成一基板通孔,直到暴露出部分正面源極接點,然後進行金屬化製程,以於所述基板通孔內形成一背面接觸金屬層(back-side contact metal)。 A method for manufacturing a semiconductor device of the present invention includes epitaxially growing a high-resistance silicon carbide epitaxial layer and a gallium nitride epitaxial layer on a first surface of an N-type silicon carbide substrate to obtain the high-resistance carbonized epitaxial layer. A semiconductor epitaxial substrate including a silicon epitaxial layer and the gallium nitride epitaxial layer. A front-side source contact is formed on the surface of the gallium nitride epitaxial layer, and at least one semiconductor element is formed on the gallium nitride epitaxial layer. After forming the front source contact and at least one semiconductor component, a wafer carrier is bonded to the surface of the gallium nitride epitaxial layer. Apply a laser from the second surface of the N-type silicon carbide substrate to form a damage layer on the N-type silicon carbide substrate or the semiconductor epitaxial substrate, wherein the second surface is relative to the first surface of the N-type silicon carbide substrate, and then The N-type silicon carbide substrate and the semiconductor epitaxial substrate are separated from the damaged layer. Using the front source contact as the etching stop layer, a substrate through hole is etched from the bottom of the semiconductor epitaxial substrate until part of the front source contact is exposed, and then a metallization process is performed to form a substrate through hole in the substrate through hole. A back-side contact metal layer.

在本發明的一實施例中,形成上述正面源極接點的步驟包括在氮化鎵磊晶層的表面形成一黏著層,接著在黏著層的表面形成一障壁層,然後在障壁層的表面形成一高導電層。 In one embodiment of the present invention, the step of forming the front source contact includes forming an adhesive layer on the surface of the gallium nitride epitaxial layer, then forming a barrier layer on the surface of the adhesive layer, and then forming a barrier layer on the surface of the barrier layer. Form a highly conductive layer.

在本發明的一實施例中,形成上述背面接觸金屬層的步驟包括在基板通孔的表面形成一黏著層,接著在黏著層的表面形成一障壁層,然後在障壁層的表面形成一高導電層。 In one embodiment of the present invention, the step of forming the back contact metal layer includes forming an adhesive layer on the surface of the substrate through hole, then forming a barrier layer on the surface of the adhesive layer, and then forming a highly conductive layer on the surface of the barrier layer. layer.

在本發明的一實施例中,上述N型碳化矽基板的第一表 面相對於(0001)面具有不大於0°+/-8°範圍內的角度。 In an embodiment of the present invention, the first surface of the N-type silicon carbide substrate The face has an angle within the range of no more than 0° +/-8° relative to the (0001) face.

在本發明的一實施例中,上述高阻碳化矽磊晶層的厚度變動率在5%~10%。 In an embodiment of the present invention, the thickness variation rate of the high-resistance silicon carbide epitaxial layer is between 5% and 10%.

在本發明的一實施例中,形成上述損傷層的方法包括從N型碳化矽基板的第二表面施加雷射到N型碳化矽基板內,以在N型碳化矽基板內形成損傷層。 In one embodiment of the present invention, the method of forming the damage layer includes applying a laser from the second surface of the N-type silicon carbide substrate into the N-type silicon carbide substrate to form a damage layer in the N-type silicon carbide substrate.

在本發明的一實施例中,在分離N型碳化矽基板與半導體磊晶基板之後,還包括去除剩餘的所述N型碳化矽基板。 In an embodiment of the present invention, after separating the N-type silicon carbide substrate and the semiconductor epitaxial substrate, the method further includes removing the remaining N-type silicon carbide substrate.

在本發明的一實施例中,形成上述損傷層的方法包括從N型碳化矽基板的第二表面施加雷射到高阻碳化矽磊晶層內,以在高阻碳化矽磊晶層內形成損傷層。 In one embodiment of the present invention, the method of forming the above-mentioned damage layer includes applying a laser from the second surface of the N-type silicon carbide substrate into the high-resistance silicon carbide epitaxial layer to form the high-resistance silicon carbide epitaxial layer. damage layer.

在本發明的一實施例中,在形成背面接觸金屬層之後,還包括去除所述晶片載體以及進行單體化製程(die singulation)。 In an embodiment of the present invention, after forming the back contact metal layer, the method further includes removing the wafer carrier and performing a die singulation process.

基於上述,本發明的方法能縮減基板厚度的變動範圍,且通過在暴露出部分正面源極接點的基板通孔內形成背面接觸金屬層,而可改善正反面元件之間的電性連接,以製作出射頻源阻抗和射頻正反面電容的變動範圍小的元件。 Based on the above, the method of the present invention can reduce the variation range of the substrate thickness, and can improve the electrical connection between the front and back components by forming a back contact metal layer in the substrate through hole that exposes part of the front source contact. In order to produce components with a small variation range of RF source impedance and RF front and back capacitance.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, embodiments are given below and described in detail with reference to the accompanying drawings.

100:N型碳化矽基板 100:N-type silicon carbide substrate

100a、314a:第一表面 100a, 314a: first surface

100b、314b:第二表面 100b, 314b: Second surface

102、312:區域 102, 312: Area

104、314:高阻碳化矽磊晶層 104, 314: High resistance silicon carbide epitaxial layer

106、316:氮化鎵磊晶層 106, 316: Gallium nitride epitaxial layer

106a、316a:表面 106a, 316a: surface

108、320:正面源極接點 108, 320: Front source contact

108a、116a、322、332:黏著層 108a, 116a, 322, 332: Adhesion layer

108b、116b、324、334:障壁層 108b, 116b, 324, 334: barrier layer

108c、116c、326、336:高導電層 108c, 116c, 326, 336: Highly conductive layer

110:雷射 110:Laser

112、200:損傷層 112, 200: Damage layer

114:晶片載體 114:Chip carrier

116、330:背面接觸金屬層 116, 330: Back contact metal layer

300:半導體裝置 300:Semiconductor device

310:半導體基板 310:Semiconductor substrate

D:深度 D: Depth

ES:半導體磊晶基板 ES: Semiconductor epitaxial substrate

L1~L6:最大寬度 L1~L6: maximum width

t1、t2、t3:厚度 t1, t2, t3: thickness

TSH、TSH1~TSH5:基板通孔 TSH, TSH1~TSH5: substrate through holes

TSHa:截面 TSHa: cross section

θ、θ1~θ5、θ3’~θ5’:夾角 θ, θ1~θ5, θ3’~θ5’: included angle

圖1A至圖1G是依照本發明的第一實施例的一種半導體裝置的製造剖面示意圖。 1A to 1G are schematic cross-sectional views of a semiconductor device according to the first embodiment of the present invention.

圖2A至圖2G是依照本發明的第二實施例的一種半導體裝置的製造剖面示意圖。 2A to 2G are schematic cross-sectional views of a semiconductor device according to a second embodiment of the present invention.

圖3A是依照本發明的第三實施例的一種半導體裝置的剖面示意圖。 FIG. 3A is a schematic cross-sectional view of a semiconductor device according to a third embodiment of the present invention.

圖3B是第三實施例的另一種半導體裝置的剖面示意圖。 FIG. 3B is a schematic cross-sectional view of another semiconductor device according to the third embodiment.

圖3C是第三實施例的再一種半導體裝置的剖面示意圖。 FIG. 3C is a schematic cross-sectional view of yet another semiconductor device according to the third embodiment.

圖3D是第三實施例的又一種半導體裝置的剖面示意圖。 FIG. 3D is a schematic cross-sectional view of yet another semiconductor device according to the third embodiment.

圖3E是第三實施例的又一種半導體裝置的剖面示意圖。 3E is a schematic cross-sectional view of yet another semiconductor device according to the third embodiment.

以下將參考圖式來全面地描述本發明的例示性實施例,但本發明還可按照多種不同形式來實施,且不應解釋為限於本文所述的實施例。在圖式中,為了清楚起見,各區域、部位及層的大小與厚度可不按實際比例繪製。為了方便理解,下述說明中相同的元件將以相同之符號標示來說明。 Exemplary embodiments of the present invention will be fully described below with reference to the accompanying drawings, although the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. In the drawings, the sizes and thicknesses of various regions, locations and layers are not drawn to actual scale for clarity. To facilitate understanding, the same components in the following description will be labeled with the same symbols.

圖1A至圖1G是依照本發明的第一實施例的一種半導體裝置的製造剖面示意圖。 1A to 1G are schematic cross-sectional views of a semiconductor device according to the first embodiment of the present invention.

請先參照圖1A,在一N型碳化矽基板100的第一表面100a磊晶成長一高阻碳化矽磊晶層104,其中N型碳化矽基板100的厚度例如在300μm~725μm之間,N型碳化矽基板100的第一 表面100a相對於(0001)面的角度的範圍例如是0°+/-8°,較佳是0°+/-5°的範圍內,更佳是0°+/-3°的範圍內,最佳的是0°。N型碳化矽基板100的微管密度(micropipe density,MPD)小於1ea/cm2、基面差排(basal plane dislocation,BPD)小於3000ea/cm2以及貫穿式螺旋差排(threading screw dislocation,TSD)小於1000ea/cm2。N型碳化矽基板100的阻值大概在15mohm-cm~26mohm-cm之間。在本實施例中,N型碳化矽基板100可重複被利用,而大幅降低材料成本。在本實施例中,高阻碳化矽磊晶層104在靠近N型碳化矽基板100側還具有一區域102。區域102例如是於磊晶成長高阻碳化矽磊晶層104時所成長的品質較差的區域。在一實施例中,區域102例如作為緩衝層,而在後續製程(如圖1D所示)中可保留或是移除。高阻碳化矽磊晶層104例如是半絕緣碳化矽(SI-SiC)等適用於射頻(RF)元件的半導體基板。高阻碳化矽磊晶層104的厚度可設在20μm~100μm之間,且高阻碳化矽磊晶層104的厚度變動率大概在5%~10%的範圍內。高阻碳化矽磊晶層104的表面相對於(0001)面例如具有0°+/-8°範圍內的角度、0°+/-5°範圍內的角度或0°+/-3°範圍內的角度,高阻碳化矽磊晶層104的微管密度(MPD)可小於0.5ea/cm2、基面差排(BPD)可小於10ea/cm2、貫穿式螺旋差排(TSD)可小於300ea/cm2。在本實施例中,高阻碳化矽磊晶層104的阻值例如大於1E5 ohm-cm。 Please refer to FIG. 1A. A high-resistance silicon carbide epitaxial layer 104 is epitaxially grown on the first surface 100a of an N-type silicon carbide substrate 100. The thickness of the N-type silicon carbide substrate 100 is, for example, between 300 μm and 725 μm. N The angle range of the first surface 100a of the silicon carbide substrate 100 relative to the (0001) plane is, for example, 0°+/-8°, preferably 0°+/-5°, and more preferably 0°+ Within the range of /-3°, the best is 0°. The N-type silicon carbide substrate 100 has a micropipe density (MPD) less than 1ea/cm 2 , a basal plane dislocation (BPD) less than 3000ea/cm 2 , and a threading screw dislocation (TSD). ) is less than 1000ea/cm 2 . The resistance value of the N-type silicon carbide substrate 100 is approximately between 15mohm-cm and 26mohm-cm. In this embodiment, the N-type silicon carbide substrate 100 can be reused, thereby significantly reducing material costs. In this embodiment, the high-resistance silicon carbide epitaxial layer 104 also has a region 102 on the side close to the N-type silicon carbide substrate 100 . The region 102 is, for example, a region of poor quality grown during the epitaxial growth of the high-resistance silicon carbide epitaxial layer 104 . In one embodiment, the region 102 serves as a buffer layer, for example, and can be retained or removed in subsequent processes (as shown in FIG. 1D ). The high-resistance silicon carbide epitaxial layer 104 is, for example, a semiconductor substrate suitable for radio frequency (RF) components such as semi-insulating silicon carbide (SI-SiC). The thickness of the high-resistance silicon carbide epitaxial layer 104 can be set between 20 μm and 100 μm, and the thickness variation rate of the high-resistance silicon epitaxial carbide layer 104 is approximately within the range of 5% to 10%. The surface of the high-resistance silicon carbide epitaxial layer 104 has, for example, an angle in the range of 0°+/-8°, an angle in the range of 0°+/-5°, or a range of 0°+/-3° relative to the (0001) plane. At an internal angle, the microtube density (MPD) of the high-resistance carbonized silicon epitaxial layer 104 can be less than 0.5ea/cm 2 , the base plane dislocation (BPD) can be less than 10ea/cm 2 , and the through-type spiral disarrangement (TSD) can be Less than 300ea/cm 2 . In this embodiment, the resistance value of the high-resistance silicon carbide epitaxial layer 104 is, for example, greater than 1E5 ohm-cm.

然後,在高阻碳化矽磊晶層104上磊晶成長一氮化鎵磊 晶層106,得到由所述高阻碳化矽磊晶層104與所述氮化鎵磊晶層106構成的半導體磊晶基板ES。 Then, gallium nitride epitaxial growth is performed on the high-resistance silicon carbide epitaxial layer 104. The semiconductor epitaxial substrate ES composed of the high-resistance silicon carbide epitaxial layer 104 and the gallium nitride epitaxial layer 106 is obtained.

之後,在氮化鎵磊晶層106的表面106a形成一正面源極接點(front-side source contact)108。正面源極接點108例如形成為單層或多層。在本實施例中,正面源極接點108例如形成為三層結構。舉例來說,形成正面源極接點108的步驟例如包括在氮化鎵磊晶層106的表面106a形成一黏著層108a,接著在黏著層108a的表面形成一障壁層108b,然後在障壁層108b的表面形成一高導電層108c,但本發明不限於此。在本實施例中,通過形成黏著層108a,可改善正面源極接點108與介電層和半導體元件之間的接觸。通過形成障壁層108b,可防止高導電層108c與黏著層108a的金屬互相混合。通過形成高導電層108c,能夠以低寄生損失(parasitic loss)的方式處理電流。黏著層108a例如由厚度在2nm~200nm之間的Ti、TiW、TiN、Ta或TaN構成。障壁層108b例如由厚度在2nm~200nm之間的Pt、Pd或Mo構成。高導電層108c例如由厚度在50nm~10μm之間的Au、Al、Al-Cu或Cu構成。在一實施例中,在黏著層108a與高導電層108c之間也可不形成障壁層108b,可以視設計需求而進行調整,於本發明並不加以限制。 Afterwards, a front-side source contact 108 is formed on the surface 106a of the gallium nitride epitaxial layer 106. The front source contact 108 is formed in a single layer or multiple layers, for example. In this embodiment, the front source contact 108 is formed in a three-layer structure, for example. For example, the step of forming the front source contact 108 includes forming an adhesive layer 108a on the surface 106a of the gallium nitride epitaxial layer 106, then forming a barrier layer 108b on the surface of the adhesive layer 108a, and then forming a barrier layer 108b on the barrier layer 108b. A highly conductive layer 108c is formed on the surface, but the invention is not limited thereto. In this embodiment, by forming the adhesion layer 108a, the contact between the front source contact 108 and the dielectric layer and the semiconductor device can be improved. By forming the barrier layer 108b, the metals of the highly conductive layer 108c and the adhesive layer 108a can be prevented from mixing with each other. By forming the highly conductive layer 108c, current can be handled with low parasitic loss. The adhesive layer 108a is composed of Ti, TiW, TiN, Ta or TaN with a thickness between 2 nm and 200 nm, for example. The barrier layer 108b is composed of, for example, Pt, Pd or Mo with a thickness between 2 nm and 200 nm. The high conductive layer 108c is composed of Au, Al, Al-Cu or Cu with a thickness between 50 nm and 10 μm, for example. In one embodiment, the barrier layer 108b does not need to be formed between the adhesive layer 108a and the highly conductive layer 108c, and can be adjusted according to design requirements, which is not limited in the present invention.

而後,在氮化鎵磊晶層106中形成半導體元件等構件;為求清楚表示,於圖1A至圖1G中省略繪示所述構件。 Then, components such as semiconductor elements are formed in the gallium nitride epitaxial layer 106; for clarity, the components are omitted in FIGS. 1A to 1G.

接著,請參照圖1B,在形成正面源極接點108及半導體 元件(未繪示)之後,在氮化鎵磊晶層106的表面106a接合一晶片載體(carrier)114,其中晶片載體114的材料例如玻璃或藍寶石。 Next, referring to FIG. 1B , the front source contact 108 and the semiconductor After the device (not shown) is installed, a wafer carrier 114 is bonded to the surface 106a of the gallium nitride epitaxial layer 106, where the material of the wafer carrier 114 is, for example, glass or sapphire.

然後,請參照圖1C,使用雷射110於N型碳化矽基板100內形成一損傷層112。在本實施例中,形成損傷層112的方法例如包括從N型碳化矽基板100的第二表面100b施加雷射110到N型碳化矽基板100內,以在N型碳化矽基板100中靠近高阻碳化矽磊晶層104側形成損傷層112,其中第二表面100b相對於N型碳化矽基板100的第一表面100a。藉由使用雷射110來形成損傷層112,可獲得晶片到晶片間以及內部晶片內的計算數據(wafer to wafer and within wafer calculation data)。 Then, referring to FIG. 1C , a laser 110 is used to form a damage layer 112 in the N-type silicon carbide substrate 100 . In this embodiment, the method of forming the damage layer 112 includes, for example, applying the laser 110 from the second surface 100 b of the N-type silicon carbide substrate 100 into the N-type silicon carbide substrate 100 to close to the high A damage layer 112 is formed on the side of the carbon-resistant silicon epitaxial layer 104 , where the second surface 100 b is opposite to the first surface 100 a of the N-type silicon carbide substrate 100 . By using the laser 110 to form the damage layer 112, wafer to wafer and within wafer calculation data can be obtained.

之後,請參照圖1D,從損傷層112分離N型碳化矽基板100與半導體磊晶基板ES,且可能有部分N型碳化矽基板100殘留在高阻碳化矽磊晶層104的表面。因此,在一實施例中,可保留剩餘的N型碳化矽基板100;在另一實施例中,可例如藉由磨削等而去除剩餘的N型碳化矽基板100。如此一來,需磨削掉的碳化矽基板100的厚度變薄,使得最終基板厚度的變動範圍變小。 1D, the N-type silicon carbide substrate 100 and the semiconductor epitaxial substrate ES are separated from the damage layer 112, and part of the N-type silicon carbide substrate 100 may remain on the surface of the high-resistance silicon carbide epitaxial layer 104. Therefore, in one embodiment, the remaining N-type silicon carbide substrate 100 can be retained; in another embodiment, the remaining N-type silicon carbide substrate 100 can be removed, for example, by grinding. In this way, the thickness of the silicon carbide substrate 100 to be ground becomes thinner, so that the variation range of the final substrate thickness becomes smaller.

由於第一實施例的製程在形成正面源極接點108之後,才利用雷射110於N型碳化矽基板100中形成分離用的損傷層112,所以能夠確保高阻碳化矽磊晶層104與氮化鎵磊晶層106的結晶性品質。另外,在從損傷層112分離N型碳化矽基板100與半導體磊晶基板ES之後,還能保留充分厚度的N型碳化矽基板 100,其中所謂充分厚度是指能夠承載在其之上所形成的膜層及構件且能夠承受後續製程的厚度。如此一來,使分離後的N型碳化矽基板100可重複被利用,而大幅降低材料成本。此外,由於能夠更精準地控制基板厚度,而可大幅降低寄生損失的產生。 Since the process of the first embodiment uses the laser 110 to form the damage layer 112 for separation in the N-type silicon carbide substrate 100 after the front source contact 108 is formed, it is possible to ensure that the high-resistance silicon carbide epitaxial layer 104 and The crystalline quality of the gallium nitride epitaxial layer 106 . In addition, after the N-type silicon carbide substrate 100 and the semiconductor epitaxial substrate ES are separated from the damaged layer 112, a sufficient thickness of the N-type silicon carbide substrate can still be retained. 100, where the so-called sufficient thickness refers to the thickness that can bear the film layers and components formed on it and withstand subsequent processes. In this way, the separated N-type silicon carbide substrate 100 can be reused, thereby significantly reducing material costs. In addition, since the substrate thickness can be controlled more accurately, the occurrence of parasitic losses can be significantly reduced.

接著,請參照圖1E,以正面源極接點108為蝕刻終止層,從半導體磊晶基板ES的底部(例如位於區域102側)蝕刻形成一基板通孔TSH,直到暴露出部分正面源極接點108,其中基板通孔TSH的側壁的截面TSHa與氮化鎵磊晶層106的表面106a之間的夾角θ例如在45°~90°之間,較佳為在85°~90°之間。基板通孔TSH的深度D例如在10μm~200μm之間。基板通孔TSH可例如為圓形基板通孔或橢圓形基板通孔。在一實施例中,若基板通孔TSH為圓形基板通孔,則圓形基板通孔例如具有10μm~85μm的直徑;在另一實施例中,若基板通孔TSH為橢圓形基板通孔,則橢圓形基板通孔的短軸長度乘以長軸長度例如為10μm×20μm至50μm×120μm。在圖1E中,基板通孔TSH的截面雖繪製成相同斜率的輪廓,但在其他實施例中,基板通孔TSH的截面也可為階梯式輪廓、階梯式輪廓加上傾斜輪廓、或不同斜率的輪廓等輪廓,詳於後文說明。 Next, please refer to FIG. 1E , using the front source contact 108 as an etching stop layer, a substrate through hole TSH is etched from the bottom of the semiconductor epitaxial substrate ES (for example, located on the area 102 side) until part of the front source contact is exposed. Point 108, where the angle θ between the cross section TSHa of the sidewall of the substrate through hole TSH and the surface 106a of the gallium nitride epitaxial layer 106 is, for example, between 45° and 90°, preferably between 85° and 90°. . The depth D of the substrate through hole TSH is, for example, between 10 μm and 200 μm. The substrate through hole TSH may be, for example, a circular substrate through hole or an elliptical substrate through hole. In one embodiment, if the substrate through hole TSH is a circular substrate through hole, the circular substrate through hole has a diameter of, for example, 10 μm ~ 85 μm; in another embodiment, if the substrate through hole TSH is an elliptical substrate through hole , then the short axis length multiplied by the long axis length of the elliptical substrate through hole is, for example, 10 μm × 20 μm to 50 μm × 120 μm. In FIG. 1E , although the cross-section of the substrate through-hole TSH is drawn as a profile with the same slope, in other embodiments, the cross-section of the substrate through-hole TSH can also be a stepped profile, a stepped profile plus an inclined profile, or different slopes. The contours and other contours will be explained in detail later.

然後,請參照圖1F,進行金屬化製程,以於基板通孔TSH內形成一背面接觸金屬層(back-side contact metal)116。背面接觸金屬層116例如形成為單層或多層。在本實施例中,背面接觸金屬層116例如形成為三層結構。舉例來說,形成背面接觸金屬 層116的步驟例如包括在基板通孔TSH的表面形成一黏著層116a,接著在黏著層116a的表面形成一障壁層116b,然後在障壁層116b的表面形成一高導電層116c,但本發明不限於此。形成背面接觸金屬層116的方法例如濺鍍(sputtering)、電鍍(electrical planting)或共形塗佈(conformal coating)等。在一實施例中,若欲形成一較厚厚度的背面接觸金屬層116可利用電鍍,而可進一步降低製造成本。在本實施例中,通過形成黏著層116a,可改善背面接觸金屬層116與半導體元件的側面和背面之間的接觸、以及與正面源極接點108之間的接觸。通過形成障壁層116b,可防止高導電層116c與黏著層116a內的金屬互相混合。通過形成高導電層116c,能夠以低寄生損失的方式處理電流。黏著層116a例如由厚度在2nm~200nm之間的Ti、TiW、TiN、Ta或TaN構成。障壁層116b例如由厚度在2nm~200nm之間的TiW、TiN或TaN構成。高導電層116c例如由厚度在50nm~10μm之間的Au、Al、Al-Cu或Cu構成。在另一實施例中,在黏著層116a與高導電層116c之間也可不形成障壁層116b,可以視設計需求而進行調整,於本發明並不加以限制。 Then, referring to FIG. 1F, a metallization process is performed to form a back-side contact metal layer 116 in the substrate through hole TSH. The back contact metal layer 116 is formed as a single layer or multiple layers, for example. In this embodiment, the back contact metal layer 116 is formed into a three-layer structure, for example. For example, forming a back contact metal The steps of layer 116 include, for example, forming an adhesive layer 116a on the surface of the substrate through hole TSH, then forming a barrier layer 116b on the surface of the adhesive layer 116a, and then forming a highly conductive layer 116c on the surface of the barrier layer 116b. However, the present invention does not Limited to this. Methods for forming the back contact metal layer 116 include sputtering, electrical planting, conformal coating, etc. In one embodiment, electroplating can be used to form a thicker back contact metal layer 116, which can further reduce manufacturing costs. In this embodiment, by forming the adhesion layer 116a, the contact between the back contact metal layer 116 and the side and back surfaces of the semiconductor device, and the contact with the front source contact 108 can be improved. By forming the barrier layer 116b, the highly conductive layer 116c and the metal in the adhesive layer 116a can be prevented from mixing with each other. By forming the highly conductive layer 116c, current can be handled with low parasitic losses. The adhesive layer 116a is composed of Ti, TiW, TiN, Ta or TaN with a thickness between 2 nm and 200 nm, for example. The barrier layer 116b is composed of, for example, TiW, TiN or TaN with a thickness between 2 nm and 200 nm. The high conductive layer 116c is composed of Au, Al, Al-Cu or Cu with a thickness of 50 nm to 10 μm, for example. In another embodiment, the barrier layer 116b may not be formed between the adhesive layer 116a and the highly conductive layer 116c. The barrier layer 116b may be adjusted according to the design requirements and is not limited in the present invention.

之後,請參照圖1G,在形成背面接觸金屬層116之後,還可將晶片載體114去除。在一實施例中,若於圖1A所示的製程中,在氮化鎵磊晶層106中形成多個半導體元件等構件,則在圖1G中,還例如包括單體化製程,但本發明不限於此。 Afterwards, referring to FIG. 1G , after the back contact metal layer 116 is formed, the wafer carrier 114 can also be removed. In one embodiment, if a plurality of semiconductor elements and other components are formed in the gallium nitride epitaxial layer 106 in the process shown in FIG. 1A , then a singulation process is also included in FIG. 1G , but the present invention Not limited to this.

由於第一實施例的製程是在基板通孔TSH暴露出部分正 面源極接點108之後,才於基板通孔TSH內形成背面接觸金屬層116,所以能夠確保正面源極接點108與背面接觸金屬層116之間可直接接觸,進而改善正反面元件之間的電性連接。若應用於射頻元件上,則可進一步改善射頻源阻抗和射頻正反面電容,且可使射頻源阻抗和射頻正反面電容的變動範圍變小。 Since the process of the first embodiment is to expose part of the through hole TSH on the substrate, After the surface source contact 108, the back contact metal layer 116 is formed in the substrate through hole TSH, so it can ensure direct contact between the front source contact 108 and the back contact metal layer 116, thereby improving the relationship between the front and back components. electrical connection. If applied to RF components, the RF source impedance and RF front and back capacitances can be further improved, and the variation ranges of the RF source impedance and RF front and back capacitances can be narrowed.

圖2A至圖2G是依照本發明的第二實施例的一種半導體裝置的製造剖面示意圖,其中使用與第一實施例相同的元件符號來表示相同或近似的構件,且相同或近似的構件也可參照第一實施例的相關說明,不再贅述。 2A to 2G are schematic cross-sectional views of a semiconductor device according to a second embodiment of the present invention, in which the same element symbols as in the first embodiment are used to represent the same or similar components, and the same or similar components can also be Reference is made to the relevant description of the first embodiment, which will not be described again.

請先參照圖2A,在一N型碳化矽基板100的第一表面100a磊晶成長具有一區域102的一高阻碳化矽磊晶層104。然後,在高阻碳化矽磊晶層104上磊晶成長一氮化鎵磊晶層106,得到由所述高阻碳化矽磊晶層104與所述氮化鎵磊晶層106構成的半導體磊晶基板ES。在氮化鎵磊晶層106的表面106a形成一正面源極接點108。之後,在氮化鎵磊晶層106中形成半導體元件等構件;為求清楚表示,於圖2A至圖2G中省略繪示所述構件。 Please refer to FIG. 2A. A high-resistance silicon carbide epitaxial layer 104 having a region 102 is epitaxially grown on the first surface 100a of an N-type silicon carbide substrate 100. Then, a gallium nitride epitaxial layer 106 is epitaxially grown on the high-resistance silicon carbide epitaxial layer 104 to obtain a semiconductor epitaxial layer composed of the high-resistance silicon carbide epitaxial layer 104 and the gallium nitride epitaxial layer 106 . Crystal substrate ES. A front source contact 108 is formed on the surface 106a of the gallium nitride epitaxial layer 106. Afterwards, components such as semiconductor elements are formed in the gallium nitride epitaxial layer 106; for clarity, the components are omitted in FIGS. 2A to 2G.

接著,請參照圖2B,在形成正面源極接點108及半導體元件(未繪示)之後,在氮化鎵磊晶層106的表面106a接合一晶片載體114。 Next, referring to FIG. 2B , after forming the front source contact 108 and the semiconductor device (not shown), a chip carrier 114 is bonded to the surface 106 a of the gallium nitride epitaxial layer 106 .

然後,請參照圖2C,使用雷射110於半導體磊晶基板ES內形成一損傷層200。在本實施例中,損傷層200例如形成於高阻碳化矽磊晶層104內,且位於相對於N型碳化矽基板100的區域 102的一側。形成損傷層200的方法例如包括從N型碳化矽基板100的第二表面100b施加雷射110到高阻碳化矽磊晶層104內,以在高阻碳化矽磊晶層104內形成損傷層200。藉由使用雷射110來形成損傷層200,可獲得晶片到晶片間以及內部晶片內的計算數據(wafer to wafer and within wafer calculation data)。 Then, please refer to FIG. 2C , using the laser 110 to form a damage layer 200 in the semiconductor epitaxial substrate ES. In this embodiment, the damage layer 200 is formed, for example, in the high-resistance silicon carbide epitaxial layer 104 and is located in an area relative to the N-type silicon carbide substrate 100 102 side. The method of forming the damage layer 200 includes, for example, applying the laser 110 from the second surface 100b of the N-type silicon carbide substrate 100 into the high-resistance silicon carbide epitaxial layer 104 to form the damage layer 200 in the high-resistance silicon carbide epitaxial layer 104 . By using the laser 110 to form the damage layer 200, wafer to wafer and within wafer calculation data can be obtained.

之後,請參照圖2D,從損傷層200分離N型碳化矽基板100與半導體磊晶基板ES。在本實施例中,由於已完整移除區域102和N型碳化矽基板100,所以可不需進行磨削等製程,與第一實施例相比可進一步省略部分步驟,而能夠進一步降低製造成本。 Afterwards, referring to FIG. 2D , the N-type silicon carbide substrate 100 and the semiconductor epitaxial substrate ES are separated from the damaged layer 200 . In this embodiment, since the region 102 and the N-type silicon carbide substrate 100 have been completely removed, there is no need to perform processes such as grinding. Compared with the first embodiment, some steps can be further omitted, thereby further reducing the manufacturing cost.

由於第二實施例的製程中損傷層200形成於高阻碳化矽磊晶層104內,所以在從損傷層200分離N型碳化矽基板100與半導體磊晶基板ES之後,可保留完整的N型碳化矽基板100。如此一來,使分離後的N型碳化矽基板100可重複被利用,而大幅降低材料成本。 Since the damage layer 200 is formed in the high-resistance silicon carbide epitaxial layer 104 during the process of the second embodiment, after the N-type silicon carbide substrate 100 and the semiconductor epitaxial substrate ES are separated from the damage layer 200, the complete N-type can be retained. Silicon carbide substrate 100. In this way, the separated N-type silicon carbide substrate 100 can be reused, thereby significantly reducing material costs.

接著,請參照圖2E,以正面源極接點108為蝕刻終止層,從半導體磊晶基板ES的底部(例如位於高阻碳化矽磊晶層104側)蝕刻形成一基板通孔TSH,直到暴露出部分正面源極接點108。 Next, please refer to FIG. 2E , using the front source contact 108 as the etching stop layer, a substrate through hole TSH is etched from the bottom of the semiconductor epitaxial substrate ES (for example, on the side of the high-resistance silicon carbide epitaxial layer 104 ) until it is exposed. Out part of the front source contact 108.

然後,請參照圖2F,進行金屬化製程,以於基板通孔TSH內形成一背面接觸金屬層116。之後,請參照圖2G,在形成背面接觸金屬層116之後,還可將晶片載體114去除。在一實施例中,在形成有半導體元件的情況下,還可在後續進行例如單體化製程,但本發明不限於此。 Then, referring to FIG. 2F, a metallization process is performed to form a back contact metal layer 116 in the substrate through hole TSH. Afterwards, referring to FIG. 2G , after the back contact metal layer 116 is formed, the wafer carrier 114 can also be removed. In one embodiment, when a semiconductor element is formed, a singulation process may be performed subsequently, but the invention is not limited thereto.

由於第二實施例的製程是在基板通孔TSH暴露出部分正面源極接點108之後,才於基板通孔TSH內形成背面接觸金屬層116,所以能夠確保正面源極接點108與背面接觸金屬層116之間可直接接觸,進而改善正反面元件之間的電性連接。若應用於射頻元件上,則可進一步改善射頻源阻抗和射頻正反面電容,且可使射頻源阻抗和射頻正反面電容的變動範圍變小。 Since the process of the second embodiment is to form the back contact metal layer 116 in the substrate through hole TSH after the substrate through hole TSH exposes part of the front source contact 108, it can ensure that the front source contact 108 is in contact with the back surface The metal layers 116 can be in direct contact, thereby improving the electrical connection between the front and back components. If applied to RF components, the RF source impedance and RF front and back capacitances can be further improved, and the variation ranges of the RF source impedance and RF front and back capacitances can be narrowed.

圖3A是依照本發明的第三實施例的一種半導體裝置的剖面示意圖。 FIG. 3A is a schematic cross-sectional view of a semiconductor device according to a third embodiment of the present invention.

請參照圖3A,本實施例的半導體裝置300包括一半導體基板310、至少一半導體元件(未繪示)、一正面源極接點320、一背面接觸金屬層330。 Referring to FIG. 3A , the semiconductor device 300 of this embodiment includes a semiconductor substrate 310, at least one semiconductor element (not shown), a front source contact 320, and a back contact metal layer 330.

半導體基板310包括一高阻碳化矽磊晶層314、以及一氮化鎵磊晶層316。在本實施例中,半導體基板310為適用於射頻(RF)元件的半導體基板。 The semiconductor substrate 310 includes a high-resistance silicon carbide epitaxial layer 314 and a gallium nitride epitaxial layer 316 . In this embodiment, the semiconductor substrate 310 is a semiconductor substrate suitable for radio frequency (RF) components.

高阻碳化矽磊晶層314具有一第一表面314a與一第二表面314b,其中第一表面314a相對於第二表面314b。在本實施例中,高阻碳化矽磊晶層314在第一表面314a側還具有一區域312。區域312例如是於磊晶成長高阻碳化矽磊晶層314時所成長的品質較差的區域。在一實施例中,區域312例如緩衝層,且緩衝層的厚度t1可小於1.5μm;在另一實施例中,半導體基板可不具有區域312。高阻碳化矽磊晶層314例如半絕緣碳化矽(SI-SiC)。在本實施例中,高阻碳化矽磊晶層314的厚度t2例如在20μm~50 μm之間,高阻碳化矽磊晶層314的第二表面314b相對於(0001)面具有0°+/-8°範圍內的角度,例如0°+/-5°的範圍內,較佳是0°+/-3°的範圍內。高阻碳化矽磊晶層314的微管密度(micropipe density,MPD)小於0.5ea/cm2、基面差排(basal plane dislocation,BPD)小於10ea/cm2以及貫穿式螺旋差排(threading screw dislocation,TSD)小於500ea/cm2。高阻碳化矽磊晶層314的阻值大於1E5 ohm-cm。高阻碳化矽磊晶層314的電阻變動率例如小於50%,所謂的「電阻變動率」是指電阻標準差除以電阻平均值的結果。 The high-resistance silicon carbide epitaxial layer 314 has a first surface 314a and a second surface 314b, where the first surface 314a is opposite to the second surface 314b. In this embodiment, the high-resistance silicon carbide epitaxial layer 314 also has a region 312 on the first surface 314a side. The region 312 is, for example, a region of poor quality grown during the epitaxial growth of the high-resistance silicon carbide epitaxial layer 314 . In one embodiment, the region 312 is, for example, a buffer layer, and the thickness t1 of the buffer layer may be less than 1.5 μm; in another embodiment, the semiconductor substrate may not have the region 312 . The high-resistance silicon carbide epitaxial layer 314 is, for example, semi-insulating silicon carbide (SI-SiC). In this embodiment, the thickness t2 of the high-resistance silicon epitaxial carbide layer 314 is, for example, between 20 μm and 50 μm. The second surface 314b of the high-resistance silicon epitaxial carbide layer 314 has an angle of 0°+/ relative to the (0001) surface. The angle is within the range of -8°, for example, within the range of 0°+/-5°, preferably within the range of 0°+/-3°. The micropipe density (MPD) of the high-resistance carbonized silicon epitaxial layer 314 is less than 0.5ea/cm 2 , the basal plane dislocation (BPD) is less than 10ea/cm 2 and the threading screw is dislocation (TSD) is less than 500ea/cm 2 . The resistance value of the high-resistance silicon carbide epitaxial layer 314 is greater than 1E5 ohm-cm. The resistance variation rate of the high-resistance silicon carbide epitaxial layer 314 is, for example, less than 50%. The so-called "resistance variation rate" refers to the result of dividing the standard deviation of the resistance by the average resistance value.

氮化鎵磊晶層316則形成於高阻碳化矽磊晶層314的第二表面314b,且半導體元件(未繪示)形成於氮化鎵磊晶層316。在本實施例中,氮化鎵磊晶層316的厚度t3小於2μm,且圖3A的結構可採用第一實施例或第二實施例所示的方法製造,並可依需求增加移除高阻碳化矽磊晶層314以外的殘留結構的步驟。所得到的氮化鎵磊晶層316經測試,其X光繞射分析(002)面的半高寬(FWHM)可小於100arcsec,驗證所成長的是極佳品質之磊晶薄膜。 The gallium nitride epitaxial layer 316 is formed on the second surface 314b of the high-resistance silicon carbide epitaxial layer 314, and a semiconductor device (not shown) is formed on the gallium nitride epitaxial layer 316. In this embodiment, the thickness t3 of the gallium nitride epitaxial layer 316 is less than 2 μm, and the structure of FIG. 3A can be manufactured using the method shown in the first embodiment or the second embodiment, and the high resistance can be removed as needed. The step of carbonizing the remaining structure other than the silicon epitaxial layer 314 . The obtained gallium nitride epitaxial layer 316 has been tested and its X-ray diffraction analysis shows that the half-maximum width (FWHM) of the (002) plane is less than 100 arcsec, verifying that the grown epitaxial film is of excellent quality.

在本實施例中,半導體基板310具有一基板通孔TSH1,其中基板通孔TSH1的側壁的截面與氮化鎵磊晶層316的表面316a之間的夾角θ1例如在45°~90°之間,較佳為在85°~90°之間。舉例來說,如圖3A中所示,基板通孔TSH1的側壁的截面與氮化鎵磊晶層316的表面316a之間的夾角θ1例如為90°。基板通孔 TSH1的深度D例如在10μm~200μm之間。基板通孔TSH1可例如為圓形基板通孔或橢圓形基板通孔。在一實施例中,若基板通孔TSH1為圓形基板通孔,則圓形基板通孔例如具有10μm~85μm的直徑;在另一實施例中,若基板通孔TSH1為橢圓形基板通孔,則橢圓形基板通孔的短軸長度乘以長軸長度例如為10μm×20μm至50μm×120μm。在圖3A中,基板通孔TSH1的截面例示為相同斜率的輪廓。 In this embodiment, the semiconductor substrate 310 has a substrate through hole TSH1, wherein the angle θ1 between the cross section of the sidewall of the substrate through hole TSH1 and the surface 316a of the gallium nitride epitaxial layer 316 is, for example, between 45° and 90°. , preferably between 85° and 90°. For example, as shown in FIG. 3A , the angle θ1 between the cross section of the side wall of the substrate through hole TSH1 and the surface 316 a of the gallium nitride epitaxial layer 316 is, for example, 90°. Substrate through hole The depth D of TSH1 is, for example, between 10 μm and 200 μm. The substrate through hole TSH1 may be, for example, a circular substrate through hole or an elliptical substrate through hole. In one embodiment, if the substrate through hole TSH1 is a circular substrate through hole, the circular substrate through hole has a diameter of, for example, 10 μm ~ 85 μm; in another embodiment, if the substrate through hole TSH1 is an elliptical substrate through hole , then the short axis length multiplied by the long axis length of the elliptical substrate through hole is, for example, 10 μm × 20 μm to 50 μm × 120 μm. In FIG. 3A , the cross-section of the substrate through hole TSH1 is illustrated as a profile with the same slope.

正面源極接點320形成於氮化鎵磊晶層316的表面316a並覆蓋半導體基板310的基板通孔TSH1。正面源極接點320包括一黏著層322、一障壁層324以及一高導電層326。黏著層322形成在氮化鎵磊晶層316的表面316a。障壁層324形成在黏著層322的表面。高導電層326形成在障壁層324的表面。在本實施例中,黏著層322例如由厚度在2nm~200nm之間的Ti、TiW、TiN、Ta或TaN構成。障壁層324例如由厚度在2nm~200nm之間的Pt、Pd或Mo構成。高導電層326例如由厚度在50nm~10μm之間的Au、Al、Al-Cu或Cu構成。 The front source contact 320 is formed on the surface 316 a of the gallium nitride epitaxial layer 316 and covers the through-substrate hole TSH1 of the semiconductor substrate 310 . The front source contact 320 includes an adhesive layer 322, a barrier layer 324, and a highly conductive layer 326. The adhesion layer 322 is formed on the surface 316a of the gallium nitride epitaxial layer 316. The barrier layer 324 is formed on the surface of the adhesive layer 322 . The highly conductive layer 326 is formed on the surface of the barrier layer 324 . In this embodiment, the adhesive layer 322 is composed of Ti, TiW, TiN, Ta or TaN with a thickness between 2 nm and 200 nm, for example. The barrier layer 324 is made of Pt, Pd or Mo with a thickness between 2 nm and 200 nm, for example. The high conductive layer 326 is composed of, for example, Au, Al, Al-Cu or Cu with a thickness between 50 nm and 10 μm.

背面接觸金屬層330形成於半導體基板310的基板通孔TSH1內,並與正面源極接點320直接接觸。背面接觸金屬層330包括一黏著層332、一障壁層334以及一高導電層336。黏著層332例如形成在基板通孔TSH1的表面。障壁層334例如形成在黏著層332的表面。高導電層336例如形成在障壁層334的表面。在本實施例中,黏著層332例如由厚度在2nm~200nm之間的Ti、TiW、 TiN、Ta或TaN構成。障壁層334例如由厚度在2nm~200nm之間的TiW、TiN或TaN構成。高導電層336例如由厚度在50nm~10μm之間的Au、Al、Al-Cu或Cu構成。 The back contact metal layer 330 is formed in the substrate through hole TSH1 of the semiconductor substrate 310 and is in direct contact with the front source contact 320 . The back contact metal layer 330 includes an adhesive layer 332, a barrier layer 334 and a highly conductive layer 336. The adhesive layer 332 is formed, for example, on the surface of the substrate through hole TSH1. The barrier layer 334 is formed on the surface of the adhesive layer 332, for example. The highly conductive layer 336 is formed on the surface of the barrier layer 334, for example. In this embodiment, the adhesive layer 332 is made of, for example, Ti, TiW, or Ti with a thickness between 2 nm and 200 nm. Composed of TiN, Ta or TaN. The barrier layer 334 is composed of TiW, TiN or TaN with a thickness between 2 nm and 200 nm, for example. The high conductive layer 336 is composed of, for example, Au, Al, Al-Cu or Cu with a thickness between 50 nm and 10 μm.

圖3B是第三實施例的另一種半導體裝置的剖面示意圖,其中使用與圖3A相同的元件符號來表示相同或近似的構件,且相同或近似的構件也可參照圖3A的相關說明,不再贅述。 FIG. 3B is a schematic cross-sectional view of another semiconductor device according to the third embodiment, in which the same element symbols as in FIG. 3A are used to represent the same or similar components, and the same or similar components can also refer to the relevant description of FIG. 3A , which will no longer be used. Repeat.

在圖3B中,基板通孔TSH2的截面例示為梯形狀輪廓。舉例來說,基板通孔TSH2的側壁的截面與氮化鎵磊晶層316的表面316a之間的夾角θ2例如為45°,且基板通孔TSH2的側壁的截面具有相同的斜率。 In FIG. 3B , the cross-section of the substrate through hole TSH2 is illustrated as a trapezoidal outline. For example, the angle θ2 between the cross section of the side wall of the substrate through hole TSH2 and the surface 316a of the gallium nitride epitaxial layer 316 is, for example, 45°, and the cross section of the side wall of the substrate through hole TSH2 has the same slope.

圖3C是第三實施例的再一種半導體裝置的剖面示意圖,其中使用與圖3A相同的元件符號來表示相同或近似的構件,且相同或近似的構件也可參照圖3A的相關說明,不再贅述。 FIG. 3C is a schematic cross-sectional view of yet another semiconductor device according to the third embodiment, in which the same element symbols as those in FIG. 3A are used to represent the same or similar components, and the same or similar components can also be referred to the relevant description of FIG. 3A , which will no longer be used. Repeat.

在圖3C中,基板通孔TSH3的截面例示為階梯式輪廓。舉例來說,位於氮化鎵磊晶層316內的基板通孔TSH3的側壁的截面與氮化鎵磊晶層316的表面316a之間的夾角θ3例如為90°;位於高阻碳化矽磊晶層314內的基板通孔TSH3的側壁的截面與高阻碳化矽磊晶層314的第二表面314b之間的夾角θ3’例如為90°。位於氮化鎵磊晶層316內的基板通孔TSH3的截面的最大寬度L1例如小於位於高阻碳化矽磊晶層314內的基板通孔TSH3的截面的最大寬度L2。 In FIG. 3C , the cross-section of the substrate through hole TSH3 is illustrated as a stepped profile. For example, the angle θ3 between the cross section of the sidewall of the substrate through hole TSH3 located in the gallium nitride epitaxial layer 316 and the surface 316a of the gallium nitride epitaxial layer 316 is, for example, 90°; The angle θ3′ between the cross section of the side wall of the substrate through hole TSH3 in the layer 314 and the second surface 314b of the high-resistance silicon carbide epitaxial layer 314 is, for example, 90°. The maximum width L1 of the cross-section of the substrate through-hole TSH3 located in the gallium nitride epitaxial layer 316 is, for example, smaller than the maximum width L2 of the cross-section of the substrate through-hole TSH3 located in the high-resistance silicon carbide epitaxial layer 314 .

圖3D是第三實施例的又一種半導體裝置的剖面示意 圖,其中使用與圖3A相同的元件符號來表示相同或近似的構件,且相同或近似的構件也可參照圖3A的相關說明,不再贅述。 FIG. 3D is a cross-sectional view of another semiconductor device according to the third embodiment. 3A uses the same element symbols to represent the same or similar components, and the same or similar components can also refer to the relevant description of FIG. 3A and will not be described again.

在圖3D中,基板通孔TSH4的截面例示為階梯式輪廓加上傾斜輪廓。舉例來說,位於氮化鎵磊晶層316內的基板通孔TSH4的側壁的截面與氮化鎵磊晶層316的表面316a之間的夾角θ4例如為60°;位於高阻碳化矽磊晶層314內的基板通孔TSH4的側壁的截面與高阻碳化矽磊晶層314的第二表面314b之間的夾角θ4’例如為60°。位於氮化鎵磊晶層316內的基板通孔TSH4的截面的最大寬度L3例如小於位於高阻碳化矽磊晶層314內的基板通孔TSH4的截面的最大寬度L4。 In FIG. 3D , the cross-section of the substrate through hole TSH4 is illustrated as a stepped profile plus an inclined profile. For example, the angle θ4 between the cross section of the sidewall of the substrate through hole TSH4 located in the gallium nitride epitaxial layer 316 and the surface 316a of the gallium nitride epitaxial layer 316 is, for example, 60°; The angle θ4′ between the cross section of the side wall of the substrate through hole TSH4 in the layer 314 and the second surface 314b of the high-resistance silicon carbide epitaxial layer 314 is, for example, 60°. The maximum width L3 of the cross-section of the substrate through-hole TSH4 located in the gallium nitride epitaxial layer 316 is, for example, smaller than the maximum width L4 of the cross-section of the substrate through-hole TSH4 located in the high-resistance silicon carbide epitaxial layer 314 .

圖3E是第三實施例的又一種半導體裝置的剖面示意圖,其中使用與圖3A相同的元件符號來表示相同或近似的構件,且相同或近似的構件也可參照圖3A的相關說明,不再贅述。 FIG. 3E is a schematic cross-sectional view of yet another semiconductor device according to the third embodiment, in which the same element symbols as in FIG. 3A are used to represent the same or similar components, and the same or similar components can also be referred to the relevant description of FIG. 3A , which will not be repeated. Repeat.

在圖3E中,基板通孔TSH5的截面例示為不同斜率的輪廓。舉例來說,位於氮化鎵磊晶層316內的基板通孔TSH5的側壁的截面與氮化鎵磊晶層316的表面316a之間的夾角θ5例如為45°;位於高阻碳化矽磊晶層314內的基板通孔TSH5的側壁的截面與高阻碳化矽磊晶層314的第二表面314b之間的夾角θ5’例如為60°。位於氮化鎵磊晶層316內的基板通孔TSH5的截面的最大寬度L5例如小於位於高阻碳化矽磊晶層314內的基板通孔TSH5的截面的最大寬度L6。 In FIG. 3E , the cross-section of the substrate through hole TSH5 is illustrated as profiles with different slopes. For example, the angle θ5 between the cross section of the sidewall of the substrate through hole TSH5 located in the gallium nitride epitaxial layer 316 and the surface 316a of the gallium nitride epitaxial layer 316 is, for example, 45°; The angle θ5′ between the cross section of the side wall of the substrate through hole TSH5 in the layer 314 and the second surface 314b of the high-resistance silicon carbide epitaxial layer 314 is, for example, 60°. The maximum width L5 of the cross-section of the substrate through-hole TSH5 located in the gallium nitride epitaxial layer 316 is, for example, smaller than the maximum width L6 of the cross-section of the substrate through-hole TSH5 located in the high-resistance silicon carbide epitaxial layer 314 .

綜上所述,本發明藉由在N型碳化矽基板或高阻碳化矽 磊晶層內形成損傷層,不但可成長結晶性品質佳的氮化鎵,還可因為損傷層的存在,保留大部分的N型碳化矽基板,使其能被重複使用,進而降低基板成本。並且,本發明藉由形成覆蓋半導體基板的基板通孔的正面源極接點之後,於基板通孔內形成背面接觸金屬層,而能夠改善正反面元件之間的電性連接,也可改善射頻源阻抗和射頻正反面電容,且使射頻源阻抗和射頻正反面電容的變動範圍變小。 To sum up, the present invention uses an N-type silicon carbide substrate or a high-resistance silicon carbide The formation of a damaged layer in the epitaxial layer not only allows the growth of gallium nitride with good crystalline quality, but also allows most of the N-type silicon carbide substrate to be retained due to the existence of the damaged layer, allowing it to be reused, thereby reducing the cost of the substrate. Moreover, the present invention can improve the electrical connection between the front and back components by forming the front source contact covering the substrate through hole of the semiconductor substrate, and then forming the back contact metal layer in the substrate through hole, and can also improve the radio frequency. source impedance and RF front and back capacitance, and make the variation range of RF source impedance and RF front and back capacitance smaller.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the appended patent application scope.

102:區域 102:Area

104:高阻碳化矽磊晶層 104: High resistance silicon carbide epitaxial layer

106:氮化鎵磊晶層 106:GaN epitaxial layer

106a:表面 106a: Surface

108:正面源極接點 108: Front source contact

108a、116a:黏著層 108a, 116a: Adhesion layer

108b、116b:障壁層 108b, 116b: barrier layer

108c、116c:高導電層 108c, 116c: Highly conductive layer

116:背面接觸金屬層 116: Back contact metal layer

ES:半導體磊晶基板 ES: Semiconductor epitaxial substrate

TSH:基板通孔 TSH: through substrate hole

θ:夾角 θ: included angle

Claims (21)

一種半導體裝置,包括:一半導體基板,具有一基板通孔(through substrate hole),所述半導體基板包括:一高阻碳化矽磊晶層(high-resistivity silicon carbide epitaxial layer),具有一第一表面與一第二表面,所述第一表面相對於所述第二表面,其中所述高阻碳化矽磊晶層的微管密度(MPD)小於0.5ea/cm2、基面差排(BPD)小於10ea/cm2以及貫穿式螺旋差排(TSD)小於300ea/cm2;以及一氮化鎵磊晶層,形成於所述高阻碳化矽磊晶層的所述第二表面;至少一半導體元件,形成於所述氮化鎵磊晶層;一正面源極接點,形成於所述氮化鎵磊晶層的表面並覆蓋所述半導體基板的所述基板通孔;以及一背面接觸金屬層,形成於所述半導體基板的所述基板通孔內,並與所述正面源極接點直接接觸。 A semiconductor device includes: a semiconductor substrate having a through substrate hole; the semiconductor substrate includes: a high-resistivity silicon carbide epitaxial layer having a first surface and a second surface, the first surface is relative to the second surface, wherein the micropipe density (MPD) of the high-resistance silicon carbide epitaxial layer is less than 0.5ea/cm 2 and the base plane dislocation (BPD) Less than 10ea/cm 2 and through-spiral dislocation (TSD) less than 300ea/cm 2 ; and a gallium nitride epitaxial layer formed on the second surface of the high-resistance silicon carbide epitaxial layer; at least one semiconductor A component formed on the gallium nitride epitaxial layer; a front source contact formed on the surface of the gallium nitride epitaxial layer and covering the substrate through hole of the semiconductor substrate; and a back contact metal A layer is formed within the substrate through hole of the semiconductor substrate and is in direct contact with the front source contact. 如請求項1所述的半導體裝置,其中所述正面源極接點包括:一黏著層,形成在所述氮化鎵磊晶層的所述表面;一障壁層,形成在所述黏著層的表面;以及一高導電層,形成在所述障壁層的表面。 The semiconductor device according to claim 1, wherein the front source contact includes: an adhesive layer formed on the surface of the gallium nitride epitaxial layer; a barrier layer formed on the adhesive layer surface; and a highly conductive layer formed on the surface of the barrier layer. 如請求項2所述的半導體裝置,其中所述黏著層包括厚度在2nm~200nm之間的Ti、TiW、TiN、Ta或TaN;所述障壁層包括厚度在2nm~200nm之間的Pt、Pd或Mo;所述高導電層包括厚度在50nm~10μm之間的Au、Al、Al-Cu或Cu。 The semiconductor device according to claim 2, wherein the adhesive layer includes Ti, TiW, TiN, Ta or TaN with a thickness between 2nm~200nm; the barrier layer includes Pt, Pd with a thickness between 2nm~200nm. Or Mo; the highly conductive layer includes Au, Al, Al-Cu or Cu with a thickness between 50 nm and 10 μm. 如請求項1所述的半導體裝置,其中所述背面接觸金屬層包括:一黏著層,形成在所述基板通孔的表面;一障壁層,形成在所述黏著層的表面;以及一高導電層,形成在所述障壁層的表面。 The semiconductor device according to claim 1, wherein the back contact metal layer includes: an adhesive layer formed on the surface of the substrate through hole; a barrier layer formed on the surface of the adhesive layer; and a highly conductive layer layer is formed on the surface of the barrier layer. 如請求項4所述的半導體裝置,其中所述黏著層包括厚度在2nm~200nm之間的Ti、TiW、TiN、Ta或TaN;所述障壁層包括厚度在2nm~200nm之間的TiW、TiN或TaN;所述高導電層包括厚度在50nm~10μm之間的Au、Al、Al-Cu或Cu。 The semiconductor device according to claim 4, wherein the adhesive layer includes Ti, TiW, TiN, Ta or TaN with a thickness between 2nm~200nm; the barrier layer includes TiW, TiN with a thickness between 2nm~200nm. or TaN; the highly conductive layer includes Au, Al, Al-Cu or Cu with a thickness between 50 nm and 10 μm. 如請求項1所述的半導體裝置,其中所述基板通孔的側壁的截面與所述氮化鎵磊晶層的所述表面之間的夾角在45°~90°之間。 The semiconductor device according to claim 1, wherein the angle between the cross section of the sidewall of the substrate through hole and the surface of the gallium nitride epitaxial layer is between 45° and 90°. 如請求項6所述的半導體裝置,其中所述基板通孔的側壁的截面與所述氮化鎵磊晶層的所述表面之間的夾角在85°~90°之間。 The semiconductor device according to claim 6, wherein the angle between the cross section of the sidewall of the substrate through hole and the surface of the gallium nitride epitaxial layer is between 85° and 90°. 如請求項1所述的半導體裝置,其中所述基板通孔為圓形基板通孔,且具有10μm~85μm的直徑。 The semiconductor device according to claim 1, wherein the substrate through hole is a circular substrate through hole and has a diameter of 10 μm ~ 85 μm. 如請求項1所述的半導體裝置,其中所述基板通孔為橢圓形基板通孔,且所述橢圓形基板通孔的短軸長度乘以長軸長度為10μm×20μm至50μm×120μm。 The semiconductor device according to claim 1, wherein the substrate through hole is an elliptical substrate through hole, and the minor axis length times the major axis length of the elliptical substrate through hole is 10 μm×20 μm to 50 μm×120 μm. 如請求項1所述的半導體裝置,其中所述基板通孔的深度在10μm~200μm之間。 The semiconductor device according to claim 1, wherein the depth of the substrate through hole is between 10 μm and 200 μm. 如請求項1所述的半導體裝置,其中所述基板通孔的截面為階梯式輪廓、階梯式輪廓加上傾斜輪廓、相同斜率的輪廓或不同斜率的輪廓。 The semiconductor device according to claim 1, wherein the cross-section of the substrate through hole is a stepped profile, a stepped profile plus a sloped profile, a profile with the same slope, or a profile with different slopes. 如請求項1所述的半導體裝置,其中所述高阻碳化矽磊晶層的厚度在20μm~50μm之間。 The semiconductor device according to claim 1, wherein the thickness of the high-resistance silicon carbide epitaxial layer is between 20 μm and 50 μm. 一種半導體裝置的製造方法,包括:在一N型碳化矽基板的第一表面磊晶成長一高阻碳化矽磊晶層與一氮化鎵磊晶層,以得到包含所述高阻碳化矽磊晶層與所述氮化鎵磊晶層的一半導體磊晶基板;在所述氮化鎵磊晶層的表面形成一正面源極接點(front-side source contact);在所述氮化鎵磊晶層形成至少一半導體元件;在形成所述正面源極接點及所述至少一半導體元件之後,在所述氮化鎵磊晶層的所述表面接合一晶片載體;從所述N型碳化矽基板的第二表面施加雷射,以於所述N型碳化矽基板或所述半導體磊晶基板形成一損傷層,其中所述第二表面相對於所述N型碳化矽基板的所述第一表面; 從所述損傷層分離所述N型碳化矽基板與所述半導體磊晶基板;以所述正面源極接點為蝕刻終止層,從所述半導體磊晶基板的底部蝕刻形成一基板通孔,直到暴露出部分所述正面源極接點;以及進行金屬化製程,以於所述基板通孔內形成一背面接觸金屬層(back-side contact metal)。 A method of manufacturing a semiconductor device, including: epitaxially growing a high-resistance silicon carbide epitaxial layer and a gallium nitride epitaxial layer on a first surface of an N-type silicon carbide substrate to obtain the high-resistance silicon carbide epitaxial layer. A semiconductor epitaxial substrate with a crystal layer and the gallium nitride epitaxial layer; forming a front-side source contact on the surface of the gallium nitride epitaxial layer; The epitaxial layer forms at least one semiconductor element; after forming the front source contact and the at least one semiconductor element, a wafer carrier is bonded to the surface of the gallium nitride epitaxial layer; from the N-type A laser is applied to the second surface of the silicon carbide substrate to form a damage layer on the N-type silicon carbide substrate or the semiconductor epitaxial substrate, wherein the second surface is relative to the N-type silicon carbide substrate. first surface; Separate the N-type silicon carbide substrate and the semiconductor epitaxial substrate from the damaged layer; use the front source contact as an etching stop layer, and form a substrate through hole by etching from the bottom of the semiconductor epitaxial substrate, Until part of the front source contact is exposed; and a metallization process is performed to form a back-side contact metal layer in the substrate through hole. 如請求項13所述的半導體裝置的製造方法,其中形成所述正面源極接點的步驟包括:在所述氮化鎵磊晶層的所述表面形成一黏著層;在所述黏著層的表面形成一障壁層;以及在所述障壁層的表面形成一高導電層。 The method of manufacturing a semiconductor device according to claim 13, wherein the step of forming the front source contact includes: forming an adhesive layer on the surface of the gallium nitride epitaxial layer; A barrier layer is formed on the surface; and a highly conductive layer is formed on the surface of the barrier layer. 如請求項13所述的半導體裝置的製造方法,其中形成所述背面接觸金屬層的步驟包括:在所述基板通孔的表面形成一黏著層;在所述黏著層的表面形成一障壁層;以及在所述障壁層的表面形成一高導電層。 The manufacturing method of a semiconductor device according to claim 13, wherein the step of forming the back contact metal layer includes: forming an adhesive layer on the surface of the substrate through hole; forming a barrier layer on the surface of the adhesive layer; and forming a highly conductive layer on the surface of the barrier layer. 如請求項13所述的半導體裝置的製造方法,其中所述N型碳化矽基板的所述第一表面相對於(0001)面具有不大於0°+/-8°範圍內的角度。 The method of manufacturing a semiconductor device according to claim 13, wherein the first surface of the N-type silicon carbide substrate has an angle with respect to the (0001) plane of no more than 0° +/-8°. 如請求項13所述的半導體裝置的製造方法,其中所述高阻碳化矽磊晶層的厚度變動率在5%~10%。 The manufacturing method of a semiconductor device as claimed in claim 13, wherein the thickness variation rate of the high-resistance silicon carbide epitaxial layer is between 5% and 10%. 如請求項13所述的半導體裝置的製造方法,其中形成所述損傷層的方法包括:從所述N型碳化矽基板的所述第二表面施加所述雷射到所述N型碳化矽基板內,以在所述N型碳化矽基板內形成所述損傷層。 The method of manufacturing a semiconductor device according to claim 13, wherein the method of forming the damage layer includes applying the laser to the N-type silicon carbide substrate from the second surface of the N-type silicon carbide substrate. to form the damage layer in the N-type silicon carbide substrate. 如請求項18所述的半導體裝置的製造方法,其中在分離所述N型碳化矽基板與所述半導體磊晶基板之後,更包括:去除剩餘的所述N型碳化矽基板。 The method of manufacturing a semiconductor device according to claim 18, further comprising: removing the remaining N-type silicon carbide substrate after separating the N-type silicon carbide substrate and the semiconductor epitaxial substrate. 如請求項13所述的半導體裝置的製造方法,其中形成所述損傷層的方法包括:從所述N型碳化矽基板的所述第二表面施加所述雷射到所述高阻碳化矽磊晶層內,以在所述高阻碳化矽磊晶層內形成所述損傷層。 The manufacturing method of a semiconductor device according to claim 13, wherein the method of forming the damage layer includes: applying the laser from the second surface of the N-type silicon carbide substrate to the high-resistance silicon carbide In the crystal layer, the damage layer is formed in the high-resistance silicon carbide epitaxial layer. 如請求項13所述的半導體裝置的製造方法,其中在形成所述背面接觸金屬層之後,更包括:去除所述晶片載體;以及進行單體化製程。 The manufacturing method of a semiconductor device according to claim 13, wherein after forming the back contact metal layer, it further includes: removing the wafer carrier; and performing a singulation process.
TW109135046A 2020-10-08 2020-10-08 Semiconductor device and method of manufacturing the same TWI821604B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109135046A TWI821604B (en) 2020-10-08 2020-10-08 Semiconductor device and method of manufacturing the same
CN202110977082.5A CN114300431A (en) 2020-10-08 2021-08-24 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109135046A TWI821604B (en) 2020-10-08 2020-10-08 Semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW202215501A TW202215501A (en) 2022-04-16
TWI821604B true TWI821604B (en) 2023-11-11

Family

ID=80964052

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109135046A TWI821604B (en) 2020-10-08 2020-10-08 Semiconductor device and method of manufacturing the same

Country Status (2)

Country Link
CN (1) CN114300431A (en)
TW (1) TWI821604B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130071643A1 (en) * 2011-09-21 2013-03-21 Sumitomo Electric Industries, Ltd. Silicon carbide substrate and method of manufacturing the same
CN104246023A (en) * 2012-04-20 2014-12-24 贰陆股份公司 LARGE DIAMETER, HIGH QUALITY SiC SINGLE CRYSTALS, METHOD AND APPARATUS
TW201814905A (en) * 2016-09-30 2018-04-16 美商英特爾股份有限公司 Nanowire transistors employing carbon-based layers
TWI655722B (en) * 2017-11-13 2019-04-01 穩懋半導體股份有限公司 AN IMPROVED PASSIVATION STRUCTURE FOR GaN FIELD EFFECT TRANSISTOR
TWI681447B (en) * 2017-09-26 2020-01-01 穩懋半導體股份有限公司 Improved high temperature resistant backside metallization for compound semiconductors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130071643A1 (en) * 2011-09-21 2013-03-21 Sumitomo Electric Industries, Ltd. Silicon carbide substrate and method of manufacturing the same
CN104246023A (en) * 2012-04-20 2014-12-24 贰陆股份公司 LARGE DIAMETER, HIGH QUALITY SiC SINGLE CRYSTALS, METHOD AND APPARATUS
TW201814905A (en) * 2016-09-30 2018-04-16 美商英特爾股份有限公司 Nanowire transistors employing carbon-based layers
TWI681447B (en) * 2017-09-26 2020-01-01 穩懋半導體股份有限公司 Improved high temperature resistant backside metallization for compound semiconductors
TWI655722B (en) * 2017-11-13 2019-04-01 穩懋半導體股份有限公司 AN IMPROVED PASSIVATION STRUCTURE FOR GaN FIELD EFFECT TRANSISTOR

Also Published As

Publication number Publication date
CN114300431A (en) 2022-04-08
TW202215501A (en) 2022-04-16

Similar Documents

Publication Publication Date Title
EP3080842B1 (en) Methods for forming microstrip transmission lines on thin silicon wafers
US11139375B2 (en) Semiconductor device and method of manufacturing a semiconductor device
US20150221782A1 (en) Vertical gallium nitride schottky diode
US9117801B2 (en) Semiconductor devices having a glass substrate, and method for manufacturing thereof
US10748787B2 (en) Semiconductor device with plated lead frame
US7955969B2 (en) Ultra thin FET
US20150236102A1 (en) Semiconductor wafer structure having si material and iii-n material on the (111) surface of the si material
US20200259070A1 (en) Methods of forming group iii-nitride single crystal piezoelectric thin films using ordered deposition and stress neutral template layers
US10720752B2 (en) Submount and semiconductor laser device
TWI821604B (en) Semiconductor device and method of manufacturing the same
US20180358221A1 (en) Reduction of wafer bow during growth of epitaxial films
DE102014116834B4 (en) Single semiconductor chip having a masking structure which is part of chip-singulation-kerf areas and defines these, method for forming a semiconductor chip and associated wafers
CN115295515A (en) Manufacturing method of semiconductor device and semiconductor device
US20190148217A1 (en) Method for Manufacturing a Semiconductor Device
CN114868231A (en) Semiconductor element and method for manufacturing the same, and semiconductor device and method for manufacturing the same
WO2003096433A1 (en) 'A Planar Schottky Diode and Manufacturing Method'
US20220108924A1 (en) Semiconductor substrate and method of manufacturing the same
TWI732473B (en) Method of forming dice and structure of die
US20230197446A1 (en) Manufacturing method for semiconductor element, and semiconductor device
JP2023172730A (en) Manufacturing method for silicon carbide semiconductor device
CN115295611A (en) Manufacturing method of semiconductor device and semiconductor device
CN114695503A (en) Semiconductor structure
CN113053996A (en) Semiconductor structure and manufacturing method thereof
IE83621B1 (en) A planar schottky diode and manufacturing method
JPH1064922A (en) Method for manufacturing compound semiconductor device