TWI758562B - Semiconductor on insulator substrate and method for manufacturing the same - Google Patents

Semiconductor on insulator substrate and method for manufacturing the same Download PDF

Info

Publication number
TWI758562B
TWI758562B TW107141222A TW107141222A TWI758562B TW I758562 B TWI758562 B TW I758562B TW 107141222 A TW107141222 A TW 107141222A TW 107141222 A TW107141222 A TW 107141222A TW I758562 B TWI758562 B TW I758562B
Authority
TW
Taiwan
Prior art keywords
active layer
layer
substrate
semiconductor
dielectric
Prior art date
Application number
TW107141222A
Other languages
Chinese (zh)
Other versions
TW201933537A (en
Inventor
鄭有宏
徐詠恩
陳龍
吳政達
杜友倫
蔡維恭
楊明哲
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/904,915 external-priority patent/US10304723B1/en
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW201933537A publication Critical patent/TW201933537A/en
Application granted granted Critical
Publication of TWI758562B publication Critical patent/TWI758562B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76294Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using selective deposition of single crystal silicon, i.e. SEG techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76256Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques using silicon etch back techniques, e.g. BESOI, ELTRAN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

The present disclosure, in some embodiments, relates to a method of forming an SOI substrate. The method may be performed by epitaxially forming a silicon-germanium (SiGe) layer over a sacrificial substrate and epitaxially forming a first active layer on the SiGe layer. The first active layer has a composition different than the SiGe layer. The sacrificial substrate and is flipped and the first active layer is bonded to an upper surface of a dielectric layer formed over a first substrate. The sacrificial substrate and the SiGe layer are removed and the first active layer is etched to define outermost sidewalls and to expose an outside edge of an upper surface of the dielectric layer. A contiguous active layer is formed by epitaxially forming a second active layer on the first active layer. The first active layer and the second active layer have a substantially same composition.

Description

絕緣層上半導體基板與其形成方法 Semiconductor substrate on insulating layer and method of forming the same

本發明實施例關於絕緣層上半導體基板與其形成方法,更特別關於絕緣層上半導體基板中實質上無錯位缺陷的單晶主動層與其形成方法。 Embodiments of the present invention relate to a semiconductor-on-insulator substrate and a method for forming the same, and more particularly, to a single-crystal active layer that is substantially free of dislocation defects in the semiconductor-on-insulator substrate and a method for forming the same.

積體電路形成於半導體基板上,經封裝後形成晶片或微晶片。習知的積體電路形成於基體半導體基板上,且基板組成為半導體材料如矽。在近幾年中,絕緣層上半導體基板作為替代選擇。絕緣層上半導體基板具有薄層的主動半導體材料(如矽),其與下方的處理基板之間隔有絕緣材料層。絕緣材料層可電型隔離薄層的主動半導體材料與處理基板,以減少形成於薄層的主動半導體材料中的裝置漏電流。薄層的主動半導體材料亦可提供其他優點,比如較快的切換時間、較低的操作電壓、與較小封裝。 Integrated circuits are formed on semiconductor substrates, and after packaging, chips or microchips are formed. Conventional integrated circuits are formed on a base semiconductor substrate, and the substrate is composed of a semiconductor material such as silicon. In recent years, semiconductor-on-insulator substrates have been used as an alternative. The semiconductor-on-insulator substrate has a thin layer of active semiconductor material (eg, silicon), which is spaced from the underlying processing substrate by a layer of insulating material. The insulating material layer can electrically isolate the thin layer of active semiconductor material from the processing substrate to reduce device leakage current formed in the thin layer of active semiconductor material. Thin layers of active semiconductor materials may also provide other advantages, such as faster switching times, lower operating voltages, and smaller packaging.

本發明一實施例提供之絕緣層上半導體基板的形成方法,包括:磊晶形成矽鍺層於犧牲基板上;磊晶形成第一主動層於矽鍺層上,且第一主動層的組成不同於矽鍺層的組成;接合第一主動層至第一基板上的介電層上;移除犧牲基板與矽鍺層;蝕刻第一主動層,以露出介電層的上表面之外側邊 緣;以及磊晶形成第二主動層於第一主動層上,以形成相連的主動層,其中第一主動層與第二主動層具有實質上相同的組成。 An embodiment of the present invention provides a method for forming a semiconductor substrate on an insulating layer, comprising: epitaxially forming a silicon germanium layer on a sacrificial substrate; epitaxially forming a first active layer on the silicon germanium layer, and the first active layers have different compositions on the composition of the silicon germanium layer; bonding the first active layer to the dielectric layer on the first substrate; removing the sacrificial substrate and the silicon germanium layer; etching the first active layer to expose the outer side of the upper surface of the dielectric layer and epitaxially forming a second active layer on the first active layer to form a connected active layer, wherein the first active layer and the second active layer have substantially the same composition.

本發明一實施例提供之絕緣層上半導體基板的形成方法,包括:磊晶形成矽鍺層於犧牲基板上。磊晶形成第一厚度的第一主動層於矽鍺層的上表面上,且第一主動層包含半導體材料。翻轉犧牲基板,並將第一主動層接合至第一基板上的介電層上。移除犧牲基板與矽鍺層的部份,並留下矽鍺層的殘留部份以覆蓋第一主動層的上表面。移除矽鍺層的殘留部份與第一主動層的上側部份。形成第二主動層於第一主動層上,第一主動層與第二主動層具有合併的第二厚度,且第二厚度大於第一厚度。 An embodiment of the present invention provides a method for forming a semiconductor substrate on an insulating layer, comprising: epitaxially forming a silicon germanium layer on a sacrificial substrate. A first active layer with a first thickness is epitaxially formed on the upper surface of the silicon germanium layer, and the first active layer includes a semiconductor material. The sacrificial substrate is turned over and the first active layer is bonded to the dielectric layer on the first substrate. Parts of the sacrificial substrate and the SiGe layer are removed, and the remaining part of the SiGe layer is left to cover the upper surface of the first active layer. The remaining portion of the SiGe layer and the upper portion of the first active layer are removed. A second active layer is formed on the first active layer, the first active layer and the second active layer have a combined second thickness, and the second thickness is greater than the first thickness.

本發明一實施例提供之絕緣層上半導體基板,包括:介電層,位於第一基板上,其中介電層的外側邊緣對準第一基板的外側邊緣。主動層,覆蓋介電層的第一環形部份。以及介電層的上表面的第二環形部份,圍繞第一環形部份並延伸至介電層的外側邊緣。主動層未覆蓋第二環形部份。 An embodiment of the present invention provides a semiconductor-on-insulator substrate, comprising: a dielectric layer on the first substrate, wherein the outer edge of the dielectric layer is aligned with the outer edge of the first substrate. The active layer covers the first annular portion of the dielectric layer. and a second annular portion of the upper surface of the dielectric layer surrounding the first annular portion and extending to the outer edge of the dielectric layer. The active layer does not cover the second annular portion.

thk、thk1、thk2、206、302:厚度 thk, thk 1 , thk 2 , 206, 302: thickness

100:絕緣層上半導體基板 100: Semiconductor substrate on insulating layer

102:第一基板 102: The first substrate

104:介電層 104: Dielectric layer

104s、106s、108s、202s、204s:上表面 104s, 106s, 108s, 202s, 204s: Upper surface

106:主動層 106: Active Layer

108:第一主動層 108: The first active layer

110:第二主動層 110: Second active layer

114:最大寬度 114: maximum width

116:外側邊緣寬度 116: Outside edge width

118:第一環形部份 118: The first ring part

120:第二環形部份 120: The second ring part

122:下側部份 122: Lower part

124:上側部份 124: Upper part

126:晶面形狀 126: Crystal face shape

200、300、400、500、600、700、800、900、1000、1100:剖視圖 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100: Cutaway view

202:矽鍺層 202: SiGe layer

204:犧牲基板 204: Sacrificial Substrate

304:圖表 304: Chart

602:上側部份 602: Upper part

604:殘餘的矽鍺層 604: Residual SiGe layer

702:薄層 702: Thin Layer

802:遮罩層 802: Mask Layer

1002:半導體裝置 1002: Semiconductor Devices

1004:內連線結構 1004: Interconnect structure

1006:金屬內連線層 1006: Metal interconnect layer

1008:層間介電結構 1008: Interlayer Dielectric Structure

1102:晶粒 1102: Die

1104:切割線 1104: Cutting Line

1200:方法 1200: Method

1202、1204、1206、1208、1210、1212、1214、1216:步驟 1202, 1204, 1206, 1208, 1210, 1212, 1214, 1216: Steps

第1A至1C圖係本發明一些實施例中,絕緣層上半導體基板的剖視圖。 FIGS. 1A to 1C are cross-sectional views of a semiconductor substrate on an insulating layer in some embodiments of the present invention.

第2、3A-3B、4-11圖係本發明一些實施例中,形成絕緣層上半導體基板的方法之剖視圖。 FIGS. 2, 3A-3B, and 4-11 are cross-sectional views of a method of forming a semiconductor-on-insulator substrate in some embodiments of the present invention.

第12圖係本發明一些實施例中,形成絕緣層上半導體基板 的方法之流程圖。 FIG. 12 shows the formation of a semiconductor-on-insulator substrate in some embodiments of the present invention. flow chart of the method.

本發明實施例提供的不同實施例或實例可實施本發明的不同結構。特定構件與排列的實施例係用以簡化本發明而非侷限本發明。舉例來說,形成第一構件於第二構件上的敘述包含兩者直接接觸,或兩者之間隔有其他額外構件而非直接接觸。此外,本揭露之多種例子中可重複標號,但這些重複僅用以簡化與清楚說明,不代表不同實施例及/或設置之間具有相同標號之單元之間具有相同的對應關係。 Different embodiments or examples provided by the embodiments of the present invention may implement different structures of the present invention. The examples of specific components and arrangements are intended to simplify the invention and not to limit it. For example, the description of forming the first member on the second member includes the two being in direct contact, or with other additional members interposed between them rather than being in direct contact. In addition, reference numerals may be repeated in various examples of the present disclosure, but these repetitions are only used to simplify and clarify the description, and do not mean that elements with the same reference numerals in different embodiments and/or arrangements have the same corresponding relationship.

此外,空間性的相對用語如「下方」、「其下」、「下側」、「上方」、「上側」、或類似用語可用於簡化說明某一元件與另一元件在圖示中的相對關係。空間性的相對用語可延伸至以其他方向使用之元件,而非侷限於圖示方向。元件亦可轉動90°或其他角度,因此方向性用語僅用以說明圖示中的方向。此外,用語「第一」、「第二」、「第三」、「第四」、與類似用語僅用於區分,且多種實施例中可互換上述用語。舉例來說,當一些實施例中的某一單元(如開口)被稱作「第一單元」時,其於其他實施例中可稱作「第二單元」。 In addition, spatially relative terms such as "below," "below," "under," "above," "upper," or similar terms may be used to simplify the description of an element relative to another element in the figures relation. Spatial relative terms can be extended to elements used in other orientations and are not limited to the orientation shown. Elements can also be rotated by 90° or other angles, so the directional term is only used to describe the direction in the illustration. Furthermore, the terms "first," "second," "third," "fourth," and similar terms are used for distinction only, and the terms may be used interchangeably in various embodiments. For example, when a certain unit (eg, an opening) is referred to as a "first unit" in some embodiments, it may be referred to as a "second unit" in other embodiments.

絕緣層上半導體基板用於許多現代的射頻裝置,比如矽為主的光子與高準確性的微機電系統。與形成於基體基板中的裝置相較,形成於絕緣層上半導體基板中的裝置可具有改良效能及較小封裝。絕緣層上半導體基板中的主動半導體材料,在理想上可具有鬆弛的單晶晶格,且不具有缺陷與錯位。主動半導體材料中的此結構促進更有效的電流以用於埋置的 半導體裝置。 Semiconductor-on-insulator substrates are used in many modern radio frequency devices, such as silicon-based photonics and high-precision MEMS. Devices formed in a semiconductor-on-insulator substrate may have improved performance and smaller packages compared to devices formed in a base substrate. The active semiconductor material in the semiconductor substrate on the insulating layer can ideally have a relaxed single crystal lattice without defects and dislocations. This structure in active semiconductor material promotes more efficient current flow for buried semiconductor device.

用於形成絕緣層上半導體基板的方法之一,包含磊晶成長單晶矽層於犧牲基板上的矽鍺層上。接著將矽鍺層接合至氧化物層,而氧化物層原本貼合至處理基板。接著採用蝕刻製程移除犧牲基板與矽鍺層以保留絕緣層上半導體基板,蝕刻製程對單晶矽層具有蝕刻選擇性,且絕緣層上半導體基板具有單晶矽層、氧化物層、與處理基板。 One of the methods for forming a semiconductor-on-insulator substrate includes epitaxially growing a single-crystal silicon layer on a silicon germanium layer on a sacrificial substrate. The silicon germanium layer is then bonded to the oxide layer, which is otherwise bonded to the handle substrate. Then, the sacrificial substrate and the silicon germanium layer are removed by an etching process to retain the semiconductor-on-insulator substrate. substrate.

然而目前已知難以形成所需厚度(比如射頻應用所需的厚度,介於近似75nm至近似150nm之間)的單晶矽層於矽鍺層上,因為矽鍺層的晶格不匹配所造成的應力。舉例來說,採用低鍺濃度的矽鍺層,可形成厚的單晶層於犧牲基板上。然而這種作法對單晶矽層的厚度控制差,因為單晶矽層的蝕刻選擇性低。另一方面,採用高濃度的矽鍺層對單晶矽層的總厚度變異的控制較好,因為高鍺濃度的矽鍺層比矽具有更高的蝕刻選擇性。但這種作法亦讓單晶矽層更易沿著層狀物上表面產生錯位缺陷,因為矽鍺層的晶格不匹配造成的高應力。舉例來說,磊晶成長厚度介於70nm至150nm的單晶矽層,可能沿著單晶矽層的上表面產生錯位。錯位的蝕刻速率高於其餘單晶矽層的蝕刻速率,可能沿著單晶矽層的上表面形成凹洞(divot)。凹洞將負面地影響絕緣層上半導體基板中的裝置效能。 However, it is currently known that it is difficult to form a single crystal silicon layer on the silicon germanium layer with a desired thickness (such as the thickness required for radio frequency applications, ranging from approximately 75 nm to approximately 150 nm) due to the lattice mismatch of the silicon germanium layer. stress. For example, using a low germanium concentration silicon germanium layer, a thick single crystal layer can be formed on the sacrificial substrate. However, this method has poor control over the thickness of the single crystal silicon layer because the etching selectivity of the single crystal silicon layer is low. On the other hand, using a high-concentration SiGe layer has better control over the overall thickness variation of a single-crystal Si layer because a SiGe layer with a high germanium concentration has a higher etch selectivity than silicon. But this approach also makes the single-crystal silicon layer more prone to dislocation defects along the upper surface of the layer, because of the high stress caused by the lattice mismatch of the silicon-germanium layer. For example, epitaxial growth of a single crystal silicon layer with a thickness of 70 nm to 150 nm may generate dislocations along the upper surface of the single crystal silicon layer. The etch rate of the dislocation is higher than the etch rate of the remaining single crystal silicon layer, and a divot may be formed along the upper surface of the single crystal silicon layer. Voids will negatively affect device performance in semiconductor-on-insulator substrates.

在本發明一些實施例中,可採用低成本的方法製作絕緣層上半導體基板,其具有實質上無錯位缺陷的單晶主動層。上述方法包括磊晶形成矽鍺層於犧牲基板上。磊晶形成主動層於矽鍺層上,且主動層的組成不同於矽鍺層的組成。翻轉 犧牲基板,並將主動層接合至第一基板上的介電層上表面。移除犧牲基板與矽鍺層,接著進行選擇性磊晶成長以增加主動層厚度。在移除矽鍺層後採用選擇性磊晶成長增加主動層厚度,在增加主動層厚度時不會產生錯位缺陷於主動層中。此外,具有高鍺濃度的矽鍺層具有良好的蝕刻選擇性,可改善主動層的整體厚度變異。 In some embodiments of the present invention, a low-cost method can be used to fabricate a semiconductor-on-insulator substrate having a single crystal active layer that is substantially free of dislocation defects. The above method includes epitaxially forming a silicon germanium layer on a sacrificial substrate. The active layer is epitaxially formed on the SiGe layer, and the composition of the active layer is different from that of the SiGe layer. flip A sacrificial substrate is attached, and the active layer is bonded to the upper surface of the dielectric layer on the first substrate. The sacrificial substrate and the SiGe layer are removed, followed by selective epitaxial growth to increase the thickness of the active layer. After the silicon germanium layer is removed, the thickness of the active layer is increased by selective epitaxial growth, and dislocation defects will not be generated in the active layer when the thickness of the active layer is increased. In addition, the SiGe layer with high germanium concentration has good etch selectivity, which can improve the overall thickness variation of the active layer.

第1A圖係一些實施例中,具有實質上無錯位缺陷的單晶主動層之絕緣層上基板的剖視圖。 FIG. 1A is a cross-sectional view of an on-insulator substrate having a substantially dislocation defect-free single crystal active layer in some embodiments.

絕緣層上半導體基板100包含覆蓋介電層104的第一基板102。舉例來說,第一基板102可為基體矽基板,其形態為碟狀基板。在一些實施例中,第一基板102的厚度介於近似200μm至近似1000μm之間。舉例來說,介電層104可為或可包含氧化矽、碳化矽、氮化矽、富矽氧化物、或類似物。 The semiconductor-on-insulator substrate 100 includes a first substrate 102 covering a dielectric layer 104 . For example, the first substrate 102 can be a base silicon substrate in the form of a dish-shaped substrate. In some embodiments, the thickness of the first substrate 102 is between approximately 200 μm and approximately 1000 μm. For example, the dielectric layer 104 can be or can include silicon oxide, silicon carbide, silicon nitride, silicon-rich oxide, or the like.

主動層106直接位於介電層104上。主動層106配置於介電層104上。在一些實施例中,主動層106具有厚度thk。在一些實施例中,主動層106的厚度thk介於近似70nm至近似150nm之間。在一些實施例中,主動層106的厚度thk可高達約2000nm。主動層106具有鬆弛的單晶晶格,且實質上不具有錯位缺陷。在一些實施例中,主動層106可包含單晶矽。在其他實施例中,主動層106可包含不同的半導體材料。在一些實施例中,主動層106亦可為半導體化合物,其由兩種或更多不同元素組成。舉例來說,這些元素可形成二元合金(如砷化鎵)、三元合金(如砷化銦鎵或砷化鋁鎵)、或四元合金(如磷化鋁銦鎵)。 The active layer 106 is directly on the dielectric layer 104 . The active layer 106 is disposed on the dielectric layer 104 . In some embodiments, the active layer 106 has a thickness thk. In some embodiments, the thickness thk of the active layer 106 is between approximately 70 nm and approximately 150 nm. In some embodiments, the thickness thk of the active layer 106 may be up to about 2000 nm. The active layer 106 has a relaxed single crystal lattice and is substantially free of dislocation defects. In some embodiments, the active layer 106 may comprise single crystal silicon. In other embodiments, the active layer 106 may comprise different semiconductor materials. In some embodiments, the active layer 106 may also be a semiconductor compound composed of two or more different elements. For example, these elements may form binary alloys (eg, gallium arsenide), ternary alloys (eg, indium gallium arsenide or aluminum gallium arsenide), or quaternary alloys (eg, aluminum indium gallium phosphide).

主動層106具有側壁定義的最大寬度114,且側壁與介電層104的外側邊緣之間隔有橫向的外側邊緣寬度116。由於介電層104與主動層106之間隔有橫向距離,因此露出介電層104的上表面。在一些實施例中,外側邊緣寬度116可介於近似1mm至近似2mm之間。 The active layer 106 has a maximum width 114 defined by the sidewalls, and a lateral outer edge width 116 is spaced between the sidewalls and the outer edge of the dielectric layer 104 . Since there is a lateral distance between the dielectric layer 104 and the active layer 106 , the upper surface of the dielectric layer 104 is exposed. In some embodiments, the outer edge width 116 may be between approximately 1 mm and approximately 2 mm.

第1B圖顯示第1A圖的絕緣層上半導體基板100之上視圖。如第1B圖所示,主動層106覆蓋介電層104的上表面104s的第一環形部份118。主動層106的側壁之最外側邊緣,定義介電層104的上表面之第二環形部份的內側邊界。第二環形部份120圍繞第一環形部份118,並橫向延伸越過外側邊緣寬度116到介電層104與第一基板102的最外側邊緣。主動層106未覆蓋第二環形部份120,且第二環形部份120暴露於介電層104的上表面104s上。 FIG. 1B shows a top view of the semiconductor-on-insulator substrate 100 of FIG. 1A. As shown in FIG. 1B , the active layer 106 covers the first annular portion 118 of the upper surface 104s of the dielectric layer 104 . The outermost edge of the sidewall of the active layer 106 defines the inner boundary of the second annular portion of the upper surface of the dielectric layer 104 . The second annular portion 120 surrounds the first annular portion 118 and extends laterally across the outer edge width 116 to the outermost edges of the dielectric layer 104 and the first substrate 102 . The active layer 106 does not cover the second annular portion 120 , and the second annular portion 120 is exposed on the upper surface 104s of the dielectric layer 104 .

如第1C圖所示,主動層106的側壁(在剖視圖中)包括下側部份122與上側部份124。下側部份122具有自介電層104向上垂直延伸的實質上線性輪廓。上側部份124具有斜角輪廓,其晶面形狀126朝主動層106的上表面106s向內傾斜。主動層106的上表面106s的寬度,小於主動層106的最大寬度114。在一些實施例中,主動層106的磊晶成長可使主動層106的側壁其上側部份124具有晶面形狀126。在一些實施例中,晶面形狀126的結晶結構可為Miller指數(1,1,1)。在其他實施例中,晶面形狀126的結晶結構可為不同的Miller指數(比如(1,1,0)、(0,0,1)、或其他值)。 As shown in FIG. 1C , the sidewall of the active layer 106 (in cross-sectional view) includes a lower portion 122 and an upper portion 124 . The underside portion 122 has a substantially linear profile extending vertically upward from the dielectric layer 104 . The upper portion 124 has a bevel profile, and its crystal plane shape 126 slopes inward toward the upper surface 106s of the active layer 106 . The width of the upper surface 106 s of the active layer 106 is smaller than the maximum width 114 of the active layer 106 . In some embodiments, the epitaxial growth of the active layer 106 can make the sidewall of the active layer 106 and the upper portion 124 thereof have the crystal plane shape 126 . In some embodiments, the crystallographic structure of crystal face shape 126 may be Miller index (1,1,1). In other embodiments, the crystallographic structures of the crystal face shapes 126 may be different Miller indices (such as (1,1,0), (0,0,1), or other values).

如此一來,本發明實施例的絕緣層上半導體基板 100具有主動層106,其為半導體材料的相連主動層,具有實質上鬆弛的晶格結構且實質上不具有缺陷,且其厚度高達150nm或更厚。 In this way, the semiconductor-on-insulator substrate according to the embodiment of the present invention 100 has an active layer 106, which is a contiguous active layer of semiconductor material, having a substantially relaxed lattice structure and substantially no defects, and having a thickness of up to 150 nm or more.

第2至11圖係一些實施例中,對應形成絕緣層上半導體結構的方法之剖視圖,且絕緣層上半導體結構具有實質上無錯位缺陷的單晶主動層。此方法可讓最終主動層具有良好的總厚度變異。舉例來說,最終主動層的總厚度變異可小於約4nm。雖然第2至11圖用於說明方法,但應理解第2至11圖的結構不限於以說明的方法形成,而可獨立於方法之外。 FIGS. 2 to 11 are cross-sectional views corresponding to a method of forming a semiconductor-on-insulator structure in some embodiments, and the semiconductor-on-insulator structure has a single crystal active layer substantially free of dislocation defects. This approach results in a good overall thickness variation for the final active layer. For example, the total thickness variation of the final active layer may be less than about 4 nm. Although FIGS. 2-11 are used to illustrate the method, it should be understood that the structures of FIGS. 2-11 are not limited to being formed in the illustrated method, but may be independent of the method.

如第2圖的剖視圖200所示,磊晶形成矽鍺層202於犧牲基板204的上表面204s上。舉例來說,犧牲基板204可為基體矽結構,其形態為碟形基板。舉例來說,此基板的直徑可為1吋(25mm)、2吋(51mm)、3吋(76mm)、4吋(100mm)、5吋(130nm)、125mm(4.9吋)、150mm(5.9吋,通常稱作6吋)、200mm(7.9吋,通常稱作8吋)、300mm(11.8吋,通常稱作12吋)、或450mm(17.7吋,通常稱作18吋)。在一些實施例中,犧牲基板204可具有p型摻雜(如p+摻雜)。在其他實施例中,犧牲基板204可具有n型摻雜。在一些實施例中,犧牲基板204的厚度介於近似200μm至近似1000μm之間。 As shown in the cross-sectional view 200 of FIG. 2 , a SiGe layer 202 is epitaxially formed on the upper surface 204s of the sacrificial substrate 204 . For example, the sacrificial substrate 204 may be a base silicon structure in the form of a dish-shaped substrate. For example, the diameter of the substrate can be 1 inch (25mm), 2 inches (51mm), 3 inches (76mm), 4 inches (100mm), 5 inches (130nm), 125mm (4.9 inches), 150mm (5.9 inches) , commonly called 6 inches), 200mm (7.9 inches, commonly called 8 inches), 300mm (11.8 inches, commonly called 12 inches), or 450mm (17.7 inches, commonly called 18 inches). In some embodiments, the sacrificial substrate 204 may have p-type doping (eg, p+ doping). In other embodiments, the sacrificial substrate 204 may have n-type doping. In some embodiments, the thickness of the sacrificial substrate 204 is between approximately 200 μm and approximately 1000 μm.

在一些實施例中,矽鍺層202可直接形成於犧牲基板204上,且形成方法可為磊晶成長製程。在其他實施例中,在形成矽鍺層202之前,可形成與犧牲基板204具有相同組成(如矽)的額外半導體層(未圖示)於犧牲基板204上。在這些實施例中,額外半導體層與犧牲基板204相較,其摻雜(如p型摻雜) 的濃度較低。 In some embodiments, the silicon germanium layer 202 can be directly formed on the sacrificial substrate 204, and the formation method can be an epitaxial growth process. In other embodiments, an additional semiconductor layer (not shown) having the same composition (eg, silicon) as the sacrificial substrate 204 may be formed on the sacrificial substrate 204 before the SiGe layer 202 is formed. In these embodiments, the additional semiconductor layer is doped (eg, p-type doped) compared to the sacrificial substrate 204 concentration is lower.

在多種實施例中,矽鍺層202的形成方法可為磊晶成長製程,比如分子束磊晶、化學氣相沉積、或低壓化學氣相沉積。在化學氣相沉積製程中,可將犧牲基板204暴露至一或多種揮發性氣體前驅物,其可於犧牲基板204的上表面204s上分解及反應,以建立所需厚度206的矽鍺層202。在一些實施例中,矽鍺層202的厚度206可介於近似20nm至近似200nm之間。 In various embodiments, the silicon germanium layer 202 may be formed by an epitaxial growth process, such as molecular beam epitaxy, chemical vapor deposition, or low pressure chemical vapor deposition. During the chemical vapor deposition process, the sacrificial substrate 204 can be exposed to one or more volatile gas precursors, which can decompose and react on the upper surface 204s of the sacrificial substrate 204 to create the SiGe layer 202 of the desired thickness 206 . In some embodiments, the thickness 206 of the silicon germanium layer 202 may be between approximately 20 nm and approximately 200 nm.

在一些實施例中,矽鍺層202的整個厚度206中可含實質上固定的鍺原子%。在一些實施例中,上述實質上固定的鍺原子%可介於近似10原子%至近似100原子%之間。在一些實施例中,上述實質上固定的鍺原子%可介於近似25原子%至近似35原子%之間。在其他實施例中,矽鍺層202的鍺原子%可隨厚度206變化,其可由改變矽鍺層202的沉積製程中的前驅物氣體所達成。舉例來說,一開始選擇的氣體前驅物與製程條件有利於形成高濃度的矽與低濃度的鍺,有利於形成的矽鍺層202與下方的犧牲基板204的上表面之間的晶格不匹配程度降低,且與犧牲基板204的黏著性提高。在沉積矽鍺層時,可逐步改變氣體前驅物與製程條件,以增加靠近矽鍺層202之上表面202s的鍺濃度(如原子%)。沿著矽鍺層202的上表面202s之較高鍺濃度,有利於提高後續蝕刻製程中的蝕刻選擇性。在一些實施例中,犧牲基板204的鍺濃度(相對於矽濃度)可介於約0至20原子%之間。在一些實施例中,矽鍺層202的上表面202s之鍺濃度(相對於矽濃度),可介於近似10原子%至100原子%之間。 In some embodiments, the silicon germanium layer 202 may contain a substantially fixed atomic % of germanium throughout the thickness 206 . In some embodiments, the substantially fixed atomic % of germanium may be between approximately 10 atomic % and approximately 100 atomic %. In some embodiments, the substantially fixed atomic % of germanium may be between approximately 25 atomic % and approximately 35 atomic %. In other embodiments, the atomic % germanium of the silicon germanium layer 202 can vary with the thickness 206 , which can be achieved by changing the precursor gases in the deposition process of the silicon germanium layer 202 . For example, the gas precursors and process conditions selected at the beginning are favorable for the formation of high concentration of silicon and low concentration of germanium, which is conducive to the formation of a lattice mismatch between the formed silicon germanium layer 202 and the upper surface of the underlying sacrificial substrate 204 . The degree of matching is reduced, and the adhesion to the sacrificial substrate 204 is improved. During the deposition of the SiGe layer, the gas precursors and process conditions may be gradually changed to increase the concentration of germanium (eg, atomic %) near the upper surface 202s of the SiGe layer 202 . The higher germanium concentration along the upper surface 202s of the silicon germanium layer 202 is beneficial to improve the etching selectivity in the subsequent etching process. In some embodiments, the germanium concentration (relative to the silicon concentration) of the sacrificial substrate 204 may be between about 0 to 20 atomic %. In some embodiments, the germanium concentration (relative to the silicon concentration) of the upper surface 202s of the silicon germanium layer 202 may be between approximately 10 atomic % and 100 atomic %.

如第3A圖的剖視圖300所示,磊晶成長第一主動層 108於矽鍺層202上。第一主動層108的材料組成不同於矽鍺層202的材料組成。舉例來說,第一主動層108可包含半導體材料如矽。在一些實施例中,第一主動層108可包含單晶矽層。第一主動層108亦可為半導體化合物,其由兩種或更多不同元素組成。舉例來說,這些元素可形成二元合金(如砷化鎵)、三元合金(如砷化銦鎵或砷化鋁鎵)、或四元合金(如磷化鋁銦鎵)。 As shown in the cross-sectional view 300 of FIG. 3A, the first active layer is epitaxially grown 108 on the silicon germanium layer 202. The material composition of the first active layer 108 is different from that of the SiGe layer 202 . For example, the first active layer 108 may include a semiconductor material such as silicon. In some embodiments, the first active layer 108 may include a single crystal silicon layer. The first active layer 108 can also be a semiconductor compound composed of two or more different elements. For example, these elements may form binary alloys (eg, gallium arsenide), ternary alloys (eg, indium gallium arsenide or aluminum gallium arsenide), or quaternary alloys (eg, aluminum indium gallium phosphide).

在多種實施例中,第一主動層108的磊晶成長方法可採用氣相磊晶、分子束磊晶、液相磊晶、或類似方法。在一些實施例中,氣相磊晶製程可在升高的溫度(如約1200℃)下,使四氯矽烷與氫氣反應以沉積矽。在其他實施例中,氣相磊晶可在較低溫度(如約650℃)下採用矽烷、二氯矽烷、及/或三氯矽烷沉積矽。此製程不產生氯化氫等可能蝕刻矽的副產物。控制矽的成長速率,可達單晶或多晶的矽結構。 In various embodiments, the epitaxial growth method of the first active layer 108 may adopt vapor phase epitaxy, molecular beam epitaxy, liquid phase epitaxy, or the like. In some embodiments, the vapor phase epitaxy process can deposit silicon by reacting tetrachlorosilane with hydrogen gas at an elevated temperature (eg, about 1200° C.). In other embodiments, vapor phase epitaxy may use silanes, dichlorosilanes, and/or trichlorosilanes to deposit silicon at lower temperatures (eg, about 650° C.). This process does not produce by-products such as hydrogen chloride that can etch silicon. To control the growth rate of silicon, it can reach single crystal or polycrystalline silicon structure.

第一主動層108可成長至所需的厚度302。在一些實施例中,第一主動層108的厚度302可介於近似20nm至近似50nm之間。第一主動層108的厚度302可依矽鍺層202中的鍺原子%調整,因此第一主動層108可具有矽鍺層202施加的應力,而不會產生錯位缺陷。 The first active layer 108 can be grown to a desired thickness 302 . In some embodiments, the thickness 302 of the first active layer 108 may be between approximately 20 nm and approximately 50 nm. The thickness 302 of the first active layer 108 can be adjusted according to the atomic % of germanium in the silicon germanium layer 202 , so the first active layer 108 can have the stress exerted by the silicon germanium layer 202 without generating dislocation defects.

舉例來說,第3B圖所示的圖表304為鍺含量函數的關鍵厚度(即超過此厚度即形成缺陷於磊晶矽的第一主動層中)。如第3B圖所示,隨著鍺含量增加,第一主動層108所能具有的厚度減少。舉例來說,在鍺濃度為0.3時,第一主動層108的厚度近似20nm時仍不具有缺陷。在鍺濃度為0.2時,第一主動層108的厚度可高達近似200μm而不具有缺陷。 For example, the graph 304 shown in FIG. 3B is the critical thickness as a function of germanium content (ie, beyond this thickness, defects are formed in the first active layer of epitaxial silicon). As shown in FIG. 3B, as the germanium content increases, the thickness that the first active layer 108 can have decreases. For example, when the germanium concentration is 0.3, the thickness of the first active layer 108 is approximately 20 nm without defects. At a germanium concentration of 0.2, the thickness of the first active layer 108 can be up to approximately 200 μm without defects.

如第4圖的剖視圖400所示,翻轉犧牲基板204,並將第一主動層108接合至第一基板102的介電層104之上表面104s。在一些實施例中,可採用直接接合製程或熔融接合製程。直接接合製程取決於分子間作用力如凡德瓦力、氫鍵、或共價鍵,以形成兩個配合表面之間的鍵結。接合製程不需額外或中間層於所需接合的表面之間。在一些實施例中,為增加接合強度,可在接合前先形成氧化物層(未圖示)於介電層104的上表面上,接著將氧化物層接合至第一主動層108的配合表面。可在室溫下進行直接接合,接著升溫以回火接合後的結構。 As shown in the cross-sectional view 400 of FIG. 4 , the sacrificial substrate 204 is turned over and the first active layer 108 is bonded to the upper surface 104s of the dielectric layer 104 of the first substrate 102 . In some embodiments, a direct bonding process or a fusion bonding process may be employed. The direct bonding process relies on intermolecular forces such as Van der Waals forces, hydrogen bonding, or covalent bonding to form a bond between two mating surfaces. The bonding process does not require additional or intermediate layers between the surfaces to be bonded. In some embodiments, in order to increase the bonding strength, an oxide layer (not shown) can be formed on the upper surface of the dielectric layer 104 before bonding, and then the oxide layer is bonded to the mating surface of the first active layer 108 . Direct bonding can be performed at room temperature, followed by an elevated temperature to temper the bonded structure.

在一些實施例中,第一基板102用於提供結構所需的支撐,因此不需展現於裝置結構或內連線結構中。在許多例子中,第一基板102的形態為碟狀基板。在一些實施例中,第一基板102與犧牲基板204的直徑可相同。第一基板102可包含基體矽基板,且其厚度可介於近似300nm至近似1000nm之間。 In some embodiments, the first substrate 102 is used to provide the required support for the structure and thus need not be present in the device structure or the interconnect structure. In many instances, the first substrate 102 is in the form of a dish-shaped substrate. In some embodiments, the diameter of the first substrate 102 and the sacrificial substrate 204 may be the same. The first substrate 102 may include a base silicon substrate, and the thickness may be between approximately 300 nm and approximately 1000 nm.

如第5圖的剖視圖500所示,在接合至第一基板102之後移除犧牲基板204。在一些實施例中,犧牲基板204的移除方法可為蝕刻、機械研磨、及/或化學機械平坦化製程。蝕刻製程可包含濕蝕刻或乾蝕刻。在一些實施例中,蝕刻製程可採用含氫氧化四甲基銨的濕蝕刻劑。在其他實施例中,濕蝕刻劑可包含氫氟酸、硝酸、與醋酸的混合物;氫氧化鉀;及/或緩衝氧化物蝕刻劑。在一些實施例中,濕蝕刻步驟包含薄化犧牲基板204、接著以化學機械研磨完全移除犧牲基板204。在一些實施例中,薄化步驟包含乾蝕刻製程。 As shown in cross-sectional view 500 of FIG. 5 , the sacrificial substrate 204 is removed after bonding to the first substrate 102 . In some embodiments, the removal method of the sacrificial substrate 204 may be an etching, mechanical polishing, and/or chemical mechanical planarization process. The etching process may include wet etching or dry etching. In some embodiments, the etching process may employ a wet etchant containing tetramethylammonium hydroxide. In other embodiments, the wet etchant may comprise a mixture of hydrofluoric acid, nitric acid, and acetic acid; potassium hydroxide; and/or a buffered oxide etchant. In some embodiments, the wet etching step includes thinning the sacrificial substrate 204 followed by chemical mechanical polishing to completely remove the sacrificial substrate 204 . In some embodiments, the thinning step includes a dry etching process.

如第6圖的剖視圖600所示,部份地移除矽鍺層 202。在一些實施例中,可部份地移除矽鍺層202,以保留殘餘的矽鍺層604以覆蓋第一主動層108的上表面108s。在一些實施例中,濕蝕刻製程採用氫氧化四甲基銨或氫氧化鉀,其可選擇性地移除矽鍺層202的上側部份602。當蝕刻劑如氫氧化四甲基銨對下方的磊晶材料如矽的蝕刻性速率,大於對矽鍺材料的蝕刻速率時,濕蝕刻製程在到達第一主動層108的上表面108s之前即終止,否則會在磊晶材料中造成不想要的高總厚度變異。 As shown in cross-sectional view 600 of FIG. 6, the silicon germanium layer is partially removed 202. In some embodiments, the silicon germanium layer 202 may be partially removed to leave the residual silicon germanium layer 604 to cover the upper surface 108s of the first active layer 108 . In some embodiments, the wet etching process employs tetramethylammonium hydroxide or potassium hydroxide, which selectively removes the upper portion 602 of the silicon germanium layer 202 . When the etching rate of the etchant such as tetramethylammonium hydroxide to the underlying epitaxial material such as silicon is greater than the etching rate of the silicon germanium material, the wet etching process is terminated before reaching the upper surface 108s of the first active layer 108 , which would otherwise cause an undesirably high total thickness variation in the epitaxial material.

在一些實施例中,用以移除矽鍺層202的濕蝕刻製程亦可移除額外半導體層(未圖示),且額外半導體層的摻雜濃度低於犧牲基板204的摻雜濃度。由於氫氧化四甲基銨對矽與矽鍺具有高蝕刻選擇性,比如對矽的蝕刻速率比對矽鍺的蝕刻速率高過20倍,在移除額外半導體層時可提供良好的總厚度變異。 In some embodiments, the wet etching process for removing the silicon germanium layer 202 can also remove an additional semiconductor layer (not shown), and the doping concentration of the additional semiconductor layer is lower than that of the sacrificial substrate 204 . Due to the high etch selectivity of tetramethylammonium hydroxide to silicon and silicon germanium, eg, the etch rate of silicon is more than 20 times higher than that of silicon germanium, it provides good overall thickness variation when removing additional semiconductor layers .

如第7圖的剖視圖700所示,完全移除殘留的矽鍺層604。在一些實施例中,可採用乾蝕刻法或濕蝕刻法以移除殘留的矽鍺層。可選擇濕蝕刻法或乾蝕刻法,以較佳地蝕刻殘留的矽鍺層604而不蝕刻第一主動層108。在一些實施例中,乾蝕刻法可採用氯化氫蝕刻劑。在一些實施例中,此蝕刻製程的溫度介於500℃至700℃之間,較佳接近500℃。低溫製程可減少第一主動層108中的結晶變化或缺陷產生。在其他實施例中,含氯化氫的濕蝕刻製程可用以完全移除殘留的矽鍺層604。 As shown in the cross-sectional view 700 of FIG. 7, the remaining silicon germanium layer 604 is completely removed. In some embodiments, dry etching or wet etching may be employed to remove the residual silicon germanium layer. A wet etching method or a dry etching method can be selected to preferably etch the remaining silicon germanium layer 604 without etching the first active layer 108 . In some embodiments, the dry etching method may employ a hydrogen chloride etchant. In some embodiments, the temperature of the etching process is between 500°C and 700°C, preferably close to 500°C. The low temperature process can reduce crystal variation or defect generation in the first active layer 108 . In other embodiments, a wet etch process containing hydrogen chloride may be used to completely remove the remaining silicon germanium layer 604 .

在一些實施例中,乾蝕刻或濕蝕刻可持續至完全移除殘留的矽鍺層604,以自第一主動層108的上表面108s移除具有應變的薄層702(比如蝕刻移除第一主動層108的應變部 份)。藉由移除薄層702,第一主動108的結晶結構轉變為實質上鬆弛。在一些實施例中,移除的薄層702其厚度可介於近似5nm至近似10nm之間。在一些實施例中,移除薄層702所減少的第一主動層108的厚度,可介於近似10nm至近似40nm之間。 In some embodiments, dry etching or wet etching may continue until the remaining silicon germanium layer 604 is completely removed to remove the strained thin layer 702 from the upper surface 108s of the first active layer 108 (eg, etching to remove the first The strained portion of the active layer 108 share). By removing the thin layer 702, the crystalline structure of the first active 108 is transformed to be substantially relaxed. In some embodiments, the thickness of the removed thin layer 702 may be between approximately 5 nm and approximately 10 nm. In some embodiments, the thickness of the first active layer 108 reduced by removing the thin layer 702 may be between approximately 10 nm and approximately 40 nm.

在一些實施例中,在移除殘留的矽鍺層604之前,進行初始清潔製程。初始清潔製程可移除殘留的矽鍺層604中的原生氧化物,其來自於部份移除矽鍺層202的製程。在一些實施例中,清潔製程可包含電漿輔助的乾蝕刻製程,使殘留的矽鍺層604同時暴露至氫、三氟化氮、與氨的電漿與副產物。在一些實施例中,此清潔製程的溫度可小於400℃,以減少第一主動層108中的結晶變化與缺陷產生。 In some embodiments, an initial cleaning process is performed prior to removing the residual SiGe layer 604 . The initial cleaning process removes native oxide in the remaining silicon germanium layer 604 from the process that partially removed the silicon germanium layer 202 . In some embodiments, the cleaning process may include a plasma-assisted dry etch process that exposes the residual SiGe layer 604 to the plasma and by-products of hydrogen, nitrogen trifluoride, and ammonia simultaneously. In some embodiments, the temperature of the cleaning process may be less than 400° C. to reduce crystal changes and defects in the first active layer 108 .

如第8圖的剖視圖800所示,選擇性地蝕刻第一主動層108以定義最外側的側壁,並露出介電層104的上表面104s之外側邊緣寬度116。在一些實施例中,可形成遮罩層802於第一主動層108的上表面108s其碟形的第一環形部份118上。遮罩層802可自第一主動層108的上表面108s徑向延伸至覆蓋第一環形部份118的外側半徑,以露出第一主動層108將被蝕刻的外側邊緣。在一些實施例中,遮罩層802可包含有機材料(如光阻、非晶碳、矽氧烷為主的材料、或類似物),或無機材料(如氧化矽、氮化矽、氮化鈦、或類似物)。在一些實施例中,介電層的外側邊緣寬度116可介於1mm至約2mm之間。在一些實施例中,選擇性蝕刻第一主動層108以露出外側邊緣寬度116的製程,其採用的蝕刻劑可包含氯化氫或氫氧化四甲基銨。 As shown in the cross-sectional view 800 of FIG. 8 , the first active layer 108 is selectively etched to define the outermost sidewalls and expose the outer edge width 116 of the upper surface 104s of the dielectric layer 104 . In some embodiments, the mask layer 802 may be formed on the top surface 108s of the first active layer 108 on the dish-shaped first annular portion 118 thereof. The mask layer 802 may extend radially from the upper surface 108s of the first active layer 108 to cover the outer radius of the first annular portion 118 to expose the outer edge of the first active layer 108 to be etched. In some embodiments, the mask layer 802 may include organic materials (eg, photoresist, amorphous carbon, siloxane-based materials, or the like), or inorganic materials (eg, silicon oxide, silicon nitride, nitride) titanium, or the like). In some embodiments, the outer edge width 116 of the dielectric layer may be between 1 mm and about 2 mm. In some embodiments, the process of selectively etching the first active layer 108 to expose the outer edge width 116 may use an etchant including hydrogen chloride or tetramethylammonium hydroxide.

選擇性蝕刻第一主動層108,以露出外側邊緣寬度 116的作法,可有效減少第一主動層108的總厚度變異。用於移除矽鍺層202與第一主動層108的薄層702之蝕刻製程,可能導致更多侵蝕,因此在第一主動層108的外側邊緣造成更多厚度變異。蝕刻第一主動層108的外側邊緣,即可移除局部高厚度變異的材料,使第一主動層108的整體厚度變異較低。上述步驟亦沿著第一主動層108的邊緣移除晶片缺陷,而這些缺陷來自於接合第一主動層108至介電層104的步驟。 Selectively etch the first active layer 108 to expose the outer edge width The method of 116 can effectively reduce the total thickness variation of the first active layer 108 . The etching process used to remove the silicon germanium layer 202 and the thin layer 702 of the first active layer 108 may result in more erosion and thus more thickness variation at the outer edges of the first active layer 108 . Etching the outer edge of the first active layer 108 can remove locally high thickness variation material, so that the overall thickness variation of the first active layer 108 is low. The above steps also remove wafer defects along the edges of the first active layer 108 from the step of bonding the first active layer 108 to the dielectric layer 104 .

如第9圖的剖視圖900所示,磊晶成長第二主動層110於第一主動層108上。第二主動層的結晶結構(如晶格)基本上重複第一主動層108的結晶結構。由於第一主動層108為實質上不具有錯位缺陷的鬆弛層,第二主動層110可形成至所需厚度而不具有錯位缺陷。在一些實施例中,第二主動層110與第一主動層108一併形成相連的主動層106。在一些實施例中,主動層106包含矽。在一些實施例中,主動層106的總厚度介於約70nm至150nm之間。在其他實施例中,主動層106的總厚度大於150nm。 As shown in the cross-sectional view 900 of FIG. 9 , the second active layer 110 is epitaxially grown on the first active layer 108 . The crystal structure (eg, lattice) of the second active layer substantially repeats the crystal structure of the first active layer 108 . Since the first active layer 108 is a relaxed layer substantially free of dislocation defects, the second active layer 110 can be formed to a desired thickness without dislocation defects. In some embodiments, the second active layer 110 and the first active layer 108 together form the connected active layer 106 . In some embodiments, the active layer 106 includes silicon. In some embodiments, the total thickness of the active layer 106 is between about 70 nm to 150 nm. In other embodiments, the total thickness of the active layer 106 is greater than 150 nm.

第一主動層108或第二主動層110未覆蓋介電層104的上表面104s之外側邊緣。在剝除遮罩層802之後,第一主動層108(以虛線表示)具有基板上平坦的上表面與實質上垂直的側壁,且介電層104的上表面104s之露出的外側邊緣寬度116將圍繞第一主動層108。外側邊緣寬度116自第一主動層108之側壁的最外側邊緣,橫向延伸至介電層104的外側邊緣。 The first active layer 108 or the second active layer 110 does not cover the outer edge of the upper surface 104s of the dielectric layer 104 . After the mask layer 802 is peeled off, the first active layer 108 (indicated by the dotted line) has a flat upper surface and substantially vertical sidewalls on the substrate, and the exposed outer edge width 116 of the upper surface 104s of the dielectric layer 104 will be around the first active layer 108 . The outer edge width 116 extends laterally from the outermost edge of the sidewall of the first active layer 108 to the outer edge of the dielectric layer 104 .

第二主動層110的形成方法可為選擇性磊晶成長製程,其採用第一主動層108作為成長第二主動層110的晶種。 在一些實施例中,第一主動層108可包含矽,而選擇性磊晶成長製程可磊晶成長矽於第一主動層108的露出表面上。在一些實施例中,選擇性磊晶成長製程可包含前驅物氣體,其包括二氯矽烷搭配(或不搭配)氯化氫;或者矽烷、二矽烷、或三矽烷搭配(或不搭配)氯化氫。在一些實施例中,可採用循環沉積-蝕刻方式以達選擇性磊晶成長。此製程可採用矽烷主的前驅物氣體,且製程溫度可低於550℃。 The formation method of the second active layer 110 may be a selective epitaxial growth process, which uses the first active layer 108 as a seed crystal for growing the second active layer 110 . In some embodiments, the first active layer 108 may comprise silicon, and the selective epitaxial growth process may epitaxially grow silicon on the exposed surface of the first active layer 108 . In some embodiments, the selective epitaxial growth process may include precursor gases including dichlorosilane with (or without) hydrogen chloride; or silane, disilane, or trisilane with (or without) hydrogen chloride. In some embodiments, a cyclic deposition-etch approach may be employed to achieve selective epitaxial growth. This process can use silane-based precursor gas, and the process temperature can be lower than 550 ℃.

在一些實施例中,磊晶成長的第二主動層110可具有主動層106的側壁之上側部份124的晶面形狀126。在一些實施例中,晶面形狀126的結晶取向可為Miller指數定義的數值,比如(1,1,1)。在其他實施例中,晶面形狀126的結晶取向可為Miller指數定義的其他數值,比如(1,1,0)、(0,0,1)、或其他數值。第二主動層110的選擇性磊晶一般為非等向的模式,即垂直方向的延伸與橫向方向的延伸之間的比例為約1:1。在一些實施例中,選擇性磊晶成長製程產生矽的單晶層,如已知的磊晶橫向過成長層。 In some embodiments, the epitaxially grown second active layer 110 may have the crystal plane shape 126 of the upper side portion 124 of the sidewall of the active layer 106 . In some embodiments, the crystallographic orientation of the crystal plane shape 126 may be a value defined by the Miller index, such as (1,1,1). In other embodiments, the crystallographic orientation of the crystal plane shape 126 may be other values defined by the Miller index, such as (1,1,0), (0,0,1), or other values. The selective epitaxy of the second active layer 110 is generally in an anisotropic mode, that is, the ratio between the extension in the vertical direction and the extension in the lateral direction is about 1:1. In some embodiments, the selective epitaxial growth process produces a single crystal layer of silicon, such as is known as an epitaxial lateral overgrowth layer.

第二主動層110的橫向成長,造成第二主動層110成長於第一主動層108的側壁上並鄰接介電層104的上表面104s之露出的外側邊緣寬度116。雖然露出的外側邊緣寬度116產生一些很小的縮減,這些縮減為奈米級,約等於第二主動層110的成長厚度(如厚度thk2減掉厚度thk1)。保留之露出的外側邊緣寬度116,基本上介於約1mm至2mm之間。 The lateral growth of the second active layer 110 causes the second active layer 110 to grow on the sidewall of the first active layer 108 adjacent to the exposed outer edge width 116 of the upper surface 104s of the dielectric layer 104 . Although there are some small reductions in the exposed outer edge width 116, these reductions are on the order of nanometers, approximately equal to the grown thickness of the second active layer 110 (eg, thickness thk 2 minus thickness thk 1 ). The remaining exposed outer edge width 116 is substantially between about 1 mm and 2 mm.

在一些實施例中,主動層106的剖面輪廓側壁具有下側部份122與上側部份124。下側下側部份122具有自介電層 104向上垂直延伸的實質上線性輪廓。上側部份124具有斜角輪廓,其晶面或錐形的形狀朝主動層106的上表面106s向內傾斜。主動層106的上表面106s的寬度,小於主動層106的最大寬度114。在一些實施例中,主動層106的側壁之上側部份124其取向與剖面輪廓,端視第一主動層與第二主動層的特定材料成本與晶格特性而變化。在一些實施例中,主動層106的結晶結構可由Miller指數表示,其具有的多種數值包含(1,1,1)。 In some embodiments, the cross-sectional profile sidewall of the active layer 106 has a lower portion 122 and an upper portion 124 . The lower side lower portion 122 has a self-dielectric layer 104 is a substantially linear profile extending vertically upwards. The upper portion 124 has a bevel profile, and its crystal plane or tapered shape slopes inwardly toward the upper surface 106s of the active layer 106 . The width of the upper surface 106 s of the active layer 106 is smaller than the maximum width 114 of the active layer 106 . In some embodiments, the orientation and cross-sectional profile of the upper sidewall portion 124 of the active layer 106 vary depending on the specific material cost and lattice properties of the first active layer and the second active layer. In some embodiments, the crystalline structure of the active layer 106 can be represented by the Miller index, which has various values including (1, 1, 1).

如第10圖的剖視圖1000所示,形成多個半導體裝置1002於主動層106中。在多種實施例中,多個半導體裝置1002可包含金氧半場效電晶體及/或其他場效電晶體。雖然未圖示,但電晶體可為其他形態,比如鰭狀場效電晶體裝置、雙極接面電晶體、或其他電晶體。 As shown in cross-sectional view 1000 of FIG. 10 , a plurality of semiconductor devices 1002 are formed in active layer 106 . In various embodiments, the plurality of semiconductor devices 1002 may include MOSFETs and/or other field effect transistors. Although not shown, the transistors may be other forms, such as fin field effect transistor devices, bipolar junction transistors, or other transistors.

接著可製作內連線結構1004於主動層106的上表面106s上。內連線結構包含多個金屬內連線層1006(如金屬線路、通孔、與接點)耦接至多個半導體裝置1002,且層間介電結構1008圍繞金屬內連線層1006。在一些實施例中,金屬內連線層1006可包含銅、鎢、鋁、金、鈦、或氮化鈦。在一些實施例中,層間介電結構1008可包含氧化矽、氮化矽、氮氧化矽、低介電常數的介電材料、極低介電常數的介電材料、一些其他介電材料、或任何上述之組合。 Next, the interconnect structure 1004 can be fabricated on the upper surface 106s of the active layer 106 . The interconnect structure includes a plurality of metal interconnect layers 1006 (eg, metal lines, vias, and contacts) coupled to the plurality of semiconductor devices 1002 , and an interlayer dielectric structure 1008 surrounds the metal interconnect layers 1006 . In some embodiments, the metal interconnect layer 1006 may include copper, tungsten, aluminum, gold, titanium, or titanium nitride. In some embodiments, the interlayer dielectric structure 1008 may comprise silicon oxide, silicon nitride, silicon oxynitride, a low-k dielectric material, a very low-k dielectric material, some other dielectric material, or any combination of the above.

如第11圖的剖視圖1100所示,自第一基板102切割基板,以形成多個個別的晶粒1102。在一些實施例中,自第一基板102切割個別晶粒的方法可沿著切割線1104切割或破壞,比如採用切割鋸的機械切割、雷射切割、或其他可行的切割方 法。 As shown in the cross-sectional view 1100 of FIG. 11 , the substrate is cut from the first substrate 102 to form a plurality of individual dies 1102 . In some embodiments, the method of dicing individual dies from the first substrate 102 may cut or break along the dicing lines 1104, such as mechanical dicing using a dicing saw, laser dicing, or other feasible dicing methods Law.

第12圖係形成絕緣層上半導體基板的方法之一些實施例的流程圖。 FIG. 12 is a flowchart of some embodiments of a method of forming a semiconductor-on-insulator substrate.

此處所述的方法1200以一系列的步驟或事件說明,但應理解步驟或事件的順序僅用以說明而非侷限本發明實施例。舉例來說,可採用不同順序進行一些步驟,及/或同時進行一些步驟與其他步驟,而與此處所述的順序不同。此外,此處所述的一或多個實施例不需進行所有步驟。此外,此處所述的一或多個步驟可由一或多個分開的步驟及/或態樣進行。 The method 1200 described herein is described as a series of steps or events, but it should be understood that the order of the steps or events is only used to illustrate rather than limit the embodiments of the present invention. For example, some steps may be performed in a different order, and/or some steps may be performed concurrently with other steps, in a different order than described herein. Furthermore, not all steps are required for one or more of the embodiments described herein. Furthermore, one or more of the steps described herein may be performed in one or more separate steps and/or aspects.

在步驟1202中,磊晶形成矽鍺層於犧牲基板上。第2圖所示的剖視圖200對應步驟1202的一些實施例。 In step 1202, a silicon germanium layer is epitaxially formed on the sacrificial substrate. The cross-sectional view 200 shown in FIG. 2 corresponds to some embodiments of step 1202 .

在步驟1204中,磊晶形成第一主動層於矽鍺層上,且第一主動層的組成不同於矽鍺層的組成。第3圖所示的剖視圖300對應步驟1204的一些實施例。 In step 1204, a first active layer is epitaxially formed on the silicon germanium layer, and the composition of the first active layer is different from that of the silicon germanium layer. The cross-sectional view 300 shown in FIG. 3 corresponds to some embodiments of step 1204 .

在步驟1206中,翻轉犧牲基板,並將第一主動層接合至第一基板上的介電層上表面。第4圖所示的剖視圖400對應步驟1206的一些實施例。 In step 1206, the sacrificial substrate is turned over and the first active layer is bonded to the upper surface of the dielectric layer on the first substrate. The cross-sectional view 400 shown in FIG. 4 corresponds to some embodiments of step 1206 .

在步驟1208中,移除犧牲基板與矽鍺層。第5至7圖所示的剖視圖500、600、與700對應步驟1208的一些實施例。 In step 1208, the sacrificial substrate and the silicon germanium layer are removed. The cross-sectional views 500 , 600 , and 700 shown in FIGS. 5-7 correspond to some embodiments of step 1208 .

在步驟1210中,蝕刻第一主動層以定義最外側的側壁並露出介電層的上表面之外側邊緣。第8圖所示的剖視圖800對應步驟1210的一些實施例。 In step 1210, the first active layer is etched to define outermost sidewalls and to expose outer edges of the upper surface of the dielectric layer. The cross-sectional view 800 shown in FIG. 8 corresponds to some embodiments of step 1210 .

在步驟1212中,磊晶形成第二主動層於第一主動層上,且第一主動層或第二主動層未覆蓋介電層的上表面之外 側邊緣寬度。第一主動層與第二主動層一併形成相連主動層。第9圖所示的剖視圖900對應步驟1212的一些實施例。 In step 1212, a second active layer is epitaxially formed on the first active layer, and the first active layer or the second active layer does not cover the upper surface of the dielectric layer Side edge width. The first active layer and the second active layer together form a connected active layer. The cross-sectional view 900 shown in FIG. 9 corresponds to some embodiments of step 1212 .

在步驟1214中,形成多個半導體裝置於第一主動層與第二主動層中,並形成內連線結構於半導體裝置上。第10圖所示的剖視圖1000對應步驟1214的一些實施例。 In step 1214, a plurality of semiconductor devices are formed in the first active layer and the second active layer, and interconnect structures are formed on the semiconductor devices. The cross-sectional view 1000 shown in FIG. 10 corresponds to some embodiments of step 1214 .

在步驟1216中,進行切割製程以形成多個分開的晶粒。第11圖所示的剖視圖1100對應步驟1216的一些實施例。 In step 1216, a dicing process is performed to form a plurality of separate dies. The cross-sectional view 1100 shown in FIG. 11 corresponds to some embodiments of step 1216 .

綜上所述,本發明一些實施例關於具有較厚(大於75nm)且實質上不具有錯位缺陷之單晶主動層的絕緣層上半導體基板之形成方法。上述方法提供的主動層具有良好的厚度變異(比如小於4nm)。 In conclusion, some embodiments of the present invention relate to a method for forming a semiconductor-on-insulator substrate having a single crystal active layer that is thick (greater than 75 nm) and substantially free of dislocation defects. The above method provides an active layer with good thickness variation (eg, less than 4 nm).

如前所述,本發明一些實施例提供製作絕緣層上半導體基板的方法,包括磊晶形成矽鍺層於犧牲基板上。磊晶形成第一主動層於矽鍺層上,且第一主動層的組成不同於矽鍺層的組成。接合第一主動層至第一基板上的介電層上。移除犧牲基板與矽鍺層。蝕刻第一主動層,以露出介電層的上表面之外側邊緣。磊晶形成第二主動層於第一主動層上,以形成相連的主動層,其中第一主動層與第二主動層具有實質上相同的組成。 As mentioned above, some embodiments of the present invention provide a method of fabricating a semiconductor-on-insulator substrate, including epitaxially forming a silicon germanium layer on a sacrificial substrate. The first active layer is epitaxially formed on the silicon germanium layer, and the composition of the first active layer is different from that of the silicon germanium layer. The first active layer is bonded to the dielectric layer on the first substrate. Remove the sacrificial substrate and the SiGe layer. The first active layer is etched to expose the outer edge of the upper surface of the dielectric layer. A second active layer is epitaxially formed on the first active layer to form a connected active layer, wherein the first active layer and the second active layer have substantially the same composition.

在一些實施例中,上述方法中第一主動層或第二主動層均未覆蓋介電層的上表面之外側邊緣寬度。 In some embodiments, neither the first active layer nor the second active layer covers the outer edge width of the upper surface of the dielectric layer in the above method.

在一些實施例中,上述方法中相連的主動層包括矽。 In some embodiments, the connected active layer in the above method comprises silicon.

在一些實施例中,上述方法中相連的主動層的厚 度介於近似70nm至近似150nm之間。 In some embodiments, the thickness of the active layer connected in the above method is The degree is between approximately 70 nm to approximately 150 nm.

在一些實施例中,上述方法中相連的主動層包括具有側壁垂直延伸的下側部份,以及具有晶面形狀朝相連的主動層上表面向內傾斜的上側部份。 In some embodiments, the connected active layers in the above method include a lower portion having sidewalls extending vertically, and an upper portion having a crystal plane shape inclined inwardly toward the upper surface of the connected active layer.

在一些實施例中,上述方法中相連的主動層之結晶結構包括的Miller指數為(1,1,1)。 In some embodiments, the crystal structure of the connected active layers in the above method includes a Miller index of (1, 1, 1).

在一些實施例中,上述方法中矽鍺層包含的鍺濃度介於10原子%至100原子%之間。 In some embodiments, the silicon germanium layer in the above method includes a germanium concentration ranging from 10 atomic % to 100 atomic %.

在一些實施例中,上述方法中矽鍺層包含的鍺濃度介約25原子%至35原子%之間。 In some embodiments, the silicon germanium layer in the above method includes a germanium concentration between about 25 atomic % and 35 atomic %.

在一些實施例中,上述方法中移除矽鍺層的步驟包括部份地移除矽鍺層,並留下殘留部份以覆蓋第一主動層,並將殘留部份同時暴露至氫、三氟化氮、與氨電漿與副產物以清潔殘留部份。 In some embodiments, the step of removing the silicon germanium layer in the above method includes partially removing the silicon germanium layer, leaving a residual portion to cover the first active layer, and simultaneously exposing the residual portion to hydrogen, three Nitrogen fluoride, and ammonia plasma and by-products to clean residual parts.

在一些實施例中,上述方法包括以氯化氫蝕刻製程移除矽鍺層的殘留部份。 In some embodiments, the above method includes removing residual portions of the silicon germanium layer with a hydrogen chloride etch process.

在一些實施例中,上述方法包括在移除矽鍺層之後與磊晶形成第二主動層之前,移除第一主動層的一部份。 In some embodiments, the above method includes removing a portion of the first active layer after removing the silicon germanium layer and before epitaxially forming the second active layer.

在一些實施例中,上述方法中第一主動層的厚度成長至介於約20nm至50nm之間,而矽鍺層的厚度成長至介於約20nm至約200nm之間。 In some embodiments, in the above method, the thickness of the first active layer is grown to be between about 20 nm to 50 nm, and the thickness of the silicon germanium layer is grown to be between about 20 nm to about 200 nm.

此外,本發明其他實施例提供的方法包括磊晶形成矽鍺層於犧牲基板上。磊晶形成第一厚度的第一主動層於矽鍺層的上表面上,且第一主動層包含半導體材料。翻轉犧牲基 板,並將第一主動層接合至第一基板上的介電層上。移除犧牲基板與矽鍺層的部份,並留下矽鍺層的殘留部份以覆蓋第一主動層的上表面。移除矽鍺層的殘留部份與第一主動層的上側部份。形成第二主動層於第一主動層上,第一主動層與第二主動層具有合併的第二厚度,且第二厚度大於第一厚度。 In addition, other embodiments of the present invention provide methods including epitaxially forming a silicon germanium layer on a sacrificial substrate. A first active layer with a first thickness is epitaxially formed on the upper surface of the silicon germanium layer, and the first active layer includes a semiconductor material. Flip the sacrificial base board, and the first active layer is bonded to the dielectric layer on the first substrate. Parts of the sacrificial substrate and the SiGe layer are removed, and the remaining part of the SiGe layer is left to cover the upper surface of the first active layer. The remaining portion of the SiGe layer and the upper portion of the first active layer are removed. A second active layer is formed on the first active layer, the first active layer and the second active layer have a combined second thickness, and the second thickness is greater than the first thickness.

在一些實施例中,上述方法移除矽鍺層的部份之步驟包括以氫氧化四甲基銨或氫氧化鉀進行蝕刻。 In some embodiments, the above-described method of removing portions of the silicon germanium layer includes etching with tetramethylammonium hydroxide or potassium hydroxide.

在一些實施例中,上述方法包括:蝕刻第一主動層以定義最外側側壁,並露出介電層面對第一主動層的表面其外側邊緣。 In some embodiments, the above method includes etching the first active layer to define outermost sidewalls and exposing outer edges of a surface of the dielectric layer facing the first active layer.

在一些實施例中,上述方法移除矽鍺層的殘留部份之步驟包括以氯化氫進行蝕刻。 In some embodiments, the method of removing the remaining portion of the silicon germanium layer includes etching with hydrogen chloride.

在一些實施例中,上述方法的第二主動層沿著第二主動層的最下側表面具有下側總寬度,沿著第二主動層的最上側表面具有上側總寬度,且下側總寬度大於上側總寬度。 In some embodiments, the second active layer of the above method has an overall lower width along a lowermost surface of the second active layer, an upper overall width along an uppermost surface of the second active layer, and an overall lower width greater than the overall width of the upper side.

此外,本發明其他實施例提供絕緣層上半導體基板,包括介電層,位於第一基板上,其中介電層的外側邊緣對準第一基板的外側邊緣。主動層,覆蓋介電層的第一環形部份。以及介電層的上表面的第二環形部份,圍繞第一環形部份並延伸至介電層的外側邊緣。主動層未覆蓋第二環形部份。 In addition, other embodiments of the present invention provide a semiconductor-on-insulator substrate including a dielectric layer on the first substrate, wherein the outer edge of the dielectric layer is aligned with the outer edge of the first substrate. The active layer covers the first annular portion of the dielectric layer. and a second annular portion of the upper surface of the dielectric layer surrounding the first annular portion and extending to the outer edge of the dielectric layer. The active layer does not cover the second annular portion.

在一些實施例中,上述絕緣層上半導體基板的主動層高度介於約70nm至約150nm之間。 In some embodiments, the height of the active layer of the semiconductor-on-insulator substrate is between about 70 nm and about 150 nm.

在一些實施例中,上述絕緣層上半導體基板的主動層包括具有側壁垂直延伸的下側部份,以及具有晶面形狀朝 主動層上表面向內傾斜的上側部份。 In some embodiments, the active layer of the semiconductor-on-insulator substrate includes a lower side portion having sidewalls extending vertically, and a crystal plane shape facing toward The upper part of the upper surface of the active layer which is inclined inward.

上述實施例之特徵有利於本技術領域中具有通常知識者理解本發明實施例。本技術領域中具有通常知識者應理解可採用本發明實施例作基礎,設計並變化其他製程與結構以完成上述實施例之相同目的及/或相同優點。本技術領域中具有通常知識者亦應理解,這些等效置換並未脫離本發明精神與範疇,並可在未脫離本發明之精神與範疇的前提下進行改變、替換、或更動。 The features of the above-mentioned embodiments are helpful for those skilled in the art to understand the embodiments of the present invention. Those skilled in the art should understand that the embodiments of the present invention can be used as a basis to design and change other processes and structures to achieve the same purpose and/or the same advantages of the above embodiments. Those skilled in the art should also understand that these equivalent replacements do not depart from the spirit and scope of the present invention, and can be changed, replaced, or modified without departing from the spirit and scope of the present invention.

thk1、thk2‧‧‧厚度 thk 1 , thk 2 ‧‧‧Thickness

102‧‧‧第一基板 102‧‧‧First substrate

104‧‧‧介電層 104‧‧‧Dielectric layer

104s、106s‧‧‧上表面 104s, 106s‧‧‧Top surface

106‧‧‧主動層 106‧‧‧Active Layer

108‧‧‧第一主動層 108‧‧‧First Active Layer

110‧‧‧第二主動層 110‧‧‧Second Active Layer

116‧‧‧外側邊緣寬度 116‧‧‧Outer edge width

122‧‧‧下側部份 122‧‧‧Lower part

124‧‧‧上側部份 124‧‧‧Top part

126‧‧‧晶面形狀 126‧‧‧Crystal face shape

900‧‧‧剖視圖 900‧‧‧Cross-sectional view

Claims (10)

一種絕緣層上半導體基板的形成方法,包括:磊晶形成一矽鍺層於一犧牲基板上;磊晶形成一第一主動層於該矽鍺層上,且該第一主動層的組成不同於該矽鍺層的組成;接合該第一主動層至一第一基板上的一介電層上;移除該犧牲基板與該矽鍺層;蝕刻該第一主動層,以露出該介電層的上表面之外側邊緣;磊晶形成一第二主動層於該第一主動層上,以形成一相連的主動層,該相連的主動層覆蓋該介電層的一環形部份,其中該第一主動層與該第二主動層具有實質上相同的組成;沿著該相連的主動層的一頂表面且在該環形部份正上方形成複數個電晶體;以及在該相連的主動層的該頂表面上的一介電結構中形成複數個內連線層,其中該些內連線層分別設置在該些電晶體之上且完全設置在該環形部份正上方。 A method for forming a semiconductor substrate on an insulating layer, comprising: epitaxially forming a silicon germanium layer on a sacrificial substrate; epitaxially forming a first active layer on the silicon germanium layer, and the composition of the first active layer is different from The composition of the silicon germanium layer; bonding the first active layer to a dielectric layer on a first substrate; removing the sacrificial substrate and the silicon germanium layer; etching the first active layer to expose the dielectric layer The outer edge of the upper surface; epitaxially forms a second active layer on the first active layer to form a connected active layer, the connected active layer covers an annular portion of the dielectric layer, wherein the first active layer An active layer and the second active layer have substantially the same composition; transistors are formed along a top surface of the connected active layer and directly above the annular portion; and the A plurality of interconnect layers are formed in a dielectric structure on the top surface, wherein the interconnect layers are respectively disposed over the transistors and completely disposed directly over the annular portion. 如申請專利範圍第1項所述之絕緣層上半導體基板的形成方法,其中該第一主動層或該第二主動層均未覆蓋該介電層的上表面之外側邊緣寬度。 The method for forming a semiconductor-on-insulator substrate according to claim 1, wherein neither the first active layer nor the second active layer covers the outer edge width of the upper surface of the dielectric layer. 如申請專利範圍第1或2項所述之絕緣層上半導體基板的形成方法,其中該相連的主動層包括具有側壁垂直延伸的下側部份,以及具有晶面形狀朝相連的主動層上表面向內傾斜的上側部份。 The method for forming a semiconductor-on-insulator substrate as described in claim 1 or 2, wherein the connected active layer comprises a lower portion with sidewalls extending vertically, and an upper surface of the connected active layer with a crystal plane shape Inwardly sloping upper part. 如申請專利範圍第3項所述之絕緣層上半導體基板的形成方法,其中該相連的主動層之結晶結構包括的Miller指數為(1,1,1)。 The method for forming a semiconductor substrate on an insulating layer as described in claim 3, wherein the crystal structure of the connected active layer includes a Miller index of (1,1,1). 如申請專利範圍第1或2項所述之絕緣層上半導體基板的形成方法,其中移除該矽鍺層的步驟包括部份地移除該矽鍺層,並留下一殘留部份以覆蓋該第一主動層,並將該殘留部份同時暴露至氫、三氟化氮、與氨電漿與副產物以清潔該殘留部份。 The method for forming a semiconductor-on-insulator substrate as described in claim 1 or 2 of the claimed scope, wherein the step of removing the silicon-germanium layer comprises partially removing the silicon-germanium layer and leaving a residual part to cover The first active layer, and the residual portion is exposed to hydrogen, nitrogen trifluoride, and ammonia plasma and by-products simultaneously to clean the residual portion. 一種絕緣層上半導體基板的形成方法,包括:磊晶形成一矽鍺層於一犧牲基板上;磊晶形成一第一厚度的一第一主動層於該矽鍺層的上表面上,且該第一主動層包含一半導體材料;翻轉該犧牲基板,並將該第一主動層接合至一第一基板上的一介電層上;移除該犧牲基板與該矽鍺層的部份,並留下該矽鍺層的一殘留部份以覆蓋該第一主動層的上表面;移除該矽鍺層的該殘留部份與該第一主動層的上側部份;形成一第二主動層於該第一主動層上,該第一主動層與該第二主動層具有合併的一第二厚度,且該第二厚度大於該第一厚度,該第一主動層和該第二主動層覆蓋該介電層的一環形部份;沿著該第二主動層的一頂表面且在該環形部份正上方形成複數個電晶體;以及在該第二主動層的該頂表面上的一介電結構中形成複數個 內連線層,其中該些內連線層分別設置在該些電晶體之上且完全設置在該環形部份正上方。 A method for forming a semiconductor substrate on an insulating layer, comprising: epitaxially forming a silicon germanium layer on a sacrificial substrate; epitaxially forming a first active layer with a first thickness on the upper surface of the silicon germanium layer, and the The first active layer includes a semiconductor material; the sacrificial substrate is turned over, and the first active layer is bonded to a dielectric layer on a first substrate; the sacrificial substrate and portions of the silicon germanium layer are removed, and leaving a residual part of the silicon germanium layer to cover the upper surface of the first active layer; removing the residual part of the silicon germanium layer and the upper side part of the first active layer; forming a second active layer On the first active layer, the first active layer and the second active layer have a combined second thickness, and the second thickness is greater than the first thickness, and the first active layer and the second active layer cover an annular portion of the dielectric layer; a plurality of transistors are formed along a top surface of the second active layer and directly above the annular portion; and a dielectric on the top surface of the second active layer forming pluralities in the electrical structure An interconnection layer, wherein the interconnection layers are respectively disposed on the transistors and completely disposed directly above the annular portion. 如申請專利範圍第6項所述之絕緣層上半導體基板的形成方法,更包括:蝕刻該第一主動層以定義一最外側側壁,並露出面對該第一主動層的該介電層的表面的一外側邊緣。 The method for forming a semiconductor substrate on an insulating layer as described in item 6 of the claimed scope, further comprising: etching the first active layer to define an outermost sidewall and exposing the dielectric layer facing the first active layer an outer edge of the surface. 如申請專利範圍第6或7項所述之絕緣層上半導體基板的形成方法,其中該第二主動層沿著該第二主動層的最下側表面具有一下側總寬度,沿著該第二主動層的最上側表面具有一上側總寬度,且該下側總寬度大於該上側總寬度。 The method for forming a semiconductor-on-insulator substrate as described in claim 6 or 7, wherein the second active layer has a lower overall width along the lowermost surface of the second active layer, and along the second active layer The uppermost surface of the active layer has an upper total width, and the lower total width is greater than the upper total width. 一種絕緣層上半導體基板,包括:一介電層,位於一第一基板上,其中該介電層的外側邊緣對準該第一基板的外側邊緣;一主動層,覆蓋該介電層的一第一環形部份,其中該主動層的側壁具有垂直的一下側部份和傾斜的一上側部份,且該下側部份接觸該上側部份,其中該主動層具有鬆弛的單晶晶格且實質上不具有缺陷,且該主動層的厚度介於近似70nm至近似150nm之間;該介電層的上表面的一第二環形部份,圍繞該第一環形部份並延伸至該介電層的外側邊緣,其中該主動層未覆蓋該第二環形部份;複數個電晶體,沿著該主動層的一頂表面設置在該第一環形部份正上方;以及複數個內連線層,設置在該主動層的該頂表面上的一介電 結構中,其中該些內連線層分別設置在該些電晶體之上且完全設置在該第一環形部份正上方。 A semiconductor substrate on an insulating layer, comprising: a dielectric layer located on a first substrate, wherein the outer edge of the dielectric layer is aligned with the outer edge of the first substrate; an active layer covering an outer edge of the dielectric layer a first annular portion, wherein the sidewall of the active layer has a vertical lower portion and an inclined upper portion, and the lower portion contacts the upper portion, wherein the active layer has a relaxed single crystal The lattice is substantially free of defects, and the thickness of the active layer is between approximately 70 nm and approximately 150 nm; a second annular portion of the upper surface of the dielectric layer surrounds the first annular portion and extends to an outer edge of the dielectric layer, wherein the active layer does not cover the second annular portion; a plurality of transistors disposed along a top surface of the active layer just above the first annular portion; and a plurality of transistors interconnect layer, a dielectric disposed on the top surface of the active layer In the structure, the interconnect layers are respectively disposed on the transistors and completely disposed directly above the first annular portion. 如申請專利範圍第9項所述之絕緣層上半導體基板,其中該第一環形部份與該介電層的外側邊緣之間的距離介於近似1mm至近似2mm之間。 The semiconductor-on-insulator substrate of claim 9, wherein a distance between the first annular portion and an outer edge of the dielectric layer is between approximately 1 mm and approximately 2 mm.
TW107141222A 2017-11-22 2018-11-20 Semiconductor on insulator substrate and method for manufacturing the same TWI758562B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762589894P 2017-11-22 2017-11-22
US62/589,894 2017-11-22
US15/904,915 US10304723B1 (en) 2017-11-22 2018-02-26 Process to form SOI substrate
US15/904,915 2018-02-26

Publications (2)

Publication Number Publication Date
TW201933537A TW201933537A (en) 2019-08-16
TWI758562B true TWI758562B (en) 2022-03-21

Family

ID=66336526

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107141222A TWI758562B (en) 2017-11-22 2018-11-20 Semiconductor on insulator substrate and method for manufacturing the same

Country Status (2)

Country Link
DE (1) DE102018125373A1 (en)
TW (1) TWI758562B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736025B (en) * 2020-12-25 2024-04-30 上海华力集成电路制造有限公司 SOI HYB edge silicon epitaxial manufacturing method and terminal equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380046B1 (en) * 1998-06-22 2002-04-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6429484B1 (en) * 2000-08-07 2002-08-06 Advanced Micro Devices, Inc. Multiple active layer structure and a method of making such a structure
US8173551B2 (en) * 2006-09-07 2012-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. Defect reduction using aspect ratio trapping
US20150340488A1 (en) * 2014-05-20 2015-11-26 International Business Machines Corporation Field effect transistors with self-aligned extension portions of epitaxial active regions
US20170317221A1 (en) * 2016-05-02 2017-11-02 Renesas Electronics Corporation Semiconductor device and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6380046B1 (en) * 1998-06-22 2002-04-30 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6429484B1 (en) * 2000-08-07 2002-08-06 Advanced Micro Devices, Inc. Multiple active layer structure and a method of making such a structure
US8173551B2 (en) * 2006-09-07 2012-05-08 Taiwan Semiconductor Manufacturing Co., Ltd. Defect reduction using aspect ratio trapping
US20150340488A1 (en) * 2014-05-20 2015-11-26 International Business Machines Corporation Field effect transistors with self-aligned extension portions of epitaxial active regions
US20170317221A1 (en) * 2016-05-02 2017-11-02 Renesas Electronics Corporation Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
TW201933537A (en) 2019-08-16
DE102018125373A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
US8062963B1 (en) Method of fabricating a semiconductor device having an epitaxy region
EP2317554B1 (en) Integrated semiconductor substrate structure and method of manufacturing an integrated semiconductor substrate structure
JP5063594B2 (en) Lattice-mismatched semiconductor structure with low dislocation defect density and related device manufacturing method
US7439110B2 (en) Strained HOT (hybrid orientation technology) MOSFETs
US9391144B2 (en) Selective gallium nitride regrowth on (100) silicon
CN101828260A (en) Method of manufacturing localized semiconductor-on-insulator (soi) structures in a bulk semiconductor wafer
US9129938B1 (en) Methods of forming germanium-containing and/or III-V nanowire gate-all-around transistors
CN109817514B (en) Semiconductor-on-insulator substrate and method of forming the same
US9048173B2 (en) Dual phase gallium nitride material formation on (100) silicon
US10679889B2 (en) Method for manufacturing semiconductor structure
TWI758562B (en) Semiconductor on insulator substrate and method for manufacturing the same
US9236251B2 (en) Heterogeneous integration of group III nitride on silicon for advanced integrated circuits
US9368604B1 (en) Method of removing threading dislocation defect from a fin feature of III-V group semiconductor material
TW201904018A (en) Reduction of wafer bow during growth of epitaxial films
US20080157090A1 (en) Transplanted epitaxial regrowth for fabricating large area substrates for electronic devices
US9406564B2 (en) Singulation through a masking structure surrounding expitaxial regions
TWI792157B (en) Semiconductor structure and method for forming the same
US9209022B2 (en) Semiconductor structure including laterally disposed layers having different crystal orientations and method of fabricating the same
US20230010039A1 (en) Semiconductor Structure
US20200105575A1 (en) Method of forming an rf silicon on insulator device
US9209065B1 (en) Engineered substrate and device for co-integration of strained silicon and relaxed silicon
US20140264456A1 (en) Method of forming a high electron mobility semiconductor device
KR20090022767A (en) Soi wafer and method for fabricating the same