TW202214690A - 用於治療各種疾病和病症的抑制masp-3的組合物和方法 - Google Patents

用於治療各種疾病和病症的抑制masp-3的組合物和方法 Download PDF

Info

Publication number
TW202214690A
TW202214690A TW110149487A TW110149487A TW202214690A TW 202214690 A TW202214690 A TW 202214690A TW 110149487 A TW110149487 A TW 110149487A TW 110149487 A TW110149487 A TW 110149487A TW 202214690 A TW202214690 A TW 202214690A
Authority
TW
Taiwan
Prior art keywords
seq
masp
lea
antigen
binding fragment
Prior art date
Application number
TW110149487A
Other languages
English (en)
Other versions
TWI820555B (zh
Inventor
W傑森 卡明斯
葛雷格里A 丹歐普羅斯
湯瑪斯 杜德勒
漢斯-威爾漢 史瓦爾貝
拉里W 喬克爾
克里斯蒂L 沃德
矢吹宗久
Original Assignee
美商奥默羅斯公司
萊切斯特大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商奥默羅斯公司, 萊切斯特大學 filed Critical 美商奥默羅斯公司
Publication of TW202214690A publication Critical patent/TW202214690A/zh
Application granted granted Critical
Publication of TWI820555B publication Critical patent/TWI820555B/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/16Central respiratory analeptics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21104Mannan-binding lectin-associated serine protease-2 (3.4.21.104)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Abstract

本發明涉及MASP-3抑制性抗體和包含此類抗體的組合物,其用於抑制MASP-3依賴性補體活化的不良反應。

Description

用於治療各種疾病和病症的抑制MASP-3的組合物和方法
本申請要求於2016年8月1日提交的美國臨時申請號62/369,674的權益,並要求於2016年11月8日提交的美國臨時申請號62/419,420的權益,並要求於2017年3月29日提交的美國臨時申請號62/478,336的權益,其全部三者都通過引用以其整體併入本文。
本發明涉及MASP-3抑制性抗體和包含此類抗體的組合物,其用於抑制MASP-3依賴性補體活化的不良反應。
補體系統為在人和其他脊椎動物中啟動、放大和安排針對微生物感染和其他急性損傷的免疫應答提供了早期的作用機制(M.K. Liszewski和J.P. Atkinson, 1993, 於 Fundamental Immunology, 第3版, W.E. Paul編輯, Raven Press, Ltd., New York)。儘管補體活化提供了重要的針對潛在病原體的第一道防線,但是促進保護性免疫應答的補體活性也可以表現出對宿主的潛在威脅(K.R. Kalli等人, Springer Semin. Immunopathol.15:417-431, 1994;B.P. Morgan, Eur. J. Clinical Investig.24:219-228, 1994)。例如,C3和C5蛋白水解產物募集並活化嗜中性粒細胞。儘管對於宿主防禦是必不可少的,但是活化的嗜中性粒細胞在它們破壞性酶的釋放中是不加選擇的,並可以導致器官損傷。此外,補體活化可以導致溶胞的補體成分沉積在附近的宿主細胞以及微生物靶上,導致宿主細胞裂解。
補體系統也與許多急性和慢性疾病狀態的發病機制有牽連,所述疾病包括:心肌梗塞、中風、ARDS、再灌注損傷、敗血性休克、熱燒傷之後的毛細血管滲漏、心肺分流術後炎症、移植排斥、類風濕性關節炎、多發性硬化、重症肌無力和阿茲海默氏病。在幾乎所有的這些病況中,補體都不是病因,而是發病機制所涉及的幾種因素之一。儘管如此,補體活化可以是重要的病理機制,並對許多這類疾病狀態中的臨床控制表現出有效之處。對各種疾病狀態中補體介導的組織損傷的重要性的逐漸增加的認識強調了對有效補體抑制藥物的需求。迄今為止,依庫麗單抗(Solaris®),一種針對C5的抗體,是僅有的已被批准人用的補體靶向藥物。然而,C5是位於補體系統“下游”的幾個效應物分子之一,並且對C5的阻斷並不抑制補體系統的活化。因此,補體活化的起始步驟的抑制劑將具有相對“下游”補體抑制劑的顯著優勢。
目前,普遍接受的是補體系統可通過三種截然不同的途徑被活化:經典途徑、凝集素途徑和替代途徑。經典途徑通常是由結合外源顆粒(即抗原)的宿主抗體組成的複合物而觸發,並且因此需要預先曝露於抗原以產生特異性抗體應答。因為經典途徑的活化取決於宿主先前的獲得性免疫應答,所以經典途徑是獲得性免疫系統的一部分。相反,凝集素途徑和替代途徑兩者不依賴於獲得性免疫,並且是先天性免疫系統的一部分。
補體系統的活化導致絲胺酸蛋白酶酶原(zymogen)的連續活化。經典途徑活化的第一步是特異性識別分子C1q與結合了抗原的IgG和IgM分子的結合。C1q與C1r和C1s絲胺酸蛋白酶酶原結合成稱為C1的複合物。當C1q與免疫複合物結合時,C1r的Arg-Ile位點進行自我蛋白水解切割,隨後是C1r介導的Cls切割和活化,其從而獲得切割C4和C2的能力。C4被切割成兩個片段,稱為C4a和C4b,並且,類似地,C2被切割成C2a和C2b。C4b片段能夠與鄰近的羥基或胺基形成共價鍵,並且通過與活化C2的C2a片段進行非共價相互作用而生成C3轉化酶(C4b2b)。C3轉化酶(C4b2b)通過蛋白水解切割成C3a和C3b亞成分而活化C3,導致C5轉化酶(C4b2a3b)的生成,其通過切割C5導致可以破壞細胞膜導致細胞裂解的膜攻擊複合物(結合C6、C7、C8和C9的C5b,也稱為“MAC”)的形成。C3和C4的活化形式(C3b和C4b)共價沉積在外源靶表面上,其被多種吞噬細胞上的補體受體所識別。
獨立地,補體系統通過凝集素途徑活化的第一步也是特異性識別分子的結合,其隨後是所結合的絲胺酸蛋白酶酶原的活化。然而,凝集素途徑中的識別分子包括一組統稱為凝集素的糖結合蛋白(甘露聚糖結合凝集素(MBL)、H-纖維膠凝蛋白(H-ficolin)、M-纖維膠凝蛋白、L-纖維膠凝蛋白和C型凝集素CL-11),而不是通過Clq來結合免疫複合物。參見J. Lu等人, Biochim. Biophys. Acta1572:387-400, (2002);Holmskov等人, Annu. Rev. Immunol. 21:547-578 (2003);Teh等人, Immunology101:225-232 (2000))。還參見J. Luet等人, Biochim Biophys Acta1572:387-400 (2002);Holmskov等人, Annu Rev Immunol21:547-578 (2003);Teh等人, Immunology101:225-232 (2000);Hansen等人, J. Immunol185(10):6096-6104 (2010)。
Ikeda等人首先證實,與C1q類似,MBL在與酵母甘露聚糖-包被的紅細胞結合後可以以依賴C4的方式使補體系統活化(Ikeda等人, J.Biol. Chem.262:7451-7454, (1987))。MBL是膠原凝集素蛋白家族的成員,是鈣依賴性凝集素,其與具有定向於吡喃糖環赤道面上的3-羥基和4-羥基的碳水化合物結合。因此MBL的重要配體是D-甘露糖和N-乙醯-D-葡糖胺,而不符合這種空間要求的碳水化合物則對MBL沒有可檢測的親和力(Weis等人, Nature360:127-134, (1992))。MBL和單價糖之間的相互作用是相當微弱的,解離常數通常在個位數毫摩爾的範圍內。MBL通過親合力,即通過同時與位置彼此靠近的多個單糖殘基相互作用來實現對聚糖配體特異性地緊密結合(Lee等人, Archiv. Biochem. Biophys.299:129-136, (1992))。MBL識別通常修飾微生物如細菌、酵母、寄生蟲和某些病毒的碳水化合物模式。相反,MBL不識別D-半乳糖和唾液酸,即倒數第二位和倒數第一位的糖,它們一般修飾哺乳動物血漿和細胞表面糖蛋白上存在的“成熟”複合糖綴合物。認為這種結合特異性促進“外源”表面的識別和有助於保護免於“自身活化”。然而,MBL確實以高親和力結合高甘露糖“前驅物”聚糖簇,這些簇位於被隔離在哺乳動物細胞的內質網和高爾基體內的N-連接的糖蛋白和糖脂上(Maynard等人, J. Biol. Chem. 257:3788-3794, (1982))。另外,已經證實MBL可以結合可曝露在壞死的和凋亡的細胞上的多核苷酸、DNA和RNA (Palaniyar等人, Ann. N.Y. Acad. Sci.,1010:467-470 (2003);Nakamura等人, J. Leuk. Biol.86:737-748 (2009))。因此,受損細胞是經由MBL結合的凝集素途徑活化的潛在目標。
纖維膠凝蛋白具有與MBL不同類型的凝集素結構域,稱為纖維蛋白原-樣結構域。纖維膠凝蛋白以不依賴Ca ++的方式來結合糖殘基。在人中,已經鑒定出三種類型的纖維膠凝蛋白(L-纖維膠凝蛋白、M-纖維膠凝蛋白和H-纖維膠凝蛋白)。L-纖維膠凝蛋白和H-纖維膠凝蛋白這兩種血清纖維膠凝蛋白共同對N-乙醯-D-葡糖胺具有特異性;然而,H-纖維膠凝蛋白也結合N-乙醯-D-半乳糖胺。L-纖維膠凝蛋白、H-纖維膠凝蛋白、CL-1I和MBL的糖特異性的差異意味著不同的凝集素可以是互補的,並且儘管有重疊,但是可靶向不同的糖綴合物。這個觀點得到了最近報導的支援,即在凝集素途徑的已知凝集素中,只有L-纖維膠凝蛋白與脂磷壁酸特異性結合,所述脂磷壁酸是在所有革蘭氏陽性菌上發現的一種細胞壁糖綴合物(Lynch等人, J. Immunol. 172:1198-1202, (2004))。除了乙醯化糖部分外,纖維膠凝蛋白還可結合乙醯化胺基酸和多肽(Thomsen等人, Mol. Immunol. 48(4):369-81 (2011))。膠原凝集素(即MBL)和纖維膠凝蛋白在胺基酸序列上沒有顯著的相似性。然而,這兩組蛋白質具有類似的結構域組構,且與C1q類似,裝配成寡聚結構,這樣就使得多位點結合的可能性最大化。
MBL的血清濃度在健康人群中是高度可變的,並且這在遺傳上是由MBL基因的啟動子和編碼區二者中的多態性/突變所控制。作為急性期蛋白,MBL的表達在炎症期間進一步上調。L-纖維膠凝蛋白在血清中存在的濃度與MBL的濃度類似。因此,凝集素途徑的L-纖維膠凝蛋白分支在強度上可能與MBL分支不相上下。MBL和纖維膠凝蛋白還可能作為調理素起作用,其允許吞噬細胞靶向MBL-和纖維膠凝蛋白-修飾的表面(參見Jack等人, J Leukoc Biol., 77(3):328-36 (2004), Matsushita和Fujita, Immunobiology, 205(4-5):490-7 (2002), Aoyagi等人, J Immunol,174(1):418-25(2005))。此調理素作用需要這些蛋白與吞噬細胞受體相互作用(Kuhlman等人, J. Exp. Med. 169:1733, (1989);Matsushita等人, J. Biol. Chem. 271:2448-54, (1996)),這些吞噬細胞受體的身份還未得到確定。
人MBL通過其膠原-樣結構域與獨特的C1r/C1s-樣絲胺酸蛋白酶(稱為MBL相關的絲胺酸蛋白酶(MASP))形成特異性和高親和力的相互作用。迄今為止已經描述了三種MASP。首先,鑒定出單一的酶“MASP”,並且其特徵是作為負責啟動補體級聯(即切割C2和C4)的酶(Matsushita等人, J Exp Med176(6):1497-1502 (1992);Ji等人, J. Immunol. 150:571-578, (1993))。隨後,確定MASP活性實際上是兩種蛋白酶MASP-1和MASP-2的混合物(Thiel等人, Nature 386:506-510, (1997))。然而,證實MBL-MASP-2複合物單獨就足以使補體活化(Vorup-Jensen等人, J. Immunol.165:2093-2100, (2000))。此外,只有MASP-2以高速切割C2和C4 (Ambrus等人, J. Immunol. 170:1374-1382, (2003))。因此,MASP-2是負責活化C4和C2以產生C3轉化酶C4b2a的蛋白酶。這是不同於經典途徑中C1複合物的顯著差異,在經典途徑中兩種特異性絲胺酸蛋白酶(C1r和C1s)協同作用導致了補體系統的活化。另外,已經分離出第三種新的蛋白酶MASP-3 (Dahl, M.R.等人, Immunity 15:127-35, 2001)。MASP-1和MASP-3是同一基因的可變剪接產物。
MASP與Cl複合物的酶成分C1r和C1s共用相同的結構域組構(Sim等人, Biochem. Soc. Trans. 28:545, (2000))。這些結構域包括N-末端C1r/C1s/海膽VEGF/骨形成蛋白(CUB)結構域、表皮生長因子-樣結構域、第二CUB結構域、串聯的補體調控蛋白結構域和絲胺酸蛋白酶結構域。與在C1蛋白酶中一樣,MASP-2的活化通過絲胺酸蛋白酶結構域附近的Arg-I1e鍵裂解而發生,其將酶分成二硫鍵連接的A鏈和B鏈,後者由絲胺酸蛋白酶結構域構成。
MBL還與MASP-2的可變剪接形式,稱為19 kDa MBL相關蛋白(MAp19)或者小MBL相關蛋白(sMAP)締合,所述蛋白缺乏MASP-2的催化活性(Stover, J. Immunol. 162:3481-90, (1999);Takahashi等人, Int. Immunol. 11:859-863, (1999))。MAp19包括MASP-2的前兩個結構域,其後接4個獨特胺基酸的額外序列。MAp19的功能尚不清楚(Degn等人, J Immunol. Methods, 2011)。MASP-1基因和MASP-2基因分別位於人的3號和1號染色體上(Schwaeble等人, Immunobiology 205:455-466, (2002))。
幾種證據表明存在不同的MBL-MASP複合物,且血清中大部分MASP不與MBL複合(Thiel等人, J. Immunol. 165:878-887, (2000))。H-纖維膠凝蛋白和L-纖維膠凝蛋白都與所有MASP結合,並且活化凝集素補體途徑,如MBL所為(Dahl等人, Immunity 15:127-35, (2001);Matsushita等人, J. Immunol. 168:3502-3506, (2002))。凝集素途徑和經典途徑都形成共同的C3轉化酶(C4b2a),並且這兩條途徑在這一步會合。
普遍認為凝集素途徑在未經感染的(naïve)宿主中的宿主抵抗感染的防禦中具有重要作用。MBL參與宿主防禦的強有力證據來自於對功能性MBL血清水準降低的患者的分析(Kilpatrick, Biochim. Biophys. Acta1572:401-413, (2002))。這些患者表現出對復發性細菌和真菌感染的易感性。這些症狀通常可見於生命早期,在易損性的表觀窗期間,因為從母體獲得的抗體效價降低,但處於完整的抗體應答譜(repertoire)發育之前。這種徵候群經常是由於MBL膠原部分的數個位點突變引起的,其干擾了MBL寡聚體的正確形成。然而,由於MBL可以作為不依賴於補體的調理素起作用,所以還不知道對感染的易感性增加的多大程度是由於受損的補體活化所致。
與經典途徑和凝集素途徑相反,此前沒有發現替代途徑中完成識別功能的引發劑,而在其他兩種途徑中是C1q和凝集素來完成識別功能的。目前普遍接受的是,替代途徑自發經歷低水準的周轉活化(turnover activation),其可以容易地在外來表面或其他異常表面(細菌、酵母、病毒感染的細胞或者受損組織)上放大,所述表面缺少保持受控的自發補體活化的適當分子元件。有四種血漿蛋白直接參與了替代途徑的活化:C3、因子B和D,和備解素。
儘管大量證據表明經典補體途徑和替代補體途徑兩者都涉及非感染性人類疾病的發病機制,但是對凝集素途徑作用的評價才剛剛開始。最近研究提供的證據表明,凝集素途徑的活化可負責缺血/再灌注損傷中補體活化和相關炎症。Collard等人(2000)報告受到氧化應激的培養的內皮細胞結合MBL,且在曝露於人血清時顯示出C3沉積(Collard等人, Am. J. Pathol. 156:1549-1556, (2000))。此外,用封閉性抗MBL單株抗體處理人血清抑制了MBL結合和補體活化。將這些發現擴展到心肌缺血-再灌注大鼠模型上,其中比起用對照抗體處理的大鼠,用針對大鼠MBL的封閉性抗體處理的大鼠在冠狀動脈閉塞時顯示心肌損傷顯著較輕(Jordan等人, Circulation 104:1413-1418, (2001))。尚不清楚氧化應激後MBL與血管內皮結合的分子機制;最近的研究表明,氧化應激後凝集素途徑的活化可能是由MBL與血管內皮細胞角蛋白結合而介導,而不是與糖綴合物結合而介導(Collard等人, Am. J. Pathol. 159:1045-1054, (2001))。其他研究已表明缺血/再灌注損傷的發病機制中的經典途徑和替代途徑,並且凝集素途徑在這種疾病中的作用仍然存在爭議(Riedermann, N.C.等人, Am. J. Pathol. 162:363-367, 2003)。
近期的研究顯示,MASP-1和MASP-3將替代途徑活化酶因子D從其酶原形式轉化成其酶活性形式(參見Takahashi M.等人, J Exp Med207(1):29-37 (2010);Iwaki等人, J. Immunol. 187:3751-58 (2011))。此過程的生理重要性通過在MASP-1/3-缺陷小鼠的血漿中不存在替代途徑功能活性而得以強調。對於替代途徑,需要由天然C3蛋白水解生成的C3b發揮作用。由於替代途徑C3轉化酶(C3bBb)含有C3b作為必需亞基,因此關於經由替代途徑的第一個C3b來源的疑問已提出了令人困擾的問題,且促使了相當多的研究工作。
C3屬於含有被稱為硫酯鍵的極少的翻譯後修飾的蛋白質家族(與C4和α-2巨球蛋白一起)。硫酯基團由麩胺醯胺組成,其末端羰基與距離三個胺基酸外的半胱胺酸的巰基形成共價硫酯連接。該鍵不穩定,且親電子的穀胺醯-硫酯可與親核部分例如羥基或胺基反應並從而與其他分子形成共價鍵。當被隔離在完整C3的疏水口袋內部時,硫酯鍵是相當穩定的。然而,C3被蛋白水解切割成C3a和C3b,導致C3b上高反應性的硫酯鍵曝露出來,並隨著通過包括羥基或胺基的鄰近部分的親核攻擊,C3b與靶共價結合。除了充分記載的其在C3b與補體靶共價結合中的作用外,還認為C3硫酯具有觸發替代途徑的關鍵作用。根據普遍接受的“tick-over理論”,替代途徑由液相轉化酶iC3Bb的生成所啟動,iC3Bb由C3與水解的硫酯(iC3;C3 (H 2O))和因子B形成(Lachmann, P.J.等人, Springer Semin. Immunopathol. 7:143-162, (1984))。C3b-樣C3 (H 2O)由天然C3經蛋白質中內部硫酯的緩慢自發水解而產生(Pangburn, M.K.,等人, J. Exp. Med. 154:856-867, 1981)。通過C3(H 2O)Bb轉化酶的活性,C3b分子沉積在靶表面,從而啟動替代途徑。
在本文所述的發現之前,對替代途徑活化的引發劑的瞭解甚少。認為活化劑包括酵母細胞壁(酵母聚糖)、許多純的多糖、兔紅細胞、某些免疫球蛋白、病毒、真菌、細菌、動物腫瘤細胞、寄生蟲和受損細胞。這些活化劑所共有的唯一特徵是碳水化合物的存在,但是碳水化合物結構的複雜性和多樣性使得難以確定被識別的共用分子決定子。廣泛接受的是替代途徑活化通過此途徑的抑制性調節成分之間的精細平衡控制,所述成分例如因子H、因子I、DAF和CR1和備解素,後者是替代途徑唯一的陽性調節因子(參見Schwaeble W.J.和Reid K.B., Immunol Today20(1):17-21 (1999))。
除了上文所述的明顯的未調節的活化機制,替代途徑還可以為凝集素/經典途徑C3轉化酶(C4b2a)提供強力的放大環,因為任何生成的C3b都可以與因子B參與形成額外的替代途徑C3轉化酶(C3bBb)。替代途徑C3轉化酶通過結合備解素被穩定化。備解素使替代途徑C3轉化酶的半衰期延長六到十倍。向替代途徑C3轉化酶添加C3b導致替代途徑C5轉化酶的形成。
一直以來認為所有三種途徑(即經典、凝集素和替代途徑)會合於C5,它被切割形成具有多種促炎作用的產物。會合的途徑被稱為末端補體途徑。C5a是最有效的過敏毒素,引起平滑肌和血管緊張度以及血管通透性的改變。它還是嗜中性粒細胞和單核細胞兩者的強有力的趨化因子和活化因子。C5a介導的細胞活化能夠通過誘導釋放多種另外的炎症介質來顯著放大炎症反應,另外的炎症介質包括細胞因子、水解酶、花生四烯酸代謝物和活性氧類。C5裂解導致了C5b-9的形成,它也被稱為膜攻擊複合物(MAC)。目前強有力的證據表明,亞裂解的MAC沉積除了起到作為裂解的孔-形成複合物的作用外,還可能還在炎症中發揮重要作用。
除了其在免疫防禦中的重要作用之外,補體系統還在很多臨床病況中導致組織損傷。因此,對開發治療有效的補體抑制劑以防止這些不良作用而言存在著迫切需要。
在一個方面,本發明提供分離的單株抗體或其抗原結合片段,其以高親和力(具有小於500pM的K D)特異性結合人MASP-3的絲胺酸蛋白酶結構域(SEQ ID NO: 2的胺基酸殘基450至728),其中所述抗體或其抗原結合片段抑制替代途徑補體活化。在一些實施方案中,抗體或抗原結合片段的特徵在於以下特徵中的至少一種或多種:(a)抑制前因子D成熟;(b)不結合人MASP-1 (SEQ ID NO: 8);(c)在哺乳動物對象中以約1:1至約2.5:1 (MASP-3靶標與mAb)的摩爾比抑制替代途徑;(d)不抑制經典途徑;(e)抑制溶血和/或調理作用;(f)抑制MASP-3絲胺酸蛋白酶底物特異性切割;(g)減少溶血或C3切割和C3b表面沉積的減少;(h)減少在活化表面上的因子B和/或Bb沉積;(i)相對於前因子D,降低活性因子D的靜息水準(在循環中,並且沒有實驗性添加活化表面);(j)回應於活化表面降低相對於前因子D的活性因子D的水準;(k)降低流體相Ba、Bb、C3b或C3a的靜息和表面誘導水準的產生;和/或(l)減少因子P沉積。在一些實施方案中,段落1或2的分離的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段特異性結合位於人MASP-3的絲胺酸蛋白酶結構域內的表位元,其中所述表位位於以下中的至少一種或多種內:VLRSQRRDTTVI (SEQ ID NO: 9)、TAAHVLRSQRRDTTV(SEQ ID NO: 10)、DFNIQNYNHDIALVQ(SEQ ID NO: 11)、PHAECKTSYESRS (SEQ ID NO: 12)、GNYSVTENMFC (SEQ ID NO: 13)、VSNYVDWVWE (SEQ ID NO: 14)和/或VLRSQRRDTTV (SEQ ID NO: 15)。在一些實施方案中,所述抗體或其抗原結合片段結合以下中的至少一種內的表位:ECGQPSRSLPSLV (SEQ ID NO: 16)、RNAEPGLFPWQ(SEQ ID NO: 17);KWFGSGALLSASWIL (SEQ ID NO: 18);EHVTVYLGLH (SEQ ID NO: 19);PVPLGPHVMP (SEQ ID NO: 20);APHMLGL (SEQ ID NO: 21);SDVLQYVKLP (SEQ ID NO: 22);和/或AFVIFDDLSQRW(SEQ ID NO: 23)。
在另一個方面,本發明提供結合MASP-3的分離的抗體或其抗原結合片段,其包含:(a)重鏈可變區,其包含如SEQ ID NO: 209 (XXDIN,其中位置1的X是S或T,且其中位置2的X是N或D)所示的HC-CDR1;如SEQ ID NO: 210 (WIYPRDXXXKYNXXFXD,其中位置7的X是G或D;位置8的X是S、T或R;位置9的X是I或T;位置13的X是E或D;位置14的X是K或E;位置16的X是T或K)所示的HC-CDR2;和如SEQ ID NO: 211 (XEDXY,其中位置1的X是L或V,且其中位置4的X是T或S)所示的HC-CDR3;和(b)輕鏈可變區,其包含如SEQ ID NO: 212 (KSSQSLLXXRTRKNYLX,其中位置8的X是N、I、Q或A;其中位置9的X是S或T;且其中位置17的X是A或S)所示的LC-CDR1;如SEQ ID NO: 144 (WASTRES)所示的LC-CDR2和如SEQ ID NO: 146 (KQSYNLYT)所示的LC-CDR3。
在另一個方面,本發明提供結合MASP-3的分離的抗體或其抗原結合片段,其包含:(a)重鏈可變區,其包含如SEQ ID NO: 213 (SYGXX,其中位置4的X是M或I,且其中位置5的X是S或T)所示的HC-CDR1;如SEQ ID NO: 74所示的HC-CDR2;和如SEQ ID NO: 214 (GGXAXDY,其中位置3的X是E或D,且其中位置5的X是M或L)所示的HC-CDR3;和(b)輕鏈可變區,其包含如SEQ ID NO: 215 (KSSQSLLDSXXKTYLX,其中位置10的X是D、E或A;其中位置11的X是G或A;且其中位置16的X是N或S)所示的LC-CDR1;如SEQ ID NO: 155所示的LC-CDR2;和如SEQ ID NO: 216  (WQGTHFPXT,其中位置8的X是W或Y)所示的LC-CDR3。
在另一個方面,本發明提供結合MASP-3的分離的抗體或其抗原結合片段,其包含:(a)重鏈可變區,其包含如SEQ ID NO: 84 (GKWIE)所示的HC-CDR1;如SEQ ID NO: 86 (EILPGTGSTNYNEKFKG)或SEQ ID NO: 275 (EILPGTGSTNYAQKFQG)所示的HC-CDR2;和如SEQ ID NO: 88 (SEDV)所示的HC-CDR3;和(b)輕鏈可變區,其包含如SEQ ID NO: 142 (KSSQSLL NSRTRKNYLA)、SEQ ID NO: 257 (KSSQSLL QSRTRKNYLA);SEQ ID NO: 258 (KSSQSLL ASRTRKNYLA);或SEQ ID NO: 259 (KSSQSLL NTRTRKNYLA)所示的LC-CDR1,如SEQ ID NO: 144 (WASTRES)所示的LC-CDR2;和如SEQ ID NO: 161 (KQSYNIPT)所示的LC-CDR3。
在另一個方面,本發明提供結合MASP-3的分離的抗體或其抗原結合片段,其包含:(a)重鏈可變區,其包含如SEQ ID NO: 91 (GYWIE)所示的HC-CDR1;如SEQ ID NO: 93 (EMLPGSGSTHYNEKFKG)所示的HC-CDR2,和如SEQ ID NO: 95 (SIDY)所示的HC-CDR3;和(b)輕鏈可變區,其包含如SEQ ID NO: 163 (RSSQSLVQSNGNTYLH)所示的LC-CDR1,如SEQ ID NO: 165 (KVSNRFS)所示的LC-CDR2和如SEQ ID NO: 167 (SQSTHVPPT)所示的LC-CDR3。
在另一個方面,本發明提供結合MASP-3的分離的抗體或其抗原結合片段,其包含: (a)重鏈可變區,其包含如SEQ ID NO: 109 (RVHFAIRDTNYWMQ)所示的HC-CDR1;如SEQ ID NO: 110 (AIYPGNGDTSYNQKFKG)所示的HC-CDR2;如SEQ ID NO: 112 (GSHYFDY)所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 182 (RASQSIGTSIH)所示的LC-CDR1,如SEQ ID NO: 184 (YASESIS)所示的LC-CDR2和如SEQ ID NO: 186 (QQSNSWPYT)所示的LC-CDR3;或 (b)重鏈可變區,其包含如SEQ ID NO: 125 (DYYMN)所示的HC-CDR1,如SEQ ID NO: 127 (DVNPNNDGTTYNQKFKG)所示的HC-CDR2;如SEQ ID NO: 129 (CPFYYLGKGTHFDY)所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 196 (RASQDISNFLN)所示的LC-CDR1,如SEQ ID NO: 198 (YTSRLHS)所示的LC-CDR2和如SEQ ID NO: 200 (QQGFTLPWT)所示的LC-CDR3;或 (c)重鏈可變區,其包含如SEQ ID NO: 137所示的HC-CDR1,如SEQ ID NO: 138所示的HC-CDR2,如SEQ ID NO: 140所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 206所示的LC-CDR1,如SEQ ID NO: 207所示的LC-CDR2,和如SEQ ID NO: 208所示的LC-CDR3;或 (d)重鏈可變區,其包含如SEQ ID NO: 98所示的HC-CDR1,如SEQ ID NO: 99所示的HC-CDR2,如SEQ ID NO: 101所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 169所示的LC-CDR1,如SEQ ID NO: 171所示的LC-CDR2,和如SEQ ID NO: 173所示的LC-CDR3;或 (e)重鏈可變區,其包含如SEQ ID NO: 103所示的HC-CDR1,如SEQ ID NO: 105所示的HC-CDR2,如SEQ ID NO: 107所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 176所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 193所示的LC-CDR3;或 (f)重鏈可變區,其包含如SEQ ID NO: 114所示的HC-CDR1,如SEQ ID NO: 116所示的HC-CDR2,如SEQ ID NO: 118所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 188所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 190所示的LC-CDR3;或 (g)重鏈可變區,其包含如SEQ ID NO: 114所示的HC-CDR1,如SEQ ID NO: 121所示的HC-CDR2,如SEQ ID NO: 123所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 191所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 193所示的LC-CDR3。
在另一個方面,本發明提供抑制哺乳動物中的替代途徑補體活化的方法,所述方法包括向有此需要的哺乳動物物件施用足以抑制哺乳動物中的替代途徑補體途徑活化的量的包含高親和力MASP-3抑制性抗體或其抗原結合片段的組合物。在該方法的一個實施方案中,所述抗體或其抗原結合片段以小於500pM的親和力結合MASP-3。在該方法的一個實施方案中,作為施用包含抗體或抗原結合片段的組合物的結果,在哺乳動物物件中存在以下中的一種或多種:(a)因子D成熟的抑制;(b)當向對象以約1:1至約2.5:1(MASP-3靶標與mAb)的摩爾比施用時替代途徑的抑制;(c)經典途徑不被抑制;(d)溶血和/或調理作用的抑制;(e)溶血的減少或C3切割和C3b表面沉積的減少;(f)在活化表面上的因子B和Bb沉積的減少;(g)相對於前因子D,降低活性因子D的靜息水準(在循環中,並且沒有實驗性添加活化表面);(h)回應於活化表面降低相對於前因子D的活性因子D的水準;和/或(i)流體相Ba、Bb、C3b或C3a的靜息和表面誘導水準的產生的減少。在該方法的一個實施方案中,所述組合物包含以約1:1至約2.5:1(MASP-3靶標與mAb)的摩爾比抑制替代途徑的MASP-3抑制性抗體。
在另一個方面,本發明提供在患有陣發性夜間血紅蛋白尿(PNH)、年齡相關性黃斑變性(AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎或貝切特氏病的對象中抑制MASP-3-依賴性補體活化的方法。所述方法包括向所述物件施用包含有效抑制MASP-3-依賴性補體活化的量的高親和力MASP-3抑制劑的組合物的步驟。在一些實施方案中,所述方法進一步包括向所述物件施用包含MASP-2抑制劑的組合物。
在另一個方面,本發明提供製備用於在有此需要的活物件中抑制MASP-3-依賴性補體活化作用的藥物的方法,其包括將治療有效量的MASP-3抑制劑在藥物載體中組合。在一些實施方案中,MASP-3抑制劑是高親和力MASP-3抑制性抗體。在一些實施方案中,根據本發明的該方面的方法包括製備用於在患有或有風險發展選自以下疾病或病症的物件中抑制MASP-3-依賴性補體活化作用的藥物:陣發性夜間血紅蛋白尿(PNH)、年齡相關性黃斑變性(AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎或貝切特氏病。在一些實施方案中,所述方法進一步包括將治療有效量的MASP-2抑制劑組合到包含MASP-3抑制劑的藥物中或將治療有效量的MASP-2抑制劑與包含MASP-3抑制劑的藥物組合。
在另一個方面,本發明提供包含生理上可接受的載體和結合人類MASP-3且抑制替代途徑補體活化的高親和力MASP-3抑制性單株抗體或其抗原結合片段的藥物組合物。在一個實施方案中,所述高親和力MASP-3抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2和(iii)包含SEQ ID NO: 161的VLCDR3。
在另一個方面,本發明提供用於治療患有或有風險發展陣發性夜間血紅蛋白尿(PNH)的物件的方法,其包括向物件施用包含有效量的結合人MASP-3且抑制替代途徑補體活化的高親和力單株抗體或其抗原結合片段的藥物組合物以治療物件中的PNH或降低物件中的PNH的風險。在一個實施方案中,抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2和(iii)包含SEQ ID NO: 161的VLCDR3。在一些實施方案中,所述藥物組合物增加患有PNH的物件中的紅血細胞的存活。在一些實施方案中,其中患有或有風險發展PNH的物件表現出選自以下的一種或多種症狀:(i)低於正常水準的血紅蛋白,(ii)低於正常水準的血小板;(iii)高於正常水準的網織紅細胞,和(iv)高於正常水準的膽紅素。在一些實施方案中,將藥物組合物全身性(例如,皮下、肌肉內、靜脈內、動脈內或作為吸入劑)施用於患有或有風險發展PNH的物件。在一些實施方案中,患有或有風險發展PNH的物件先前已經經歷或正在經歷用抑制補體蛋白C5的切割的末端補體抑制劑的治療。在一些實施方案中,所述方法進一步包括向物件施用抑制補體蛋白C5的切割的末端補體抑制劑。在一些實施方案中,所述末端補體抑制劑是人源化抗C5抗體或其抗原結合片段。在一些實施方案中,所述末端補體抑制劑是依庫麗單抗。
在另一個方面,本發明提供用於治療患有或有風險發展關節炎(炎性和非炎性關節炎)的物件的方法,其包括向物件施用包含有效量的結合人MASP-3且抑制替代途徑補體活化的高親和力單株抗體或其抗原結合片段的藥物組合物以治療物件中的關節炎或降低物件中的關節炎的風險。在一個實施方案中,所述抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2和(iii)包含SEQ ID NO: 161的VLCDR3。在一些實施方案中,所述物件患有選自骨關節炎、類風濕性關節炎、幼年型類風濕性關節炎、強直性脊柱炎、貝切特氏病、感染相關關節炎和銀屑病關節炎的關節炎。在一些實施方案中,將藥物組合物全身性(例如,皮下、肌肉內、靜脈內、動脈內或作為吸入劑)施用。在一些實施方案中,將藥物組合物局部施用於關節。
如本文所述,可在本發明的藥物組合物中使用高親和力MASP-3抑制性抗體的多個實施方案,任選組合MASP-2抑制劑的多個實施方案。
如本文所述,本發明的藥物組合物可以根據本發明的方法來使用。
參考以下發明詳述和附圖,本文所述的發明的這些和其他方面和實施方案將是顯而易見的。本說明書涉及的所有美國專利、美國專利申請公開、美國專利申請、外國專利、外國專利申請和非專利出版物都通過引用以其整體併入本文中,如同各自單獨併入本文中。
序列表的描述 SEQ ID NO: 1 人MASP-3 cDNA SEQ ID NO: 2 人MASP-3蛋白(具有前導區) SEQ ID NO: 3 小鼠MASP-3蛋白(具有前導區) SEQ ID NO: 4 大鼠MASP-3蛋白 SEQ ID NO: 5 雞MASP-3蛋白 SEQ ID NO: 6 兔MASP-3蛋白 SEQ ID NO: 7 食蟹猴MASP-3蛋白 SEQ ID NO: 8 人MASP-1蛋白(具有前導區) 人MASP-3 SP結構域肽片段: SEQ ID NO: 9 (人MASP-3 w/前導區的aa 498-509) SEQ ID NO: 10 (人MASP-3 w/前導區的aa 494-508) SEQ ID NO: 11 (人MASP-3 w/前導區的aa 544-558) SEQ ID NO: 12 (人MASP-3 w/前導區的aa 626-638) SEQ ID NO: 13 (人MASP-3 w/前導區的aa 639-649) SEQ ID NO: 14 (人MASP-3 w/前導區的aa 704-713) SEQ ID NO: 15 (人MASP-3 w/前導區的aa 498-508) SEQ ID NO: 16 (人MASP-3 w/前導區的aa 435-447) SEQ ID NO: 17 (人MASP-3 w/前導區的aa 454-464) SEQ ID NO: 18 (人MASP-3 w/前導區的aa 479-493) SEQ ID NO: 19 (人MASP-3 w/前導區的aa 514-523) SEQ ID NO: 20 (人MASP-3 w/前導區的aa 562-571) SEQ ID NO: 21 (人MASP-3 w/前導區的aa 583-589) SEQ ID NO: 22 (人MASP-3 w/前導區的aa 614-623) SEQ ID NO: 23 (人MASP-3 w/前導區的aa 667-678) SEQ ID NO: 24-39: 重鏈可變區-小鼠親本 SEQ ID NO: 24 4D5_VH SEQ ID NO: 25 1F3_VH SEQ ID NO: 26 4B6_VH SEQ ID NO: 27 1A10_VH SEQ ID NO: 28 10D12_VH SEQ ID NO: 29 35C1_VH SEQ ID NO: 30 13B1_VH SEQ ID NO: 31 1G4_VH SEQ ID NO: 32 1E7_VH SEQ ID NO: 33 2D7_VH SEQ ID NO: 34 49C11_VH SEQ ID NO: 35 15D9_VH SEQ ID NO: 36 2F5_VH SEQ ID NO: 37 1B11_VH SEQ ID NO: 38 2F2_VH SEQ ID NO: 39 11B6_VH SEQ ID NO: 40-54: 輕鏈可變區-小鼠親本 SEQ ID NO: 40 4D5_VL SEQ ID NO: 41 1F3_VL SEQ ID NO: 42 4B6/1A10_VL SEQ ID NO: 43 10D12_VL SEQ ID NO: 44 35C1_VL SEQ ID NO: 45 13B1_VL SEQ ID NO: 46 1G4_VL SEQ ID NO: 47 1E7_VL SEQ ID NO: 48 2D7_VL SEQ ID NO: 49 49C11_VL SEQ ID NO: 50 15D9_VL SEQ ID NO: 51 2F5_VL SEQ ID NO: 52 1B11_VL SEQ ID NO: 53 2F2_VL SEQ ID NO: 54 11B6_VL SEQ ID NO: 55-140:來自小鼠親本MASP-3 mAb的重鏈構架區(FR)和互補決定區(CDR) SEQ ID NO: 141-208:來自小鼠親本MASP-3 mAb的輕鏈FR和CDR SEQ ID NO: 209-216:CDR共有序列 SEQ ID NO: 217-232:編碼重鏈可變區(小鼠親本)的DNA SEQ ID NO: 233-247:編碼輕鏈可變區(小鼠親本)的DNA SEQ ID NO: 248:人源化4D5_VH-14 (h4D5_VH-14)重鏈可變區 SEQ ID NO: 249:人源化4D5_VH-19 (h4D5_VH-19)重鏈可變區 SEQ ID NO: 250:人源化4D5_VL-1 (h4D5_VL-1)輕鏈可變區 SEQ ID NO: 251:人源化10D12_VH-45 (h10D12_VH-45)重鏈可變區 SEQ ID NO: 252:人源化10D12_VH-49 (h10D12_VH-49)重鏈可變區 SEQ ID NO: 253:人源化10D12_VL-21 (h10D12-VL-21)輕鏈可變區 SEQ ID NO: 254:人源化13B1_VH-9 (h13B1-VH-9)重鏈可變區 SEQ ID NO: 255:人源化13B1_VH-10 (h13B1-VH-10)重鏈可變區 SEQ ID NO: 256:人源化13B1-VL-1 (h13B1-VL-1)輕鏈可變區 SEQ ID NO: 257:4D5和13B1 LC-CDR1-NQ SEQ ID NO: 258:4D5和13B1 LC-CDR1-NA SEQ ID NO: 259:4D5和13B1 LC-CDR1-ST SEQ ID NO: 260:4D5、13B1親本和變體的共有LC-CDR1 SEQ ID NO: 261:10D12 LC-CDR1-DE SEQ ID NO: 262:10D12 LC-CDR1-DA SEQ ID NO: 263:10D12 LC-CDR1-GA SEQ ID NO: 264-277:人源化4D5、10D12和13B1的HC FR和CDR SEQ ID NO: 278:h4D5_VL-1-NA SEQ ID NO: 279:h10D12_VL-21-GA SEQ ID NO: 280:h13B1_VL-1-NA SEQ ID NO: 281-287 人源化4D5、10D12和13B1的LC FR和CDR SEQ ID NO: 288-293:編碼人源化4D5、10D12、13B1重鏈可變區和變體的DNA SEQ ID NO: 294-299:編碼人源化4D5、10D12、13B1輕鏈可變區和變體的DNA SEQ ID NO: 300:親本DTLacO重鏈可變區(VH)多肽 SEQ ID NO: 301:MASP-3特異性殖株M3J5重鏈可變區(VH)多肽 SEQ ID NO: 302:MASP-3特異性殖株M3M1重鏈可變區(VH)多肽 SEQ ID NO: 303:親本DTLacO輕鏈可變區(VL)多肽 SEQ ID NO: 304:MASP-3特異性殖株M3J5輕鏈可變區(VL)多肽 SEQ ID NO: 305:MASP-3特異性殖株M3M1輕鏈可變區(VL)多肽 SEQ ID NO: 306:MASP-3殖株D14重鏈可變區(VH)多肽 SEQ ID NO: 307:MASP-3殖株D14輕鏈可變區(VL)多肽 SEQ ID NO: 308:MASP-1殖株1E10重鏈可變區(VH)多肽 SEQ ID NO: 309:MASP-1殖株1E10輕鏈可變區(VL)多肽 SEQ ID NO: 310:人IgG4恒定區 SEQ ID NO: 311:具有S228P突變的人IgG4恒定區 SEQ ID NO: 312:具有S228P突變_X的人IgG4恒定區 SEQ ID NO: 313:人IgK恒定區 詳述 I. 定義
除非本文明確規定,否則本文使用的所有術語都具有如本發明領域的普通技術人員所理解的相同含義。當這些術語用於說明書和申請專利範圍以描述本發明時,提供下列定義以澄清所述術語。
如本文所用,凝集素途徑效應物分支(arm) 1 (“LEA-1”)是指由MASP-3所致的因子B和因子D的凝集素-依賴性活化。
如本文所用,凝集素途徑效應物分支2 (“LEA-2”)是指MASP-2-依賴性補體活化。
如本文所用,術語“MASP-3-依賴性補體活化”包含2部分:(i) 因子B和因子D的凝集素MASP-3-依賴性活化,其包括在LEA-1-介導的補體活化中,在Ca ++存在時發生,通常導致C3bB轉化為C3bBb和前因子D轉化為因子D;和(ii) 因子B和因子D的凝集素-非依賴性轉化,其可以發生在Ca ++不存在時,通常導致C3bB轉化為C3bBb和前因子D轉化為因子D。已經確定LEA-1-介導的補體活化以及因子B和因子D的凝集素-非依賴性轉化導致調理作用和/或細胞裂解。儘管不希望受到任何特定理論的束縛,但認為僅當多個C3b分子靠近地締合和結合時,C3bBb C3轉化酶才改變其底物特異性並切割C5為替代途徑C5轉化酶,即C3bBb(C3b)n。
如本文所用,術語“MASP-2-依賴性補體活化”在本文中也稱為LEA-2-介導的補體活化,包括MASP-2凝集素-依賴性活化,其在Ca ++存在時發生,導致凝集素途徑C3轉化酶C4b2a的形成和在C3切割產物C3b積累後隨之導致C5轉化酶C4b2a(C3b)n的形成,其被確定導致調理作用和/或細胞裂解。
如本文所用,術語“替代途徑的傳統理解”也稱為“傳統的替代途徑”是指先於本文所述的發現的替代途徑,即例如由以下觸發的補體活化:來自真菌和酵母細胞壁的酵母聚糖,來自革蘭氏陰性外膜的脂多糖(LPS),和兔紅細胞,以及多種純的多糖、病毒、細菌、動物腫瘤細胞、寄生蟲和受損細胞,並且在傳統上一直認為是由自補體因子C3自發蛋白水解產生的C3b而引起的。如本文所用,“傳統的替代途徑”(在本文中也稱為“替代途徑”)的活化在Mg ++/EGTA緩衝液中(即在Ca ++不存在時)測定。
如本文所用,術語“凝集素途徑”是指通過血清和非血清糖-結合蛋白(包括甘露聚糖-結合凝集素(MBL)、CL-11和纖維膠凝蛋白(H-纖維膠凝蛋白、M-纖維膠凝蛋白或L-纖維膠凝蛋白))的特異性結合而發生的補體活化。如本文所述,本發明人已經發現凝集素途徑被兩個效應物分支驅動:凝集素途徑效應物分支1 (LEA-1),其現在已知是MASP-3-依賴性的;和凝集素途徑效應物分支2 (LEA-2),其是MASP-2-依賴性的。如本文所用,凝集素途徑的活化使用含有Ca ++的緩衝液來評價。
如本文所用,術語“經典途徑”是指由抗體與外源顆粒結合而觸發的並且需要結合識別分子C1q的補體活化。
如本文所用,術語“HTRA-1”是指絲胺酸肽酶高溫需要絲胺酸蛋白酶A1。
如本文所用,術語“MASP-3抑制劑”是指直接抑制MASP-3-依賴性補體活化的任何試劑,包括與MASP-3結合或直接與MASP-3相互作用的試劑,包括MASP-3抗體和其MASP-3結合片段、天然的和合成的肽、競爭性底物、小分子、表達抑制劑和分離的天然抑制劑,並且也包括與MASP-3競爭性結合在凝集素途徑中的另一識別分子(例如MBL、CL-11、H-纖維膠凝蛋白、M-纖維膠凝蛋白或L-纖維膠凝蛋白)的肽。在一個實施方案中,MASP-3抑制劑對MASP-3具有特異性,並且不結合MASP-1或MASP-2。直接抑制MASP-3的抑制劑可稱為直接MASP-3抑制劑(例如MASP-3抗體),而間接抑制MASP-3的抑制劑可稱為間接MASP-3抑制劑(例如抑制MASP-3活化的MASP-1抗體)。直接MASP-3抑制劑的實例是MASP-3特異性抑制劑,例如特異性地與人MASP-3 (SEQ ID NO: 2)的一部分結合的MASP-3抑制劑,其結合親和力比補體系統中的其他成分高至少10倍。直接MASP-3抑制劑的另一個實例是高親和力MASP-3抗體,其特異性地與人MASP-3 (SEQ ID NO: 2)的絲胺酸蛋白酶結構域結合,其親和力為小於500pM,且不與MASP-1 (SEQ ID NO: 8)結合。在一個實施方案中,MASP-3抑制劑間接抑制MASP-3活性,例如,MASP-3活化抑制劑,包括MASP-1-介導的MASP-3活化抑制劑(例如MASP-1抗體或其MASP-1結合片段、天然的和合成的肽、小分子、表達抑制劑和分離的天然抑制劑,並且也包括與MASP-1競爭性結合至MASP-3的肽)。在一個優選實施方案中,MASP-3抑制劑例如抗體或其抗原結合片段或抗原結合肽抑制MASP-3-介導的因子D成熟。在另一個實施方案中,MASP-3抑制劑抑制MASP-3-介導的因子B活化。用於本發明方法的MASP-3抑制劑可以降低MASP-3-依賴性補體活化達大於10%、例如大於20%、大於50%或大於90%。在一個實施方案中,MASP-3抑制劑降低MASP-3-依賴性補體活化達大於90% (即導致MASP-3補體活化僅為10%或更低)。預計MASP-3抑制將會全部或部分地阻斷LEA-1-相關的細胞裂解和調理作用以及因子B和因子D相關的細胞裂解和調理作用的凝集素-非依賴性轉化兩者。
在一個實施方案中,高親和力MASP-3抑制性抗體以小於500pM(例如,小於250 pM、小於100pM、小於50pM或小於10pM)的親和力結合MASP-3的絲胺酸蛋白酶結構域(SEQ ID NO: 2的胺基酸殘基450至728),並且將哺乳動物對象的血液中補體活化的替代途徑抑制至少50%(例如,至少60%、或至少70 %、或至少80%、或至少90%、或至少95%或更大)。
“抗體”是能夠通過位於免疫球蛋白分子的可變區(本文也稱為可變結構域)中的至少一個表位識別位點特異性結合靶標、例如多肽的免疫球蛋白分子。
如本文所用,術語“抗體”包括這樣的抗體及其抗體片段:其得自產生抗體的任何哺乳動物(如小鼠、大鼠、兔和包括人在內的靈長類動物),或得自雜交瘤、噬菌體選擇、重組表達或轉基因動物(或產生抗體或抗體片段的其他方法),並與靶多肽(例如MASP-1、MASP-2或MASP-3多肽或其部分)特異性結合。不意欲根據抗體來源或其製備方式(例如通過雜交瘤、噬菌體選擇、重組表達、轉基因動物、肽合成等)來限制術語“抗體”。示例性的抗體包括多殖株抗體、單株抗體和重組抗體;泛-特異性、多特異性抗體(如雙特異性抗體、三特異性抗體);人源化抗體;鼠抗體;嵌合的小鼠-人、小鼠-靈長類、靈長類-人單株抗體;和抗-獨特型抗體,並且可以是任何完整的抗體或其片段。如本文所用,術語“抗體”不僅包括完整的多殖株或單株抗體,而且包括其片段,例如單一可變區抗體(dAb)、或其他已知抗體片段例如Fab、Fab'、F(ab') 2、Fv等、單鏈(ScFv)、其合成變體、天然存在的變體,包括具有所需特異性的抗原-結合片段的抗體部分的融合蛋白、人源化抗體、嵌合抗體、雙特異性抗體以及包含所需特異性的抗原-結合位點或片段(表位識別位點)的免疫球蛋白分子的任何其他修飾構型。
“單株抗體”是指同質抗體群,其中所述單株抗體由在選擇結合表位中涉及的胺基酸(天然存在的和非-天然存在的)組成。單株抗體對靶抗原是高度特異性的。術語“單株抗體”不僅包括完整的單株抗體和全長單株抗體,而且包括其片段(例如Fab、Fab'、F(ab') 2、Fv)、單鏈(ScFv)、其變體、包括抗原結合部分的融合蛋白、人源化單株抗體、嵌合單株抗體、以及包括具有所需特異性和結合表位的能力的抗原結合片段(表位識別位點)的免疫球蛋白分子的任何其他修飾構型。不意欲根據抗體來源或其製備方式(例如通過雜交瘤、噬菌體選擇、重組表達、轉基因動物等)來限制它。該術語包括完整免疫球蛋白以及根據以上“抗體”定義所描述的片段等。
如本文所用,術語“抗體片段”是指是指得自或涉及全長抗體(例如MASP-1、MASP-2或MASP-3的抗體)的一部分,一般包括其抗原結合區或其可變區。抗體片段的說明性實例包括Fab、Fab'、F(ab)2、F(ab')2和Fv片段、scFv片段、雙抗體、線性抗體、單鏈抗體分子和由抗體片段形成的多特異性抗體。
在某些實施方案中,如本文所述的抗體及其抗原結合片段包括分別插入重鏈和輕鏈構架區(FR)集合之間的重鏈(VH)和輕鏈(VL)互補決定區(“CDR”)集合,其為CDR提供支援並且定義CDR相對於彼此的空間關係。如本文所用,術語“CDR集合”是指重鏈或輕鏈V區的三個高變區。從重鏈或輕鏈的N末端進行,這些區分別表示為“CDR1”、“CDR2”和“CDR3”。因此,抗原-結合位點包含六個CDR,其包含來自重鏈和輕鏈V區中的每一個的CDR集合。
如本文所用,術語“FR集合”是指作為重鏈或輕鏈V區的CDR集合的CDR構架的四個側接胺基酸序列。一些FR殘基可接觸結合的抗原;然而,FR主要負責將V區折疊成抗原結合位點,特別是與CDR直接相鄰的FR殘基。在FR中,某些胺基酸殘基和某些結構特徵是非常高度保守的。在該方面,所有V區序列含有約90個胺基酸殘基的內部二硫化物環。在V區折疊成結合位元點的情況下,CDR顯示為形成抗原結合表面的突出的環基序。通常認識到,存在FR的保守結構區域,其影響CDR環至某些“規範”結構的折疊形狀 - 而不管精確的CDR胺基酸序列。
免疫球蛋白可變區的結構和位置可以參考Kabat, E.A.等人,Sequences of Proteins of Immunological Interest, 第4版, US Department of Health and Human Services, 1987及其現在在網際網路(immuno.bme.nwu.edu.)可得的更新進行確定。
如本文所用,“單鏈Fv”或“scFv”抗體片段包括抗體的VH和VL結構域,其中這些結構域存在於單一多肽鏈上。通常,Fv多肽還包括VH和VL結構域之間的多肽接頭,這使得scFv能夠形成所需的抗原結合結構。
如本文所用,“嵌合抗體”是含有得自非人物種(如齧齒動物)抗體的可變結構域和互補決定區的重組蛋白,而抗體分子的其餘部分來源於人抗體。在一些實施方案中,嵌合抗體由可操作地連接或以其他方式融合至不同抗體的異源Fc部分的MASP-3抑制性抗體的抗原結合片段構成。在一些實施方案中,異源Fc結構域可以來自與親本抗體不同的Ig類型,包括IgA(包括亞類IgA1和IgA2)、IgD、IgE、IgG(包括亞類IgG1、IgG2、IgG3和IgG4)和IgM。
如本文所用,“人源化抗體”是通常使用重組技術製備的嵌合分子,其具有源自非人物種的免疫球蛋白的抗原結合位點和基於人免疫球蛋白的結構和/或序列的分子的剩餘免疫球蛋白結構。抗原結合位元點可以包含融合至恒定結構域上的完全可變區或僅移植至可變結構域中的適當構架區上的CDR。表位結合位點可以是野生型,或者可以通過一個或多個胺基酸取代來修飾。另一種方法不僅聚焦於提供人類來源的恒定區,而且還聚焦於修飾可變區,以便盡可能近地將它們重塑為人形式。在一些實施方案中,人源化抗體保留所有CDR序列(例如,含有來自小鼠抗體的所有六個CDR的人源化小鼠抗體)。在其他實施方案中,人源化抗體具有相對於原始抗體改變的一個或多個CDR(一個、二個、三個、四個、五個、六個),其也稱為“衍生自”原始抗體的一個或多個CDR的一個或多個CDR。
如果抗體以比其與其他物質結合的更大的親和力和/或親合力結合,則其“特異性結合”靶標。在一個實施方案中,所述抗體或其抗原結合片段特異性結合人MASP-3的絲胺酸蛋白酶結構域(SEQ ID NO: 2的胺基酸殘基450至728)。在一個實施方案中,所述抗體或其抗原結合片段特異性結合表4、表28中描述或圖62中顯示的一種或多種表位。
如本文所用,術語“甘露聚糖-結合凝集素”("MBL")等同於甘露聚糖-結合蛋白(“MBP”)。
如本文所用,“膜攻擊複合物”(“MAC”)是指插入並破壞膜的末端5種補體成分(C5b以及C6、C7、C8和C9)的複合物(也稱為C5b-9)。
如本文所用,“物件”包括所有哺乳動物,包括但不限於人、非人靈長類動物、狗、貓、馬、綿羊、山羊、牛、兔、豬和齧齒動物。
如本文所用,胺基酸殘基的縮寫如下:丙胺酸(Ala;A)、天冬醯胺酸(Asn;N)、天冬胺酸(Asp;D)、精胺酸(Arg;R)、半胱胺酸(Cys;C)、麩胺酸(Glu;E)、麩胺醯胺(Gln;Q)、甘胺酸(Gly;G)、織胺酸(His;H)、異白胺酸(Ile;I)、白胺酸(Leu;L)、離胺酸(Lys;K)、甲硫胺酸(Met;M)、苯丙胺酸(Phe;F)、脯胺酸(Pro;P)、絲胺酸(Ser;S)、蘇胺酸(Thr;T)、色胺酸(Trp;W)、酪胺酸(Tyr;Y)和纈胺酸(Val;V)。
從最廣意義上看,天然存在的胺基酸可根據各個胺基酸側鏈的化學特性來分組。“疏水”胺基酸是指Ile、Leu、Met、Phe、Trp、Tyr、Val、Ala、Cys或Pro的任一個。“親水”胺基酸是指Gly、Asn、Gln、Ser、Thr、Asp、Glu、Lys、Arg或His的任一個。胺基酸的這種分組可進一步細分如下。“不帶電荷的親水”胺基酸是指Ser、Thr、Asn或Gln的任一個。“酸性”胺基酸是指Glu或Asp的任一個。“鹼性”胺基酸是指Lys、Arg或His的任一個。
如本文所用,術語“保守胺基酸置換”通過下面每組中胺基酸之間的置換來說明:(1)甘胺酸、丙胺酸、纈胺酸、白胺酸和異白胺酸;(2)苯丙胺酸、酪胺酸和色胺酸;(3)絲胺酸和蘇胺酸;(4)天冬胺酸和麩胺酸;(5)穀胺醯胺和天冬醯胺酸;和(6)離胺酸、精胺酸和織胺酸。
如本文所用,術語“寡核苷酸”是指核糖核酸(RNA)或去氧核糖核酸(DNA)或其模擬物的寡聚體或多聚體。該術語還包括由天然存在的核苷酸、糖和核苷酸間(骨架)共價鍵所組成的寡核苷酸鹼基以及具有非天然存在的修飾的寡核苷酸。
如本文所用,“表位”是指在蛋白(例如人MASP-3蛋白)上的與抗體結合的位點。“重疊表位”包括至少一個(例如2、3、4、5或6個)共同胺基酸殘基,包括線性和非線性表位元。
如本文所用,術語“多肽”、“肽”和“蛋白”可互換使用,是指胺基酸的任何肽-連接的鏈,不管長度或翻譯後修飾如何。本文所述的MASP-3蛋白可含有或可以是野生型蛋白,或可以是具有不超過50(例如不超過1、2、3、4、5、6、7、8、9、10、12、15、20、25、30、35、40或50個)保守胺基酸置換的變體。保守置換典型地包括以下組內的置換:甘胺酸和丙胺酸;纈胺酸、異白胺酸和白胺酸;天冬胺酸和麩胺酸;天冬醯胺酸、麩胺醯胺、絲胺酸和蘇胺酸;離胺酸、織胺酸和精胺酸;以及苯基丙胺酸和酪胺酸。
在一些實施方案中,人MASP-3蛋白可以具有這樣的胺基酸序列:其與具有SEQ ID NO: 2所示的胺基酸序列的人MASP-3蛋白具有等於或大於70 (例如,71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99或100) %同一性。
在一些實施方案中,肽片段可以是至少6 (例如,至少7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、55、60、65、70、75、80、85、90、95、100、110、120、130、140、150、160、170、180、190、200、250、300、350、400、450、500或600或更多)胺基酸殘基長度(例如,SEQ ID NO: 2的至少6個連續胺基酸殘基)。在一些實施方案中,人MASP-3蛋白的抗原肽片段是少於500 (例如,少於450、400、350、325、300、275、250、225、200、190、180、170、160、150、140、130、120、110、100、95、90、85、80、75、70、65、60、55、50、49、48、47、46、45、44、43、42、41、40、39、38、37、36、35、34、33、32、31、30、29、28、27、26、25、24、23、22、21、20、19、18、17、16、15、14、13、12、11、10、9、8、7或6)胺基酸殘基長度(例如,SEQ ID NO: 2中的少於500個連續胺基酸殘基)。
在一些實施方案中,在產生結合MASP-3的抗體的情況下,肽片段是抗原性的,並且保留全長蛋白在哺乳動物中誘導抗原性反應的能力的至少10%(例如,至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少50%、至少55%、至少60%、至少70%、至少80%、至少90%、至少95%、至少98%、至少99%、至少99.5%、或100%或更多) (參見以下“產生抗體的方法”)。
胺基酸序列同一性的百分率(%)定義為在比對序列和引入缺口(如果必要)以實現最大百分率序列同一性後,與參考序列中的胺基酸相同的候選序列中的胺基酸的百分率。為確定序列同一性百分率的比對可以以本領域技術內的多種方式來實現,例如,使用公眾可得的電腦軟體例如BLAST、BLAST-2、ALIGN、ALIGN-2或Megalign (DNASTAR)軟體。用於測定比對的合適參數,包括實現跨越待比較的序列全長的最大比對所需的任何演算法,可以通過已知方法來確定。
在代表性實施方案中,人MASP-3蛋白(SEQ ID NO: 2)由SEQ ID NO: 1所示的cDNA序列編碼。本領域技術人員將知道,SEQ ID NO: 1中公開的cDNA序列表示人MASP-3的單個等位基因,並且預期發生等位變異和可變剪接。SEQ ID NO: 1所示的核苷酸序列的等位變體,包括含有沉默突變的那些和其中突變導致胺基酸序列改變的那些,都在本發明範圍內。可根據標準程式,通過探測來自不同個體的cDNA或基因組文庫,選殖MASP-3序列的等位變體,或者可通過含有所述資訊的資料庫的同源性比較搜索(例如,BLAST搜索)來鑒定MASP-1、MASP-2或MASP-3序列的等位變體。
如本文所用,“分離的核酸分子”是未整合在生物體的基因組DNA中的核酸分子(例如,多核苷酸)。例如,已與細胞的基因組DNA分離的編碼生長因子的DNA分子是分離的DNA分子。分離的核酸分子的另一個實例是化學合成的核酸分子,其不整合在生物體的基因組中。已從特定物種分離的核酸分子小於來自該物種的染色體的完整DNA分子。
如本文所用,“核酸分子構建體”是單鏈或雙鏈的核酸分子,其已經通過人類干預進行修飾以含有以自然界中不存在的排列組合和並列的核酸區段。
如本文所用,“表達載體”是編碼在宿主細胞中表達的基因的核酸分子。通常,表達載體包含轉錄啟動子、基因和轉錄終止子。基因表達通常置於啟動子的控制之下,並且這樣的基因被稱為與啟動子“可操作地連接”。類似地,如果調節元件調節核心啟動子的活性,則調節元件和核心啟動子可操作地連接。
如本文所用,如本文所用的術語“約”旨在規定提供的具體值可以在特定程度上變化,例如±10%、優選±5%、最優選±2%的範圍內的變化包括在給定值中。
在規定範圍的情況下,在該範圍內包括端點,除非另有說明或從上下文中顯而易見。
如本文所用,單數形式“一(a)”、“一(an)”和“該”包括複數方面,除非上下文另有明確規定。因此,例如,提及“賦形劑”包括多種這樣的賦形劑和本領域技術人員已知的其等效物,提及“藥劑”包括一種藥劑,以及兩種或更多種試劑;提及“抗體”包括多種這樣的抗體,並且提及“構架區”包括提及一個或多個構架區和本領域技術人員已知的其等效物等等。
除非另有明確說明,本說明書中的每個實施方案應當加上必要變更適用於每個其他實施方案。可以考慮,本說明書中討論的任何實施方案可以相對於本發明的任何方法、試劑盒、試劑或組合物來實施,反之亦然。此外,本發明的組合物可用於實現本發明的方法。 II. 凝集素途徑:新的理解i. 概述:凝集素途徑已被重新定義
如本文所述,本發明人已經作出驚人發現:補體的凝集素途徑具有活化補體的兩個效應物分支,兩者都被由碳水化合物識別成分(MBL、CL-11和纖維膠凝蛋白)所形成的凝集素途徑活化複合物驅動:i)由凝集素途徑-相關絲胺酸蛋白酶MASP-1和MASP-3所形成的效應物分支,在本文中稱為“凝集素途徑效應物分支1”或“LEA-1”;和(ii) MASP-2驅動的活化效應物分支,在本文中稱為“凝集素途徑效應物分支2”或“LEA-2”。LEA-1和LEA-2都可以起到細胞裂解和/或調理作用的效果。
還已確定,MASP-3所致的因子B的凝集素-非依賴性轉化以及HTRA-1、MASP-1和MASP-3所致的因子D的凝集素-非依賴性轉化(這兩者可在Ca ++不存在時發生)通常導致C3bB轉化為C3bBb和前因子D轉化為因子D。因此,抑制MASP-3可以同時抑制LEA-1和因子B和/或因子D的凝集素-非依賴性活化,這可導致對細胞裂解和/或調理作用的抑制。
1說明了對補體活化途徑的這一新的理解。如圖1所示,LEA-1被凝集素-結合的MASP-3所驅動,其可將因子D酶原活化為其活性形式和/或切割C3b-或C3b(H 20)-結合的因子B,導致C3bB酶原複合物轉化為其酶促活性形式C3bBb。MASP-3所產生的活化的因子D也可將C3bB或C3b(H 20)酶原複合物轉化為其酶促活性形式。MASP-1能夠快速自我活化,而MASP-3不能。在許多情況下,MASP-1是MASP-3的活化劑。
儘管在許多實例中,凝集素(即MBL、CL-11或纖維膠凝蛋白)可將活性指向細胞表面,圖1也概述了MASP-3、MASP-1和HTRA-1在因子B活化和/或因子D成熟中的凝集素-非依賴性功能。正如在LEA-1中的MASP-3的凝集素-相關形式,MASP-3的凝集素-非依賴性形式能夠介導將C3bB或C3b(H 20)轉化為C3bBb (還參見圖29和30)和將前因子D轉化為因子D(參見圖32)。MASP-1(還參見圖32)和非-MASP-相關蛋白HTRA-1也可活化因子D(Stanton等人, Evidence That the HTRA1 Interactome Influences Susceptibility to Age-Related Macular Degeneration, 在2011年5月4日的The Association for Research in Vision and Ophthalmology 2011會議上提交),其方式無需凝集素成分。
因此,MASP-1 (經由LEA-1和凝集素-非依賴性形式)、MASP-3 (經由LEA-1和凝集素-非依賴性形式)和HTRA-1 (僅凝集素-非依賴性)能夠在沿著MASP-3-因子D-因子B軸上的一點或多點上直接或間接活化。在這種情況下,它們產生C3bBb (替代途徑的C3轉化酶)和它們刺激C3b的產生並在微生物表面上沉積。C3b沉積在調理作用中起到關鍵性作用,標記微生物表面以便被宿主吞噬細胞(例如巨噬細胞)破壞。作為本文的一個實例(圖28A和28B),MASP-3對於金黃色葡萄球菌的調理作用是至關重要的。C3b沉積在曝露給人血清的金黃色葡萄球菌上以MASP-3-依賴性方式快速發生(圖28A和28B)。
然而,LEA-1和MASP-3、MASP-1或HTRA-1的凝集素-非依賴性功能的貢獻不限於調理作用。如圖1所示,這3種成分還可通過因子B的間接或直接活化而引起細胞裂解,和C3b的產生。這些成分形成複合物,其產生替代途徑C5轉化酶,C3bBb(C3b) n。正如本文中進一步描述的,在腦膜炎奈瑟氏菌的細胞裂解中(參見圖11、12和13)對MASP-3和MBL而不是MASP-2 (並且,因此在此實例中不是LEA-2)的需要,表明了LEA-1在細胞裂解中的作用。總之,得自金黃色葡萄球菌研究的調理作用結果和在腦膜炎奈瑟氏菌研究中觀察到的細胞裂解結果支持LEA-1在這兩個過程中的作用(如圖1所示)。此外,這些研究表明調理作用和細胞裂解作用兩者都可來自C3bB或C3b(H 20)的轉化和/或前因子D向因子D的轉化;因此,這兩個過程可能是MASP-3、MASP-1或HTRA-1的凝集素-非依賴性作用的結果。因此,在圖1中的本發明人開發的模型支援主要使用MASP-3的抑制劑,以及MASP-1和/或HTRA-1的抑制劑,以阻斷調理作用和/或細胞裂解和治療這些過程的失調所致的病理學。 1. 凝集素途徑效應物分支(LEA-1)
凝集素途徑的第一效應物分支LEA-1是由凝集素途徑-相關絲胺酸蛋白酶MASP-1和MASP-3所形成。如本文所述,本發明人現在已經表明,在MASP-3不存在時和在MASP-1存在時,在表面結構上不有效活化替代途徑。這些結果表明MASP-3在啟動替代途徑中起到先前未公開的作用,並且使用得自患有稀有3MC常染色體隱性病症的患者的MASP-3-缺乏的3MC血清證實了這一點(Rooryck C,等人, Nat Genet. 43(3):197-203 (2011)),所述患者具有使MASP-3絲胺酸蛋白酶結構域功能失調的突變。基於這些新發現,預期涉及替代途徑的補體活化,正如傳統定義的,是MASP-3-依賴性的。事實上,MASP-3,及其LEA-1活化,可以代表至今未搞清楚的替代途徑的引發劑。
如本文的實施例1-4中進一步描述,在MASP-2-缺乏的血清中,本發明人觀察到更高活性的凝集素-依賴性替代途徑活化,其導致針對腦膜炎奈瑟氏菌的更高殺菌活性(即細胞裂解活性) 儘管不希望受到任何特定理論的束縛,認為在MASP-2不存在時,帶有MASP-1的碳水化合物識別複合物更可能緊密結合至帶有MASP-3的碳水化合物識別複合物上,以活化MASP-3。已知在許多情況下,MASP-3的活化依賴於MASP-1活性,因為MASP-3不是自我活化的酶並且常常需要MASP-1的活性以便從其酶原形式轉化為其酶促活性形式。MASP-1 (如同MASP-2)是自我活化的酶,而MASP-3不是自我活化的,並且在許多情況下,需要MASP-1的酶促活性以便轉化為其酶促活性形式。參見Zundel S,等人 , J Immunol., 172(7):4342-50 (2004)。在MASP-2不存在時,所有凝集素途徑識別複合物都裝載有MASP-1或MASP-3。因此,MASP-2不存在促進了MASP-1-介導的MASP-3向其酶促活性形式的轉化。一旦MASP-3被活化,活化的MASP-3通過MASP-3-介導的C3bB向C3bBb的轉化和/或前因子D向因子D的轉化而啟動替代途徑活化(現在稱為“LEA-1”活化)。C3bBb,也稱為替代途徑C3轉化酶,切割額外的C3分子,得到調理素的C3b分子的沉積。如果幾種C3b片段靠近而結合至C3bBb轉化酶複合物上,則這導致形成替代途徑C5轉化酶C3bBb(C3b)n,其促進MAC形成。另外,C3b分子沉積在表面,形成因子B結合的新位點,其現在可以被因子D和/或MASP-3切割而形成額外位點,在此可以形成替代途徑C3和C5轉化酶複合物。需要後一過程以便有效裂解細胞,並且當已經發生起初的C3b沉積後,不需要凝集素。近期出版物(Iwaki D.等人, J Immunol187(7):3751-8 (2011))以及本發明人得到的資料(圖30)表明,替代途徑C3轉化酶酶原複合物C3bB通過活化MASP-3而轉化為其酶促活性形式。本發明人現在已經發現,MASP-3-介導的因子B的切割代表新描述的LEA-1的亞成分,其促進替代途徑C3轉化酶C3bBb的凝集素-依賴性形成。 2. 凝集素途徑效應物分支(LEA-2)
凝集素途徑的第二效應物分支LEA-2,是由凝集素途徑-相關絲胺酸蛋白酶MASP-2所形成。當識別成分與其各自模式結合後,MASP-2被活化,並且也可被MASP-1活化,隨後切割補體成分C4為C4a和C4b。當切割產物C4b與血漿C2結合後,C4b-結合的C2變為第二MASP-2-介導的切割步驟的底物,其將C4b-結合的C2轉化為酶促活性複合物C4bC2a和小C2b切割片段。C4b2a是凝集素途徑的C3-轉化的C3轉化酶,將豐富的血漿成分C3轉化為C3a和C3b。C3b經由硫酯鍵結合至靠近的任何表面上。如果幾個C3b片段靠近而結合至C3轉化酶複合物C4b2a上,則該轉化酶改變其特異性,將C5轉化為C5b和C5a,形成C5轉化酶複合物C4b2a(C3b)n。儘管該C5轉化酶可以啟動MAC的形成,但該過程被認為自身不能有效促進細胞裂解。而是,由LEA-2所產生的起初的C3b調理素形成核,用於形成新的替代途徑C3轉化酶和C5轉化酶位點,其最終導致大量MAC形成和細胞裂解。這後一事件是由與LEA-2-形成的C3b相關的因子B的因子D活化所介導,因此由於MASP-1在因子D成熟中的必要作用而依賴於LEA-1。還存在MASP-2-依賴性C4-替代活化途徑,以在C4不存在時活化C3,這在缺血-再灌注損傷的病理生理學中起到重要作用,因為C4-缺陷型小鼠不能保護自身免於缺血-再灌注損傷,而MASP-2-缺陷型小鼠卻可以(Schwaeble等人, PNAS, 2011 supra)。LEA-2還涉及凝血途徑,包括將凝血酶原切割為凝血酶(共同途徑)並還切割XII因子(接觸因子)以轉化為其酶促活性形式XIIa。XIIa因子反過來將XI因子切割為XIa因子(固有途徑)。凝血級聯的固有途徑活化導致纖維蛋白形成,其對於血栓形成是至關重要的。
圖1基於本文提供的結果,說明了對凝集素途徑和替代途徑的新的理解。圖1描繪了LEA-2在調理作用和細胞裂解兩者中的作用。儘管MASP-2在生理性的多個凝集素-依賴性環境中是“下游”C3b沉積(和所導致的調理作用)的引發劑(圖18A、18B、18C),但它在血清-敏感性細菌的細胞裂解中也起作用。如圖1所示,對於血清-敏感性病原體例如腦膜炎奈瑟氏菌,所提出的負責MASP-2-缺乏的或MASP-2-耗盡的血清/血漿的殺菌活性增加的分子機制是,對於細菌的細胞裂解而言,與MASP-1和MASP-3締合的凝集素途徑識別複合物必須彼此靠近地結合至細菌表面上,從而允許MASP-1切割MASP-3。與MASP-1和MASP-2相反,MASP-3不是自我活化的酶,但是在許多情況下,需要被MASP-1活化/切割而轉化為其酶促活性形式。
進一步如圖1所示,活化的MASP-3然後可以切割病原體表面上的C3b-結合的因子B,通過分別形成酶促活性替代途徑C3和C5轉化酶C3bBb和C3bBb(C3b)n而啟動替代活化級聯。攜帶MASP-2的凝集素-途徑活化複合物不參與MASP-3活化,並且,在MASP-2不存在時或耗盡後,所有凝集素途徑活化複合物將裝載有MASP-1或MASP-3。因此,在MASP-2不存在時,在微生物表面上攜帶MASP-1和MASP-3的凝集素-途徑活化複合物將彼此靠近的可能性明顯增加,導致更多MASP-3被活化,從而導致更高速率的MASP-3-介導的C3b-結合的因子B切割,在微生物表面上形成替代途徑C3和C5轉化酶C3bBb和C3bBb(C3b)n。這導致末端活化級聯C5b-C9的活化,形成膜攻擊複合物,其由表面-結合的C5b與C6締合、C5bC6與C7締合、C5bC6C7與C8締合和C5bC6C7C8組成,導致C9聚合,其插入到細菌表面結構並在細菌壁中形成小孔,其將導致補體-靶向的細菌的滲透壓殺傷。
這一新概念的核心就是本文提供的資料清楚地顯示了凝集素途徑活化複合物驅動以下兩個不同的活化途徑,如圖1所示: i) LEA-1:MASP-3-依賴性活化途徑,其通過在活化劑表面上的因子B的最初切割和活化而產生替代途徑轉化酶C3bBb,來啟動和驅動補體活化,然後催化C3b沉積和替代途徑轉化酶C3bBb的形成。MASP-3-驅動的活化途徑在調理作用和微生物細胞裂解中起到重要作用,並驅動在細菌表面上的替代途徑,導致最佳活化速率,產生膜攻擊複合物;和 ii) LEA-2:MASP-2-依賴性活化途徑,導致凝集素途徑C3轉化酶C4b2a的形成,並且在C3切割產物C3b積累後,隨之形成C5轉化酶C4b2a(C3b)n。在補體C4不存在時,MASP-2可以形成替代C3轉化酶複合物,其包括C2和凝血因子XI。
除了在細胞裂解中的作用外,MASP-2-驅動的活化途徑還在細菌調理作用中起重要作用,導致微生物被共價結合的C3b及其切割產物(即iC3b和C3dg)所包被,這將是攜帶C3受體的吞噬細胞(例如粒細胞、巨噬細胞、單核細胞、小膠質細胞)和網狀內皮系統的攝取和殺傷的靶標。這是抵抗補體細胞裂解的細菌和微生物的清除的最有效途徑。這些包括大部分革蘭氏陽性菌。
除了LEA-1和LEA-2外,對於MASP-3、MASP-1和/或HTRA-1所致的因子D的凝集素-非依賴性活化存在可能性,並且對於MASP-3所致的因子B的凝集素-非依賴性活化也存在可能性。
儘管不希望受到任何特定理論的束縛,認為(i) LEA-1,(ii) LEA-2和(iii) 因子B和/或因子D的凝集素-非依賴性活化中的每一種導致調理作用和/或伴有所導致的細胞裂解的MAC形成。 ii. MASP-1、MASP-2和MASP-3的背景
3種甘露聚糖-結合凝集素-相關絲胺酸蛋白酶(MASP-1、MASP-2和MASP-3)目前已知與具有甘露聚糖-結合凝集素(MBL)的人血清有關。甘露聚糖-結合凝集素在最近的文獻中也稱為“甘露糖-結合蛋白”或“甘露糖-結合凝集素”。MBL-MASP複合物通過MBL與多種微生物上存在的碳水化合物結構結合而在先天免疫中起到重要作用。MBL與特定排列的碳水化合物結構的相互作用導致MASP前酶(proenzyme)活化,其反過來又通過切割補體成分C4和C2形成C3轉化酶C4b2b而活化補體(Kawasaki等人, J. Biochem106:483-489 (1989);Matsushita & Fujita, J. Exp Med. 176:1497-1502 (1992);Ji等人, J. Immunol150:571-578 (1993))。
MBL-MASP前酶複合物直到最近都被認為含有僅僅一類蛋白酶(MASP-1),但目前很清楚的是有2種其他不同的蛋白酶(即MASP-2和MASP-3)與MBL有關(Thiel等人, Nature386:506-510 (1997);Dahl等人, Immunity15:127-135 (2001)),以及19 kDa的另外的血清蛋白,稱為“MAp19”或“sMAP” (Stover等人, J. Immunol162:3481-3490 (1999);Stover等人, J. Immunol163:6848-6859 (1999);Takahashi等人, Int. Immunol11:859-63 (1999))。
MAp19是MASP-2的結構基因的可變剪接的基因產物並缺乏MASP-2的4個C-末端結構域,包括絲胺酸內肽酶結構域。MASP-2基因的可變剪接/聚腺苷酸化事件產生了編碼MAp19的大量表達的截短的mRNA轉錄物。通過類似機制,MASP-1/3基因導致3種主要基因產物:2種絲胺酸蛋白酶MASP-1和MASP-3和稱為“MAp44”的44 kDa的截短的基因產物(Degn等人, J. Immunol183(11):7371-8 (2009);Skjoedt等人, J Biol Chem285:8234-43 (2010))。
MASP-1首次被描述為血清Ra-反應因子的P-100蛋白酶成分,其現在被認為是由MBL加MASP組成的複合物(Matsushita等人, Collectins and Innate Immunity, (1996);Ji等人, J Immunol150:571-578 (1993)。MBL-MASP複合物內的MBL-相關內肽酶以與補體經典途徑的C1q-(Clr) 2-(Cls) 2複合物內的C1s酶明顯相同的方式作用於補體成分C4和C2的能力表明,存在功能類似於C1q-(C1r) 2-(C1s) 2複合物的MBL-MASP複合物。通過C1q與免疫複合物中存在的抗體IgG或IgM的Fc區相互作用而活化C1q-(C1r) 2-(C1s) 2複合物。這導致C1r前酶的自我活化,其反過來又活化C1s前酶,後者再作用於補體成分C4和C2。
MBL-MASP複合物的化學計量學不同於C1q-(C1r) 2-(C1s) 2複合物中發現的化學計量學之處在於,不同的MBL寡聚物看來與不同比例的MASP-1/MAp19或MASP-2/MASP-3相關(Dahl等人, Immunity15:127-135 (2001)。血清中存在的大部分MASP和MAp19不與MBL複合(Thiel等人, J Immunol165:878-887 (2000))並且可以部分地與纖維膠凝蛋白締合,纖維膠凝蛋白是目前描述的一組凝集素,其具有纖維蛋白原-樣結構域,能夠結合至微生物表面的N-乙醯基葡糖胺殘基上(Le等人, FEBS Lett425:367 (1998);Sugimoto等人, J. Biol Chem273:20721 (1998))。這其中,人L-纖維膠凝蛋白、H-纖維膠凝蛋白和M-纖維膠凝蛋白與MASP以及與MAp19締合,並且在結合至纖維膠凝蛋白所識別的特異性碳水化合物結構上後可以活化凝集素途徑(Matsushita等人, J Immunol164:2281-2284 (2000);Matsushita等人, J Immunol168:3502-3506 (2002))。除了纖維膠凝蛋白和MBL外,MBL-樣凝集素膠原凝集素(稱為CL-11)已被識別為凝集素途徑識別分子(Hansen等人, J Immunol185:6096-6104 (2010);Schwaeble等人, PNAS108:7523-7528 (2011))。具有非常明確的證據表明這些替代碳水化合物識別分子的生理重要性,因此重要的是理解MBL不是凝集素活化途徑的僅有的識別成分和MBL缺陷不被誤認為是凝集素-途徑缺陷。與MBL結構相關的一組替代碳水化合物-識別複合物的可能的存在可以拓寬經由補體活化而起始先天免疫系統的直接回應的微生物結構譜。
所有凝集素途徑識別分子的特徵在於在其膠原-同源莖區內的特異性MASP-結合基序(Wallis等人, J. Biol Chem279:14065-14073 (2004))。在MBL、CL-11和纖維膠凝蛋白中的MASP-結合位元點的特徵在於在該結構域內的獨特基序:Hyp-Gly-Lys-Xaa-Gly-Pro,其中Hyp是羥脯胺酸和Xaa通常是脂肪族殘基。該序列中的點突變破壞了MASP結合。 1. MASP-1和MASP-3的各自的結構、序列、染色體定位和剪接變體
圖2是示意圖,其說明人MASP-1多肽(SEQ ID NO: 8)、人MASP-3多肽(SEQ ID NO: 2)和人Map44多肽的結構域結構以及編碼它們的外顯子。如圖2所示,絲胺酸蛋白酶MASP-1和MASP-3由6個獨特結構域組成,其排列如同在C1r和C1s中所見;即(I) N-末端 C1r/C1s/海膽VEGF/骨形成蛋白(或CUBI)結構域;(II)表皮生長因子(EGF)-樣結構域;(III)第二CUB結構域(CUBII);(IV和V) 2種補體對照蛋白(CCP1和CCP2)結構域;和(VI)絲胺酸蛋白酶(SP)結構域。
人和小鼠MASP-1的cDNA-衍生的胺基酸序列(Sato等人, Int Immunol6:665-669 (1994);Takada等人, Biochem Biophys Res Commun196:1003-1009 (1993);Takayama等人, J. Immunol152:2308-2316 (1994));人、小鼠和大鼠MASP-2的cDNA-衍生的胺基酸序列(Thiel等人, Nature386:506-510 (1997);Endo等人, J Immunol161:4924-30 (1998);Stover等人, J. Immunol162:3481-3490 (1999);Stover等人, J. Immunol163:6848-6859 (1999));以及人MASP-3的cDNA-衍生的胺基酸序列(Dahl等人, Immunity15:127-135 (2001))表明,這些蛋白酶是在其推定催化結構域中具有His、Asp和Ser殘基的特徵性三聯體的絲胺酸肽酶(Genbank登錄號:人MASP-1:BAA04477.1 (SEQ ID NO: 8);小鼠MASP-1:BAA03944;大鼠MASP-1:AJ457084;人MASP-3:AAK84071 (SEQ ID NO2);小鼠MASP-3:AB049755,正如2/15/2012訪問的Genbank (SEQ ID NO: 3);大鼠MASP-3 (SEQ ID NO: 4);雞MASP-3 (SEQ ID NO: 5);兔MASP-3 (SEQ ID NO: 6);和食蟹猴(SEQ ID NO: 7))。
進一步如圖2所示,當酶原轉化為活性形式後,重鏈(α或A鏈)和輕鏈(β或B鏈)分裂而得到二硫鍵連接的A-鏈和代表絲胺酸蛋白酶結構域的較小的B-鏈。單鏈前酶MASP-1通過切割位於第二CCP結構域(結構域V)和絲胺酸蛋白酶結構域(結構域VI)之間的Arg-Ile鍵而被活化(像前酶C1r和C1s)。前酶MASP-2和MASP-3被認為是以類似於MASP-1的方式而活化。每種MASP蛋白形成同型二聚體並以Ca ++-依賴性方式分別與MBL和纖維膠凝蛋白締合。
人MASP-1多肽(SEQ ID NO: 8)和MASP-3多肽(SEQ ID NO: 2)來自一個結構基因(Dahl等人, Immunity15:127-135 (2001),其已被作圖到3號染色體長臂的3q27-28區(Takada等人, Genomics25:757-759 (1995))。MASP-3和MASP-1的mRNA轉錄物是通過可變剪接/聚腺苷酸化過程而產生自初級轉錄物。MASP-3翻譯產物是由α鏈(其是MASP-1和MASP-3共有的)和β鏈(絲胺酸蛋白酶結構域)(其是MASP-3獨有的)組成。如圖2所示,人MASP-1基因包括18個外顯子。人MASP-1 cDNA是由外顯子2、3、4、5、6、7、8、10、11、13、14、15、16、17和18所編碼。進一步如圖2所示,人MASP 3基因包括12個外顯子。人MASP-3 cDNA (如SEQ ID NO: 1所述)是由外顯子2、3、4、5、6、7、8、10、11和12所編碼。可變剪接產生被稱為MBL-相關蛋白44 (“MAp44”)的蛋白,來自外顯子2、3、4、5、6、7、8和9。
人MASP-1多肽(來自Genbank BAA04477.1的SEQ ID NO: 8)具有699個胺基酸殘基,其包括19個殘基的前導肽。當省略前導肽時,MASP-1的計算分子量是76,976 Da。如圖2中所示,MASP-1胺基酸序列含有4個N-連接的糖基化位點。人MASP-1蛋白結構域(參考SEQ ID NO: 8)顯示於圖2並且包括N-末端C1r/C1s/海膽VEFG/骨形成蛋白(CUBI)結構域(SEQ ID NO: 8的aa 25-137)、表皮生長因子-樣結構域(SEQ ID NO: 8的aa 139-181)、第二CUB結構域(CUBII) (SEQ ID NO: 8的aa 185-296)以及補體對照蛋白(SEQ ID NO: 8的CCP1 aa 301-363和CCP2 aa 367-432)結構域的串聯和絲胺酸蛋白酶結構域(SEQ ID NO: 8的aa 449-694)。
人MASP-3多肽(SEQ ID NO: 2,來自Genbank AAK84071)具有728個胺基酸殘基(如圖3中所示),其包括19個殘基的前導肽(圖3中顯示為加底線的胺基酸序列)。
當省略前導肽時,MASP-3的計算分子量是81,873 Da。如圖2中所示,在MASP-3中有7個N-連接的糖基化位點。人MASP-3蛋白的結構域(參考SEQ ID NO: 2)顯示於圖2並且包括N-末端C1r/C1s/海膽VEGF/骨形成蛋白(CUBI)結構域(SEQ ID NO: 2的aa 25-137)、表皮生長因子-樣結構域(SEQ ID NO: 2的aa 139-181)、第二CUB結構域(CUBII) (SEQ ID NO: 2的aa 185-296)以及補體對照蛋白(SEQ ID NO: 2的CCP1 aa 299-363和CCP2 aa 367-432)結構域的串聯和絲胺酸蛋白酶結構域(SEQ ID NO: 2的aa 450-728)。
MASP-3翻譯產物由α鏈(重鏈) (α鏈:SEQ ID NO: 2的aa 1-448)和輕鏈(β鏈:SEQ ID NO: 2的aa 449-728)構成;所述α鏈含有CUB-1-EGF-CUB-2-CCP-1-CCP-2結構域,其是MASP-1和MASP-3兩者共有的,所述輕鏈含有絲胺酸蛋白酶結構域,其是MASP-3獨有的。 2. 來自各種物種的MASP-3胺基酸序列的比較
圖4提供MASP-3的多物種比對,其顯示來自人(SEQ ID NO: 2)、食蟹猴(SEQ ID NO: 7)、大鼠(SEQ ID NO: 4)、鼠(SEQ ID NO: 3)、雞(SEQ ID NO: 5)和兔(SEQ ID NO: 6)的全長MASP-3蛋白的比較。圖5提供來自人(SEQ ID NO: 2的aa 450-728);兔(SEQ ID NO: 6的aa 450-728);鼠(SEQ ID NO: 3的aa455-733);大鼠(SEQ ID NO: 4的aa 455-733)和雞(SEQ ID NO: 5的aa aa448-730)的絲胺酸蛋白酶(SP)結構域的多物種比對。
如圖4中所示,在不同物種中,特別是在SP結構域中存在MASP-3多肽的高水準胺基酸序列保守性(圖5)。如圖5中進一步所示,催化三聯體(參考全長人MASP-3(SEQ ID NO: 2),殘基497的H;殘基553的D和殘基664的S)在物種間是保守的。表1概述物種間MASP-3 SP結構域的同一性百分比。 表 1:物種間的MASP-3 SP結構域的百分比同一性
   食蟹猴 大鼠 小鼠
95% 94% 92% 91% 79%
食蟹猴    94% 90% 90% 79%
      92% 92% 81%
大鼠          97% 78%
小鼠             78%
MASP-3對C4、C2或C3底物沒有蛋白水解活性。相反,MASP-3最初據報導起到凝集素途徑的抑制劑的作用(Dahl等人, Immunity15:127-135 (2001))。得出該結論可能是因為與MASP-1和MASP-2相反,MASP-3不是自我活化的酶(Zundel S.等人, J Immunol172:4342-4350 (2004);Megyeri等人, J. Biol. Chem.288:8922–8934 (2013)。
最近,使用組合MASP-1和MASP-3缺陷的小鼠菌株,從轉基因小鼠研究中得到MASP-1和MASP-3的可能的生理功能的證據。儘管MASP-1/3-敲除小鼠具有功能性凝集素途徑(Schwaeble等人, PNAS108:7523-7528 (2011)),但它們看來缺乏替代途徑活性(Takahashi等人, JEM207(1):29-37(2010))。替代途徑活性的缺乏看來是因為補體因子D的加工缺陷,補體因子D是替代途徑活性所必需的。在MASP-1/3敲除小鼠中,所有因子D以蛋白水解的無活性前形式(pro-form)循環,而在正常小鼠血清中,幾乎所有因子D都呈活性形式。生化分析表明MASP-1可以能夠將補體因子D從其酶原形式轉化為其酶促活性形式(圖32;Takahashi等人, JEM207(1):29-37(2010))。MASP-3在體外也切割前因子D酶原和產生活性因子D(圖32;Takahashi等人, JEM207(1):29-37(2010))。因子D以活性酶形式存在於正常個體的循環中,並且MASP-1和MASP-3、以及HTRA-1,可能負責該活化。此外,具有組合MBL和纖維膠凝蛋白缺陷的小鼠仍然產生正常水準的因子D並具有完全功能性替代途徑。因此,MASP-1和MASP-3的這些生理功能不一定涉及凝集素,並因此與凝集素途徑無關。重組小鼠和人MASP-3還看來在體外切割因子B和支持C3沉積在金黃色葡萄球菌上(圖29;Iwaki D.等人, J Immunol187(7):3751-8(2011))。
從3MC徵候群(先前稱為Carnevale、Mingarelli、Malpuech和Michels徵候群;OMIM # 257920)患者的近期研究中發現MASP-3的一個意外生理作用。這些患者表現出嚴重發育異常,包括齶裂、唇裂、顱骨畸形和智力遲鈍。遺傳學分析鑒定了功能失調的MASP-3基因為純合子的3MC患者(Rooryck等人, Nat Genet.43(3):197-203 (2011))。發現另一組3MC患者是MASP-1基因中的突變的純合子,所述突變導致功能性MASP-1和MASP-3蛋白的不存在。再一組3MC患者缺乏功能性CL-11基因(Rooryck等人, Nat Genet. 43(3):197-203 (2011))。因此,CL-11 MASP-3軸看來在胚胎發育期間起作用。該發育途徑的分子機制尚不清楚。然而,這不太可能是由傳統補體-驅動的過程介導,因為常見補體成分C3缺陷的個體並不出現這種徵候群。因此,在本發明人的發現之前,如本文所述,MASP-3在凝集素-依賴性補體活化中的功能性作用在先前並未確定。
通過X射線晶體學已經確定了MASP-1和MASP-2催化片段的結構。MASP-1蛋白酶結構域與其他補體蛋白酶的結構比較揭示出其不嚴格的底物特異性的基礎(Dobó等人, J. Immunol183:1207-1214 (2009))。儘管MASP-2的底物結合溝的可達性受到表面環的限制(Harmat等人, J Mol Biol342:1533-1546 (2004)),但MASP-1具有開放的底物結合口袋,其類似於胰蛋白酶而非其他補體蛋白酶。MASP-1結構的凝血酶-樣性質是不尋常的大的60個胺基酸環(環B),其可以與底物相互作用。MASP-1結構的另一吸引人的性質是S1 Asp189和Arg224之間的內部鹽橋。在因子D的底物結合口袋中可以發現類似的鹽橋,其可以調節其蛋白酶活性。C1s和MASP-2具有幾乎相同的底物特異性。令人驚訝的是,與C1s的相比,決定底物特異性的MASP-2的8個表面環中的一些具有完全不同的構象。這意味著這2種功能相關的酶以不同方式與相同底物相互作用。酶原MASP-2的結構顯示了具有被破壞的氧陰離子洞和底物結合口袋的無活性蛋白酶結構域(Gál等人, J Biol Chem280:33435-33444 (2005))。令人驚訝的是,酶原MASP-2在大蛋白底物C4上顯示了相當大的活性。很可能酶原MASP-2的結構相當柔韌,使得無活性和活性形式之間的轉換成為可能。反映在結構中的這種柔韌性在自我活化過程中可能起作用。
Northern印跡分析指出肝臟是MASP-1和MASP-2 mRNA的主要來源。使用針對MASP-1的5'特異性cDNA探針,可見大MASP-1轉錄物在4.8 kb和小的在大約3.4 kb,這兩者存在於人和小鼠肝臟內(Stover等人, Genes Immunity4:374-84 (2003))。MASP-2 mRNA (2.6 kb)和MAp19 mRNA (1.0 kb)在肝組織中大量表達。MASP-3在肝臟中表達,並且也在許多其他組織包括神經組織中表達(Lynch N. J.等人, J Immunol174:4998-5006 (2005))。
發現具有感染和慢性炎性疾病史的患者具有MASP-2的突變形式,其不能形成活性MBL-MASP複合物(Stengaard-Pedersen等人, N Engl J Med349:554-560 (2003))。一些研究人員已經確定MBL缺陷導致對兒童頻繁感染的傾向(Super等人, Lancet2:1236-1239 (1989);Garred等人, Lancet346:941-943 (1995)和對HIV感染的抵抗性增加(Nielsen等人, Clin Exp Immunol100:219-222 (1995);Garred等人, Mol Immunol33 (增刊1):8 (1996))。然而,其他研究沒有表明低MBL水準與增加的感染之間的顯著相關(Egli等人, PLoS One. 8(1):e51983(2013);Ruskamp等人, J Infect Dis. 198(11):1707-13 (2008);Israëls等人, Arch Dis Child Fetal Neonatal Ed. 95(6):F452-61 (2010))。儘管文獻是混合的,但MASP的缺陷或無用性可能對個體產生針對某些病原體的直接非-抗體-依賴性防禦的能力具有不良效應。
新的理解的支援資料,強調缺乏Ca ++的傳統測定條件和使用包括Ca ++的更生理性的條件設置而得到的結果。
本文提供了幾條獨立的有力實驗證據,指出補體的凝集素途徑活化途徑經由以下2種獨立的效應物機制而活化補體的結論:i) LEA-2:MASP-2-驅動的路徑,其介導補體-驅動的調理作用、趨化作用(Schwaeble等人, PNAS108:7523-7528 (2011))和細胞裂解,和ii) LEA-1:新的MASP-3-依賴性活化途徑,其啟動補體活化,即通過經活化劑表面上的因子B的切割和活化而產生替代途徑轉化酶C3bBb,其然後催化C3b沉積和形成替代途徑轉化酶C3bBb,其可導致細胞裂解以及微生物調理作用。另外,如本文所述,由MASP-1、MASP-3或HTRA-1或任何這3者的組合所致的因子B和/或因子D的單獨的凝集素-非依賴性活化,也可經由替代途徑導致補體活化。
替代途徑的凝集素途徑-依賴性MASP-3-驅動的活化看來有助於已充分確定的C3b-結合的因子B的因子D-介導的切割,以通過末端活化級聯而達到補體-依賴性細胞裂解的最佳活化率,通過在細胞表面上形成C5b-9膜攻擊複合物(MAC)而裂解細菌細胞(圖12-13)。這種限速事件看來需要最佳協調,因為在MASP-3功能活性不存在時以及在因子D功能活性不存在時是有缺陷的。如本文的實施例1-4所述,本發明人在腦膜炎奈瑟氏菌感染的實驗小鼠模型中研究MASP-2缺陷和MASP-2抑制的表型時,發現該MASP-3-依賴性凝集素途徑功能。用基於抗體的MASP-2抑制劑治療的基因-靶向的MASP-2-缺陷型小鼠和野生型小鼠對實驗性腦膜炎奈瑟氏菌感染具有高度抗性(參見圖6-10)。當將感染劑量調節至野生型同窩出生幼崽(littermate)達到大約60%死亡率時,所有MASP-2-缺乏的或MASP-2-耗盡的小鼠清除感染並且存活(參見圖6和圖10)。在MASP-2-缺乏的或MASP-2-耗盡的小鼠血清中血清殺菌活性顯著增高反映了這種極高程度的抗性。進一步實驗表明該殺菌活性依賴於替代途徑-驅動的細菌裂解。缺乏因子B或因子D或C3的小鼠血清顯示出無針對腦膜炎奈瑟氏菌的殺菌活性,表明替代途徑對於驅動末端活化級聯而言是必要的。令人驚訝的結果是缺乏MBL-A和MBL-C(這兩者是識別腦膜炎奈瑟氏菌的凝集素-途徑識別分子)的小鼠血清以及缺乏凝集素途徑-相關絲胺酸蛋白酶MASP-1和MASP-3的小鼠血清失去所有針對腦膜炎奈瑟氏菌的溶菌活性(圖13)。最近的論文(Takahashi M.等人, JEM207: 29-37 (2010))和本文給出的工作(圖32)表明MASP-1可以將因子D酶原形式轉化為其酶促活性形式並且可以部分地解釋通過這些血清中的酶促活性因子D的不存在而喪失細胞裂解活性。這未解釋MBL-缺陷型小鼠中的殺菌活性的缺乏,因為這些小鼠具有正常酶促活性因子D(Banda等人, Mol Imunol49(1-2):281-9 (2011))。值得注意的是,當測試來自稀有3MC常染色體隱性病症的患者(所述患者具有使MASP-3絲胺酸蛋白酶結構域功能失調的突變)的人血清(Rooryck C,等人, Nat Genet. 43(3):197-203),未檢測到針對腦膜炎奈瑟氏菌的殺菌活性(注意:這些血清具有MASP-1和因子D,但沒有MASP-3)。
人血清需要凝集素途徑-介導的MASP-3-依賴性活性以發展殺菌活性的假說得到以下觀察結果的進一步支援:MBL-缺陷型人血清也不能裂解腦膜炎奈瑟氏菌(圖11-12)。MBL是結合至該病原體上的僅有的人凝集素-途徑識別分子。因為MASP-3不是自我活化的,所以本發明人假設可以通過MASP-3經由MASP-1的有利活化解釋MASP-2-缺乏的血清中細菌裂解活性更高,因為在MASP-2不存在時,結合至細菌表面上的所有凝集素-途徑活化複合物都將裝載有MASP-1或MASP-3。因為活化MASP-3在體外同時切割因子D(圖32)和因子B,產生其各自的酶促活性形式(圖30和Iwaki D.,等人, J. Immunol.187(7):3751-3758 (2011)),所以MASP-3最可能的功能是促進替代途徑C3轉化酶(即C3bBb)的形成。
儘管凝集素-依賴性作用的資料是引人注意的,但多個實驗表明MASP-3和MASP-1在與凝集素分子的複合物中不一定具有功能。例如圖28B所示的實驗表明,在其中與凝集素的複合物不存在的條件下(即EGTA存在時) MASP-3活化替代途徑的能力(正如C3b沉積在金黃色葡萄球菌所表明的)。圖28A表明在這些條件下的沉積依賴於因子B、因子D和因子P,所有這些都是替代途徑的關鍵成分。另外,MASP-3和MASP-1所致的因子D活化(圖32)和MASP-3所致的因子B活化(圖30)可以在體外在凝集素不存在時發生。最後,在人血清存在時的小鼠紅細胞的溶血研究表明MBL和MASP-3兩者對於細胞裂解的清楚作用。然而,MBL的缺陷不完全重現MASP-3缺陷的嚴重性,與如果所有功能性MASP-3都與MBL複合時所預計的相反。因此,本發明人不希望受到以下概念的限制:本文表明的MASP-3 (和MASP-1)的所有作用可以僅歸因於與凝集素相關的功能。
對凝集素途徑的2個效應物分支以及MASP-1、MASP-3和HTRA-1的可能的凝集素-非依賴性功能的鑒定,呈現有效治療指定人類病理學的治療干預的新機遇,所述病理學是在微生物病原體或改變的宿主細胞或代謝沉積物的存在下由過度補體活化所致。如本文所述,本發明人現在已經發現,在MASP-3不存在時和在MASP-1存在時,在表面結構上不活化替代途徑(參見圖15-16、28B、34-35A、B、38-39)。因為替代途徑在驅動導致細菌裂解以及細胞裂解的限速事件中是重要的(Mathieson PW,等人, J Exp Med177(6):1827-3 (1993)),所以我們的結果表明活化MASP-3在補體的細胞裂解活性中起到重要作用。如圖12-13、19-21、36-37和39-40所示,在缺乏MASP-3而非MASP-1的3MC患者血清中,補體的細胞裂解的末端活化級聯是有缺陷的。圖12和13所示的資料表明了在MASP-3和/或MASP-1/MASP-3功能活性不存在時損失溶菌活性。同樣,在MASP-3-缺陷型人血清中的溶血活性的損失(圖19-21、36-37和39-40),以及通過加入重組MASP-3而重構溶血的能力(圖39-40),強烈支持以下結論:在靶表面上的替代途徑的活化(其是驅動補體-介導的細胞裂解必不可少的)依賴於活化MASP-3的存在。根據以上詳述的凝集素途徑的新理解,靶表面的替代途徑活化因此依賴於LEA-1和/或因子B和/或因子D的凝集素-非依賴性活化(其也由MASP-3介導),並且因此,阻斷MASP-3-依賴性補體活化的試劑將阻止靶表面上的替代途徑活化。
MASP-3-依賴性啟動對替代途徑活化的必要作用的公開內容暗示了替代途徑並非補體活化的獨立的、單一途徑,正如基本上對補體的所有現有醫學教科書和近期綜述文章所述。現有的和廣泛持有的科學概念是,替代途徑通過自發的“tick-over”C3活化的放大而在某些特定靶(微生物、酵母聚糖和兔紅細胞)的表面上活化。然而,在MASP-1和MASP-3雙重-缺陷型小鼠血清中和人3MC患者血清中在酵母聚糖-包被的板上和2種不同細菌(腦膜炎奈瑟氏菌和金黃色葡萄球菌)上的任何替代途徑活化的不存在,和來自人和小鼠的MASP-3-缺乏的血清中紅細胞溶血的減少,都表明在這些表面上的替代途徑活化的啟動需要功能性MASP-3。MASP-3的所需作用可以是凝集素-依賴性的或凝集素-非依賴性的,並且分別導致替代途徑C3轉化酶和C5轉化酶複合物即C3bBb和C3bBb(C3b)n的形成。因此,本發明人在此公開了對於替代途徑而言存在先前難以捉摸的啟動途徑。該啟動途徑依賴於(i) LEA-1,一種新發現的凝集素途徑的活化分支,和/或(ii)蛋白質MASP-3、MASP-1和HTRA-1的凝集素-非依賴性作用。 3. MASP-3抑制劑用於治療替代途徑相關的疾病和病況的用途。
如本文所述,高親和力MASP-3抑制性抗體(例如,以小於500pM的結合親和力)已被顯示以小於MASP-3靶標的濃度的摩爾濃度(例如,以約1:1至約2.5:1(MASP-3靶標與mAb)的摩爾比)完全抑制哺乳動物物件例如齧齒動物和非靈長類動物中的替代途徑(參見實施例11-21中)。如實施例11中所述,向小鼠單劑量施用高親和力MASP-3抑制性抗體mAb 13B1導致全身性替代途徑補體活性的接近完全消除至少14天。如實施例12中進一步描述,在與PNH相關的良好建立的動物模型中進行的研究中,表明mAb 13B1顯著地改善PNH樣紅血細胞的存活且比C5抑制顯著更好地保護PNH樣紅血細胞。如實施例13中所述,進一步表明mAb 13B1降低關節炎小鼠模型中疾病的發生率和嚴重程度。本實施例中的結果表明代表性高親和力MASP-3抑制性mAb 13B1、10D12和4D5在阻斷靈長類動物中的替代途徑方面是高度有效的。向食蟹猴單劑量施用mAb 13B1、10D12或4D5導致全身性替代途徑活性的持續消除持續約16天。用高親和力MASP-3抑制性抗體治療的食蟹猴中替代途徑消除的程度與通過體外和體內因子D阻斷實現的程度相當,表明通過MASP-3抑制性抗體完全阻斷因子D轉化。因此,高親和力MASP-3抑制性mAb在治療患有與替代途徑活性過高相關的疾病的患者中具有治療效用。
因此,在一個方面,本發明提供在有此需要的哺乳動物物件中抑制替代途徑的方法,其包括以有效抑制物件中的替代途徑補體活化的量向物件施用組合物,所述組合物包含分離的單株抗體或其抗原結合片段,其以高親和力(具有小於500pM的K D)特異性結合人MASP-3的絲胺酸蛋白酶結構域(SEQ ID NO: 2的胺基酸殘基450至728)。在一些實施方案中,所述物件患有替代途徑相關的疾病或病症(即與替代途徑活性過高相關的疾病或病症),例如陣發性夜間血紅蛋白尿(PNH)、年齡相關性黃斑變性(AMD,包括濕性和乾性AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病(包括溶血性尿毒癥徵候群(HUS)、非典型溶血性尿毒癥徵候群(aHUS)、血栓性血小板減少性紫癜(TTP)或移植相關的TMA)、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎、貝切特氏病、多發性硬化症、格林巴厘徵候群、阿茲海默氏病、肌萎縮性側索硬化症(ALS)、狼瘡性腎炎、系統性紅斑狼瘡(SLE)、糖尿病性視網膜病變、葡萄膜炎、慢性阻塞性肺病(COPD)、C3腎小球病、移植排斥反應、移植物抗宿主病(GVHD)、血液透析、敗血症、系統性炎性反應徵候群(SIRS)、急性呼吸窘迫徵候群(ARDS)、ANCA血管炎、抗磷脂徵候群、動脈粥樣硬化、IgA腎病和重症肌無力,如下文進一步描述。 A. MASP-3在陣發性夜間血紅蛋白尿中的作用以及使用MASP-3抑制性抗體、任選組合MASP-2抑制性抗體的治療方法 PNH的概述
陣發性夜間血紅蛋白尿(PNH),有時也稱為Marchiafava-Micheli徵候群,是一種獲得性的、可能危及生命的血液病。PNH可以自發產生,稱為“原發性PNH”或在其他骨髓病症例如再生障礙性貧血的情況下發生,稱為“繼發性PNH”。大部分病例都是原發性PNH。PNH的特徵在於補體-誘導的紅細胞破壞(溶血)、低的紅細胞計數(貧血)、血栓形成和骨髓衰竭。PNH的實驗室發現顯示與血管內溶血性貧血相符的變化:在作為可能誘因的自身反應性RBC-結合抗體不存在時,低的血紅蛋白、升高的乳酸脫氫酶、升高的網織紅細胞計數(由骨髓釋放的不成熟的紅細胞以置換被破壞的細胞)、升高的膽紅素(血紅蛋白的降解產物)。
PNH的標誌是由在循環RBC表面上的未經調節的末端補體成分的活化所致的慢性補體-介導的溶血,所述補體成分包括膜攻擊複合物。PNH RBC因在它們表面上的補體調節劑CD55和CD59不存在,而經歷不受控制的補體活化和溶血(Lindorfer, M.A.,等人, Blood115(11):2283-91 (2010), Risitano,等人, Mini-Reviews in Medicinal Chemistry, 11:528-535 (2011))。CD55和CD59在正常RBC上大量表達並控制補體活化。CD55作為替代途徑的陰性調節劑起作用,抑制替代途徑C3轉化酶(C3bBb)複合物的裝配並加速預先形成的轉化酶的衰退,因此阻斷膜攻擊複合物(MAC)的形成。CD59直接通過結合C5b678複合物並阻止C9的結合和聚合而抑制補體膜攻擊複合物。
儘管溶血和貧血是PNH的主要臨床特性,但該病是複雜的血液學病症,其進一步包括血栓形成和骨髓衰竭,作為臨床發現的一部分(Risitano等人, MiniReviews in Med Chem11:528-535 (2011))。在分子水準上,PNH是由缺乏功能性PIG A基因的造血幹細胞的異常選殖擴增所致。PIG A是編碼糖基化-磷脂醯肌醇轉移酶的伴X基因,所述酶是GPI-錨定的A類糖蛋白(包括CD55和CD59)的穩定的表面表達所需。為了目前尚在研究的原因,作為自發體細胞突變的結果的具有功能失調的PIG A基因的造血幹細胞可以經過選殖擴增到它們的後代構成相當大部分的外周造血細胞池的那一點。儘管突變幹細胞殖株的紅細胞和淋巴細胞的後代缺乏CD55和CD59,但當它們進入循環後,僅有RBC經歷明顯的溶血。
PNH的目前治療包括對付貧血的輸血,對付血栓形成的抗凝,和使用單株抗體依庫麗單抗 (Soliris®),其保護血細胞免於因抑制補體系統所致的免疫破壞(Hillmen P.等人, N. Engl. J. Med. 350(6):552-559 (2004))。依庫麗單抗 (Soliris®)是人源化單株抗體,其靶向補體成分C5,封閉其被C5轉化酶切割,從而阻止C5a的產生和MAC的裝配。用依庫麗單抗治療PNH患者,在大約半數患者中導致血管內溶血減少(經乳酸脫氫酶(LDH)測定),導致血紅蛋白穩定化和輸血非依賴性(Risitano等人, Mini-Reviews in Medicinal Chemistry, 11(6) (2011))。儘管經歷依庫麗單抗治療的幾乎所有患者都達到正常或幾乎正常的LDH水準(因為控制了血管內溶血),但僅有大約三分之一的患者的血紅蛋白值達到大約11gr/dL,其餘接受依庫麗單抗的患者以大約相同比例繼續表現出中度至嚴重(即輸血-依賴性的)貧血(Risitano A.M.等人, Blood113:4094-100 (2009))。正如Risitano等人, Mini-Reviews in Medicinal Chemistry11:528-535 (2011)所述,已經表明接受依庫麗單抗的PNH患者含有與他們PNH紅細胞結合的大量C3片段(而未經治療的患者則沒有)。該發現導致以下的認識:在Soliris治療的PNH患者中,因為C5阻斷所致的不再被溶血的PNH RBC,現在可以積累大量的膜-結合的C3片段,其作為調理素起作用,導致它們通過特異性C3受體而被網羅到網狀內皮細胞中並且隨後導致血管外溶血。因此,儘管阻止了血管內溶血和所得結果,但依庫麗單抗治療僅僅是將這些RBC的處置從血管內轉移到血管外溶血,在許多患者中導致大量剩餘的未經治療的貧血(Risitano A.M.等人, Blood113:4094-100 (2009))。因此,對於發生C3-片段-介導的血管外溶血的患者,需要除了使用依庫麗單抗之外的治療策略,因為他們繼續需要輸入紅細胞。這樣的C3片段靶向方法已經在實驗系統中表明瞭用途(Lindorfer等人, Blood115:2283-91, 2010)。 在PNH中的補體-啟動機制
在PNH中的負面補體調節劑CD55和CD59的缺陷的表面表達之間的因果關係,以及依庫麗單抗在預防血管內溶血中的有效性,清楚地定義了PNH為補體系統所介導的病況。儘管這一範例被廣泛接受,但啟動補體活化事件的性質,和所涉及的補體活化途徑仍然有待解決。因為CD55和CD59負面地調節所有補體啟動途徑共有的補體級聯中的末端放大步驟,所以這些分子的缺陷將會導致膜攻擊複合物的過量形成和膜整合,無論補體活化是否被凝集素途徑、被經典途徑或被替代途徑的自發更新所啟動。因此,在PNH患者中,導致C3b沉積在RBC表面的任何補體活化事件都可以觸發隨後的放大和病理性溶血(血管內和/或血管外)和促成溶血危象。對於在PNH對象中觸發溶血危象的分子事件的明確機制的理解,仍然是難以捉摸的。因為在經歷溶血危象的PNH患者中沒有補體啟動事件是明顯的,因此主流的觀點是PNH中的補體活化可因替代途徑的低水準“tick-over”活化而自發發生,其隨後通過因缺乏CD55和CD59所致的末端補體活化的不適當控制而被放大。
然而,重要的是注意到在其自然史中,PNH通常在某些事件例如感染或損傷後發生或惡化(Risitano, Biologics2:205-222 (2008)),已經表明所述事件觸發補體活化。這樣的補體活化反應不依賴於宿主針對刺激病原體的先前的免疫力,並且因此可能不涉及經典途徑。而是,看起來這樣的補體活化反應是由凝集素結合至在微生物作用物或受損宿主組織的表面上表達的外源或“自身改變的”碳水化合物模式而啟動。因此,在PNH中促使溶血危象的事件與經由凝集素啟動的補體活化是密切相關的。這使以下事實變為可能:凝集素活化途徑提供啟動的觸發,其最終導致PNH患者中的溶血。
使用經由凝集素而活化補體的明確的病原體作為實驗模型,以便在分子水準上分析活化級聯,我們證明了根據刺激的微生物,補體活化可以被LEA-2或LEA-1啟動,導致調理作用和/或細胞裂解。對於凝集素啟動事件的雙重反應(即調理作用和/或細胞裂解)的相同原理也可能適用於其他類型的感染物,或適用於在宿主組織損傷後的凝集素所致的補體活化,或可促成PNH的其他凝集素-驅動的補體活化事件。根據凝集素途徑中的這種雙重性,我們推斷在PNH患者中,LEA-2-和/或LEA-1-啟動的補體活化促進調理作用和/或通過C3b的RBC的裂解以及隨後的血管外和血管內溶血。因此,在PNH的情況下,同時抑制LEA-1和LEA-2預計解決血管內和血管外溶血兩者,提供了優於C5抑制劑依庫麗單抗的明顯優勢。
已經確定,肺炎鏈球菌曝露優先觸發LEA-2的凝集素-依賴性活化,其導致通過C3b的該微生物的調理作用。因為肺炎鏈球菌對MAC-介導的細胞裂解具有抗性,所以將其從循環中清除掉通過C3b的調理作用而發生。該調理作用和隨後從循環中的清除是LEA-2-依賴性的,正如在MASP-2-缺陷型小鼠和在用MASP-2單株抗體(PLOS Pathog.,8: e1002793. (2012))治療的小鼠中曝露的細菌對照所示。
在研究LEA-2在對微生物作用物的先天宿主反應中的作用時,我們測試了額外的病原體。當研究腦膜炎奈瑟氏菌( Neisseriameningitidis)作為模式生物時觀察到極為不同的結果。腦膜炎奈瑟氏菌也經由凝集素活化補體,並且補體活化對於在首次用於實驗的宿主中的腦膜炎奈瑟氏菌感染而言是必需的。然而,LEA-2在這種反應中沒有起到宿主保護功能的作用:如圖6和7所示,通過MASP-2的遺傳消除的LEA-2阻斷在腦膜炎奈瑟氏菌感染後不降低存活率。相反,在這些研究中,通過MASP-2消除的LEA-2阻斷顯著地提高了存活率(圖6和7)以及疾病評分(圖9)。通過施用MASP-2抗體所致的LEA-2阻斷得到同樣結果(圖10),在敲除-小鼠品系中消除了作為可能的原因的次級或補償效應。在LEA-2-消除的動物中的這些有利結果與腦膜炎奈瑟氏菌從血液中更快速清除有關(圖8)。另外,如本文所述,將腦膜炎奈瑟氏菌與正常人血清一起孵育殺傷腦膜炎奈瑟氏菌(圖11)。加入阻斷LEA-2的人MASP-2特異性的功能性單株抗體,但不施用同種型對照單株抗體,可以增強其殺傷反應。但是,該過程取決於凝集素和至少部分功能性補體系統,因為MBL-缺乏的人血清或熱滅活的人血清不能殺傷腦膜炎奈瑟氏菌(圖11)。總之,這些新發現表明在功能性補體系統存在時腦膜炎奈瑟氏菌感染受到補體活化的凝集素-依賴性的但LEA-2-非依賴性的途徑的控制。
使用來自一個3MC患者的血清標本,測試了LEA-1可能是負責腦膜炎奈瑟氏菌的凝集素-依賴性殺傷的補體途徑的假設。該患者是MASP-1/3基因的外顯子12中的無義突變的純合體。結果,該患者缺乏功能性MASP-3蛋白,但其他補體足夠(外顯子12對MASP-3轉錄物是特異性的;該突變對MASP-1功能或表達水準無作用) (參見 Nat Genet43(3):197-203 (2011))。正常人血清有效殺傷腦膜炎奈瑟氏菌,但缺乏MBL (凝集素途徑的一種識別分子)的熱滅活血清和MASP-3-缺乏的血清不能殺傷腦膜炎奈瑟氏菌(圖12)。因此,LEA-1看來介導腦膜炎奈瑟氏菌殺傷。使用來自敲除小鼠品系的血清樣品而證實了該發現。儘管含有補體的正常小鼠血清容易殺傷腦膜炎奈瑟氏菌,但MBL-缺陷型或MASP-1/3-缺陷型小鼠血清與缺乏功能性補體的熱滅活的血清一樣無效(圖13)。相反,MASP-2-缺乏的血清表現出對腦膜炎奈瑟氏菌的有效殺傷。
這些發現通過揭示凝集素-依賴性補體活化的單獨的LEA-2和LEA-1途徑的存在,提供了凝集素途徑中迄今未知的雙重性的證據。在以上詳述的實例中,LEA-2和LEA-1是非-冗餘的並介導不同的功能性結果。資料表明某些類型的凝集素途徑活化劑(包括但不限於肺炎鏈球菌)經由LEA-2而優先啟動補體活化,導致調理作用,而其他(以腦膜炎奈瑟氏菌為例)經由LEA-1而優先啟動補體活化並促進細胞裂解過程。然而,資料不一定將LEA-2限制在調理作用和將LEA-1限制在細胞裂解過程,因為在其他情況下這兩個途徑可以介導調理作用和/或細胞裂解。
在腦膜炎奈瑟氏菌所致的凝集素-依賴性補體活化的情況下,LEA-2和LEA-1分支看來彼此競爭,因為LEA-2的阻斷在體外增強了LEA-1-依賴性的生物體的細胞裂解破壞(圖13)。如以上詳述的,該發現可以解釋如下:在MASP-2不存在時,凝集素MASP-1複合物靠近凝集素MASP-3複合物滯留的可能性增加,這將增強LEA-1活化和因此促進腦膜炎奈瑟氏菌的更有效的細胞裂解。因為腦膜炎奈瑟氏菌的細胞裂解在首次進行實驗的宿主中是主要的保護機制,所以LEA-2的阻斷在體內增加了腦膜炎奈瑟氏菌的清除並導致增加的殺傷。
儘管上述實例說明了LEA-2和LEA-1對於腦膜炎奈瑟氏菌感染後的結果的相反作用,但也可能存在其他情況,其中LEA-2和LEA-1兩者可協同產生某種結果。如下詳述,在經由凝集素(例如在PNH中存在的那些)的病理性補體活化的其他情況下,LEA-2-和LEA-1-驅動的補體活化可以以協同方式合作促進PNH的總體病理學。另外,如本文所述,MASP-3也促進因子B和因子D的凝集素-非依賴性轉化,其可在Ca ++不存在時發生,通常導致C3bB轉化為C3bBb和前因子D轉化為因子D,其可進一步促進PNH病理學。 PNH中的生物學和預期的功能活性
本部分描述了在PNH體外模型中LEA-2和LEA-1阻斷對於溶血的抑制作用。所得發現支援使用LEA-2-阻斷劑(包括但不限於,與MASP-2結合並阻斷其功能的抗體)和LEA-1-阻斷劑(包括但不限於,與MASP-3結合並阻斷MASP-3的MASP-1-介導的活化的功能、阻斷MASP-3的功能或同時阻斷這兩者的抗體),以治療患有PNH的一個或多個方面的物件,並且還使用LEA-2和/或LEA-1的抑制劑、和/或MASP-3-依賴性的、凝集素-非依賴性補體活化的抑制劑(包括MASP-2抑制劑、MASP-3抑制劑和雙重-或雙特異性MASP-2/MASP-3或MASP-1/MASP-2抑制劑、和泛特異性MASP-1/MASP-2/MASP-3抑制劑),以便在經歷C5-抑制劑例如依庫麗單抗治療的PNH患者中改善C3-片段-介導的血管外溶血的作用。 MASP-2抑制劑通過網狀內皮系統阻斷調理作用和PNH RBC的血管外溶血
如上詳述,PNH患者因為RBC從循環中清除的以下兩種不同的機制而貧血:經由膜攻擊複合物(MAC)的活化所致的血管內溶血,以及在C3b的調理作用和通過網狀內皮系統的補體受體結合和攝取後的後續清除後的血管外溶血。當用依庫麗單抗治療患者時,極大地阻止了血管內溶血。因為依庫麗單抗阻斷末端裂解效應物機制(其發生在補體-啟動的活化事件以及隨後的調理作用的下游),因此依庫麗單抗不阻斷血管外溶血(Risitano A.M.等人, Blood113:4094-100 (2009))。而是,在未經治療的PNH物件中將經歷溶血的RBC在其表面上現在可以積累活化的C3b蛋白,其加大了網狀內皮系統的攝取和加大了它們的血管外溶血。因此,依庫麗單抗治療有效地將RBC的處置從血管內溶血轉移到可能的血管外溶血。結果,某些依庫麗單抗-治療的PNH患者仍然貧血。因此,阻斷補體活化上游和阻止PNH RBC的調理作用的試劑可特別適合阻斷用依庫麗單抗偶然可見的血管外溶血。
本文給出的微生物資料表明LEA-2通常是凝集素-依賴性調理作用的主要途徑。此外,當在3種原型凝集素活化表面(甘露聚糖,圖17A;酵母聚糖,圖17B,和肺炎鏈球菌;圖17C)上評價凝集素-依賴性調理作用(測量為C3b沉積)時,LEA-2看來在生理條件(即在Ca ++存在時,其中所有補體途徑是有效的)下是凝集素-依賴性調理作用的主要途徑。在這些實驗條件下,與WT血清相比,MASP-2-缺乏的血清(其缺乏LEA-2)在調理測試表面中實質上效果更差。MASP-1/3-缺陷型血清(其缺乏LEA-1)也是缺損的,儘管與缺乏LEA-2的血清相比,該效果更不明顯得多。LEA-2和LEA-1對凝集素-驅動的調理作用的貢獻的相對量在圖18A–18C中有進一步顯示。儘管已經報導了在凝集素途徑或經典途徑不存在時,補體的替代途徑支持凝集素活化表面的調理作用(Selander等人, J Clin Invest116(5):1425-1434 (2006)),但在隔離中(在無Ca ++的測定條件下測定)的替代途徑看來比本文所述的LEA-2-和LEA-1-啟動的過程實質上更加無效。通過外推,這些資料表明PNH RBC的調理作用也可被LEA-2優先啟動,和在較小程度上被LEA-1 (可能被替代途徑擴增環擴大)啟動,而不是凝集素-非依賴性替代途徑活化的結果。因此,可以預計LEA-2抑制劑在限制調理作用和預防PNH的血管外溶血中最有效。然而,認識到以下事實:凝集素而非MBL (例如纖維膠凝蛋白)結合至非-碳水化合物結構(例如乙醯化蛋白)上,並且MASP-3優先與H-纖維膠凝蛋白締合(Skjoedt等人, Immunobiol. 215:921-931, 2010),也使LEA-1在PNH-相關RBC調理作用中的重要作用的可能性懸而未決。因此,預計LEA-1抑制劑具有額外的抗調理作用,而且預計LEA-1和LEA-2抑制劑的組合是最佳的並在PNH患者中在限制調理作用和血管外溶血仲介導最有力的治療益處。因此,LEA-2和LEA-1疊加或協同作用,以促進調理作用,並且預計交叉反應性或雙特異性LEA-1/LEA-2抑制劑在PNH中在阻斷調理作用和血管外溶血中最有效。 MASP-3抑制劑在PNH中的作用
使用PNH的體外模型,我們證明了在PNH中的補體活化和所得溶血的確是由LEA-2和/或LEA-1活化而啟動,並且它不是替代途徑的非依賴性功能。這些研究使用不同小鼠品系的甘露聚糖-敏化的RBC,包括來自Crry-缺陷型小鼠(小鼠的末端補體途徑的一種重要的負面調節劑)的RBC,以及來自CD55/CD59-缺陷型小鼠(其缺乏在PNH患者中不存在的所述補體調節劑)的RBC。當將甘露聚糖-敏化的Crry-缺陷型RBC曝露給補體-足夠的人血清時,在血清濃度3%時,RBC有效溶血(圖19和20),而補體-缺乏的血清(HI:熱滅活的)卻不溶血。值得注意的是,補體-足夠的血清(其中通過加入MASP-2抗體而阻斷LEA-2)具有降低的溶血活性,並且為了有效溶血,需要6%血清。當測試CD55/CD59-缺陷型RBC時得到類似的觀察結果(圖22)。補充了MASP-2單株抗體的補體-足夠的人血清(即其中LEA-2被抑制的血清)在支持溶血方面比未經處理的血清而言有效性大約低2倍。此外,與未經處理的血清相比,需要更高濃度的LEA-2-阻斷血清(即經抗MASP-2單株抗體處理的)以促進未經處理的WT RBC的有效溶血(圖21)。
甚至更令人驚訝的是,來自功能失調的MASP-3蛋白為純合子的3MC患者的血清(並因此缺乏LEA-1)完全不能使甘露聚糖-敏化的Crry-缺陷型RBC溶血(圖20和圖21)。當使用未敏化的正常RBC時觀察到類似結果:如圖21所示,分離自3MC患者的LEA-1-缺乏的血清在介導溶血中完全無效。總之,這些資料表明儘管LEA-2明顯地促進血管內溶血反應,但LEA-1是導致溶血的主要的補體-啟動途徑。因此,儘管預計LEA-2阻斷劑在PNH患者中顯著地降低RBC的血管內溶血,但預計LEA-1阻斷劑具有更深遠的作用並且大量消除補體-驅動的溶血。
應當注意,當在傳統替代途徑測定條件下測試時,在該研究中使用的LEA-1-缺陷型3MC患者的血清具有減少了的但有功能的替代途徑(圖15)。這一發現表明與替代途徑活性相比,LEA-1在溶血上具有較大貢獻,正如在PNH的該實驗環境中傳統定義的那樣。經過推斷,這表明LEA-1-阻斷劑與替代途徑的其他方面的阻斷劑在預防或治療PNH患者的血管內溶血中至少一樣有效。 MASP-2抑制劑在PNH中的作用
本文給出的資料表明PNH中的貧血的以下發病機制:因末端補體成分的未經調節的活化和MAC形成所致的RBC溶血所致的血管內溶血,其主要是由(但並非唯一) LEA-1來啟動;以及因通過C3b的RBC的調理作用所致的血管外溶血,其看來是主要由LEA-2來啟動。儘管LEA-2在啟動補體活化和促進MAC形成和溶血中的可識別的作用是顯而易見的,但該過程看來比LEA-1-啟動的補體活化而導致溶血的效果明顯更差。因此,預計LEA-2-阻斷劑在PNH患者中顯著地降低血管內溶血,儘管預計該治療活性僅僅是部分的。通過比較,對於LEA-1-阻斷劑而言,預計在PNH患者中的血管內溶血更顯著降低。
血管外溶血(儘管不顯著,但仍然是導致PNH中的貧血的RBC破壞的同樣重要的機制),主要是C3b的調理作用的結果,其看來主要是由LEA-2介導。因此,可預計LEA-2-阻斷劑優先阻斷在PNH中的RBC調理作用和隨後的血管外溶血。預計LEA-2-阻斷劑的這一獨特治療活性對於所有PNH患者提供重要的治療益處,因為目前並無對經歷這種病理過程的PNH患者的治療方法。 LEA-2抑制劑作為LEA-1抑制劑或末端補體阻斷劑的輔助治療
本文給出的資料詳述了RBC清除和PNH中的貧血的兩種發病機制,可以通過不同類型的治療劑分別或聯合靶向這兩種機制:主要是由(但並非唯一) LEA-1啟動並因此預計通過LEA-1-阻斷劑可有效預防的血管內溶血;以及主要由LEA-2驅動的C3b調理作用所致,並因此通過LEA-2-阻斷劑有效預防的血管外溶血。
有文件充分證明血管內和血管外溶血機制兩者在PNH患者中導致貧血(Risitano等人, Blood113:4094-4100 (2009))。因此,預計預防血管內溶血的LEA-1-阻斷劑和主要預防血管外溶血的LEA-2阻斷劑的聯用,比單用任一所述試劑更有效預防PNH患者中發生的貧血。事實上,預計LEA-1-和LEA-2-阻斷劑的聯用預防在PNH中的補體啟動的所有相關機制並因此阻斷PNH中的所有貧血症狀。
還已知道C5-阻斷劑(例如依庫麗單抗)有效阻斷血管內溶血,但不干擾調理作用。這留下了一些經抗C5-治療的PNH患者,其患有因LEA-2介導的未被治療的血管外溶血所致的大量殘餘的貧血。因此,預計預防血管內溶血的C5-阻斷劑(例如依庫麗單抗)與降低血管外溶血的LEA-2阻斷劑的聯用,比單用任一所述試劑更有效預防PNH患者中發生的貧血。
阻斷補體系統的末端擴增環而導致C5活化和MAC沉積的其他試劑(包括但不限於阻斷備解素、因子B或因子D或者增強因子I、因子H或其他補體抑制性因子的抑制活性的試劑)預計也抑制血管內溶血。然而,這些試劑在PNH患者中預計不干擾LEA-2-介導的調理作用。這留下了一些經所述試劑治療的PNH患者,其患有因LEA-2介導的仍未被治療的血管外溶血所致的大量殘餘的貧血。因此,預計用預防血管內溶血的所述試劑的治療與使血管外溶血最小化的LEA-2阻斷劑的聯用,比單用任一所述試劑更有效預防PNH患者中發生的貧血。事實上,預計所述試劑和LEA-2-阻斷劑的聯用預防在PNH中的RBC破壞的所有相關機制並因此阻斷PNH中的所有貧血症狀。 使用LEA-1和LEA-2的多種雙特異性或泛特異性抗體以治療PNH
如上詳述,預計分別阻斷LEA-1和LEA-2並因此聯合阻斷介導血管內以及血管外溶血的所有補體活化事件的藥物試劑的組合使用,為PNH患者提供了最佳臨床結果。通過例如共同施用具有LEA-1-阻斷活性的抗體以及具有LEA-2-阻斷活性的抗體,可以達到這一結果。在某些實施方案中,將LEA-1-和LEA-2-阻斷活性合併到一個分子實體中,並且具有合併的LEA-1-和LEA-2-阻斷活性的這類實體將有效阻斷血管內以及血管外溶血並在PNH中預防貧血。這類實體可包含這樣的雙特異性抗體或由這樣的雙特異性抗體組成:其中一個抗原-結合位點特異性地識別MASP-1和阻斷LEA-1和減少LEA-2,而第二抗原-結合位點特異性地識別MASP-2和進一步阻斷LEA-2。或者,這類實體可以由這樣的雙特異性單株抗體組成:其中一個抗原-結合位點特異性地識別MASP-3和因此阻斷LEA-1,第二抗原-結合位點特異性地識別MASP-2和阻斷LEA-2。這類實體可以最好由這樣的雙特異性單株抗體組成:其中一個抗原-結合位點特異性地識別MASP-1和MASP-3兩者和因此阻斷LEA-1和減少LEA-2,而第二抗原-結合位點特異性地識別MASP-2和進一步阻斷LEA-2。根據總蛋白序列和結構中的相似性,還可預計可以開發具有兩個相同結合位點的傳統抗體,其以功能性方式特異性地結合至MASP-1和MASP-2和MASP-3上,因此達到功能性阻斷LEA-1和LEA-2。預計這種具有泛-MASP抑制活性的抗體同時阻斷血管內以及血管外溶血和因此在PNH患者中有效治療貧血。
如本文實施例11-21中所述,已經產生高親和力MASP-3抑制性抗體,其具有抑制AP相關疾病或病況例如PNH中的替代途徑的治療效用。
因此,在一個實施方案中,本發明提供用於治療患有或有風險發展PNH的物件的方法,其包括施用有效量的結合人MASP-3且抑制替代途徑補體活化的高親和力單株抗體或其抗原結合片段以治療物件中的PNH或降低物件中的PNH的風險。
在一個實施方案中,本發明提供用於治療患有或有風險發展陣發性夜間血紅蛋白尿(PNH)的物件的方法,其包括向物件施用包含有效量的結合人MASP-3且抑制替代途徑補體活化的如本文公開的單株抗體或其抗原結合片段的藥物組合物以治療物件中的PNH或降低物件中的PNH的風險,例如其中所述抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。在一些實施方案中,所述藥物組合物增加患有PNH的物件中的紅血細胞的存活。在一些實施方案中,其中患有或有風險發展PNH的物件展現選自以下的一種或多種症狀:(i)血紅蛋白低於正常水準,(ii)血小板低於正常水準;(iii)網織紅細胞高於正常水準,和(iv)膽紅素高於正常水準。在一些實施方案中,將藥物組合物全身性(例如,皮下、肌肉內、靜脈內、動脈內或作為吸入劑)施用於患有或有風險發展PNH的物件。在一些實施方案中,患有或有風險發展PNH的物件先前已經經歷或正在經歷用抑制補體蛋白C5的切割的末端補體抑制劑的治療。在一些實施方案中,所述方法進一步包括向物件施用抑制補體蛋白C5的切割的末端補體抑制劑。在一些實施方案中,所述末端補體抑制劑是人源化抗C5抗體或其抗原結合片段。在一些實施方案中,所述末端補體抑制劑是依庫麗單抗。 B. MASP-3在年齡相關性黃斑變性中的作用以及使用MASP-3抑制性抗體、任選組合MASP-2抑制劑的治療方法
年齡相關性黃斑變性(AMD)是老年人視力障礙和失明的首要原因,占發達國家失明病例的高達50%。成人中AMD的患病率約為3%,且隨年齡增加,使得超過80歲的人口中將近三分之二會有一些病徵。據估計,在美國超過175萬個體患有晚期AMD,並且隨著人口老齡化,患病率正在增加,預計到2020年達到將近3百萬(Friedman, D.S.等人, Arch. Ophthalmol.122:564-572, 2004)。AMD是視網膜色素上皮細胞(RPE)異常,其導致上覆中央視網膜光感受器或黃斑的變性和中心視力喪失。早期和中間形式的AMD的特徵在於在鄰近RPE的視網膜下間隙中玻璃疣漸進沉積,伴有視網膜中色素不規則性,玻璃疣是一種含脂質、蛋白質、脂蛋白和細胞碎片的淡黃色物質。晚期AMD由兩個臨床亞型組成:非新生血管的地理樣萎縮(“乾”)AMD和新生血管滲出(“濕”)AMD。儘管乾性AMD占晚期AMD的80-90%,但大多數突發性和嚴重的視力喪失發生在濕性AMD患者中。還不知道這兩種類型的AMD是否代表從類似的病理或兩種不同的條件所產生的不同的表型。對於治療乾性AMD,美國食品和藥物管理局(FDA)目前尚未批准療法。濕性AMD的FDA批准的治療選擇包括抗血管生成藥(蘭尼單抗、呱加他尼鈉、aflibercept)的玻璃體內注射、鐳射療法、光動力鐳射療法和可植入的望遠鏡。
AMD的病因和病理生理學是複雜和未被完全理解的。幾條證據支援補體系統的失調在AMD的發病機制中的作用。基因關聯研究已經確定與AMD相關的多個基因位元點,包括編碼一系列補體蛋白、因子和調節劑的基因。最強關聯是與補體因子H(CFH)基因的多態性,其中與非風險基因型相比Y402H變體純合子發生AMD的風險增加約6倍,Y402H變體雜合子增加約2.5倍(Khandhadia, S.等人, Immunobiol.217:127-146, 2012)。在其他補體途徑編碼基因中的突變也已與AMD風險增加或降低關聯,包括補體因子B(CFB)、C2、C3、因子I和CFH相關蛋白1和3(Khandhadia等)。在AMD患者的供體眼中的免疫組織化學和蛋白質組的研究表明,補體級聯的蛋白增加並定位於玻璃疣(Issa, P.C.等人, Graefes. Arch. Clin. Exp. Ophthalmol.249:163-174, 2011)。此外,AMD患者增加全身補體活化,如在外周血中測定的(Issa等人, 2011,同上)。
在AMD的發病機制中,補體替代途徑似乎比經典途徑更相關。通過免疫組織化學分析,在玻璃疣中未檢測到C1q,其是用於活化經典途徑的必需識別組份(Mullins等., FASEB J. 14:835‑846, 2000; Johnson等人, Exp. Eye Res. 70:441‑449, 2000)。遺傳關聯研究已經牽連CFH和CFB基因。這些蛋白參與替代途徑擴增環,其中CFH是流體相抑制劑且CFB是替代途徑的活化蛋白酶組份。CFH的Y402H變體影響與配體結合的相互作用,包括與C反應蛋白、肝素、M蛋白和糖胺聚糖結合。與配體結合的這一改變可降低與細胞表面的結合,這反過來又可能導致因子I介導的C3b活化片段降解降低和替代C3轉化酶的調節受損,這導致過度活化替代途徑(Khandhadia等人, 2012,同上)。CFB基因變異與對於AMD發展的保護作用相關聯。功能變體fB32Q與C3b的結合親和力為風險變體fB32R的1/4,導致C3轉化酶形成減少(Montes, T.等人, Proc. Natl. Acad. Sci. U.S.A.106:4366-4371, 2009)。 AMD中的補體啟動機制
上面所討論的人類遺傳連鎖研究表明對於AMD發病機制中的補體系統的重要作用。此外,補體活化產物大量存在於玻璃疣(Issa, P.C.等人, Graefes. Arch. Clin. Exp. Ophthalmol.249:163-174, 2011),其是濕性和乾性AMD兩者的標誌性病理損害。然而,啟動補體活化的事件的性質和所涉及的補體活化途徑仍然未被完全理解。
注意到玻璃疣沉積物由源自視網膜的細胞碎片和氧化廢產物(其隨著眼老化而積累在RPE之下)構成是重要的。另外,氧化應激似乎發揮著重要作用(Cai等; Front Biosci., 17:1976-95, 2012),並已被表明導致RPE補體活化( JBiol Chem., 284(25):16939-47, 2009)。廣泛認為,氧化應激和細胞或組織損傷兩者活化補體系統的凝集素。例如,Collard等人已經表明,曝露於氧化應激的內皮細胞觸發由凝集素介導的大量補體沉積(Collard CD等人, Mol Immunol., 36(13-14):941-8, 1999; Collard C.D.等人, Am J Pathol., 156(5):1549-56, 2000),並且凝集素結合和凝集素依賴性補體活化的阻斷改進氧化應激損傷的實驗模型中的結果(Collard C.D.等人, Am J Pathol.,156(5):1549-56, 2000)。因此,似乎可能的是,玻璃疣中存在的氧化廢產物也經由凝集素活化補體。由此推斷,凝集素依賴性補體活化可能在AMD的發病機制中發揮關鍵作用。
補體系統的作用已在AMD的小鼠模型中進行評估。在光損傷小鼠模型(氧化應激介導的光感受器變性實驗模型)中,經典途徑消除的敲除小鼠(C57BL/6背景中的C1qα -/-)與野生型同窩小鼠相比有相同的對於光損傷的敏感度,而消除替代途徑的補體因子D(CFD -/-)導致保護免於光損傷(Rohrer, B.等人, Invest. Ophthalmol. Vis. Sci.48:5282-5289, 2007)。在由布魯赫膜的鐳射光凝誘導的脈絡膜新生血管形成(CNV)的小鼠模型中,與野生型小鼠相比,沒有補體因子B的敲除小鼠(CFB -/-)被保護免於CNV (Rohrer, B.等人, Invest. Ophthalmol. Vis. Sci.50:3056-3064, 2009)。在相同的模型中,靶向補體活化位點的補體因子H (CR2-fH)的重組形式的靜脈內施用減少CNV的程度。不管CR2-fH是在鐳射損傷時施用還是(鐳射損傷後)治療性施用,都觀察這種保護作用。一種人類治療形式的CR2-fH(TT30)在鼠CNV模型中也是有效的(Rohrer, B.等 J. Ocul. Pharmacol. Ther.,28:402-409, 2012)。因為fB由LEA-1活化,並且因為MASP-1和MASP-3有助於因子D的成熟,這些發現暗示LEA-1抑制劑可在AMD患者中具有治療益處。此外,從2期研究報告的最近結果已顯示,每月玻璃體內注射蘭帕珠單抗(以前稱為FCFD4514S和抗因子D,其是針對因子D的人源化單株抗體的抗原結合片段)降低了具有繼發於AMD的地圖狀萎縮的患者中的地圖狀萎縮區域進展(Yaspan B.L.等人, Sci Transl. Med. 9, Issue 395, June 21, 2017)。
使用MBL缺陷小鼠在AMD齧齒動物模型的最初實驗研究並不支持凝集素途徑在致病性補體活化中的關鍵作用(Rohrer等人, Mol Immunol. 48:e1-8, 2011)。然而,MBL只是幾種凝集素之一,並且除MBL外的凝集素可能在AMD中引發補體活化。事實上,我們以前的工作已經表明,在凝集素途徑功能中極為需要的限速絲胺酸蛋白酶MASP-2在AMD中起關鍵作用。如在美國專利7919094中描述(轉讓給Omeros Corporation),通過引用併入本文,在鐳射誘導的CNV小鼠模型(經驗證的濕性AMD臨床前模型)中,MASP-2缺陷型小鼠和MASP-2抗體處理的小鼠被保護(Ryan等人, Tr Am Opth Soc LXXVII:707-745, 1979)。因此,LEA-2的抑制劑預期在AMD患者中有效防止CNV和改善結果。
因此,鑒於上述情況,在AMD中LEA-1和LEA-2抑制劑預期具有獨立的治療益處。此外,與單獨的任一藥劑相比,LEA-1和LEA-2抑制劑一起使用可以實現額外的治療益處,或者可以為更廣範圍患者亞群提供有效的治療。合併的LEA-1和LEA-2抑制可以由LEA-1阻斷劑和LEA-2阻斷劑的共同施用來實現。最佳地,LEA-1和LEA-2的抑制功能可以包含在單一的分子實體中,例如包含MASP-1/3和MASP-2特異性結合位點的雙特異性抗體,或其中每個結合位點可以結合並阻斷MASP-1/3或MASP-2的雙重特異性抗體。
根據上述內容,本發明的一個方面因此提供了用於抑制LEA-1依賴性補體活化以治療年齡相關性黃斑變性(濕和乾形式)的方法,所述方法通過向患有所述病況的物件施用一種組合物來進行,所述組合物包含在藥物載體中的治療有效量的MASP-1抑制劑、MASP-3抑制劑或MASP-1/3抑制劑的組合。MASP‑1、MASP‑3或MASP‑1/3抑制性組合物可以局部施用至眼,例如通過沖洗、玻璃體內施用或以凝膠、藥膏或滴劑的形式施用該組合物。或者,MASP-1、MASP-3或MASP-1/3抑制劑可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或可能通過口服施用非肽能藥劑。施用可由醫師確定而重複進行,直到病況得到解決或控制。
在一個實施方案中,根據本發明此方面的方法進一步包括在患有年齡相關性黃斑變性的對象中抑制LEA-2依賴性補體活化,包括向有此需要的物件施用治療有效量MASP-2抑制劑和MASP-1,MASP-3或MASP 1/3抑制劑。如上詳述,在AMD患者中,與單獨抑制LEA-1相比,採用各自阻斷LEA-1和LEA-2的藥理劑的組合預期提供改進的治療結果。這個結果可以實現,例如,通過具有LEA-1阻斷活性的抗體連同具有LEA-2-阻斷活性的抗體的共同施用。在一些實施方案中,LEA-1-和LEA-2-阻斷活性被組合成單一的分子實體,並且所述實體具有組合的LEA-1-和LEA-2-阻斷活性。這種實體可以包括雙特異性抗體或由其組成,其中一個抗原結合位點特異性識別MASP-1並阻斷LEA-1而第二抗原結合位點特異性識別MASP-2並阻斷LEA-2。或者,這樣的實體可由雙特異性單株抗體組成,其中一個抗原結合位點特異性識別MASP-3,因此阻斷LEA-1而第二抗原結合位點特異性識別MASP-2,並阻斷LEA-2。這樣的實體可最佳地由雙特異性單株抗體組成,其中一個抗原結合位點特異性地識別MASP-1和MASP-3兩者,因此阻斷LEA-1,而第二抗原結合位點特異性地識別MASP-2,並阻斷LEA-2。
MASP-2抑制性組合物可以局部施用至眼,例如通過沖洗、玻璃體內注射或以凝膠、藥膏或滴劑的形式局部施用組合物。或者,MASP-2抑制劑可以全身性施用物件,例如通過動脈內、靜脈內、肌肉內、吸入、鼻、皮下或其他腸胃外施用,或可能通過口服施用非肽能藥劑。施用可由醫師確定而重複進行,直到病況得到解決或控制。
本發明的MASP-3抑制性組合物和任選MASP-2抑制性組合物的施用可通過組合物的單次施用(例如,含有MASP-2和MASP-3抑制劑或雙特異性或雙重抑制劑的單一組合物,或共同施用分開的組合物),或通過有限順序的施用進行,用於治療AMD。或者,組合物可以以週期性的間隔,例如每日、每兩周、每週、每隔一周、每月或每兩月在長時間內施用以治療AMD。
如本文實施例11-21中所述,已經產生高親和力MASP-3抑制性抗體,其具有抑制AP相關疾病或病況例如AMD中的替代途徑的治療效用。
因此,在一個實施方案中,本發明提供用於治療患有或有風險發展AMD的物件的方法,其包括施用有效量的結合人MASP-3且抑制替代途徑補體活化的高親和力單株抗體或其抗原結合片段以治療物件中的AMD或降低物件中的AMD的風險。在一個實施方案中,本發明提供用於治療患有或有風險發展AMD的物件的方法,其包括向物件施用包含有效量的結合人MASP-3且抑制替代途徑補體活化的如本文公開的單株抗體或其抗原結合片段的藥物組合物以治療物件中的AMD或降低物件中的AMD的風險,例如其中所述抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。
C. MASP-3在缺血再灌注損傷中的作用以及使用MASP-3抑制性抗體、任選組合MASP-2抑制劑的治療方法
組織缺血是寬範圍臨床病症的基礎。儘管及時恢復血流對於保護缺血組織是必要的,但早已認識到,再灌注,這可自發地或通過治療性干預而發生,可能會導致額外的組織損傷,這一現象已被稱為缺血再灌注(I/R)損傷(Eltzschig, H.K.和Tobias, E., Nat. Med. 17:1391-1401, 2011)。I/R損傷可影響單個器官,如心臟(急性冠狀動脈徵候群)、腎(急性腎損傷)、腸(腸I/R)和腦(中風)。I/R損傷也可影響多器官,如下列主要創傷和復蘇(多器官衰竭)、循環停止(缺氧性腦損傷、急性腎損傷)、周圍血管疾病和鐮狀細胞病(急性胸部徵候群、急性腎損傷)。大手術可與I/R損傷相關,包括心臟手術(心肺轉流術後的急性心衰竭)、胸外科手術(急性肺損傷)、外周血管手術(間隔徵候群)、血管手術(急性腎損傷)和實體器官移植(急性移植失敗)。目前,還沒有針對I/R損傷的特定療法,需要有效的治療,以使缺血區組織的搶救最大化並改善這些常見情況下的功能性結果。
I/R損傷的病理生理學是複雜的,其特徵在於再灌注後的穩健炎性反應。補體系統的活化已經暗示為I/R損傷的重要組成部分,補體活性的抑制在多種動物模型中是有效的(Diepenhorst, G.M.P.等人, Ann. Surg.249:889-899, 2009)。I/R損傷中經典、凝集素和替代途徑的相對重要性在很大程度上是不穩定的,並且取決於所影響的器官可能有所不同。最近可獲得特定補體蛋白質和途徑特異性抑制劑缺陷的敲除小鼠,這已經產生了涉及在I/R損傷中凝集素和替代途徑的資料。
使用因子D缺乏(-/-)小鼠和雜合子(+/-)小鼠,研究了胃腸道I/R損傷中替代途徑的作用(Stahl, G.L.等 Am. J. Pathol.162:449-455, 2003)。與雜合子小鼠相比,在因子D缺乏的小鼠中,在暫態胃腸缺血後,減少但並未防止腸和肺損傷,並且將人因子D加入因子D(-/-)小鼠恢復I/R損傷。相同的模型在C1q缺陷和MBL- A / C缺陷的小鼠中進行評價,結果表明,胃腸I/R損傷獨立於C1q和經典途徑活化,但是MBL和凝集素途徑活化對於腸損傷是必需的(Hart, M.L.等 J. Immunol. 174:6373-6380, 2005)。相反地,經典途徑的C1q識別分子負責腸I/R後的肺損傷(Hart, M.L.等 J. Immunol. 174:6373-6380, 2005)。一種假說是I/R損傷期間,補體活化通過天然IgM與缺血性(但非正常)組織的表面上呈現的自身抗原(例如非肌肉肌球蛋白重鏈II型)結合而發生。在小鼠胃腸道I/R損傷模型中,在經典(C1q)、凝集素(MBL)或替代(因子B)途徑中評價了來自腸組織的免疫複合物中引發因子的存在情況(Lee, H.等人, Mol. Immunol.47:972-981, 2010)。結果表明,在這些免疫複合物中檢測到C1q和MBL而未檢測到因子B,指示經典和凝集素途徑的參與,但不是替代途徑。在相同的模型中,因子B缺陷型小鼠沒有受到保護而免於局部組織損傷,提供缺乏替代途徑的參與的額外支援。在MASP-2缺陷型小鼠中直接評價胃腸I/R損傷中凝集素途徑的作用,結果表明,與野生型對照相比,這些小鼠中胃腸道損傷減少;用MASP-2單株抗體的治療也同樣具有保護性(Schwaeble, W.J.等人, Proc. Natl. Acad. Sci.108:7523-7528, 2011)。總之,這些結果為胃腸道I/R損傷中凝集素途徑的參與提供了支持,關於替代途徑的參與具有衝突資料。
在小鼠心肌I/R損傷模型中,對於凝集素途徑,顯示了致病作用,因為MBL缺陷型小鼠被保護免於心肌損傷而C1q缺陷和C2/fB缺陷型小鼠沒有(Walsh, M.C.等人, J. Immunol.175:541-546, 2005)。在MASP-2缺陷型小鼠中也觀察到免於心肌I/R損傷的保護作用(Schwaeble, W.J.等人, Proc. Natl. Acad. Sci.108:7523-7528, 2011)。在心肌I/R模型中用針對大鼠MBL的單株抗體治療大鼠,導致缺血後再灌注損傷減少(Jordan, J.E.等人, Circulation 104:1413‑18, 2001)。在用血管成形術治療的心肌梗死患者的研究中,與MBL-充分的對應物相比,MBL缺乏與減少的90天死亡率相關(M Trendelenburg等人, Eur Heart J. 31:1181, 2010)。此外,血管成形術後發生心功能不全的心肌梗死患者的MBL水準為具有功能恢復的患者的約3倍(Haahr-Pedersen S.等人, J Inv Cardiology, 21:13, 2009)。MBL抗體還減少氧化應激後體外內皮細胞上的補體沉積,指示凝集素途徑在心肌I/R損傷中的作用(Collard, C.D.等人, Am. J. Pathol.156:1549‑56, 2000)。在I/R損傷的小鼠異位同系移植的心臟移植模型中,使用途徑特異性融合蛋白CR2-fH研究替代途徑的作用(Atkinson, C.等人, J. Immunol.185:7007-7013, 2010)。移植後立即全身施用CR2-fH導致心肌I/R損傷減少,其程度與用CR2-Crry治療相當,用CR2-Crry治療抑制所有補體途徑,這表明在該模型中替代途徑是極其重要的。
在腎I/R損傷的小鼠模型中,涉及替代途徑,因為與野生型小鼠相比,因子B缺陷的小鼠被保護而免於腎功能和腎小管損傷的下降(Thurman, J.M.等人, J. Immunol.170:1517-1523, 2003)。用針對因子B的抑制性單株抗體進行治療,防止補體活化和減少鼠腎I/R損傷(Thurman, J.M.等人, J. Am. Soc. Nephrol.17:707-715, 2006)。在雙側腎I/R損傷模型中,與野生型小鼠相比,MBL- A/C缺陷小鼠受到保護免於腎損傷,且重組人MBL逆轉MBL-A / C缺陷型小鼠的保護作用,暗示了MBL在此模型中的作用(Moller-Kristensen, M.等人, Scand. J. Immunol.61:426-434, 2005)。在大鼠單側腎I/R損傷模型中,I/R後,用針對MBL-A的單株抗體抑制MBL,保留了腎功能(van der Pol, P.等人, Am. J. Transplant.12:877-887, 2010)。引人注意的是,MBL在這一模型中的作用並未涉及終端補體成分的活化,因為用C5抗體治療對於防止腎損傷是無效的。相反,MBL似乎對腎小管細胞具有直接毒性作用,因為與MBL孵育的人類近端腎小管細胞在體外使MBL內化,隨後細胞凋亡。在腎I/R的豬模型中,Castellano G.等人,( Am J Pathol,176(4):1648-59, 2010)測試了C1抑制劑,它不可逆的失活經典途徑中的C1r和C1s蛋白酶以及凝集素途徑的MBL複合物中的MASP-1和MASP-2蛋白酶,並且發現C1抑制劑降低了腎小管周圍毛細血管和腎小球中的補體沉積和減少腎小管損害。
替代途徑似乎參與實驗性創傷性腦損傷,因為與野生型小鼠相比,因子B缺陷的小鼠具有降低的全身補體活化(如通過血清C5a水準測量)和降低的創傷後神經細胞死亡(Leinhase, I.等人, BMC Neurosci.7:55-67, 2006)。在人中風中,通過在缺血性損傷中免疫組織化學染色檢出補體成分C1q、C3c和C4d,表明經由經典途徑的活化(Pedersen, E.D.等, Scand. J. Immunol.69:555-562, 2009)。在腦缺血的動物模型中靶向經典途徑已經產生了混合結果,有一些研究表明保護作用而其他顯示沒有益處(Arumugam, T.V.等人, Neuroscience158:1074-1089, 2009)。實驗和臨床研究提供了凝集素途徑參與的有力證據。在實驗性中風模型中,與野生型小鼠相比,缺乏MBL或MASP-2導致減少梗死面積(Cervera A等; PLoS One3;5(2):e8433, 2010; Osthoff M.等人, PLoS One, 6(6):e21338, 2011)。此外,與其MBL-充分的對應物相比,具有低水準MBL的中風患者有較好的預後(Osthoff M.等人, PLoS One, 6(6):e21338, 2011)。
在心肺轉流術的狒狒模型中,用因子D單株抗體處理抑制全身性炎症(如通過C3a、SC5b-9和IL-6的血漿水準測定),並降低了心肌組織損傷,說明替代途徑在這一模型中的參與(Undar, A.等人, Ann. Thorac. Surg.74:355-362, 2002)。
因此,取決於受I/R影響的器官,補體的所有三個途徑可促成發病和不良後果。根據上面詳述的實驗和臨床發現,LEA-2抑制劑預計在大部分I/R情況下具有保護性。至少在一些情況下,LEA-1的凝集素依賴性活化可導致經由替代途徑的補體活化。此外,LEA-2啟動補體活化可進一步由替代途徑擴增環而擴增,從而加劇I/R相關的組織損傷。因此,LEA-1抑制劑預期在患有缺血相關病況的患者中提供附加的或補充的治療益處。
鑒於上述內容,LEA-1和LEA-2抑制劑預期在治療、預防或減少缺血再灌注相關病況的嚴重程度中具有獨立的治療益處。此外,與單獨的任一藥劑相比,LEA-1和LEA-2抑制劑一起使用可以實現額外的治療益處。因此,I/ R -相關病況的最佳有效治療包括單獨或組合阻斷LEA-1和LEA-2兩者的活性藥物成分。組合的LEA-1和LEA-2抑制可以由LEA-1阻斷劑和LEA-2阻斷劑的共同施用來實現。優選地,LEA-1和LEA-2的抑制功能可以包含在單一的分子實體中,例如包含MASP-1/3和MASP-2特異性結合位點的雙特異性抗體,或其中每個結合位點可以結合並阻斷MASP-1/3或MASP-2的雙重特異性抗體。
根據上述內容,本發明的一個方面因此提供了用於抑制LEA-1依賴性補體活化以治療、預防或減少缺血再灌注損傷的嚴重程度的方法,所述方法通過向經歷缺血再灌注的物件施用一種組合物來進行,所述組合物包含在藥物載體中的治療有效量的LEA-1抑制劑,所述LEA-1抑制劑包含MASP-1抑制劑、MASP-3抑制劑或MASP-1/3抑制劑的組合。MASP-1、MASP-3或MASP-1/3抑制性組合物可通過動脈內、靜脈內、顱內、肌肉內、皮下或其他腸胃外施用,以及潛在地對於非肽能抑制劑經口服,並且最適宜通過動脈或靜脈內施用而施用於對象。本發明的LEA-1抑制性組合物的施用適宜在缺血再灌注事件之後立即開始或儘快開始。在再灌注發生在受控環境中的情況下(例如,在主動脈動脈瘤修復、器官移植或切斷或受創傷的肢體或手指/腳趾的復位後),LEA-1抑制劑可先於再灌注和/或在再灌注期間和/或在再灌注之後施用。施用可由醫師確定而週期性重複進行,以達到最佳治療效果。
在一些實施方案中,所述方法用於治療或預防與以下至少一種相關聯的缺血再灌注損傷:主動脈瘤修復、心肺轉流術、器官移植和/或肢/手指/腳趾再植相關的血管再吻合術、中風、心肌梗死和休克和/或外科手術後的血流動力學復蘇。
在一些實施方案中,所述方法用於在物件中治療或預防與缺血再灌注損傷,所述物件即將經歷、正在經歷或已經經歷器官移植。在一些實施方案,所述方法用於在物件中治療或預防缺血再灌注損傷,所述物件即將經歷、正在經歷或已經經歷器官移植,前提是器官移植不是腎移植。
在一個實施方案中,根據本發明此方面的方法進一步包括在經歷缺血再灌注的物件中抑制LEA-2依賴性補體活化,包括向物件施用治療有效量MASP-2抑制劑和MASP-1、MASP-3或MASP-1/3抑制劑。如上詳述,在治療、預防或減少缺血再灌注損傷的嚴重程度中,與單獨抑制LEA-1相比,採用各自阻斷LEA-1和LEA-2的藥理劑的組合預期提供改進的治療結果。這個結果可以實現,例如,通過具有LEA-1阻斷活性的抗體連同具有LEA-2-阻斷活性的抗體的共同施用。在一些實施方案中,LEA-1-和LEA-2-阻斷活性被組合成單一的分子實體,並且所述實體具有組合的LEA-1-和LEA-2-阻斷活性。這種實體可以包括雙特異性抗體或由其組成,其中一個抗原結合位點特異性識別MASP-1並阻斷LEA-1而第二抗原結合位點特異性識別MASP-2並阻斷LEA-2。或者,這樣的實體可由雙特異性單株抗體組成,其中一個抗原結合位點特異性識別MASP-3,因此阻斷LEA-1而第二抗原結合位點特異性識別MASP-2,並阻斷LEA-2。這樣的實體可最佳地由雙特異性單株抗體組成,其中一個抗原結合位點特異性地識別MASP-1和MASP-3兩者,因此阻斷LEA-1,而第二抗原結合位點特異性地識別MASP-2,並阻斷LEA-2。
MASP-2抑制性組合物可通過動脈內、靜脈內、顱內、肌肉內、皮下或其他腸胃外施用,以及潛在地對於非肽能抑制劑經口服,並且最適宜通過動脈內或靜脈內施用而施用於有此需要的物件。本發明的MASP-2抑制性組合物的施用適宜在缺血再灌注事件之後立即開始或儘快開始。在再灌注發生在受控環境中的情況下(例如,在主動脈動脈瘤修復、器官移植或切斷或受創傷的肢體或手指/腳趾的復位後),MASP-2抑制劑可先於再灌注和/或在再灌注期間和/或在再灌注之後施用。施用可由醫師確定而週期性重複進行,以達到最佳治療效果。
本發明的MASP-3抑制性組合物和任選MASP-2抑制性組合物的施用可通過組合物的單次施用(例如,含有MASP-2和MASP-3抑制劑或雙特異性或雙重抑制劑的單一組合物,或共同施用分開的組合物),或通過有限順序的施用進行,用於治療或預防缺血再灌注損傷。或者,組合物可以以週期性的間隔,例如每日、每兩周、每週、每隔一周、每月或每兩月在長時間內施用以治療經歷缺血再灌注的物件。
如本文實施例11-21中所述,已經產生高親和力MASP-3抑制性抗體,其具有抑制AP相關疾病或病況中(例如在經歷缺血再灌注的對象中)的替代途徑的治療效用。
因此,在一個實施方案中,本發明提供用於治療患有或有風險發展缺血-再灌注的物件的方法,其包括施用有效量的結合人MASP-3且抑制替代途徑補體活化的高親和力單株抗體或其抗原結合片段以治療物件中的與缺血-再灌注相關的組織損傷或降低物件中的與缺血-再灌注相關的組織損傷的風險。 D. MASP-3在炎性和非炎性關節炎的作用以及使用MASP-3抑制性抗體、任選組合MASP-2抑制劑的治療方法
類風濕性關節炎(RA)是滑膜關節的慢性炎性疾病,其也可以具有全身表現。RA影響到世界人口的大約1%,而女性的患病可能性是兩到三倍。關節發炎體現在紅腫、疼痛和僵硬。隨著病情的發展,可存在關節侵蝕和破壞,導致運動範圍受損和畸形。RA的治療目標包括預防或控制關節損傷,預防關節功能損失和疾病進展,減輕症狀和提高生活品質,並實現無藥物緩解。藥理治療RA包括緩解疾病的抗風濕藥(DMARD)、鎮痛藥和消炎藥(糖皮質激素和非類固醇抗炎藥)。DMARD是最重要的治療,因為它們可誘導持久緩解和延遲或阻止不可逆的關節破壞的發展。傳統的DMARD包括小分子,例如甲胺蝶呤、柳氮磺吡啶、羥氯喹、金鹽、來氟米特、D-青黴胺、環孢菌素和硫唑嘌呤。如果傳統的DMARD不足以控制疾病,那麼靶向炎性細胞或介質的幾種生物製劑是可用的治療選擇,如腫瘤壞死因子抑制劑(依那西普、英夫利昔單抗、阿達木單抗、certolizumab pegol和戈利木單抗(golimumab))、細胞因子拮抗劑(阿那白滯素和tocilizumab)、利妥昔單抗和阿巴西普。
儘管適應性免疫顯然對RA發病是重要的(如通過與T細胞活化基因的遺傳關聯和自身抗體的存在所表明的),先天免疫機制也被牽連(McInnes, I.B.和Schett, G. New Engl. J. Med.365:2205-2219, 2011)。在人類RA中,替代途徑裂解片段Bb的滑液水準是晶體誘導的關節炎或退行性關節病患者的樣品的滑液水準的數倍,暗示RA患者的替代途徑優先活化(Brodeur, J.P.等人, Arthritis Rheum.34:1531-1537, 1991)。在關節炎的實驗性抗II型膠原抗體被動轉移模型中,與野生型小鼠相比,因子B缺陷的小鼠具有減少的炎症和關節破壞,而C4缺陷型小鼠與野生型小鼠具有相似的疾病活性,指示在此模型中需要替代途徑,而不是經典途徑(Banda, N.K.等人, J. Immunol.177:1904-1912, 2006)。在膠原抗體誘發的關節炎(CAIA)的相同實驗模型中,僅經典途徑具有活性或僅凝集素途徑具有活性的小鼠不能夠發展關節炎(Banda, N.K.等人, Clin. Exp. Immunol.159:100-108, 2010)。從本研究的資料表明,無論是經典或凝集素途徑均能夠活化體外低水準的C3。然而,在沒有替代途徑擴增環時,C3的關節沉積水準不足以產生臨床疾病。在替代途徑的活化中的關鍵步驟是因子D (前因子D)酶原轉換為成熟因子D,它是由MASP-1和/或MASP-3 (Takahashi, M.等人, J. Exp. Med.207:29-37, 2010)和/或HTRA1(Stanton等人, Evidence That the HTRA1 Interactome Influences Susceptibility to Age-Related Macular Degeneration, 由The Association for Research in Vision and Ophthalmology 2011年會議在2011年3月4日提供)介導的。在鼠CAIA中評價MASP-1/3的作用,結果表明與野生型小鼠相比,MASP-1/3缺陷小鼠受到保護免於關節炎(Banda, N.K.等人, J. Immunol.185:5598-5606, 2010)。在MASP-1/3缺陷型小鼠中,在CAIA發展期間,在血清中檢測到前因子D而不是成熟因子D,並且使用這些小鼠的血清,體外加入人因子D重構了C3活化和C5a產生。相比之下,在關節炎的效應階段的鼠模型中,與WT小鼠相比,C3缺陷的小鼠發展十分輕微的關節炎,而因子B缺陷的小鼠仍然發展關節炎,表示經典/凝集素和替代途徑兩者的獨立貢獻(Hietala, M.A.等人, Eur. J. Immunol.34:1208-1216, 2004)。在炎性關節炎的K/BxN T細胞受體轉基因小鼠模型中,缺乏C4或C1q的小鼠發展類似於野生型小鼠的關節炎,而缺乏因子B的小鼠沒有發展關節炎或有輕度關節炎,表明在此模型中需要替代途徑而不是經典途徑(Ji H.等人, Immunity16:157-168, 2002)。在K/BxN模型中,缺乏MBL-A的小鼠不受保護免於血清誘導的關節炎,但由於沒有研究MBL-C的作用,對於凝集素途徑的潛在作用不能被排除(Ji等人,2002年,同上)。
兩個研究小組已獨立地提出,凝集素依賴性補體活化通過MBL與特異性IgG糖形相互作用而促進RA患者的炎症(Malhotra等人, Nat. Med. 1:237‑243, 1995; Cuchacovich等人, J. Rheumatol. 23:44‑51, 1996)。應該注意的是,類風濕性病況與在該分子的Fc區缺乏半乳糖的IgG糖形(被稱為IgG0糖形)的顯著增加相關(Rudd等人, Trends Biotechnology 22:524‑30, 2004)。IgG0糖形的百分比隨類風濕性病況的疾病進展而增加,並當患者緩解時返回到正常。在體內,IgG0沉積在滑膜組織,並且MBL以增加的水準存在於RA個體的滑液中。RA相關的聚集無半乳糖(agalactosyl) IgG (IgG0)可結合MBL,因此可通過LEA-1和/或LEA-2啟動凝集素依賴性補體活化。而且,從臨床研究中觀察RA患者的MBL等位基因變體的結果表明,MBL在該疾病中可具有炎性增強的作用(Garred等人, J. Rheumatol. 27:26‑34, 2000)。因此,經由LEA-1和/或LEA-2的凝集素依賴的補體活化可以在RA的發病機制中起重要作用。
補體活化還在幼年型類風濕性關節炎起著重要作用(Mollnes, T.E.等人, Arthritis Rheum. 29:1359‑64, 1986)。類似於成人RA,在幼年型類風濕性關節炎中,與C4d (經典或LEA-2活化的標誌)相比,替代途徑補體活化產物Bb的血清和滑液水準升高,表明補體活化主要由LEA-1介導(El‑Ghobarey, A.F.等人, J. Rheumatology 7:453‑460, 1980; Agarwal, A.等人, Rheumatology 39:189‑192, 2000)。
類似地,補體活化在銀屑病關節炎中起重要作用。患有該病況的患者在其循環中具有增加的補體活化產物,並且它們的紅血細胞似乎具有較低水準的補體調節劑CD59 (Triolo,. Clin Exp Rheumatol., 21(2):225-8, 2003)。補體水準與疾病活動相關,並具有高的預測值,以確定治療效果(Chimenti等人, Clin Exp Rheumatol., 30(1):23-30, 2012)。事實上,最近的研究表明,對於該病況的抗TNF療法的效果可歸因於補體調節(Ballanti等人, Autoimmun Rev., 10(10):617-23, 2011)。儘管補體在銀屑病關節炎的精確作用還沒有被確定,但C4d和Bb補體活化產物在這些患者循環中的存在表明在發病機制中起重要作用。基於所觀察到的產物,認為LEA-1,並且還可能LEA-2負責這些患者中的病理補體活化。
骨關節炎(OA)是關節炎中最常見的形式,在美國影響超過2500萬人。OA的特徵在於關節軟骨斷裂和最終喪失,伴隨著新骨形成和滑膜增生,導致疼痛、僵硬、關節功能的喪失和殘疾。經常受OA影響的關節是手部、頸部、腰部、膝蓋和髖部。該病是漸進的和目前的治療是對症緩解疼痛的,並不會改變疾病的自然史。OA的發病機制尚不清楚,但已涉及補體的作用。在從OA患者滑液的蛋白質組和轉錄組份析中,與來自健康個體的樣品相比,補體的幾種組份異常表達,所述來自健康個體的樣品包括經典(C1s和C4A)和替代(因子B)途徑,並且還包括C3、C5、C7和C9(Wang, Q.等人, Nat. Med.17:1674-1679, 2011)。此外,在內側半月板切除術誘導的OA小鼠模型中,C5缺陷的小鼠比C5陽性小鼠具有更少的軟骨喪失、骨贅形成和滑膜炎,並且用CR2-fH (抑制替代途徑的融合蛋白)治療野生型小鼠減弱了OA的發展(Wang等人,2011同上)。
羅斯河病毒(RRV)和基孔肯雅病毒(CHIKV)屬於一組蚊子傳播的病毒,可在人類引起急性和持續性關節炎和肌炎。除了引起地方病,這些病毒可引起涉及數百萬感染個體的流行病。關節炎被認為是由關節中病毒複製和宿主炎症反應誘導而啟動,並且補體系統已作為在這個過程中的一個關鍵組份被調用。患RRV誘導多關節炎的人滑液比患OA的人滑液含有更高水準的C3a (Morrison, T.E.等人, J. Virol.81:5132-5143, 2007)。在RRV感染的小鼠模型中,與野生型小鼠相比,C3缺陷型小鼠發展不太嚴重的關節炎,暗示補體的作用(Morrison等人,2007,同上)。研究了所涉及的具體補體途徑,和具有滅活凝集素途徑的小鼠(MBL-A -/-和MBL-C -/-)與野生型小鼠相比具有衰減的關節炎。相比之下,具有滅活的經典途徑(C1q -/-)或替代途徑(因子B -/-)的小鼠發展嚴重的關節炎,指示由MBL引發的凝集素途徑在這個模型中具有重要作用(Gunn, B.M.等人, PLoS Pathog.8:e1002586, 2012)。由於關節炎涉及關節損害,由各種病因引起的初步關節損傷可觸發通過LEA-2的第二波補體活化。為了支持這一概念,我們以前的工作已經表明,在膠原誘發的RA模型中,相比於WT小鼠,MASP-2 KO小鼠具有降低的關節損傷。
鑒於上面詳述的大量證據,單獨或組合的LEA-1和LEA-2抑制劑預期可在治療上用於治療關節炎。因此關節炎的最佳有效治療可包含活性藥物成分,其單獨或組合能阻斷LEA-1和LEA-2兩者。組合的LEA-1和LEA-2抑制可以通過共同施用LEA-1阻斷劑和LEA2阻斷劑來實現。優選地,LEA-1和LEA-2的抑制功能可以包含在單一的分子實體中,例如包含MASP-1/3和MASP-2特異性結合位點的雙特異性抗體,或其中每個結合位點可以結合並阻斷MASP-1/3或MASP-2的雙重特異性抗體。根據上述內容,本發明的一個方面因此提供了用於抑制LEA-1依賴性補體活化以治療、預防或減少炎性或非炎性關節炎(包括骨關節炎、類風濕性關節炎、幼年型類風濕性關節炎和銀屑病關節炎)的嚴重程度的方法,所述方法通過向患有炎性或非炎性關節炎或具有發展炎性或非炎性關節炎風險的物件施用一種組合物來進行,所述組合物包含在藥物載體中的治療有效量的LEA-1抑制劑,所述LEA-1抑制劑包含MASP-1抑制劑、MASP-3抑制劑或MASP-1/3抑制劑的組合。MASP-1、MASP-3或MASP-1/3抑制性組合物可全身性施用對象,例如通過動脈內、靜脈內、肌肉內、皮下或其他腸胃外施用,或通過口服。或者,施用可以是通過局部遞送,例如通過關節內注射。所述LEA-1抑制劑可以在延長的時間內週期性施用以治療或控制慢性病況,或者可以在急性創傷或損傷(包括對關節進行的外科手術)之前、期間和/或之後的時間段通過單次或重複施用。
在一個實施方案中,根據本發明此方面的方法進一步包括在患有或有風險發展炎性或非炎性關節炎(包括骨關節炎、類風濕性關節炎、幼年型類風濕性關節炎和銀屑病關節炎)的對象中抑制LEA-2依賴性補體活化:通過將治療有效量的MASP-2抑制劑和MASP-1、MASP-3或MASP-1/3抑制劑施用於對象。如上詳述,與單獨抑制LEA-1相比,採用各自阻斷LEA-1和LEA-2的藥理劑的組合預期提供改進的治療或預防關節炎的治療結果。這個結果可以實現,例如,通過具有LEA-1阻斷活性的抗體連同具有LEA-2-阻斷活性的抗體的共同施用。在一些實施方案中,LEA-1-和LEA-2-阻斷活性被組合成單一的分子實體,並且所述實體具有組合的LEA-1-和LEA-2-阻斷活性。這種實體可以包括雙特異性抗體或由其組成,其中一個抗原結合位點特異性識別MASP-1並阻斷LEA-1,而第二抗原結合位點特異性識別MASP-2並阻斷LEA-2。或者,這樣的實體可由雙特異性單株抗體組成,其中一個抗原結合位點特異性識別MASP-3,因此阻斷LEA-1而第二抗原結合位點特異性識別MASP-2,並阻斷LEA-2。這樣的實體可最佳地由雙特異性單株抗體組成,其中一個抗原結合位點特異性地識別MASP-1和MASP-3兩者,因此阻斷LEA-1,而第二抗原結合位點特異性地識別MASP-2,並阻斷LEA-2。
MASP-2抑制性組合物可全身性施用於有此需要的物件,例如通過動脈內、靜脈內、肌肉內、皮下或其他腸胃外施用,或潛在地對於非肽能抑制劑經口服施用。或者,施用可以是通過局部遞送,例如通過關節內注射。所述MASP-2抑制劑可以在延長的時間內週期性施用以治療或控制慢性病況,或者可以在急性創傷或損傷(包括對關節進行的外科手術)之前、期間和/或之後的時間段通過單次或重複施用。
本發明的MASP-3抑制性組合物和任選MASP-2抑制性組合物的施用可通過組合物的單次施用(例如,含有MASP-2和MASP-3抑制劑或雙特異性或雙重抑制劑的單一組合物,或共同施用分開的組合物),或通過有限順序的施用進行,用於治療、預防或減少炎性或非炎性關節炎的嚴重程度。或者,組合物可以以週期性的間隔,例如每日、每兩周、每週、每隔一周、每月或每兩月在長時間內施用以治療患有炎性或非炎性關節炎的對象。
如本文實施例11-21中所述,已經產生高親和力MASP-3抑制性抗體,其具有抑制AP相關疾病或病況例如關節炎中的替代途徑的治療效用。
因此,在一個實施方案中,本發明提供用於治療患有或有風險發展關節炎(炎性和非炎性關節炎)的物件的方法,其包括向物件施用包含有效量的結合人MASP-3且抑制替代途徑補體活化的如本文公開的高親和力單株抗體或其抗原結合片段的藥物組合物以治療物件中的關節炎或降低物件中的關節炎的風險,例如其中所述抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。在一些實施方案中,所述物件患有選自骨關節炎、類風濕性關節炎、幼年型類風濕性關節炎、強直性脊柱炎、貝切特氏病、感染相關關節炎和銀屑病關節炎的關節炎。在一些實施方案中,將藥物組合物全身性(例如,皮下、肌肉內、靜脈內、動脈內或作為吸入劑)施用。在一些實施方案中,將藥物組合物局部施用於關節。 E. MASP-3在彌散性血管內凝血(DIC)中的作用和使用MASP-3抑制性抗體、任選組合MASP-2抑制劑的治療方法
彌散性血管內凝血(DIC)是凝血系統的病理性過度刺激的徵候群,可以在臨床表現為出血和/或血栓形成。DIC不會作為主病況出現,而是與各種疾病過程關聯,所述疾病過程包括組織損傷(創傷、燒傷、中暑、輸血反應、急性移植排斥)、瘤形成、感染、產科病況(前置胎盤、羊水栓塞、妊娠毒血症)以及其他各種病況,如心源性休克、近乎溺死、脂肪栓塞、主動脈瘤。血小板減少症是重症監護病房患者的常見異常,發病率為35%-44%,並且在約25%的這些病例中DIC是病因,即,DIC在約10%重症患者中發生(Levi, M.和Opal, S.M. Crit. Care10:222-231, 2006)。DIC的病理生理學在於,潛在的疾病進程啟動生理的凝血反應。然而,促血栓形成物質壓制正常制衡機制,使得微循環中不適當沉積纖維蛋白和血小板,導致器官缺血、低纖維蛋白原血症和血小板減少。DIC的診斷基於在合適潛在的疾病或過程中的臨床表現,以及實驗室參數異常(凝血酶原時間、部分凝血活酶時間、纖維蛋白降解產物、D-二聚體或血小板計數)。DIC的主要治療方法是解決作為負責的觸發器的潛在病況。以紅血細胞、血小板、新鮮冷凍血漿和冷沉澱物形式的血液產品支援對治療或預防臨床併發症可能是必要的。
在一些研究中研究了DIC中補體途徑的作用。在腦膜炎球菌感染的兒科患者中評價補體活化,相對於MBL基因型比較臨床過程(Sprong, T.等人, Clin. Infect. Dis.49:1380-1386, 2009)。在入院時,MBL缺乏的患者比MBL-足夠的患者具有較低循環水準的C3bc、末端補體複合物、C4bc和C3bBbP,表明共同補體、末端補體和替代途徑活化的程度較低。另外,全身性補體活化的程度與DIC疾病的嚴重程度和參數相關聯,MBL缺乏的患者比MBL-足夠的患者具有較溫和的臨床過程。因此,儘管MBL缺乏是感染易感性的危險因素,但敗血性休克期間的MBL缺乏可與較低的疾病嚴重程度相關聯。
如本文實施例1-4中所示,實驗研究已經強調了MBL和MASP-1/3在對於腦膜炎奈瑟氏菌(腦膜炎球菌感染的病原)的天然免疫應答中的重要貢獻。小鼠或人的MBL缺陷型血清、MASP-3缺陷型人血清或MASP-1/3敲除小鼠相比野生型血清在體外活化補體和裂解腦膜炎球菌的有效性較差。同樣,首次用於實驗的MASP-1/3敲除小鼠比其野生型對應物更容易受到奈瑟氏球菌感染。因此,在沒有適應性免疫的情況下,LEA-1途徑有助於對奈瑟氏感染的先天宿主抵抗力。相反,LEA-1增強病理補體活化,引發有害的宿主反應,包括DIC。
在動脈血栓形成的鼠模型中,與野生型或C2/無因子B的小鼠相比,無MBL和MASP-1/-3敲除小鼠的FeCl 3誘導的血栓形成減少,並且該缺陷被重組人MBL重構(La Bonte, L.R.等人, J. Immunol.188:885-891, 2012)。在體外,與野生型或C2/無因子B的小鼠血清相比,無MBL或MASP-1/-3敲除小鼠的血清具有減少的凝血酶底物裂解;在MASP-1/-3敲除小鼠的血清中,重組人MASP-1的添加恢復了凝血酶底物裂解(La Bonte等人,2012,同上)。這些結果表明,MBL/MASP複合物,特別是MASP-1,在血栓形成中起到關鍵作用。因此,LEA-1可在病理血栓形成,包括DIC中起重要作用。
實驗研究已經確立了LEA-2在病理血栓形成中的同樣重要作用。體外研究還表明LEA-2提供了補體系統和凝血系統之間的分子聯繫。MASP-2具有因子Xa樣活性,並通過裂解活化凝血酶原形成凝血酶,其隨後可清除纖維蛋白原和促進纖維蛋白凝塊形成(也參見Krarup等人,PLoS One,18:2(7):e623,2007)。
獨立的研究已經表明,凝集素MASP複合物可在MASP-2依賴的過程中促進凝塊形成、纖維蛋白沉積和纖維蛋白肽釋放(Gulla等人, Immunology, 129(4):482-95, 2010)。因此,LEA-2促進補體和凝血系統的同時凝集素依賴性活化。
體外研究還表明,MASP-1具有類似凝血酶的活性(Presanis JS,等人, Mol Immunol, 40(13):921-9, 2004),並切割纖維蛋白原和因子XIII (Gulla K. C.等人, Immunology, 129(4):482-95, 2010),這表明LEA-1可以獨立地或與LEA-2共同活化凝血途徑。
上文詳述的資料表明LEA-1和LEA-2提供凝集素依賴的補體活化和凝血之間的獨立聯繫。因此,鑒於上述情況,LEA-1和LEA-2抑制劑預期在治療患有彌散性血管內凝血的物件中具有獨立的治療益處。在一些實施方案中,物件患有繼發於以下的彌散性血管內凝血:敗血症、創傷、感染(細菌感染、病毒感染、真菌感染、寄生蟲感染)、惡性腫瘤、移植排斥、輸血反應、產科併發症、血管動脈瘤、肝衰竭、中暑、燒傷、輻射曝露、休克或嚴重的毒性反應(如蛇咬傷、昆蟲叮咬、輸血反應)。在一些實施方案中,創傷是神經創傷。在一些實施方案中,感染是細菌感染,如腦膜炎奈瑟氏菌感染。
此外,相比於單獨的任一藥劑,LEA-1和LEA-2抑制劑一起使用可實現額外的治療益處。由於LEA-1和LEA-2兩者已知通過導致DIC(例如感染或創傷)的病況而活化,LEA-1-和LEA-2阻斷劑,單獨或組合地,預計在DIC的治療中具有治療效用。LEA-1和LEA-2阻斷劑可以防止補體和凝血之間不同的交叉對話機制。LEA-1-和LEA-2阻斷劑可因此在預防DIC和其他血栓形成病症中具有互補效應、累加效應或協同效應。
此外,相比於單獨的任一藥劑,LEA-1和LEA-2抑制劑一起使用可實現額外的治療益處,或者可以為更寬範圍的患者亞群提供有效的治療。組合的LEA-1和LEA-2抑制可以由LEA-1阻斷劑和LEA-2阻斷劑的共同施用來實現。最佳地,LEA-1和LEA-2的抑制功能可以包含在單一的分子實體中,例如包含MASP-1/3和MASP-2特異性結合位點的雙特異性抗體,或其中每個結合位點可以結合並阻斷MASP-1/3或MASP-2的雙重特異性抗體。
根據上述內容,本發明的一個方面因此提供了用於抑制LEA-1依賴性補體活化的方法,以在有此需要的物件中治療、預防或減少彌散性血管內凝血的嚴重程度,所述方法包括將組合物施用於患有彌散性血管內凝血或有發展彌散性血管內凝血風險的物件,所述組合物包含在藥物載體中的治療有效量的LEA-1抑制劑,其包含MASP-1抑制劑、MASP-3抑制劑或MASP-1/3抑制劑的組合。MASP-1、MASP-3或MASP-1/3抑制性組合物可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或可能通過口服施用非肽能藥劑。施用可由醫師確定而重複進行,直到病況得到解決或控制。對於治療或預防繼發於創傷或其他急性事件的DIC,LEA-1抑制性組合物可在外傷性損傷後立即施用,或創傷誘導損傷或情況(如被視為有DIC風險患者的手術)之前、期間、之後立即或在1至7天或更長的時間例如24小時至72小時內預防性施用。在一些實施方案中,LEA-1抑制性組合物可以適當地以快速作用的劑型施用,例如通過含有LEA-1抑制劑組合物的推注溶液的靜脈內或動脈內遞送。
在一個實施方案中,根據本發明這個方面的方法還包括在有此需要的物件中抑制LEA-2依賴性補體活化,以治療、預防或減少彌散性血管內凝血的嚴重程度,包括向物件施用治療有效量的MASP-2抑制劑和MASP-1、MASP-3或MASP-1/3抑制劑。如上詳述,與單獨抑制LEA-1相比,採用各自阻斷LEA-1和LEA-2的藥理劑的組合預期在治療或預防彌散性血管內凝血中提供改進的治療結果。這個結果可以實現,例如,通過具有LEA-1阻斷活性的抗體連同具有LEA-2-阻斷活性的抗體的共同施用。在一些實施方案中,LEA-1-和LEA-2-阻斷活性被組合成單一的分子實體,並且所述實體具有組合的LEA-1-和LEA-2-阻斷活性。這種實體可以包括雙特異性抗體或由其組成,其中一個抗原結合位點特異性識別MASP-1並阻斷LEA-1而第二抗原結合位點特異性識別MASP-2並阻斷LEA-2。或者,這樣的實體可由雙特異性單株抗體組成,其中一個抗原結合位點特異性識別MASP-3,因此阻斷LEA-1而第二抗原結合位點特異性識別MASP-2,並阻斷LEA-2。這樣的實體可最佳地由雙特異性單株抗體組成,其中一個抗原結合位點特異性地識別MASP-1和MASP-3兩者,因此阻斷LEA-1,而第二抗原結合位點特異性地識別MASP-2,並阻斷LEA-2。
MASP-2抑制劑可全身性施用於有此需要的物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,以及潛在地對於非肽能藥劑經口服施用。施用可由醫師確定而重複進行,直到病況得到解決或控制。對於繼發於創傷或其他急性事件的DIC,MASP-2抑制性組合物可在外傷性損傷後立即施用,或創傷誘導損傷或情況(如被視為有DIC風險患者的手術)之前、期間、之後立即或在1至7天或更長的時間例如24小時至72小時內預防性施用。在一些實施方案中,MASP-2抑制性組合物可以適當地以快速作用的劑型施用,例如通過含有MASP-2抑制性組合物的推注溶液的靜脈內或動脈內遞送。
本發明的MASP-3抑制性組合物和任選MASP-2抑制性組合物的施用可通過組合物的單次施用(例如,含有MASP-2和MASP-3抑制劑或雙特異性或雙重抑制劑的單一組合物,或共同施用分開的組合物),或通過有限順序的施用進行,用於治療、預防或減少有此需要的物件中彌散性血管內凝血的嚴重程度。或者,組合物可以以週期性的間隔,例如每日、每兩周、每週、每隔一周、每月或每兩月在長時間內施用以治療患有彌散性血管內凝血或有發展彌散性血管內凝血風險的物件。
如本文實施例11-21中所述,已經產生高親和力MASP-3抑制性抗體,其具有抑制AP相關疾病或病況例如彌散性血管內凝血中的替代途徑的治療效用。
因此,在一個實施方案中,本發明提供用於治療患有或有風險發展彌散性血管內凝血的物件的方法,其包括施用有效量的結合人MASP-3且抑制替代途徑補體活化的高親和力單株抗體或其抗原結合片段以治療彌散性血管內凝血或降低發展彌散性血管內凝血的風險,例如,其中所述抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。 F. MASP-3在血栓性微血管病(TMA)包括溶血性尿毒癥徵候群(HUS)、非典型溶血性尿毒癥徵候群(AHUS)和血栓性血小板減少性紫癜(TTP)中的作用,以及使用MASP-3抑制性抗體、任選組合MASP-2抑制劑的治療方法
血栓性微血管病(TMA)是指一組臨床特徵為血小板減少、微血管病性溶血性貧血和多器官缺血的病症。TMA的特徵性病理特徵是血小板活化和微血栓在小動脈和小靜脈中的形成。經典的TMA是溶血性尿毒癥徵候群(HUS)和血栓性血小板減少性紫癜(TTP)。HUS與TTP區別在於急性腎衰竭的存在。HUS以兩種形式發生:腹瀉相關的(D+)或典型HUS和無腹瀉(D-)或非典型HUS(aHUS)。 HUS
D+HUS與通常由大腸桿菌O157或另一個志賀毒素產生細菌株引起的前驅腹瀉疾病相關聯,占兒童HUS病例中的90%以上,並且是兒童急性腎衰竭的最常見原因。儘管人感染大腸桿菌O157是相對頻繁的,但發展到D+HUS的血性腹瀉百分比範圍在散發病例中為3%至7%和在一些爆發中為20%至30%(Zheng, X.L.和Sadler, J.E., Annu. Rev. Pathol.3:249-277, 2008)。HUS通常發生在腹瀉發病後4至6天,在疾病的急性期大約三分之二的兒童需要透析。D+HUS的治療是支持性的,因為沒有特定的治療已被表明是有效的。D+HUS的預後良好,大部分患者恢復腎功能。
D+HUS的發病機制涉及了結合於微血管內皮細胞、單核細胞和血小板的膜的細菌生產的志賀毒素。腎臟微血管最常受到影響。在結合後,毒素被內化,導致釋放炎症介質,細胞最終死亡。據認為,內皮細胞損傷通過促進凝血級聯的活化而觸發腎臟微血管血栓形成。有證據表明D+HUS中補體系統活化。與正常對照相比,在住院時,D+HUS兒童的Bb和SC5b-9的血漿水準增加,並在出院後第28天,血漿水準已正常(Thurman, J.M.等人, Clin. J. Am. Soc. Nephrol.4:1920-1924, 2009)。發現由於活化在阻斷經典途徑的乙二醇四乙酸存在時進行,因此志賀毒素2 (Stx2)在體外主要通過替代途徑活化流體相中的人補體(Orth, D.等人, J. Immunol.182:6394-6400, 2009)。此外,Stx2結合因子H而不是因子I,並延遲細胞表面上因子H的輔因子活性(Orth等人,2009, 同上)。這些結果表明,志賀毒素可能通過多個潛在機制導致腎損害,包括直接的毒性作用,並間接地通過活化補體或抑制補體調節劑。預計對血管內皮的毒性作用通過LEA-2來活化補體,如在各種血管床中MASP-2阻斷在防止補體介導的再灌注損傷中的有效性所表明,如Schwaeble, W.J.等人, Proc. Natl. Acad. Sci.108:7523-7528, 2011中所述。
在共注射志賀毒素和脂多糖誘導的鼠HUS模型中,與野生型小鼠相比,因子B缺陷的小鼠具有更少的血小板減少症和被保護免於腎損害,暗示替代途徑在微血管血栓形成中LEA-1依賴性活化(Morigi, M.等人, J. Immunol.187:172-180, 2011)。如本文描述的,在相同的模型中,MASP-2抗體施用也是有效的,並在STX攻擊後增加存活,暗示在微血管血栓形成中的LEA-2依賴性補體途徑。
鑒於上述內容,LEA-1和LEA-2抑制劑預期在治療或預防HUS中具有獨立的治療益處。此外,與單獨的任一藥劑相比,LEA-1和LEA-2抑制劑一起使用可以實現額外的治療益處,或可以為更寬範圍的患者亞群提供有效治療。組合的LEA-1和LEA-2抑制可以由LEA-1阻斷劑和LEA-2阻斷劑的共同施用來實現。最佳地,LEA-1和LEA-2的抑制功能可以包含在單一的分子實體中,例如包含MASP-1/3和MASP-2特異性結合位點的雙特異性抗體,或其中每個結合位點可以結合並阻斷MASP-1/3或MASP-2的雙重特異性抗體。 aHUS
非典型HUS是一種罕見的疾病,在美國發病率估計為百萬分之二(Loirat, C.和Fremeaux-Bacchi, V. Orphanet J. Rare Dis.6:60-90, 2011)。非典型HUS可在任何年齡發展,但多數患者在兒童期有發作。非典型HUS是異質的:某些病例是家族性的,有些是復發的,而有些是由傳染性疾病,通常為上呼吸道或腸胃炎引起。aHUS的發病通常是突然的,大多數患者在入院時需要透析。額外腎臟表現存在於大約20%的患者中和可能涉及中樞神經系統、心肌梗死、遠端缺血性壞疽或多器官衰竭。aHUS的治療包括器官功能障礙的支援性護理、血漿輸注或血漿置換和依庫珠單抗(依庫麗單抗),其為針對C5的人源化單株抗體,最近批准在美國和歐盟使用。aHUS的預後不如D+HUS的預後好,在急性期大約有25%的死亡率,多數倖存者發展為終末期腎病。
非典型HUS表徵為補體調節異常的疾病,大約50%患者的編碼補體調節蛋白的基因具有突變(Zheng和Sadler,2008同上)。大多數突變見於因子H (FH);其他突變包括膜輔因子蛋白(MCP)、因子I (FI)、因子B及C3。功能研究表明,FH、MCP和FI突變導致功能喪失,因此更多補體活化,而因子B突變是功能獲得。這些突變的作用主要影響替代途徑。這些遺傳異常是危險因素,而不是疾病的唯一原因,因為約50%攜帶該突變的家庭成員到45歲時並不呈現該疾病(Loirat和Fremeaux-Bacchi,2011同上)。
因子H是一種補體調控蛋白,其保護宿主組織免於替代途徑補體攻擊。FH以三種方式調節替代途徑擴增環:它是裂解C3b的FI的輔因子,它抑制替代途徑C3轉化酶C3bBb的形成,並且它結合至細胞表面和組織基質上的聚陰離子並阻斷C3b沉積(Atkinson, J.P.和Goodship, T.H.J., J. Exp. Med. 6:1245-1248, 2007)。aHUS患者的多數FH突變發生在蛋白質的C-末端短共有重複結構域,這導致FH與肝素、C3b和內皮結合缺陷,但不改變駐留在N-末端結構域中的血漿C3調節(Pickering, M.C.等人, J. Exp. Med.204:1249-1256, 2007)。FH-缺陷小鼠有不受控制的血漿C3活化和自發發展膜增生性腎小球腎炎II型,但不是aHUS。然而,轉基因表達功能上等同於aHUS相關人FH突變體的小鼠FH蛋白的FH缺陷小鼠自發發展HUS但不是膜增生性腎小球腎炎II型,這提供了體內證據,表明腎內皮中替代途徑活化的缺陷控制是FH-相關aHUS發病機制的關鍵事件(Pickering等人,2007同上)。FH相關aHUS的另一形式發生在具有導致FH功能活性損失的抗FH自身抗體的患者;大多數這些患者的編碼5個FH相關蛋白的基因缺失(Loirat和Fremeaux-Bacchi,2011,同上)。
類似於FH,MCP通過調節靶細胞上的C3b沉積而抑制補體活化。MCP突變產生具有低的C3b結合和輔因子活性的蛋白,因此允許失調的替代途徑活化。FI是一種絲胺酸蛋白酶,其在輔因子例如FH和MCP存在時裂解C3b和C4b,由此防止C3和C5轉化酶的形成和抑制替代和經典補體途徑二者。大多數的FI-相關aHUS突變導致FI對C3b和C4b降解活性減少(Zheng和Stadler,2008年,同前)。FB是攜帶替代途徑轉化酶C3bBb的催化位點的酶原。功能分析表明,aHUS相關FB突變導致增加的替代途徑活化(Loirat和Fremeaux-Bacchi,2011,同上)。C3的雜合突變與aHUS相關聯。大多數C3突變引起C3結合MCP缺陷,導致FB結合C3b的能力提高和C3轉化酶的形成增加(Loirat和Fremeaux-Bacchi,2011,同上)。因此,aHUS是與導致替代途徑擴增環控制不足的補體基因突變密切相關的疾病。由於替代途徑擴增環依賴於因子B蛋白水解活性,並且由於LEA-1對於因子B活化是需要的(通過MASP-3依賴性裂解,或通過因子D型介導的裂解,其中MASP-1有助於因子D的成熟),LEA-1阻斷劑預期在易感個體中防止不受控制的補體活化。因此,預期LEA-1阻斷劑將有效治療aHUS。
儘管aHUS中失調替代途徑擴增環的中心作用已被廣泛接受,但啟動補體活化的觸發器和所涉及的分子途徑是未解決的。不是所有的攜帶上述突變的個體發展aHUS。事實上,家族性的研究表明,aHUS的外顯率只有約50%(Sullivan M.等人, Ann Hum Genet74:17-26 2010)。疾病的自然史表明,aHUS最常見在啟動事件如感染性發作或受傷後發展。眾所周知感染劑活化補體系統。在沒有預先存在的適應性免疫時,感染劑的補體活化可主要通過LEA-1或LEA-2啟動。因此,在aHUS-易感個體中,由感染引發的凝集素依賴的補體活化可代表補體活化後續病理擴增的啟動觸發器,這可能最終導致疾病進展。因此,本發明的另一個方面包括通過施用有效量的LEA-1-或LEA-2-抑制劑而治療患有繼發於感染的aHUS的患者。
其他形式的宿主組織損傷將通過LEA-2活化補體,特別是血管內皮損傷。人血管內皮細胞經受氧化應激,例如通過表達結合凝集素和活化LEA-2補體途徑的表面部分而回應(Collard等人, Am J. Pathol156(5):1549-56, 2000)。缺血/再灌注後血管損傷也通過體內LEA-2而活化補體(Moller-Kristensen等人, Scand J Immunol61(5):426-34, 2005)。在此情況下凝集素途徑的活化對於宿主具有病理學後果,並且如實施例22和23中所示,通過阻斷MASP-2而抑制LEA-2阻止進一步宿主組織損傷和不良結果(還參見Schwaeble PNAS,2011,同上)。
因此,還已知促成aHUS的其他方法活化LEA-1或LEA-2。因此可能的是,在遺傳傾向於aHUS的個體中,LEA-1和/或LEA-2途徑可代表以失調方式被不適當擴增的初始補體活化機制,從而啟動aHUS發病。由此推斷,在aHUS易感個體中,通過LEA-1和/或LEA-2阻斷補體活化的藥劑預期阻止疾病進展或減少病情加重。
進一步支持這一概念的是,最近的研究已經確定肺炎鏈球菌在aHUS的兒科病例中是重要的病原(Lee, C.S.等人, Nephrology, 17(1):48-52 (2012); Banerjee R.等人, Pediatr Infect Dis J., 30(9):736-9 (2011))。該特定病因似乎有不利的預後,伴隨顯著死亡率和長期病態。值得注意的是,這些病例涉及非腸道感染,導致表現微血管病變、尿毒癥和溶血,而無已知易患aHUS的補體基因併發突變的證據。注意到肺炎鏈球菌對於活化補體特別有效並且主要通過LEA-2實現這一點是重要的。因此,在與肺炎球菌感染相關的非腸道HUS的情況下,微血管病、尿毒癥和溶血的表現預計主要由LEA-2活化而驅動,並且阻斷LEA-2的藥劑,包括MASP-2抗體,預期在這些患者中防止aHUS的進展或降低疾病的嚴重程度。因此,本發明的另一個方面包括通過施用有效量的MASP-2抑制劑而治療患有與肺炎鏈球菌感染相關的非腸道aHUS的患者。 TTP
血栓性血小板減少性紫癜(TTP)是一種威脅生命的血液凝固系統病症,其由活化凝血級聯或補體系統的自身免疫或遺傳性功能障礙引起(George, JN, N Engl J Med; 354:1927-35, 2006)。這導致整個身體的小血管中大量的微觀凝塊或者血栓,這是TMA的特有特徵。紅細胞受到剪切應力,其損害它們的膜,導致血管內溶血。所產生的血流量減少和內皮損傷導致器官損傷,包括腦、心臟和腎臟。TTP的臨床特徵是血小板減少、微血管病性溶血性貧血、神經學變化、腎衰竭和發燒。在血漿置換前的時代,急性發作期間的病死率為90%。即使採用血漿交換,六個月存活率為約80%。
TTP可源於酶ADAMTS-13的遺傳性或獲得性抑制,該酶是負責將血管性血友病因子(vWF)的大的多聚體裂解成較小單元的金屬蛋白酶。ADAMTS-13抑制或不足最終導致凝血增加(Tsai, H. J Am Soc Nephrol14: 1072–1081, 2003)。ADAMTS-13調節vWF活性;在不存在ADAMTS-13時,vWF形成大的多聚體,其更有可能結合血小板和使患者易患血小板聚集和微血管血栓形成。
已在患有TTP的個體中確定眾多ADAMTS13突變。該病還可由於針對ADAMTS-13的自身抗體而發展。此外,TTP可在乳腺癌、胃腸道癌或前列腺癌(George JN., Oncology(Williston Park). 25:908-14, 2011)、妊娠(妊娠中期或產後) (George JN., Curr Opin Hematol10:339-344, 2003)期間發展,或與疾病如HIV或自體免疫疾病如系統性紅斑狼瘡相關聯(Hamasaki K等人, Clin Rheumatol.22:355-8, 2003)。TTP也可通過某些藥物療法引起,包括肝素、奎寧、免疫介導的成分、癌症化療劑(博來黴素、順鉑、阿糖胞苷、柔紅黴素、吉西他濱、絲裂黴素C和他莫昔芬)、環孢菌素A、口服避孕藥、青黴素、利福平和抗血小板藥物包括噻氯匹定和氯吡格雷(Azarm, T.等人, J Res Med Sci., 16: 353–357, 2011)。與TTP相關的其他因素或病況為毒素如蜜蜂毒液、敗血症、脾隔離症、移植、血管炎、血管手術和感染如肺炎鏈球菌和巨細胞病毒感染(Moake JL., N Engl J Med., 347:589–600, 2002)。由於暫態功能性ADAMTS-13缺乏的TTP可由於與肺炎鏈球菌感染有關的內皮細胞損傷而發生( Pediatr Nephrol, 26:631-5, 2011)。
血漿置換為TTP的標準治療(Rock GA等人, N Engl J Med325:393-397, 1991)。血漿置換在遺傳缺陷患者中補充ADAMTS-13活性,並除去獲得性自身免疫性TTP的那些患者的ADAMTS-13自身抗體(Tsai, H-M, Hematol Oncol Clin North Am., 21(4): 609–v, 2007)。將額外藥劑如免疫抑制藥物傳統添加到療法中(George, JN, N Engl J Med, 354:1927-35, 2006)。然而,血漿置換對於約20%的患者不成功,在超過三分之一的患者中出現復發,而且血漿置換成本高,技術要求高。此外,許多患者無法耐受血漿置換。因此仍然迫切需要TTP的額外和更好的治療。
因為TTP是血液凝固級聯的病症,所以用補體系統的拮抗劑治療可有助於穩定和校正疾病。儘管替代補體途徑的病理活化與aHUS關聯,但補體活化在TTP中的作用不太清楚。ADAMTS13的功能不足對於TTP易感性是重要的,但是它不足以引起急性發作。環境因素和/或其他遺傳變異可有助於TTP的表現。例如,編碼參與凝血級聯調節的蛋白的基因、vWF、血小板功能、內皮血管表面的組份或補體系統可涉及急性血栓性微血管病的發展(Galbusera, M.等人, Haematologica, 94: 166–170, 2009)。具體地,補體活化已經顯示出發揮關鍵作用;來自與ADAMTS-13缺乏有關的血栓形成性微血管病的血清已顯示導致C3和MAC沉積和隨後的嗜中性粒細胞活化,這可能通過補體失活而消除(Ruiz-Torres MP等人, Thromb Haemost, 93:443-52, 2005)。此外,最近已表明,在TTP的急性發作期間C4d、C3bBbP或C3a的水準增加(M. Réti等人, J Thromb Haemost.10(5):791-798, 2012),這與經典、凝集素和替代途徑的活化一致。在急性發作中該增加量的補體活化可啟動終端途徑活化,並負責TTP的進一步惡化。
ADAMTS-13和vWF在TTP中的作用顯然是負責血小板活化和聚集,並其隨後在微血管病的剪切應力和沉積中的作用。活化血小板與經典和替代補體途徑兩者相互作用並引發這兩者。血小板介導的補體活化增加了炎症介質C3a和C5a (Peerschke E.等人, Mol Immunol,47:2170-5 (2010))。血小板可因此作為遺傳或自身免疫TTP中經典補體活化的靶標。
如上所述,凝集素依賴性補體活化,憑藉MASP-1的類似凝血酶活性和LEA-2介導的凝血酶原活化,是連接內皮損傷與HUS中發生的凝固和微血管血栓形成的主要分子途徑。同樣地,LEA-1和LEA-2的活化可以直接驅動TTP中的凝血系統。LEA-1和LEA-2途徑活化可回應於TTP中ADAMTS-13缺乏導致的初始內皮損傷而啟動。因此,預期LEA-1和LEA-2抑制劑,包括但不限於阻斷MASP-2功能、MASP-1功能、MASP-3功能或MASP-1和MASP-3功能的抗體,將在患有TTP的患者中減輕與微血管內凝血、血栓形成和溶血相關聯的微血管病。
患有TTP的患者通常在急診室且具有以下的一種或多種:紫癜、腎衰竭、低血小板、貧血和/或血栓形成,包括中風。護理TTP的當前標準包括導管內遞送(例如,靜脈內或其他形式導管)血漿置換達兩周或更長的時間,一般為每週三次,但高達每日。如果對象對於ADAMTS13抑制劑(即,針對ADAMTS13的內源性抗體)的存在測試為陽性,則可與免疫抑制療法(例如,皮質類固醇、利妥昔單抗(rituxan)或環孢素)組合進行血漿置換。患有難治性TTP (TTP患者的約20%)的物件不響應至少兩周的血漿置換療法。
根據前述內容,在一個實施方案中,在TTP的初步診斷的情況下,或者在表現出與TTP的診斷一致的一種或多種症狀(例如,中樞神經系統的參與,嚴重的血小板減少症(如果沒有阿司匹林,血小板計數小於或等於5000/μL,如果使用阿司匹林,小於或等於20,000/μL),嚴重的心臟受累,嚴重肺部受累,胃腸梗死或壞疽)的物件中,提供了用有效量的LEA-2抑制劑(例如,MASP-2抗體)或LEA-1抑制劑(例如,MASP-1或MASP-3抗體)作為第一線療法(不存在血漿置換,或與血漿置換組合)治療物件的方法。作為第一線療法,LEA-1和/或LEA-2抑制劑可全身性施用於對象,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用。在一些實施方案中,LEA-1和/或LEA-2抑制劑在不存在血漿置換時向對象施用作為第一線療法,以避免血漿置換的潛在併發症,例如出血、感染和曝露於血漿供體所固有的病症和/或變態反應,或另外反感血漿置換的物件中,或者在血漿置換不可用的情況下。在一些實施方案中,LEA-1和/或LEA-2抑制劑與免疫抑制劑(例如,皮質類固醇、利妥昔單抗或環孢素)組合(包括共同施用)和/或與濃ADAMTS-13組合施用於患有TTP的對象。
在一些實施方案中,該方法包括在第一時間段(例如,持續至少一天至一周或兩周的急性期)經由導管(例如,靜脈內)向患有TTP的對象施用LEA-1和/或LEA-2抑制劑,然後在第二時間段(例如,至少兩周或更長的慢性期)向對象皮下施用LEA-1和/或LEA-2抑制劑。在一些實施方案中,在第一和/或第二時間段的施用在無血漿置換時進行。在一些實施方案中,該方法用於維持物件以防止物件患有一種或多種與TTP相關的症狀。
在另一個實施方案中,提供了通過施用有效減少TTP的一種或多種症狀的量的LEA-1和/或LEA-2抑制劑而治療患有難治性TTP的物件(也就是,對至少兩周血漿置換療法沒有回應的物件)的方法。在一個實施方案中,在至少兩周或更長的時間段,通過皮下或其他胃腸外施用將LEA-1和/或LEA-2抑制劑施用於患有慢性難治性TTP的對象。施用可由醫師確定而重複進行,直到病況得到解決或控制。
在一些實施方案中,該方法進一步包括在治療之前以及任選在治療期間在物件中判定至少一種補體因子(例如C3、C5)的水準,其中相比於標準值或健康對照物件,至少一種補體因子的水準減小的判定指示需要用LEA-1和/或LEA-2抑制劑的繼續治療。
在一些實施方案中,該方法包括將LEA-1和/或LEA-2抑制劑皮下或靜脈內施用於患有TTP或有發展TTP風險的物件。治療優選每天進行,但也可以沒那麼頻繁如每月進行。繼續治療,直至物件的血小板計數至少連續兩天大於150,000/ ml。
總之,LEA-1和LEA-2抑制劑預期在治療TMA包括HUS、aHUS和TTP中提供獨立的治療益處。此外,與單獨任一藥劑相比,LEA-1和LEA-2抑制劑一起使用預期實現額外的治療益處,或者可以為更廣範圍的患有TMA變體形式的患者亞群提供有效的治療。合併的LEA-1和LEA-2抑制可通過LEA-1阻斷劑和LEA2阻斷劑的共同施用來實現。最佳地,LEA-1和LEA-2的抑制功能可以包含在單一的分子實體,例如包含MASP-1/3和MASP-2特異性結合位點的雙特異性抗體,或其中每個結合位點可以結合並阻斷MASP-1/3或MASP-2的雙重特異性抗體。
根據上述內容,本發明的一個方面因此提供了用於抑制LEA-1依賴性補體活化以治療、預防或減少血栓性微血管病的嚴重程度的方法,所述血栓性微血管病例如溶血性尿毒癥徵候群(HUS)、非典型溶血性尿毒癥徵候群(aHUS)或血栓性血小板減少性紫癜(TTP),所述方法包括向患有血栓性微血管病的物件或有發展血栓性微血管病風險的物件施用一種組合物,所述組合物包含在藥物載體中的治療有效量的LEA-1抑制劑,其包含MASP-1抑制劑、MASP-3抑制劑或MASP-1/3抑制劑的組合。MASP-1、MASP-3或MASP-1/3抑制性組合物可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或對於非肽能藥劑可能通過口服施用。施用可由醫師確定而重複進行,直到病況得到解決或控制。
在一個實施方案中,根據本發明此方面的方法進一步包括抑制LEA-2依賴性補體活化以治療、預防或減少血栓性微血管病的嚴重程度,所述血栓性微血管病例如溶血性尿毒癥徵候群(HUS)、非典型溶血性尿毒癥徵候群(aHUS)或血栓性血小板減少性紫癜(TTP),所述方法包括向患有血栓性微血管病的物件或有發展血栓性微血管病風險的物件施用治療有效量的MASP-2抑制劑和MASP-1、MASP-3或MASP-1/3抑制劑。如上詳述,在治療或預防或減少血栓性微血管病的嚴重程度中,與單獨抑制LEA-1相比,採用各自阻斷LEA-1和LEA-2的藥理劑的組合預期提供改進的治療結果。這個結果可以實現,例如,通過具有LEA-1阻斷活性的抗體連同具有LEA-2-阻斷活性的抗體的共同施用。在一些實施方案中,LEA-1-和LEA-2-阻斷活性被組合成單一的分子實體,並且所述實體具有組合的LEA-1-和LEA-2-阻斷活性。這種實體可以包括雙特異性抗體或由其組成,其中一個抗原結合位點特異性識別MASP-1並阻斷LEA-1,而第二抗原結合位點特異性識別MASP-2並阻斷LEA-2。或者,這樣的實體可由雙特異性單株抗體組成,其中一個抗原結合位點特異性識別MASP-3,因此阻斷LEA-1而第二抗原結合位點特異性識別MASP-2,並阻斷LEA-2。這樣的實體可最佳地由雙特異性單株抗體組成,其中一個抗原結合位點特異性地識別MASP-1和MASP-3兩者,因此阻斷LEA-1,而第二抗原結合位點特異性地識別MASP-2,並阻斷LEA-2。
MASP-2抑制劑可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或對於非肽能藥劑可能通過口服施用。施用可由醫師確定而重複進行,直到病況得到解決或控制。
本發明的MASP-3抑制性組合物和任選的MASP-2抑制性組合物的施用可以通過組合物的單次施用(例如,包含MASP-2和MASP-3抑制劑或雙特異性或雙重抑制劑的單一組合物,或共同施用分開的組合物)或有限順序的施用來實施,用於治療、預防或降低患有或有風險發展血栓性微血管病變的物件中的血栓性微血管病變的嚴重程度。或者,可在延長的時間期間以定期時間間隔(例如每天、每兩周、每週、每隔一周、每月或每兩月)施用組合物,用於治療有此需要的物件。
如本文實施例11-21中所述,已經產生高親和力MASP-3抑制性抗體,其具有抑制AP相關疾病或病況例如血栓性微血管病(例如,溶血性尿毒癥徵候群(HUS)、非典型溶血性尿毒癥徵候群(aHUS)或血栓性血小板減少性紫癜(TTP))中的替代途徑的治療效用。
因此,在一個實施方案中,本發明提供用於治療患有或有風險發展血栓性微血管病(例如,溶血性尿毒癥徵候群(HUS)、非典型溶血性尿毒癥徵候群(aHUS)或血栓性血小板減少性紫癜(TTP))的物件的方法,其包括施用有效量的結合人MASP-3且抑制替代途徑補體活化的高親和力單株抗體或其抗原結合片段以治療血栓性微血管病(例如,溶血性尿毒癥徵候群(HUS)、非典型溶血性尿毒癥徵候群(aHUS)、血栓性血小板減少性紫癜(TTP)或移植相關的TMA (TA-TMA))或降低發展血栓性微血管病(例如,溶血性尿毒癥徵候群(HUS)、非典型溶血性尿毒癥徵候群(aHUS)、血栓性血小板減少性紫癜(TTP)或移植相關的TMA (TA-TMA))的風險,例如,其中所述抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。 G. MASP-3在哮喘中的作用和使用MASP-3抑制性抗體、任選組合MASP-2抑制劑的治療方法
哮喘是呼吸道的一種常見的慢性炎性疾病。在美國大約2500萬人有哮喘,包括18歲以下的700萬兒童,其中一半以上每年至少經歷一次哮喘發作,每年導致超過170萬急診和450000住院(world-wide-web在gov/health/prof/lung/asthma/naci/asthma-info/index.htm,在2012年5月4日進行訪問)。該病是異類的,具有多個臨床表型。最常見的表型是過敏性哮喘。其他表型包括非過敏性哮喘、阿司匹林加劇呼吸道疾病、感染後哮喘、職業性哮喘、空氣傳播的刺激劑誘發的哮喘及運動誘發的哮喘。過敏性哮喘的主要特徵包括:對多種特異性和非特異性刺激的呼吸道高反應性(AHR)、過度呼吸道粘液生產、肺嗜酸粒細胞增多和升高的血清IgE濃度。哮喘的症狀包括咳嗽、氣喘、胸悶和氣短。哮喘治療的目標是控制疾病並使病情加重、每日症狀最小化,並讓患者進行身體活動。目前的治療指南推薦逐步治療直到哮喘控制實現。第一治療步驟是根據需要速效吸入β2激動劑,隨後加入控制藥物如吸入皮質類固醇、長效吸入β2激動劑、白三烯改進劑藥物、茶鹼、口服糖皮質激素和抗IgE單株抗體。
儘管哮喘起源是多因素的,但普遍認為它由於在遺傳上易感的個體中對於共同環境抗原的不適當免疫反應而產生。哮喘與補體活化有關,而過敏毒素(AT) C3a和C5a具有促炎性和免疫調節性質,這與過敏反應的發展和調節相關(Zhang, X.和Kohl, J. Expert. Rev. Clin. Immunol., 6:269-277, 2010)。然而,經典、替代和凝集素補體途徑在哮喘中的相對參與並不是很瞭解。替代途徑可在變應原的表面上被活化而凝集素途徑可以通過識別變應原多糖結構而活化,這兩個過程導致產生AT。根據所涉及的病因性變應原,補體可通過不同的途徑被活化。例如Parietaria科的高度變應性草花粉非常有效地促進C4的MBL依賴性活化,這牽涉LEA-2。相反地,屋塵蟎變應原不需要MBL用於補體活化(Varga等 Mol Immunol., 39(14):839-46, 2003)。
哮喘的環境觸發因子可以由替代途徑活化補體。例如,在體外將人血清曝露於香煙煙霧或柴油機排氣顆粒導致活化補體,該效果不受EDTA存在的影響,表明活化經由替代途徑,而不是經典途徑(Robbins, R.A.等人, Am. J. Physiol.260:L254-L259, 1991; Kanemitsu, H.等人, Biol. Pharm. Bull.21:129-132, 1998)。在小鼠卵白蛋白致敏和攻擊模型中評估過敏性呼吸道炎症中補體途徑的作用。野生型小鼠回應於氣源性變應原攻擊而發展AHR和呼吸道炎症。在過敏性肺部炎症的小鼠卵白蛋白模型中,當全身施用或通過吸入局部施用時,抑制補體活化的所有途徑的Crry-Ig融合蛋白有效預防AHR和肺部炎症(Taube等人, Am J Respir Crit Care Med., 168(11):1333-41, 2003)。
相比於野生型小鼠,因子B缺陷的小鼠顯示出較少的AHR和呼吸道炎症,而C4缺陷型小鼠具有與野生型小鼠相似的效果(Taube, C.等人, Proc. Natl. Acad. Sci. USA103:8084-8089, 2006)。這些結果支持了替代途徑而不是經典途徑參與鼠氣源性變應原攻擊模型的作用。在使用相同小鼠的模型中,因子H (FH)的研究提供了替代途徑重要性的進一步證據(Takeda, K.等人, J. Immunol.188:661-667, 2012)。FH是替代途徑的負調節劑,其作用是防止自身組織的自體傷害。在變應原攻擊期間內源性FH被發現存在於呼吸道中,而用重組競爭性拮抗劑抑制FH增加了AHR和呼吸道炎症的程度(Takeda等人,2012,同上)。治療性遞送CR2-fH(連接CR2的iC3b/C3d結合區與FH的補體調節區的嵌合蛋白,其將fH的補體調節活性靶向現有的補體活化位點)防護變應原攻擊後AHR的發展和嗜酸性粒細胞滲入呼吸道(Takeda等人,2012,同上)。用卵白蛋白以及豚草變應原(其是人類相關變應原)表明了該防護作用。
凝集素依賴性補體活化在哮喘中的作用在真菌哮喘的小鼠模型中進行評價(Hogaboam等人, J. Leukocyte Biol. 75:805‑814, 2004)。這些研究使用甘露聚糖結合凝集素A(MBL-A)遺傳缺陷的小鼠,所述MBL-A是碳水化合物結合蛋白,其用作活化凝集素補體途徑的識別組份。在用煙麯黴分生孢子 i.t.攻擊後第4和28天檢查MBL-A(+/+)和MBL-A(-/-)煙麯黴致敏小鼠。與致敏的MBL-A(+/+)組相比,在分生孢子攻擊後的兩個時間點,致敏MBL-A(-/-)小鼠的AHR顯著衰減。與野生型組相比,肺TH2細胞因子水準(IL-4、IL-5和IL13)在分生孢子後第4天顯著低於煙麯黴致敏的MBL-A(-/-)小鼠。這些結果表明,MBL-A和凝集素途徑在慢性真菌哮喘期間AHR的發展和維持中起主要作用。
上文詳述的發現表明凝集素依賴性補體活化在哮喘發病機制中的參與。實驗資料表明,因子B活化起著關鍵作用。鑒於LEA-1在因子B的凝集素依賴性活化和替代途徑的隨後活化中的基本作用,預期LEA-1阻斷劑將有利於治療替代途徑介導的某些形式哮喘。因此,這樣的治療可特別用於屋塵蟎引起的哮喘或環境觸發劑例如香煙煙霧或柴油廢氣引起的哮喘。另一個方面,由草花粉觸發的哮喘反應有可能引起LEA-2依賴性補體活化。因此,LEA-2阻斷劑預期可特別用於治療該患者亞群的哮喘病況。
鑒於上文詳述的資料,本發明人相信,LEA-1和LEA-2介導哮喘中的病理補體活化。根據引發過敏劑,LEA-1或LEA-2可優先參與。因此,LEA-1阻斷劑與LEA-2阻斷劑組合可具有治療多種形式哮喘的效用,而與潛在病因學無關。LEA-1和LEA-2阻斷劑可在預防、治療或逆轉肺部炎症和哮喘症狀中具有互補、累加或協同效應。
合併的LEA-1和LEA-2抑制可以由LEA-1阻斷劑和LEA2阻斷劑的共同施用來完成。最佳地,LEA-1和LEA-2抑制功能可以包含在單一的分子實體,例如包含MASP-1/3和MASP-2特異性結合位點的雙特異性抗體,或其中每個結合位點可以結合並阻斷MASP-1/3或MASP-2的雙重特異性抗體。
根據上述內容,本發明的一個方面因此提供了用於抑制LEA-1依賴性補體活化以治療、預防或減少哮喘的嚴重程度的方法,所述方法包括向患有哮喘或有風險發展哮喘的物件施用一種組合物,所述組合物包含在藥物載體中的治療有效量的LEA-1抑制劑,其包含MASP-1抑制劑、MASP-3抑制劑或MASP-1/3抑制劑的組合。MASP-1、MASP-3或MASP-1/3抑制性組合物可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或對於非肽能藥劑可能通過口服施用。施用可由醫師確定而重複進行,直到病況得到解決或控制。
在一個實施方案中,根據本發明此方面的方法進一步包括抑制LEA-2依賴性補體活化以治療、預防或減少哮喘的嚴重程度,所述方法包括向患有哮喘的物件或有發展哮喘風險的物件施用治療有效量的MASP-2抑制劑和MASP-1、MASP-3或MASP-1/3抑制劑。如上詳述,在治療或預防或減少哮喘的嚴重程度中,與單獨抑制LEA-1相比,採用各自阻斷LEA-1和LEA-2的藥理劑的組合預期提供改進的治療結果。這個結果可以實現,例如,通過具有LEA-1阻斷活性的抗體連同具有LEA-2-阻斷活性的抗體的共同施用。在一些實施方案中,LEA-1-和LEA-2-阻斷活性被組合成單一的分子實體,並且所述實體具有組合的LEA-1-和LEA-2-阻斷活性。這種實體可以包括雙特異性抗體或由其組成,其中一個抗原結合位點特異性識別MASP-1並阻斷LEA-1而第二抗原結合位點特異性識別MASP-2並阻斷LEA-2。或者,這樣的實體可由雙特異性單株抗體組成,其中一個抗原結合位點特異性識別MASP-3,因此阻斷LEA-1而第二抗原結合位點特異性識別MASP-2,並阻斷LEA-2。這樣的實體可最佳地由雙特異性單株抗體組成,其中一個抗原結合位點特異性地識別MASP-1和MASP-3兩者,因此阻斷LEA-1,而第二抗原結合位點特異性地識別MASP-2,並阻斷LEA-2。
MASP-2抑制劑可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或對於非肽能藥劑可能通過口服施用。施用可由醫師確定而重複進行,直到病況得到解決或控制。
本發明的MASP-3抑制性組合物和任選MASP-2抑制性組合物的施用可通過組合物的單次施用(例如,含有MASP-2和MASP-3抑制劑或雙特異性或雙重抑制劑的單一組合物,或共同施用分開的組合物),或通過有限順序的施用進行,用於治療、預防或減少患有哮喘的物件或有發展哮喘風險的物件的哮喘的嚴重程度。或者,組合物可以以週期性的間隔,例如每日、每兩周、每週、每隔一周、每月或每兩月在長時間內施用以治療有此需要的物件。
如本文實施例11-21中所述,已經產生高親和力MASP-3抑制性抗體,其具有抑制AP相關疾病或病況例如哮喘中的替代途徑的治療效用。
因此,在一個實施方案中,本發明提供用於治療患有或有風險發展哮喘的物件的方法,其包括施用有效量的結合人MASP-3且抑制替代途徑補體活化的高親和力單株抗體或其抗原結合片段以治療哮喘或降低發展哮喘的風險,例如,其中所述抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。 H. MASP-3在緻密沉積物病中的作用以及使用MASP-3抑制性抗體、任選組合MASP-2抑制劑的治療方法
膜增生性腎小球腎炎(MPGN)是一種腎臟病症,形態學特徵在於由於腎小球系膜的內皮下延伸而致的腎小球系膜細胞的增殖和腎小球毛細血管壁的增厚。MPGN被分類為原發性(也稱為特發性)或繼發性,基礎疾病為例如感染性疾病、全身性免疫複合物疾病、腫瘤、慢性肝病等。特發性MPGN包括三種形態類型。I型,或經典MPGN,特點是免疫複合物的內皮下沉積和經典補體途徑的活化。II型,或緻密沉積物病(DDD),其特徵在於額外的膜內緻密沉積物。III型的特徵在於額外的上皮下沉積物。特發性MPGN是罕見的,約占腎病徵候群的原發性腎臟病因的4%至7% (Alchi, B.和Jayne, D. Pediatr. Nephrol.25:1409-1418, 2010)。MPGN主要影響兒童和青少年,可能表現為腎病徵候群、急性腎炎徵候群、無症狀性蛋白尿和血尿或復發性肉眼血尿。腎功能障礙在多數患者發生,該疾病具有緩慢漸進過程,約40%患者在10年診斷內發展終末期腎臟病(Alchi和Jayne,2010,同上)。目前的治療選項包括糖皮質激素、免疫抑制劑、抗血小板治療方案和血漿置換。
通過腎活檢的免疫螢光染色,通過缺乏免疫球蛋白和存在C3而診斷DDD,電子顯微術顯示沿腎小球基底膜的特徵性密集嗜鋨沉積物。DDD由補體替代途徑的失調引起(Sethi等人, Clin J Am Soc Nephrol. 6(5):1009-17, 2011),這可起因於許多不同的機制。在DDD中最常見的補體系統的異常是C3腎炎因子的存在,其是針對替代途徑C3轉化酶(C3bBb)的自身抗體,這增加其半衰期和因此該途徑的活化(Smith, R.J.H.等人, Mol. Immunol.48:1604-1610, 2011)。其他替代途徑異常包括阻斷因子H功能的因子H自身抗體、功能獲得性C3突變和因子H的遺傳缺陷(Smith等人,2011,同上)。最近的病例報告顯示,在兩個DDD患者中,eclizumab(抗C5單株抗體)治療與腎功能改善相關(Daina, E.等人, New Engl. J. Med.366:1161-1163, 2012; Vivarelli, M.等人, New Engl. J. Med.366:1163-1165, 2012),這表明補體活化在腎臟後果中的致病作用。
鑒於上述遺傳性、功能性和免疫組化和軼事的臨床資料,充分確立了補體在DDD發病機制中的關鍵作用。因此,阻斷補體活化的致病機制或隨後的補體活化產物的干預,預計治療上可用於治療這種病況。
儘管人類遺傳資料表明,替代途徑擴增環的不恰當控制或過度活化起著關鍵的作用,但啟動補體的事件還沒有被確定。腎活組織檢查的免疫組織化學研究表明了患病組織中MBL沉積的證據,表明了在DDD中凝集素途徑參與啟動病理性補體活化(Lhotta等人, Nephrol Dial Transplant., 14(4):881-6, 1999)。已在實驗模型中進一步證實替代途徑的重要性。因子H缺陷小鼠發展進行性蛋白尿和人類病況特有的腎臟病理病變(Pickering等人, Nat Genet., 31(4):424, 2002)。Pickering等進一步表明,介導替代途徑的LEA-1依賴性活化的因子B除去充分保護因子H缺陷小鼠免於DDD (Pickering等人, Nat Genet.,31(4):424, 2002)。
因此,可以預期,阻斷LEA-1的藥劑將有效阻斷替代途徑的凝集素依賴性活化,並因此將對DDD提供有效的治療。鑒於替代途徑擴增環在DDD患者中失調,可進一步預期阻斷擴增環的藥劑將是有效的。因為阻斷MASP-1或MASP-1和MASP-3的LEA-1靶向劑抑制因子D的成熟,這種劑被預測為有效阻斷替代途徑擴增環。
如上文詳述,在患病的腎臟標本中發現明顯MBL沉積,突出表明了凝集素驅動的活化事件可能參與DDD發病。一旦腎小球毛細血管的初始組織損傷被建立,則很可能出現額外的MBL結合至受損腎小球內皮和基礎性腎小球系膜結構。這種組織損傷公知導致LEA-2活化,從而可引起進一步的補體活化。因此,LEA-2阻斷劑也預期在防止受損腎小球結構的進一步補體活化方面具有效用,因此防止向終末期腎衰竭的進一步疾病進展。
上文詳述的資料表明LEA-1和LEA-2促進DDD中的單獨病理補體活化過程。因此,LEA-1阻斷劑和LEA-2阻斷劑,單獨或組合,預計可用於治療DDD。
當組合使用時,LEA-1-和LEA-2阻斷劑預計會比任一單獨劑更有效,或可用於治療不同階段的疾病。LEA-1-和LEA-2阻斷劑可因此在預防、治療或逆轉DDD相關的腎功能障礙中具有互補、累加或協同效應。
合併的LEA-1和LEA-2抑制可通過LEA-1阻斷劑和LEA2阻斷劑的共同施用來實現。最佳地,具有抑制功能的LEA-1和LEA-2阻斷劑可以包含在單一的分子實體,例如包含MASP-1/3和MASP-2特異性結合位點的雙特異性抗體,或其中每個結合位點可以結合並阻斷MASP-1/3或MASP-2的雙重特異性抗體。
根據上述內容,本發明的一個方面因此提供了用於抑制LEA-1依賴性補體活化以治療、預防或減少緻密沉積物病的嚴重程度的方法,所述方法包括向患有緻密沉積物病或有風險發展緻密沉積物病的物件施用一種組合物,所述組合物包含在藥物載體中的治療有效量的LEA-1抑制劑,其包含MASP-1抑制劑、MASP-3抑制劑或MASP-1/3抑制劑的組合。MASP-1、MASP-3或MASP-1/3抑制性組合物可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或對於非肽能藥劑可能通過口服施用。施用可由醫師確定而重複進行,直到病況得到解決或控制。
在另一個方面,提供了用於抑制LEA-2依賴性補體活化以治療、預防或減少緻密沉積物病的嚴重程度的方法,所述方法包括向患有緻密沉積物病或有風險發展緻密沉積物病的物件施用治療有效量的MASP-2抑制劑。在另一個方面,提供了包括抑制LEA-1和LEA-2依賴性補體活化兩者以治療、預防或減少緻密沉積物病的嚴重程度的方法,所述方法包括向患有緻密沉積物病或有風險發展緻密沉積物病的物件施用治療有效量的MASP-2抑制劑和MASP-1、MASP-3或MASP-1/3抑制劑。
在一些實施方案中,所述方法包括抑制LEA-1依賴性補體活化和LEA-2依賴性補體活化兩者。如上詳述,在治療、預防或減少緻密沉積物病的嚴重程度中,與單獨抑制LEA-1相比,採用各自阻斷LEA-1和LEA-2的藥理劑的組合預期提供改進的治療結果。這個結果可以實現,例如,通過具有LEA-1阻斷活性的抗體連同具有LEA-2-阻斷活性的抗體的共同施用。在一些實施方案中,LEA-1-和LEA-2-阻斷活性被組合成單一的分子實體,並且所述實體具有組合的LEA-1-和LEA-2-阻斷活性。這種實體可以包括雙特異性抗體或由其組成,其中一個抗原結合位點特異性識別MASP-1並阻斷LEA-1而第二抗原結合位點特異性識別MASP-2並阻斷LEA-2。或者,這樣的實體可由雙特異性單株抗體組成,其中一個抗原結合位點特異性識別MASP-3,因此阻斷LEA-1而第二抗原結合位點特異性識別MASP-2,並阻斷LEA-2。這樣的實體可最佳地由雙特異性單株抗體組成,其中一個抗原結合位點特異性地識別MASP-1和MASP-3兩者,因此阻斷LEA-1,而第二抗原結合位點特異性地識別MASP-2,並阻斷LEA-2。
LEA-1和/或LEA-2抑制劑可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或對於非肽能藥劑可能通過口服施用。施用可由醫師確定而重複進行,直到病況得到解決或控制。
本發明的MASP-3抑制性組合物和/或MASP-2抑制性組合物的施用可通過組合物的單次施用(例如,含有MASP-2和/或MASP-3抑制劑或雙特異性或雙重抑制劑的單一組合物,或共同施用分開的組合物),或通過有限順序的施用進行,用於在有此需要的物件中治療、預防或減少緻密沉積物病的嚴重程度。或者,組合物可以以週期性的間隔,例如每日、每兩周、每週、每隔一周、每月或每兩月在長時間內施用以治療有此需要的物件。
如本文實施例11-21中所述,已經產生高親和力MASP-3抑制性抗體,其具有抑制AP相關疾病或病況例如緻密沉積物病中的替代途徑的治療效用。
因此,在一個實施方案中,本發明提供用於治療患有或有風險發展緻密沉積物病的物件的方法,其包括施用有效量的結合人MASP-3且抑制替代途徑補體活化的高親和力單株抗體或其抗原結合片段以治療緻密沉積物病或降低發展緻密沉積物病的風險,例如,其中所述抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。 I. MASP-3在微量免疫壞死性新月體腎小球腎炎中的作用以及使用MASP-3抑制性抗體、任選組合MASP-2抑制劑的治療方法
微量免疫壞死性新月體腎小球腎炎(NCGN)是快速進行性腎小球腎炎的一種形式,其中腎小球毛細血管壁顯示炎症跡象但還具有微量可檢測的免疫複合物沉積或抗腎小球基底膜抗體。該病況與腎功能快速下降有關。發現大多數NCGN患者具有抗中性粒細胞胞漿自身抗體(ANCA),因此屬於一組稱為ANCA相關血管炎的疾病。血管炎是一種特徵為血管壁的炎症和纖維素樣壞死的血管病症。全身性血管炎根據血管大小:大、中和小而分類。幾種形式的小血管炎與ANCA的存在,即韋格納肉芽腫、顯微鏡下多血管炎、Churg-Strauss徵候群和腎限定性血管炎(NCGN)相關聯。它們也可以是潛在病況如系統性紅斑狼瘡的表現。ANCA的靶抗原包括蛋白酶-3(PR3)和髓過氧化物酶(MPO)。微量免疫NCGN是罕見的,在英國Wessex每百萬中約4人報告發病(Hedger, N.等人, Nephrol. Dial. Transplant.15:1593-1599, 2000)。在Wessex系列的128例微量免疫NCGN患者中,73%為ANCA陽性,59%患者需要初始透析而36%患者需要長期透析。微量免疫NCGN的治療包括皮質類固醇和免疫抑制劑如環磷醯胺和硫唑嘌呤。對於ANCA相關血管炎的其他治療選項包括利妥昔單抗和血漿置換(Chen, M.和Kallenberg, C.G.M. Nat. Rev. Rheumatol.6:653-664, 2010)。
儘管NCGN的特徵在於微量補體沉積,但補體替代途徑已經牽涉其發病機制。對7例MPO-ANCA相關微量免疫NCGN患者的腎活檢評估檢測到膜攻擊複合物、C3d、因子B和因子P的存在(其在正常對照或微小病變疾病患者的活檢中未檢測到),而未檢出C4d和甘露糖結合凝集素,表明替代途徑的選擇性活化(Xing, G.Q.等 J. Clin. Immunol.29:282-291, 2009)。實驗NCGN可以通過轉移抗MPO IgG到野生型小鼠或轉移抗MPO脾細胞到免疫缺陷小鼠來誘導(Xiao, H.等 J. Clin. Invest.110:955-963, 2002)。在NCGN的該小鼠模型中,使用基因敲除小鼠研究特定的補體活化途徑的作用。在注射抗MPO IgG後,C4 -/-小鼠發展與野生型小鼠可比的腎病,而C5 -/-和因子B -/-小鼠沒有發展腎病,這表明替代途徑參與了該模型而經典和凝集素途徑沒有(Xiao, H.等 Am. J. Pathol.170:52-64, 2007)。而且,將患者的MPO-ANCA或PR3-ANCA IgG與TNF-α-引發的人中性粒細胞孵育,引起在正常人血清中導致補體活化的因子釋放,如通過C3a產生所檢測的;對於健康物件的IgG沒有觀察到這種效果,提示ANCA在嗜中性粒細胞和補體活化的潛在致病作用(Xiao等人,2007,同上)。
基於以上對於替代途徑在該病況中概述的作用,預計阻斷替代途徑的活化將在ANCA陽性NCGN的治療中具有效用。鑒於發病需要fB活化,預計LEA-1的抑制劑將特別可用於治療此病況和在這些患者中防止腎功能進一步下降。
然而,患者的另一亞群發展具有新月體形成的進行性腎血管炎,在無ANCA時伴隨腎功能的快速下降。這種形式的病況被稱為ANCA陰性NCGN並構成患有微量免疫NCGN的所有患者的大約三分之一(Chen等人, JASN18(2): 599-605, 2007)。這些患者趨於年輕化,且腎的結果往往特別嚴重(Chen等人, Nat Rev Nephrol.,5(6):313-8, 2009)。這些患者的鑒別性病理特徵是MBL和C4d在腎臟病變的沉積(Xing等人, J Clin Immunol. 30(1):144-56, 2010)。腎活組織檢查中MBL和C4d的染色強度與腎功能負相關(Xing等人,2010,同上)。這些結果表明凝集素依賴性補體活化在發病機制中起重要作用。C4d而不是因子B通常存在於患病組織標本中的事實表明LEA-2參與。
基於上述凝集素依賴性補體活化在ANCA陰性NCGN中的作用,預計阻斷LEA-2途徑的活化將在ANCA陰性NCGN治療中具有效用。
上文詳述的資料表明LEA-1和LEA-2在ANCA陽性和ANCA陰性NCGN中分別介導病理補體活化。因此,LEA-1阻斷劑與LEA-2阻斷劑組合預期具有治療所有形式的微量免疫NCGN的效用,而與潛在病因學無關。LEA-1和LEA-2阻斷劑可因此在預防、治療或逆轉NCGN相關腎功能障礙中具有互補、累加或協同效應。
與單獨任一藥劑相比,LEA-1和LEA-2抑制劑一起使用可實現額外的治療益處,或者可以為更廣範圍的患者亞群提供有效的治療。合併的LEA-1和LEA-2抑制可以由LEA-1阻斷劑和LEA-2阻斷劑的共同施用來完成。最佳地,LEA-1和LEA-2抑制功能可以包含在單一的分子實體,例如包含MASP-1/3和MASP-2特異性結合位點的雙特異性抗體,或其中每個結合位點可以結合並阻斷MASP-1/3或MASP-2的雙重特異性抗體。
根據上述內容,本發明的一個方面因此提供了用於抑制LEA-1依賴性補體活化以治療、預防或減少微量免疫壞死性新月體腎小球腎炎的嚴重程度的方法,所述方法包括向患有微量免疫壞死性新月體腎小球腎炎或有風險發展微量免疫壞死性新月體腎小球腎炎的物件施用一種組合物,所述組合物包含在藥物載體中的治療有效量的LEA-1抑制劑,其包含MASP-1抑制劑、MASP-3抑制劑或MASP-1/3抑制劑的組合。MASP-1、MASP-3或MASP-1/3抑制性組合物可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或對於非肽能藥劑可能通過口服施用。施用可由醫師確定而重複進行,直到病況得到解決或控制。
在另一個方面,提供了用於抑制LEA-2依賴性補體活化以治療、預防或減少微量免疫壞死性新月體腎小球腎炎的嚴重程度的方法,所述方法包括向患有微量免疫壞死性新月體腎小球腎炎或有風險發展微量免疫壞死性新月體腎小球腎炎的物件施用治療有效量的MASP-2抑制劑。在另一個方面,提供了包括抑制LEA-1和LEA-2依賴性補體活化兩者以治療、預防或減少微量免疫壞死性新月體腎小球腎炎的嚴重程度的方法,所述方法包括向有此需要的物件施用治療有效量的MASP-2抑制劑和MASP-1、MASP-3或MASP-1/3抑制劑。
在一些實施方案中,所述方法包括抑制LEA-1依賴性補體活化和LEA-2依賴性補體活化兩者。如上詳述,在治療或預防或減少微量免疫壞死性新月體腎小球腎炎的嚴重程度中,與單獨抑制LEA-1相比,採用各自阻斷LEA-1和LEA-2的藥理劑的組合預期提供改進的治療結果。這個結果可以實現,例如,通過具有LEA-1阻斷活性的抗體連同具有LEA-2-阻斷活性的抗體的共同施用。在一些實施方案中,LEA-1-和LEA-2-阻斷活性被組合成單一的分子實體,並且所述實體具有組合的LEA-1-和LEA-2-阻斷活性。這種實體可以包括雙特異性抗體或由其組成,其中一個抗原結合位點特異性識別MASP-1並阻斷LEA-1而第二抗原結合位點特異性識別MASP-2並阻斷LEA-2。或者,這樣的實體可由雙特異性單株抗體組成,其中一個抗原結合位點特異性識別MASP-3,因此阻斷LEA-1而第二抗原結合位點特異性識別MASP-2,並阻斷LEA-2。這樣的實體可最佳地由雙特異性單株抗體組成,其中一個抗原結合位點特異性地識別MASP-1和MASP-3兩者,因此阻斷LEA-1,而第二抗原結合位點特異性地識別MASP-2,並阻斷LEA-2。
MASP-2抑制劑可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或對於非肽能藥劑可能通過口服施用。施用可由醫師確定而重複進行,直到病況得到解決或控制。
本發明的MASP-3抑制性組合物和/或MASP-2抑制性組合物的施用可通過組合物的單次施用(例如,含有MASP-2和/或MASP-3抑制劑或雙特異性或雙重抑制劑的單一組合物,或共同施用分開的組合物),或通過有限順序的施用進行,用於治療、預防或減少微量免疫壞死性新月體腎小球腎炎的嚴重程度。或者,組合物可以以週期性的間隔,例如每日、每兩周、每週、每隔一周、每月或每兩月在長時間內施用以治療有此需要的物件。
如本文實施例11-21中所述,已經產生高親和力MASP-3抑制性抗體,其具有抑制AP相關疾病或病況例如微量免疫壞死性新月體腎小球腎炎(NCGN)中的替代途徑的治療效用。
因此,在一個實施方案中,本發明提供用於治療患有或有風險發展微量免疫壞死性新月體腎小球腎炎(NCGN)的物件的方法,其包括施用有效量的結合人MASP-3且抑制替代途徑補體活化的高親和力單株抗體或其抗原結合片段以治療微量免疫壞死性新月體腎小球腎炎(NCGN)或降低發展微量免疫壞死性新月體腎小球腎炎(NCGN)的風險,例如,其中所述抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。 J. MASP-3在創傷性腦損傷中的作用以及使用MASP-3抑制性抗體、任選組合MASP-2抑制劑的治療方法
創傷性腦損傷(TBI)是每年導致至少1千萬人死亡或住院治療的全球主要健康問題(Langlois, J.A.等人, J. Head Trauma Rehabil.21:375-378, 2006)。2003年在美國估計有160萬TBI,包括120萬例急診、290000例住院和51000例死亡(Rutland-Brown, W.等人, J. Head Trauma Rehabil.21:544-548, 2006)。在美國大多數TBI是由跌倒和機動車交通造成的。TBI可導致長期或終身的身體、認知、行為和情緒後果。超過500萬美國人患有與TBI相關的長期或終生殘疾(Langlois等人,2006年,同上)。
TBI可能涉及腦物質穿透(“穿透”損傷)或不穿透腦的損傷(“封閉”的損傷)。損傷概況和相關的神經行為後遺症在穿透和關閉性TBI之間可能非常不同。儘管各損傷是獨特的,但某些腦區域特別容易受到外傷引起的損害,包括額皮層和額下白質、基底節和間腦、喙腦幹和顳葉包括海馬(McAllister, T.W. Dialogues Clin. Neurosci.13:287-300, 2011)。TBI可以導致急性期幾種神經遞質系統的改變,包括麩胺酸和其他興奮性胺基酸的釋放以及兒茶酚胺能和膽鹼能系統中的慢性改變,其可與神經行為殘疾相關聯(McAllister,2011,同上)。顯著TBI倖存者常患認知缺損、人格改變和增加的精神病症,尤其是抑鬱、焦慮和創傷後應激病症。儘管大量研究,但對於TBI,尚未發現可以降低死亡率和發病率並改善功能性結果的臨床上有效的治療。 補體因子和TBI
大量的研究已經確定了補體蛋白和神經病症,包括阿茲海默氏病、多發性硬化、重症肌無力、格林-巴厘徵候群、腦狼瘡和中風的關係(在Wagner, E.等人, Nature Rev Drug Disc. 9: 43-56, 2010中綜述)。最近已證實C1q和C3在突觸消除中的作用,從而補體因子可能參與正常CNS功能和神經變性疾病兩者(Stevens, B.等人, Cell131: 1164–1178, 2007)。MASP-1和MASP-3基因廣泛表達於大腦以及神經膠質瘤細胞系T98G(Kuraya, M.等人, Int Immunol., 15:109-17, 2003),這與凝集素途徑在CNS中的作用一致。
MASP-1和MASP-3對針對病原體和改變的自身細胞的直接防禦是關鍵的,但凝集素途徑還導致中風、心臟發作和其他缺血再灌注損傷後的嚴重組織損傷。同樣,MASP-1和MASP-3是TBI引起的組織損傷中的可能介質。在兩種小鼠模型中,替代途徑中因子B的抑制已顯示使TBI減弱。因子B敲除小鼠被保護免於TBI後的補體介導的神經炎症和神經病理(Leinhase I等人, BMC Neurosci. 7:55, 2006)。此外,抗因子B抗體在TBI誘導的小鼠中減弱腦組織損傷和神經元細胞死亡(Leinhase I等人, J Neuroinflammation4:13, 2007)。MASP-3直接活化因子B(Iwaki, D.等人, J Immunol. 187:3751-8, 2011),因此也是TBI中的可能介質。類似於因子B的抑制,LEA-1抑制劑如抗MASP-3抗體預期提供有前景的策略用於治療TBI中的組織損傷和隨後的後遺症。
因此,LEA-1和LEA-2抑制劑可在TBI中具有獨立的治療益處。與單獨任一藥劑相比,LEA-1和LEA-2抑制劑一起使用可實現額外的治療益處,或者可以為更廣範圍的患者亞群提供有效的治療。合併的LEA-1和LEA-2抑制可以由LEA-1阻斷劑和LEA2阻斷劑的共同施用來完成。最佳地,LEA-1和LEA-2抑制功能可以包含在單一的分子實體,例如包含MASP-1/3和MASP-2特異性結合位點的雙特異性抗體,或其中每個結合位點可以結合並阻斷MASP-1/3或MASP-2的雙重特異性抗體。
根據上述內容,本發明的一個方面因此提供了用於抑制LEA-1依賴性補體活化以治療或減少創傷性腦損傷的嚴重程度的方法,所述方法包括向患有創傷性腦損傷的物件施用一種組合物,所述組合物包含在藥物載體中的治療有效量的LEA-1抑制劑,其包含MASP-1抑制劑、MASP-3抑制劑或MASP-1/3抑制劑的組合。MASP-1、MASP-3或MASP-1/3抑制性組合物可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、顱內、皮下或其他腸胃外施用,或對於非肽能藥劑可能通過口服施用。施用可由醫師確定而重複進行,直到病況得到解決或控制。
在另一個方面,提供了用於抑制LEA-2依賴性補體活化以治療或減少創傷性腦損傷的嚴重程度的方法,所述方法包括向患有創傷性腦損傷的物件施用治療有效量的MASP-2抑制劑。在另一個方面,提供了包括抑制LEA-1和LEA-2依賴性補體活化兩者以治療或減少創傷性腦損傷的嚴重程度的方法,所述方法包括向患有創傷性腦損傷的物件施用治療有效量的MASP-2抑制劑和MASP-1、MASP-3或MASP-1/3抑制劑。
在一些實施方案中,所述方法包括抑制LEA-1依賴性補體活化和LEA-2依賴性補體活化兩者。如上詳述,在治療或減少創傷性腦損傷的嚴重程度中,與單獨抑制LEA-1相比,採用各自阻斷LEA-1和LEA-2的藥理劑的組合預期提供改進的治療結果。這個結果可以實現,例如,通過具有LEA-1阻斷活性的抗體連同具有LEA-2-阻斷活性的抗體的共同施用。在一些實施方案中,LEA-1-和LEA-2-阻斷活性被組合成單一的分子實體,並且所述實體具有組合的LEA-1-和LEA-2-阻斷活性。這種實體可以包括雙特異性抗體或由其組成,其中一個抗原結合位點特異性識別MASP-1並阻斷LEA-1而第二抗原結合位點特異性識別MASP-2並阻斷LEA-2。或者,這樣的實體可由雙特異性單株抗體組成,其中一個抗原結合位點特異性識別MASP-3,因此阻斷LEA-1而第二抗原結合位點特異性識別MASP-2,並阻斷LEA-2。這樣的實體可最佳地由雙特異性單株抗體組成,其中一個抗原結合位點特異性地識別MASP-1和MASP-3兩者,因此阻斷LEA-1,而第二抗原結合位點特異性地識別MASP-2,並阻斷LEA-2。
MASP-2抑制劑可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下、顱內或其他腸胃外施用,或對於非肽能藥劑可能通過口服施用。施用可由醫師確定而重複進行,直到病況得到解決或控制。
本發明的MASP-3抑制性組合物和/或MASP-2抑制性組合物的施用可通過組合物的單次施用(例如,含有MASP-2和/或MASP-3抑制劑或雙特異性或雙重抑制劑的單一組合物,或共同施用分開的組合物),或通過有限順序的施用進行,用於治療或減少創傷性腦損傷的嚴重程度。或者,組合物可以以週期性的間隔,例如每日、每兩周、每週、每隔一周、每月或每兩月在長時間內施用以治療有此需要的物件。
如本文實施例11-21中所述,已經產生高親和力MASP-3抑制性抗體,其具有抑制AP相關疾病或病況例如創傷性腦損傷中的替代途徑的治療效用。
因此,在一個實施方案中,本發明提供用於治療患有或有風險發展創傷性腦損傷的物件的方法,其包括施用有效量的結合人MASP-3且抑制替代途徑補體活化的高親和力單株抗體或其抗原結合片段以治療創傷性腦損傷或降低發展創傷性腦損傷的風險,例如,其中所述抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。 K. MASP-3在吸入性肺炎中的作用以及使用MASP-3抑制性抗體、任選組合MASP-2抑制劑的治療方法
吸入被定義為將口咽或胃內容物吸入到下呼吸道。吸入可導致吸入(化學)性肺炎、原發性細菌吸入性肺炎或化學性肺炎的繼發性細菌感染的併發症。吸入的危險因素包括降低水準的意識(例如,頭部創傷、酒精或藥物引起的感覺中樞變化、中風)、各種胃腸道和食道異常以及神經肌肉疾病。據估計,450萬例社區獲得性肺炎中的5-15%是由於吸入性肺炎(Marik, P.E. New Engl. J. Med.344:665-671, 2001)。化學性肺炎的治療主要是支持性的,而使用經驗性抗生素是有爭議的。細菌吸入性肺炎的治療是用適當的抗生素,這是基於吸入發生在社區還是醫院,這是因為可能的致病微生物在這些情況下是不同的。應採取措施,以防止高危患者的吸入,例如養老院中咽反射受損的老年患者。已被表明是有效預防的措施包括餵養時床的頭部抬高、牙科預防和良好的口腔衛生。預防性抗生素沒有被表明是有效的並阻止使用,因為它們可能導致抗性微生物的出現。
補體組份的調節已被建議用於許多臨床適應症,包括傳染病(膿毒症、病毒、細菌和真菌感染)和肺部病況(呼吸窘迫徵候群、慢性阻塞性肺病和囊性纖維化) (綜述在Wagner, E.等人, Nature Rev Drug Disc. 9: 43-56, 2010)。很多臨床和遺傳研究對這個建議提供了支持。例如,患有臨床結核且具有低的MBL水準的患者的頻率顯著降低(Soborg等人, Journal of Infectious Diseases188:777–82, 2003),這表明MBL低水準與免於該疾病的保護相關。
在酸吸入損傷的鼠模型中,Weiser MR等人, J. Appl. Physiol. 83(4): 1090–1095, 1997,表明C3敲除小鼠受到保護免於嚴重的傷害;而C4敲除小鼠沒有受到保護,這表明補體活化是通過替代途徑介導的。因此,在吸入性肺炎中用LEA-1抑制劑阻斷替代途徑預計將提供治療益處。
因此,LEA-1和LEA-2抑制劑在吸入性肺炎中可具有獨立的治療益處。此外,與單獨任一藥劑相比,LEA-1和LEA-2抑制劑一起使用可實現額外的治療益處,或者可以為更廣範圍的患者亞群提供有效的治療。合併的LEA-1和LEA-2抑制可以由LEA-1阻斷劑和LEA2阻斷劑的共同施用來完成。最佳地,LEA-1和LEA-2抑制功能可以包含在單一的分子實體,例如包含MASP-1/3和MASP-2特異性結合位點的雙特異性抗體,或其中每個結合位點結合並阻斷MASP-1/3或MASP-2的雙重特異性抗體。
本發明的一個方面因此提供了用於抑制LEA-1依賴性補體活化以治療吸入性肺炎的方法,所述方法通過向患有所述疾病或其他補體介導的肺炎的物件施用一種組合物來進行,所述組合物包含在藥物載體中的治療有效量的MASP-1抑制劑、MASP-3抑制劑或MASP-1/3抑制劑的組合。MASP-1、MASP-3或MASP-1/3抑制組合物可以局部施用至肺,如通過吸入器。或者,MASP-1、MASP-3或MASP-1/3抑制劑可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或可能通過口服施用。施用可由醫師確定而重複進行,直到病況得到解決或控制。
根據上述內容,本發明的一個方面因此提供了用於抑制LEA-1依賴性補體活化以治療、預防或減少吸入性肺炎的嚴重程度的方法,所述方法包括向患有吸入性肺炎或有風險發展吸入性肺炎的物件施用一種組合物,所述組合物包含在藥物載體中的治療有效量的LEA-1抑制劑,其包含MASP-1抑制劑、MASP-3抑制劑或MASP-1/3抑制劑的組合。MASP-1、MASP-3或MASP-1/3抑制性組合物可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或對於非肽能藥劑可能通過口服施用。施用可由醫師確定而重複進行,直到病況得到解決或控制。
在另一個方面,提供了用於抑制LEA-2依賴性補體活化以治療、預防或減少吸入性肺炎的嚴重程度的方法,所述方法包括向患有吸入性肺炎或有風險發展吸入性肺炎的物件施用治療有效量的MASP-2抑制劑。在另一個方面,提供了包括抑制LEA-1和LEA-2依賴性補體活化兩者以治療或減少吸入性肺炎的嚴重程度的方法,所述方法包括向患有吸入性肺炎的物件施用治療有效量的MASP-2抑制劑和MASP-1、MASP-3或MASP-1/3抑制劑。在一些實施方案中,所述方法包括抑制LEA-1依賴性補體活化和LEA-2依賴性補體活化兩者。如上詳述,在治療或減少吸入性肺炎的嚴重程度中,與單獨抑制LEA-1相比,採用各自阻斷LEA-1和LEA-2的藥理劑的組合預期提供改進的治療結果。這個結果可以實現,例如,通過具有LEA-1阻斷活性的抗體連同具有LEA-2-阻斷活性的抗體的共同施用。在一些實施方案中,LEA-1-和LEA-2-阻斷活性被組合成單一的分子實體,並且所述實體具有組合的LEA-1-和LEA-2-阻斷活性。這種實體可以包括雙特異性抗體或由其組成,其中一個抗原結合位點特異性識別MASP-1並阻斷LEA-1而第二抗原結合位點特異性識別MASP-2並阻斷LEA-2。或者,這樣的實體可由雙特異性單株抗體組成,其中一個抗原結合位點特異性識別MASP-3,因此阻斷LEA-1而第二抗原結合位點特異性識別MASP-2,並阻斷LEA-2。這樣的實體可最佳地由雙特異性單株抗體組成,其中一個抗原結合位點特異性地識別MASP-1和MASP-3兩者,因此阻斷LEA-1,而第二抗原結合位點特異性地識別MASP-2,並阻斷LEA-2。
MASP-2抑制劑可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或對於非肽能藥劑可能通過口服施用。施用可由醫師確定而重複進行,直到病況得到解決或控制。
本發明的MASP-3抑制性組合物和/或MASP-2抑制性組合物的施用可通過組合物的單次施用(例如,含有MASP-2和/或MASP-3抑制劑或雙特異性或雙重抑制劑的單一組合物,或共同施用分開的組合物),或通過有限順序的施用進行,用於在有此需要的物件中治療、預防或減少吸入性肺炎的嚴重程度。或者,組合物可以以週期性的間隔,例如每日、每兩周、每週、每隔一周、每月或每兩月在長時間內施用以治療有此需要的物件。
如本文實施例11-21中所述,已經產生高親和力MASP-3抑制性抗體,其具有抑制AP相關疾病或病況例如吸入性肺炎中的替代途徑的治療效用。
因此,在一個實施方案中,本發明提供用於治療患有或有風險發展吸入性肺炎的物件的方法,其包括施用有效量的結合人MASP-3且抑制替代途徑補體活化的高親和力單株抗體或其抗原結合片段以治療吸入性肺炎或降低發展吸入性肺炎的風險,例如,其中所述抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。 L. MASP-3在眼內炎中的作用以及使用MASP-3抑制性抗體、任選組合MASP-2抑制劑的治療方法
眼內炎是眼內腔的炎性病況,通常由感染引起。眼內炎可以是內源性的,起因於生物自遠端感染源(例如,心內膜炎)的血行播散,或外源性的,起因於從外部直接接種生物,作為眼科手術、異物和/或鈍性或穿透性眼外傷的併發症。外源性眼內炎比內源性眼內炎更常見,且大多數外源性眼內炎病例在眼科手術後發生。在美國,白內障手術是眼內炎的主要原因,並在0.1-0.3%的該手術中發生,在過去十年的發病率明顯增加(Taban, M.等人, Arch. Ophthalmol.123:613-620, 2005)。手術後眼內炎可呈現為急性,術後2周之內,或延遲,術後數月。急性眼內炎的典型表現為疼痛、發紅、眼瞼腫脹和視力下降。延遲發作的眼內炎相比急性形式不太常見,且患者可能會僅報告輕度疼痛和光敏性。眼內炎的治療取決於潛在病因,並且可包括全身性和/或玻璃體內抗生素。眼內炎可導致視力降低或喪失。
如先前對於AMD描述的,多個補體途徑基因已與眼科病症相關,並且這些具體包括凝集素途徑的基因。例如,對於AMD亞型已經鑒定MBL2 (Dinu V等人, Genet Epidemiol31: 224–37, 2007)。LEA-1和LEA-2途徑有可能參與眼炎性病況例如眼內炎(Chow SP等人, Clin Experiment Ophthalmol. 39:871-7, 2011)。Chow等檢查眼內炎患者的MBL水準,表明MBL水準和功能性凝集素途徑活性兩者在發炎的人眼睛中都顯著升高,但在非炎症對照眼中幾乎檢測不到。這表明了MBL和凝集素途徑在威脅視力的眼炎性病況特別是眼內炎中的作用。此外,在角膜真菌性角膜炎的鼠模型中,MBL-A基因是五個上調炎性途徑基因之一(Wang Y.等人, Mol Vis13: 1226–33, 2007)。
因此,LEA-1和LEA-2抑制劑預期在治療眼內炎中具有獨立的治療益處。此外,與單獨任一藥劑相比,LEA-1和LEA-2抑制劑一起使用可實現額外的治療益處,或者可以為更廣範圍的患者亞群提供有效的治療。合併的LEA-1和LEA-2抑制可以由LEA-1阻斷劑和LEA-2阻斷劑的共同施用來完成。最佳地,LEA-1和LEA-2抑制功能可以包含在單一的分子實體,例如包含MASP-1/3和MASP-2特異性結合位點的雙特異性抗體,或其中每個結合位點結合並阻斷MASP-1/3或MASP-2的雙重特異性抗體。
根據上述內容,本發明的一個方面因此提供了用於抑制LEA-1依賴性補體活化以治療、預防或減少眼內炎的嚴重程度的方法,所述方法包括向患有眼內炎或有風險發展眼內炎的物件施用一種組合物,所述組合物包含在藥物載體中的治療有效量的LEA-1抑制劑,其包含MASP-1抑制劑、MASP-3抑制劑或MASP-1/3抑制劑的組合。MASP‑1、MASP‑3或MASP‑1/3抑制性組合物可局部施用至眼,例如通過沖洗或以局部凝膠、藥膏或滴劑的形式施用該組合物,例如,通過玻璃體內施用。或者,MASP-1、MASP-3或MASP-1/3抑制劑可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或可能通過口服施用非肽能藥劑。施用可由醫師確定而重複進行,直到病況得到解決或控制。
在另一個方面,提供了用於抑制LEA-2依賴性補體活化以治療、預防或減少眼內炎的嚴重程度的方法,所述方法包括向患有眼內炎或有風險發展眼內炎的物件施用治療有效量的MASP-2抑制劑。在另一個方面,提供了包括抑制LEA-1和LEA-2依賴性補體活化兩者以治療或減少眼內炎的嚴重程度的方法,所述方法包括向患有眼內炎的物件施用治療有效量的MASP-2抑制劑和MASP-1、MASP-3或MASP-1/3抑制劑。
在一些實施方案中,所述方法包括抑制LEA-1依賴性補體活化和LEA-2依賴性補體活化兩者。如上詳述,在治療或預防或減少眼內炎的嚴重程度中,與單獨抑制LEA-1相比,採用各自阻斷LEA-1和LEA-2的藥理劑的組合預期提供改進的治療結果。這個結果可以實現,例如,通過具有LEA-1阻斷活性的抗體連同具有LEA-2-阻斷活性的抗體的共同施用。在一些實施方案中,LEA-1-和LEA-2-阻斷活性被組合成單一的分子實體,並且所述實體具有組合的LEA-1-和LEA-2-阻斷活性。這種實體可以包括雙特異性抗體或由其組成,其中一個抗原結合位點特異性識別MASP-1並阻斷LEA-1而第二抗原結合位點特異性識別MASP-2並阻斷LEA-2。或者,這樣的實體可由雙特異性單株抗體組成,其中一個抗原結合位點特異性識別MASP-3,因此阻斷LEA-1而第二抗原結合位點特異性識別MASP-2,並阻斷LEA-2。這樣的實體可最佳地由雙特異性單株抗體組成,其中一個抗原結合位點特異性地識別MASP-1和MASP-3兩者,因此阻斷LEA-1,而第二抗原結合位點特異性地識別MASP-2,並阻斷LEA-2。
MASP-2抑制劑可局部施用至眼,例如通過沖洗或以局部凝膠、藥膏或滴劑的形式施用該組合物,或通過玻璃體內注射。或者,MASP-2抑制劑可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或可能通過口服施用非肽能藥劑。施用可由醫師確定而重複進行,直到病況得到解決或控制。
本發明的MASP-3抑制性組合物和/或MASP-2抑制性組合物的施用可通過組合物的單次施用(例如,含有MASP-2和/或MASP-3抑制劑或雙特異性或雙重抑制劑的單一組合物,或共同施用分開的組合物),或通過有限順序的施用進行,用於在有此需要的物件中治療、預防或減少眼內炎的嚴重程度。或者,組合物可以以週期性的間隔,例如每日、每兩周、每週、每隔一周、每月或每兩月在長時間內施用以治療有此需要的物件。
如本文實施例11-21中所述,已經產生高親和力MASP-3抑制性抗體,其具有抑制AP相關疾病或病況例如眼內炎中的替代途徑的治療效用。
因此,在一個實施方案中,本發明提供用於治療患有或有風險發展眼內炎的物件的方法,其包括施用有效量的結合人MASP-3且抑制替代途徑補體活化的高親和力單株抗體或其抗原結合片段以治療眼內炎或降低發展眼內炎的風險,例如,其中所述抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。 M. MASP-3在視神經脊髓炎中的作用以及使用MASP-3抑制性抗體、任選組合MASP-2抑制劑的治療方法
視神經脊髓炎(NMO)是一種靶向視神經和脊髓的自身免疫性疾病。這導致視神經的炎症(被稱為視神經炎)和脊髓的炎症(被稱為脊髓炎)。NMO中的脊髓病變可導致腿或手臂無力或癱瘓、失明、膀胱及腸道功能障礙和感覺功能障礙。
NMO與多發性硬化症(MS)具有數個相似之處,因為兩者都是由於CNS靶標的免疫攻擊並且都導致脫髓鞘(Papadopoulos和Verkman, Lancet Neurol., 11(6):535-44, 2013)。然而,NMO的分子靶標、治療以及病變均不同於MS。儘管MS在很大程度上是由T細胞介導的,但NMO患者通常具有靶向水通道蛋白水通道蛋白4 (AQP4)的抗體,水通道蛋白是在包圍血腦屏障的星形細胞中存在的蛋白質。對於MS,干擾素β是最常用的療法,但在NMO中一般認為是有害的。NMO的炎性病變存在於脊髓和視神經中,並且可發展到大腦,包括白質和灰質。發生在NMO病變的脫髓鞘是通過補體介導的(Papadopoulos和Verkman, Lancet Neurol., 11(6):535-44, 2013)。
補體依賴性細胞毒性似乎是引起NMO發展的主要機制。超過90%的NMO患者有抗AQP4的IgG抗體 (Jarius和Wildemann, Jarius S, Wildemann B., Nat Rev Neurol. 2010 Jul;6(7):383-92)。這些抗體在血腦屏障處啟動病變形成。星形細胞表面上的初始抗原-抗體複合物(AQP4/AQP4-IgG)活化經典補體途徑。這導致在星形細胞表面上形成膜攻擊複合物,導致粒細胞浸潤、脫髓鞘,最終導致星形細胞、少突膠質細胞和神經元壞死(Misu等人, Acta Neuropathol125(6):815-27, 2013)。這些細胞事件反映在組織破壞和囊性、壞死病變的形成中。
經典補體途徑顯然是NMO發病機制的關鍵。NMO病變顯示免疫球蛋白的血管中心沉積(vasculocentric deposition)和活化補體成分(Jarius等人, Nat Clin Pract Neurol. 4(4):202-14, 2008)。此外,補體蛋白例如C5a已從NMO患者的腦脊髓液中分離(Kuroda等人, J Neuroimmunol.,254(1-2):178-82, 2013)。此外,在小鼠NMO模型中,從NMO患者獲得的血清IgG可導致補體依賴性細胞毒性(Saadoun等人, Brain, 133(Pt 2):349-61, 2010)。在NMO的小鼠模型中,抗C1q的單株抗體阻止星形細胞的補體介導的破壞和病變(Phuan等人, Acta Neuropathol, 125(6):829-40, 2013)。
補體替代途徑用於放大整體補體活性。Harboe及其同事(2004)表明了替代途徑的選擇性阻斷抑制80%以上的經典途徑誘導的膜攻擊複合物形成(Harboe等人, Clin Exp Immunol138(3):439-46, 2004)。Tüzün及其同事(2013)檢查了NMO患者的經典和替代途徑產物兩者(Tüzün E等人, J Neuroimmunol. 233(1-2): 211-5, 2011)。測定C4的分解產物C4d以評價經典途徑活性,其與對照組相比在NMO患者血清中增加(2.14倍的增加)。此外,相比於MS患者或正常對照個體,觀察到在NMO患者中替代途徑因子B的分解產物因子Bb增加(1.33倍的增加)。這表明,在NMO中替代途徑功能也增加。這種活化可以預期會提高整體補體活化,而且事實上,補體級聯的最終產物sC5b-9顯著增加(4.14倍增加)。
MASP-3的特異性抑制劑預期在治療患有NMO的患者中提供益處。如本文中所示,缺乏MASP-3的血清無法活化因子B或因子D,因子B是C5轉化酶的必需成分,因子D是替代途徑的中心活化劑。因此,用抑制劑例如抗體或小分子阻斷MASP-3活性也預期將抑制因子B和因子D的活化。抑制這兩個因子將阻止替代途徑的擴增,從而導致整體補體活性減小。因此在NMO中抑制MASP-3將顯著提高治療結果。
因此,LEA-1和/或LEA-2抑制劑預期在治療NMO中具有獨立的治療益處。此外,與單獨任一藥劑相比,LEA-1和LEA-2抑制劑一起使用可實現額外的治療益處,或者可以為更廣範圍的患者亞群提供有效的治療。合併的LEA-1和LEA-2抑制可以由LEA-1阻斷劑和LEA-2阻斷劑的共同施用來完成。最佳地,LEA-1和LEA-2抑制功能可以包含在單一的分子實體,例如包含MASP-1/3和MASP-2特異性結合位點的雙特異性抗體,或其中每個結合位點結合並阻斷MASP-1/3或MASP-2的雙重特異性抗體。
根據上述內容,本發明的一個方面因此提供了用於抑制LEA-1依賴性補體活化以治療、預防或減少NMO的嚴重程度的方法,所述方法包括向患有NMO或有風險發展NMO的物件施用一種組合物,所述組合物包含在藥物載體中的治療有效量的LEA-1抑制劑,其包含MASP-1抑制劑、MASP-3抑制劑或MASP-1/3抑制劑的組合。MASP‑1、MASP‑3或MASP‑1/3抑制性組合物可局部施用至眼,例如通過沖洗或以局部凝膠、藥膏或滴劑的形式施用該組合物,或通過玻璃體內施用。或者,MASP-1、MASP-3或MASP-1/3抑制劑可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或可能通過口服施用非肽能藥劑。施用可由醫師確定而重複進行,直到病況得到解決或控制。
在另一個方面,提供了用於抑制LEA-2依賴性補體活化以治療、預防或減少NMO的嚴重程度的方法,所述方法包括向患有NMO或有風險發展NMO的物件施用治療有效量的MASP-2抑制劑。在另一個方面,提供了包括抑制LEA-1和LEA-2依賴性補體活化兩者以治療或減少NMO的嚴重程度的方法,所述方法包括向患有NMO的物件施用治療有效量的MASP-2抑制劑和MASP-1、MASP-3或MASP-1/3抑制劑。
在一些實施方案中,所述方法包括抑制LEA-1依賴性補體活化和LEA-2依賴性補體活化兩者。如上詳述,在治療或預防或減少NMO的嚴重程度中,與單獨抑制LEA-1相比,採用各自阻斷LEA-1和LEA-2的藥理劑的組合預期提供改進的治療結果。這個結果可以實現,例如,通過具有LEA-1阻斷活性的抗體連同具有LEA-2-阻斷活性的抗體的共同施用。在一些實施方案中,LEA-1-和LEA-2-阻斷活性被組合成單一的分子實體,並且所述實體具有組合的LEA-1-和LEA-2-阻斷活性。這種實體可以包括雙特異性抗體或由其組成,其中一個抗原結合位點特異性識別MASP-1並阻斷LEA-1而第二抗原結合位點特異性識別MASP-2並阻斷LEA-2。或者,這樣的實體可由雙特異性單株抗體組成,其中一個抗原結合位點特異性識別MASP-3,因此阻斷LEA-1而第二抗原結合位點特異性識別MASP-2,並阻斷LEA-2。這樣的實體可最佳地由雙特異性單株抗體組成,其中一個抗原結合位點特異性地識別MASP-1和MASP-3兩者,因此阻斷LEA-1,而第二抗原結合位點特異性地識別MASP-2,並阻斷LEA-2。
MASP-2抑制劑可局部施用至眼,例如通過沖洗或以局部凝膠、藥膏或滴劑的形式施用該組合物,或通過玻璃體內注射。或者,MASP-2抑制劑可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或可能通過口服施用非肽能藥劑。施用可由醫師確定而重複進行,直到病況得到解決或控制。
本發明的MASP-3抑制性組合物和/或MASP-2抑制性組合物的施用可通過組合物的單次施用(例如,含有MASP-2和/或MASP-3抑制劑或雙特異性或雙重抑制劑的單一組合物,或共同施用分開的組合物),或通過有限順序的施用進行,用於在有此需要的物件中治療、預防或減少NMO的嚴重程度。或者,組合物可以以週期性的間隔,例如每日、每兩周、每週、每隔一周、每月或每兩月在長時間內施用以治療有此需要的物件。
如本文實施例11-21中所述,已經產生高親和力MASP-3抑制性抗體,其具有抑制AP相關疾病或病況例如視神經脊髓炎(NMO)中的替代途徑的治療效用。
因此,在一個實施方案中,本發明提供用於治療患有或有風險發展視神經脊髓炎(NMO)的物件的方法,其包括施用有效量的結合人MASP-3且抑制替代途徑補體活化的高親和力單株抗體或其抗原結合片段以治療視神經脊髓炎(NMO)或降低發展視神經脊髓炎(NMO)的風險,例如,其中所述抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。 N. MASP-3在貝切特氏病中的作用以及使用MASP-3抑制性抗體、任選組合MASP-2抑制劑的治療方法
貝切特氏病,或貝切特氏徵候群,是一種罕見的免疫介導的小血管系統性血管炎,往往呈現粘膜潰瘍和眼的問題。貝切特氏病(BD)是1937年以土耳其皮膚學家Hulusi Behçet命名的,Hulusi Behçet首次描述了復發性口腔潰瘍、生殖器潰瘍和葡萄膜炎的三重症狀聯合體。BD是一種原因不明的全身性、復發性炎性病症。BD的炎性血管周炎可涉及胃腸道、肺、肌肉骨骼、心血管和神經系統。由於破裂的血管動脈瘤或嚴重的神經系統併發症,BD可能是致命的。視神經病變和萎縮可起因於血管炎和供給視神經的血管閉塞。見Al-Araji A等人, Lancet Neurol., 8(2):192-204, 2009。
BD發病率最高的是中東和遠東地區,但它在歐洲和北美是罕見的。BD往往最初用皮質類固醇和免疫抑制劑控制,但很多病例是難治性的,伴隨嚴重發病率和死亡率。生物劑,包括干擾素-α、IVIG、抗TNF、抗IL-6和抗CD20,在一些病例中已顯示益處,但對最佳治療沒有達成共識。
儘管BD顯然是炎性病症,但其病理生物學尚不清楚。與HLA抗原有遺傳關聯,且基因組範圍的關聯研究已經牽連很多細胞因子基因(Kirino等人, Nat Genet, 45(2):202-7, 2013)。免疫系統的機能亢進似乎是由補體系統來調節。在BD患者血清中已觀察到增加的C3水準(Bardak和Aridoğan, Ocul Immunol Inflamm12(1):53-8, 2004),而腦脊液中升高的C3和C4與疾病相關(Jongen等人, Arch Neurol, 49(10):1075-8, 1992)。
Tüzün及其同事(2013)檢查了BD患者血清中經典和替代途徑產物兩者(Tüzün E等人, J Neuroimmunol, 233(1-2):211-5, 2011)。C4的分解產物4d在替代途徑上游產生,經測量以評價初始經典途徑的活性。與對照相比在BD患者血清中C4d增加(2.18倍的增加)。因子Bb是因子B的分解產物,經測定以確定替代途徑的活性。與正常對照個體相比,BD患者的因子Bb增加(2.19倍的增加),這與BD替代途徑功能提高是一致的。因為補體替代途徑用於放大整體補體活性,這種活化可以預期會提高整體的補體活化。Harboe及其同事(2004)表明了替代途徑的選擇性阻斷抑制了80%以上的經典途徑誘導的膜攻擊複合物形成(Harboe M等人, Clin Exp Immunol, 138(3):439-46, 2004)。事實上,補體級聯的最終產物SC5b-9在BD患者中顯著增加(5.46倍的增加)。MASP-3的特異性抑制劑應在BD中提供益處。阻斷MASP-3應抑制因子B和因子D的活化。這將終止替代途徑的放大,從而導致整體補體活性的反應減弱。因而MASP-3抑制應在BD中顯著改善治療結果。因此,LEA-1和/或LEA-2抑制劑預期在治療BD中具有獨立的治療益處。此外,與單獨任一藥劑相比,LEA-1和LEA-2抑制劑一起使用可實現額外的治療益處,或者可以為更廣範圍的患者亞群提供有效的治療。合併的LEA-1和LEA-2抑制可以由LEA-1阻斷劑和LEA-2阻斷劑的共同施用來完成。最佳地,LEA-1和LEA-2抑制功能可以包含在單一的分子實體,例如包含MASP-1/3和MASP-2特異性結合位點的雙特異性抗體,或其中每個結合位點結合並阻斷MASP-1/3或MASP-2的雙重特異性抗體。
根據上述內容,本發明的一個方面因此提供了用於抑制LEA-1依賴性補體活化以治療、預防或減少BD的嚴重程度的方法,所述方法包括向患有BD或有風險發展BD的物件施用一種組合物,所述組合物包含在藥物載體中的治療有效量的LEA-1抑制劑,其包含MASP-1抑制劑、MASP-3抑制劑或MASP-1/3抑制劑的組合。MASP‑1、MASP‑3或MASP‑1/3抑制性組合物可局部施用至眼,例如通過沖洗或以局部凝膠、藥膏或滴劑的形式施用該組合物,或通過玻璃體內施用。或者,MASP-1、MASP-3或MASP-1/3抑制劑可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或可能通過口服施用非肽能藥劑。施用可由醫師確定而重複進行,直到病況得到解決或控制。
在另一個方面,提供了用於抑制LEA-2依賴性補體活化以治療、預防或減少BD的嚴重程度的方法,所述方法包括向患有BD或有風險發展BD的物件施用治療有效量的MASP-2抑制劑。在另一個方面,提供了包括抑制LEA-1和LEA-2依賴性補體活化兩者以治療或減少BD的嚴重程度的方法,所述方法包括向患有BD的物件施用治療有效量的MASP-2抑制劑和MASP-1、MASP-3或MASP-1/3抑制劑。
在一些實施方案中,所述方法包括抑制LEA-1依賴性補體活化和LEA-2依賴性補體活化兩者。如上詳述,在治療或預防或減少BD的嚴重程度中,與單獨抑制LEA-1相比,採用各自阻斷LEA-1和LEA-2的藥理劑的組合預期提供改進的治療結果。這個結果可以實現,例如,通過具有LEA-1阻斷活性的抗體連同具有LEA-2-阻斷活性的抗體的共同施用。在一些實施方案中,LEA-1-和LEA-2-阻斷活性被組合成單一的分子實體,並且所述實體具有組合的LEA-1-和LEA-2-阻斷活性。這種實體可以包括雙特異性抗體或由其組成,其中一個抗原結合位點特異性識別MASP-1並阻斷LEA-1而第二抗原結合位點特異性識別MASP-2並阻斷LEA-2。或者,這樣的實體可由雙特異性單株抗體組成,其中一個抗原結合位點特異性識別MASP-3,因此阻斷LEA-1而第二抗原結合位點特異性識別MASP-2,並阻斷LEA-2。這樣的實體可最佳地由雙特異性單株抗體組成,其中一個抗原結合位點特異性地識別MASP-1和MASP-3兩者,因此阻斷LEA-1,而第二抗原結合位點特異性地識別MASP-2,並阻斷LEA-2。
MASP-2抑制劑可局部施用至眼,例如通過沖洗或以局部凝膠、藥膏或滴劑的形式施用該組合物,或通過玻璃體內注射。或者,MASP-2抑制劑可以全身性施用於物件,例如通過動脈內、靜脈內、肌肉內、吸入、經鼻、皮下或其他腸胃外施用,或可能通過口服施用非肽能藥劑。施用可由醫師確定而重複進行,直到病況得到解決或控制。
本發明的MASP-3抑制性組合物和/或MASP-2抑制性組合物的施用可通過組合物的單次施用(例如,含有MASP-2和/或MASP-3抑制劑或雙特異性或雙重抑制劑的單一組合物,或共同施用分開的組合物),或通過有限順序的施用進行,用於在有此需要的物件中治療、預防或減少BD的嚴重程度。或者,組合物可以以週期性的間隔,例如每日、每兩周、每週、每隔一周、每月或每兩月在長時間內施用以治療有此需要的物件。
如本文實施例11-21中所述,已經產生高親和力MASP-3抑制性抗體,其具有抑制AP相關疾病或病況例如貝切特氏病中的替代途徑的治療效用。
因此,在一個實施方案中,本發明提供用於治療患有或有風險發展貝切特氏病(BD)的物件的方法,其包括施用有效量的結合人MASP-3且抑制替代途徑補體活化的高親和力單株抗體或其抗原結合片段以治療貝切特氏病(BD)或降低發展貝切特氏病(BD)的風險,例如,其中所述抗體或其抗原結合片段包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。 MASP-3抑制劑
認識到補體的凝集素途徑由兩個主要的補體活化臂LEA-1和LEA-2組成,並且還存在不依賴於凝集素的補體活化臂,認識到非常期望特異性抑制這些效應子臂中的一種或多種,其引起與替代途徑補體活化相關的病理學,例如陣發性夜間血紅蛋白尿(PNH)、年齡相關性黃斑變性(AMD,包括濕性和乾性AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病(包括溶血性尿毒癥徵候群(HUS)、非典型溶血性尿毒癥徵候群(aHUS)、血栓性血小板減少性紫癜(TTP)或移植相關的TMA)、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎、貝切特氏病、多發性硬化症、格林巴厘徵候群、阿茲海默氏病、肌萎縮性側索硬化症(ALS)、狼瘡性腎炎、系統性紅斑狼瘡(SLE)、糖尿病性視網膜病變、葡萄膜炎、慢性阻塞性肺病(COPD)、C3腎小球病、移植排斥反應、移植物抗宿主病(GVHD)、血液透析、敗血症、系統性炎性反應徵候群(SIRS)、急性呼吸窘迫徵候群(ARDS)、ANCA血管炎、抗磷脂徵候群、動脈粥樣硬化、IgA腎病和重症肌無力中的一種或多種,而不完全關閉補體的免疫防禦能力(即,使經典途徑完整)。這將留下完整的C1q-依賴性補體活化系統,以進行免疫複合物的加工和有助於針對感染的宿主防禦。 抑制LEA-1-介導的補體活化的組合物
如本文所述,本發明人已經意外地發現導致細胞裂解的LEA-1的活化是MASP-3-依賴性的。正如本文進一步所述,在生理條件下,MASP-3-依賴性LEA-1活化還促進調理作用,從而提供具有LEA-2-介導的補體活化的附加效應。正如本文所示,在Ca ++存在時,不需要因子D,因為MASP-3在因子D -/-血清中可以驅動LEA-1活化。MASP-3、MASP-1和HTRA-1能夠將前因子D轉化為活性因子D。同樣,MASP-3活化在許多情況下看來依賴於MASP-1,因為MASP-3 (與MASP-1和MASP-2相反)不是自我活化酶並且在沒有MASP-1的幫助下不能轉化為其活性形式(Zundel, S.等人, J.Immunol.172: 4342-4350 (2004);Megyeri等人, J. Biol. Chem. 288:8922–8934 (2013)。因為MASP-3不是自我活化的,並且在許多情況下需要MASP-1活性以轉化為其酶促活性形式,所以替代途徑C3轉化酶C3Bb的MASP-3-介導的活化可以通過靶向MASP-3酶原或已被活化的MASP-3而被抑制,或通過靶向MASP-3的MASP-1-介導的活化而被抑制,或通過以上兩者而被抑制,因為在許多情況下,在MASP-1功能活性不存在時,MASP-3保持其酶原形式,不能通過直接形成替代途徑C3轉化酶(C3bBb)而驅動LEA-1。
因此,在本發明的一個方面,在特異性地抑制LEA-1的治療劑的開發中作為目標的優選蛋白成分是MASP-3的抑制劑(包括MASP-1-介導的MASP-3活化的抑制劑(例如抑制MASP-3活化的MASP-1抑制劑))。
根據前述內容,一個方面,本發明提供在患有或有風險發展選自陣發性夜間血紅蛋白尿(PNH)、年齡相關性黃斑變性(AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病(包括溶血性尿毒癥徵候群(HUS),非典型溶血性尿毒癥徵候群(aHUS)和血栓性血小板減少性紫癜(TTP))、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎、貝切特氏病、多發性硬化症、格林巴厘徵候群、阿茲海默氏病、肌萎縮性側索硬化症(ALS)、狼瘡性腎炎、系統性紅斑狼瘡(SLE)、糖尿病性視網膜病變、葡萄膜炎、慢性阻塞性肺病(COPD)、C3腎小球病、移植排斥反應、移植物抗宿主病(GVHD)、血液透析、敗血症、系統性炎性反應徵候群(SIRS)、急性呼吸窘迫徵候群(ARDS)、ANCA血管炎、抗磷脂徵候群、動脈粥樣硬化、IgA腎病和重症肌無力的疾病或病症的對象中通過施用MASP-3抑制劑、例如MASP-3抑制性抗體來抑制LEA-1的不良反應(即溶血和調理作用)的方法,其包括向所述物件施用藥物組合物,所述藥物組合物包含有效抑制MASP-3-依賴性補體活化的一定量的MASP-3抑制劑和藥學上可接受的載體。
在患有或有風險發展選自陣發性夜間血紅蛋白尿(PNH)、年齡相關性黃斑變性(AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病(包括溶血性尿毒癥徵候群(HUS),非典型溶血性尿毒癥徵候群(aHUS)和血栓性血小板減少性紫癜(TTP))、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎、貝切特氏病、多發性硬化症、格林巴厘徵候群、阿茲海默氏病、肌萎縮性側索硬化症(ALS)、狼瘡性腎炎、系統性紅斑狼瘡(SLE)、糖尿病性視網膜病變、葡萄膜炎、慢性阻塞性肺病(COPD)、C3腎小球病、移植排斥反應、移植物抗宿主病(GVHD)、血液透析、敗血症、系統性炎性反應徵候群(SIRS)、急性呼吸窘迫徵候群(ARDS)、ANCA血管炎、抗磷脂徵候群、動脈粥樣硬化、IgA腎病和重症肌無力的疾病或病症的活物件中以有效抑制MASP-3-依賴性補體活化的量施用MASP-3抑制劑。在本發明該方面的實踐中,代表性的MASP-3抑制劑包括:抑制MASP-3生物活性的分子,包括抑制以下至少一項或多項的分子:因子B的凝集素MASP-3-依賴性活化,前因子D的凝集素MASP-3-依賴性活化,因子B的MASP-3-依賴性的、凝集素-非依賴性活化,和前因子D的MASP-3-依賴性的、凝集素-非依賴性活化(例如小分子抑制劑、MASP-3抗體及其片段或與MASP-3相互作用或干擾蛋白-蛋白相互作用的阻斷肽);和降低MASP-3表達的分子(例如MASP-3反義核酸分子、MASP-3特異性RNAi分子和MASP-3核酶)。MASP-3抑制劑可以有效地阻斷MASP-3蛋白與蛋白的相互作用,干擾MASP-3二聚化或裝配,阻斷Ca ++結合,干擾MASP-3絲胺酸蛋白酶活性位點,或降低MASP-3蛋白表達,從而阻止MASP-3免於活化LEA-1-介導的補體活化或凝集素-非依賴性的補體活化。MASP-3抑制劑可以單獨用作主要治療,或作為輔助治療與其他治療劑聯用以增強其他藥物治療的治療益處,如本文進一步所述。 高親和力單殖株MASP-3抑制性抗體
如本文實施例11-21中所述且在下面表2A、2B和表3中概述,本發明人已經產生令人驚訝高親和力(即≤500pM)MASP-3抑制性抗體,其結合人MASP-3的絲胺酸蛋白酶結構域中的表位元。如本文所述,本發明人已經表明,這些高親和力MASP-3抗體能夠抑制人血清、齧齒動物和非人靈長類動物中的替代途徑補體活化。這些抗體的可變輕鏈和重鏈區已經以Fab格式和全長IgG格式進行測序、分離和分析。如實施例15中所述且圖50A和50B中所示的樹狀圖中所示,可以根據序列相似性將抗體分組。這些抗體的重鏈可變區和輕鏈可變區的概述顯示於圖49A和49B中且提供於下面表2A和2B中。代表性高親和力MASP-3抑制性抗體的人源化形式如實施例19中所述產生,並且概述於表3中。 表2A:MASP-3高親和力抑制抗體序列:小鼠親本
MASP-3抗體參考號 重鏈可變區 (胺基酸) 輕鏈可變區 (胺基酸) 重鏈可變區 (DNA) 輕鏈可變區 (DNA)
4D5 IA SIN:24 SIN:40 SIN:217 SIN:233
1F3 IA SIN:25 SIN:41 SIN:218 SIN:234
4B6 IA SIN:26 SIN:42 SIN:219 SIN:235
1A10 IA SIN:27 SIN:42 SIN:220 SIN:235
10D12 IB SIN:28 SIN:43 SIN:221 SIN:236
35C1 IB SIN:29 SIN:44 SIN:222 SIN:237
13B1 IC SIN:30 SIN:45 SIN:223 SIN:238
1G4 II SIN:31 SIN:46 SIN:224 SIN:239
1E7 IIIA SIN:32 SIN:47 SIN:225 SIN:240
2D7 IIIA SIN:33 SIN:48 SIN:226 SIN:241
49C11 IIIA SIN:34 SIN:49 SIN:227 SIN:242
15D9 IIIB SIN:35 SIN:50 SIN:228 SIN:243
2F5 IIIB SIN:36 SIN:51 SIN:229 SIN:244
1B11 IIIC SIN:37 SIN:52 SIN:230 SIN:245
2F2 IIID SIN:38 SIN:53 SIN:231 SIN:246
11B6 IIID SIN:39 SIN:54 SIN:232 SIN:247
注:“SIN”是指“SEQ ID NO: ” 表2B:MASP-3高親和力抑制性抗體:CDR
MASP-3抗體參考號 重鏈可變區 (胺基酸) 輕鏈可變區 (胺基酸) 重鏈: CDR1; CDR2; CDR3 (SEQ ID NOs) 輕鏈: CDR1; CDR2; CDR3 (SEQ ID NOs)
4D5 SIN:24 SIN:40 56;58;60 142;144;146
1F3 SIN:25 SIN:41 62;63;65 149;144;146
4B6 SIN:26 SIN:42 62;67;65 149;144;146
1A10 SIN:27 SIN:42 62;69;65 149;144;146
10D12 SIN:28 SIN:43 72;74;76 153;155;157
35C1 SIN:29 SIN:44 79;74;82 159;155;160
13B1 SIN:30 SIN:45 84;86;88 142;144;161
1G4 SIN:31 SIN:46 91;93;95 163;165;167
1E7 SIN:32 SIN:47 109;110;112 182;184;186
2D7 SIN:33 SIN:48 125;127;129 196;198;200
49C11 SIN:34 SIN:49 132;133;135 203;165;204
15D9 SIN:35 SIN:50 137;138;140 206;207;208
2F5 SIN:36 SIN:51 98;99;101 169;171;173
1B11 SIN:37 SIN:52 103;105;107 176;178;180
2F2 SIN:38 SIN:53 114;116;118 188;178;190
11B6 SIN:39 SIN:54 114;121;123 191;178;193
表3:代表性高親和力MASP-3抑制性抗體:人源化和修飾以去除翻譯後修飾位點
MASP-3抗體參考號 重鏈可變區aa (SEQ ID NO) 輕鏈可變區aa (SEQ ID NO) 重鏈: CDR1; CDR2; CDR3 (SEQ ID NOs) 輕鏈: CDR1; CDR2; CDR3 (SEQ ID NOs)
4D5親本 24 40 56;58;60 142;144;146
h4D5-14-1 248 250 56;58;60 142;144;146
h4D5-19-1 249 250 56;58;60 142;144;146
h4D5-14-1-NA 248 278 56;58;60 258;144;146
h4D5-19-1-NA 249 278 56;58;60 258;144;146
              
10D12親本 28 43 72;74;76 153;155;157
h10D12-45-21 251 253 72;74;76 153;155;157
h10D12-49-21 252 253 72;74;76 153;155;157
h10D12-45-21-GA 251 279 72;74;76 263;155;157
h10D12-49-21-GA 252 279 72;74;76 263;155;157
              
13B1親本 30 45 84;86;88 142;144;161
h13B1-9-1 254 256 84;275;88 142;144;161
h13B1-10-1 255 256 84;86;88 142;144;161
h13B1-9-1-NA 254 280 84;275;88 258;144;161
h13B1-10-1-NA 255 280 84;86;88 258;144;161
因此,在一個方面,本發明提供分離的單株抗體或抗原結合片段,其以高親和力(具有小於500pM的K D)特異性結合人MASP-3的絲胺酸蛋白酶結構域(SEQ ID NO: 2的胺基酸殘基450至728),其中所述抗體或其抗原結合片段抑制替代途徑補體活化。在一些實施方案中,高親和力MASP-3抑制性抗體或其抗原結合片段在哺乳動物物件中以約1:1至約2.5:1靶標 MASP-3與mAb的摩爾比抑制替代途徑。
替代途徑補體活化的抑制的特徵在於作為根據本發明的多種方法施用高親和力MASP-3抑制性抗體的結果而發生的補體系統的成分的以下變化中的至少一項或多項:溶血和/或調理作用的抑制;因子B的凝集素-非依賴性轉化的抑制;因子D的凝集素-非依賴性轉化的抑制;MASP-3絲胺酸蛋白酶底物-特異性切割的抑制;溶血的減少;溶血的減少或C3切割和C3b表面沉積的減少;在活化表面上的因子B和Bb沉積的減少;相對於前因子D降低活性因子D的靜息水準(在循環中並且沒有實驗性添加活化表面);回應於活化表面降低相對於前因子D的活性因子D的水準;和/或流體相Ba、Bb、C3b或C3a的靜息和表面誘導水準的產生。
例如,如本文所述,高親和力MASP-3抑制性抗體是在哺乳動物物件中能夠抑制因子D成熟(即因子D切割為因子D)的抗體或其抗原結合片段。在一些實施方案中,所述高親和力MASP-3抑制性抗體能夠將全血清中的因子D成熟抑制至小於未處理的對照血清中發現的50%(例如小於40%,例如小於30%,例如小於25%,例如小於20%,例如小於15%,例如小於10%,例如小於5%未與MASP-3抑制性抗體接觸的未處理對照血清)的水準。
在優選實施方案中,所述高親和力MASP-3抑制性抗體選擇性地抑制替代途徑,使C1q依賴性補體活化系統功能完整。
在另一個方面,本公開的特徵在於編碼本文公開的任何MASP-3抑制性抗體或抗原結合片段的重鏈和輕鏈多肽中的一種或多種的核酸分子。還特徵在於包含核酸的載體(例如,選殖或表達載體)和包含所述載體的細胞(例如,昆蟲細胞、細菌細胞、真菌細胞或哺乳動物細胞)。本公開進一步提供用於產生本文公開的任何MASP-3抑制性抗體或抗原結合片段的方法。所述方法包括提供含有表達載體的細胞,所述表達載體含有編碼本文公開的任何抗體或抗原結合片段的重鏈和輕鏈多肽中的一種或多種的核酸。在足以允許細胞(或細胞培養物)表達由核酸編碼的抗體或其抗原結合片段的條件和時間下培養細胞或細胞的培養物。所述方法還可以包括從細胞(或細胞的培養物)或其中培養一個或多個細胞的培養基中分離抗體或其抗原結合片段。 MASP-3表位和肽
如實施例18中所述、圖62中所說明和下表4中所概述,發現根據本發明的高親和力MASP-3抑制性抗體及其抗原結合片段特異性識別人MASP-3的絲胺酸蛋白酶結構域(SEQ ID NO: 2的胺基酸殘基450至728)內的一個或多個表位。“特異性識別”意味著抗體以比任何其他分子或其部分顯著更高的親和力結合所述表位。 表4:代表性高親和力MASP-3抑制性抗體:MASP-3的表位結合區(還參見圖62)
參考人MASP-3的肽結合片段(表位)(w/前導區) MASP-3 mAb參考號
498VLRSQRRDTTVI 509   (SIN:9)    1F3, 4B6, 4D5, 1A10, 10D12,
494TAAHVLRSQRRDTTV 508  (SIN:10) 13B1
544DFNIQNYNHDIALVQ 558  (SIN:11) 1F3, 4B6, 4D5, 1A10
626PHAECKTSYESRS 638  (SIN:12)    13B1
639GNYSVTENMFC 649  (SIN:13)    1F3, 4B6, 4D5, 1A10
704VSNYVDWVWE 713  (SIN:14) 1F3, 4B6, 4D5, 1A10
498VLRSQRRDTTV 508  (SIN:15) Core sequence of Group I 1F3, 4B6, 4D5, 1A10, 10D12, 13B1
435ECGQPSRSLPSLV 447 (SIN:16) 1B11
454RNAEPGLFPWQ 464(SIN:17) Core sequence of Groups II和III 1G4, 1E7, 2D7, 15D9, 2F5, 1B11
479KWFGSGALLSASWIL 493 (SIN 18) 15D9, 2F5
514EHVTVYLGLH 523  (SIN:19) 1E7, 2D7, 1G4
562PVPLGPHVMP 571  (SIN:20) 15D9, 2F5
583APHMLGL 589  (SIN:21) 1B11
614SDVLQYVKLP 623  (SIN:22) 1B11
667AFVIFDDLSQRW 678  (SIN:23)    1G4, 1E7, 2D7, 15D9, 2F5
因此,在一些實施方案中,所述高親和力MASP-3抑制性抗體或其抗原結合片段特異性結合位於人MASP-3的絲胺酸蛋白酶結構域內的表位元,其中所述表位位於以下中的至少一種或多種內:VLRSQRRDTTVI (SEQ ID NO: 9)、TAAHVLRSQRRDTTV(SEQ ID NO: 10)、DFNIQNYNHDIALVQ(SEQ ID NO: 11)、PHAECKTSYESRS (SEQ ID NO: 12)、GNYSVTENMFC (SEQ ID NO: 13)、VSNYVDWVWE (SEQ ID NO: 14)和/或VLRSQRRDTTV (SEQ ID NO: 15)。在一些實施方案中,所述抗體或其抗原結合片段結合SEQ ID NO: 15內的表位。在一些實施方案中,所述抗體或抗原結合片段結合SEQ ID NO: 9內的表位。在一些實施方案中,所述抗體或其抗原結合片段結合SEQ ID NO: 10內的表位。在一些實施方案中,所述抗體或其抗原結合片段結合SEQ ID NO: 12內的表位。在一些實施方案中,所述抗體或其抗原結合片段結合SEQ ID NO: 10和SEQ ID NO: 12內的表位。在一些實施方案中,所述抗體或其抗原結合片段結合SEQ ID NO: 11、SEQ ID NO: 13和/或SEQ ID NO: 14中的至少一種內的表位。
在其他實施方案中,所述高親和力MASP-3抑制性抗體或其抗原結合片段特異性結合位於人MASP-3的絲胺酸蛋白酶結構域內的表位元,其中所述表位位於以下中的至少一種或多種內:ECGQPSRSLPSLV (SEQ ID NO: 16),RNAEPGLFPWQ(SEQ ID NO: 17);KWFGSGALLSASWIL(SEQ ID NO: 18);EHVTVYLGLH (SEQ ID NO: 19);PVPLGPHVMP (SEQ ID NO: 20);APHMLGL (SEQ ID NO: 21);SDVLQYVKLP (SEQ ID NO: 22);和/或AFVIFDDLSQRW(SEQ ID NO: 23)。在一個實施方案中,所述抗體或抗原結合片段結合SEQ ID NO: 17內的表位。在一個實施方案中,所述抗體或抗原結合片段結合EHVTVYLGLH (SEQ ID NO: 19)和/或AFVIFDDLSQRW(SEQ ID NO: 23)內的表位。在一個實施方案中,所述抗體或抗原結合片段結合SEQ ID NO: 18、SEQ ID NO: 20和/或SEQ ID NO: 23內的表位。在一個實施方案中,所述抗體或抗原結合片段結合SEQ ID NO: 16、SEQ ID NO: 21和/或SEQ ID NO: 22中的至少一種內的表位。 CDR區域:
在本發明的一個方面,所述抗體或其功能等效物包含特定高變區,被稱為CDR。優選地,CDR是根據Kabat CDR定義的CDR。CDR或高變區可以例如通過與其他抗體的序列比對來鑒定。高親和力MASP-3抑制性抗體的CDR區域顯示於表18-23中。 組IA mAb
在一個方面,本發明提供結合MASP-3的分離的抗體或其抗原結合片段,其包含:(a)重鏈可變區,其包含如SEQ ID NO: 209 (XXDIN,其中位置1的X是S或T,且其中位置2的X是N或D)所示的HC-CDR1;如SEQ ID NO: 210 (WIYPRDXXXKYNXXFXD,其中位置7的X是G或D;位置8的X是S、T或R;位置9的X是I或T;位置13的X是E或D;位置14的X是K或E;位置16的X是T或K)所示的HC-CDR2;和如SEQ ID NO: 211 (XEDXY,其中位置1的X是L或V,且其中位置4的X是T或S)所示的HC-CDR3;和(b)輕鏈可變區,其包含如SEQ ID NO: 212 (KSSQSLLXXRTRKNYLX,其中位置8的X是N、I、Q或A;其中位置9的X是S或T;且其中位置17的X是A或S)所示的LC-CDR1;如SEQ ID NO: 144 (WASTRES)所示的LC-CDR2和如SEQ ID NO: 146 (KQSYNLYT)所示的LC-CDR3。在一個實施方案中,根據(a)的重鏈可變區的HC-CDR1包含SEQ ID NO: 56 (TDDIN)。在一個實施方案中,根據(a)的重鏈可變區的HC-CDR1包含SEQ ID NO: 62 (SNDIN)。在一個實施方案中,根據(a)的重鏈可變區的HC-CDR2包含SEQ ID NO: 58 (WIYPRDDRTKYNDKFKD)。在一個實施方案中,根據(a)的重鏈可變區的HC-CDR2包含SEQ ID NO: 63 (WIYPRDGSIKYNEKFTD)。在一個實施方案中,根據(a)的重鏈可變區的HC-CDR2包含SEQ ID NO: 67 (WIYPRDGTTKYNEEFTD)。在一個實施方案中,根據(a)的重鏈可變區的HC-CDR2包含SEQ ID NO: 69 (WIYPRDGTTKYNEKFTD)。在一個實施方案中,根據(a)的重鏈可變區的HC-CDR3包含SEQ ID NO: 60 (LEDTY)。在一個實施方案中,根據(a)的重鏈可變區的HC-CDR3包含SEQ ID NO: 65 (VEDSY)。在一個實施方案中,輕鏈可變區的LC-CDR1包含SEQ ID NO: 142 (KSSQSLLNSRTRKNYLA);SEQ ID NO: 257 (KSSQSLL QSRTRKNYLA);SEQ ID NO: 258 (KSSQSLL ASRTRKNYLA);或SEQ ID NO: 259 (KSSQSLL NTRTRKNYLA)。在一個實施方案中,LC-CDR1包含SEQ ID NO: 258 (KSSQSLL ASRTRKNYLA)。在一個實施方案中,LC-CDR1包含SEQ ID NO: 149 (KSSQSLLISRTRKNYLS)。
在一個實施方案中,the HC-CDR1包含SEQ ID NO: 56,HC-CDR2包含SEQ ID NO: 58,HC-CDR3包含SEQ ID NO: 60且LC-CDR1包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259;LC-CDR2包含SEQ ID NO: 144且LC-CDR3包含SEQ ID NO: 146。
在一個實施方案中,HC-CDR1包含SEQ ID NO: 62,HC-CDR2包含SEQ ID NO: 63、SEQ ID NO: 67或SEQ ID NO: 69,HC-CDR3包含SEQ ID NO: 65且LC-CDR1包含SEQ ID NO: 149,LC-CDR2包含SEQ ID NO: 144且LC-CDR3包含SEQ ID NO: 146。 組IB mAb
在另一個方面,本發明提供結合MASP-3的分離的抗體或其抗原結合片段,其包含:(a)重鏈可變區,其包含如SEQ ID NO: 213 (SYGXX,其中位置4的X是M或I,且其中位置5的X是S或T)所示的HC-CDR1;如SEQ ID NO: 74所示的HC-CDR2;和如SEQ ID NO: 214 (GGXAXDY,其中位置3的X是E或D,且其中位置5的X是M或L)所示的HC-CDR3;和(b)輕鏈可變區,其包含如SEQ ID NO: 215 (KSSQSLLDSXXKTYLX,其中位置10的X是D、E或A;其中位置11的X是G或A;且其中位置16的X是N或S)所示的LC-CDR1;如SEQ ID NO: 155所示的LC-CDR2;和如SEQ ID NO: 216  (WQGTHFPXT,其中位置8的X是W或Y)所示的LC-CDR3。
在一個實施方案中,根據(a)的重鏈可變區的HC-CDR1包含SEQ ID NO: 72 (SYGMS)。在一個實施方案中,HC-CDR1包含SEQ ID NO: 79 (SYGIT)。在一個實施方案中,HC-CDR3包含SEQ ID NO: 76 (GGEAMDY)。在一個實施方案中,HC-CDR3包含SEQ ID NO: 82 (GGDALDY)。在一個實施方案中,LC-CDR1包含SEQ ID NO: 153 (KSSQSLLDSDGKTYLN);SEQ ID NO: 261 (KSSQSLLDSEGKTYLN)、SEQ ID NO: 262 (KSSQSLLDSAGKTYLN)或SEQ ID NO: 263 (KSSQSLLDSDAKTYLN)。在一個實施方案中,LC-CDR1包含SEQ ID NO: 263 (KSSQSLLDSDAKTYLN)。在一個實施方案中,LC-CDR1包含SEQ ID NO: 152。在一個實施方案中,LC-CDR3包含SEQ ID NO: 159 (KSSQSLLDSDGKTYLS)。
在一個實施方案中,LC-CDR3包含SEQ ID NO: 160 (WQGTHFPYT)。在一個實施方案中,HC-CDR1包含SEQ ID NO: 72,HC-CDR2包含SEQ ID NO: 74,HC-CDR3包含SEQ ID NO: 76且LC-CDR1包含SEQ ID NO: 153、SEQ ID NO: 261、SEQ ID NO: 262或SEQ ID NO: 263;LC-CDR2包含SEQ ID NO: 155且LC-CDR3包含SEQ ID NO: 157。
在一個實施方案中,HC-CDR包含SEQ ID NO: 72,HC-CDR2包含SEQ ID NO: 74,HC-CDR3包含SEQ ID NO: 76且LC-CDR1包含SEQ ID NO: 153或SEQ ID NO: 263,LC-CDR2包含SEQ ID NO: 155且LC-CDR3包含SEQ ID NO: 157。
在一個實施方案中,HC-CDR1包含SEQ ID NO: 79,HC-CDR2包含SEQ ID NO: 74,HC-CDR3包含SEQ ID NO: 82且LC-CDR1包含SEQ ID NO: 159,LC-CDR2包含SEQ ID NO: 155且LC-CDR3包含SEQ ID NO: 160。 組IC mAb
在一個方面,本發明提供結合MASP-3的分離的抗體或其抗原結合片段,其包含(a)重鏈可變區,其包含如SEQ ID NO: 84 (GKWIE)所示的HC-CDR1;如SEQ ID NO: 86 (EILPGTGSTNYNEKFKG)或SEQ ID NO: 275 (EILPGTGSTNYAQKFQG)所示的HC-CDR2;和如SEQ ID NO: 88 (SEDV)所示的HC-CDR3;和(b)輕鏈可變區,其包含如SEQ ID NO: 142 (KSSQSLLNSRTRKNYLA)、SEQ ID NO: 257 (KSSQSLLQSRTRKNYLA);SEQ ID NO: 258 (KSSQSLLASRTRKNYLA);或SEQ ID NO: 259 (KSSQSLLNTRTRKNYLA)所示的LC-CDR1,如SEQ ID NO: 144 ( WASTRES)所示的LC-CDR2;和如SEQ ID NO: 161 (KQSYNIPT)所示的LC-CDR3。在一個實施方案中,LC-CDR1包含SEQ ID NO: 258。 組II mAb
在一個方面,本發明提供結合MASP-3的分離的抗體或其抗原結合片段,其包含:(a)重鏈可變區,其包含如SEQ ID NO: 91 (GYWIE)所示的HC-CDR1;如SEQ ID NO: 93 (EMLPGSGSTHYNEKFKG)所示的HC-CDR2,和如SEQ ID NO: 95 (SIDY)所示的HC-CDR3;和(b)輕鏈可變區,其包含如SEQ ID NO: 163 (RSSQSLVQSNGNTYLH)所示的LC-CDR1,如SEQ ID NO: 165 (KVSNRFS)所示的LC-CDR2和如SEQ ID NO: 167 (SQSTHVPPT)所示的LC-CDR3。 組III mAb
在另一個方面,本發明提供結合MASP-3的分離的抗體或其抗原結合片段,其包含:(a)重鏈可變區,其包含如SEQ ID NO: 109 (RVHFAIRDTNYWMQ)所示的HC-CDR1;如SEQ ID NO: 110 (AIYPGNGDTSYNQKFKG)所示的HC-CDR2;如SEQ ID NO: 112 (GSHYFDY)所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 182 (RASQSIGTSIH)所示的LC-CDR1,如SEQ ID NO: 184 (YASESIS)所示的LC-CDR2和如SEQ ID NO: 186 (QQSNSWPYT)所示的LC-CDR3;或 (b)重鏈可變區,其包含如SEQ ID NO: 125 (DYYMN)所示的HC-CDR1,如SEQ ID NO: 127 (DVNPNNDGTTYNQKFKG)所示的HC-CDR2;如SEQ ID NO: 129 (CPFYYLGKGTHFDY)所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 196 (RASQDISNFLN)所示的LC-CDR1,如SEQ ID NO: 198 (YTSRLHS)所示的LC-CDR2和如SEQ ID NO: 200 (QQGFTLPWT)所示的LC-CDR3;或 (c)重鏈可變區,其包含如SEQ ID NO: 137所示的HC-CDR1,如SEQ ID NO: 138所示的HC-CDR2,如SEQ ID NO: 140所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 206所示的LC-CDR1,如SEQ ID NO: 207所示的LC-CDR2,和如SEQ ID NO: 208所示的LC-CDR3;或 (d)重鏈可變區,其包含如SEQ ID NO: 98所示的HC-CDR1,如SEQ ID NO: 99所示的HC-CDR2,如SEQ ID NO: 101所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 169所示的LC-CDR1,如SEQ ID NO: 171所示的LC-CDR2,和如SEQ ID NO: 173所示的LC-CDR3;或 (e)重鏈可變區,其包含如SEQ ID NO: 103所示的HC-CDR1,如SEQ ID NO: 105所示的HC-CDR2,如SEQ ID NO: 107所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 176所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 193所示的LC-CDR3;或 (f)重鏈可變區,其包含如SEQ ID NO: 114所示的HC-CDR1,如SEQ ID NO: 116所示的HC-CDR2,如SEQ ID NO: 118所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 188所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 190所示的LC-CDR3;或 (g)重鏈可變區,其包含如SEQ ID NO: 114所示的HC-CDR1,如SEQ ID NO: 121所示的HC-CDR2,如SEQ ID NO: 123所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 191所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 193所示的LC-CDR3;或 (h)重鏈可變區,其包含如SEQ ID NO: 132所示的HC-CDR1,如SEQ ID NO: 133所示的HC-CDR2,如SEQ ID NO: 135所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 203所示的LC-CDR1,如SEQ ID NO: 165所示的LC-CDR2,和如SEQ ID NO: 204所示的LC-CDR3。 重鏈和輕鏈可變區
在一個實施方案中,本發明提供高親和力MASP-3抑制性抗體,其包含重鏈可變區,所述重鏈可變區包含與SEQ ID NO: 24-39、248-249、251-252、254-255中任一者具有至少80%、85%、90%、95%、98%、99%同一性的序列或由其組成,或者其中所述抗體包含重鏈可變區,所述重鏈可變區包含SEQ ID NO: 24、SEQ ID NO: 25、SEQ ID NO: 26、SEQ ID NO: 27、SEQ ID NO: 28、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 31、SEQ ID NO: 32、SEQ ID NO: 33、SEQ ID NO: 34、SEQ ID NO: 35、SEQ ID NO: 36、SEQ ID NO: 37、SEQ ID NO: 38、SEQ ID NO: 39、SEQ ID NO: 248、SEQ ID NO: 249、SEQ ID  NO:251、SEQ ID NO: 252、SEQ ID NO: 254或SEQ ID NO: 255。
在一個實施方案中,本發明提供高親和力MASP-3抑制性抗體,其包含輕鏈可變區,所述輕鏈可變區包含與SEQ ID NO: 40-54、250、253、256、278、279或280中任一者具有至少80%、85%、90%、95%、98%、99%同一性的序列或由其組成,或者其中所述抗體包含輕鏈可變區,所述輕鏈可變區包含SEQ ID NO: 40、SEQ ID NO: 41、SEQ ID NO: 42、SEQ ID NO: 43、SEQ ID NO: 44、SEQ ID NO: 45、SEQ ID NO: 46、SEQ ID NO: 47、SEQ ID NO: 48、SEQ ID NO: 49、SEQ ID NO: 50、SEQ ID NO: 51、SEQ ID NO: 52、SEQ ID NO: 53、SEQ ID NO: 54、SEQ ID NO: 250、SEQ ID NO: 253、SEQ ID NO: 256、SEQ ID NO: 278、SEQ ID NO: 279或SEQ ID NO: 280。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 24、SEQ ID NO: 248或SEQ ID NO: 249的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 40、SEQ ID NO: 250或SEQ ID NO: 278的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 25的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 41的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 26的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 42的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 27的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 42的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 28、SEQ ID NO: 251或SEQ ID NO: 252的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 43、SEQ ID NO: 253或SEQ ID NO: 279的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 29的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 44的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 30、SEQ ID NO: 254或SEQ ID NO: 255的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 45、SEQ ID NO: 256或SEQ ID NO: 280的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 31的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 46的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 32的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 47的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 33的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 48的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 34的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 49的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 35的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 50的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 36的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 51的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 37的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 52的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 38的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 53的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
在一個實施方案中,MASP-3單株抗體含有包含與SEQ ID NO: 39的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 54的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。 高親和力MASP-3抗體的交叉競爭
如本文所述,本文公開的高親和力MASP-3抑制性抗體識別MASP-3的絲胺酸蛋白酶結構域內的重疊表位。如實施例18中所述,圖61A-E和62-67中所示,且表4和28中所概述,交叉競爭分析和pepscan結合分析顯示高親和力MASP-3抑制性抗體交叉競爭和結合位於MASP-3絲胺酸蛋白酶結構域內的共同表位。因此,在一個實施方案中,本發明提供高親和力MASP-3抑制性抗體,其特異性識別人MASP-3的絲胺酸蛋白酶結構域內的一個或多個表位元或其部分,其被選自以下的一種或多種所識別: 包含如SEQ ID NO: 24所示的重鏈可變區和如SEQ ID NO: 40所示的輕鏈可變區的單株抗體; 包含如SEQ ID NO: 25所示的重鏈可變區和如SEQ ID NO: 41所示的輕鏈可變區的單株抗體; 包含如SEQ ID NO: 26所示的重鏈可變區和如SEQ ID NO: 42所示的輕鏈可變區的單株抗體; 包含如SEQ ID NO: 27所示的重鏈可變區和如SEQ ID NO: 42所示的輕鏈可變區的單株抗體; 包含如SEQ ID NO: 28所示的重鏈可變區和如SEQ ID NO: 43所示的輕鏈可變區的單株抗體; 包含如SEQ ID NO: 29所示的重鏈可變區和如SEQ ID NO: 44所示的輕鏈可變區的單株抗體; 包含如SEQ ID NO: 30所示的重鏈可變區和如SEQ ID NO: 45所示的輕鏈可變區的單株抗體; 包含如SEQ ID NO: 31所示的重鏈可變區和如SEQ ID NO: 46所示的輕鏈可變區的單株抗體; 包含如SEQ ID NO: 32所示的重鏈可變區和如SEQ ID NO: 47所示的輕鏈可變區的單株抗體; 包含如SEQ ID NO: 33所示的重鏈可變區和如SEQ ID NO: 48所示的輕鏈可變區的單株抗體; 包含如SEQ ID NO: 34所示的重鏈可變區和如SEQ ID NO: 49所示的輕鏈可變區的單株抗體; 包含如SEQ ID NO: 35所示的重鏈可變區和如SEQ ID NO: 50所示的輕鏈可變區的單株抗體; 包含如SEQ ID NO: 36所示的重鏈可變區和如SEQ ID NO: 51所示的輕鏈可變區的單株抗體; 包含如SEQ ID NO: 37所示的重鏈可變區和如SEQ ID NO: 52所示的輕鏈可變區的單株抗體; 包含如SEQ ID NO: 38所示的重鏈可變區和如SEQ ID NO: 53所示的輕鏈可變區的單株抗體;和 包含如SEQ ID NO: 39所示的重鏈可變區和如SEQ ID NO: 54所示的輕鏈可變區的單株抗體。
根據本發明,當給定抗體識別由另一給定抗體識別的表位的至少一部分時,據稱這兩種抗體識別相同或重疊的表位。
可以使用本領域技術人員可得的不同測定法來確定抗體(也稱為測試抗體)是否識別與特定單株抗體(也稱為參考抗體)相同或重疊的表位。優選地,所述測定法涉及以下步驟: •提供MASP-3或其包含參考抗體識別的表位的片段 •將所述測試抗體和參考抗體加入所述MASP-3,其中所述測試抗體或參考抗體用可檢測標記物標記。或者,兩種抗體可以用不同的可檢測標記物標記 •檢測MASP-3處可檢測標記物的存在 •從而檢測測試抗體是否可取代參考抗體 如果替代參考抗體,則測試抗體識別與參考抗體相同或重疊的表位。因此,如果參考抗體用可檢測標記物標記,則MASP-3處的低可檢測信號指示參考抗體的替代。如果測試抗體用可檢測標記物標記,則MASP-3處的高可檢測信號指示參考抗體的替代。MASP-3片段可以優選固定在固體支援物上,從而能夠容易地處理。可檢測標記物可以是任何直接或間接檢測的標記物,例如酶、放射性同位素、重金屬、有色化合物或螢光化合物。在下文的章節“競爭結合分析”中的實施例18中描述了確定測試抗體是否識別與參考抗體相同或重疊的表位的示例性方法。本領域技術人員可以容易地將所述方法適應於所討論的特定抗體。
用於本發明該方面的MASP-3抗體包括得自產生抗體的任何哺乳動物的單株抗體或重組抗體並且可以是多特異性抗體(即雙特異性或三特異性抗體)、嵌合抗體、人源化抗體、完整人抗體、抗獨特型抗體和抗體片段。抗體片段包括Fab、Fab'、F(ab)2、F(ab')2、Fv片段、scFv片段和單鏈抗體,如本文進一步描述。
可以使用本文所述的測定法篩選MASP-3抗體抑制替代途徑補體活化系統的能力。替代途徑補體活化的抑制的特徵在於由於施用根據本發明的各個實施方案的高親和力MASP-3抑制性抗體而發生的補體系統的組份中的至少一種或多種以下變化:溶血和/或調理作用的抑制;因子B的凝集素-非依賴性轉化的抑制;因子D的凝集素-非依賴性轉化的抑制;MASP-3絲胺酸蛋白酶底物特異性切割的抑制;溶血的減少或C3切割和C3b表面沉積的減少;在活化表面上的因子B和Bb沉積的減少;相對於前因子D降低活性因子D的靜息水準(在循環中並且沒有實驗性添加活化表面);回應於活化表面降低相對於前因子D的活性因子D的水準;和/或流體相Ba、Bb、C3b或C3a的靜息和表面誘導水準的產生。 效應物功能降低的MASP-3抗體
在本發明的該方面的一些實施方案中,為了減少可由經典補體途徑活化所致的炎症,本文所述的高親和力MASP-3抑制性抗體降低了效應物功能。IgG分子觸發經典補體途徑的能力已被表明是在分子的Fc部分內(Duncan, A.R.,等人, Nature332:738-740 (1988))。分子的Fc部分被酶切割除去的IgG分子缺乏這種效應物功能(參見Harlow, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York, 1988)。因此,通過具有使效應物功能減到最低的遺傳改造Fc序列,或者成為人IgG2或IgG4同種型,由於缺少分子的Fc部分,可產生效應物功能降低的抗體。
可對IgG重鏈的Fc部分進行標準分子生物學操作來產生效應物功能降低的抗體,如Jolliffe等人, Int'l Rev. Immunol. 10:241-250, (1993)和Rodrigues等人, J. Immunol. 151:6954-6961, (1998)中所述。效應物功能降低的抗體還包括人IgG2和IgG4同種型,其活化補體和/或與Fc受體相互作用的能力降低(Ravetch, J.V.,等人, Annu. Rev. Immunol. 9:457-492, (1991);Isaacs, J.D.,等人, J. Immunol.148:3062-3071, 1992;van de Winkel, J.G.,等人, Immunol. Today 14:215-221, (1993))。包含IgG2或IgG4同種型的人MASP-1、MASP-2或MASP-3特異性的人源化或全長人抗體(包括雙重、泛、雙特異性或三特異性抗體)可以通過本領域普通技術人員已知的幾種方法之一來產生,如Vaughan, T.J.,等人, Nature Biotechnical 16:535-539, (1998)所述。 高親和力MASP-3抑制性抗體的產生
使用MASP-3多肽(例如全長MASP-3)或使用攜帶抗原性MASP-表位的肽(例如MASP-3多肽的一部分),可以產生MASP-3抗體,例如如本文下面實施例14中所述。免疫原性肽可以少至5個胺基酸殘基。用於產生抗體的MASP-3肽和多肽可作為天然多肽、或者重組肽或合成肽以及無催化活性的重組多肽而被分離。用於產生MASP-3抗體的抗原還包括融合多肽,例如MASP-3多肽或其部分與免疫球蛋白多肽或者與麥芽糖結合蛋白的融合物。多肽免疫原可以是全長分子或其部分。如果多肽部分是半抗原樣的,則所述部分可有利地結合或連接到大分子載體(例如匙孔
Figure 02_image001
血藍蛋白(KLH)、牛血清白蛋白(BSA)或破傷風類毒素)上用於免疫。 單株抗體
本文所用的修飾語“單殖株”是指獲自基本同源的抗體群的抗體性質,不理解為需要通過任何特定方法來產生抗體。可採用通過培養物中的連續細胞系以提供抗體分子產生的任何技術來獲得單株抗體,例如Kohler, G.,等人, Nature256:495, (1975)中所述的雜交瘤方法,或者可以通過重組DNA方法製備單株抗體(參見例如Cabilly的美國專利號4,816,567)。還可以採用Clackson, T.,等人, Nature 352:624-628, (1991)和Marks, J.D.,等人, J. Mol. Biol. 222:581-597, (1991)中所述的技術,從噬菌體抗體文庫中分離單株抗體。這些抗體可以具有任何免疫球蛋白類別,包括IgG、IgM、IgE、IgA、IgD及其任何亞類。
例如,可通過將包含MASP-3多肽或其部分的組合物注射給合適的哺乳動物(例如BALB/c小鼠)而獲得單株抗體。在預定時間之後,從小鼠中取出脾細胞,使之懸浮於細胞培養基中。然後將脾細胞與無限增殖細胞系融合形成雜交瘤。將形成的雜交瘤在細胞培養基中培養,對它們產生抗MASP-3的單株抗體的能力進行篩選。(還參見 Current Protocols in Immunology, 第1卷, John Wiley & Sons, 第2.5.1‑2.6.7頁, 1991.)。
可通過使用轉基因小鼠來獲得人單株抗體,所述轉基因小鼠已被工程改造以在回應於抗原攻擊時產生特異性人抗體。在這種技術中,將人免疫球蛋白重鏈和輕鏈基因座元件引入得自胚胎幹細胞系的小鼠品系中,所述胚胎幹細胞系含有被定向破壞的內源免疫球蛋白重鏈和輕鏈基因座。該轉基因小鼠可合成對人抗原(例如本文所述MASP-2抗原)特異性的人抗體,可使用該小鼠來產生分泌人MASP-2抗體的雜交瘤,具體方法是通過採用傳統Kohler-Milstein技術,將來自所述動物的B細胞與合適的骨髓瘤細胞系融合。自轉基因小鼠獲得人抗體的方法例如描述於Green, L.L.,等人, Nature Genet. 7:13, 1994;Lonberg, N.,等人, Nature 368:856, 1994;和Taylor, L.D.,等人, Int. Immun.6:579, 1994。
可通過各種已確立的技術從雜交瘤培養物中分離和純化單株抗體。這些分離技術包括用A蛋白瓊脂糖凝膠的親和層析、大小排阻層析和離子交換層析(參見例如,Coligan第2.7.1-2.7.12頁和第2.9.1-2.9.3頁;Baines等人, " Purification of Immunoglobulin G (IgG)," 於 Methods in Molecular Biology, The Humana Press, Inc., 第10卷, 第79-104頁, 1992)。
一旦產生,首先要測試單株抗體對MASP-3結合的特異性,或者如有需要,測試其對雙重MASP-1/3、MASP-2/3或MASP-1/2結合的特異性。測定抗體是否結合至蛋白抗原上和/或抗體對蛋白抗原的親和力的方法是本領域已知的。例如,可使用各種技術來測定和/或定量測定抗體與蛋白抗原的結合,所述技術例如但不限於Western印跡、斑點印跡、電漿表面共振方法(例如BIAcore系統;Pharmacia Biosensor AB, Uppsala, Sweden和Piscataway, NJ)或酶聯免疫吸附測定法(ELISA)。參見例如Harlow和Lane (1988) " Antibodies: A Laboratory Manual" Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.;Benny K. C. Lo (2004) " Antibody Engineering: Methods and Protocols," Humana Press (ISBN: 1588290921);Borrebaek (1992) " Antibody Engineering, A Practical Guide," W.H. Freeman and Co., NY;Borrebaek (1995) " Antibody Engineering," 第2版, Oxford University Press, NY, Oxford;Johne等人(1993), Immunol. Meth. 160:191-198;Jonsson等人 (1993) Ann. Biol. Clin. 51: 19-26;和Jonsson等人(1991) Biotechniques 11:620-627。還參見美國專利號6,355,245。
本領域普通技術人員可以容易地測定MASP-3單株抗體的親和力(參見例如Scatchard, A., NY Acad. Sci.51:660-672, 1949)。在一個實施方案中,用於本發明方法的MASP-3的單株抗體與MASP-3結合,其結合親和力<100 nM,優選地<10 nM、優選<2 nM和最優選地<500pM的高親和力。
一旦鑒定特異性結合MASP-3的抗體,就在幾種功能測定法之一中測試MASP-3抗體作為替代途徑抑制劑發揮功能的能力,所述測定法例如,替代途徑補體活化的抑制的特徵在於由於施用根據本發明的各個實施方案的高親和力MASP-3抑制性抗體而發生的補體系統的組份中的至少一種或多種以下變化:溶血和/或調理作用的抑制;因子B的凝集素-非依賴性轉化的抑制;因子D的凝集素-非依賴性轉化的抑制;MASP-3絲胺酸蛋白酶底物特異性切割的抑制;溶血的減少或C3切割和C3b表面沉積的減少;在活化表面上的因子B和Bb沉積的減少;相對於前因子D降低活性因子D的靜息水準(在循環中並且沒有實驗性添加活化表面);回應於活化表面的相對於前因子D的活性因子D的水準的降低;流體相Ba、Bb、C3b或C3a的靜息和表面誘導水準的產生的降低;和/或因子P的沉積的減少。 嵌合/人源化抗體
用於本發明方法的單株抗體包括嵌合抗體以及這些抗體的片段,其中重鏈和/或輕鏈的一部分與得自特定物種的抗體的相應序列相同或同源,或者屬於特定抗體類別或亞類,而鏈的其餘部分與得自另一物種的抗體的相應序列相同或同源,或者屬於另一抗體類別或亞類(Cabilly的美國專利號4,816,567;和Morrison, S.L.,等人, Proc. Nat'l Acad. Sci.USA 81:6851-6855, (1984))。
用於本發明的一種形式的嵌合抗體是人源化單殖株MASP-3抗體。非人(例如鼠)抗體的人源化形式是嵌合抗體,其含有得自非人免疫球蛋白的最小序列。通過將非人(例如小鼠)互補決定區(CDR)從小鼠免疫球蛋白的可變重鏈和可變輕鏈轉移到人可變結構域,從而產生人源化單株抗體。然後,典型的做法是將人抗體的其餘部分代入非人對應部分的構架區。此外,人源化抗體可包括受體抗體或供體抗體中不存在的殘基。這些修飾被用來進一步改進抗體性能。一般而言,人源化抗體將包含至少一種、通常兩種可變結構域的基本全部,其中所有或基本上所有的超變環都對應於非人免疫球蛋白的超變環,所有或基本上所有的Fv構架區都是人免疫球蛋白序列的Fv構架區。人源化抗體任選還包含免疫球蛋白恒定區(Fc) (通常為人免疫球蛋白的恒定區)的至少一部分。更多詳情可參見Jones, P.T.,等人, Nature 321:522-525, (1986);Reichmann, L.,等人, Nature 332:323-329, (1988);和Presta, Curr. Op. Struct. Biol. 2:593-596, (1992)。
用於本發明的人源化抗體包括至少含有MASP-3結合CDR3區的人單株抗體。此外,可以替換Fc部分以便產生IgA或IgM以及人IgG抗體。這樣的人源化抗體將具有特定的臨床效用,因為它們特異性地識別人MASP-3,但是卻不會引起人體對抗體本身的免疫應答。因此它們更適用於人體的體內施用,尤其是必須重複或長期施用的時候。
產生人源化單株抗體的技術還描述於例如Jones, P.T.,等人, Nature 321:522, (1986);Carter, P.,等人, Proc. Nat'l. Acad. Sci. USA 89:4285, (1992);Sandhu, J.S., Crit. Rev. Biotech. 12:437, (1992);Singer, I.I.,等人, J. Immun. 150:2844, (1993);Sudhir (編著), Antibody Engineering Protocols,Humana Press, Inc., (1995);Kelley, " Engineering Therapeutic Antibodies," 於 Protein Engineering: Principles and Practice, Cleland等人(編著), John Wiley & Sons, Inc., 第399-434頁, (1996);和Queen的美國專利號5,693,762, 1997。此外,還有從特定鼠抗體區合成人源化抗體的商業公司,例如Protein Design Labs (Mountain View, CA)。 重組抗體
還可使用重組方法製備MASP-3的抗體。例如,可使用人免疫球蛋白表達文庫(可獲自例如Stratagene, Corp., La Jolla, CA)來製備人抗體,以產生人抗體片段(VH、VL、Fv、因子D、Fab或F(ab')2)。然後使用類似於產生嵌合抗體的技術,將這些片段用以構建完整的人抗體。 免疫球蛋白片段
用於本發明方法的MASP-3的抑制劑不僅包括完整的免疫球蛋白分子,而且還包括眾所周知的片段,包括Fab、Fab'、F(ab)2、F(ab')2和Fv片段、scFv片段、雙抗體、線性抗體、單鏈抗體分子以及由抗體片段形成的多特異性(例如雙特異性和三特異性)抗體。
本領域眾所周知的是,抗體分子的僅小部分即互補位元(paratope)參與抗體與其表位的結合(參見例如Clark, W.R., The Experimental Foundations of Modern Immunology, Wiley & Sons, Inc., NY, 1986)。抗體的pFc'區和Fc區是經典補體途徑的效應物,但不參與抗原結合。其中pFc'區已被酶切割的抗體,或者所產生的沒有pFc’區的抗體被稱為F(ab')2片段,它保留了完整抗體的抗原結合位點中的兩個。分離的F(ab')2片段由於有兩個抗原結合位點而被稱為二價單殖株片段。類似地,其中Fc區已被酶切割的抗體,或者所產生的沒有Fc區的抗體被稱為Fab片段,它保留了完整抗體分子的抗原結合位點中的一個。
抗體片段可通過蛋白水解而獲得,例如通過傳統方法經胃蛋白酶或木瓜蛋白酶消化完整抗體。例如,可通過用胃蛋白酶進行酶切割抗體來產生抗體片段,從而提供稱為F(ab')2的5S片段。該片段可再使用硫醇還原試劑切割,得到3.5S Fab'單價片段。任選可使用二硫鍵裂解產生的巰基的封閉基團來進行裂解反應。作為替代方法,使用胃蛋白酶的酶切割直接產生兩個單價Fab片段和一個Fc片段。這些方法描述於例如,Goldenberg的美國專利號4,331,647;Nisonoff, A.,等人, Arch. Biochem. Biophys. 89:230, (1960);Porter, R.R., Biochem. J.73:119, (1959);Edelman,等人, 於 Methods in Enzymology1:422, Academic Press, (1967);和Coligan的第2.8.1-2.8.10頁和第2.10.-2.10.4頁。
在一些實施方案中,優選使用缺乏Fc區的抗體片段以避免Fc結合Fcγ受體時啟動的經典補體途徑的活化。有幾種方法可產生避免與Fcγ受體相互作用的單株抗體。例如,單株抗體的Fc區可通過使用蛋白水解酶部分消化(例如無花果蛋白酶消化),從而用化學法去除,因此產生例如結合抗原的抗體片段,例如Fab或F(ab)2片段(Mariani, M.,等人, Mol. Immunol.28:69‑71, (1991))。或者,可以在構建本文所述的人源化抗體期間使用不結合Fcγ受體的人γ4 IgG同種型。還可使用本文所述的重組技術來工程改造缺少Fc結構域的抗體、單鏈抗體和抗原結合結構域。 單鏈抗體片段
或者,可以建立對MASP-3特異性的單一肽鏈結合分子,其中重鏈和輕鏈Fv區相連接。Fv片段可通過肽接頭相連,形成單鏈抗原結合蛋白(scFv)。通過構建包含編碼VH和VL結構域的DNA序列的結構基因來製備這些單鏈抗原結合蛋白,所述DNA序列通過寡核苷酸連接。將這些結構基因插入表達載體中,隨後將其引入宿主細胞(例如大腸桿菌)中。重組宿主細胞合成了由接頭肽橋接兩個V結構域的單一多肽鏈。scFv的製備方法描述於例如Whitlow,等人, "Methods: A Companion to Methods in Enzymology" 2:97, (1991);Bird,等人, Science 242:423, (1988);Ladner的美國專利號4,946,778;Pack, P.,等人, Bio/Technology11:1271, (1993)。
舉例來說,可通過將淋巴細胞體外曝露於MASP-3多肽,並在噬菌體或類似載體中選擇抗體展示文庫(例如通過使用固定化的或標記的MASP-3蛋白或肽),獲得MASP-3特異性scFv。可通過對噬菌體或細菌(如大腸桿菌)上展示的隨機肽文庫進行篩選而獲得編碼具有可能的MASP-3多肽結合結構域的多肽的基因。這些隨機肽展示文庫可用於篩選與MASP-3相互作用的肽。構建和篩選這些隨機肽展示文庫的技術是本領域眾所周知的(Lardner的美國專利號5,223,409,;Lardner的美國專利號4,946,778;Lardner的美國專利號5,403,484;Lardner的美國專利號5,571,698;和Kay等人, Phage Display of Peptides and ProteinsAcademic Press, Inc., 1996),隨機肽展現文庫和用於篩選這些文庫的試劑盒是市售可得的,例如來自CLONTECH Laboratories, Inc. (Palo Alto, Calif.)、Invitrogen Inc. (San Diego, Calif.)、New England Biolabs, Inc. (Beverly, Mass.)和Pharmacia LKB Bio technology Inc. (Piscataway, N.J.)。
用於本發明這個方面的MASP-3抗體片段的另一種形式是編碼單一互補決定區(CDR)的肽,其結合MASP-3抗原上的表位並抑制替代補體途徑活化。
可通過構建編碼目標抗體CDR的基因而獲得CDR肽(“最小識別單元”)。例如通過使用聚合酶鏈式反應從抗體生成細胞的RNA合成可變區,從而製備這些基因(參見例如,Larrick等人, Methods: A Companion to Methods in Enzymology 2:106, (1991);Courtenay-Luck, "Genetic Manipulation of Monoclonal Antibodies," 於 Monoclonal Antibodies: Production, Engineeringand Clinical Application, Ritter等人 (編著), 第166頁, Cambridge University Press, (1995);和Ward等人, " Genetic Manipulation and Expression of Antibodies," 於 Antibodies: Principles and Applications, Birch等人 (編著), 第137頁, Wiley-Liss, Inc., 1995)。
將本文所述的高親和力MASP-3抑制性抗體施用於有此需要的物件以抑制替代途徑活化。在一些實施方案中,高親和力MASP-3抑制性抗體是任選效應物功能降低的人源化單殖株MASP-3抗體。 雙特異性抗體
用於本發明方法的高親和力MASP-3抑制性抗體包括多特異性(即雙特異性和三特異性)抗體。雙特異性抗體是單株抗體,優選地為人或人源化抗體,所述抗體對至少兩種不同抗原具有結合特異性。在一個實施方案中,所述組合物和方法包括雙特異性抗體的使用,所述雙特異性抗體包含對MASP-3的絲胺酸蛋白酶結構域的結合特異性和對MASP-2的結合特異性(例如,結合至MASP-2的CCP1-CCP2或絲胺酸蛋白酶結構域的至少一個)。在另一個實施方案中,所述方法包括雙特異性抗體的使用,所述雙特異性抗體包含對MASP-3的絲胺酸蛋白酶結構域的結合特異性和對MASP-1的結合特異性(例如結合至MASP-1的絲胺酸蛋白酶結構域)。在另一個實施方案中,所述方法包括三特異性抗體的使用,所述三特異性抗體包含對MASP-2的結合特異性(例如結合至MASP-2的CCP1-CCP2或絲胺酸蛋白酶結構域的至少一個)和對MASP-1的結合特異性(例如結合至MASP-1的絲胺酸蛋白酶結構域)。
製備雙特異性抗體的方法在本領域技術人員能力範圍之內。傳統上,雙特異性抗體的重組產生是根據兩個免疫球蛋白重鏈/輕鏈對的共表達,其中兩條重鏈具有不同特異性(Milstein和Cuello, Nature305:537-539 (1983))。具有所需結合特異性(抗體-抗原結合位點)的抗體可變結構域可以與免疫球蛋白恒定結構域序列融合。融合物優選具有免疫球蛋白重鏈恒定結構域,其包括至少部分的鉸鏈區、C H2區和C H3區。將編碼免疫球蛋白重鏈融合物和(如有必要)免疫球蛋白輕鏈的DNA插入到分開的表達載體中,然後共轉染到合適宿主生物體中。對於產生雙特異性抗體的說明性的現有已知方法的更多細節參見例如Suresh等人, Methods in Enzymology121:210 (1986);WO96/27011;Brennan等人, Science229:81 (1985);Shalaby等人, J. Exp. Med. 175:217-225 (1992);Kostelny等人, J. Immunol. 148(5):1547-1553 (1992);Hollinger等人, Proc. Natl. Acad. SciUSA 90:6444-6448 (1993);Gruber等人, J. Immunol.152:5368 (1994);和Tutt等人, J. Immunol.147:60 (1991)。雙特異性抗體還包括交聯的或異型綴合的抗體(heteroconjugate antibodies)。可使用任何傳統交聯方法製備異型綴合的抗體。合適的交聯劑是本領域眾所周知的並公開於美國專利號4,676,980以及許多交聯技術。
還已經描述了直接從重組細胞培養物中製備和分離雙特異性抗體片段的多種技術。例如,使用白胺酸拉鍊,已經製備了雙特異性抗體。(參見例如Kostelny等人, J.Immunol. 148(5):1547-1553 (1992))。Hollinger等人, Proc. Natl. Acad. SciUSA 90:6444-6448 (1993)所述的“雙抗體”技術已經提供了製備雙特異性抗體片段的替代機制。所述片段包含通過接頭與輕鏈可變結構域(VL)連接的重鏈可變結構域(VH),所述接頭太短而不允許同一鏈上的兩個結構域之間配對。因此,一個片段的VH結構域和VL結構域被迫與另一片段的互補VL結構域和VH結構域配對,從而形成2個抗原-結合位點。與雙特異性完整抗體相反,雙特異性雙抗體也可能是特別有用的,因為它們可以被容易地構建和在大腸桿菌中表達。使用噬菌體展示(WO94/13804),可從文庫中容易地選擇具有合適的結合特異性的雙抗體(和許多其他多肽例如抗體片段)。如果雙抗體的一個臂保持恒定,例如,具有針對抗原X的特異性,則可以構建文庫,其中另一臂不同並選擇具有合適特異性的抗體。
還已報導了通過使用單鏈Fv (scFv)二聚體而製備雙特異性抗體片段的另一策略(參見例如Gruber等人, J. Immunol., 152:5368 (1994))。或者,抗體可以是“線性抗體”,例如描述於Zapata等人, Protein Eng.8(10):1057-1062 (1995)。簡要描述,這些抗體包含一對串聯的因子D區段(V H-C HI-V H-C HI),其形成一對抗原結合區。線性抗體可以是雙特異性或單特異性的。本發明的方法還包括使用雙特異性抗體的變體形式,例如Wu等人, Nat Biotechnol25:1290-1297 (2007)所述的四價雙重可變結構域免疫球蛋白(DVD-Ig)分子。之所以稱為DVD-Ig分子,是因為來自兩個不同母體抗體的2個不同的輕鏈可變區(VL)通過重組DNA技術直接或經由短接頭而串聯連接,接著是輕鏈恒定區。從兩個母體抗體產生DVD-Ig分子的方法進一步描述於例如WO08/024188和WO07/024715,其各自的公開內容通過引用以其整體併入本文中。 XVIII. 藥物組合物和遞送方法給藥
在另一個方面,本發明提供包含高親和力MASP-3抑制性抗體的組合物,其用於抑制有此需要的物件、例如患有替代途徑相關疾病或病況、例如溶血性疾病、例如PNH、或選自年齡相關性黃斑變性(AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病(包括溶血性尿毒癥徵候群(HUS)、非典型溶血性尿毒癥徵候群(aHUS)或血栓性血小板減少性紫癜(TTP))、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎、貝切特氏病、多發性硬化症(MS)、格林巴厘徵候群、阿茲海默氏病、肌萎縮性側索硬化症(ALS)、狼瘡性腎炎、系統性紅斑狼瘡(SLE)、糖尿病性視網膜病變、葡萄膜炎、慢性阻塞性肺病(COPD)、C3腎小球病、移植排斥反應、移植物抗宿主病(GVHD)、血液透析、敗血症、系統性炎性反應徵候群(SIRS)、急性呼吸窘迫徵候群(ARDS)、ANCA血管炎、抗磷脂徵候群、動脈粥樣硬化、IgA腎病和重症肌無力的疾病或病症的物件中的替代途徑補體活化的不利影響。
本發明的該方面的方法包括徑補體活化的量的高親和力MASP-3抑制性抗體和藥學上可接受的載體的組合物。在一些實施方案中,所述方法進一步包括施用包含MASP-2抑制劑的組合物。可以以治療或改善與替代途徑補體活化和任選還有MASP-2依賴性補體活化相關的病況的治療有效劑量向有此需要的物件施用高親和力MASP‑3抑制性抗體和MASP-2抑制劑。治療有效劑量是指MASP‑3抑制性抗體或MASP-3抑制性抗體和MASP-2抑制劑的組合足以導致病況的症狀的改善的量。替代途徑補體活化的抑制的特徵在於由於施用根據本發明的各個實施方案的高親和力MASP-3抑制性抗體而發生的補體系統的組份中的至少一種或多種以下變化:溶血和/或調理作用的抑制;因子B的凝集素-非依賴性轉化的抑制;因子D的凝集素-非依賴性轉化的抑制;MASP-3絲胺酸蛋白酶底物特異性切割的抑制;溶血的減少或C3切割和C3b表面沉積的減少;在活化表面上的因子B和Bb沉積的減少;相對於前因子D降低活性因子D的靜息水準(在循環中並且沒有實驗性添加活化表面);回應於活化表面降低相對於前因子D的活性因子D的水準;和/或流體相Ba、Bb、C3b或C3a的靜息和表面誘導水準的產生的減少。
可通過標準藥學方法,使用實驗動物模型來測定MASP-3和MASP-2的抑制劑的毒性和治療功效。使用這些動物模型,可使用標準方法來確定NOAEL (無明顯不良作用水準)和MED (最小有效劑量)。NOAEL和MED效應之間的劑量比是治療比率,用NOAEL/MED之比表示。最優選的是治療比率或指數高的MASP-3抑制劑和MASP-2抑制劑。從細胞培養測定和動物研究中獲得的資料可用來制定用於人體的劑量範圍。MASP-3抑制劑和MASP-2抑制劑的劑量優選在循環濃度的範圍之內,包括幾乎無毒性或沒有毒性的MED。劑量可在這個範圍內變化,這取決於所採用的劑型和所使用的施用途徑。
對於任何化合物製劑,可使用動物模型來評價治療有效劑量。例如,可在動物模型中配製達到包括MED在內的循環血漿濃度範圍的劑量。還可通過例如高效液相層析法來測量血漿中MASP-3抑制劑或MASP-2抑制劑的定量水準。
除了毒性研究之外,還可根據活的物件中存在的靶MASP蛋白的量以及MASP-3或MASP-2的抑制劑的結合親和力來估計有效劑量。
已報導在正常人類物件血清中存在的MASP-1水準在1.48至12.83 µg/mL的範圍內(Terai I.等人, Clin Exp Immunol110:317-323 (1997);Theil等人, Clin. Exp. Immunol. 169:38 (2012))。已報導正常人類物件的平均血清MASP-3濃度在大約2.0至12.9 µg/mL的範圍內(Skjoedt M等人, Immunobiology215(11):921-31 (2010);Degn等人, J. Immunol Methods,361-37 (2010);Csuka等人, Mol. Immunol. 54:271 (2013)。已經證實正常人類物件血清中存在的MASP-2水準在500ng / ml的低水準範圍內,可使用以下文獻所述的MASP-2定量測定法來測定具體對象的MASP-2水準:Moller-Kristensen M.,等人, J. Immunol. Methods282:159-167 (2003)和Csuka等人, Mol. Immunol. 54:271 (2013)。
通常,包含MASP-3抑制劑或MASP-2抑制劑的組合物的施用劑量根據例如物件年齡、體重、身高、性別、一般疾病狀況和病史等因素而變化。舉例來說,可在大約0.010至100.0 mg/kg、優選地0.010至10 mg/kg、優選地0.010至1.0 mg/kg、更優選地0.010至0.1 mg/kg對象體重的劑量範圍內施用MASP-3抑制劑或MASP-2抑制劑(例如MASP-3抗體、MASP-1抗體或MASP-2抗體)。在某些實施方案中,施用MASP-2抑制劑(例如MASP-2抗體)的劑量範圍為大約優選地0.010至10 mg/kg,優選地0.010至1.0 mg/kg,更優選地0.010至0.1 mg/kg的對象體重。在某些實施方案中,施用MASP-1抑制劑(例如MASP-1抗體)或MASP-3抑制劑(例如MASP-3抗體)的劑量範圍為大約0.010至100.0 mg/kg,優選地0.010至10 mg/kg,例如約1 mg/kg至約10 mg/kg,優選0.010至1.0 mg/kg,更優選0.010至0.1 mg/kg的對象體重。
根據本領域技術人員眾所周知的補體測定法,可以測定在指定物件中的MASP-3抑制性組合物(任選與MASP-2抑制性組合物組合)或MASP-1抑制性組合物(任選與MASP-2抑制性組合物組合)以及本發明方法的治療功效和合適劑量。補體產生多種特定產物。在最近十年中,對於這些活化產物的大部分,已經開發出靈敏而專一的測定法並且是市售可得的,所述活化產物包括小的活化片段C3a、C4a和C5a和大的活化片段iC3b、C4d、Bb和sC5b-9。大多數的這類測定法都利用了與曝露在片段而不是曝露在其所形成的天然蛋白上的新抗原(neoantigen)起反應的單株抗體,這使得這些測定法非常簡單而專一。大多數都依賴於ELISA技術,儘管有時放射免疫測定法仍用於C3a和C5a。放射免疫測定法測定未經加工的片段及其“脫Arg”片段兩者,這些片段是存在於循環中的主要形式。未經加工的片段和C5a desArg通過結合細胞表面受體而被迅速清除掉,因而以極低濃度存在,而3a desArg則不結合細胞,並在血漿中蓄積。測定C3a提供了補體活化靈敏的、不依賴途徑的標誌物。可通過測定Bb片段和/或測定因子D活化來評價替代途徑活化。檢測膜攻擊途徑活化的流體相產物sC5b-9,提供了補體被完全活化的證據。因為凝集素途徑和經典途徑都產生同樣的活化產物C4a和C4d,所以測定這兩種片段並不提供有關這兩條途徑中哪一條途徑產生了所述活化產物的任何資訊。
哺乳動物物件中替代途徑的抑制的特徵在於用本文公開的高親和力MASP-3抑制性抗體治療後哺乳動物物件中以下中的至少一種或多種:因子D成熟的抑制;當向對象以約1:1至約2.5:1(MASP-3靶標與mAb)的摩爾比施用時替代途徑的抑制;經典途徑不被抑制;溶血和/或調理作用的抑制;溶血的減少或C3切割和C3b表面沉積的減少;在活化表面上的因子B和Bb沉積的減少;相對於前因子D降低活性因子D的靜息水準(在循環中並且沒有實驗性添加活化表面);回應於活化表面降低相對於前因子D的活性因子D的水準;和/或流體相Ba、Bb、C3b或C3a的靜息和表面誘導水準的產生的減少。
對MASP-2-依賴性補體活化的抑制特徵在於作為根據本發明方法施用MASP-2抑制劑的結果而發生的補體系統的成分的以下變化中的至少一項:抑制MASP-2-依賴性補體活化系統產物C4b、C3a、C5a和/或C5b-9 (MAC)的產生或生產(例如如美國專利號7,919,094實施例2中所述而測定);減少C4切割和C4b沉積;或減少C3切割和C3b沉積。 藥用載體和遞送媒介物
一般而言,MASP-3抑制性抗體組合物或包含MASP-2和MASP-3的抑制劑的組合的組合物,可以與任何其他所選治療劑組合,並合適地包含在藥學上可接受的載體中。載體是無毒的、生物相容的並且可被選擇以便不會有害影響MASP-3抑制性抗體或MASP-2抑制劑(和與其組合的任何其他治療劑)的生物學活性。用於肽的示例性藥學可接受的載體描述於Yamada的美國專利號5,211,657。如本文所述,用於本發明的MASP-3抗體可以配製成固體、半固體、凝膠、液體或氣體形式的製備物,例如片劑、膠囊劑、粉劑、顆粒劑、軟膏劑、溶液劑、栓劑、吸入劑和注射劑,允許口服、胃腸外或外科施用。本發明還包括通過將組合物塗敷在醫療裝置上進行局部施用等。
用於經由注射、輸注或沖洗的胃腸外遞送和局部遞送的合適載體包括蒸餾水、磷酸鹽緩衝生理鹽水、標準林格氏液或乳酸鹽林格氏液、葡萄糖溶液、Hank氏溶液或丙二醇。此外,無菌不揮發油可用作溶劑或懸浮介質。對於此目的,可採用任何生物相容性油,包括合成的甘油單酯或甘油二酯。此外,脂肪酸(例如油酸)可用於注射劑的製備中。可將載體和試劑配製成為液體製劑、混懸劑、可聚合或不可聚合的凝膠劑、糊劑或藥膏。
載體還可包括遞送媒介物以使一種或多種試劑的遞送持續(即延長、延緩或調節),或者增強一種或多種治療劑的遞送、攝取、穩定性或藥代動力學。這種遞送媒介物以非限制性實例的方式可包括:由蛋白質、脂質體、碳水化合物、合成有機化合物、無機化合物、聚合水凝膠或共聚水凝膠和聚合物膠束組成的微粒、微球、奈米球、奈米粒。合適的水凝膠和膠束遞送系統包括WO 2004/009664 A2中公開的PEO:PHB:PEO共聚物和共聚物/環糊精複合物和美國專利申請公開號2002/0019369 A1中公開的PEO和PEO/環糊精複合物。這些水凝膠可局部注射到預期作用部位,或者皮下或肌肉內注射以形成緩釋貯庫(depot)。
本發明的組合物可配製成用於皮下、肌肉內、靜脈內、動脈內遞送或作為吸入劑遞送。
對於關節內遞送,MASP-3抑制性抗體、任選組合MASP-2抑制劑可被裝載於上述可注射的液體或凝膠載體、上述可注射的緩釋遞送媒介物、或者透明質酸或透明質酸衍生物中。
對於非肽能藥物的口服施用,MASP-3抑制性抗體、任選組合MASP-2抑制劑可被裝載於惰性填充物或稀釋劑例如蔗糖、玉米澱粉或纖維素中。
對於局部施用,MASP-3抑制性抗體、任選組合MASP-2抑制劑可裝載於軟膏劑、洗劑、乳膏劑、凝膠劑、滴劑、栓劑、噴霧劑、液體製劑或粉劑中,或者經由透皮貼劑的凝膠或微膠囊遞送系統中。
各種經鼻和經肺的遞送系統正在開發中,包括氣霧器、劑量吸入器、乾粉吸入器和霧化器,可分別適於在氣霧劑、吸入劑或霧化遞送媒介物中的本發明的遞送。
對於鞘內(IT)或腦室內(ICV)遞送,合適的無菌遞送系統(例如液體製劑;凝膠劑、混懸劑等)可用來施用本發明。
本發明的組合物還可包括生物相容性賦形劑,例如分散劑或潤濕劑、助懸劑、稀釋劑、緩衝劑、滲透促進劑、乳化劑、粘合劑、增稠劑、矯味劑(用於口服施用)。 抗體和肽的藥用載體
更具體地,至於如本文所述的高親和力MASP-3抑制性抗體,示例性製劑可以按注射劑量的所述化合物的溶液劑或混懸劑經胃腸外施用,所述化合物包含在生理上可接受的稀釋劑與藥用載體內,藥用載體可以是無菌液體,例如水、油、鹽水、甘油或乙醇。此外,包含MASP-3抗體的組合物中可存在例如潤濕劑或乳化劑、界面活性劑、PH緩衝物質等輔助物質。藥物組合物的其外組份包括石油(petroleum) (例如動物、植物或合成來源的石油),例如大豆油和礦物油。一般而言,二元醇例如丙二醇或聚乙二醇是用於注射溶液劑的優選液體載體。
還能以儲庫注射製劑或植入製劑的形式施用MASP-3抗體,這些製劑可按允許活性劑緩釋或脈衝釋放的方式來配製。 XVIX. 施用模式
可以多種方式施用包含MASP-3抑制性抗體、任選組合MASP-2抑制劑的藥物組合物,這取決於是局部還是全身性施用模式最適於待治療的病況。此外,本發明的組合物可通過將組合物塗布或摻入可植入的醫療裝置上面或裡面而遞送。 全身性遞送
如本文所用,術語“全身性遞送”和“全身性施用”意圖包括但不限於口服和胃腸外途徑,包括肌肉內(IM)、皮下、靜脈內(IV)、動脈內、吸入、舌下、含服、局部、經皮、經鼻、直腸、陰道和其他施用途徑,它們將所遞送的藥物有效地分散到預期治療作用的一個或多個部位。用於本發明組合物的全身性遞送的優選途徑包括靜脈內、肌肉內、皮下、動脈內和吸入。應當理解,對於用於本發明具體組合物中所選用的藥物,確切的全身性施用途徑將部分地考慮藥物對與特定施用途徑相關的代謝轉化途徑的敏感性加以確定。例如,肽能藥物可能最適於通過口服以外的途徑施用。
可通過任何合適的方法將本文所述的MASP-3抑制性抗體遞送到有此需要的物件中。遞送MASP-3抗體和多肽的方法包括經口服、肺部、胃腸外(例如肌肉內、腹膜內、靜脈內(IV)或皮下注射)、吸入(例如經由微細粉製劑)、經皮、經鼻、陰道、直腸或者舌下施用途徑,並且可將其配製成適於各自施用途徑的劑型。
代表性地舉例來說,可以通過將MASP-3抑制性抗體和肽應用到能夠吸收所述多肽的身體膜上,例如鼻膜、胃腸膜和直腸膜,而將其引入活體內。通常將多肽和滲透促進劑一起應用到可吸收膜上(參見例如Lee, V.H.L., Crit. Rev. Ther. Drug Carrier Sys. 5:69, (1988);Lee, V.H.L., J. Controlled Release13:213, (1990);Lee, V.H.L.主編, Peptide and Protein Drug Delivery,Marcel Dekker, New York (1991);DeBoer, A.G.,等人, J. Controlled Release13:241, (1990)。例如,STDHF是梭鏈孢酸的合成衍生物,是結構上類似於膽鹽的甾類界面活性劑,已被用作經鼻遞送的滲透促進劑(Lee, W.A., Biopharm. 22, 1990年11/12月)。
可以引入與其他分子(例如脂質)締合的本文所述的MASP-3抑制性抗體,以保護多肽不被酶降解。例如,共價結合的聚合物、尤其是聚乙二醇(PEG)已被用來保護某些蛋白質不被體內的酶水解,從而延長半壽期(Fuertges, F.,等人, J. Controlled Release11:139, (1990))。已經報導了許多用於蛋白質遞送的聚合物系統(Bae, Y.H.,等人, J. Controlled Release9:271, (1989);Hori, R.,等人, Pharm. Res. 6:813, (1989);Yamakawa, I.,等人, J. Pharm. Sci. 79:505, (1990);Yoshihiro, I.,等人, J. Controlled Release10:195, (1989);Asano, M.,等人, J. Controlled Release9:111, (1989);Rosenblatt, J.,等人, J. Controlled Release9:195, (1989);Makino, K., J. Controlled Release12:235, (1990);Takakura, Y.,等人, J. Pharm. Sci. 78:117, (1989);Takakura, Y.,等人, J. Pharm. Sci. 78:219, (1989))。
最近,開發出血清穩定性和循環半壽期得到改進的脂質體(參見例如Webb的美國專利號5,741,516)。而且,對脂質體和脂質體樣製備物作為可能的藥物載體的各種方法進行了綜述(參見例如Szoka的美國專利號5,567,434;Yagi的美國專利號5,552,157;Nakamori的美國專利號5,565,213;Shinkarenko的美國專利號5,738,868以及Gao的美國專利號5,795,587)。
對於經皮應用,可將本文所述的MASP-3抑制性抗體與其他合適的成分(例如載體和/或佐劑)混合。對這些其他成分的性質沒有限制,只是對於其預期施用來說必須是藥學上可接受的,並且不能降低組合物中活性成分的活性。合適媒介物的實例包括含或不含純化膠原的軟膏、乳膏、凝膠或混懸液。MASP-3抑制性抗體還可被浸漬到透皮貼劑、膏藥和繃帶中,優選以液體或半液體形式。
可以在為維持治療效果所需水準而確定的間隔的週期性基礎上,全身性施用本發明的組合物。例如,可按每2-4周或者以更低頻率的間隔施用組合物(例如經皮下注射)。劑量方案將由醫師考慮可能影響藥物聯用的作用的各種因素來確定。這些因素包括待治療疾病的進展程度、物件年齡、性別和體重和其他臨床因素。各獨立藥物的劑量將隨組合物中所包含的MASP-3抑制性抗體或MASP-2抑制劑以及任何遞送媒介物(例如緩釋遞送媒介物)的存在和性質而變化。此外,可在考慮施用頻率和所遞送藥物的藥代動力學行為的變化後對劑量進行調整。 局部遞送
如本文所用,術語“局部”包括藥物在預期局部化作用部位上或其周圍的應用,可包括例如局部遞送到皮膚或其他受累組織;眼部遞送;鞘內(IT)、腦室內(ICV)、關節內、腔內、顱內或肺泡內施用、安置或沖洗。可優選能夠給予較低劑量的局部施用以避免全身性不良作用,以及更精確地控制遞送時間和局部遞送部位的活性劑濃度。不論患者之間在新陳代謝、血流等方面的變化,局部施用都在目標部位提供已知的濃度。通過直接遞送方式還提供改進的劑量控制。
MASP-3抑制性抗體或MASP-2抑制劑的局部遞送可在手術方法的情況下實現以治療疾病或病況,例如在動脈旁路術、經皮腔內斑塊旋切術、鐳射手術、超音波手術、氣囊血管成形術以及支架安置等手術期間。例如,可將MASP-3抑制性抗體或MASP-2抑制劑與氣囊血管成形手術結合起來施用於物件。氣囊血管成形手術包括將連有已排氣的氣囊的導管插入動脈內。將已排氣的氣囊置於動脈粥樣硬化斑塊附近,給氣囊充氣使得斑塊向血管壁擠壓。結果,氣囊表面與血管表面的血管內皮細胞層接觸。可以按允許藥物在動脈粥樣硬化斑塊部位釋放的方式,將MASP-3抑制性抗體或MASP-2抑制劑附著到氣囊血管成形術導管上。可根據本領域已知標準方法將藥物附著在氣囊導管上。例如,可將藥物保存在氣囊導管的隔室中直到氣囊充氣,此時藥物被釋放到局部環境中。或者,可將藥物浸漬在氣囊表面,使得當氣囊充氣時,藥物就接觸到動脈壁的細胞。還可在多孔氣囊導管中遞送藥物,例如Flugelman, M.Y.,等人, Circulation85:1110-1117, (1992)中公開的那些。還參見已公開的PCT申請WO 95/23161中對於將治療用蛋白附著到氣囊血管成形術導管上的示例性方法。同樣地,可將MASP-3抑制劑或MASP-2抑制劑包入應用於支架上的凝膠或聚合塗層材料中,或者可將其摻入支架材料中,使得支架在血管安置之後將MASP-3抑制劑或MASP-2抑制劑洗脫出來。
用於治療關節炎和其他肌肉骨骼疾病的MASP-3抑制性抗體可通過關節內注射來局部遞送。這樣的組合物可適當地包括緩釋遞送媒介物。作為其中可能需要局部遞送的另一個實例,用於治療泌尿生殖病況的MASP-3抑制性組合物可適當地滴入膀胱內或者其他泌尿生殖結構中。 XX. 治療方案
在預防性應用中,將藥物組合物施用於易患或否則有風險患有替代途徑相關疾病或病症,例如選自陣發性夜間血紅蛋白尿(PNH)、年齡相關性黃斑變性(AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病(包括溶血性尿毒癥徵候群(HUS),非典型溶血性尿毒癥徵候群(aHUS)和血栓性血小板減少性紫癜(TTP))、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎、貝切特氏病、多發性硬化症、格林巴厘徵候群、阿茲海默氏病、肌萎縮性側索硬化症(ALS)、狼瘡性腎炎、系統性紅斑狼瘡(SLE)、糖尿病性視網膜病變、葡萄膜炎、慢性阻塞性肺病(COPD)、C3腎小球病、移植排斥反應、移植物抗宿主病(GVHD)、血液透析、敗血症、系統性炎性反應徵候群(SIRS)、急性呼吸窘迫徵候群(ARDS)、ANCA血管炎、抗磷脂徵候群、動脈粥樣硬化、IgA腎病和重症肌無力的替代途徑疾病或病症的對象,其量足以消除或降低所述病況的症狀發展的風險。在治療性應用中,以足以緩解或至少部分減少所述病況的症狀的治療有效量,將藥物組合物施用於疑似患有或已經患有替代途徑相關疾病或病症,例如選自陣發性夜間血紅蛋白尿(PNH)、年齡相關性黃斑變性(AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病(包括溶血性尿毒癥徵候群(HUS),非典型溶血性尿毒癥徵候群(aHUS)和血栓性血小板減少性紫癜(TTP))、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎、貝切特氏病、多發性硬化症、格林巴厘徵候群、阿茲海默氏病、肌萎縮性側索硬化症(ALS)、狼瘡性腎炎、系統性紅斑狼瘡(SLE)、糖尿病性視網膜病變、葡萄膜炎、慢性阻塞性肺病(COPD)、C3腎小球病、移植排斥反應、移植物抗宿主病(GVHD)、血液透析、敗血症、系統性炎性反應徵候群(SIRS)、急性呼吸窘迫徵候群(ARDS)、ANCA血管炎、抗磷脂徵候群、動脈粥樣硬化、IgA腎病和重症肌無力的替代途徑疾病或病症的對象。
在一個實施方案中,將包含高親和力MASP-3抑制性抗體的藥物組合物施用於患有或有風險發展PNH的物件。根據這一點,所述物件的紅細胞在組合物不存在時被C3片段調理,將所述組合物施用於所述物件,在物件中增加紅細胞存活。在一個實施方案中,所述物件在組合物不存在時表現出選自以下的一種或多種症狀:(i)血紅蛋白低於正常水準,(ii)血小板低於正常水準;(iii)網織紅細胞高於正常水準,和(iv)膽紅素高於正常水準,並且將組合物施用於物件改善至少一種或多種症狀,導致(i)增加、正常或幾乎正常水準的血紅蛋白(ii)增加、正常或幾乎正常水準的血小板,(iii)減少、正常或幾乎正常水準的網織紅細胞,和/或(iv)減少、正常或幾乎正常水準的膽紅素。
在用於治療、預防或減少選自陣發性夜間血紅蛋白尿(PNH)、年齡相關性黃斑變性(AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病(包括溶血性尿毒癥徵候群(HUS),非典型溶血性尿毒癥徵候群(aHUS)和血栓性血小板減少性紫癜(TTP))、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎和貝切特氏病的疾病或病症的嚴重程度中的預防和治療方案中,可以在幾個劑量中施用包含高親和力MASP-3抑制性抗體和任選MASP-2抑制劑的組合物,直到在物件中獲得充分的治療結果。在本發明的一個實施方案中,高親和力MASP-3抑制性抗體和/或MASP-2抑制劑可合適地施用於成年患者(例如平均成年體重70 kg),劑量為0.1 mg至10,000 mg,更合適地為1.0 mg至5,000 mg,更合適地為10.0 mg至2,000 mg,更合適地為10.0 mg至1,000 mg和還更合適地為50.0 mg至500 mg,或10至200 mg。對於兒科患者,可根據患者體重的比例來調節劑量。
本發明的高親和力MASP-3抑制性抗體和任選的MASP-2抑制性組合物的施用可通過單次施用組合物(例如包含MASP-3和任選MASP-2抑制劑、或雙特異性或雙重抑制劑的單一組合物,或共同施用分開的組合物),或有限順序的施用來進行,用於治療替代途徑相關的疾病或病症,例如選自以下的疾病或病症:陣發性夜間血紅蛋白尿(PNH)、年齡相關性黃斑變性(AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病(包括溶血性尿毒癥徵候群(HUS),非典型溶血性尿毒癥徵候群(aHUS)和血栓性血小板減少性紫癜(TTP))、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎、貝切特氏病、多發性硬化症、格林巴厘徵候群、阿茲海默氏病、肌萎縮性側索硬化症(ALS)、狼瘡性腎炎、系統性紅斑狼瘡(SLE)、糖尿病性視網膜病變、葡萄膜炎、慢性阻塞性肺病(COPD)、C3腎小球病、移植排斥反應、移植物抗宿主病(GVHD)、血液透析、敗血症、系統性炎性反應徵候群(SIRS)、急性呼吸窘迫徵候群(ARDS)、ANCA血管炎、抗磷脂徵候群、動脈粥樣硬化、IgA腎病和重症肌無力。
或者,在醫師確定的延長的時間週期內,可以定期間隔施用組合物,例如每天、每兩周、每週、每隔一周、每月或每兩月,以達到最佳治療效果。
在某些實施方案中,將包含至少一種高親和力MASP-3抑制性抗體的第一組合物和包含至少一種MASP-2抑制劑的第二組合物施用於患有或有風險發展選自陣發性夜間血紅蛋白尿(PNH)、年齡相關性黃斑變性(AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病(包括溶血性尿毒癥徵候群(HUS),非典型溶血性尿毒癥徵候群(aHUS)和血栓性血小板減少性紫癜(TTP))、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎、貝切特氏病、多發性硬化症、格林巴厘徵候群、阿茲海默氏病、肌萎縮性側索硬化症(ALS)、狼瘡性腎炎、系統性紅斑狼瘡(SLE)、糖尿病性視網膜病變、葡萄膜炎、慢性阻塞性肺病(COPD)、C3腎小球病、移植排斥反應、移植物抗宿主病(GVHD)、血液透析、敗血症、系統性炎性反應徵候群(SIRS)、急性呼吸窘迫徵候群(ARDS)、ANCA血管炎、抗磷脂徵候群、動脈粥樣硬化、IgA腎病和重症肌無力的疾病或病症的對象。
在一個實施方案中,將包含至少一種高親和力MASP-3抑制性抗體的第一組合物和包含至少一種MASP-2抑制劑的第二組合物同時施用(即在不超過大約15分鐘或更短、例如不超過10、5或1分鐘的任一種的間隔時間內)。在一個實施方案中,將包含至少一種高親和力MASP-3抑制性抗體的第一組合物和包含至少一種MASP-2抑制劑的第二組合物相繼施用(即在施用第二組合物之前或之後施用第一組合物,其中施用的間隔時間超過15分鐘)。在一些實施方案中,將包含至少一種高親和力MASP-3抑制性抗體的第一組合物和包含至少一種MASP-2抑制劑的第二組合物併發施用(即第一組合物的施用時間與第二組合物的施用重疊)。例如,在一些實施方案中,施用第一組合物和/或第二組合物達至少1、2、3或4周或更長的時間週期。在一個實施方案中,至少一種高親和力MASP-3抑制性抗體和至少一種MASP-2抑制劑在單位劑型中組合。在一個實施方案中,將包含至少一種高親和力MASP-3抑制性抗體的第一組合物和包含至少一種MASP-2抑制劑的第二組合物一起包裝在藥盒中,用於治療替代途徑相關疾病或病症、例如陣發性夜間血紅蛋白尿(PNH)、年齡相關性黃斑變性(AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病(包括溶血性尿毒癥徵候群(HUS),非典型溶血性尿毒癥徵候群(aHUS)和血栓性血小板減少性紫癜(TTP))、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎、貝切特氏病、多發性硬化症、格林巴厘徵候群、阿茲海默氏病、肌萎縮性側索硬化症(ALS)、狼瘡性腎炎、系統性紅斑狼瘡(SLE)、糖尿病性視網膜病變、葡萄膜炎、慢性阻塞性肺病(COPD)、C3腎小球病、移植排斥反應、移植物抗宿主病(GVHD)、血液透析、敗血症、系統性炎性反應徵候群(SIRS)、急性呼吸窘迫徵候群(ARDS)、ANCA血管炎、抗磷脂徵候群、動脈粥樣硬化、IgA腎病或重症肌無力。
在某些實施方案中,患有PNH、年齡相關性黃斑變性(AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病(包括溶血性尿毒癥徵候群(HUS),非典型溶血性尿毒癥徵候群(aHUS)和血栓性血小板減少性紫癜(TTP))、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎、貝切特氏病、多發性硬化症、格林巴厘徵候群、阿茲海默氏病、肌萎縮性側索硬化症(ALS)、狼瘡性腎炎、系統性紅斑狼瘡(SLE)、糖尿病性視網膜病變、葡萄膜炎、慢性阻塞性肺病(COPD)、C3腎小球病、移植排斥反應、移植物抗宿主病(GVHD)、血液透析、敗血症、系統性炎性反應徵候群(SIRS)、急性呼吸窘迫徵候群(ARDS)、ANCA血管炎、抗磷脂徵候群、動脈粥樣硬化、IgA腎病和重症肌無力的對象先前已經經歷、或目前正經歷用抑制補體蛋白C5切割的末端補體抑制劑的治療。在某些實施方案中,所述方法包含向所述物件施用本發明的組合物,所述組合物包含高親和力MASP-3抑制性抗體和任選MASP-2的抑制劑;和進一步向所述物件施用抑制補體蛋白C5切割的末端補體抑制劑。在某些實施方案中,所述末端補體抑制劑是人源化抗C5抗體或其抗原-結合片段。在某些實施方案中,所述末端補體抑制劑是依庫麗單抗。 XXI. 實施例
下面的實施例僅說明目前預期的用於實施本發明的最佳模式,但是不應解釋為限制本發明。本文所引用的所有文獻都通過引用明確地併入。 實施例 1
本實施例表明用腦膜炎奈瑟氏菌血清組A或腦膜炎奈瑟氏菌血清組B感染後,MASP-2缺陷型小鼠受到保護免於腦膜炎奈瑟氏菌誘導的死亡。 方法:
如US 7,919,094的實施例1所述,產生MASP-2敲除小鼠(MASP-2 KO小鼠),所述文獻通過引用併入本文中。10周齡MASP-2 KO小鼠(n=10)和野生型(WT) C57/BL6小鼠(n=10)經腹膜內(i.p.)注射接種劑量為2.6 x 107 CFU、體積為100 µl的腦膜炎奈瑟氏菌血清組A Z2491。將感染劑量連同右旋糖酐鐵施用於小鼠,終濃度為400 mg/kg。在72小時時間週期內,監測感染後的小鼠存活率。
在不同的實驗中,10周齡MASP-2 KO小鼠(n=10)和WT C57/BL6小鼠(n=10)經i.p.注射接種劑量為6 x 106 CFU、體積為100 µL的腦膜炎奈瑟氏菌血清組B菌株MC58。將感染劑量連同右旋糖酐鐵施用於小鼠,終劑量為400 mg/kg。在72小時時間週期內,監測感染後的小鼠存活率。在感染後72小時時間週期中,根據下表5所述的疾病評分參數,還對WT和MASP-2 KO小鼠測定疾病評分,所述參數是基於略加修改的Fransen等人(2010)的方案。 表5:在感染小鼠中與臨床體徵相關的疾病評分
體徵 評分
正常 0
稍微皺縮的皮毛 1
皺縮的皮毛,遲鈍和發粘的眼睛 2
皺縮的皮毛,昏睡和閉眼 3
嚴重生病和刺激後不動 4
死亡 5
感染後根據每小時間隔從小鼠採集血液樣品並分析,以測定腦膜炎奈瑟氏菌的血清水準(log cfu/mL),以證實感染和測定細菌從血清中的清除率。 結果:
圖6是卡普蘭-邁耶曲線,其圖示說明在施用2.6 x 107 cfu的感染劑量的腦膜炎奈瑟氏菌血清組A Z2491後的MASP-2 KO和WT小鼠的百分比存活率。如圖6所示,100% MASP-2 KO小鼠在感染後72小時週期內生存。相比之下,僅80%的WT小鼠( p=0.012)在感染後24小時仍生存,僅50%的WT小鼠在感染後72小時仍生存。這些結果表明MASP-2-缺陷型小鼠受到保護免於腦膜炎奈瑟氏菌血清組A Z2491-誘導的死亡。
圖7是卡普蘭-邁耶曲線,其圖示說明在施用6 x 106 cfu的感染劑量的腦膜炎奈瑟氏菌血清組B菌株MC58後的MASP-2 KO和WT小鼠的百分比存活率。如圖7所示,90%的MASP-2 KO小鼠在感染後72小時週期內生存。相比之下,僅20%的WT小鼠( p=0.0022)在感染後24小時仍生存。這些結果表明MASP-2-缺陷型小鼠受到保護免於腦膜炎奈瑟氏菌血清組B菌株MC58-誘導的死亡。
圖8圖示說明在i.p.感染6x106 cfu腦膜炎奈瑟氏菌血清組B菌株MC58後,從MASP-2 KO和WT小鼠在不同時間點採集的血液樣品中回收的腦膜炎奈瑟氏菌血清組B菌株MC58的log cfu/mL (n=3,在不同的時間點,對於這兩組小鼠)。結果表示為平均值±SEM。如圖8所示,在WT小鼠中,血液中的腦膜炎奈瑟氏菌水準在感染後24小時達到大約6.0 log cfu/mL的峰值,並在感染後36小時降至大約4.0 log cfu/mL。相比之下,在MASP-2 KO小鼠中,腦膜炎奈瑟氏菌水準在感染後12小時達到大約4.0 log cfu/mL的峰值,並在感染後36小時降至大約1.0 log cfu/mL (符號“*”表示p<0.05;符號“**”表示p=0.0043)。這些結果表明儘管MASP-2 KO小鼠用與用於WT小鼠的相同的劑量的腦膜炎奈瑟氏菌血清組B菌株MC58感染,但與WT相比,MASP-2 KO小鼠具有增高的菌血症清除率。
圖9圖示說明在感染6x106 cfu腦膜炎奈瑟氏菌血清組B菌株MC58後的3、6、12和24小時的MASP-2 KO和WT小鼠的平均疾病評分。如圖9所示,MASP-2-缺陷型小鼠顯示出對感染的高抗性,與WT小鼠相比,其在感染後6小時(符號“*”表示p=0.0411)、12小時(符號“**”表示p=0.0049)和24小時(符號“***”表示p=0.0049)具有低得多的疾病評分。圖9中的結果表示為平均值±SEM。
總之,本實施例的結果表明在腦膜炎奈瑟氏菌血清組A或腦膜炎奈瑟氏菌血清組B感染後,MASP-2-缺陷型小鼠受到保護免於腦膜炎奈瑟氏菌-誘導的死亡。 實施例 2
本實施例表明在腦膜炎奈瑟氏菌感染後施用MASP-2抗體增加了腦膜炎奈瑟氏菌感染小鼠的存活率。 背景/基本原理:
如美國專利7,919,094的實施例24所述(通過引用併入本文中),大鼠MASP-2蛋白用於淘選Fab噬菌體展示文庫,從中鑒定出Fab2 #11為功能活性抗體。從Fab2 #11產生大鼠IgG2c和小鼠IgG2a同種型的全長抗體。表徵了小鼠IgG2a同種型的全長MASP-2抗體的藥效動力學參數(如美國專利7,919,094的實施例38所述)。
在該實施例中,在腦膜炎奈瑟氏菌感染的小鼠模型中分析來自Fab2 #11的小鼠的MASP-2全長抗體。 方法:
在腦膜炎奈瑟氏菌感染的小鼠模型中,如下測試如上產生的來自Fab2 #11的小鼠IgG2a全長MASP-2抗體同種型。 1. 感染後施用小鼠 -MASP-2 單株抗體 (MoAb)
在i.p.注射高劑量(4x106 cfu)腦膜炎奈瑟氏菌血清組B菌株MC58後3小時,9周齡C57/BL6 Charles River小鼠用抑制性小鼠MASP-2抗體(1.0 mg/kg) (n=12)或對照同種型抗體(n=10)治療。 結果:
圖10是卡普蘭-邁耶曲線,其圖示說明在施用4x106 cfu的感染劑量的腦膜炎奈瑟氏菌血清組B菌株MC58,接著在感染後3小時施用抑制性MASP-2抗體(1.0 mg/kg)或對照同種型抗體後的小鼠百分比存活率。如圖10所示,用MASP-2抗體治療的小鼠的90%在感染後72小時週期內生存。相比之下,用同種型對照抗體治療的小鼠的僅50%在感染後72小時週期內生存。符號“*”表示p=0.0301,如通過兩條生存曲線的比較而測定。
這些結果表明施用MASP-2抗體有效治療和改善感染了腦膜炎奈瑟氏菌的對象的存活率。
如本文所表明,當在感染後3小時內施用時,在感染腦膜炎奈瑟氏菌的物件的治療中使用MASP-2抗體是有效的,並且預期在感染後24小時至48小時內有效。腦膜炎球菌性疾病(腦膜炎球菌血症或腦膜炎)是醫學急症,並且如果懷疑腦膜炎球菌性疾病(即在腦膜炎奈瑟氏菌被明確鑒定為病原之前),通常將會立即啟動治療。
考慮到實施例1中給出的MASP-2 KO小鼠的結果,認為在腦膜炎奈瑟氏菌感染之前施用MASP-2抗體也將有效預防或改善感染的嚴重程度。 實施例 3
本實施例表明在人血清中的腦膜炎奈瑟氏菌的補體-依賴性殺傷是MASP-3-依賴性的。 基本原理:
功能性MBL血清水準降低的患者對復發性細菌和真菌感染的敏感性增加(Kilpatrick等人, Biochim Biophys Acta1572:401-413 (2002))。已知腦膜炎奈瑟氏菌被MBL識別,和已經證實MBL-缺乏的血清不裂解腦膜炎奈瑟氏菌。
考慮到實施例1和2中所述的結果,進行了一系列實驗以確定在補體-缺乏的和對照人血清中施用MASP-2抗體治療腦膜炎奈瑟氏菌感染的功效。在高濃度血清(20%)中進行實驗以保護補體途徑. 方法: 1. 在不同補體 - 缺乏的人血清和在用人 MASP-2 抗體處理的人血清中的血清殺菌活性以下補體-缺乏的人血清和對照人血清用於本實驗: 表6:所測試的人血清樣品(如圖11所示)
樣品 血清類型
A 正常人血清(NHS) +人MASP-2 Ab
B NHS + 同種型對照Ab
C MBL -/-人血清
D NHS
E 熱滅活的(HI) NHS
針對人MASP-2的重組抗體分離自組合抗體文庫(Knappik, A.,等人, J. Mol. Biol. 296:57-86 (2000)),使用重組人MASP-2A作為抗原(Chen, C.B.和Wallis, J. Biol. Chem. 276:25894-25902 (2001))。在人血漿中強力抑制C4和C3的凝集素途徑-介導的活化(IC50~20 nM)的抗人scFv片段被鑒定並轉化為全長人IgG4抗體。
在37℃並伴隨振盪,將腦膜炎奈瑟氏菌血清組B-MC58與表6所示的不同血清(各自的血清濃度為20%)一起孵育,加或不加抑制性人MASP-2抗體(3 µg在100 µl 總體積中)。在以下時間點採集樣品:0-、30-、60-和90-分鐘間隔,倒平板(plated out),然後測定活菌計數。熱滅活的人血清用作陰性對照。 結果:
圖11圖示說明在表6所示的人血清樣品中,在不同時間點回收的腦膜炎奈瑟氏菌血清組B菌株MC58的活菌計數的log cfu/mL。表7提供圖11的Student's t-檢驗結果。 表7:圖11的Student's t-檢驗結果(時間點60分鐘)
   平均差(Log) 顯著性? P<0.05? P值概述
A vs B -0.3678 ***(0.0002)
A vs C -1.1053 ***(p<0.0001)
A vs D -0.2111 **(0.0012)
C vs D 1.9 ***(p<0.0001)
如圖11和表7所示,通過加入人MASP-2抑制性抗體而顯著增強了在人20%血清中的腦膜炎奈瑟氏菌的補體-依賴性殺傷。 2. 在不同補體-缺乏的人血清中的血清殺菌活性 以下補體-缺乏的人血清和對照人血清用於本實驗: 表8:所測試的人血清樣品(如圖12所示)
樣品 血清類型
A 正常人血清(NHS)
B 熱滅活的NHS
C MBL -/-
D MASP-3 -/- (MASP-1 +)
注意:在樣品D中的MASP-3 -/- (MASP-1 +)血清是取自3MC徵候群對象,3MC徵候群是覆蓋Carnevale、Mingarelli、Malpuech和Michels徵候群的統一術語。正如實施例4的進一步描述,MASP-1/3基因的外顯子12中的突變使MASP-3 (而非MASP-1)的絲胺酸蛋白酶結構域功能失調。如實施例10所述,前-因子D優先存在於3MC血清中,而活化因子D優先存在於正常人血清中。
在37℃並伴隨振盪,將腦膜炎奈瑟氏菌血清組B-MC58與不同補體-缺乏的人血清(各自的血清濃度為20%)一起孵育。在以下時間點採集樣品:0-、15-、30-、45-、60-、90-和120-分鐘間隔,倒平板,然後測定活菌計數。熱滅活的人血清用作陰性對照。 結果:
圖12圖示說明在表8所示的人血清樣品中,在不同時間點回收的腦膜炎奈瑟氏菌血清組B-MC58的活菌計數的log cfu/mL。如圖12所示,WT (NHS)血清對腦膜炎奈瑟氏菌具有最高水準的殺菌活性。相比之下,MBL -/-和MASP-3 -/- (其是MASP-1-足夠的)人血清不具有任何殺菌活性。這些結果表明在人20% (v/v)血清中的腦膜炎奈瑟氏菌的補體-依賴性殺傷是MASP-3-和MBL-依賴性的。表9提供圖12的Student's t-檢驗結果。 表9:圖12的Student's t-檢驗結果
比較 時間點 (min) 平均差(Log) 顯著性? P<0.05? P值概述
A vs B 60 -0.8325 ***(p<0.0001)
A vs B 90 -1.600 ***(p<0.0001)
A vs C 60 -1.1489 ***(p<0.0001)
A vs C 90 -1.822 ***(p<0.0001)
A vs D 60 -1.323 ***(0.0005)
A vs D 90 -2.185 ***(p<0.0001)
總之,圖12和表9所示結果表明在20%人血清中的腦膜炎奈瑟氏菌的補體-依賴性殺傷是MASP-3-和MBL-依賴性的。 3. 在缺乏MASP-2、MASP-1/3或MBL A/C的20% (v/v)小鼠血清中,腦膜炎奈瑟氏菌的補體-依賴性殺傷。 以下補體-缺乏的小鼠血清和對照小鼠血清用於本實驗: 表10:所測試的小鼠血清樣品(如圖13所示)
樣品 血清類型
A WT
B MASP-2 -/-
C MASP-1/3 -/-
D MBL A/C -/-
E WT熱滅活的(HIS)
在37℃並伴隨振盪,腦膜炎奈瑟氏菌血清組B-MC58與不同的補體-缺乏的小鼠血清(各自的血清濃度為20%)一起孵育。在以下時間點採集樣品:0-、15-、30-、60-、90-和120-分鐘間隔,倒平板,然後測定活菌計數。熱滅活的人血清用作陰性對照。 結果:
圖13圖示說明在表10所示的小鼠血清樣品中,在不同時間點回收的腦膜炎奈瑟氏菌血清組B-MC58的活菌計數的log cfu/mL。如圖13所示,MASP-2 -/-小鼠血清與WT小鼠血清相比,對腦膜炎奈瑟氏菌具有更高水準的殺菌活性。相比之下,MASP-1/3 -/-小鼠血清沒有任何殺菌活性。符號“**”表示p=0.0058,符號“***”表示p=0.001。表11提供圖13的Student's t-檢驗結果。 表11:圖13的Student's t-檢驗結果
比較 時間點 平均差(LOG) 顯著性? (p<0.05)? P值概述
A vs. B 60 min. 0.39 yes ** (0.0058)
A vs. B 90 min. 0.6741 yes *** (0.001)
總之,本實施例的結果表明與WT血清相比,MASP-2 -/-血清對腦膜炎奈瑟氏菌具有更高水準的殺菌活性,並且20%血清中的腦膜炎奈瑟氏菌的補體-依賴性殺傷是MASP-3-和MBL-依賴性的。 實施例 4
本實施例描述了一系列實驗,進行這些實驗以確定在如實施例1-3所述的MASP-2 KO小鼠中觀察到的針對腦膜炎奈瑟氏菌感染的MASP-3-依賴性抵抗的機制。 基本原理:
為了測定在MASP-2 KO小鼠中觀察到的針對腦膜炎奈瑟氏菌感染的MASP-3-依賴性抵抗(在以上實施例1-3中所述)的機制,如下進行了一系列實驗。 1. MASP-1/3- 缺陷型小鼠不缺乏凝集素途徑功能活性 ( 也稱為 “LEA-2”)方法:
為了測定MASP-1/3-缺陷型小鼠是否缺乏凝集素途徑功能活性(也稱為LEA-2),進行測定以檢測在凝集素活化途徑-特異性測定條件(1%血漿)下測定的在來自不同補體-缺陷型小鼠品系的血清中的C3轉化酶活性的動力學,例如描述於Schwaeble W.等人, PNAS第108(18)卷:7523-7528 (2011),通過引用併入本文中。
測試來自WT、C4-/-、MASP-1/3-/-;因子B-/-和MASP-2-/-小鼠的血漿,如下所述。
為了測定C3活化,用含甘露聚糖(1 µg/孔)、酵母聚糖(1 µg/孔)的包被緩衝液(15 mM Na 2Co 3, 35 mM NaHCO 3)或免疫複合物包被微量滴定板,所述免疫複合物通過用含1%人血清白蛋白(HSA)的包被緩衝液來包被,然後加入含綿羊抗HAS血清(2 µg/mL)的TBS (10mM Tris, 140 mM NaCl, pH 7.4)和0.05% Tween 20和5 mM Ca ++原位產生。將各板用含0.1% HAS的TBS封閉並用TBS/Tween 20/ Ca ++洗滌3次。血漿樣品在4 mM巴比妥、145 mM NaCl、2 mM CaCl 2、1 mM MgCl 2(pH 7.4)中稀釋,加入到各板並在37℃孵育1.5 h。洗滌後,使用兔抗人C3c (Dako)、接著是鹼性磷酸酶-綴合的山羊抗兔IgG和磷酸對硝基苯酯,測定結合的C3b。 結果:
在凝集素途徑-特異性條件下的C3活化動力學(通過C3b沉積在甘露聚糖-包被的板上而測定,用1%血清)見圖14。在MASP-2-/-血漿中未見C3切割。因子B-/- (因子B-/-)血漿以WT血漿的一半的速率切割C3,可能是因為擴增環的缺乏。在C4-/-中(T 1/2=33min)以及在MASP-1/3-/-缺乏的血漿(T 1/2=49 min)中,在C3向C3b的凝集素途徑-依賴性轉化中觀察到明顯延遲。這種在MASP-1/3 -/-血漿中的C3活化的延遲已被表明是MASP-1-依賴性的,而非MASP-3-依賴性的(參見Takahashi M.等人, J Immunol 180:6132-6138 (2008))。這些結果表明MASP-1/3-缺陷型小鼠不缺乏凝集素途徑功能活性(也稱為“LEA-2”)。 2. 遺傳性 MASP-3 缺陷對替代途徑活化的影響。基本原理:
通過測定MASP-3-缺乏的3MC徵候群(因編碼MASP-3絲胺酸蛋白酶的外顯子中的移碼突變所致)患者的血清,測定遺傳性MASP-3缺陷對替代途徑活化的影響。3MC徵候群是覆蓋Carnevale、Mingarelli、Malpuech和Michels徵候群的統一術語。這些罕見的常染色體隱性病症表現出發育特徵譜,包括特徵性面部畸形、唇裂和/或齶裂、顱縫早閉、學習障礙以及生殖器、肢體和膀胱腎異常。Rooryck等人, Nature Genetics43:197-203 (2011)研究了11個3MC徵候群家族並鑒定了2個突變基因:COLEC11和MASP-1。MASP-1基因中的突變使得編碼MASP-3的絲胺酸蛋白酶結構域的外顯子而非編碼MASP-1的絲胺酸蛋白酶的外顯子功能失調。因此,在編碼MASP-3的絲胺酸蛋白酶的外顯子中具有突變的3MC患者缺乏MASP-3,但MASP-1卻足夠。 方法:
MASP-3-缺乏的血清得自3MC患者、3MC患者的父母(兩者是攜帶突變的等位基因的雜合體,所述突變使編碼MASP-3絲胺酸蛋白酶結構域的外顯子功能失調)以及得自C4-缺陷型患者(在兩種人C4基因中缺陷)和MBL-缺陷型對象。如Bitter-Suermann等人, Eur. J. Immunol11:291-295 (1981))所述,在酵母聚糖-包被的微量滴定板上,在0.5至25%血清濃度範圍內,在傳統的AP-特異性條件(BBS/Mg ++/EGTA, 無Ca ++, 其中BBS =含有蔗糖的巴比妥緩衝鹽水)下進行替代途徑測定,並且隨時間測定C3b沉積。 結果:
圖15圖示說明在得自MASP-3-缺陷型、C4-缺陷型和MBL-缺陷型對象的血清樣品中,作為血清濃度的函數的,在酵母聚糖-包被的微量滴定板上的替代途徑-驅動的C3b沉積水準。如圖15所示,MASP-3-缺陷型患者血清在高血清濃度(25%、12.5%、6.25%血清濃度)時具有殘留的替代途徑(AP)活性,但顯著更高的AP 50(即需要9.8%血清以達到50%最大C3沉積)。
圖16圖示說明在得自MASP-3-缺陷型、C4-缺陷型和MBL-缺陷型人類物件的10%人血清樣品中,在“傳統的”替代途徑-特異性(AP-特異性)條件(即BBS/EGTA/Mg ++無Ca ++)下,作為時間的函數的,在酵母聚糖-包被的微量滴定板上的替代途徑-驅動的C3b沉積水準。
下表12概述了圖15所示的AP 50結果和圖16所示的C3b沉積的一半時間。 表12:圖15和16中所示結果的概述
血清類型 AP 50(%) T 1/2(min)
MASP-3-缺陷型(3MC患者) 9.8 37.4
3MC對象的母親(雜合子) 4.3 17.2
3MC對象的父親(雜合子) 4.3 20.9
C4-缺陷型 4.0 11.6
MBL-缺陷型 4.8 11.0
注意:在BBS/Mg ++/EGTA緩衝液中,凝集素途徑-介導的作用缺乏,因為在該緩衝液中缺乏Ca ++
總之,在這些測定的條件下,3MC患者中的替代途徑顯著受損。 3. 在缺乏MASP-2或MASP-1/3的小鼠血清中,測定在甘露聚糖、酵母聚糖和肺炎鏈球菌D39上的C3b沉積。 方法:
在甘露聚糖、酵母聚糖和肺炎鏈球菌D39-包被的微量滴定板上測定C3b沉積,使用得自MASP-2-/-、MASP-1/3-/-和WT小鼠的濃度範圍0%至20%的小鼠血清。在“傳統的”替代途徑-特異性條件(即BBS/EGTA/Mg ++無Ca ++),或在允許凝集素途徑和替代途徑兩者起作用的生理條件(即BBS/Mg ++/Ca ++)下,進行C3b沉積測定。 結果:
圖17A圖示說明在得自WT、MASP-2-缺陷型和MASP-1/3-缺陷型小鼠的血清樣品中,在傳統的替代途徑-特異性條件(即BBS/EGTA/Mg ++無Ca ++)下,或在允許凝集素途徑和替代途徑兩者起作用的生理條件(BBS/Mg ++/Ca ++)下,作為血清濃度的函數的,在甘露聚糖-包被的微量滴定板上的C3b沉積水準。圖17B圖示說明在得自WT、MASP-2-缺陷型和MASP-1/3-缺陷型小鼠的血清樣品中,在傳統的AP-特異性條件(即BBS/EGTA/Mg ++無Ca ++)或在允許凝集素途徑和替代途徑兩者起作用的生理條件(BBS/Mg ++/Ca ++)下,作為血清濃度的函數的,在酵母聚糖-包被的微量滴定板上的C3b沉積水準。圖17C圖示說明在得自WT、MASP-2-缺陷型和MASP-1/3-缺陷型小鼠的血清樣品中,在傳統的AP-特異性條件(即BBS/EGTA/Mg ++無Ca ++)下,或在允許凝集素途徑和替代途徑兩者起作用的生理條件(BBS/Mg ++/Ca ++)下,作為血清濃度的函數的,在肺炎鏈球菌D39-包被的微量滴定板上的C3b沉積水準。
圖18A圖示說明在傳統的AP-特異性條件(即BBS/EGTA/Mg ++無Ca ++)或在允許凝集素途徑和替代途徑兩者起作用的生理條件(BBS/Mg ++/Ca ++)下,在甘露聚糖-包被的微量滴定板上進行的在高度稀釋的血清中的C3b沉積測定結果,使用血清濃度範圍為0%至1.25%。圖18B圖示說明在傳統的AP-特異性條件(即BBS/EGTA/Mg ++無Ca ++)或在允許凝集素途徑和替代途徑兩者起作用的生理條件(BBS/EGTA/Mg ++/Ca ++)下,在酵母聚糖-包被的微量滴定板上進行的C3b沉積測定結果,使用血清濃度範圍為0%至1.25%。圖18C圖示說明在傳統的AP-特異性條件(即BBS/EGTA/Mg ++無Ca ++)或在允許凝集素途徑和替代途徑兩者起作用的生理條件(BBS/EGTA/Mg ++/Ca ++)下,在肺炎鏈球菌D39-包被的微量滴定板上進行的C3b沉積測定結果,使用血清濃度範圍為0%至1.25%。
如圖18A-C所示,還在傳統的替代途徑-特異性條件(即BBS/EGTA/Mg ++無Ca ++)或在允許凝集素途徑和替代途徑兩者起作用的生理條件(BBS/Mg ++/Ca ++)下,進行C3b沉積測定,使用更高稀釋度範圍為0%至1.25%血清,在甘露聚糖-包被的板(圖18A);酵母聚糖-包被的板(圖18B)和肺炎鏈球菌D39-包被的板上(圖18C)。在更高血清稀釋度下替代途徑逐漸消失,使得在Ca ++存在時在MASP-1/3-缺乏的血清中觀察到的活性是MASP-2-介導的LP活性,並且在Ca ++存在時在MASP-2-缺乏的血清中的活性是MASP-1/3-介導的AP殘留活化。 討論:
本實施例中所述的結果表明,MASP-2抑制劑(或MASP-2 KO)通過促進MASP-3-驅動的替代途徑活化而提供免於腦膜炎奈瑟氏菌感染的顯著保護作用。小鼠血清溶菌測定和人血清溶菌測定的結果進一步表明,通過監測針對腦膜炎奈瑟氏菌的血清殺菌活性,在MBL-缺陷型(小鼠MBL A和MBL C雙重-缺陷型和人MBL-缺陷型血清)中,針對腦膜炎奈瑟氏菌的殺菌活性不存在。
圖1基於本文提供的結果,說明了對凝集素途徑和替代途徑的新的理解。圖1描繪了LEA-2在調理作用和細胞裂解中的作用。儘管MASP-2在多個生理性的凝集素-依賴性環境中是“下游”C3b沉積(和所導致的調理作用)的引發劑(圖18A、18B、18C),但它在血清-敏感性細菌的溶菌中也起作用。如圖1所示,對於血清-敏感性病原體例如腦膜炎奈瑟氏菌,所提出的負責MASP-2-缺乏的或MASP-2-耗盡的血清/血漿的增加的殺菌活性的分子機制就是,對於細菌的溶菌,與MASP-1和MASP-3締合的凝集素途徑識別複合物必須彼此靠近地結合至細菌表面上,從而允許MASP-1切割MASP-3。與MASP-1和MASP-2相反,MASP-3不是自我活化的酶,但是在許多情況下,需要被MASP-1活化/切割而轉化為其酶促活性形式。
進一步如圖1所示,活化的MASP-3然後可以切割病原體表面上的C3b-結合的因子B,通過分別形成酶促活性替代途徑C3和C5轉化酶C3bBb和C3bBb(C3b)n而啟動替代活化級聯。攜帶MASP-2的凝集素-途徑活化複合物不參與MASP-3活化,並且,在MASP-2不存在時或耗盡後,所有凝集素途徑活化複合物將會裝載MASP-1或裝載MASP-3。因此,在MASP-2不存在時,在微生物表面攜帶MASP-1和MASP-3的凝集素-途徑活化複合物將彼此靠近的可能性明顯增加,導致更多MASP-3被活化,從而導致MASP-3-介導的C3b-結合的因子B切割的更高速率,在微生物表面形成替代途徑C3和C5轉化酶C3bBb和C3bBb(C3b)n。這導致末端活化級聯C5b-C9的活化,形成膜攻擊複合物,其是由表面-結合的C5b與C6締合、C5bC6與C7締合、C5bC6C7與C8締合和C5bC6C7C8組成,導致C9聚合,其插入到細菌表面結構並在細菌壁中形成小孔,其將導致補體-靶向的細菌的滲透壓殺傷。
這一新概念的核心就是本文提供的資料清楚地顯示了凝集素途徑活化複合物驅動兩個不同的活化途徑,如圖1所示。 實施例 5
本實施例表明MASP-2缺乏和/或MASP-3缺乏對得自陣發性夜間血紅蛋白尿(PNH)小鼠模型的血液樣品的紅細胞裂解的抑制性作用。 背景/基本原理:
陣發性夜間血紅蛋白尿(PNH),也稱為Marchiafava-Micheli徵候群,是一種獲得性的、可能危及生命的血液病,特徵在於補體-誘導的血管內溶血性貧血。PNH的標誌是慢性補體-介導的血管內溶血,這是PNH紅細胞上缺乏補體調節劑CD55和CD59所致的補體替代途徑的未經調節的活化的結果,隨後是血紅蛋白尿和貧血。Lindorfer, M.A.,等人, Blood 115(11) (2010), Risitano, A.M, Mini-Reviews in Medicinal Chemistry, 11:528-535 (2011)。PNH中的貧血是因為血流中的紅細胞破壞所致。PNH的症狀包括血尿(因尿中可見血紅蛋白)、背痛、疲勞、呼吸短促和血栓形成。PNH可以自發產生,稱為“原發性PNH”或在其他骨髓病症例如再生障礙性貧血的情況下發生,稱為“繼發性PNH”。PNH的治療包括對付貧血的輸血,對付血栓形成的抗凝,和使用單株抗體依庫麗單抗 (Soliris®),該抗體保護血細胞免於因抑制補體系統所致的免疫破壞(Hillmen P.等人, N. Engl. J. Med. 350(6):552-9 (2004))。依庫麗單抗(Soliris®)是人源化單株抗體,其靶向補體成分C5,封閉其被C5轉化酶切割,從而阻止C5a的產生和MAC的裝配。用依庫麗單抗治療PNH患者,在大約半數患者中導致血管內溶血減少(經乳酸脫氫酶(LDH)測定),導致血紅蛋白穩定化和輸血非依賴性(Hillmen P,等人, Mini-Reviews in Medicinal Chemistry, vol 11(6) (2011))。儘管經歷依庫麗單抗治療的幾乎所有患者都達到正常或幾乎正常的LDH水準(因為控制了血管內溶血),但僅有大約三分之一的患者的血紅蛋白值達到大約11gr/dL,接受依庫麗單抗的其餘患者以大約相同比例繼續表現出中度至嚴重(即輸血-依賴性的)貧血(Risitano A.M.等人, Blood113:4094-100 (2009))。正如Risitano等人, Mini-Reviews in Medicinal Chemistry11:528-535 (2011)所述,已經表明接受依庫麗單抗的PNH患者含有與他們的大部分PNH紅細胞結合的C3片段(而未經治療的患者則沒有),導致以下結論:膜-結合的C3片段作為調理素對PNH紅細胞起作用,導致它們通過特異性C3受體而被網羅到網狀內皮細胞中並且隨後導致血管外溶血。因此,對於發生C3-片段-介導的血管外溶血的那些患者,需要除了使用依庫麗單抗之外的治療策略,因為他們繼續需要輸入紅細胞。
本實施例描述了評價MASP-2-和MASP-3-缺乏的血清對得自PNH小鼠模型的血液樣品的紅細胞裂解的作用的方法,並且表明了MASP-2抑制和/或MASP-3抑制對治療PNH對象的功效,並且還支持在經歷C5抑制劑例如依庫麗單抗治療的PNH物件中使用MASP-2抑制劑和/或MASP-3抑制劑(包括雙重或雙特異性MASP-2/MASP-3抑制劑)以改善C3片段-介導的血管外溶血的作用。 方法: PNH動物模型:
血液樣品得自具有Crry和C3缺陷(Crry/C3-/-)的基因靶向小鼠和CD55/CD59-缺陷型小鼠。這些小鼠丟失了其紅細胞上的各自的表面補體調節劑,因此這些紅細胞易於發生自發補體自我裂解,如同PNH人紅細胞那樣。
為了進一步敏化這些紅細胞,使用這些細胞,用或不用甘露聚糖包被,然後在WT C56/BL6血漿、無MBL血漿、MASP-2 -/-血漿、MASP-1/3 -/-血漿、人NHS、人MBL -/-血漿和用人MASP-2抗體處理的NHS中測試其溶血。 1. MASP-2- 缺乏的 / 耗盡的血清和對照中, Crry/C3 CD55/CD59 雙重 - 缺陷型鼠紅細胞的溶血測定第一天。鼠RBC的製備(±甘露聚糖包被)。
材料包括:新鮮小鼠血液,BBS/Mg ++/Ca ++(4.4 mM巴比妥酸、1.8 mM巴比妥鈉、145 mM NaCl、pH 7.4, 5mM Mg ++、5mM Ca ++)、氯化鉻、CrCl 3·6H 20 (0.5mg/mL在BBS/Mg ++/ Ca ++中)和甘露聚糖,100 µg/mL在BBS/Mg ++/Ca ++中。
在4℃冷凍離心機中在2000xg將全血(2 mL)離心1-2 min。吸去血漿和血沉棕黃層。然後通過將RBC沉澱物重懸於2 mL冰冷的BBS/明膠/Mg ++/Ca ++中並重複離心步驟,將樣品洗滌3次。第3次洗滌後,將沉澱物重懸於4 mL BBS/Mg ++/Ca ++中。將2 mL等分試樣的RBC留出,作為未包被對照。向剩餘的2 mL中加入2 mL CrCl3和2 mL 甘露聚糖,並將樣品在室溫下孵育並溫和攪拌5分鐘。反應通過加入7.5 mL BBS/明膠/Mg ++/Ca ++而終止。將樣品如上所述地離心,重懸於2 mL BBS/明膠/Mg ++/Ca ++和如上所述地再洗滌2次,然後貯存於4℃。 第二天。溶血測定
材料包括BBS/明膠/Mg ++/Ca ++(如上)、測試血清、96-孔圓底和平底板和分光光度計,其在410-414 nm處閱讀96孔板。
首先測定RBC濃度並將細胞調整至10 9/mL,並在此濃度下貯存。使用前,將細胞在測定緩衝液中稀釋至10 8/mL,然後使用100 µL每孔。在410-414 nm處(允許比541nm更高的靈敏度)測定溶血。在冰冷的BBS/明膠/Mg ++/Ca ++中製備測試血清稀釋液。將100 µL每種血清稀釋液移入圓底板中。加入100 µL適當稀釋的RBC製備物(即10 8/mL),在37℃孵育大約1小時,並觀察溶血。(此時可對各板拍照。)然後將板在最大速率離心5分鐘。吸出100 µL液相,移至平底板中,並在410-414 nm處記錄OD。保留RBC沉澱物(這些可以在隨後用水裂解,以得到相反結果)。 實驗#1
新鮮血液得自CD55/CD59雙重-缺陷型小鼠,並且如以上方案詳述,製備Crry/C3雙重-缺陷型小鼠的血液和紅細胞。將細胞分開,一半細胞用甘露聚糖包被,另一半不處理,調節終濃度至108/mL,其中100 µL用於溶血測定,所述測定如上所述地進行。 實驗#1的結果: 在PNH動物模型中,凝集素途徑參與紅細胞裂解
在初步實驗中,已經確定非-包被的WT小鼠紅細胞在任何小鼠血清中都不裂解。進一步確定了甘露聚糖-包被的Crry-/-小鼠紅細胞在WT小鼠血清中緩慢裂解(在37度時超過3小時),但它們在無MBL血清中不裂解(資料未顯示)。
已經確定甘露聚糖-包被的Crry-/-小鼠紅細胞在人血清中快速裂解,但在熱滅活的NHS中不裂解。重要的是,甘露聚糖-包被的Crry-/-小鼠紅細胞在稀釋低至1/640的NHS中裂解(即1/40、1/80、1/160、1/320和1/640稀釋度中全都裂解) (資料未顯示)。在這一稀釋度中,替代途徑不起作用(AP功能活性在低於8%血清濃度中顯著降低)。 實驗#1的結論
甘露聚糖-包被的Crry-/-小鼠紅細胞在具有MBL的高度稀釋的人血清中裂解得非常好,但在無MBL的高度稀釋的人血清中不裂解。在所測的各個血清濃度中的有效裂解暗示替代途徑不參與這種裂解或這種裂解無需替代途徑。MBL-缺乏的小鼠血清和人血清不能裂解甘露聚糖-包被的Crry-/-小鼠紅細胞,表明經典途徑對所觀察的裂解也不起作用。因為需要凝集素途徑識別分子(即MBL),所以這種裂解是由凝集素途徑介導。 實驗#2
新鮮血液得自Crry/C3和CD55/CD59雙重-缺陷型小鼠,並且在如上所述的溶血測定中,在以下人血清存在時,分析甘露聚糖-包被的Crry-/-小鼠紅細胞:MASP-3 -/-;無MBL;WT;用人MASP-2抗體預處理的NHS;和熱滅活的NHS作為對照。 實驗 #2 的結果:在 PNH 動物模型中, MASP-2 抑制劑和 MASP-3 缺陷阻止紅細胞裂解
將甘露聚糖-包被的Crry-/-小鼠紅細胞與以下一起孵育:在稀釋至1/640的NHS稀釋液中(即1/40、1/80、1/160、1/320和1/640)、人MBL-/-血清、人MASP-3-缺乏的血清(來自3MC患者)和用MASP-2 mAb預處理的NHS、和熱滅活的NHS作為對照。
離心ELISA微量滴定板並在圓孔板底部收集非-裂解的紅細胞。收集各孔的上清液,並通過在ELISA讀板器中讀取OD415 nm而測定從裂解的紅細胞中釋放的血紅蛋白量。
觀察到MASP-3-/-血清完全不裂解甘露聚糖-包被的小鼠紅細胞。在對照熱滅活的NHS (陰性對照)中,正如所料,未見裂解。MBL-/-人血清在1/8和1/16稀釋度裂解甘露聚糖-包被的小鼠紅細胞。MASP-2-抗體-預處理的NHS在1/8和1/16稀釋度裂解甘露聚糖-包被的小鼠紅細胞,而WT人血清在低至1/32稀釋度裂解甘露聚糖-包被的小鼠紅細胞。
圖19圖示說明在來自MASP-3-/-、熱滅活的(HI) NHS、MBL-/-、用MASP-2抗體預處理的NHS和NHS對照的血清中,一系列血清稀釋度的人血清使甘露聚糖-包被的鼠紅細胞溶血(如通過裂解的小鼠紅細胞(Crry/C3-/-)至上清液中的血紅蛋白釋放來測量,所述上清液根據光度測定法測定)。
圖20圖示說明在來自MASP-3-/-、熱滅活的(HI) NHS、MBL-/-、用MASP-2抗體預處理的NHS和NHS對照的血清中,一系列血清濃度的人血清使甘露聚糖-包被的鼠紅細胞溶血(如通過裂解的小鼠紅細胞(Crry/C3-/-)至上清液中的血紅蛋白釋放來測量,所述上清液根據光度測定法測定)。
根據圖19和20所示的結果,表明了抑制MASP-3將會阻止任何補體-介導的敏化紅細胞的裂解,所述紅細胞缺乏來自自體補體活化的保護作用。MASP-2抗體對MASP-2的抑制顯著地改變了CH 50並在某種程度上具有保護性,但MASP-3抑制更有效。 實驗#3
在如上所述的溶血測定中,在以下血清存在時分析得自Crry/C3和CD55/CD59雙重-缺陷型小鼠的新鮮血液的非-包被的Crry-/-小鼠紅細胞:MASP-3-/-;MBL-/-;WT;用人MASP-2抗體預處理的NHS;和熱滅活的NHS作為對照。 結果:
圖21圖示說明在一系列血清濃度的來自3MC (MASP-3-/-)患者、熱滅活的(HI) NHS、MBL-/-,用MASP-2抗體預處理的NHS和NHS對照的人血清中,非-包被的鼠紅細胞的溶血(如通過裂解的WT小鼠紅細胞至上清液中的血紅蛋白釋放來測量,所述上清液根據光度測定法測定)。如圖21所示和表13所概述的,表明了抑制MASP-3抑制補體-介導的非-敏化的WT小鼠紅細胞的裂解。
圖22圖示說明在來自熱滅活的(HI) NHS、MBL-/-、用MASP-2抗體預處理的NHS和NHS對照的人血清中,一系列血清濃度的人血清使非-包被的鼠紅細胞溶血(如通過裂解的小鼠紅細胞(CD55/59-/-)至上清液中的血紅蛋白釋放來測量,所述上清液根據光度測定法測定)。如圖22所示和表13所概述的,表明了抑制MASP-2在有限程度上具有保護性。 表13:表示為血清濃度的CH 50
血清 WT CD55/59 -/-
3MC患者 不裂解 不裂解
熱滅活的NHS 不裂解 不裂解
MBL AO/XX供體(MBL缺陷型) 7.2% 2.1%
NHS + MASP-2抗體 5.4% 1.5%
NHS 3.1% 0.73%
注意:“CH 50”是補體-介導的溶血達到50%的點。
總之,本實施例的結果表明了抑制MASP-3阻止任何補體的敏化和非-敏化紅細胞的裂解,所述紅細胞缺乏來自自體補體活化的保護作用。MASP-2抑制在某種程度上也具有保護性。因此,MASP-2和MASP-3的抑制劑單獨或聯用(即共同施用、相繼施用)或MASP-2/MASP-3雙特異性或雙重抑制劑可以用於治療PNH物件,並且還可用於在經歷用C5抑制劑例如依庫麗單抗 (Soliris®)的治療的PNH患者中改善(即抑制、阻止或降低其嚴重程度)血管外溶血。 實施例 6
本實施例描述了溶血測定,在WT或MASP-1/3-/-小鼠血清存在時測定了甘露聚糖-包被的兔紅細胞的裂解。 方法: 1. 在小鼠 MASP-1/3- 缺陷型血清和 WT 對照血清中對兔 RBC ( 甘露聚糖包被的 ) 的溶血測定第一天。兔RBC的製備。
材料包括:新鮮兔血、BBS/ Mg ++/Ca ++(4.4 mM巴比妥酸、1.8 mM巴比妥鈉、145 mM NaCl、pH 7.4、5 mM Mg ++、5 mM Ca ++)、含0.1%明膠的BBS/ Mg ++/Ca ++、含氯化鉻的緩衝液即CrCl 3.6 H 2O (0.5 mg /mL在BBS/ Mg ++/Ca ++中)和甘露聚糖,100 µg/mL在BBS/ Mg ++/Ca ++中。 1. 將兔全血(2 mL)分到2個1.5 mL微量離心管中並在4℃冷凍微量離心機中在8000 rpm (大約 5.9 rcf)離心3分鐘。重懸於冰冷的BBS/Mg ++/Ca ++後,將RBC沉澱物洗滌3次。第3次洗滌後,將沉澱物重懸於4 mL BBS/Mg ++/Ca ++中。將2 mL該等分試樣加入到15-mL falcon管中,用作未包被對照。將剩餘的2 mL RBC等分試樣在2 mL CrCl 3緩衝液中稀釋,加入2 mL甘露聚糖溶液並將懸液在室溫下孵育5分鐘,同時溫和攪拌。通過向該混合物中加入7.5 mL BBS/0.1%明膠/Mg ++/Ca ++而終止反應。將紅細胞沉澱,並如上所述地用BBS/0.1%明膠/Mg ++/Ca ++將RBC洗滌2次。將RBC懸液在4℃貯存於BBS/0.1%明膠/ Mg ++/Ca ++中。 2. 100 µL懸浮的RBC用1.4 mL水稀釋並在8000 rpm (大約 5.9 rcf)離心3分鐘,將上清液在541nm處的OD調節至0.7 (在541nm處的OD為0.7,相當於大約10 9紅細胞/mL)。 3. 將重懸的RBC用BBS/0.1%明膠/Mg ++/Ca ++稀釋至濃度為10 8/mL。 4. 在冰冷的BBS/明膠/Mg ++/Ca ++中製備測試血清稀釋液,並將100µL每種血清稀釋液移入圓底板的相應孔中。加入100 µL適當稀釋的RBC (即10 8/mL)到各孔中。作為完全裂解的對照,將純淨水(100 µL)與稀釋RBC (100 µL)混合,導致100%裂解,而BBS/0.1%明膠/ Mg ++/Ca ++無血清(100 µL)用作陰性對照。然後將板在37℃孵育1小時。 5. 將圓底板在3250 rpm離心5分鐘。將來自各孔的上清液(100 µL)移至平底板的相應孔中並在ELISA讀板器中在415-490處讀取OD。結果報告為在415 nm處的OD與在490 nm處的OD之比。 結果:
圖23圖示說明在來自MASP-1/3-/-和WT對照的血清中,一系列血清濃度的小鼠血清使甘露聚糖-包被的兔紅細胞溶血(如通過裂解的兔紅細胞至上清液中的血紅蛋白釋放來測量,所述上清液根據光度測定法測定)。如圖23所示,表明了抑制MASP-3阻止補體-介導的甘露聚糖-包被的WT兔紅細胞的裂解。這些結果進一步支持使用MASP-3抑制劑來治療如實施例5所述的PNH的一個或多個方面。 實施例 7
本實施例描述了MASP-1和MASP-3的單株抗體的產生,使用包含修飾的DT40細胞系DTLacO的體外系統。 背景/基本原理:
使用包含修飾的DT40細胞系DTLacO的體外系統,產生針對人MASP-1和MASP-3的抗體,所述系統允許特定多肽的多樣化的可逆誘導,如WO2009029315和US2010093033中的進一步描述。DT40是已知在培養中其重鏈和輕鏈免疫球蛋白(Ig)基因發生組成型突變的雞B細胞系。正如其他B細胞,該組成型誘變將突變靶向Ig基因的V區,和因此,所表達抗體分子的CDR。DT40細胞中的組成型誘變是通過基因轉化而發生,使用作為供體序列的位於各功能性V區上游的一組非-功能性V基因區段(假-V基因;ψV)。先前已經表明ψV區的缺失引起多樣化機制的轉換(從基因轉化到體細胞超變),所述機制通常可見於人B細胞。已經表明DT40雞B細胞淋巴瘤細胞系對於離體的抗體進化而言是有希望的起點(Cumbers, S.J.等人, Nat Biotechnol20, 1129-1134 (2002);Seo, H.等人, Nat Biotechnol23, 731-735 (2005))。DT40細胞在培養中穩定增殖,倍增時間為8-10小時(與人B細胞系的20-24 hr相比),它們支持非常有效的同源基因打靶(Buerstedde, J.M.等人, Embo J9, 921-927 (1990))。鑒於DT40細胞可以進入多樣化、基因轉化和體細胞超變的2種獨特的生理途徑,其分別產生模板化和非模板化的突變,因此DT40細胞控制大量潛在的V區序列多樣化(Maizels, N. Annu Rev Genet39, 23-46 (2005))。多樣化的重鏈和輕鏈免疫球蛋白(Ig)以細胞表面展示的IgM的形式表達。表面IgM具有雙價形式,結構上類似於IgG分子。可以通過與固定的可溶性的或膜展示的抗原形式結合,而分離展示對特定抗原具有特異性的IgM的細胞。然而,對於抗體進化,使用DT40細胞在實踐中是受限的,因為正如在其他轉化的B細胞系中,多樣化以小於1%生理比率而發生。
在用於本實施例的系統中,正如WO2009029315和US2010093033所述,DT40細胞經改造以加速Ig基因多樣化率,而不犧牲進一步進行遺傳修飾的能力或者基因轉化和體細胞超變以促進誘變的潛力。對DT40進行了兩個關鍵性修飾,以增加多樣化率,並因此在我們的細胞文庫中增加結合特異性的複雜性。首先,在強效大腸桿菌乳糖操縱子/阻遏物調節性網路的控制之下進行Ig基因多樣化。將由強效大腸桿菌乳糖操縱子的大約100個聚合重複單位組成的多聚物(PolyLacO)插入到通過同源基因打靶而重排和表達的Igλ和IgH基因的上游。然後可將融合到乳糖阻遏蛋白(LacI)上的調節因子與LacO調節元件相連,以調控多樣化,利用乳糖阻遏物對操縱子DNA的高親和力(k D=10 -14M)。與進行任何改造之前的親本DT40細胞相比,DT40 PolyLacO-λ R細胞(其中PolyLacO僅在Igλ整合)在Ig基因多樣化率上表現出5倍的增加(Cummings, W.J.等人, PLoS Biol5, e246 (2007))。在經改造而攜帶同時靶向Igλ和IgH基因的PolyLacO的細胞(“DTLacO”)中,多樣化進一步升高。相對於親本DT40 PolyLacO-λ RLacI-HP1系的2.8%特徵,DTLacO細胞已表明其多樣化率升高了2.5-至9.2-倍。因此,相對於DT40親本細胞系,將PolyLacO元件靶向重鏈和輕鏈基因,加速了多樣化達21.7倍。將調節因子與Ig基因座相連,不僅改變了誘變頻率,而且可改變誘變途徑,產生獨特序列變化的更大的集合(Cummings等人,2007;Cummings等人,2008)。第二,產生了序列起點的多樣化集合,用於連接的因子-加速的Ig基因多樣化。通過將重排的Ig重鏈可變區(分離自2月齡雞)靶向重鏈基因座,將這些多樣化序列起點加到DTLacO。這些重鏈可變區的加入產生了10 7個新起點譜(repertoire),用於抗體多樣化。將這些新起點構建到DTLacO細胞系中,允許鑒定與特定靶結合的殖株,並隨之允許通過連接的因子所致的快速親和力成熟。親和力成熟後,通過將成熟的、重排的重鏈-和輕鏈-可變序列(VH和Vλ;包括雞構架區和互補決定區或CDR)選殖到含有人IgG1和λ恒定區的表達載體中,產生全長、重組嵌合IgG。這些重組mAb適於體外和體內應用,並且它們可用作人源化的起點。 方法: MASP-1 MASP-3 抗原結合的選擇
通過結合DTLacO群體,進行初步選擇,所述群體是通過以下方式而多樣化:通過基因靶向到與人MASP-1 (SEQ ID NO: 8)和MASP-3抗原(SEQ ID NO: 2)複合的珠;並且隨後通過FACS選擇,使用螢光標記的可溶性抗原(Cumbers, S.J.等人, Nat Biotechnol20, 1129-1134 (2002);Seo, H.等人, Nat Biotechnol23, 731-735 (2005)。因為MASP-1和MASP-3之間共用的α鏈中的保守胺基酸序列(顯示於圖2)和獨特的β鏈序列(顯示於圖2),進行了MASP-1和MASP-3的結合劑的單獨的、平行的篩選,以鑒定MASP-1特異性mAb、MASP-3特異性mAb以及能夠與MASP-1和MASP-3兩者結合的(雙重-特異性) mAb。2種形式的抗原用於選擇和篩選結合劑。首先,將與Fc結構域融合的重組MASP-1或MASP-3 (全長或片段)與Dynal磁性蛋白G珠結合或用於基於FACS的選擇,使用PECy5-標記的抗人IgG(Fc)第二抗體。或者,將重組形式的MASP-1或MASP-3蛋白用Dylight粉直接標記並用於選擇和篩選。 結合和親和力
通過將PCR擴增的V區選殖到支持人IgG1在293F細胞中表達的載體中,產生重組抗體(Yabuki等人, PLoS ONE, 7(4):e36032 (2012))。通過用不同濃度的螢光-標記的可溶性抗原染色表達結合MASP-1或MASP-3的抗體的DTLacO細胞,來測定飽和結合動力學。分別如實施例8和9所述,進行用於MASP-3特異性活性(包括MASP-3-依賴性C3b沉積和MASP-3-依賴性因子D切割)的功能測定法。如下所述,進行MASP-1-特異性活性(即抑制MASP-1-依賴性C3b沉積)的功能測定法。 結果:
所用上述方法,產生多種MASP-1和MASP-3的結合抗體。如FACS分析所示,對於在MASP-3結合劑的篩選中分離的代表性的殖株M3J5和M3M1,描述了結合。
圖24A是對於DTLacO殖株M3J5,MASP-3抗原/抗體結合的FACS柱狀圖。圖24B是對於DTLacO殖株M3M1,MASP-3抗原/抗體結合的FACS柱狀圖。在圖24A和24B中,灰色填充曲線是IgG1-染色的陰性對照,黑色曲線是MASP-3-染色。
圖25圖示說明對於MASP-3抗原,殖株M3J5 (殖株5)的飽和結合曲線。如圖25所示,M3J5抗體對MASP-3的表觀結合親和力為大約31 nM。
使用標準方法,對已鑒定的殖株進行序列分析。將所有殖株與共同的(DT40) VH和VL的序列比較並且彼此比較。提供兩個前述殖株M3J5和M3M1的序列,與2個額外代表性的殖株D14和1E10進行比對,後兩者分別是在MASP-1和MASP-3的CCP1-CCP2-SP片段的篩選中鑒定出來的。D14和1E10與MASP-1和MASP-3兩者共有的區域結合。
圖26A是M3J5、M3M1、D14和1E10的VH區與雞DT40 VH序列的胺基酸序列的比對。
圖26B是M3J5、M3M1、D14和1E10的VL區與雞DT40 VL序列的胺基酸序列的比對。
每個殖株的VH和VL的胺基酸序列提供如下。 重鏈可變區(VH)序列
圖26A顯示了親本DTLacO (SEQ ID NO: 300)、MASP-3-結合殖株M3J5 (SEQ ID NO: 301)以及M3M1 (SEQ ID NO: 302)和MASP-1/MASP-3雙重結合殖株D14 (SEQ ID NO: 306)和1E10 (SEQ ID NO: 308)的重鏈可變區(VH)序列的胺基酸比對。
以下VH序列中的Kabat CDR位於以下胺基酸位置:H1:aa 31-35;H2:aa 50-62;和H3:aa 95-102。
以下VH序列中的Chothia CDR位於以下胺基酸位置:H1:aa 26-32;H2: aa 52-56;和H3: aa 95-101。 親本DTLacO VH: (SEQ ID NO: 300)
AVTLDESGGGLQTPGGALSLVCKASGFTFSSNAMGWVRQAPGKGLEWVAGIDDDGSGTRYAPAVKGRATISRDNGQSTLRLQLNNLRAEDTGTYYCTKCAYSSGCDYEGGYIDAWGHGTEVIVSS 殖株M3J5 VH: (SEQ ID NO: 301)
AVTLDESGGGLQTPGGGLSLVCKASGFTFSSYAMGWMRQAPGKGLEYVAGIRSDGSFTLYATAVKGRATISRDNGQSTVRLQLNNLRAEDTATYFCTRSGNVGDIDAWGHGTEVIVSS 殖株M3M1 VH: (SEQ ID NO: 302)
AVTLDESGGGLQTPGGGLSLVCKASGFDFSSYQMNWIRQAPGKGLEFVAAINRFGNSTGHGAAVKGRVTISRDDGQSTVRLQLSNLRAEDTATYYCAKGVYGYCGSYSCCGVDTIDAWGHGTEVIVSS 殖株D14 VH: (SEQ ID NO: 306)
AVTLDESGGGLQTPGGALSLVCKASGFTFSSYAMHWVRQAPGKGLEWVAGIYKSGAGTNYAPAVKGRATISRDNGQSTVRLQLNNLRAEDTGTYYCAKTTGSGCSSGYRAEYIDAWGHGTEVIVSS 殖株1E10 VH: (SEQ ID NO: 308)
AVTLDESGGGLQTPGGALSLVCKASGFTFSSYDMVWVRQAPGKGLEFVAGISRNDGRYTEYGSAVKGRATISRDNGQSTVRLQLNNLRAEDTATYYCARDAGGSAYWFDAGQIDAWGHGTEVIVSS 輕鏈可變區(VL)序列
圖26B顯示了親本DTLacO (SEQ ID NO: 303)和MASP-3-結合殖株M3J5 (SEQ ID NO: 304)和M3M1 (SEQ ID NO: 305)和MASP-1/MASP-3雙重結合殖株D14 (SEQ ID NO: 307)和1E10 (SEQ ID NO: 309)的輕鏈可變區(VL)序列的胺基酸比對。 親本DTLacO VL: (SEQ ID NO: 303)
ALTQPASVSANLGGTVKITCSGGGSYAGSYYYGWYQQKSPGSAPVTVIYDNDKRPSDIPSRFSGSLSGSTNTLTITGVRADDEAVYFCGSADNSGAAFGAGTTLTVL 殖株M3J5 VL: (SEQ ID NO: 304)
ALTQPASVSANPGETVKITCSGGYSGYAGSYYYGWYQQKAPGSAPVTLIYYNNKRPSDIPSRFSGSLSGSTNTLTITGVRADDEAVYFCGSADNSGAAFGAGTTLTVL 殖株M3M1 VL: (SEQ ID NO: 305)
ALTQPASVSANPGETVKITCSGGGSYAGSYYYGWYQQKAPGSAPVTLIYYNNKRPSDIPSRFSGSLSGSTNTLTITGVRADDEAVYFCGSADNSGAAFGAGTTLTVL 殖株D14 VL: (SEQ ID NO: 307)
ALTQPASVSANPGETVKITCSGGGSYAGSYYYGWYQQKAPGSAPVTLIYYNNKRPSDIPSRFSGSLSGSTNTLTITGVRADDEAVYFCGSADNSGAAFGAGTTLTVL 殖株1E10 VL: (SEQ ID NO: 309)
ALTQPASVSANPGETVKITCSGGGSYAGSYYYGWYQQKAPGSAPVTLIYYNNKRPSDIPSRFSGSLSGSTNTLTITGVRADDEAVYFCGSADNSGAAFGAGTTLTVL LEA-2 (MASP-2- 依賴性的 ) 功能測定
MASP-1經由其活化MASP-2的能力而有助於LEA-2 (參見圖1)。Wieslab®補體系統篩選MBL測定法(Euro Diagnostica, Malmö, Sweden)在分離LEA-2-依賴性活化(即傳統的凝集素途徑活性)的條件下測定了C5b-C9沉積。根據製造商的說明書進行該測定法,用代表性的殖株1E10,其終濃度經測定為400 nM。
圖27是柱狀圖,其顯示與測定試劑盒中提供的陽性血清以及同種型對照抗體比較的mAb 1E10的抑制活性。如所示圖27,mAb 1E10表明部分抑制LEA-2-依賴性活化(通過抑制MASP-2的MASP-1-依賴性活化),而同種型對照抗體卻不。在DTLacO系統中使用連接的因子,通過對MASP-1結合的該抗體的持續親和力成熟,應該達到更強烈的抑制。
對代表性的mAb的LEA-1 (MASP-3-依賴性的)功能測定法描述於以下實施例8和9。 結果概述:
以上結果表明DTLacO平臺允許快速離體發現具有對LEA-1(如以下實施例8和9所示)和對LEA-2 (如本實施例所示)的抑制性質的MASP-1和MASP-3單株抗體。 實施例 8
在3MC血清中用金黃色葡萄球菌分析補體途徑。 背景/基本原理:
已經確定,在正常人血清存在或不存在時,通過曝露給非-固定化的液相甘露聚糖、酵母聚糖A或N-乙醯基半胱胺酸,MASP-3不被活化。然而,已經確定,在有和沒有正常人血清(NHS)或熱滅活的人血清(HIS)存在時,重組和天然MASP-3在熱滅活的金黃色葡萄球菌表面上活化(資料未顯示)。也已確定,在正常人血清存在時,C3b沉積發生在金黃色葡萄球菌表面上,並可以使用流式細胞術監測沉積。因此,根據本實施例所述,測定回應於金黃色葡萄球菌的替代途徑(AP),作為評價MASP-3對LEA-1的貢獻的方式。 方法:
重組MASP-3: 將編碼全長重組人MASP-3、截短的絲胺酸蛋白酶(SP)活性形式的MASP-3 (CCP1-CCP2-SP)、和SP-滅活形式的MASP-3 (S679A)的多核苷酸序列選殖到pTriEx7哺乳動物表達載體(Invivogen)中。所得表達構建體編碼具有胺基-末端Strep標籤和羧基-末端His 6標籤的全長MASP-3或CCP1-CCP2-SP片段。根據製造商提供的方案,將表達構建體轉染到Freestyle 293-F或Expi293F細胞(Invitrogen)中。在5%CO 2中在37℃培養3-4天后,重組蛋白用Streptactin親和層析來純化。
重組MASP-1: 如以上對於重組MASP-3所述,產生全長或截短的CCP1-CCP2-SP形式的重組MASP-1,其有或無穩定化的R504Q (Dobo等人 , J. Immunol183:1207, 2009)或SP滅活(S646A)突變並攜帶胺基-末端Step標籤和羧基-末端His6標籤。 1. 3MC ( ) 血清中,在金黃色葡萄球菌上的 C3b 沉積和因子 B 切割。進行初步試驗,以表明流式細胞術測定法能夠如下檢測AP-驅動的C3b沉積(AP-C3b)的存在或不存在。將5%的以下血清:正常人血清、因子B(因子B)-耗盡的人血清、因子D-耗盡的人血清和備解素-耗盡的人血清(得自Complement Technology, Tyler, Texas, USA)與測試抗體一起,在Mg ++/EGTA緩衝液或EDTA中混合,在4℃過夜。將熱滅活的金黃色葡萄球菌(10 8/反應)加入到每種混合物中至總體積100 µL並在37℃旋轉40分鐘。在洗滌緩衝液中洗滌細菌,將細菌沉澱物重懸於洗滌緩衝液中,分析每種樣品的80 µL等分試樣在細菌表面上的C3b沉積,並使用流式細胞術,用抗人C3c (Dako, UK)對其進行測定。
C3b的流式細胞術檢測結果見圖28A。如圖28A小圖1所示,在EDTA存在時在正常人血清中(其已知不活化AP),未見C3b沉積(陰性對照)。在用Mg ++/EGTA處理的正常人血清中,僅凝集素-非依賴性補體途徑可以起作用。在小圖2中,使用Mg ++/EGTA緩衝液,因此AP是有活性的,並觀察到AP-驅動的C3b沉積(陽性對照)。如小圖3、4和5所示,分別在因子B-耗盡的、因子D-耗盡的和備解素-耗盡的血清中,不出所料,未見替代途徑驅動的C3b沉積。這些結果表明該測定法能夠測定AP-依賴性C3b沉積。
如上所述,進行C3b在金黃色葡萄球菌上沉積的測定法,以評價重組MASP-3在人3MC血清中重構AP (LEA-1)的能力,所述血清缺乏MASP-3 (Rooryck C,等人, Nat Genet. 43(3):197-203 (2011))。測試了以下試劑組合。 1. 5%正常人血清+EDTA 2. 5%正常人血清+Mg/EGTA 3. 5%人3MC (MASP-3 -/-)血清+ Mg ++/EGTA 4. 5%人3MC (MASP-3 -/-)血清+ Mg ++/EGTA加活性全長rMASP-3 5. 5%人3MC (MASP-3 -/-)血清+ Mg ++/EGTA加截短的活性rMASP-3 (CCP1/CCP2/SP) 6. 5%人3MC (MASP-3 -/-)血清+ Mg ++/EGTA加無活性rMASP-3 (S679A) 7. 5%人3MC (MASP-3 -/-)血清+ Mg ++/EGTA加活性全長rMASP-1
將上述的5%血清和重組蛋白(各5 µg)的不同混合物在指定緩衝液條件(Mg ++/EGTA緩衝液或EDTA)中在4℃孵育過夜。孵育過夜後,將10 8熱滅活的金黃色葡萄球菌加入到各混合物中,總體積100 µL,並在37℃旋轉40分鐘。細菌經洗滌並重懸於洗滌緩衝液中,通過FACS分析每種樣品的80 µL等分試樣的C3b沉積。每種樣品的剩餘20 µL等分試樣用於通過Western印跡來測定因子B切割,使用下述的抗因子B抗體。
C3b的流式細胞術檢測結果見圖28B。小圖編號對應於以上概述的每種試劑組合的編號。陰性對照(小圖1)和陽性對照(小圖2)顯示C3b沉積不存在和存在,正如所料。小圖3顯示了在3MC血清中,AP-驅動的C3b沉積不存在。小圖4和5顯示活性全長rMASP-3 (小圖4)和活性rMASP-3 (CCP1-CCP2-SP) (小圖5)兩者在3MC血清中都恢復了AP-驅動的C3b沉積。小圖6顯示了無活性rMASP-3 (S679A)在3MC血清中不恢復AP-驅動的C3b沉積。小圖7顯示了rMASP-1在3MC血清中不恢復AP-驅動的C3b沉積。
總之,這些結果表明MASP-3是在人血清中的AP-驅動的C3b沉積在金黃色葡萄球菌上所需要的。 因子 B MASP-3- 依賴性活化
為了分析因子B的MASP-3-依賴性活化,如上所述地測定上述的5%血清(正常人血清或3MC患者血清)和重組蛋白的不同混合物。從各反應混合物中,取出20 µL並加入到蛋白樣品裝載緩衝液中。將樣品在70℃加熱10分鐘並裝載到SDS-PAGE凝膠上。進行Western印跡分析,使用因子B多殖株抗體(R&D Systems)。通過形成兩個較低分子量切割產物(Bb和Ba)(衍生自較高分子量前-因子B蛋白),因子B的活化是明顯的。
圖29顯示了在回應於金黃色葡萄球菌時,在3MC血清中在rMASP-3存在或不存在時測定因子B切割的Western印跡分析結果。如泳道1所示,在EDTA存在時的正常人血清(陰性對照,泳道1)顯示出非常少的因子B切割,相對於在Mg ++/EGTA存在時的正常人血清而言,如泳道2 (陽性對照)所示。如泳道3所示,3MC血清在Mg ++/EGTA存在時顯示出非常少的因子B切割。然而,如泳道4所示,通過將全長、重組MASP-3蛋白(5 µg)加入3MC血清中並預孵育,恢復了因子B切割。
在因子B/C3(H2O)切割中,測定rMASP-3對前因子D的作用的測定法
進行以下測定法,以確定因子B的MASP-3-依賴性活化/切割的最低要求。
將C3(H 2O) (200ng)、純化的血漿因子B(20 µg)、重組前因子D(200 ng)和重組人MASP-3 (200 ng)以不同組合而混合在一起(如圖30所示),總體積為在BBS/Ca ++/ Mg ++中的100 µL,並在30℃孵育30分鐘。通過加入含有5% 2-巰基乙醇的25 uL SDS裝載染料而終止反應。在振搖(300 rpm)下在95℃煮沸10分鐘後,將混合物在1400 rpm離心5分鐘,然後將20 uL上清液裝載到10% SDS凝膠上並分離。凝膠用考馬斯亮藍染色。 結果:
圖30顯示了考馬斯染色的SDS-PAGE凝膠,其中分析了因子B切割。如泳道1所示,因子B切割在C3、MASP-3和前因子D存在時是最佳的。如泳道2所示,絕對需要C3;然而,如泳道4和5所示,MASP-3或前因子D都能介導因子B切割,只要C3存在。 MASP-3 mAb 抑制 MASP-3- 依賴性 AP- 驅動的 C3b 沉積的能力的分析
如本實施例所述,已經表明了在人血清中,MASP-3是AP-驅動的C3b沉積在金黃色葡萄球菌上所需要的。因此,進行以下測定法,以確定如實施例7中所述而鑒定的代表性的MASP-3 mAb是否能抑制MASP-3活性。在冰上,將有活性的、重組MASP-3 (CCP1-CCP2-SP)片段蛋白(250 ng)與同種型對照mAb、mAb1A5 (得自DTLacO平臺的對照,其不與MASP-3或MASP-1結合)、或mAbD14 (與MASP-3結合)以3種不同濃度(0.5、2和4 µM)預孵育1小時。將酶-mAb混合物曝露給5% 3MC血清(缺乏MASP-3)和5x10 7熱滅活的金黃色葡萄球菌,最終反應體積50 µL。將反應物在37℃孵育30分鐘,然後染色,用於檢測C3b沉積。通過流式細胞術分析染色後的細菌細胞。
圖31圖示說明作為mAb濃度的函數作圖的,在3MC血清中在rMASP-3存在時,得自3種抗體的C3b染色的平均螢光強度(MFI)。如圖31所示,mAbD14表現出以濃度-依賴性方式抑制C3b沉積。相比之下,對照mAbs都不抑制C3b沉積。這些結果表明mAbD14能夠抑制MASP-3-依賴性C3b沉積。在DTLacO系統中使用連接的因子,通過對MASP-3結合的該抗體的持續親和力成熟後,預期mAbD14的改進的抑制活性。 結果概述:
總之,本實施例的結果表明在缺乏MASP-3的血清中明顯缺乏AP。因此,MASP-3已被表明對AP作出關鍵性貢獻,使用因子B活化和C3b沉積作為功能終點。此外,加入功能性的、重組MASP-3 (包括MASP-3的催化活性C-末端部分),糾正了在來自3MC患者的血清中的因子B活化和C3b沉積的缺陷。相反,如本實施例進一步表明的,在含有rMASP-3的3MC血清中加入MASP-3抗體(例如mAbD14),抑制AP-驅動的C3b沉積。以下觀察結果表明了MASP-3在因子B活化中和因此在AP活化中的直接作用:重組MASP-3以及C3,足以活化重組因子B。 實施例 9
本實施例表明MASP-1和MASP-3活化因子D。 方法:
測試了重組MASP-1和MASP-3切割2種不同重組形式的前因子D的能力。第一種形式(前因子D-His)缺乏N-末端標籤,但具有C-末端His標籤。因此,這種形式的前因子D含有5個胺基酸前肽,其在活化期間被切割而除去。第二種形式(ST-前因子D-His)在N端具有Strep-TagII序列,因此將切割的N-末端片段增加至15個胺基酸。ST-前因子D在C末端也含有His 6標籤。ST-前因子D-His的前肽的長度增加,與前因子D-HIS形式的可能解析度相比,改善了切割和未切割形式的SDS-PAGE的解析度。
將重組MASP-1或MASP-3蛋白(2 µg)加入到前因子D-His或ST-前因子D-His底物(100 ng)中並在37℃孵育1小時。將反應物在12% Bis-Tris凝膠上進行電泳,以分離前因子D和活性因子D切割產物。將分離的蛋白質移至PVDF膜上並通過Western印跡,通過用生物素化因子D抗體(R&D Systems)檢測來分析。 結果:
圖32顯示了前因子D底物切割的Western印跡分析。 表14:圖32中所示Western印跡的泳道描述。
實驗條件 泳道1 泳道2 泳道3 泳道4 泳道5
前因子D + + + + +
rMASP-3(全長) - + _ _ _
rMASP-3a (S679A) - - + - -
rMASP-1A (S646A) - - - + -
rMASP-1 (CCP-1-CCP2-SP) - - - - +
如圖32所示,僅全長MASP-3 (泳道2)和MASP-1 (CCP1-CCP2-SP)片段(泳道5)才切割ST-前因子D-His 6。無催化活性的全長MASP-3 (S679A;泳道3)和MASP-1 (S646A;泳道3)不能切割任一種底物。用前因子D-His 6多肽得到相同結果(未顯示)。摩爾過量的MASP-1 (CCP1-CCP2-SP)相對於MASP-3的比較表明,與MASP-1相比,MASP-3是前因子D切割的更有效的催化劑,至少在本文所述的條件下如此。
結論:MASP-1和MASP-3兩者都能切割和活化因子D。這一活性將LEA-1與AP活化直接聯繫起來。更具體地講,MASP-1或MASP-3對因子D的活化,將會導致因子B活化、C3b沉積和可能的調理作用和/或細胞裂解。 MASP-3 抗體抑制 MASP-3- 依賴性的前因子 D 切割的測定法
進行測定法,以測定如實施例7中所述而鑒定的代表性的MASP-3和MASP-1 mAb對MASP-3-依賴性因子D切割的抑制作用。將活性重組MASP-3蛋白(80 ng)與1 µg代表性的mAb D14、M3M1和對照抗體(其與MASP-1特異性結合,但不與MASP-3結合)在室溫下預孵育15分鐘。加入具有N-末端Strep-標籤的前因子D(ST-前因子D-His,70 ng)並將混合物在37℃孵育75分鐘。然後將反應物電泳,印跡和用抗因子D染色,如上所述。
圖33是Western印跡,顯示mAb D14和M3M1的部分抑制活性,與含有僅MASP-3和ST-前因子D-His的對照反應物(無mAb,泳道1)以及含有得自DTLacO文庫的mAb (其與MASP-1結合,而不與MASP-3結合)的對照反應物(泳道4)相比。如圖33所示,在抑制性抗體不存在時,MASP-3將大約50%前因子D切割成因子D(泳道1)。對照MASP-1特異性抗體(泳道4)不改變前因子D與因子D的比率。相比之下,如泳道2和3所示,mAb D14和mAb M3M1兩者都抑制MASP-3-依賴性的前因子D切割為因子D,導致所產生的因子D的減少。
結論:這些結果表明MASP-3 mAb D14和M3M1不能抑制MASP-3-依賴性因子D切割。在DTLacO系統中使用連接的因子,通過對MASP-3結合的這些抗體的持續親和力成熟後,預期mAbD14和mAb M3M1的改進的抑制活性。 實施例 10
本實施例表明MASP-3缺乏阻止了補體-介導的甘露聚糖-包被的WT兔紅細胞的裂解。 背景/基本原理:
如本文的實施例5和6所述,MASP-2-和MASP-3-缺乏的血清對得自PNH小鼠模型的血液樣品的紅細胞裂解的作用,表明了MASP-2抑制和/或MASP-3抑制在治療PNH物件中的功效,並且也支持了使用MASP-2抑制劑和/或MASP-3抑制劑(包括雙重或雙特異性MASP-2/MASP-3抑制劑)以在經歷用C5抑制劑例如依庫麗單抗治療的PNH物件中改善C3片段-介導的血管外溶血的效果。
如本實施例所述,在來自額外3MC患者的MASP-3缺乏的血清中進行了C3b沉積實驗和溶血實驗,證實了實施例5和6中獲得的結果。另外,進行了實驗,表明了將rMASP-3加入到3MC血清中,能夠重構C3b沉積和溶血活性。 方法: MASP-3-缺乏的血清得自以下3個不同的3MC患者:
3MC患者1:含有攜帶突變的等位基因,所述突變使編碼MASP-3絲胺酸蛋白酶結構域的外顯子功能失調,其是由3MC患者的父母提供(兩者是攜帶突變的等位基因的雜合體,所述突變使編碼MASP-3絲胺酸蛋白酶結構域的外顯子功能失調),
3MC患者2:在MASP-1外顯子12、編碼MASP-3的絲胺酸蛋白酶結構域的外顯子中具有C1489T (H497Y)突變,導致非功能性MASP-3,但導致功能性MASP-1蛋白。
3MC患者3:在MASP-1基因中具有經證實的缺陷,導致非功能性MASP-3和非功能性MASP-1蛋白。 實驗#1:C3b沉積測定
如Bitter-Suermann等人, Eur. J. Immunol11:291-295 (1981))所述,在傳統的AP-特異性條件(BBS/ Mg ++/EGTA無Ca ++,其中BBS= 含蔗糖的巴比妥緩衝鹽水)下,在酵母聚糖-包被的微量滴定板上,進行AP測定法,血清濃度範圍為0.5至25%,並且測定C3b沉積隨時間的變化。 結果:
圖34圖示說明在得自MASP-3-缺陷型(3MC)、C4-缺陷型和MBL-缺陷型對象的血清樣品中,作為血清濃度的函數的,在酵母聚糖-包被的微量滴定板上的AP-驅動的C3b沉積水準。如圖34所示和如下表15所述,來自患者2和患者3的MASP-3-缺陷型患者血清在高濃度(25%、12.5%、6.25%血清濃度)時具有殘留的AP活性,但顯著更高AP 50(即需要8.2%和12.3%血清以達到50%最大C3沉積)。
圖35A圖示說明在得自MASP-3缺陷型、C4-缺陷型和MBL-缺陷型人類物件的10%人血清樣品中,在“傳統的”AP-特異性條件(即BBS/EGTA/Mg ++無Ca ++)下,作為時間的函數的,在酵母聚糖-包被的微量滴定板上的AP-驅動的C3b沉積水準。
下表15概述了圖14所示的AP 50結果和圖35A所示的C3b沉積的一半時間。 表15:圖34和35A中所示結果的概述
血清類型 AP 50(%) T 1/2(min)
正常 4.5 26.3
MBL-缺陷型(MBL-/-) 5.7 27.5
C4-缺陷型(C4-/-) 5.1 28.6
3MC (患者3) 8.2 58.2
3MC (患者2) 12.3 72.4
注意:在BBS/Mg ++/EGTA緩衝液中,凝集素途徑-介導的作用缺乏,因為該緩衝液中缺乏Ca ++。 實驗#2:通過Western印跡分析3MC患者血清的前因子D裂解
方法:血清從3MC患者#2 (MASP-3(-/-)、MASP-1(+/+)),並從3MC患者#3 (MASP-3(-/-)、MASP-1(-/-))得到。患者血清,連同來自正常供體(W)的血清,用SDS-聚丙烯醯胺凝膠分離,並且將解析的Western印跡至聚偏氟乙烯膜。用人因子D特異性抗體檢測人前因子D(25040道爾頓)和/或成熟因子D (24405道爾頓)。
結果:Western印跡的結果示於圖35B。如圖35B所示,在正常供體(W)的血清中,因子D抗體檢測到與成熟因子D (24405道爾頓)一致大小的蛋白質。如在圖35B中進一步示出,在3MC患者#2 (P2)和3MC患者#3 (P3)血清中,因子D抗體檢測到稍大蛋白質,這與前因子D (25040道爾頓)在這些3MC患者中的存在一致。 實驗#3:用3MC患者血清的Wieslab補體測定
方法:根據製造商的說明,使用Wieslab補體系統Screen (Euro-Diagnostica, Malmö, Sweden),還測試了獲自3MC患者#2 (MASP-3(-/-)、MASP-1(+/+))和3MC患者#3 (MASP-3(-/-)、MASP-1(-/-))的血清中的經典、凝集素和替代途徑的活性。正常人血清作為對照平行試驗。
結果:圖35C圖示說明用獲自3MC患者#2、3MC患者#3的血漿和正常人血清,Weislab經典、凝集素和替代途徑測定的結果。如圖35C所示,在Wieslab測定的條件下,經典、替代和MBL(凝集素)途徑均在正常人血清起作用。3MC患者#2 (MASP-3(-/-)、MASP-1(+/+))的血清中,經典途徑和凝集素途徑是功能性的,但不存在可檢測的替代途徑的活性。3MC患者#3 (MASP-3(-/-)、MASP-1(-/-))的血清中,經典途徑是功能性的,但不存在可檢測的凝集素途徑活性和沒有可檢測的替代途徑的活性。
圖35B和35C中的結果進一步支援我們對於MASP-1和MASP-3在LEA-1和LEA-2途徑中作用的理解。具體地講,在僅乏MASP-3的患者2血清中,不存在替代途徑且凝集素途徑具有幾乎完全功能,證實了MASP-3對於替代途徑活化是必需的。缺乏MASP-1和MASP-3兩者的患者3血清已經失去活化凝集素途徑以及替代途徑的能力。這一結果證實功能性的LEA-2途徑需要MASP-1,並且與實施例7以及表明MASP-1活化MASP-2的文獻是一致的。兩種血清明顯不能活化前因子D,這也符合實施例9中描述的資料,該資料表明MASP-3裂解前因子D。這些觀察結果與LEA-1和LEA-2途徑一致,如圖1中圖解的。 實驗#4:測定甘露聚糖-包被的兔紅細胞在人正常或3MC血清存在時(在Ca ++不存在時)細胞裂解的溶血測定法 方法: 在Ca ++不存在時製備兔RBC (即通過使用EGTA)
將兔全血(2 mL)分到2個1.5 mL微量離心管中並在4℃冷凍微量離心機中在8000 rpm (大約5.9 rcf)離心3分鐘。重懸於冰冷的BBS/Mg ++/Ca ++(4.4 mM巴比妥酸、1.8 mM巴比妥鈉、145 mM NaCl, pH 7.4, 5 mM Mg ++, 5 mM Ca ++)後,將RBC沉澱物洗滌3次。第3次洗滌後,將沉澱物重懸於4 mL BBS/Mg ++/Ca ++中。沉澱紅細胞,並將RBC用BBS/0.1%明膠/Mg ++/Ca ++洗滌,如上所述。將RBC懸液在4℃貯存於BBS/0.1%明膠/ Mg ++/Ca ++中。然後,100 µl懸浮的RBC用1.4 mL水稀釋並在8000 rpm (大約5.9 rcf)離心3分鐘,將上清液在541 nm處的OD調節至0.7 (在541 nm處的OD為0.7相當於大約10 9紅細胞/mL)。然後,將1 mL重懸的RBC (OD 0.7)加入到9 ml BBS/Mg ++/EGTA中,以達到10 8紅細胞/ml的濃度。在冰冷的BBS、Mg ++、EGTA中製備測試血清或血漿的稀釋液,並將100µl每種血清或血漿稀釋液移入圓底板的相應孔中。加入100 µl適當稀釋的RBC (10 8紅細胞/mL)到各孔中。Nano-water用於產生陽性對照(100%細胞裂解),而BBS/Mg ++/EGTA無血清或血漿的稀釋液用作陰性對照。然後將板在37℃孵育1小時。將圓底板在3250 rpm離心5分鐘。將來自各孔的上清液(100 µL)移至平底板的相應孔中並在415-490處讀取OD。 結果:
圖36圖示說明在來自正常物件和來自2個3MC患者(患者2和患者3)的血清中,在Ca ++不存在時測定的一系列血清濃度使甘露聚糖-包被的兔紅細胞的溶血的百分率(如通過裂解的兔紅細胞至上清液中的血紅蛋白釋放來測量,所述上清液根據光度測定法測定)。如圖36所示,表明與正常人血清相比,MASP-3缺陷降低了補體-介導的甘露聚糖-包被的紅細胞裂解的百分率。來自正常人血清的兩條曲線和來自3MC患者的兩條曲線之間的差異是顯著的(p=0.013,Friedman檢驗)。
下表16概述了圖36所示的AP 50結果。 表16:圖36所示的結果概述
血清類型 AP 50(%)
正常人血清#1 7.1
正常人血清#2 8.6
3MC患者#2 11.9
3MC患者#3 14.3
注意:當將表16所示的血清樣品合併時,正常人血清的AP 50值= 7.9,3MC血清的AP 50值= 12.8 (p=0.031, Wilcox配對符號秩檢驗)。 實驗#5:由重組MASP-3重構的人3MC血清恢復在酵母聚糖包被板上的AP-驅動的C3b沉積 方法:
如Bitter-Suermann等人, Eur. J. Immunol11:291-295 (1981))所述,在酵母聚糖-包被的微量滴定板上,在傳統的AP-特異性條件(BBS/Mg ++/EGTA無Ca ++,其中BBS=含有蔗糖的巴比妥緩衝鹽水)下,在以下血清樣品中進行AP測定:(1)來自3MC患者#2的5%人血清並加入範圍為0至20 µg/mL的全長活性rMASP-3;(2)來自3MC患者#2的10%人血清並加入範圍為0至20 µg/mL的全長活性rMASP-3;和(3)來自3MC患者#2的5%人血清並加入範圍為0至20 µg/mL的無活性rMASP-3A (S679A)。 結果:
圖37圖示說明作為添加到得自人3MC患者2 (MASP-3缺陷型)的血清樣品中的rMASP-3蛋白的濃度的函數的,在酵母聚糖-包被的微量滴定板上的AP-驅動的C3b沉積水準。如圖37所示,活性重組MASP-3蛋白以濃度-依賴性方式重構在酵母聚糖-包被板上的AP-驅動的C3b沉積。如圖37進一步所示,在含無活性rMASP-3 (S679A)的3MC血清中未見C3b沉積。 實驗#6:由重組MASP-3重構人的3MC血清在3MC患者血清中恢復溶血活性 方法:
使用兔RBC,使用以上實驗#2中所述的方法進行溶血測定法,使用範圍為0至12%血清的以下測試血清:(1)正常人血清;(2) 3MC患者血清;(3) 3MC患者血清加活性全長rMASP-3 (20 µg/ml);和(4)熱滅活的人血清。 結果:
圖38圖示說明在以下血清中,在Ca ++不存在時測定的一系列血清濃度使甘露聚糖-包被的兔紅細胞的溶血的百分率(如通過裂解的兔紅細胞至上清液中的血紅蛋白釋放來測量,所述上清液根據光度測定法測定):(1)正常人血清;(2) 3MC患者血清;(3) 3MC患者血清加活性全長rMASP-3 (20 µg/ml);和(4)熱滅活的人血清。如圖38所示,兔紅細胞的溶血百分率在含有rMASP-3的3MC血清中顯著增加,與在無重組MASP-3的3MC血清中的溶血百分率相比(p=0.0006)。
圖39圖示說明在含有濃度範圍為0至110 µg/ml的活性rMASP-3 (在BBS/ Mg ++/EGTA中)的來自3MC患者2和來自3MC患者3的7%人血清中,兔紅細胞裂解的百分率。如圖39所示,一定量的rMASP-3以濃度-依賴性方式使兔RBC裂解百分率恢復至最多100%活性。 實驗#7:MASP-3缺陷型(3MC)患者血清具有功能性MASP-2,如果MBL存在的話 方法:
使用甘露聚糖-包被的ELISA板進行C3b沉積測定法,以檢測3MC血清是否缺乏LEA-2。將檸檬酸鹽血漿在BBS緩衝液中系列稀釋(開始於1:80、1:160、1: 320、1:640、1:1280、1:2560)並鋪板到甘露聚糖-包被板上。使用雞抗人C3b測定法檢測沉積的C3b。在來自正常人類物件(NHS)、來自2個3MC患者(患者2和患者3)、來自患者3的父母和來自MBL-缺陷型對象的血清中,評價在甘露聚糖-包被的ELISA板上的LEA-2驅動的C3b沉積(血漿稀釋液高到使AP和LEA-1可起作用)隨人血清濃度的變化。 結果:
圖40圖示說明對於來自正常人類物件(NHS)、來自2個3MC患者(患者2和患者3)、來自患者3的父母和來自MBL-缺陷型對象的血清,作為在BBS緩衝液中稀釋的人血清濃度的函數的,在甘露聚糖-包被的ELISA板上的LEA-2-驅動的(即MASP-2-驅動的) C3b沉積水準。這些資料表明患者2是MBL足夠的。然而,患者3和患者3的母親是MBL缺陷型,因此他們的血清不能經由LEA-2將C3b沉積在甘露聚糖上。在這些血清中替換MBL,在患者3 (其是SNP純合體,導致MASP-3缺陷)和他的母親(其對於突變的MASP-3等位基因是雜合體)的血清中恢復了LEA-2介導的C3b沉積(資料未顯示)。該發現說明了3MC血清不缺乏LEA-2,而是看來具有功能性MASP-2。 總體概述和結論:
這些結果表明在人血清中的MASP-3缺陷導致AP活性的損失,正如在酵母聚糖-包被的孔上的C3b沉積減少和兔紅細胞裂解減少所表明的那樣。在這兩種測定法中通過給血清補充功能性的重組人MASP-3可恢復AP。 實施例 11
本實施例表明嵌合小鼠V區/人IgG4恒定區抗人MASP-3單株抗體(mAb M3-1,也稱為mAb 13B1)是MASP-3介導的替代途徑補體(APC)活化的有效抑制劑。 方法:
生成嵌合小鼠V區/人IgG恒定區抗人MASP-3單株抗體(mAb M3-1)
通過用人MASP-3 CCP1-CCP2-SP結構域(SEQ ID NO: 2的aa 301-728)免疫MASP-1/3敲除小鼠來產生鼠抗人MASP-3抑制性抗體(mAb M3-1) )(還參見實施例14)。簡要描述,將來自免疫的小鼠的脾細胞與P3/NS1/1-Ag4-1融合,並篩選來自所得雜交瘤殖株的上清液的結合人MASP-3的抗體的產生以及阻斷MASP-3-介導的補體前因子D(pro-CFD)切割為因子D(CFD)。通過RT-PCR分離單株抗體(mAb)可變區,測序並選殖至人IgG4表達載體中。在暫態轉染的HEK293T細胞中表達嵌合單株抗體,將其純化並測試與小鼠和人MASP-3的結合親和力以及抑制MASP-3介導的前CFD切割為CFD的能力。
MASP-3抑制性單株抗體M3-1 (13B1)包含如SEQ ID NO: 30所示的重鏈可變區(VH)和如SEQ ID NO: 45所示的輕鏈可變區(VL)。M3-1單株抗體的可變區的序列如下: 重鏈可變區
下麵呈現的是mAb M3-1的重鏈可變區(VH)序列。Kabat CDR (31-35 (H1)、50-65 (H2)和95-102 (H3)加底線,其對應於SEQ ID NO: 30的胺基酸殘基31-35 (H1)、50-66 (H2)和99-102 (H3)。 mAb M3-1重鏈可變區(VH)(SEQ ID NO: 30)
QVQLKQSGAELMKPGASVKLSCKATGYTFT GKWIEWVKQRPGHGLEWIG EILPGTGSTNYNEKFKGKATFTADSSSNTAYMQLSSLTTEDSAMYYCLR SEDVWGTGTTVTVSS 輕鏈可變區
下麵呈現的是mAb M3-1的輕鏈可變區(VL)序列。Kabat CDR (24-34 (H1)、50-56 (H2)和89-97 (H3)加底線,其對應於SEQ ID NO: 45的胺基酸殘基24-40 (L1);56-62 (L2)和95-102 (L3)。這些區域是相同的,無論是通過Kabat還是Chothia系統編號。 mAb M3-1輕鏈可變區(VL)(SEQ ID NO: 45)
DIVMTQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLAWYQQKPGQSPKLLIY WASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNIPTFGGGTKLEIKR mAb M3-1 VH CDRs VHCDR1: GKWIE (SEQ ID NO: 84) VHCDR2: EILPGTGSTNYNEKFKG (SEQ ID NO: 86) VHCDR3: SEDV (SEQ ID NO: 88) mAb M3-1 VL CDRs VLCDR1: KSSQSLLNSRTRKNYLA (SEQ ID NO: 142) VLCDR2: WASTRES (SEQ ID NO: 144) VLCDR3: KQSYNIPT (SEQ ID NO: 161)
如上所示,MASP-3單株抗體M3-1包含(a)重鏈可變區,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)輕鏈可變區,其包含(i)包含SEQ ID NO: 142的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。 mAb M3-1與人和小鼠MASP-3的重組形式的結合
在ELISA實驗中測試M3-1的單價Fab版本與重組的全長人和小鼠MASP-3蛋白的結合。通過用結合來自多種物種的蛋白的抗MASP-3捕獲抗體包被96孔板進行結合親和力測定。已經顯示捕獲抗體結合MASP-1和MASP-3的CCP1-CCP2區域。將人和小鼠蛋白的全長版本固定在用捕獲抗體包被的ELISA平板上,並使不同濃度的M3-1 Fab在單獨的孔中結合靶蛋白。使用與HRP綴合的抗κ輕鏈抗體(Novus Biologicals NBP1-75064)檢測結合的M3-1,並用TMB底物試劑組(BD Biosciences 555214)顯色。
圖41圖示說明用人MASP-3進行的結合實驗的代表性實例,其中M3-1 Fab(也稱為13B1)顯示與人蛋白的約0.117nM的表觀結合親和力(EC 50)。
圖42圖示說明用小鼠MASP-3進行的結合實驗的代表性實例,其中M3-1 Fab顯示與小鼠蛋白的約0.214nM的表觀結合親和力(EC 50)。
這些結果表明mAb M3-1 (13B1)對人和小鼠MASP-3兩者都具有高結合親和力。 mAb M3-1能夠抑制替代途徑補體(APC)活化的證明和mAb M3-1的體外效力的測量
如本公開中所述,已經確定MASP-3是APC的關鍵調節劑,至少部分是由於其需要CFD(中樞APC酶)的活化。如本公開中所述,MASP-3在體內以相對低的濃度循環並且具有緩慢的分解代謝速率,其允許通過MASP-3抗體施用的靜脈內、皮下和口服途徑長期抑制促炎性途徑。進行以下實驗以確定mAb M3-1在人血清中抑制MASP-3介導的CFD成熟和抑制APC的效力。正常人血清主要含有活性或加工(即成熟)的CFD,因此我們進行了實驗,其中用CFD的重組、未加工形式(前-CFD)重構CFD耗盡的人血清(Complement Technology A336)。因此,在該實驗系統中,APC活化需要將前-CFD加工成活性CFD。
通過添加酵母聚糖顆粒(其作為補體沉積的活化表面發揮功能)誘導APC。在添加重組前-CFD和酵母聚糖之前,將不同濃度的mAb M3-1添加至血清中。將混合物在37℃下孵育75分鐘,並通過在酵母聚糖顆粒表面上的補體因子Bb(Quidel A252)的流式細胞術檢測來測量APC活性。
圖43圖示說明在CFD耗盡的人血清中存在不同濃度的mAb M3-1的情況下,在酵母聚糖顆粒上的補體因子Bb沉積的水準(通過以MFI單位測量的流式細胞檢測所測定)。如圖43中所示,mAb M3-1顯示在10%人血清中的APC的有效抑制,其中在該實驗實施例中IC 50為0.311nM。
這些結果表明,MASP-3在人血清中的體外模型中的APC活化中起關鍵作用,並且進一步表明mAb M3-1是APC的有效抑制劑。 mAb M3-1對APC的體內抑制:
為了確定mAb M3-1用於體內抑制APC的效力,一組小鼠(n = 4)接受10 mg/kg mAb M3-1的單次靜脈內尾靜脈注射。使用從動物收集的血液來製備血清,為離體測定中的APC活性的流式細胞術評估提供基質,所述離體測定測量酵母聚糖顆粒上的C3(也是C3b和iC3b)沉積的水準。將從在劑量前時間點和多次劑量後時間點(96小時、1周和2周)收穫的血液製備的血清稀釋至7.5%,並且添加酵母聚糖顆粒以誘導APC。將抗體處理的小鼠與給予單次靜脈內劑量的媒介物的一組對照小鼠(n = 4)進行比較。
圖44圖示說明在野生型小鼠中的mAb M3-1 (10 mg/kg i.v.)的單次劑量後各個時間點在酵母聚糖顆粒上的C3沉積的水準。如圖44中所示,在劑量前時間點,兩種條件顯示相當水準的APC活性。在96小時和兩個後面時間點,mAb M3-1治療組顯示基本上完全的APC抑制,而媒介物治療組的APC活性仍然不減弱。如圖44中所示,向小鼠靜脈內施用的單劑量的mAb M3-1導致全身性APC活性的接近完全消除至少14天。
這些結果表明mAb M3-1是小鼠模型的APC的體內有效抑制劑。 實施例 12
本實施例表明嵌合小鼠V區/人IgG4恒定區抗人MASP-3單株抗體(mAb M3-1,也稱為mAb 13B1)為與陣發性夜間血紅蛋白尿(PNH)有關的小鼠模型中的缺乏Crry的紅血細胞的存活提供了明顯益處。 方法:
如實施例11和實施例14所述產生嵌合小鼠V區/人IgG4恒定區抗人MASP-3單株抗體(mAb M3-1)。如實施例11中進一步所述,確定mAb M3-1是小鼠模型中的APC的體內有效抑制劑。本實施例描述了mAb M3-1在與PNH相關的鼠模型中的效力的分析。 mAb M3-1在與PNH相關的鼠模型中的效力的分析
在與PNH相關的小鼠模型中,獲得來自缺乏小鼠中APC的主要細胞表面阻遏物的Crry-缺陷小鼠的紅血細胞(RBC)用於用作供體細胞。平行運行從野生型(WT)供體小鼠獲得的RBC。這些供體RBC用螢光親脂性染料(Sigma)差異標記:WT(紅色)和Crry-(綠色)。在兩個不同的實驗中,將標記的WT和Crry-供體細胞1:1混合並靜脈內注射到野生型受體小鼠中,並通過20,000個活細胞事件的流式細胞儀評估來測定受體小鼠中WT和Crry-缺陷的RBC存活(相對於早期時間點)百分比。在第一個實驗中,給予mAb M3-1抗體的多次劑量前處理,並將mAb M3-1的作用與另一種抑制性補體抗體mAb BB5.1(可得自Hycult Biotech)的作用進行比較,所述mAb BB5.1是已顯示在多種小鼠研究中的效力的C5抑制性抗體(Wang等人, PNASvol 92:8955-8959, 1995; Hugen等人, Kidney Int71(7):646-54, 2007)。C5抑制劑的施用是人PNH患者的目前治療標準。在第二個實驗中,評估mAb M3-1的單一治療前劑量。
在第一個實驗中,評估三種不同的小鼠組(n = 4/每種條件):媒介物治療的條件、mAb M3-1治療的條件和mAb BB5.1(阻斷小鼠C5的mAb)治療的條件。將標記的細胞在“第0天”注射至小鼠中,並且如下施用多次劑量的M3-1和BB5.1兩者:第-11天、第-4天、第-1天和第+6天靜脈內(10 mg/kg)施用mAb M3-1。在第-1天、第+3天、第+6天和第+10天通過腹膜內注射(40 mg/kg)施用mAb BB5.1。媒介物治療遵循與mAb M3-1相同的給藥方案。
圖45圖示說明在用mAb M3-1(在第-11天、第04天、第-1天和第+6天,10 mg/kg)治療的WT受體小鼠、mAb BB5.1治療或媒介物治療的小鼠中經14天時段的供體RBC(WT或Crry-)的存活百分比。如圖45中所示,與在媒介物治療的動物中顯示小鼠中RBC的典型存活的WT RBC相比,Crry-缺陷的RBC具有快速的清除(在24小時內清除超過75%)。用mAb BB5.1治療小鼠,在Crry-缺陷的RBC存活方面,相對於媒介物治療沒有提供改善。相比之下,mAb M3-1治療,與mAb BB5.1和媒介物治療的動物相比,引起了Crry-缺陷的RBC存活的顯著改善。在實驗持續期間觀察到mAb M3-1的保護性作用。
在第二項研究中,在兩組不同的WT小鼠(n = 4/每種條件)中評估差異標記的WT(紅色)和Crry-(綠色)RBC:媒介物治療和mAb M3-1治療。在將標記的供體細胞注射到受體小鼠中之前6天(-6天),通過靜脈內施用向受體小鼠給予單劑量的媒介物或抗體(20 mg/kg)。然後在經16天時段注射後的增量時間點分析標記的供體RBC在受體小鼠中的存活百分比。
圖46圖示說明在用單劑量的mAb M3-1(在第-6天,20 mg/kg)治療的WT受體小鼠或媒介物治療的小鼠中經16天時段的供體RBC(WT或Crry-)的存活百分比。如圖46中所示,與媒介物治療的小鼠中的Crry-RBC的存活相比,單次治療前劑量的mAb M3-1表明Crry-RBC的改善的存活。在注射後96小時,約90%的媒介物治療的WT RBC在對照條件下存活,而僅5%的Crry-RBC在媒介物治療的WT小鼠中存活。與媒介物治療的小鼠相反,40%的Crry-RBC在用mAb M3-1治療的小鼠中存活。
總之,這些結果表明,MASP-3抑制性抗體mAb M3-1為缺乏Crry(與PNH相關的小鼠模型中的關鍵表面補體抑制劑)的RBC的存活提供了明顯的益處。 實施例 13該實施例描述了一項研究,表明嵌合MASP-3抑制性單株抗體(mAb M3-1,也稱為mAb 13B1)降低膠原抗體誘導的關節炎(CAIA)(類風濕性關節炎(RA)的鼠模型)中的臨床評分。 背景/基本原理:
CAIA是一種良好確立的關節炎動物模型。除了提供對RA的瞭解之外,CAIA模型的病理學具有與APC的建立的連接。Banda和同事已經表明,在攜帶APC的組份(例如B因子和因子D)的缺陷的小鼠中的CAIA模型中的改善結果(Banda等人, J. Immunolvol 177:1904-1912, 2006和Banda等人, Clinical & Exp Imunolvol 159:100-108, 2009).  APC小鼠敲除顯示滑膜和周圍組織中相對於WT對照的降低的關節炎(疾病)評分、較低的發生率和較少的C3和因子H沉積。另外,在MASP1/3敲除小鼠中,疾病活動評分,關節中的補體C3組織沉積和組織病理學損傷評分顯著降低(Banda等人, J Immunolvol 185:5598-5606, 2010)。因此,分析了MASA-3抑制性抗體mAb M3-1在CAIA中的效力。 方法:
如實施例11和實施例14所述產生嵌合MASP-3單株抗體(mAb M3-1)。如實施例11中進一步所述,確定mAb M3-1是小鼠模型中的APC的體內有效抑制劑。
如下在CAIA模型中測試mAb M3-1。在第0天用3mg抗膠原抗體的混合物靜脈注射野生型小鼠(n=7)。在第+3天,向小鼠腹膜內給予大腸桿菌脂多糖(LPS)(25μg/小鼠)。如Nandakumar等人( Am J Pathol163(5):1827-1837, 2003)中所述,關節炎通常在第+3天至第+10天在該模型中發生。在第+14天收集終末血清樣品。第-12天、第-5天、第+1天和第+7天給予mAb M3-1 (5 mg/kg和20 mg/kg)。注射媒介物(PBS)作為陰性對照。
使用以下評分標準,在第0至14研究日,對每只小鼠的所有4只爪子評估臨床評分: 0= 正常 1= 1個後爪和/或前爪關節受影響或彌漫性紅斑和腫脹最小 2= 2個後爪和/或前爪關節受影響或彌漫性紅斑和腫脹輕微 3= 3個後爪和/或前爪關節受影響或彌漫性紅斑和腫脹適度 4= 彌漫性紅斑和腫脹顯著,或4個足趾關節受影響 5= 整個爪的彌漫性紅斑嚴重和腫脹嚴重,無法彎曲足趾。
還測定發生率=%治療組內顯示關節炎症狀的小鼠。
結果顯示於圖47 (臨床評分)和圖48 (關節炎的發生率)中。圖47圖示說明經14天時間過程的用mAb M3-1 (5 mg/kg或20 mg/kg)或媒介物治療的小鼠的臨床評分。圖48圖示說明經14天時間過程的用mAb M3-1 (5 mg/kg或20 mg/kg)或媒介物治療的小鼠的關節炎的百分比發生率。如圖47中所示,mAb M3-1對於從第5天開始並在整個研究期間持續的兩個終點表明明顯的治療益處。如圖48中所示,儘管在媒介物治療的動物中疾病的發生率達到100%,但在5 mg/kg mAb M3-1條件下,三分之二的動物仍然無病。另外,動物中只有一隻(即總共n=7中只有一隻)在20 mg/kg mAb M3-1條件下顯示任何關節炎症狀。
該研究的結果表明,MASP-3抑制性抗體mAb M3-1在CAIA模型(類風濕性關節炎(RA)的良好確立的鼠模型和與APC活化強烈相關的模型)中提供了明顯的治療益處。如實施例11中所示,向小鼠靜脈內施用的單劑量的mAb M3-1導致全身性APC活性的接近完全消除至少14天。如本實施例中所示,在通過施用針對小鼠結締組織的自身抗體誘導的動物模型中,mAb M3-1以劑量依賴性方式降低臨床關節炎評分的發生率和嚴重程度。與對照治療的動物相比,mAb M3-1在所測試的最高劑量下將疾病的發生率和嚴重程度降低約80%。因此,預期MASP-3抑制性抗體例如mAb M3-1的施用在患有關節炎例如類風濕性關節炎、骨關節炎、幼年型類風濕性關節炎、感染相關關節炎、銀屑病關節炎以及強直性脊柱炎和貝切特氏病的患者中是有效的療法。 實施例 14
本實施例描述高親和力抗人MASP-3抑制性抗體的產生。 背景/基本原理:
已經描述了有限數量的針對MASP-3的抗體(Thiel等人, Mol. Immunol. 43:122, 2006; Moller-Kristensen等人, Int. Immunol. 19:141, 2006; Skjoedt等人, Immunobiol215:921, 2010)。這些抗體可用於檢測測定,例如Western印跡、免疫沉澱、以及作為ELISA測定中的捕獲或檢測試劑。然而,尚未發現Thiel等人, 2006, Moller-Kristensen等人, 2006和Skjoedt等人, 2010中描述的抗體抑制MASP-3催化活性。
還先前如本文實施例7中所述(也在WO2013/192240中公開為實施例15)通過針對MASP-3結合分子篩選修飾的DT40細胞系(DTLacO)中的雞抗體文庫來產生MASP-3抗體。這些抗體在納摩爾範圍(EC 50在10nM和100nM之間)內與人MASP-3結合,並且部分抑制由MASP-3對前-CFD的切割。
本實施例描述了具有非常強的結合親和力(即亞納摩爾結合親和力,範圍為≤500pM至20pM)的抗人MASP-3抑制性抗體的產生。本實施例中描述的抗體以高親和力(例如,≤500pM)特異性結合人MASP-3,抑制因子D成熟,並且不結合人MASP-1(SEQ ID NO: 8)。 方法: 1. 嵌合小鼠V區/人IgG恒定區抗人MASP-3單株抗體的產生
7至14周齡C57BL/6、MASP-1/3敲除小鼠用在N-末端包括StrepTag II表位標籤的人MASP-3 CCP1/CCP2/SP多肽(SEQ ID NO: 2的胺基酸殘基299-728)免疫;或者用在N-末端包括StrepTagII的人MASP-3SP結構域(SEQ ID NO: 2的胺基酸殘基450-728)免疫,其使用Sigma佐劑系統(Sigma-Aldrich, St Louis, MO)。向小鼠腹腔內注射50μg免疫原/每只小鼠。14天后用佐劑中的另外免疫原加強免疫的小鼠。此後,持續數周,用PBS中的免疫原每14至21天加強小鼠。定期從尾部出血製備小鼠血清樣品,並通過ELISA測試抗原特異性抗體的存在。具有顯著抗體滴度的小鼠在脾融合前四天接受PBS中的融合前免疫原增強。在融合前三天,將小鼠在尾基部用PBS中的50μg抗CD40激動劑mAb (R&D Systems, Minneapolis, MN)皮下處理以增加B細胞數(參見Rycyzyn等人, Hybridoma27:25-30, 2008).  處死小鼠,並收穫脾細胞,並使用50%聚乙二醇或50%聚乙二醇加10% DMSO與所選鼠骨髓瘤細胞系P3/NSI/1-AG4-1 (NS-1) (ATCC No. TIB18)融合。融合產生雜交瘤細胞,將其鋪板於含有HAT(次黃嘌呤、胺基蝶呤和胸苷)培養基的96孔組織培養板中,以抑制非融合細胞、骨髓瘤雜交物和脾臟雜交物的增殖。雜交瘤選擇後,測定培養上清液的MASP-3結合(ELISA)和前因子D活化的抑制。通過連續稀釋法鑒定和亞殖株陽性雜交瘤。 表17:融合實驗的概述
融合體 免疫原: 人MASP-3 總雜交瘤 MASP-3結合雜交瘤 MASP-3功能雜交瘤
1 SP 434 38 10
2 SP 279 13 0
3 CCP1/CCP2/SP 348 40 2
4 CCP1/CCP2/SP 319 60 2
5 CCP1/CCP2/SP 651 152 1
6 CCP1/CCP2/SP 1297 ND 1
注:“ND”意味著僅針對前CFD活化的功能性抑制篩選該融合體。 結果:
如表17中所示,篩選來自免疫的MASP1/3 KO小鼠的總共3328個雜交瘤,發現其中>303個與MASP-3結合,並且發現其中16個與MASP-3結合並抑制前-CFD活化。實施例11中描述的mAb M3-1 (13B1)是表17中所述的16種功能性MASP-3抑制性抗體之一。如實施例15中所述,確定所有16種功能性MASP-3抑制性抗體以非常強的結合親和力(≤500pM)與人MASP- 3結合。 討論:
本實施例描述了通過免疫MASP1/3敲除小鼠來產生抗體,所述抗體以非常強的結合親和力(即亞納摩爾結合親和力,範圍為≤500pM至20pM)抑制人MASP-3。本實施例中描述的抗體以高親和力(例如,≤500pM)特異性結合人MASP-3,抑制因子D成熟,並且不結合人MASP-1。如本文所述,人、小鼠和雞MASP-3的胺基酸序列揭示MASP-3的SP結構域是高度保守的,特別是在活性位點(參見圖4和5)。可能的是,如本實施例中所述的在MASP1/3 KO小鼠中產生具有非常強的結合親和力的MASP-3抑制性抗體的能力可能部分歸因於避免免疫耐受性,這可能阻礙在野生型動物中產生高度有效的MASP-3催化位點特異性抗體。 實施例 15
本實施例描述高親和力抗人MASP-3抑制性mAb的殖株和序列分析。 方法: 重組抗體的選殖和純化:
使用RT-PCR從實施例11和14中描述的雜交瘤 選殖重鏈和輕鏈可變區,並進行測序。在Expi293F細胞中產生由與人IgG4重鏈(SEQ ID NO: 311)和κ輕鏈(SEQ ID NO: 313)恒定區融合的小鼠mAb可變區組成的小鼠-人嵌合mAb。IgG4恒定鉸鏈區(SEQ ID NO: 311)含有穩定化的S228P胺基酸取代。在一個實施方案中,將嵌合mAb與含有S228P胺基酸取代以及在低pH下促進FcRn相互作用的突變的人IgG4恒定鉸鏈區(SEQ ID NO: 312)融合。
重鏈可變區和輕鏈可變區的序列分別顯示於圖49A和49B中(圖49A和圖49B中的“SIN” = “SEQ ID NO: ”),並且包括在下面。在下表18-22中提供各自的互補區(CDR)和構架區(FR)。
圖50A是在MASP1/3 KO小鼠中產生的高親和力抗人MASP-3抑制性mAb的VH區的樹狀圖。圖50B是在MASP1/3 KO小鼠中產生的高親和力抗人MASP-3抑制性mAb的VL區的樹狀圖。如圖50A和50B中所示,鑒定了幾組相關抗體。
下面呈現的是每種高親和力MASP-3抑制性抗體的重鏈可變區(VH)序列。Kabat CDR加底線。 重鏈可變區: 4D5_VH: SEQ ID NO: 24
QVQLKQSGPELVKPGASVKLSCKASGYTFT TDDINWVKQRPGQGLEWIG WIYPRDDRTKYNDKFKDKATLTVDTSSNTAYMDLHSLTSEDSAVYFCSS LEDTYWGQGTLVAVSS 1F3_VH: SEQ ID NO: 25
QVQLKQSGPELVKPGASVKLSCKASGYTFT SNDINWVKQRPGQGLEWIG WIYPRDGSIKYNEKFTDKATLTVDVSSSTAYMELHSLTSEDSAVYFCSG VEDSYWGQGTLVTVSS 4B6_VH: SEQ ID NO: 26
QVQLKQSGPELVKPGASVKLSCKASGYTFT SNDINWVKQRPGQGLEWIG WIYPRDGTTKYNEEFTDKATLTVDVSSSTAFMELHSLTSEDSAVYFCSS VEDSYWGQGTLVTVSS 1A10_VH: SEQ ID NO: 27
QVQLKQSGPELVKPGASVKLSCKASGYTFT SNDINWVKQRPGQGLEWIG WIYPRDGTTKYNEKFTDKATLTVDVSSSTAFMELHRLTSEDSAVYFCSS VEDSYWGQGTLVTVSS 10D12_VH: SEQ ID NO: 28
QIQLVQSGPELKKPGETVKISCKASGYIFT SYGMSWVRQAPGKGLKWMG WINTYSGVPTYADDFKGRFAFSLETSARTPYLQINNLKNEDTATYFCAR GGEAMDYWGQGTSVTVSS 35C1_VH: SEQ ID NO: 29
QIQLVQSGPELKTPGETVKISCKASGYIFT SYGITWVKQAPGKGLKWMG WINTYSGVPTYADDFKGRFAFSLETSASTAYLQINNLKNEDTTTYFCTR GGDALDYWGQGTSVTVSS 13B1_VH: SEQ ID NO: 30
QVQLKQSGAELMKPGASVKLSCKATGYTFT GKWIEWVKQRPGHGLEWIG EILPGTGSTNYNEKFKGKATFTADSSSNTAYMQLSSLTTEDSAMYYCLR SEDVWGTGTTVTVSS 1G4_VH: SEQ ID NO: 31
QVQLKQSGAELMKPGASVKLACKATGYTFT GYWIEWIKQRPGQGLEWIG EMLPGSGSTHYNEKFKGKATFTADTSSNTAYMQLSGLTTEDSAIYYCVR SIDYWGQGTTLTVSS 1E7_VH: SEQ ID NO: 32
QVQLKQSGPELARPWASVKISCQAFYTFSR RVHFAIRDTNYWMQWVKQRPGQGLEWIG AIYPGNGDTSYNQKFKGKATLTADKSSSTAYMQLSSLTSEDSAVYYCAS GSHYFDYWGQGTTLTVSS 2D7_VH: SEQ ID NO: 33
EVQLQQSGPELVKPGASVKVSCKASGYTLT DYYMNWVKQSHGKSLEWIG DVNPNNDGTTYNQKFKGRATLTVDKSSNTASMELRSLTSEDSAVYYCAI CPFYYLGKGTHFDYWGQGTSLTVSS 49C11_VH: SEQ ID NO: 34
EVQLQQSGPVLVKPGASGKMSCKASGYKFT DYYMIWVKQSHGKSLEWIG VIKIYNGGTSYNQKFKGKATLTVDKSSSTAYMELNSLTSEDSAVYYCAR GPSLYDYDPYWYFDVWGTGTTVTVSS 15D9_VH: SEQ ID NO: 35
QVQLKQSGTELMKPGASVNLSCKASGYTFT AYWIEWVKQRPGHGLEWIG EILPGSGTTNYNENFKDRATFTADTSSNTAYMQLSSLTSEDSAIYYCAR SYYYASRWFAFWGQGTLVTVSS 2F5_VH: SEQ ID NO: 36
EVQLQQPGAELVKPGASVKMSCKASGYTFT SYWITWVKQRPGQGLEWIG DIYPGSGSTNYNEKFKSKATLTVDTSSSTAYMQLSSLTSEDSAVYYCAR RRYYATAWFAYWGQGTLVTVSS 1B11_VH: SEQ ID NO: 37
QVQLKQSGAELVRPGASVKLSCKASGYTFT DYYINWVKQRPGQGLEWIA RIYPGSGNTYYNEKFKGKATLTAEKSSSTAYMQLSSLTSEDSAVYFCAR NYYISSPWFAYWGQGTLVTVSS 2F2_VH: SEQ ID NO: 38
QVQLKQSGAELVTPGASVKMSCKASGYTFT TYPIEWMKQNHGKSLEWIG NFHPYNDDTKYNEKFKGKATLTVEKSSNTVYLELSRLTSDDSAVYFCAR RVYYSYFWFGYWGHGTLVTVSS 11B6_VH: SEQ ID NO: 39
QVQLKQSGAELVKPGASVKMSCKASGYTFT TYPIEWMKQNHGKSLEWIG NFHPYNGDSKYNEKFKGKATLTVEKSSSTVYLELSRLPSADSAIYYCAR RHYAASPWFAHWGQGTLVTVSS 表 18:MASP-3抗體VH序列(CDR和FR區域,Kabat)
抗體 HC FR1 HC CDR1
4D5 QVQLKQSGPELVKPGASVKLSCKASGYTFT (SEQ ID NO: 55)    TDDIN (SEQ ID NO: 56)
1F3 QVQLKQSGPELVKPGASVKLSCKASGYTFT (SEQ ID NO: 55)    SNDIN (SEQ ID NO: 62)   
4B6 QVQLKQSGPELVKPGASVKLSCKASGYTFT (SEQ ID NO: 55)    SNDIN (SEQ ID NO: 62)   
1A10 QVQLKQSGPELVKPGASVKLSCKASGYTFT (SEQ ID NO: 55)    SNDIN (SEQ ID NO: 62)   
10D12 QIQLVQSGPELKKPGETVKISCKASGYIFT (SEQ ID NO: 71)    SYGMS (SEQ ID NO: 72)
35C1 QIQLVQSGPELKTPGETVKISCKASGYIFT (SEQ ID NO: 78)    SYGIT (SEQ ID NO: 79)
13B1 QVQLKQSGAELMKPGASVKLSCKATGYTFT (SEQ ID NO: 83)    GKWIE (SEQ ID NO: 84)   
1G4 QVQLKQSGAELMKPGASVKLACKATGYTFT (SEQ ID NO: 90)    GYWIE (SEQ ID NO: 91)   
2F5 EVQLQQPGAELVKPGASVKMSCKASGYTFT (SEQ ID NO: 97)    SYWIT (SEQ ID NO: 98)   
1B11 QVQLKQSGAELVRPGASVKLSCKASGYTFT (SEQ ID NO: 102)    DYYIN (SEQ ID NO: 103)   
1E7 QVQLKQSGPELARPWASVKISCQAFYTFSR (SEQ ID NO: 108)    RVHFAIRDTNYWMQ (SEQ ID NO: 109)   
2F2 QVQLKQSGAELVTPGASVKMSCKASGYTFT (SEQ ID NO: 113)    TYPIE (SEQ ID NO: 114)   
11B6 QVQLKQSGAELVKPGASVKMSCKASGYTFT (SEQ ID NO: 120)    TYPIE (SEQ ID NO: 114)   
2D7 EVQLQQSGPELVKPGASVKVSCKASGYTLT (SEQ ID NO: 124)    DYYMN (SEQ ID NO: 125)   
49C11    EVQLQQSGPVLVKPGASGKMSCKASGYKFT (SEQ ID NO: 131) DYYMI (SEQID NO: 132)
15D9 QVQLKQSGTELMKPGASVNLSCKASGYTFT (SEQ ID NO: 136)    AYWIE (SEQ ID NO: 137)   
  
抗體 HC FR2 HC CDR2
4D5 WVKQRPGQGLEWIG (SEQ ID NO: 57)    WIYPRDDRTKYNDKFKD (SEQ ID NO: 58)
1F3 WVKQRPGQGLEWIG (SEQ ID NO: 57)    WIYPRDGSIKYNEKFTD (SEQ ID NO: 63)
4B6 WVKQRPGQGLEWIG (SEQ ID NO: 57)    WIYPRDGTTKYNEEFTD (SEQ ID NO: 67)   
1A10 WVKQRPGQGLEWIG (SEQ ID NO: 57)    WIYPRDGTTKYNEKFTD (SEQ ID NO: 69)
10D12 WVRQAPGKGLKWMG (SEQ ID NO: 73)    WINTYSGVPTYADDFKG (SEQ ID NO: 74)   
35C1 WVKQAPGKGLKWMG (SEQ ID NO: 80)    WINTYSGVPTYADDFKG (SEQ ID NO: 74)
13B1 WVKQRPGHGLEWIG (SEQ ID NO: 85)    EILPGTGSTNYNEKFKG (SEQ ID NO: 86)
1G4 WIKQRPGQGLEWIG (SEQ ID NO: 92)    EMLPGSGSTHYNEKFKG (SEQ ID NO: 93)   
2F5 WVKQRPGQGLEWIG (SEQ ID NO: 57) DIYPGSGSTNYNEKFKS (SEQ ID NO: 99)   
1B11 WVKQRPGQGLEWIA (SEQ ID NO: 104)    RIYPGSGNTYYNEKFKG (SEQ ID NO: 105)   
1E7 WVKQRPGQGLEWIG (SEQ ID NO: 57) AIYPGNGDTSYNQKFKG (SEQ ID NO: 110)   
2F2 WMKQNHGKSLEWIG (SEQ ID NO: 115)    NFHPYNDDTKYNEKFKG (SEQ ID NO: 116)   
11B6 WMKQNHGKSLEWIG (SEQ ID NO: 115)    NFHPYNGDSKYNEKFKG (SEQ ID NO: 121)   
2D7    WVKQSHGKSLEWIG (SEQ ID NO: 126)    DVNPNNDGTTYNQKFKG (SEQ ID NO: 127)   
49C11    WVKQSHGKSLEWIG (SEQ ID NO: 126) VIKIYNGGTSYNQKFKG (SEQ ID NO: 133)
15D9    WVKQRPGHGLEWIG (SEQ ID NO: 85)    EILPGSGTTNYNENFKD (SEQ ID NO: 138)   
  
抗體 HC FR3 HC CDR3
4D5 KATLTVDTSSNTAYMDLHSLTSEDSAVYFCSS (SEQ ID NO: 59)    LEDTY (SEQ ID NO: 60)
1F3 KATLTVDVSSSTAYMELHSLTSEDSAVYFCSG (SEQ ID NO: 64)    VEDSY (SEQ ID NO: 65)
4B6 KATLTVDVSSSTAFMELHSLTSEDSAVYFCSS (SEQ ID NO: 68)    VEDSY (SEQ ID NO: 65)
1A10 KATLTVDVSSSTAFMELHRLTSEDSAVYFCSS (SEQ ID NO: 70)    VEDSY (SEQ ID NO: 65)
10D12 RFAFSLETSARTPYLQINNLKNEDTATYFCAR (SEQ ID NO: 75)    GGEAMDY (SEQ ID NO: 76)   
35C1 RFAFSLETSASTAYLQINNLKNEDTTTYFCTR (SEQ ID NO: 81)    GGDALDY (SEQ ID NO: 82)
13B1    KATFTADSSSNTAYMQLSSLTTEDSAMYYCLR (SEQ ID NO: 87)    SEDV (SEQ ID NO: 88)
1G4    KATFTADTSSNTAYMQLSGLTTEDSAIYYCVR (SEQ ID NO: 94)    SIDY (SEQ ID NO: 95)   
2F5    KATLTVDTSSSTAYMQLSSLTSEDSAVYYCAR (SEQ ID NO: 100)    RRYYATAWFAY (SEQ ID NO: 101)   
1B11    KATLTAEKSSSTAYMQLSSLTSEDSAVYFCAR (SEQ ID NO: 106)    NYYISSPWFAY (SEQ ID NO: 107)   
1E7    KATLTADKSSSTAYMQLSSLTSEDSAVYYCAS (SEQ ID NO: 111)    GSHYFDY (SEQ ID NO: 112)   
2F2    KATLTVEKSSNTVYLELSRLTSDDSAVYFCAR (SEQ ID NO: 117)    RVYYSYFWFGY (SEQ ID NO: 118)   
11B6    KATLTVEKSSSTVYLELSRLPSADSAIYYCAR (SEQ ID NO: 122)    RHYAASPWFAH (SEQ ID NO: 123)   
2D7    RATLTVDKSSNTASMELRSLTSEDSAVYYCAI (SEQ ID NO: 128    CPFYYLGKGTHFDY (SEQ ID NO: 129)
49C11    KATLTVDKSSSTAYMELNSLTSEDSAVYYCAR (SEQ ID NO: 134) GPSLYDYDPYWYFDV ( SEQ ID NO: 135)
15D9    RATFTADTSSNTAYMQLSSLTSEDSAIYYCAR (SEQ ID NO: 139)    SYYYASRWFAF (SEQ ID NO: 140)   
  
   抗體 HC FR4   
4D5 WGQGTLVAVSS (SEQ ID NO: 61)      
1F3 WGQGTLVTVSS (SEQ ID NO: 66)      
4B6 WGQGTLVTVSS (SEQ ID NO: 66)      
1A10 WGQGTLVTVSS (SEQ ID NO: 66)      
10D12 WGQGTSVTVSS (SEQ ID NO: 77)      
35C1 WGQGTSVTVSS (SEQ ID NO: 77)      
13B1    WGTGTTVTVSS (SEQ ID NO: 89)      
1G4    WGQGTTLTVSS (SEQ ID NO: 96)      
2F5 WGQGTLVTVSS (SEQ ID NO: 66)      
1B11 WGQGTLVTVSS (SEQ ID NO: 66)      
1E7 WGQGTTLTVSS (SEQ ID NO: 96)      
2F2 WGHGTLVTVSS (SEQ ID NO: 119)      
11B6 WGQGTLVTVSS (SEQ ID NO: 66)      
2D7 WGQGTSLTVSS (SEQ ID NO: 130)      
49C11    WGTGTTVTVSS (SEQ ID NO: 89)   
15D9    WGQGTLVTVSS (SEQ ID NO: 66)      
下麵呈現的是高親和力MASP-3抑制性抗體的輕鏈可變區(VL)序列。Kabat CDR加底線。這些區域是相同的,無論是通過Kabat還是Chothia系統編號。 輕鏈可變區: 4D5_VL: SEQ ID NO: 40
DIVMTQSPSSLAVSAGEKVTMTC KSSQSLLNSRTRKNYLAWYQQKPGQSPKLLIY WASTRESGVPDRFTGSGSGTDFSLTISSVQAEDLAVYYC KQSYNLYTFGGGTKLEIKR 1F3_VL: SEQ ID NO: 41
DIVMTQSPSSLAVSAGERVTMSC KSSQSLLISRTRKNYLSWYQQKPGQSPKLLIY WASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLYTFGGGTKLEIKR 4B6_VL: SEQ ID NO: 42 (與1A10_VL相同)
DIVMTQSPSSLAVSAGEKVTMSC KSSQSLLISRTRKNYLSWYQQKPGQSPKLLIY WASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNLYTFGGGTKLEIKR 10D12_VL: SEQ ID NO: 43
DVLMTQTPLTLSVTIGQPASISC KSSQSLLDSDGKTYLNWLLQRPGQSPKRLIY LVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYC WQGTHFPWTFGGGTKLEIKR 35C1_VL: SEQ ID NO: 44
DIVMTQAPLTLSVTIGQPASISC KSSQSLLDSDGKTYLSWLLQRPGQSPKRLIY LVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYC WQGTHFPYTFGGGTKLEIKR 13B1_VL: SEQ ID NO: 45
DIVMTQSPSSLAVSAGEKVTMSC KSSQSLLNSRTRKNYLAWYQQKPGQSPKLLIY WASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC KQSYNIPTFGGGTKLEIKR 1G4_VL: SEQ ID NO: 46
DVLMTQTPLSLPVSLGEQASISC RSSQSLVQSNGNTYLHWYLQKPGQSPKLLIY KVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFC SQSTHVPPTFGGGTKLEIKR 1E7_VL: SEQ ID NO: 47
DIQLTQSPAILSVSPGERVSFSC RASQSIGTSIHWYQQRTNGSPRLLIK YASESISGIPSRFSGSGSGTDFTLSINSVESEDIADYYC QQSNSWPYTFGGGTKLEIKR 2D7_VL: SEQ ID NO: 48
DIQMTQTPASLSASLGDRVTISC RASQDISNFLNWYQQKPNGTVKLLVF YTSRLHSGVPSRFSGSGSGAEHSLTISNLEQEDVATYFC QQGFTLPWTFGGGTKVEIKR 49C11_VL:SEQ ID NO: 49
DVLMTQTPLSLPVSLGDQASFSC RSSQSLIHSNGNTYLHWYLQKPGQSPKLLIY KVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFC SQSTHVPWTFGGGTKLEIKR 15D9_VL: SEQ ID NO: 50
DIVMTQSQKFMSTSIGDRVSVTC RASQNVGPNLAWYQQKPGQSPKALIY SASYRFSGVPDRFTGSGSGTDFTLTISNVQSEDLAEYFC QQYNRYPFTFGSGTKLEIKR 2F5_VL: SEQ ID NO: 51
DIVMTQSQKFMSTSVGDRVSITC KASQNVGTAVAWYQQKPGQSPKLLIS SASNRYTGVPDRFTGSGSGTDFTLTISNMQSEDVADYFC QQYNSYPLTFGAGTKLELKR 1B11_VL: SEQ ID NO: 52
DIVMTQSQKFMSTSVGDRVSVTC KASQNVGPNVAWYQQKPGQSPKALIY SASYRYSGVPDRFTGSGSGTDFTLTISNVQSEDLADYFC QQYNRYPLTFGAGTKLELKR 2F2_VL: SEQ ID NO: 53
DIVMTQSQKFMSTSVGDRVNVTC KASQNVGTHVAWYQQKPGQSPKALIY SASYRYSGVPDRFTGSGSGTDFTLTISNVQSEDLAEYFC QQYNSYPRALTFGAGTKLELKR 11B6_VL: SEQ ID NO: 54
DIVMTQSQKFMSTSVGDRVNVTC KASQNVGPTVAWYQQKPGQSPKALIY SASYRYSGVPDRFTGSGSGTDFTLTISNVHSEDLAEYFC QQYNSYPFTFGSGTKLEIKR 表 19:MASP-3抗體VL序列(CDR和FR區域,Kabat和Chothia)
抗體 LC FR1 LC CDR1
4D5 DIVMTQSPSSLAVSAGEKVTMTC (SEQ ID NO: 141)    KSSQSLLNSRTRKNYLA (SEQ ID NO: 142)   
1F3    DIVMTQSPSSLAVSAGERVTMSC (SEQ ID NO: 148)    KSSQSLLISRTRKNYLS (SEQ ID NO: 149)   
4B6    DIVMTQSPSSLAVSAGEKVTMSC (SEQ ID NO: 151)    KSSQSLLISRTRKNYLS (SEQ ID NO: 149)
1A10*    [使用4B6 LC: SEQ ID NO: 151]    [使用4B6 LC: SEQ ID NO: 149]
10D12    DVLMTQTPLTLSVTIGQPASISC (SEQ ID NO: 152)    KSSQSLLDSDGKTYLN (SEQ ID NO: 153)   
35C1 DIVMTQAPLTLSVTIGQPASISC (SEQ ID NO: 158)    KSSQSLLDSDGKTYLS (SEQ ID NO: 159)   
13B1    DIVMTQSPSSLAVSAGEKVTMSC (SEQ ID NO: 151) KSSQSLLNSRTRKNYLA (SEQ ID NO: 142)   
1G4    DVLMTQTPLSLPVSLGEQASISC (SEQ ID NO: 162)    RSSQSLVQSNGNTYLH (SEQ ID NO: 163)   
2F5 DIVMTQSQKFMSTSVGDRVSITC (SEQ ID NO: 168)    KASQNVGTAVA (SEQ ID NO: 169)   
1B11    DIVMTQSQKFMSTSVGDRVSVTC (SEQ ID NO: 175)    KASQNVGPNVA (SEQ ID NO: 176)   
1E7 DIQLTQSPAILSVSPGERVSFSC (SEQ ID NO: 181)    RASQSIGTSIH (SEQ ID NO: 182)   
2F2 DIVMTQSQKFMSTSVGDRVNVTC (SEQ ID NO: 187)    KASQNVGTHVA (SEQ ID NO: 188)   
11B6 DIVMTQSQKFMSTSVGDRVNVTC (SEQ ID NO: 187)    KASQNVGPTVA (SEQ ID NO: 191)   
2D7 DIQMTQTPASLSASLGDRVTISC (SEQ ID NO: 195)    RASQDISNFLN (SEQ ID NO: 196)   
49C11    DVLMTQTPLSLPVSLGDQASFSC (SEQ ID NO: 202) RSSQSLIHSNGNTYLH (SEQ ID NO: 203)   
15D9 DIVMTQSQKFMSTSIGDRVSVTC (SEQ ID NO: 205)    RASQNVGPNLA (SEQ ID NO: 206)   
  
抗體 LC FR2 LC CDR2
4D5 WYQQKPGQSPKLLIY (SEQ ID NO: 143)    WASTRES (SEQ ID NO: 144)   
1F3 WYQQKPGQSPKLLIY (SEQ ID NO: 143)    WASTRES (SEQ ID NO: 144)
4B6 WYQQKPGQSPKLLIY (SEQ ID NO: 143)    WASTRES (SEQ ID NO: 144)
1A10    [使用4B6 LC: SEQ ID NO: 143] [使用4B6 LC: SEQ ID NO: 144]
10D12    WLLQRPGQSPKRLIY (SEQ ID NO: 154)    LVSKLDS (SEQ ID NO: 155)   
35C1 WLLQRPGQSPKRLIY (SEQ ID NO: 154)    LVSKLDS (SEQ ID NO: 155)
13B1    WYQQKPGQSPKLLIY (SEQ ID NO: 143)    WASTRES (SEQ ID NO: 144)
1G4    WYLQKPGQSPKLLIY (SEQ ID NO: 164)    KVSNRFS (SEQ ID NO: 165)   
2F5    WYQQKPGQSPKLLIS (SEQ ID NO: 170)    SASNRYT (SEQ ID NO: 171)   
1B11    WYQQKPGQSPKALIY (SEQ ID NO: 177)    SASYRYS (SEQ ID NO: 178)   
1E7    WYQQRTNGSPRLLIK (SEQ ID NO: 183)    YASESIS (SEQ ID NO: 184)   
2F2    WYQQKPGQSPKALIY (SEQ ID NO: 177)    SASYRYS (SEQ ID NO: 178)
11B6    WYQQKPGQSPKALIY (SEQ ID NO: 177)    SASYRYS (SEQ ID NO: 178)
2D7    WYQQKPNGTVKLLVF (SEQ ID NO: 197)    YTSRLHS (SEQ ID NO: 198)   
49C11    WYLQKPGQSPKLLIY (SEQ ID NO: 164)    KVSNRFS (SEQ ID NO: 165)
15D9    WYQQKPGQSPKALIY (SEQ ID NO: 177)    SASYRFS (SEQ ID NO: 207)   
  
抗體 LC FR3 LC CDR3
4D5 GVPDRFTGSGSGTDFSLTISSVQAEDLAVYYC (SEQ ID NO: 145)    KQSYNLYT (SEQ ID NO: 146)   
1F3 GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC (SEQ ID NO: 150) KQSYNLYT (SEQ ID NO: 146)   
4B6    GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC (SEQ ID NO: 150) KQSYNLYT (SEQ ID NO: 146)   
1A10    [使用4B6 LC: SEQ ID NO: 150] [使用4B6 LC: SEQ ID NO: 146]
10D12    GVPDRFTGSGSGTDFTLKISRVEAEDLGVYYC (SEQ ID NO: 156)    WQGTHFPWT (SEQ ID NO: 157)   
35C1 GVPDRFTGSGSGTDFTLKISRVEAEDLGVYYC (SEQ ID NO: 156)    WQGTHFPYT (SEQ ID NO: 160)   
13B1    GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC (SEQ ID NO: 150)    KQSYNIPT (SEQ ID NO: 161)   
1G4    GVPDRFSGSGSGTDFTLKISRVEAEDLGVYFC (SEQ ID NO: 166)    SQSTHVPPT (SEQ ID NO: 167)   
2F5    GVPDRFTGSGSGTDFTLTISNMQSEDVADYFC (SEQ ID NO: 172)    QQYNSYPLT (SEQ ID NO: 173)   
1B11    GVPDRFTGSGSGTDFTLTISNVQSEDLADYFC (SEQ ID NO: 179)    QQYNRYPLT (SEQ ID NO: 180)   
1E7    GIPSRFSGSGSGTDFTLSINSVESEDIADYYC (SEQ ID NO: 185)    QQSNSWPYT (SEQ ID NO: 186)   
2F2    GVPDRFTGSGSGTDFTLTISNVQSEDLAEYFC (SEQ ID NO: 189)    QQYNSYPRALT (SEQ ID NO: 190)   
11B6    GVPDRFTGSGSGTDFTLTISNVHSEDLAEYFC (SEQ ID NO: 192)    QQYNSYPFT (SEQ ID NO: 193)   
2D7    GVPSRFSGSGSGAEHSLTISNLEQEDVATYFC (SEQ ID NO: 199)    QQGFTLPWT (SEQ ID NO: 200)   
49C11    GVPDRFSGSGSGTDFTLKISRVEAEDLGVYFC (SEQ ID NO: 166)    SQSTHVPWT (SEQ ID NO: 204)
15D9    GVPDRFTGSGSGTDFTLTISNVQSEDLAEYFC (SEQ ID NO: 189) QQYNRYPFT (SEQ ID NO: 208)   
  
   抗體 LC FR4   
4D5 FGGGTKLEIKR (SEQ ID NO: 147)      
1F3 FGGGTKLEIKR (SEQ ID NO: 147)      
4B6 FGGGTKLEIKR (SEQ ID NO: 147)      
1A10 [使用4B6 LC: SEQ ID NO: 147]   
10D12 FGGGTKLEIKR (SEQ ID NO: 147)      
35C1 FGGGTKLEIKR (SEQ ID NO: 147)      
13B1    FGGGTKLEIKR (SEQ ID NO: 147)      
1G4    FGGGTKLEIKR (SEQ ID NO: 147)      
2F5 FGAGTKLELKR (SEQ ID NO: 174)      
1B11 FGAGTKLELKR (SEQ ID NO: 174)      
1E7 FGGGTKLEIKR (SEQ ID NO: 147)      
2F2 FGAGTKLELKR (SEQ ID NO: 174)      
11B6 FGSGTKLEIKR (SEQ ID NO: 194)      
2D7 FGGGTKVEIKR (SEQ ID NO: 201)      
49C11    FGGGTKLEIKR (SEQ ID NO: 147)      
15D9    FGSGTKLEIKR (SEQ ID NO: 194)      
*注:沒有鑒定mAb 1A10的輕鏈,所以來自4B6的輕鏈與1A10 HC一起使用。 表 20:組IA HC CDR的共有序列:
抗體 區域 序列
4D5 HC-CDR1 TDDIN (SEQ ID NO: 56)
1F3 HC-CDR1 SNDIN (SEQ ID NO: 62)
4B6 HC-CDR1 SNDIN (SEQ ID NO: 62)
1A10 HC-CDR1 SNDIN (SEQ ID NO: 62)
共有序列 HC-CDR1 XXDIN (SEQ ID NO: 209) 其中 位置1的X是S或T;且 位置2的X是N或D
        
4D5 HC-CDR2 WIYPRDDRTKYNDKFKD (SEQ ID NO: 58)
1F3 HC-CDR2 WIYPRDGSIKYNEKFTD    (SEQ ID NO: 63)
4B6 HC-CDR2 WIYPRDGTTKYNEEFTD   (SEQ ID NO: 67)
1A10 HC-CDR2 WIYPRDGTTKYNEKFTD   (SEQ ID NO: 69)
共有序列 HC-CDR2 WIYPRDXXXKYNXXFXD (SEQ ID NO: 210) 其中 位置7的X是G或D;位置8的X是S、T或R;位置9的X是I或T;位置13的X是F或D;位置14的X是K或E;位置16的X是T或K
        
4D5 HC-CDR3 LEDTY (SEQ ID NO: 60)
1F3 HC-CDR3 VEDSY (SEQ ID NO: 65)
4B6 HC-CDR3 VEDSY (SEQ ID NO: 65)
1A10 HC-CDR3 VEDSY (SEQ ID NO: 65)
共有序列 HC-CDR3 XEDXY (SEQ ID NO: 211) 其中位置1的X是L或V,且 其中位置4的X是T或S
表 21:組IA LC CDR的共有序列:
抗體 區域 序列
  
4D5 LC-CDR1 KSSQSLL NSRTRKNYLA (SEQ ID NO: 142)
4D5-NQ LC-CDR1 KSSQSLL QSRTRKNYLA (SEQ ID NO: 257)
4D5-NA LC-CDR1 KSSQSLL ASRTRKNYLA (SEQ ID NO: 258)
4D5-ST LC-CDR1 KSSQSLL NTRTRKNYLA (SEQ ID NO: 259)
1F3 LC-CDR1 KSSQSLLISRTRKNYLS   (SEQ ID NO: 149)
4B6 LC-CDR1 KSSQSLLISRTRKNYLS   (SEQ ID NO: 149)
共有序列* LC-CDR1 KSSQSLLXXRTRKNYLX (SEQ ID NO: 212) 其中位置8的X是N、I、Q或A; 其中位置9的X是S或T; 且其中位置17的X是A或S
  
4D5 LC-CDR2 WASTRES (SEQ ID NO: 144)
1F3 LC-CDR2 WASTRES (SEQ ID NO: 144)
4B6 LC-CDR2 WASTRES (SEQ ID NO: 144)
共有序列 LC-CDR2 WASTRES (SEQ ID NO: 144)
  
4D5 LC-CDR3 KQSYNLYT  (SEQ ID NO: 146)
1F3 LC-CDR3 KQSYNLYT  (SEQ ID NO: 146)
4B6 LC-CDR3 KQSYNLYT   (SEQ ID NO: 146)
共有序列 LC-CDR3 KQSYNLYT  (SEQ ID NO: 146)
*注:CDR-L1共有序列包括如實施例19中所述的變體。 表 22組IB HC CDR的共有序列:
抗體 區域 序列
10D12 HC-CDR1 SYGMS  (SEQ ID NO: 72)
35C1 HC-CDR1 SYGIT    (SEQ ID NO: 79)
共有序列 HC-CDR1 SYGXX  (SEQ ID NO: 213) 其中位置4的X是M或I;且 其中位置5的X是S或T
        
10D12 HC-CDR2 WINTYSGVPTYADDFKG  (SEQ ID NO: 74)
35C1 HC-CDR2 WINTYSGVPTYADDFKG  (SEQ ID NO: 74)
共有序列 HC-CDR2 WINTYSGVPTYADDFKG  (SEQ ID NO: 74)
        
10D12 HC-CDR3 GGEAMDY (SEQ ID NO: 76)
35C1 HC-CDR3 GGDALDY  (SEQ ID NO: 82)
共有序列 HC-CDR3 GGXAXDY  (SEQ ID NO: 214) 其中位置3的X是E或D;且 其中位置5的X是M或L
表 23組IB LC CDR的共有序列:
抗體 區域 序列
10D12 LC-CDR1 KSSQSLLDS DGKTYLN  (SEQ ID NO: 153)
10D12-DE LC-CDR1 KSSQSLLDS EGKTYLN   (SEQ ID NO: 261)
10D12-DA LC-CDR1 KSSQSLLDS AGKTYLN   (SEQ ID NO: 262)
10D12-GA LC-CDR1 KSSQSLLDS DAKTYLN  (SEQ ID NO: 263)
35C1 LC-CDR1 KSSQSLLDSDGKTYLS   (SEQ ID NO: 159)
共有序列* LC-CDR1 KSSQSLLDSXXKTYLX   (SEQ ID NO: 215) 其中位置10的X是D、E或A; 其中位置11的X是G或A;且 其中位置16的X是N或S
        
10D12 LC-CDR2 LVSKLDS  (SEQ ID NO: 155)   
35C1 LC-CDR2 LVSKLDS  (SEQ ID NO: 155)
共有序列 LC-CDR2 LVSKLDS  (SEQ ID NO: 155)
        
10D12 LC-CDR3 WQGTHFPWT  (SEQ ID NO: 157)
35C1 LC-CDR3 WQGTHFPYT   (SEQ ID NO: 160)
共有序列 LC-CDR3 WQGTHFPXT   (SEQ ID NO: 216) 其中位置8的X是W或Y
*注:CDR-L1共有序列包括如實施例19中所述的變體。 編碼小鼠mAb重鏈和輕鏈的DNA: SEQ ID NO: 217: 編碼4D5重鏈可變區(親本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGTTGTCCTGCAAGGCTTCTGGCTACACCTTCACAACCGACGATATAAACTGGGTGAAGCAGAGGCCTGGACAGGGACTTGAGTGGATTGGATGGATTTATCCTAGAGATGATAGAACTAAGTACAATGACAAGTTCAAGGACAAGGCCACATTGACTGTAGACACATCTTCCAACACAGCGTACATGGACCTCCACAGCCTGACATCTGAGGACTCTGCGGTCTATTTCTGTTCAAGCCTCGAGGATACTTACTGGGGCCAAGGGACTCTGGTCGCTGTCTCTTCA SEQ ID NO: 218: 編碼1F3重鏈可變區(親本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGTTGTCCTGCAAGGCTTCTGGCTACACCTTCACAAGTAACGATATAAACTGGGTGAAGCAGAGGCCTGGACAGGGACTTGAGTGGATTGGATGGATTTATCCTAGAGATGGGAGTATTAAATATAATGAGAAATTCACGGACAAGGCCACATTGACAGTTGACGTATCCTCCAGCACAGCGTACATGGAGCTCCACAGCCTGACATCTGAGGACTCTGCGGTCTATTTCTGTTCAGGTGTCGAGGATTCTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTTCA SEQ ID NO: 219: 編碼4B6重鏈可變區(親本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGACCTGAACTGGTGAAGCCTGGGGCTTCAGTGAAATTGTCCTGCAAGGCTTCTGGCTACACCTTCACAAGTAACGATATAAACTGGGTGAAACAGAGGCCTGGACAGGGACTTGAGTGGATTGGATGGATTTATCCTAGAGATGGTACTACTAAGTACAATGAGGAGTTCACGGACAAGGCCACATTGACTGTTGACGTATCCTCCAGCACAGCGTTCATGGAGCTCCACAGCCTGACATCTGAGGACTCTGCTGTCTATTTCTGTTCAAGTGTCGAGGATTCTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTTCA SEQ ID NO: 220: 編碼1A10重鏈可變區(親本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGTTGTCCTGCAAGGCTTCTGGCTACACCTTCACAAGTAACGATATAAACTGGGTGAAGCAGAGGCCTGGACAGGGACTTGAGTGGATTGGATGGATTTATCCTAGAGATGGTACTACTAAGTACAATGAGAAGTTCACGGACAAGGCCACATTGACTGTTGACGTATCCTCCAGCACAGCGTTCATGGAGCTCCACAGGCTGACATCTGAGGACTCTGCGGTCTATTTCTGTTCAAGTGTCGAGGATTCTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTTCA SEQ ID NO: 221: 編碼10D12重鏈可變區(親本)的DNA
CAGATCCAGTTGGTACAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGGCTTCTGGGTATATTTTCACAAGCTATGGAATGAGCTGGGTGAGACAGGCTCCAGGAAAGGGTTTAAAGTGGATGGGCTGGATAAACACCTACTCTGGAGTGCCAACATATGCTGATGACTTCAAGGGACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGAACTCCCTATTTGCAGATCAACAACCTCAAAAATGAGGACACGGCTACATATTTCTGCGCAAGAGGGGGCGAAGCTATGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA SEQ ID NO: 222: 編碼35C1重鏈可變區(親本)的DNA
CAGATCCAGTTGGTACAGTCTGGACCTGAGCTGAAGACGCCAGGAGAGACAGTCAAGATCTCCTGCAAGGCTTCTGGGTATATCTTCACATCCTATGGAATTACCTGGGTGAAACAGGCTCCAGGAAAGGGTTTAAAGTGGATGGGCTGGATAAACACCTACTCTGGAGTGCCAACATATGCTGATGACTTCAAGGGACGGTTTGCCTTCTCTTTGGAAACGTCTGCCAGCACTGCCTATTTGCAGATCAACAACCTCAAAAATGAGGACACGACTACATATTTCTGTACAAGAGGGGGTGATGCTTTGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA SEQ ID NO: 223: 編碼13B1重鏈可變區(親本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGAGCTGAGCTGATGAAGCCTGGGGCCTCAGTGAAGCTTTCCTGCAAGGCTACTGGCTACACATTCACTGGCAAGTGGATAGAGTGGGTAAAACAGAGGCCTGGACATGGCCTAGAGTGGATTGGAGAGATTTTACCTGGAACTGGTAGTACTAACTACAATGAGAAGTTCAAGGGCAAGGCCACATTCACTGCAGACTCATCCTCCAACACAGCCTACATGCAACTCAGCAGCCTGACAACTGAAGACTCTGCTATGTATTATTGTTTAAGATCCGAGGATGTCTGGGGCACAGGGACCACGGTCACCGTCTCCTCA SEQ ID NO: 224: 編碼1G4重鏈可變區(親本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGAGCTGAGCTGATGAAGCCTGGGGCCTCAGTGAAGCTTGCCTGCAAGGCTACTGGCTACACATTCACTGGCTACTGGATAGAGTGGATAAAGCAGAGGCCTGGACAAGGCCTTGAGTGGATTGGAGAGATGTTACCTGGAAGTGGTAGTACTCACTACAATGAGAAGTTCAAGGGTAAGGCCACATTCACTGCAGATACATCCTCCAACACAGCCTACATGCAACTCAGCGGCCTGACAACTGAGGACTCTGCCATCTATTACTGTGTAAGAAGCATAGACTACTGGGGCCAAGGCACCACTCTCACAGTCTCCTCA SEQ ID NO: 225: 編碼1E7重鏈可變區(親本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGGCCTGAGCTGGCAAGGCCTTGGGCTTCAGTGAAGATATCCTGCCAGGCTTTCTACACCTTTTCCAGAAGGGTGCACTTTGCCATTAGGGATACCAACTACTGGATGCAGTGGGTAAAACAGAGGCCTGGACAGGGTCTGGAATGGATCGGGGCTATTTATCCTGGAAATGGTGATACTAGTTACAATCAGAAGTTCAAGGGCAAGGCCACATTGACTGCAGACAAATCCTCCAGCACAGCCTACATGCAACTCAGCAGCCTGACATCTGAGGACTCTGCGGTCTATTACTGTGCATCCGGTAGCCACTACTTTGACTACTGGGGCCAAGGCACCACTCTCACAGTCTCCTCA SEQ ID NO: 226: 編碼2D7重鏈可變區(親本)的DNA
GAGGTCCAGCTGCAACAATCTGGGCCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGGTATCCTGTAAGGCTTCTGGATACACGCTCACTGACTACTACATGAACTGGGTGAAGCAGAGCCATGGAAAGAGCCTTGAGTGGATTGGAGATGTTAATCCTAACAATGATGGTACTACCTACAACCAGAAATTCAAGGGCAGGGCCACATTGACTGTAGACAAGTCTTCCAACACAGCCTCCATGGAGCTCCGCAGCCTGACATCTGAGGACTCTGCAGTCTACTACTGTGCAATATGCCCCTTTTATTACCTCGGTAAAGGGACCCACTTTGACTACTGGGGCCAAGGCACCTCTCTCACAGTCTCCTCA SEQ ID NO: 227: 編碼49C11重鏈可變區(親本)的DNA
GAGGTCCAGCTGCAACAATCTGGACCTGTGCTGGTGAAGCCTGGGGCTTCAGGGAAGATGTCCTGTAAGGCTTCTGGATACAAATTCACTGACTACTATATGATCTGGGTGAAGCAGAGCCATGGAAAGAGCCTTGAGTGGATTGGAGTTATTAAAATTTATAACGGTGGTACGAGCTACAACCAGAAGTTCAAGGGCAAGGCCACATTGACTGTTGACAAGTCCTCCAGCACAGCCTACATGGAGCTCAACAGCCTGACATCTGAGGACTCTGCAGTCTATTACTGTGCAAGAGGGCCATCTCTCTATGATTACGACCCTTACTGGTACTTCGATGTCTGGGGCACAGGGACCACGGTCACCGTCTCCTCA SEQ ID NO: 228: 編碼15D9重鏈可變區(親本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGAACTGAGCTGATGAAGCCTGGGGCCTCAGTGAACCTTTCCTGCAAGGCTTCTGGCTACACATTCACTGCCTACTGGATAGAGTGGGTAAAGCAGAGGCCTGGACATGGCCTTGAGTGGATTGGAGAGATTTTACCTGGAAGTGGTACTACTAACTACAATGAGAACTTCAAGGACAGGGCCACATTCACTGCAGATACATCCTCCAACACAGCCTACATGCAACTCAGCAGCCTGACAAGTGAGGACTCTGCCATCTATTACTGTGCAAGATCCTATTACTACGCTAGTAGATGGTTTGCTTTCTGGGGCCAAGGGACTCTGGTCACTGTCTCTTCA SEQ ID NO: 229: 編碼2F5重鏈可變區(親本)的DNA
GAGGTCCAGCTGCAGCAGCCTGGGGCTGAGCTTGTGAAGCCTGGGGCTTCAGTGAAGATGTCCTGTAAGGCTTCTGGCTACACCTTCACCAGCTACTGGATAACCTGGGTGAAGCAGAGGCCTGGACAAGGCCTTGAGTGGATTGGAGATATTTATCCTGGTAGTGGTAGTACTAACTACAATGAGAAGTTCAAGAGCAAGGCCACACTGACTGTAGACACATCCTCCAGCACAGCCTACATGCAGCTCAGCAGCCTGACATCTGAGGACTCTGCGGTCTATTACTGTGCAAGAAGGAGATACTACGCTACGGCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTTCA SEQ ID NO: 230: 編碼1B11重鏈可變區(親本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGGGCTGAGCTGGTGAGGCCTGGGGCTTCAGTGAAGCTGTCCTGCAAGGCTTCTGGCTACACTTTCACTGACTACTATATAAACTGGGTGAAGCAGAGGCCTGGACAGGGACTTGAGTGGATTGCAAGGATTTATCCTGGAAGTGGTAATACTTACTACAATGAGAAGTTCAAGGGCAAGGCCACACTGACTGCAGAAAAATCCTCCAGCACTGCCTACATGCAGCTCAGCAGCCTGACATCTGAGGACTCTGCTGTCTATTTCTGTGCAAGAAATTACTACATTAGTAGTCCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTTCA SEQ ID NO: 231: 編碼2F2重鏈可變區(親本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGGGCTGAGCTAGTGACGCCTGGAGCCTCAGTGAAGATGTCCTGCAAGGCTTCTGGCTACACCTTCACTACCTATCCTATAGAGTGGATGAAACAGAATCATGGAAAGAGCCTAGAGTGGATTGGAAATTTTCATCCTTACAATGATGATACTAAGTACAATGAAAAGTTCAAGGGCAAGGCCACATTGACTGTAGAAAAATCCTCTAACACAGTCTACTTGGAGCTCAGCCGATTAACATCTGATGACTCTGCTGTTTATTTCTGTGCAAGGAGGGTCTACTATAGTTACTTCTGGTTTGGTTACTGGGGCCACGGGACTCTGGTCACTGTCTCTTCA SEQ ID NO: 232: 編碼11B6重鏈可變區(親本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGGGCTGAGCTAGTGAAACCTGGAGCCTCAGTGAAGATGTCCTGCAAGGCTTCTGGCTACACCTTCACTACCTATCCTATAGAGTGGATGAAGCAGAATCATGGGAAGAGCCTAGAGTGGATTGGAAATTTTCATCCTTACAATGGTGATTCTAAGTACAATGAAAAGTTCAAGGGCAAGGCCACCTTGACTGTAGAAAAATCCTCTAGCACAGTCTACTTAGAACTCAGCCGATTACCATCTGCTGACTCTGCTATTTATTACTGTGCAAGGAGGCACTACGCTGCTAGTCCCTGGTTTGCTCACTGGGGCCAAGGGACTCTGGTCACTGTCTCTTCA 編碼輕鏈可變區(小鼠mAb)的DNA SEQ ID NO: 233: 編碼4D5輕鏈可變區(親本)的DNA
GACATTGTGATGACCCAGTCTCCATCCTCCCTGGCTGTGTCAGCAGGAGAGAAGGTCACTATGACCTGCAAATCCAGTCAGAGTCTGCTCAACAGTAGAACCCGAAAGAACTACTTGGCTTGGTACCAGCAGAAACCAGGGCAGTCTCCTAAACTGCTGATCTACTGGGCATCCACTAGGGAATCTGGGGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCTCTCTCACCATCAGCAGTGTGCAGGCTGAAGACCTGGCAGTTTATTACTGCAAGCAATCTTATAATCTGTACACGTTCGGAGGGGGGACCAAGCTGGAAATAAAACGG SEQ ID NO: 234: 編碼1F3輕鏈可變區(親本)的DNA
GACATTGTGATGACCCAGTCTCCATCCTCCCTGGCTGTGTCAGCAGGAGAGAGGGTCACTATGAGCTGCAAATCCAGTCAGAGTCTGCTCATCAGTAGAACCCGAAAGAACTATTTGTCTTGGTACCAGCAGAAACCAGGGCAGTCTCCTAAACTGCTGATCTACTGGGCATCCACTAGGGAATCTGGGGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTGTACAGGCTGAAGACCTGGCAGTTTATTACTGCAAGCAATCTTATAATCTGTACACGTTCGGCGGGGGGACCAAGCTGGAAATAAAACGG SEQ ID NO: 235: 編碼4B6/1A10輕鏈可變區(親本)的DNA
GACATTGTGATGACCCAGTCTCCATCCTCCCTGGCTGTGTCAGCAGGAGAGAAGGTCACTATGAGCTGCAAATCCAGTCAGAGTCTGCTCATCAGTAGAACCCGAAAGAACTATTTGTCTTGGTACCAGCAGAAACCAGGGCAGTCTCCTAAACTGCTGATCTATTGGGCATCCACTAGGGAATCTGGGGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTGTACAGGCTGAAGACCTGGCAGTTTATTACTGCAAACAATCTTATAATCTGTACACGTTCGGCGGGGGGACCAAGCTGGAAATCAAACGG SEQ ID NO: 236: 編碼10D12輕鏈可變區(親本)的DNA
GATGTTTTGATGACCCAAACTCCACTCACTTTGTCGGTTACCATTGGACAACCAGCCTCCATCTCTTGCAAGTCAAGTCAGAGCCTCTTAGATAGTGATGGAAAGACATATTTGAATTGGTTGTTACAGAGGCCAGGCCAGTCTCCAAAGCGCCTAATCTATCTGGTGTCTAAACTGGACTCTGGAGTCCCTGACAGGTTCACTGGCAGTGGATCAGGGACAGATTTCACACTGAAAATCAGCAGAGTGGAGGCTGAGGATTTGGGAGTTTATTATTGCTGGCAAGGTACACATTTTCCGTGGACGTTCGGTGGAGGCACCAAGCTGGAAATCAAACGG SEQ ID NO: 237:編碼35C1輕鏈可變區(親本)的DNA
GATATTGTGATGACGCAGGCTCCACTCACTTTGTCGGTTACCATTGGACAACCAGCCTCCATCTCTTGCAAGTCAAGTCAGAGCCTCTTAGATAGTGATGGAAAGACATATTTGAGTTGGTTGTTACAGAGGCCAGGCCAGTCTCCAAAGCGCCTAATCTATCTGGTGTCTAAACTGGACTCTGGAGTCCCTGACAGGTTCACTGGCAGTGGATCAGGGACAGATTTCACACTGAAAATCAGCAGAGTGGAGGCTGAGGATTTGGGAGTTTATTATTGCTGGCAAGGTACACATTTTCCGTACACGTTCGGAGGGGGGACCAAGCTGGAAATAAAACGG SEQ ID NO: 238: 編碼13B1輕鏈可變區(親本)的DNA
GACATTGTGATGACCCAGTCTCCATCCTCCCTGGCTGTGTCAGCAGGAGAGAAGGTCACTATGAGCTGCAAATCCAGTCAGAGTCTGCTCAACAGTAGAACCCGAAAGAACTACTTGGCTTGGTACCAGCAGAAACCAGGGCAGTCTCCTAAACTGCTGATCTACTGGGCATCCACTAGGGAATCTGGGGTCCCTGATCGCTTCACAGGCAGTGGATCTGGAACAGATTTCACTCTCACCATCAGCAGTGTGCAGGCTGAAGACCTGGCAGTTTATTACTGCAAGCAATCTTATAATATTCCGACGTTCGGTGGAGGCACCAAGCTGGAAATCAAACGG SEQ ID NO: 239: 編碼1G4輕鏈可變區(親本)的DNA
GATGTTTTGATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGAACAAGCCTCCATCTCTTGCAGATCAAGTCAGAGCCTTGTACAAAGTAATGGAAACACCTATTTACATTGGTACCTGCAGAAGCCAGGCCAGTCTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTGGGAGTTTATTTCTGCTCTCAAAGTACACATGTTCCTCCGACGTTCGGTGGAGGCACCAAGCTGGAAATCAAACGG SEQ ID NO: 240: 編碼1E7輕鏈可變區(親本)的DNA
GACATCCAGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCTCCTGCAGGGCCAGTCAGAGCATTGGCACAAGCATACACTGGTATCAGCAAAGAACAAATGGTTCTCCAAGGCTTCTCATAAAGTATGCTTCTGAGTCTATCTCTGGGATCCCTTCCAGGTTTAGTGGCAGTGGATCAGGGACAGATTTTACTCTTAGCATCAACAGTGTGGAGTCTGAAGATATTGCAGATTATTACTGTCAACAAAGTAATAGCTGGCCGTACACGTTCGGAGGGGGGACCAAGCTGGAAATAAAACGG SEQ ID NO: 241: 編碼2D7輕鏈可變區(親本)的DNA
GATATCCAGATGACACAGACTCCAGCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGTAGGGCAAGTCAGGACATTAGCAATTTTTTAAACTGGTATCAACAGAAACCGAATGGAACTGTTAAACTCCTAGTCTTCTACACATCAAGATTACACTCAGGAGTCCCATCAAGGTTCAGTGGCAGTGGGTCTGGAGCAGAGCATTCTCTCACCATTAGCAACCTGGAGCAGGAAGATGTTGCCACTTACTTTTGCCAACAGGGTTTTACGCTTCCGTGGACGTTCGGTGGGGGCACCAAGGTGGAAATCAAACGG SEQ ID NO: 242: 編碼49C11輕鏈可變區(親本)的DNA
GATGTTTTGATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCTTCTCTTGCAGATCTAGTCAGAGCCTTATACACAGTAATGGAAACACCTATTTACATTGGTACCTGCAGAAGCCAGGCCAGTCTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTGGGAGTTTATTTCTGCTCTCAAAGTACACATGTTCCGTGGACGTTCGGTGGAGGCACCAAGCTGGAAATCAAACGG SEQ ID NO: 243: 編碼15D9輕鏈可變區(親本)的DNA
GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACATCAATAGGAGACAGGGTCAGCGTCACCTGCAGGGCCAGTCAGAATGTGGGTCCCAATTTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACTGATTTACTCGGCATCCTACCGATTCAGTGGAGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACTTGGCAGAGTATTTCTGTCAGCAATATAACAGGTATCCATTCACGTTCGGCTCGGGGACAAAGTTGGAAATAAAACGG SEQ ID NO: 244: 編碼2F5輕鏈可變區(親本)的DNA
GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCATCACCTGCAAGGCCAGTCAGAATGTGGGTACTGCTGTAGCCTGGTATCAACAGAAACCAGGACAATCTCCTAAACTACTGATTTCCTCGGCATCCAATCGGTACACTGGAGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGTAATATGCAGTCTGAAGACGTGGCAGATTATTTCTGCCAGCAATATAACAGCTATCCTCTCACGTTCGGTGCTGGGACCAAGCTGGAGCTGAAACGG SEQ ID NO: 245: 編碼1B11輕鏈可變區(親本)的DNA
GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACTTCAGTAGGAGACAGGGTCAGCGTCACCTGCAAGGCCAGTCAGAATGTGGGTCCTAATGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACTGATTTACTCGGCATCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACTTGGCAGACTATTTCTGTCAGCAATATAACCGCTATCCTCTCACGTTCGGTGCTGGGACCAAACTGGAGCTGAAACGG SEQ ID NO: 246: 編碼2F2輕鏈可變區(親本)的DNA
GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACATCAGTAGGAGACAGGGTCAACGTCACCTGCAAGGCCAGTCAGAATGTGGGTACTCATGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACTGATTTACTCGGCATCCTACCGGTACAGTGGCGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACCTGGCAGAGTATTTCTGTCAGCAATATAACAGCTATCCTCGAGCGCTCACGTTCGGTGCTGGGACCAAGCTGGAGCTGAAACGG SEQ ID NO: 247: 編碼11B6輕鏈可變區(親本)的DNA
GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACATCAGTAGGAGACAGGGTCAACGTCACCTGCAAGGCCAGTCAGAATGTGGGTCCTACTGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACTAATTTACTCGGCATCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAATGTGCACTCTGAAGACTTGGCAGAGTATTTCTGTCAGCAATATAACAGCTATCCATTCACGTTCGGCTCGGGGACAAAGTTGGAAATAAAACGG SEQ ID NO: 310: 人IgG4恒定區
ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK SEQ ID NO: 311: 具有S228P突變的人IgG4恒定區
ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK SEQ ID NO: 312: 具有S228P突變且還有在低pH下促進FcRn相互作用的突變(Xtend)的人IgG4恒定區
ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVLHEALHSHYTQKSLSLSLGK SEQ ID NO: 313: 人IgK恒定區
TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 實施例 16
本實施例描述了幾種體外測定中重組純化的高親和力MASP-3抑制性抗體的功能表徵。 方法:
針對以下表徵如實施例11和14中所述產生的重組MASP-3 mAb:(i)與人MASP-3和其他物種的MASP-3的結合;(ii)抑制人工底物的切割的能力;(iii)抑制前因子D至因子D切割的能力;(iv)抑制人血清中的補體沉積,和(v)抑制人血清中的兔紅細胞裂解,如下: 1.   確定與人和小鼠MASP-3的結合的測定 ELISA測定: 用純化的重組MASP-3 mAb的MASP-3結合測定: 人MASP-3:
如下進行夾心ELISA測定以測量16種純化的重組MASP-3抗體與人MASP-3(CCP1-CCP2-SP片段)的結合。將ELISA平板在4℃下在碳酸鹽/二碳酸鹽緩衝液中用4μg/mL的捕獲抗體αM3-259包被過夜。αM3-259是來自用人MASP-3的CCP1-CCP2-SP區域免疫的雞的高親合力重組、嵌合雞-人MASP-3 mAb。結構域作圖研究揭示,αM3-259結合來自多種物種(包括人、食蟹猴、小鼠、大鼠和狗)的MASP-3的CCP1-CCP2區域。如圖51C中所示,αM3-259也結合MASP-1。
隨後將平板用1% BSA/PBS封閉,在PBS中洗滌,然後在室溫下與MASP-3 CCP1-CCP2-SP (2 µg/mL)孵育1小時。然後洗滌平板(PBS-T,0.05%),並添加候選MASP-3抗體,隨後在室溫下孵育1小時。將平板洗滌(PBS-T, 0.05%),並在室溫下添加檢測抗體(小鼠抗人κ-HRP,SouthernBiotech #9230-05) 1小時。在另一次洗滌(PBS-T, 0.05%)後,將平板用OPT EIA TMB (BD Biosciences #555214)顯色(5分鐘)。使用Spectramax M5e讀板器測量A450處的吸光度讀數。 結果:
圖51A和圖51B圖示說明人MASP-3 (CCP1-CCP2-SP)的MASP-3 mAb(純化重組體)的親合力。如圖51A、圖51B和表24中所示,MASP-3 mAb對於人MASP-3具有高親合力,範圍為0.241nM到0.023nM。這些值比先前描述的MASP-3 mAb所報導的那些低10至100倍(參見本文實施例7,也作為實施例15公開於WO2013/192240中)。 MASP-3 mAb結合特異性:
為了確定高親和力MASP-3 mab對MASP-3的特異性,進行結合實驗以測量16種純化的重組MASP-3抗體與人MASP-1和人MASP-2的結合。如對於MASP-3結合ELISA所述測定結合,除了將重組MASP-1A (S646A,CCP1-CCP2-SP片段)和MASP-2(CCP1-CCP2-SP片段)直接固定在平板上。 結果:
圖51C圖示說明結合實驗的結果,其中顯示代表性純化的重組高親和力人MASP-3抑制性抗體對於與MASP-3的結合是選擇性的並且不結合人MASP-1。
圖51D圖示說明結合實驗的結果,其中顯示代表性純化的重組高親和力人MASP-3抑制性抗體對於與MASP-3的結合是選擇性的並且不結合人MASP-2。 小鼠MASP-3:
如上對於人MASP-3所述測量MASP-3 mAb與小鼠MASP-3的結合,除了用αM3-259在平板上捕獲重組、全長小鼠MASP-3(SEQ ID NO: 3)。在兩個實驗中使用的陰性對照mAb是mAb77,從與αM3-259相同的免疫雞獲得的重組的嵌合雞-人mAb,然而,mAb 77不結合小鼠MASP-3。 結果:
圖52圖示說明代表性MASP-3 mAb(純化重組體)對於小鼠全長MASP-3的親合力。如圖52中所示,大多數測試的MASP-3 mAb對於小鼠MASP-3也具有高親合力。
16種重組嵌合MASP-3 mAb對於人和小鼠MASP-3的親合力值(EC 50)概述於表24中。 表24:MASP-3 mAb對於人和小鼠MASP-3的結合親合力(圖51A、51B和52)
抗體殖株 用於產生mAb的抗原 人MASP-3 (CCP1-CCP2-SP) 結合親合力(EC 50nM) 小鼠MASP-3 (全長) 結合親合力 (EC 50nM)
1A10* SP 0.241 0.15
1B11 SP 0.059 1.10
1E7 SP 0.112 117.00
1F3 SP 0.236 0.111
1G4 SP 0.177 3.70
2D7 SP 0.122 NA
2F2 SP 0.057 0.105
2F5 SP 0.073 0.102
4B6 SP 0.211 0.188
4D5 SP 0.058 0.098
10D12 CCP1-CCP2-SP 0.089 0.081
11B6 CCP1-CCP2-SP 0.060 0.066
13B1 CCP1-CCP2-SP 0.059 0.035
15D9 CCP1-CCP2-SP 0.074 0.092
35C1 CCP1-CCP2-SP 0.091 0.209
49C11 CCP1-CCP2-SP 0.069 0.064
還測試MASP-3 mAb-13B1、10D12和4D5中的三種與重組食蟹猴、狗和大鼠MASP-3的結合。這些結果下面概述於表25中。 表25:MASP-3 mAb交叉物種結合實驗的概述
MASP-3的物種 Fab結合的排序
13B1 (pM) ≈ 10D12 (pM) ≈ 4D5 (pM)
食蟹猴 13B1 (pM) ≈ 4D5 (pM) > 10D12 (pM)
13B1 (pM) > 10D12 (pM) >> 4D5 (nM)
大鼠 13B1 (pM) ≈ 10D12 (pM) >> 4D5 (nM)
小鼠 10D12 (pM) > 13B1 (pM) >> 4D5 (nM)
如表25中所示,MASP-3 mAb 13B1、10D12和4D5與測試的所有五種物種的MASP-3(人、小鼠、大鼠、狗和食蟹猴)結合。儘管這些mAb以高親和力(≤500pM)與人結合,但它們以不同親合力與其他物種的MASP-3結合。 2.   螢光三肽切割測定 背景/基本原理:
除了其已知的天然底物(Iwaki等人, J. Immunol. 187:3751, 2011; Cortesio和Jiang, Arch. Biochem. Biophys. 449:164-170, 2006),已經顯示MASP-3水解各種三肽底物(Cortesio and Jiang, Ibid.)。作為非常小的底物,這些分子可以用於將蛋白酶的催化位點作圖。三肽切割的抑制指示抑制劑(例如抗體)直接阻斷小底物進入催化部位或引起同樣拒絕進入的SP結構域中的構象移位。因此,也可以預期抗體通過干擾酶的活性位點來阻斷大天然底物的催化。在功能上,這將最接近於MASP-3無效小鼠或3MC患者(MASP-3缺陷的)。 方法:
將重組mAb的滴定物(從666 nM至0.91nM的3倍稀釋度)在室溫下與MASP-3 CCP1-CCP2-SP (197 nM)孵育15分鐘。以0.2mM的最終濃度添加三肽底物BOC-V-P-R-AMC (第三丁氧基羰基-Val-Pro-Arg-7-胺基-4-甲基香豆素)(R&D Systems,目錄號ES011)。Arg-AMC醯胺鍵的水解釋放AMC,一種高度螢光的基團。使用Spectramax M5e螢光讀板器,在37℃下每5分鐘記錄激發380nm /發射460nm動力學值70分鐘。 結果:
圖53圖示說明測量用MASP-3單株抗體抑制MASP-3依賴性螢光三肽切割的測定的結果。如圖53中所示,測試的MASP-3 mAb分為三個不同的組: 1.   作為MASP-3的肽切割的強抑制劑的MASP-3 mAb: 1A10 (29.77 nM)、1G4 (29.64 nM)、1F3 (32.99 nM)、4B6 (26.03 nM)、4D5 (27.54 nM)、10D12 (30.94 nM)和13B1 (30.13 nM). 2.   作為MASP-3的肽切割的弱或非常弱抑制劑的MASP-3 mAb:15D9、11B6、2F5、1E7和2D7 3.   中性或似乎刺激MASP-3的肽切割的MASP-3 mAb:1B11;2F2;77 (對照mAb) 3.   前因子D至因子D切割的抑制 方法:
將活性、重組人MASP-3蛋白(每個反應240ng)與代表性MASP-3 mAb和對照mAb(其結合MASP-1,但不結合MASP-3)在GVB++緩衝液中以9μL的總體積在室溫下預孵育15分鐘。然後將70ng具有N-末端Strep-tag II表位標籤的前因子D(ST-前因子D-His)添加至每個管中,使每個反應的最終體積為10μL。將反應物在37℃的熱循環儀中孵育6小時。然後將每個反應物的十分之一在12%Bis-Tris凝膠上電泳以分辨前因子D和活性因子D切割產物。將分離的蛋白轉移至PVDF膜,並使用Western印跡通過用生物素化因子D抗體(R&D Systems)檢測來分析。 結果:
圖54顯示Western印跡分析,其表明代表性MASP-3 mAb在體外測定中阻斷重組MASP-3介導的前CFD切割為CFD的能力。如圖54中所示,代表性高親和力MASP-3抑制性mAb 13B1、4B6、1G4、2D7、10D12、1A10、4D5、1E7和1F3小鼠-人嵌合mAb在該測定中顯示前CFD切割的部分至完全抑制。 4.   酵母聚糖測定上的因子Bb沉積 方法:
將不同濃度的MASP-3 mAb添加至10% CFD耗盡的人血清(Complement Technology A336)和GVB + Mg/EGTA (20 nM),並在冰上孵育30分鐘,然後添加重組ST-前因子D-His(最終2μg/mL)和酵母聚糖(最終0.1 mg/mL)。酵母聚糖顆粒作為用於補體沉積的活化表面發揮功能。將混合物在37℃下孵育,並通過在酵母聚糖顆粒表面上的補體因子Bb (Quidel抗體A252)的流式細胞術檢測來測量APC活性。 結果:
圖55A圖示說明在37℃下在因子D耗盡的人血清中存在不同濃度的MASP-3 mAb 1F3、1G4、2D7和4B6的情況下持續70分鐘,在酵母聚糖顆粒上的因子Bb沉積的水準(通過以MFI單位測量的流式細胞檢測所測定)。
圖55B圖示說明在37℃下在CFD耗盡的人血清中存在不同濃度的MASP-3 mAb 4D5、10D12和13B1的情況下持續70分鐘,在酵母聚糖顆粒上的因子Bb沉積的水準(通過以MFI單位測量的流式細胞檢測所測定)。
圖55A和55B中所示的結果在下面概述於表26中。 表26:MASP-3 mAb對酵母聚糖上的因子Bb沉積的抑制 (圖55A和圖55B)
抗體 酵母聚糖上的因子Bb沉積的抑制(IC 50nM)
1F3 0.1
1G4 1.1
2D7 3.5
4B6 0.2
4D5 0.4
10D12 0.5
13B1 0.3
如圖55A、圖55B和表26中所示,MASP-3 mAb顯示人血清中的APC的有效抑制,其中IC 50值範圍為0.1 nM至3.5 nM。這些結果表明,MASP-3在人血清中的體外模型中的APC活化中起關鍵作用,並且進一步表明MASP-3抑制性抗體是APC的有效抑制劑。 5.   測量代表性MASP-3 mAb抑制兔紅細胞裂解的能力的測定 方法:
為了監測APC在另一個實驗環境中的抑制,我們評估代表性MASP-3 mAb阻斷人血清中兔紅細胞的裂解的能力。將不同濃度的MASP-3 mAb添加至10%因子D耗盡的人血清和GVB + Mg/EGTA (20 nM),並在冰上孵育30分鐘,然後添加重組ST-前因子B-His(最終2 µg/mL)和紅細胞(最終2.5x10 8個細胞/mL)。將混合物在37℃下孵育70分鐘,並通過稀釋反應物並測量吸光度(A405)(其指示游離血紅蛋白的水準)測量APC介導的溶血。 結果:
圖56A圖示說明在CFD耗盡的人血清中存在不同濃度的MASP-3 mAb 1A10、1F3、4B6、4D5、1G4和2F2的情況下兔血紅細胞裂解的抑制水準。圖56B圖示說明在CFD耗盡的人血清中存在不同濃度的MASP-3 mAb 1B11、1E7、1G4、2D7和2F5的情況下兔血紅細胞裂解的抑制水準。結果概述於表27中。 表27:通過MASP-3 mAb抑制兔紅細胞裂解 (圖56A和圖56B)
抗體 兔紅細胞裂解的抑制(IC 50nM)
1A10 0.2
1F3 0.2
4B6 0.2
4D5 0.1
1G4 2.7
2F2 0.8
1B11 NA
1E7 NA
2D7 5.4
2F5 0.9
如圖56A、圖56B和表27中所示,MASP-3 mAb顯示兔紅細胞的APC驅動的溶血的抑制,其中IC 50值範圍為0.1 nM至5.4 nM。這些結果證實了酵母聚糖測定中MASP-3抗體的觀察結果,並進一步證明MASP-3抑制性抗體是APC的有效抑制劑。 6.  3MC患者血清中前因子D切割的抑制 方法:
測試代表性重組MASP-3 mAb (4D5)阻斷源自正常人血清和3MC患者B(“Pat B”)(在血清中沒有可檢測到的MASP-3並且在APC中表現出缺陷的個體)的血清的前因子D的重組MASP-3切割(和活化)的能力。
將正常人血清和患者B血清(最終10%)和GVB + Mg/EGTA (30 nM)與無酶或與活性重組(rMASP-3; 0.5 µg/mL)、無活性rMASP-3或活性rMASP-3加MASP-3 mAb 4D5 (最終500 nM)在冰上孵育1小時。添加酵母聚糖(最終0.1 mg/mL),並將混合物在37℃下孵育。2小時後,將樣品離心並收集上清液。將樣品用針對人因子D產生的山羊抗體(R&D Systems AF1824)免疫沉澱,熱變性並用肽-N-糖苷酶(New England Biolabs P0704L)處理。用SDS-PAGE分辨捕獲和去糖基化的蛋白,並將凝膠用生物素化的抗CFD (R&D Systems BAF1824)和高靈敏度鏈黴抗生物素蛋白-HRP (Thermo Fischer Scientific 21130)進行電泳印跡以進行Western印跡分析。 結果:
圖57顯示分析在活性rMASP-3、無活性rMASP-3和活性rMASP-3加mAb 4D5存在的情況下3MC患者B血清中的前因子D和因子D的水準的Western印跡。如圖57中所示,正常人血清主要含有成熟形式,而患者B血清主要含有因子D的酶原形式。如圖57中進一步所示,在酵母聚糖存在的情況下的活性rMASP-3引起患者3血清中的前因子D的切割,而無活性(酶原)形式的MASP-3則不是如此。最後,如圖57中所示,MASP-3 mAb 4D5在活性rMASP-3存在的情況下阻斷患者3血清中前因子D的切割。這些結果進一步表明MASP-3在APC活化中前因子D的切割中的作用,並且表明MASP-3抑制性mAb能夠阻斷MASP-3介導的前因子D切割,從而阻斷APC。 實施例 17
代表性MASP-3抑制性mAb 10D12和13B1在體內抑制APC的能力的分析。 1.  mAb M3-1 (13B1)和10D12對APC的體內抑制: 方法:
為了確定MASP-3 mAb 13B1 (M3-1)和10D12在體內抑制APC的效力,一組小鼠(n = 4)接受10 mg/kg mAb 13B1的單次靜脈內尾靜脈注射,且第二組小鼠(n = 4)接受10 mg/kg mAb 10D12的單次靜脈內尾靜脈注射。使用從動物收集的血液來製備血清,為離體測定中的APC活性的流式細胞術評估提供基質,所述離體測定測量酵母聚糖顆粒上的C3(也是C3b和iC3b,Dako F020102-2)沉積的水準。將從在劑量前時間點和多次劑量後時間點(96小時、1周和2周)收穫的血液製備的血清稀釋至7.5%,並且添加酵母聚糖顆粒(最終0.1 mg/mL)以誘導APC。將抗體處理的小鼠與給予單次靜脈內劑量的媒介物的一組對照小鼠(n = 4)進行比較。 結果:
圖58圖示說明在野生型小鼠中的mAb M3-1 (13B1)、mAb 10D12或媒介物的單次劑量後各個時間點在酵母聚糖顆粒上的C3沉積的水準。如圖58中所示,在劑量前時間點,三種條件顯示相當水準的APC活性。在96小時和兩個後面時間點,兩個mAb治療組均顯示全身性APC活性的接近完全消除,而媒介物治療組的APC活性仍然不減弱。
這些結果表明,MASP-3 mAb M3-1 (13B1)和mAb 10D12是小鼠體內APC的有效抑制劑。 2. 用MASP-3 mAb 10D12治療的小鼠中的因子B的狀態 方法:
在將因子B酶原轉化為活性蛋白水解酶期間,因子B被因子D切割成Ba (~30 kDa)和Bb (~60 kDa)片段。如下測定從用MASP-3 mAb 10D12治療的小鼠獲得的小鼠血清中的Ba片段的狀態。
向小鼠(n=4)給予10 mg/kg mAb 10D12的兩次靜脈內尾靜脈注射。治療分開7天進行,並且在第二次注射後3天從動物收集血液。四隻小鼠的第二集合接受媒介物(PBS)的單次靜脈內劑量。從兩組收集的血液用於製備血清,提供用於補體活化的基質。將酵母聚糖顆粒(最終0.1 mg/mL)添加至稀釋的血清(最終7.5%),並在37℃下孵育35分鐘。 結果:
作為APC活化的量度,圖59顯示Western印跡,其分析從用mAb 10D12或PBS處理的小鼠獲得並用酵母聚糖刺激的小鼠血清中的Ba片段的狀態。圖59中的每個泳道表示不同的小鼠,並且為了比較的目的,泳道交替顯示來自與MASP-3 mAb治療的小鼠相鄰的代表性媒介物小鼠的血清。來自用媒介物或mAb 10D12治療的小鼠的兩種對照條件分別在泳道1和2中(從印跡的左側開始)顯示為在酵母聚糖不存在的情況下血清樣品中存在的Ba的基礎水準的代表。泳道3至10均顯示與酵母聚糖孵育後存在的Ba片段的水準。在所有情況下,與媒介物治療的動物相比,MASP-3 mAb治療的小鼠表明Ba片段的水準降低。 3. 來自用mAb 10D12治療小鼠的血清抑制溶血 方法:
作為MASP-3抑制性抗體的APC抑制的另一種量度,我們評估了與來自媒介物對照治療的小鼠的血清相比MASP-3抗體阻斷來自用代表性MASP-3 mAb 10D12治療的小鼠的血清中兔紅細胞的裂解的能力。
向小鼠(n=4/組)給予媒介物對照(PBS)、10 mg/kg MASP-3 mAb 10D12或25 mg/kg MASP-3 mAb 10D12的三次靜脈內尾靜脈注射。治療彼此分開7天進行,並且在第三次注射後3天從動物收集血液。血液用於製備血清,為溶血反應提供了基質。將紅細胞(最終2.5 x 10 8個細胞/mL)添加至GVB + Mg/EGTA (20 nM)中的來自四隻小鼠的20%合併血清中。將混合物在37℃下孵育,並通過稀釋反應物並測量吸光度(A405)來測量APC介導的溶血。 結果:
圖60圖示說明來自用MASP-3 mAb 10D12 (10 mg/kg或25 mg/kg)治療的小鼠或媒介物對照治療的小鼠的20%血清的溶血的抑制水準。如圖60中所示,與媒介物治療的小鼠相比,來自用10mg/kg和25 mg/kg的MASP-3 mAb 10D12治療的小鼠的血清在1小時測試期間表明較少的總體溶血。 結果的總體概述:
如本實施例中所述,代表性高親和力MASP-3抑制性mAb 13B1和10D12在體內抑制APC。如實施例12中所述,確定MASP-3單株抗體13B1(也稱為mAb M3-1)為與陣發性夜間血紅蛋白尿(PNH)有關的小鼠模型中的缺乏Crry的紅血細胞的存活提供了明顯益處。如實施例13中所述,確定MASP-3 mAb M3-1以劑量依賴性方式降低臨床關節炎評分的發生率和嚴重程度。 實施例 18
本實施例描述高效力MASP-3抑制性mAb的表位結合分析的結果。 1.   競爭結合分析 方法:
用捕獲抗體αM3-259 (IgG4同種型mAb,已經顯示其結合MASP-1和MASP-3的CCP1-CCP2區域)包被96孔ELISA測定平板。經由捕獲抗體αM3-259將全長人MASP-3蛋白固定在平板上。在分開、未包被的孔中,將IgG4同種型的一種測試MASP-3 mAb的2倍稀釋系列與恒定濃度的IgG1同種型的另一種測試MASP-3抗體混合。將混合物添加至包被的孔中並使其與捕獲的MASP-3結合。通過使用HRP綴合的針對人IgG1鉸鏈區的抗體(Southern Biotech 9052-05)和TMB底物試劑盒(BD Biosciences 555214)檢測IgG1同種型來確定兩種抗體之間的潛在競爭。 結果:
圖61A-61E圖示說明競爭結合分析的結果。
圖61A圖示說明競爭結合分析以鑒定阻斷mAb 4D5 (IgG1)和人MASP-3之間的相互作用的MASP-3 mAbs (IgG4)的結果。
圖61B圖示說明競爭結合分析以鑒定阻斷mAb 10D12 (IgG1)和人MASP-3之間的相互作用的MASP-3 mAbs (IgG4)的結果。
圖61C圖示說明競爭結合分析以鑒定阻斷mAb 13B1 (IgG1)和人MASP-3之間的相互作用的MASP-3 mAbs (IgG4)的結果。
圖61D圖示說明競爭結合分析以鑒定阻斷mAb 1F3 (IgG1)和人MASP-3之間的相互作用的MASP-3 mAbs (IgG4)的結果。
圖61E圖示說明競爭結合分析以鑒定阻斷mAb 1G4 (IgG1)和人MASP-3之間的相互作用的MASP-3 mAbs (IgG4)的結果。
來自圖61A至61E的資料在下面概述於表28中。
這些資料表明MASP-3 mAb 4D5、10D12、13B1、1A10、1F3和1G4在人MASP-3上共用共同的表位或重疊的表位。令人驚訝的是,1G4具有非常有限的阻斷其他五種mAb與MASP-3結合的能力,但那些mAb幾乎完全阻斷1G4本身與MASP-3的結合。 2.   mAb與代表線性和不連續MASP-3表位的肽的結合的分析 方法:
由Pepscan評估16種MASP-3 mAb中的14種以鑒定它們結合的MASP-3的區域。為了重構靶分子的線性和潛在不連續表位,合成對應於SEQ ID NO: 2 (人MASP-3)的胺基酸殘基299至728的肽文庫。MASP-3的胺基酸殘基1-298不存在於免疫原中,且不包括在該分析中。
Pepscan表位分析包括使用CLIPS技術,其在結構上將肽固定至限定的三維結構中(參見Timmerman等人, J Mol Recog.20:283-299, 2007和Langedijk等人, Analytical Biochemistry417:149-155, 2011). 在基於Pepscan的ELISA中測試每種抗體與每種合成肽的結合。 結果:
對於分析的每種抗體,來自Pepscan的肽結合結果描述如下,並且概述於表4、表28和圖62-67中。 抗體1F3、4B6、4D5和1A10 (組IA)
當在中度嚴格條件下測試時,抗體1F3、4B6、4D5和1A10結合不連續表位模擬物,並且還結合簡單約束和線性模擬物。資料分析表明抗體1F3、4B6、4D5和1A10都主導地識別MASP-3的肽延伸段 498VLRSQRRDTTVI 509(SEQ ID NO: 9)。該肽緊鄰於活性位點織胺酸H497定位。對於具有不連續模擬物的這些抗體獲得的資料表明,MASP-3的肽延伸段 544DFNIQNYNHDIALVQ 558(SEQ ID NO: 11)、 639GNYSVTENMFC 649(SEQ ID NO: 13)和 704VSNYVDWVWE 713(SEQ ID NO: 14)也有助於結合。肽 544DFNIQNYNHDIALVQ 558(SEQ ID NO: 11)含有活性位點天冬胺酸(D553)。 抗體10D12 (組IB)
當在中度嚴格條件下測試時,抗體10D12結合具有MASP-3的核心序列 498VLRSQRRDTTVI 509(SEQ ID NO: 9)的肽,與活性位點織胺酸H497相鄰的序列。 抗體13B1 (組IC)
當在中度嚴格條件下測試時,抗體13B1識別包含MASP-3的肽延伸段 494TAAHVLRSQRRDTTV 508(SEQ ID NO: 10)和 626PHAECKTSYESRS 638(SEQ ID NO: 12)的不連續表位,其中肽延伸段 626PHAECKTSYESRS 638(SEQ ID NO: 12)似乎是表位元的主要部分,因為它也可以以簡單的約束形式結合。肽 494TAAHVLRSQRRDTTV 508(SEQ ID NO: 10)包括活性位點織胺酸H497。 抗體1G4 (組II)
當在低嚴格條件下測試時,抗體1G4識別包含MASP-3的肽延伸段 454RNAEPGLFPWQ 464(SEQ ID NO: 17)、 514EHVTVYLGLH 523(SEQ ID NO: 19)和 667AFVIFDDLSQRW 678(SEQ ID NO: 23)的不連續表位,其中肽延伸段 667AFVIFDDLSQRW 678(SEQ ID NO: 23)是表位元的主要部分。主要肽位於活性位點絲胺酸S664的三個胺基酸內。 抗體1E7和2D7 (組IIIA)
當分別在高和低嚴格條件下測試時,抗體1E7和2D7識別包含MASP-3的肽延伸段 454RNAEPGLFPWQ 464(SEQ ID NO: 17)、 514EHVTVYLGLH 523(SEQ ID NO: 19)和 667AFVIFDDLSQRW 678(SEQ ID NO: 23)的不連續表位,其中肽延伸段 667AFVIFDDLSQRW 678(SEQ ID NO: 23)是表位元的主要部分,且其位於活性位點絲胺酸S664的三個胺基酸內。 抗體2F5和15D9 (組IIIB)
當在低嚴格條件下測試時,抗體2F5和15D9主要識別包含MASP-3的肽延伸段 454RNAEPGLFPWQ 464(SEQ ID NO: 17)、 479KWFGSGALLSASWIL 493(SEQ ID NO: 18)、 562PVPLGPHVMP 571(SEQ ID NO: 20)和 667AFVIFDDLSQRW 678(SEQ ID NO: 23)的不連續表位。肽 479KWFGSGALLSASWIL 493(SEQ ID NO: 18)和 667AFVIFDDLSQRW 678(SEQ ID  NO:23)分別位於活性位點殘基H497和S664的四個或三個胺基酸內。 抗體1B11 (組IIIC)
當在中度嚴格條件下測試時,抗體1B11識別包含MASP-3的肽延伸段 435ECGQPSRSLPSLV 447(SEQ ID NO: 16)、 454RNAEPGLFPWQ 464(SEQ ID NO: 17)、 583APHMLGL 589(SEQ ID NO: 21)和 614SDVLQYVKLP 623(SEQ ID NO: 22)的不連續表位。 表28:表位結合分析的概述
MASP-3 mAb參考號/組 人MASP-3上的肽結合片段(表位)(w/前導區) 與…競爭 肽切割測定
4D5 組IA 498VLRSQRRDTTVI 509(SIN:9) 544DFNIQNYNHDIALVQ 558(SIN:11) 639GNYSVTENMFC 649(SIN:13) 704VSNYVDWVWE 713(SIN:14) 1F3, 1G4, 4D5, 10D12, 13B1 抑制
1F3 組IA 498VLRSQRRDTTVI 509(SIN:9) 544DFNIQNYNHDIALVQ 558(SIN:11) 639GNYSVTENMFC 649(SIN:13) 704VSNYVDWVWE 713(SIN:14) 1F3, 1G4, 4D5, 10D12, 13B1 抑制
4B6 Group IA 498VLRSQRRDTTVI 509(SIN:9) 544DFNIQNYNHDIALVQ 558(SIN:11) 639GNYSVTENMFC 649(SIN:13) 704VSNYVDWVWE 713(SIN:14) 1F3, 1G4, 4D5, 10D12, 13B1 抑制
1A10 組IA 498VLRSQRRDTTVI 509(SIN:9) 544DFNIQNYNHDIALVQ 558(SIN:11) 639GNYSVTENMFC 649(SIN:13) 704VSNYVDWVWE 713(SIN:14) 1F3, 1G4, 4D5, 10D12, 13B1 抑制
10D12 組IB 498VLRSQRRDTTVI 509(SIN:9) 1F3, 1G4, 4D5, 10D12, 13B1 抑制
13B1 組IC    494TAAHVLRSQRRDTTV 508(SIN:10) 626PHAECKTSYESRS 638(SIN:12) 1F3, 1G4, 4D5, 10D12, 13B1 抑制
組I核心序列 498VLRSQRRDTTV 508(SIN:15)      
1G4 組II-與組I和III交叉競爭 454RNAEPGLFPWQ 464(SIN:17) 514EHVTVYLGLH 523  (SIN:19) 667AFVIFDDLSQRW 678(SIN:23) 1F3, 1G4, 4D5, 10D12, 13B1 抑制
1E7 組IIIA 454RNAEPGLFPWQ 464(SIN:17) 514EHVTVYLGLH 523  (SIN:19) 667AFVIFDDLSQRW 678(SIN:23) 1G4 弱抑制
2D7 組IIIA 454RNAEPGLFPWQ 464(SIN:17) 514EHVTVYLGLH 523  (SIN:19) 667AFVIFDDLSQRW 678(SIN:23)    弱抑制
2F5 組IIIB    454RNAEPGLFPWQ 464(SIN:17) 479KWFGSGALLSASWIL 493(SIN 18) 562PVPLGPHVMP 571(SIN:20) 667AFVIFDDLSQRW 678(SIN:23)    沒有作用
15D9 組IIIB 454RNAEPGLFPWQ 464(SIN:17) 479KWFGSGALLSASWIL 493(SIN 18) 562PVPLGPHVMP 571(SIN:20) 667AFVIFDDLSQRW 678(SIN:23)    沒有作用
1B11 組IIIC 435ECGQPSRSLPSLV 447(SIN:16) 454RNAEPGLFPWQ 464(SIN:17) 583APHMLGL 589(SIN:21) 614SDVLQYVKLP 623(SIN:22)    刺激
組II和組III的核心序列 454RNAEPGLFPWQ 464(SIN:17)         
2F2 組IV 結合表位未測定 1F3, 4D5, 11B6, 2F2 刺激
11B6 組IV 結合表位未測定 1F3, 4D5, 11B6, 2F2 沒有作用
圖62提供顯示如通過Pepscan分析確定的MASP-3 mAb在人MASP-3上的接觸區域的示意圖。如圖62中所示,所有MASP-3 mAb在含有MASP-3的SP結構域的β鏈中具有接觸區域。一個mAb 1B11也在MASP-3的α鏈中的CCP2和SP結構域之間具有接觸區域。
圖63A至67顯示說明人MASP-3的CCP1/2/SP結構域上的高親和力MASP-3 mAb的接觸區域的3-D模型,其中MASP-3的SP結構域活性位元點面向前面,並且催化三聯體顯示為側鏈。
圖63A顯示人MASP-3和高親和力MASP-3 mAb 1F3、4D5和1A10之間的接觸區域,包括aa殘基498-509 (SEQ ID NO: 9)、aa殘基544-558 (SEQ ID NO: 11)、aa殘基639至649 (SEQ ID NO: 13)和aa殘基704至713 (SEQ ID NO: 14)。
圖63B顯示人MASP-3和高親和力MASP-3 mAb 10D12之間的接觸區域,包括aa殘基498至509(SEQ ID NO: 9)。
圖64顯示人MASP-3和高親和力MASP-3 mAb 13B1之間的接觸區域,包括aa殘基494至508(SEQ ID NO: 10)和aa殘基626至638(SEQ ID NO: 12)。
圖65顯示人MASP-3和高親和力MASP-3 mAb 1B11之間的接觸區域,包括aa殘基435至447(SEQ ID NO: 16)、aa殘基454至464(SEQ ID NO: 17)、aa殘基583至589(SEQ ID NO: 21)和aa殘基614至623(SEQ ID NO: 22)。
圖66顯示人MASP-3和高親和力MASP-3 mAb 1E7、1G4和2D7之間的接觸區域,包括aa殘基454至464(SEQ ID NO: 17)、aa殘基514至523(SEQ ID NO: 19)和aa殘基667至678(SEQ ID NO: 23)。
圖67顯示人MASP-3和高親和力MASP-3 mAb 15D9和2F5之間的接觸區域,包括aa殘基454至464(SEQ ID NO: 17)、aa殘基479至493(SEQ ID NO: 18)、aa殘基562至571(SEQ ID NO: 20)和aa殘基667至678(SEQ ID NO: 23)。
總之,對於14種抗體中的12種獲得了結論性結合概況。所有12種作圖的抗體識別肽酶S1結構域內的溶劑曝露的表位。許多表位決定簇與活性位點催化性三聯體的殘基(H497、D553、S664)的密切鄰近與其中高親和力抑制性MASP-3 mAb通過干擾酶底物相互作用阻斷酶活性的模型一致。 實施例 19
本實施例描述代表性MASP-3 mAb的人源化和潛在的翻譯後修飾位元點的工程改造。 方法: 1.   代表性高親和力MASP-3 mAb的人源化 方法:
為了降低免疫原性風險,通過CDR-移植方法將代表性高親和力MASP-3抑制性抗體4D5、10D12和13B1人源化。將每種MASP-3抗體的CDR移植至最接近的共有人構架序列中。通過Quickchange定點誘變(Agilent Technologies)修飾一些Vernier區殘基。將所得人源化VH和VL區轉移至基於pcDNA3.1的人IgG1或IgG4和IgK表達構建體中,並且重組抗體如上所述進行表達和純化。通過使用單價Fab片段的ELISA測定人源化抗體的親和力,並且通過使用完整IgG4格式的C3沉積測定來評估效力。 結果:
下面提供mAb 4D5、10D12和13B1的重鏈可變區和輕鏈可變區的代表性人源化版本的胺基酸序列。CDR (Kabat)加底線。 4D5: h4D5_VH-14 (SEQ ID NO: 248)
QVQLVQSGAEVKKPGASVKVSCKASGYTFT TDDINWVRQAPGQGLEWIG WIYPRDDRTKYNDKFKDKATLTVDTSSNTAYMELSSLRSEDTAVYYCSS LEDTYWGQGTLVTVSS h4D5_VH-19 (SEQ ID NO: 249)
QVQLVQSGAEVKKPGASVKVSCKASGYTFT TDDINWVRQAPGQGLEWIG WIYPRDDRTKYNDKFKDRATLTVDTSSNTAYMELSSLRSEDTAVYYCSS LEDTYWGQGTLVTVSS h4D5_VL-1 (SEQ ID NO: 250)
DIVMTQSPDSLAVSLGERATINC KSSQSLLNSRTRKNYLAWYQQKPGQPPKLLIY WASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYC KQSYNLYTFGQGTKVEIKR 10D12: h10D12_VH-45 (SEQ ID NO: 251)
QIQLVQSGSELKKPGASVKVSCKASGYIFT SYGMSWVRQAPGKGLKWMG WINTYSGVPTYADDFKGRFVFSLDTSVRTPYLQISSLKAEDTAVYFCAR GGEAMDYWGQGTLVTVSS h10D12_VH-49 (SEQ ID NO: 252)
QIQLVQSGSELKKPGASVKVSCKASGYIFT SYGMSWVRQAPGKGLKWMG WINTYSGVPTYADDFKGRFVFSLDTSVRTPYLQISSLKAEDTATYFCAR GGEAMDYWGQGTLVTVSS h10D12_VL-21 (SEQ ID NO: 253)
DVLMTQTPLSLSVTPGQPASISC KSSQSLLDSDGKTYLNWLLQRPGQSPKRLIY LVSKLDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYC WQGTHFPWTFGQGTKVEIKR 13B1 h13B1_VH-9 (SEQ ID NO: 254)
QVQLVQSGAEVKKPGASVKVSCKASGYTFT GKWIEWVRQAPGQGLEWIG EILPGTGSTNYAQKFQGRATFTADSSTSTAYMELSSLRSEDTAVYYCLR SEDVWGQGTLVTVSS h13B1_VH-10 (SEQ ID NO: 255)
QVQLVQSGAEVKKPGASVKVSCKASGYTFT GKWIEWVRQAPGQGLEWIG EILPGTGSTNYNEKFKGRATFTADSSTSTAYMELSSLRSEDTAVYYCLR SEDVWGQGTLVTVSS h13B1_VL-1 (SEQ ID NO: 256)
DIVMTQSPDSLAVSLGERATINC KSSQSLLNSRTRKNYLAWYQQKPGQPPKLLIY WASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYC KQSYNIPTFGQGTKVEIKR
代表性人源化4D5、10D12和13B1抗體對於人MASP-3的親和力在下面顯示於表29中。 表29:代表性人源化MASP-3 mAb與MASP-3的結合
MASP-3抗體殖株 (Fab形式) 與人MASP-3的結合 EC 50(nM)
4D5親本Fab 0.107
h4D5_14-1 Fab (VH-14和VL-1) 0.085
h4D5_19-1 Fab (VH-19和VL-1) 0.079
  
10D12親本Fab 0.108
h10D12_45-21 Fab (VH-45和VL-21) 0.108
h10D12_49-21 Fab (VH-49和VL-21) 0.115
  
13B1親本Fab 0.123
h13B1_9-1 Fab (VH-9和VL-1) 0.101
h13B1_10-1 Fab (VH-10和VL-1) 0.097
人源化構架序列與人種系構架序列的百分比同一性: h4D5_VH-14=90%; h4D5_VH-19=91%; h4D5_VL-1=100%; h10D12_VH-45=92%; h10D12_VH-49=91%; h10D12_VL-21=93%; h13B1_VH-9=95%; h13B1_VH-10=94%; h13B1_VL-1=100% 2. 誘變代表性MASP-3 mAb以除去4D5、10D12和13B1的輕鏈可變區的CDR-1中的Asn/Asp修飾位點
分析代表性高親和力MASP-3抑制性mAb 4D5、10D12和13B1用於翻譯後修飾。天冬醯胺酸殘基與後續甘胺酸、絲胺酸、織胺酸、丙胺酸或天冬醯胺酸(“NG”、“NS”、“NH”、“NA”或“NN”基序)通常易受天冬醯胺酸側鏈的醯胺基團的水解或“脫醯胺基”的影響。天冬胺酸殘基與後續的甘胺酸或脯胺酸(“DG”或“DP”基序)通常易受相互轉化或“異構化”的影響。此類修飾導致電荷異質性並且如果它們存在於結合介面中則可以影響抗體功能。它們也可以增加片段化、免疫原性和聚集的風險。
在4D5、10D12和13B1的輕鏈可變區的CDR-1中鑒定了潛在的翻譯後修飾基序。
4D5和13B1在輕鏈的CDR1中含有一個可能的Asn脫醯胺基位點(在下表30中加底線的SEQ ID NO: 142的位置8和9顯示為“NS”。如下表30中進一步所示,10D12在輕鏈的CDR1中含有一個可能的Asp異構化位點。
通過定點誘變產生這些MASP-3 mAb的人源化形式的變體,如表30中所示。如上所述表達和純化變體。通過使用單價Fab片段的ELISA測定親和力,並且通過使用完整IgG4格式的C3沉積測定來評估效力,如上所述。 表30:4D5、10D12和13B1的CDR-L1的變體
抗體 區域 序列
4D5親本 LC-CDR1 KSSQSLL NSRTRKNYLA  (SEQ ID NO: 142)
4D5-NQ突變體 LC-CDR1 KSSQSLL QSRTRKNYLA  (SEQ ID NO: 257)
4D5-NA突變體 LC-CDR1 KSSQSLL ASRTRKNYLA  (SEQ ID NO: 258)
4D5-ST突變體 LC-CDR1 KSSQSLL NTRTRKNYLA (SEQ ID NO: 259)
13B1親本 LC-CDR1 KSSQSLL NSRTRKNYLA (SEQ ID NO: 142)
13B1-NQ LC-CDR1 KSSQSLL QSRTRKNYLA (SEQ ID NO: 257)
13B1-NA LC-CDR1 KSSQSLL ASRTRKNYLA (SEQ ID NO: 258)
13B1-ST LC-CDR1 KSSQSLL NTRTRKNYLA (SEQ ID NO: 259)
4D5、13B1和變體的共有序列 LC-CDR1 KSSQSLLXXRTRKNYLA (SEQ ID NO: 260) 其中位置8的X是N、Q或A;且其中位置9的X是S或T
  
10D12親本 LC-CDR1 KSSQSLLDS DGKTYLN  (SEQ ID NO: 153)
10D12-DE突變體 LC-CDR1 KSSQSLLDS EGKTYLN   (SEQ ID NO: 261)
10D12-DA突變體 LC-CDR1 KSSQSLLDS AGKTYLN   (SEQ ID NO: 262)
10D12-GA突變體 LC-CDR1 KSSQSLLDSD AKTYLN  (SEQ ID NO: 263)
35C1    LC-CDR1 KSSQSLLDSDGKTYLS   (SEQ ID NO: 159)
10D12、35C1和變體的共有序列 LC-CDR1 KSSQSLLDSXXKTYLX   (SEQ ID NO: 215) 其中位置10的X是D、E或A; 其中位置11的X是G或A;且 其中位置16的X是N或S
表31:人源化4D5、10D12和13B1 mAb的誘變候選與人MASP-3的結合
MASP-3抗體殖株 (Fab形式) 與人MASP-3的結合 EC 50(pM)
h4D5_19-1親本Fab (VH-19和VL-1) 102
h4D5-19-1-NQ Fab (VH-19和VL-1-NQ) 732
h4D5-19-1-NA Fab (VH-19和VL-1-NA) 122
h4D5-19-1-ST Fab (VH-19和VL-1-ST) 151
  
h10D12_45-21親本Fab (VH-45和VL-21) 108
h10D12-45-21-DE Fab (VH-45和VL-21-DE) 326
h10D12-45-21-DA Fab (VH-45和VL-21-DA) 294
h10D12-45-21-GA Fab (VH-45和VL-21-GA) 181
  
h13B1_10-1親本Fab (VH-10和VL-1) 100
h13B1_10-1-NQ Fab (VH-10和VL-1-NQ) 138
h13B1_10-1-NA Fab (VH-10和VL-1-NA) 105
h13B1_10-1-ST Fab (VH-10和VL-1-ST) 120
表32:MASP-3抗體人源化VH序列(CDR和FR區域,Kabat)
抗體 HC FR1 HC CDR1
4D5親本 (SIN:24) QVQL KQSG PE LVKPGASVK LSCKASGYTFT (SEQ ID NO: 55)    TDDIN (SEQ ID NO: 56)
h4D5_VH-14 (SIN:248) QVQLVQSGAEVKKPGASVKVSCKASGYTFT (SEQ ID NO: 264)    TDDIN (SEQ ID NO: 56)
h4D5_VH-19 (SIN:249) QVQLVQSGAEVKKPGASVKVSCKASGYTFT (SEQ ID NO: 264) TDDIN (SEQ ID NO: 56)   
        
10D12親本 (SIN:28) QIQLVQSG PELKKPG ETVK ISCKASGYIFT (SEQ ID NO: 71)    SYGMS (SEQ ID NO: 72)
h10D12_VH-45 (SIN:251) QIQLVQSGSELKKPGASVKVSCKASGYIFT (SEQ ID NO: 269)    SYGMS (SEQ ID NO: 72)
h10D12-VH-49 (SIN:252) QIQLVQSGSELKKPGASVKVSCKASGYIFT (SEQ ID NO: 269)    SYGMS (SEQ ID NO: 72)
        
13B1親本 (SIN:30) QVQL KQSGAE LMKPGASVK LSCKA TGYTFT (SEQ ID NO: 83)    GKWIE (SEQ ID NO: 84)   
h13B1_VH-9 (SIN:254) QVQLVQSGAEVKKPGASVKVSCKASGYTFT (SEQ ID NO: 273)    GKWIE (SEQ ID NO: 84)
h13B1_VH-10 (SIN:255) QVQLVQSGAEVKKPGASVKVSCKASGYTFT (SEQ ID NO: 273)    GKWIE (SEQ ID NO: 84)
  
抗體 HC FR2 HC CDR2
4D5親本 WV KQ RPGQGLEWIG (SEQ ID NO: 57)    WIYPRDDRTKYNDKFKD (SEQ ID NO: 58)
h4D5_VH-14 WVRQAPGQGLEWIG (SEQ ID NO: 265)    WIYPRDDRTKYNDKFKD (SEQ ID NO: 58)
h4D5_VH-19 WVRQAPGQGLEWIG (SEQ ID NO: 265)    WIYPRDDRTKYNDKFKD (SEQ ID NO: 58)
        
10D12親本 WVRQAPGKGLKWMG (SEQ ID NO: 73)    WINTYSGVPTYADDFKG (SEQ ID NO: 74)   
h10D12_VH-45 WVRQAPGKGLKWMG (SEQ ID NO: 73)    WINTYSGVPTYADDFKG (SEQ ID NO: 74)
h10D12-VH-49 WVRQAPGKGLKWMG (SEQ ID NO: 73)    WINTYSGVPTYADDFKG (SEQ ID NO: 74)
        
13B1親本 WV KQ RPG HGLEWIG (SEQ ID NO: 85)    EILPGTGSTNY NEKF KG (SEQ ID NO: 86)
h13B1_VH-9 WVRQAPGQGLEWIG (SEQ ID NO: 274)    EILPGTGSTNYAQKFQG (SEQ ID NO: 275)
h13B1_VH-10 WVRQAPGQGLEWIG (SEQ ID NO: 274)    EILPGTGSTNYNEKFKG (SEQ ID NO: 86)
  
抗體 HC FR3 HC CDR3
4D5親本 KATLTVDTSSNTAYM DL HSL TSED SAVY FCSS (SEQ ID NO: 59)    LEDTY (SEQ ID NO: 60)
h4D5_VH-14 KATLTVDTSSNTAYMELSSLRSEDTAVYYCSS (SEQ ID NO: 266)    LEDTY (SEQ ID NO: 60)
h4D5_VH-19 RATLTVDTSSNTAYMELSSLRSEDTAVYYCSS (SEQ ID NO: 267)    LEDTY (SEQ ID NO: 60)
        
10D12親本 RF AFSL ETS ARTPYLQI NNLK NEDTA TYFCAR (SEQ ID NO: 75)    GGEAMDY (SEQ ID NO: 76)   
h10D12_VH-45 RFVFSLDTSVRTPYLQISSLKAEDTAVYFCAR (SEQ ID  NO:270)    GGEAMDY (SEQ ID NO: 76)
h10D12-VH-49 RFVFSLDTSVRTPYLQISSLKAEDTA TYFCAR (SEQ ID NO: 271)    GGEAMDY (SEQ ID NO: 76)
        
13B1親本    KATFTADSS SNTAYM QLSSL TTED SA MYYCLR (SEQ ID NO: 87)    SEDV (SEQ ID NO: 88)
h13B1_VH-9 RATFTADSSTSTAYMELSSLRSEDTAVYYCLR (SEQ ID NO: 276)    SEDV (SEQ ID NO: 88)
h13B1_VH-10 RATFTADSSTSTAYMELSSLRSEDTAVYYCLR (SEQ ID  NO:276)    SEDV (SEQ ID NO: 88)
  
   抗體 HC FR4   
4D5親本 WGQGTLV AVSS (SEQ ID NO: 61)      
h4D5_VH-14 WGQGTLVTVSS (SEQ ID NO: 268)      
h4D5_VH-19 WGQGTLVTVSS (SEQ ID NO: 268)      
        
10D12親本 WGQGT SVTVSS (SEQ ID NO: 77)      
h10D12_VH-45 WGQGTLVTVSS (SEQ ID NO: 272)      
h10D12-VH-49 WGQGTLVTVSS (SEQ ID NO: 272)   
        
13B1親本    WG TGT TVTVSS (SEQ ID NO: 89)      
h13B1_VH-9 WGQGTLVTVSS (SEQ ID NO: 277)      
h13B1_VH-10 WGQGTLVTVSS (SEQ ID NO: 277)      
具有變體的代表性人源化輕鏈可變區: h4D5_VL-1-NA (SEQ ID NO: 278)
DIVMTQSPDSLAVSLGERATINC KSSQSLLASRTRKNYLAWYQQKPGQPPKLLIY WASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYC KQSYNLYTFGQGTKVEIKR h10D12_VL-21-GA (SEQ ID NO: 279)
DVLMTQTPLSLSVTPGQPASISC KSSQSLLDSDAKTYLNWLLQRPGQSPKRLIY LVSKLDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYC WQGTHFPWTFGQGTKVEIKR h13B1_VL-1-NA (SEQ ID NO: 280)
DIVMTQSPDSLAVSLGERATINC KSSQSLLASRTRKNYLAWYQQKPGQPPKLLIY WASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYC KQSYNIPTFGQGTKVEIKR 表33:MASP-3抗體人源化VL序列(CDR和FR區域,Kabat)[加LC-CDR1中的變體]
抗體 LC FR1 LC CDR1
4D5親本 (SIN:40) DIVMTQSP SSLAVS AGE KVT MTC (SEQ ID NO: 141)    KSSQSLL NSRTRKNYLA (SEQ ID NO: 142)   
h4D5_VL-1 (SIN:250) DIVMTQSPDSLAVSLGERATINC (SEQ ID NO: 281)    KSSQSLLNSRTRKNYLA (SEQ ID NO: 142)   
h4D5_VL-1-NA (SIN:278) DIVMTQSPDSLAVSLGERATINC (SEQ ID  NO:281) KSSQSLL ASRTRKNYLA (SEQ ID NO: 258)   
        
10D12親本 (SIN:43)    DVLMTQTPL TLSVT IGQPASISC (SEQ ID NO: 152)    KSSQSLLDSD GKTYLN (SEQ ID NO: 153)   
h10D12_VL-21 (SIN:253) DVLMTQTPLSLSVTPGQPASISC (SEQ ID NO: 285) KSSQSLLDSDGKTYLN (SEQ ID NO: 153)   
h10D12_VL-21-GA (SIN:279) DVLMTQTPLSLSVTPGQPASISC (SEQ ID NO: 285) KSSQSLLDSD AKTYLN (SEQ ID NO: 263)
        
13B1親本    DIVMTQSP SSLAVS AGE KVT MSC (SEQ ID  NO:151) KSSQSLL NSRTRKNYLA (SEQ ID NO: 142)   
h13B1_VL-1 DIVMTQSPDSLAVSLGERATINC (SEQ ID NO: 281)    KSSQSLLNSRTRKNYLA (SEQ ID NO: 142)
h13B1_VL-1-NA DIVMTQSPDSLAVSLGERATINC (SEQ ID NO: 281) KSSQSLL ASRTRKNYLA (SEQ ID NO: 258)   
  
抗體 LC FR2 LC CDR2
4D5親本 WYQQKPGQ SPKLLIY (SEQ ID NO: 143)    WASTRES (SEQ ID NO: 144)   
h4D5_VL-1 WYQQKPGQPPKLLIY (SEQ ID NO: 282)    WASTRES (SEQ ID NO: 144)
h4D5_VL-1-NA WYQQKPGQPPKLLIY (SEQ ID NO: 282) WASTRES (SEQ ID NO: 144)   
        
10D12親本    WLLQRPGQSPKRLIY (SEQ ID NO: 154)    LVSKLDS (SEQ ID NO: 155)   
h10D12_VL-21 WLLQRPGQSPKRLIY (SEQ ID NO: 154)    LVSKLDS (SEQ ID NO: 155)
h10D12_VL-21-GA WLLQRPGQSPKRLIY (SEQ ID NO: 154)    LVSKLDS (SEQ ID NO: 155)
        
13B1親本    WYQQKPGQ SPKLLIY (SEQ ID NO: 143)    WASTRES (SEQ ID NO: 144)
h13B1_VL-1 WYQQKPGQPPKLLIY (SEQ ID NO: 282)    WASTRES (SEQ ID NO: 144)
h13B1_VL-1-NA WYQQKPGQPPKLLIY (SEQ ID NO: 282) WASTRES (SEQ ID NO: 144)
  
抗體 LC FR3 LC CDR3
4D5親本 GVPDRF TGSGSGTDF SLTISS VQAED LAVYYC (SEQ ID NO: 145)    KQSYNLYT (SEQ ID NO: 146)   
h4D5_VL-1 GVPDRFSGSGSGTDFTLTISSLQAEDVAVYYC (SEQ ID NO: 283)    KQSYNLYT (SEQ ID NO: 146)
h4D5_VL-1-NA GVPDRFSGSGSGTDFTLTISSLQAEDVAVYYC (SEQ ID NO: 283)    KQSYNLYT (SEQ ID NO: 146)
        
10D12親本    GVPDRF TGSGSGTDFTLKISRVEAED LGVYYC (SEQ ID NO: 156)    WQGTHFPWT (SEQ ID NO: 157)   
h10D12_VL-21 GVPDRFSGSGSGTDFTLKISRVEAEDVGVYYC (SEQ ID NO: 286)    WQGTHFPWT (SEQ ID NO: 157)
h10D12_VL-21-GA GVPDRFSGSGSGTDFTLKISRVEAEDVGVYYC (SEQ ID NO: 286)    WQGTHFPWT (SEQ ID NO: 157)
        
13B1親本    GVPDRF TGSGSGTDFTLTISS VQAED LAVYYC (SEQ ID NO: 150)    KQSYNIPT (SEQ ID NO: 161)   
h13B1_VL-1 GVPDRFSGSGSGTDFTLTISSLQAEDVAVYYC (SEQ ID NO: 283)    KQSYNIPT (SEQ ID NO: 161)
h13B1_VL-1-NA GVPDRFSGSGSGTDFTLTISSLQAEDVAVYYC (SEQ ID NO: 283) KQSYNIPT (SEQ ID NO: 161)   
  
   抗體 LC FR4   
4D5親本 FG GGTK LEIKR (SEQ ID NO: 147)      
h4D5_VL-1 FGQGTKVEIKR (SEQ ID NO: 284)      
h4D5_VL-1-NA FGQGTKVEIKR (SEQ ID NO: 284)      
        
10D12親本 FG GGTK LEIKR (SEQ ID NO: 147)      
h10D12_VL-21 FGQGTKVEIKR (SEQ ID NO: 287)      
h10D12_VL-21-GA FGQGTKVEIKR (SEQ ID NO: 287)      
     
13B1親本    FG GGTK LEIKR (SEQ ID NO: 147)      
h13B1_VL-1 FGQGTKVEIKR (SEQ ID NO: 284)      
h13B1_VL-1-NA FGQGTKVEIKR (SEQ ID NO: 284)   
實施例 20
在多發性硬化的小鼠模型中的代表性MASP-3抑制性mAb 13B1的分析。
背景/基本原理:實驗性自身免疫性腦脊髓炎(EAE),一種獲得性炎性和脫髓鞘性自身免疫性疾病,是多發性硬化症(MS)的建立動物模型。表明APC在EAE的發展/進展中起重要作用的證據由該疾病在用因子B中和抗體治療的小鼠中減弱的報導提供(Hu等人, Mol. Immunol. 54:302, 2013).  本實施例描述了EAE模型中的代表性高親和力MASP-3抑制性抗體13B1的分析。 方法: EAE誘導:
購自Hooke Laboratories (Lawrence, MA)的用於誘導EAE的試劑盒用於在該研究中誘導EAE。該試劑盒含有完全弗氏佐劑(CFA)中的神經抗原MOG 35-55以及百日咳毒素。
將30只野生型C57B1/6J雌性小鼠用於該研究,並在EAE誘導前適應於該設施至少一周。小鼠在誘導時為約10周齡。如下表34中所示,在誘導時,每只小鼠接受MOG35-55的兩次100μL皮下(sc)注射和100μL(400ng)百日咳毒素的一次腹膜內(ip)注射。在第一次注射後24小時給予百日咳毒素的第二次注射。
治療:將30只小鼠分成三組,每組10只,並用不相關的同種型對照mAb 10 mg/kg i.v.);mAb 13B1 (抗MASP-3, 10 mg/kg i.v.)或mAb 1379 (抗因子B ( Hu等人 , Mol. Immunol. 54:302, 2013) 40 mg/kg i.p.)治療。如表34中所示,每週用同種型對照mAb和MASP-3 mAb 13B1給藥,在從-16天開始並在第+12天結束。根據Hu等人, Mole Immunol54:302-308, (2013)中描述的給藥方案,從第+3天至第+11天每隔一天用mAb 1379給藥。 表34:用MASP-3 mAb 13B1的EAE實驗的實驗方法
施用日 百日咳毒素 400 ng i.p. MOG肽 35-55 250 µg mAb 1379 (抗因子B) 40 mg i.p. 同種型對照 mAb 10 mg/kg i.v. mAb 13B1 (抗MASP-3) 10 mg/kg i.v.
-16          + +
-9          + +
-2          + +
0 + +         
+1 +            
+3       +      
+5       + + +
+7       +      
+9       +      
+11       +      
+12          + +
評分:每隔一天檢查小鼠,直到出現症狀,其後它們每天檢查一次。如預期,疾病的首次症狀在免疫後7-12天出現。根據下面表35中所示的標度將小鼠評分。 表35:EAE模型評分標準
評分 臨床觀察
0.0 與未免疫小鼠相比,小鼠的運動功能無明顯變化。當通過尾巴的基部抓起時,尾巴具有張力並且直立。後腿通常分開。當小鼠行走時,沒有步態或頭部傾斜。
0.5 尾尖是柔軟的。當小鼠通過尾巴的基部抓起時,尾巴除了尖端之外具有張力。尾巴中感覺到肌肉緊張,而尾巴繼續移動。
1.0 尾巴柔軟。當小鼠通過尾巴的基部抓起、而不是直立時,整個尾巴垂懸在手指上。後腿通常分開。沒有觀察到尾部運動的跡象。
1.5 尾巴柔軟且後腿抑制。當通過尾巴的基部抓起時,整個尾巴垂懸在手指上。當小鼠放線上架上時,至少一個後腿一直落空。行走非常輕微擺動。
2.0 尾巴柔軟且後腿虛弱。當通過尾巴的基部抓起時,腿部沒有分開,而是靠近在一起。當觀察到小鼠行走時,它具有清晰明顯的擺動行走。一隻腳可具有腳趾拖動,但另一隻腳沒有明顯的運動抑制; 或者, 小鼠似乎處於0.0分,但當觀察到行走時,存在明顯的頭部傾斜跡象。平衡較差。
2.5 尾巴柔軟且後腿拖曳。兩條後腿都具有一些運動,但是兩者都在腳上拖動(小鼠在後腳上失誤)。- 或者 - 一條腿沒有運動/一條腿完全拖動,但另一條腿移動。- 或者 - EAE嚴重程度在抓起時顯得溫和(作為評分0.0-1.5),但存在強烈頭部傾斜,其引起小鼠偶爾跌倒。
3.0 尾巴柔軟且後腿完全麻痹(最常見)。- 或者 - 尾巴柔軟且後腿幾乎完全麻痹。一條或兩條後腿能夠劃槳,但後腿都不能從後臀部向前移動。- 或者 - 尾巴柔軟且一隻前腿和一隻後腿麻痹。- 或者 – 以下中的全部:嚴重的頭部傾斜,僅沿著籠子的邊緣行走,靠著籠子壁推動,當通過尾巴的基部抓起時旋轉。
3.5 尾巴柔軟且後腿完全麻痹。除了:小鼠在籠子周圍移動,但當放在一側時,無法自己直立。後腿一起在身體的一側。- 或者 - 小鼠在籠子周圍移動,但後面四分之一像薄餅一樣平坦,給出小鼠前面四分之一中的駝峰的外觀
4.0 尾巴柔軟、後腿完整且部分前腿麻痹。小鼠在籠子周圍最小程度地移動,但看起來警覺和餵養。小鼠評分4.0持續2天之後,經常推薦安樂死。然而,在每天s.c.流體的情況下,一些小鼠可以恢復到3.5或3.0。當由於嚴重麻痹而將小鼠安樂死時,為用於該實驗的其餘部分的該小鼠輸入5.0的評分。
4.5 完全後肢和部分前腿麻痹,不能圍繞籠子移動。小鼠不警覺。小鼠在前腿的運動很小。小鼠對接觸幾乎不回應。推薦安樂死。當由於嚴重麻痹而將小鼠安樂死時,為用於該實驗的其餘部分的該小鼠輸入5.0的評分。
5.0 小鼠在籠子中自發滾動。
結果:
圖68圖示說明用MASP-3抑制性mAb 13B1 (10mg/kg)、因子B mAb 1379 (40 mg/kg)或同種型對照mAb (10 mg/kg)治療的小鼠中的EAE模型的結果,其中向下指向的箭頭指示抗因子B抗體的給藥,且向上指向的箭頭指示mAb 13B1的最後劑量。如圖68中所示,與同種型對照相比,用MASP-3抑制性mAb 13B1和因子B mAb 1379治療的小鼠表現出根據表35中所示的參數評分的臨床症狀的改善。
根據上述,預期MASP-3抑制性抗體,例如本文公開的高親和力MASP-3抑制性抗體在患有多發性硬化症、巴羅同心性硬化、視神經脊髓炎、Marburg多發性硬化症、Schilder氏病、腫起性多發性硬化症和急性播散性腦脊髓炎(ADM)的對象的治療和/或康復中是有益的(神經保護或神經再生的)。 實施例 21
在食蟹猴中用代表性高親和力MASP-3 mAb的藥效學研究。
背景/基本原理:如齧齒動物研究中所表明(圖44),高親和力MASP-3抑制性抗體能夠在體內抑制穩態(靜息)前因子D成熟。本實施例描述了在食蟹猴中進行的研究,其確定代表性高親和力MASP-3抑制性mAb是否能夠抑制非人靈長類動物中的APC活性。
方法:為了證實MASP-3在非人靈長類動物中的APC中發揮功能且高親和力MASP-3抗體能夠抑制非人靈長類動物中的APC,向9只食蟹猴(每種mAb條件3只動物)給予三種代表性高親和力MASP-3抑制性抗體之一的單次5 mg/kg靜脈內劑量:h4D5X、h10D12X或h13B1X。(“h”是指人源化的,“X”是指含有穩定化S228P胺基酸取代的IgG4恒定鉸鏈區(SEQ ID NO: 312)和具有S228P突變且還有促進在低pH下的FcRn相互作用的突變的突變人IgG4恒定區)。經三周或更長的時段以定期時間間隔收集血漿(EDTA)和血清樣品。
採用兩種測定法來測量來自治療猴的血清中的APC活性。第一種測定法評價沉積在添加至稀釋血清中的酵母聚糖珠上的補體因子Bb的水準。第二個測定法測量酵母聚糖活化的APC的流體相產物,補體因子Ba和Bb以及C3a。
使用因子Bb抗體A252(Quidel)的流式細胞術用於檢測沉積在酵母聚糖上的因子Bb。作為用於測定在完全抑制APC後測定中的背景信號的方法,向從MASP-3 mAb治療的食蟹猴製備的血漿(最終5%,在GVB + Mg/EGTA中稀釋)的等分試樣中摻入300nM抑制因子D抗體。為了確定通過靜脈內遞送至猴的MASP-3 mAb的APC抑制程度,在測試因子Bb沉積在酵母聚糖上之前,向稀釋血清的另一等分試樣中摻入300nM中性同種型對照抗體(其沒有APC抑制活性)。將摻入的抗體-血清混合物在冰上孵育30分鐘,然後添加酵母聚糖(最終0.1 mg/mL)。將混合物在37℃下孵育65分鐘,並通過在酵母聚糖顆粒表面上的補體因子Bb(Quidel抗體A252)的流式細胞術檢測來測量APC活性。
為了確定流體相標誌物Ba、Bb和C3a的產生,通過將從抗MASP-3 mAb治療的食蟹猴製備的血清(最終5%,在GVB + Mg/EGTA中稀釋)中的酵母聚糖(最終1 mg/mL)孵育而在離體測定中誘導APC。將混合物在37℃下孵育40分鐘,並且通過基於ELISA的補體端點檢測來測量APC活性。使用市售的ELISA試劑盒(Quidel)在反應上清液中檢測Ba、Bb和C3a。通過將治療前值設置為100%活性並且將孵育、但未曝露於酵母聚糖的治療前樣品設置為0%活性來將所有測試的吸光度值進行歸一化。
為了將APC抑制程度與MASP-3 mAb治療的猴中的抗體與靶標比率相關聯,定量血清MASP-3和抑制性MASP-3 mAb水準。通過夾心ELISA測定法測量血清MASP-3。將MASP-3蛋白捕獲在具有αM3-259的平板(在實施例16中描述)上。首先將血清樣品(1:40稀釋)與未標記(非生物素化)MASP-3 mAb(對應於治療mAb)在37℃下孵育1小時,然後進一步1:250(最終1:10,000)稀釋並添加至平板並在37℃下孵育另一小時。洗滌平板,並使用mAb 10D12的生物素化版本作為檢測抗體。使用在檢測步驟前的大量血清稀釋液來解偶聯靶標和治療mAb,並且防止治療抗體與檢測抗體之間的競爭。將平板洗滌多次後,使用鏈黴抗生物素蛋白-HRP用於最終檢測步驟。在讀板機上收集A450的吸光度值。從通過測定重組、全長cyno MASP-3蛋白產生的標準曲線外推MASP-3血清濃度。遵循製造商的說明書,使用人Therapeutic IgG4 ELISA試劑盒(Cayman Chemicals)檢測存在於血清中的抗MASP-3抗體的量。
使用Western印跡分析來分析用mAb h13B1X的單次5 mg/kg靜脈內劑量治療後隨著時間(小時)推移的來自食蟹猴的血清中的前因子D和因子D的水準。簡要描述,通過將在治療前(-120小時、-24小時)和治療後(72小時、168小時、336小時、504小時、672小時和840小時)的不同時間點獲得的20μL食蟹猴血漿與PBS和11.2μL抗CFD抗體(0.5μg/μL)在400μL的總體積中在4℃下混合1小時來進行Western印跡分析。添加12μL蛋白A/G Plus瓊脂糖(Santa Cruz Biotech),並將混合物在4℃下孵育過夜。通過在4℃下以1000 x g離心5分鐘來收集免疫沉澱物。將沉澱物用PBS洗滌5次。最終洗滌後,將沉澱物重新懸浮於30μl的1x糖蛋白變性緩衝液中,並通過在100℃加熱反應10分鐘來使糖蛋白變性。將10X G2反應緩衝液、10% NP-40和2.5μL肽-N-糖苷酶(New England Biolabs, P0704L)添加至每個管中,並將反應物在37℃下孵育2小時。通過以1000 x g離心5分鐘來沉澱瓊脂糖珠,並將20μL上清液收集至新管中。用SDS-PAGE (NuPAGE 12% Bis-Tris Mini Gel)分辨捕獲和去糖基化的蛋白,並將凝膠用生物素化的抗CFD (R&D Systems BAF1824)和Pierce ™高靈敏度鏈黴抗生物素蛋白-HRP (Thermo Fischer Scientific 21130)進行電泳印跡以進行Western印跡分析。 結果:
圖69圖示說明在時間= 0用高親和力MASP-3 mAb h13B1X的單次治療後隨時間推移從三隻食蟹猴組獲得的血清樣品中的APC活性。該圖顯示流式細胞測定中的平均MFI,所述流式細胞測定檢測在用APC抑制因子D mAb或中性同種型對照mAb摻入的5%血清中的酵母聚糖顆粒表面上的補體因子Bb。如圖69中所示,早在4小時時,動物表現出降低的APC活性。如果MASP-3抗體治療與因子D抑制一樣有效地阻斷APC,則兩種摻入抗體條件將表明在劑量後樣品中的相同的Bb沉積抑制水準,但在劑量前(或時間= 0;圖69)條件下不是如此。如圖69中所示,到治療後72小時,APC活性降低到通過將因子D mAb添加至血漿樣品所達到的活性。如通過與摻入的因子D抗體的比較所實驗確定的由於h13B1X治療導致的幾乎完全抑制持續直至劑量後336小時(14天)。因此,這些結果表明用高親和力MASP-3抑制性mAb的治療提供非人靈長類動物中APC的完全、持續的抑制。
圖70圖示說明如通過從用高親和力MASP-3抑制性mAb h4D5X、h10D12X或h13B1X的單次5 mg/kg靜脈內劑量治療的食蟹猴組(3只動物/組)獲得的血清樣品中的酵母聚糖上的Bb沉積所測定的APC活性。如上所述收集Bb沉積資料。通過將摻入非抑制性、同種型對照抗體的樣品的治療前MFI設置為100%活性,並將與50mM EDTA一起孵育(以抑制所有補體活性)的治療前樣品設置為0%活性,將治療時間點的APC活性歸一化。用於圖70的h13BX治療資料也反映於圖69中。如圖70中所示,用所有三種高親和力MASP-3抑制性抗體的治療導致APC的大於95%抑制。h4D5X-、h10D12X-和h13B1X-治療的動物分別將APC的至少90%抑制維持6.7、11.7和16天。因此,這些結果表明用這些代表性高親和力MASP-3抑制性mAb的治療以單次5 mg/kg劑量提供非人靈長類動物中APC的持續的抑制。
圖71A-C圖示說明APC活性的額外量度。在用如上所述的h4D5X、h10D12X和h13B1X的單一5 mg/kg靜脈內劑量處理後,在酵母聚糖處理的從食蟹猴組(3只動物/組)獲得的稀釋血清樣品中隨時間測量流體相Ba(圖71A)、Bb(圖71B)和C3a(圖71C)。
如圖71A-C中所示,所有三種高親和力MASP-3抑制性抗體的單次施用導致APC的抑制,如通過三個不同的流體相終點所定義。這些資料與圖70的Bb沉積研究中證明的APC抑制水準一致,並進一步說明這些mAb持續多周抑制途徑的效力。
圖72A-C圖示說明如通過流體相Ba產生測定的APC活性相對於在用h4D5X(圖72A)、h10D12X(圖72B)或h13B1X(圖72C)處理的猴血清中檢測到的單體MASP-3和MASP-3 mAb抗體的摩爾比的關係。圖72A-C中的每個小圖表示來自一隻猴的資料。本研究中使用的猴物件和獲得的血清(或血漿)與上述那些相同(圖69、70和71)。
圖72A-C圖示說明在完全APC抑制的時間點的靶標(MASP-3)與高親和力MASP-3抑制性抗體h4D5X(圖72A)、h10D12X(圖72B)和h13B1X(圖72C)的摩爾比,通過流體相Ba所測量。為了參考目的,1:1靶標與抗體的摩爾比每個圖中顯示為虛線。如圖72A-C中所示,摩爾比在約2:1至約2.5:1(靶標與抗體)範圍內的靶標(MASP-3)與高親和力MASP-3抑制性mAb h4D5X、h10D12X和h13B1X足以完全抑制APC。這些資料表明,這三種代表性MASP-3抑制性mAb是有效、高親和力的MASP-3抑制性抗體,其當以小於靶標濃度的摩爾濃度存在時能夠抑制APC。這些效力水準強烈地表明,mAb可能臨床用於治療由APC引起的疾病或適應症。
圖73顯示分析用mAb h13B1X的單次5 mg/kg靜脈內劑量治療前後隨著時間(小時)的來自食蟹猴的血清中的前因子D和因子D的水準的Western印跡。如圖73中所示,在單劑量的mAb h13B1X之後,因子D作為前因子D在血漿中存在至少336小時(14天)。 結果概述
如實施例11中所述,向小鼠單劑量施用高親和力MASP-3抑制性抗體mAb 13B1導致全身性替代途徑補體活性的接近完全消除至少14天。如實施例12中進一步描述,在與PNH相關的良好建立的動物模型中進行的研究中,表明mAb 13B1顯著地改善PNH樣紅血細胞的存活且比C5抑制顯著更好地保護PNH樣紅血細胞。如實施例13中所述,進一步表明mAb 13B1降低關節炎小鼠模型中疾病的發生率和嚴重程度。本實施例中的結果表明代表性高親和力MASP-3抑制性mAb 13B1、10D12和4D5在阻斷靈長類動物中的替代途徑方面是高度有效的。向食蟹猴單劑量施用mAb 13B1、10D12或4D5導致全身性替代途徑活性的持續消除持續約16天。用高親和力MASP-3抑制性抗體治療的食蟹猴中替代途徑消除的程度與通過體外因子D阻斷實現的程度相當,表明通過MASP-3抑制性抗體完全阻斷因子D轉化。因此,高親和力MASP-3抑制性mAb在治療患有與替代途徑活性過度相關的疾病的患者中具有治療效用,所述疾病例如陣發性夜間血紅蛋白尿(PNH)、年齡相關性黃斑變性(AMD,包括濕性和乾性AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病(包括溶血性尿毒癥徵候群(HUS)、非典型溶血性尿毒癥徵候群(aHUS)、血栓性血小板減少性紫癜(TTP)或移植相關的TMA)、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎、貝切特氏病、多發性硬化症、格林巴厘徵候群、阿茲海默氏病、肌萎縮性側索硬化症(ALS)、狼瘡性腎炎、系統性紅斑狼瘡(SLE)、糖尿病性視網膜病變、葡萄膜炎、慢性阻塞性肺病(COPD)、C3腎小球病、移植排斥反應、移植物抗宿主病(GVHD)、血液透析、敗血症、系統性炎性反應徵候群(SIRS)、急性呼吸窘迫徵候群(ARDS)、ANCA血管炎、抗磷脂徵候群、動脈粥樣硬化、IgA腎病和重症肌無力。 VII.  其他實施方案
本說明書中提及的所有出版物、專利申請和專利通過引用併入本文。
在不脫離本發明的範圍和精神的情況下,本發明的所述方法、組合物和化合物的各種修改和變化對於本領域技術人員將是顯而易見的。儘管已經結合具體期望實施方案描述了本發明,但應當理解,如請求保護的本發明不應不適當地限於此類具體實施方案。實際上,對於醫學、免疫學、藥理學、腫瘤學或相關領域的技術人員顯而易見的用於實施本發明的所述模式的各種修改意在本發明的範圍內。
根據前述,本發明的特徵在於以下實施方案。 結合SP結構域內的一個或多個表位的高親和力MASP-3抑制性抗體
1A. 分離的單株抗體或其抗原結合片段,其以高親和力(具有小於500pM的K D)特異性結合人MASP-3的絲胺酸蛋白酶結構域(SEQ ID NO: 2的胺基酸殘基450至728),其中所述抗體或其抗原結合片段抑制替代途徑補體活化。
2A. 段落1的分離的抗體或其抗原結合片段,其中所述抗體或抗原結合片段的特徵在於以下特徵中的至少一種或多種: (a) 抑制前因子D成熟; (b)不結合人MASP-1 (SEQ ID NO: 8); (c) 在哺乳動物對象中以約1:1至約2.5:1 (MASP-3靶標與mAb)的摩爾比抑制替代途徑; (d)不抑制經典途徑; (e) 溶血和/或調理作用的抑制; (f) MASP-3絲胺酸蛋白酶底物特異性切割的抑制; (g)溶血的減少或C3切割和C3b表面沉積的減少; (h)在活化表面上的因子B和Bb沉積的減少; (i)  相對於前因子D,降低活性因子D的靜息水準(在循環中,並且沒有實驗性添加活化表面); (j)  回應於活化表面的相對於前因子D的活性因子D的水準的降低; (k)流體相Ba、Bb、C3b或C3a的靜息和/或表面誘導水準的產生的減少,和/或 (l)  因子P沉積的減少。
3A. 段落1或2的分離的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段特異性結合位於人MASP-3的絲胺酸蛋白酶結構域內的表位元,其中所述表位位於以下中的至少一種或多種內:VLRSQRRDTTVI (SEQ ID NO: 9)、TAAHVLRSQRRDTTV(SEQ ID NO: 10)、DFNIQNYNHDIALVQ(SEQ ID NO: 11)、PHAECKTSYESRS (SEQ ID NO: 12)、GNYSVTENMFC (SEQ ID NO: 13)、VSNYVDWVWE (SEQ ID NO: 14)和/或VLRSQRRDTTV (SEQ ID NO: 15)。[組I]
4A. 段落3的抗體或其抗原結合片段,其中所述抗體或抗原結合片段結合SEQ ID NO: 15內的表位。[包括所有組I ab]
5A. 段落3的抗體或抗原結合片段,其中所述抗體或抗原結合片段結合SEQ ID NO: 9內的表位。[10D12]
6A. 段落3的抗體或抗原結合片段,其中所述抗體或抗原結合片段結合SEQ ID NO: 10內的表位。[13B1]
7A. 段落6的抗體或抗原結合片段,其中所述抗體或抗原結合片段還結合SEQ ID NO: 12內的表位。[13B1]
8A. 段落3的抗體或抗原結合片段,其中所述抗體或抗原結合片段還結合SEQ ID NO: 10和/或SEQ ID NO: 12內的表位。[13B1]
9A.  段落3的抗體或抗原結合片段,其中所述抗體或抗原結合片段結合SEQ ID NO: 9內的表位。[1F3、4B6、4D5、1A10]
10A. 段落7的抗體或抗原結合片段,其中所述抗體或抗原結合片段還結合SEQ ID NO: 11、SEQ ID NO: 13和/或SEQ ID NO: 14中的至少一種內的表位。[1F3、4B6、4D5、1A10]
11A.  段落7的抗體或抗原結合片段,其中所述抗體或抗原結合片段還結合SEQ ID NO: 10、SEQ ID NO: 11、SEQ ID NO: 13和/或SEQ ID NO: 14中的至少一種內的表位。[1F3、4B6、4D5、1A10]
12A.  段落1或2的抗體或抗原結合片段,其中所述抗體結合以下中的至少一種內的表位:ECGQPSRSLPSLV (SEQ ID NO: 16);RNAEPGLFPWQ(SEQ ID NO: 17);KWFGSGALLSASWIL(SEQ ID NO: 18);EHVTVYLGLH (SEQ ID NO: 19);PVPLGPHVMP (SEQ ID NO: 20);APHMLGL (SEQ ID NO: 21);SDVLQYVKLP (SEQ ID NO: 22);和/或AFVIFDDLSQRW(SEQ ID NO: 23)。[組II和III]
13A.  段落12的抗體或抗原結合片段,其中所述抗體或抗原結合片段結合SEQ ID NO: 17內的表位。[所有組II和III ab]
14A.  段落13的抗體或抗原結合片段,其中所述抗體或抗原結合片段還結合EHVTVYLGLH (SEQ ID NO: 19)和/或AFVIFDDLSQRW(SEQ ID NO: 23)內的表位。[1G4, 1E7, 2D7 15D9]
15A.  段落14的抗體或抗原結合片段,其中所述抗體或抗原結合片段還結合SEQ ID NO: 23內的表位。[1G4、1E7、2D7、15D9、2F5]
16A. 段落14的抗體或抗原結合片段,其中所述抗體或抗原結合片段還結合SEQ ID NO: 19和/或SEQ ID NO: 23內的表位。[Ig4、1E7、2D7]
17A.  段落14的抗體或抗原結合片段,其中所述抗體或抗原結合片段還結合SEQ ID NO: 18、SEQ ID NO: 20和/或SEQ ID NO: 23內的表位。[15D9、2F5]
18A.  段落14的抗體或抗原結合片段,其中所述抗體或抗原結合片段還結合SEQ ID NO: 18、SEQ ID NO: 20和/或SEQ ID NO: 23中的至少一種內的表位[15D9、2F5]。
19A.  段落14的抗體或抗原結合片段,其中所述抗體或抗原結合片段還結合SEQ ID NO: 16、SEQ ID NO: 21和/或SEQ ID NO: 22中的至少一種內的表位。[1B11]
20A.  段落14的抗體或抗原結合片段,其中所述抗體或抗原結合片段還結合SEQ ID NO: 16、SEQ ID NO: 21和/或SEQ ID NO: 22中的至少一種內的表位[1B11]。
21A.  段落1-20中任一項的抗體或其抗原結合片段,其中所述抗體或抗原結合片段選自人抗體、人源化抗體、嵌合抗體、鼠抗體和上述任一者的抗原結合片段。
22A.  段落1-21中任一項的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段選自單鏈抗體、ScFv、Fab片段、Fab’片段、F(ab’)2片段、缺乏鉸鏈區的單價抗體,和全抗體。
23A.  段落1-22中任一項的抗體或其抗原結合片段,其還包含免疫球蛋白恒定區。
24A.  段落1-23中任一項的抗體或其抗原結合片段,其中所述抗體或抗原結合片段是人源化的。
25A.  段落1-24中任一項的抗體或其抗原結合片段,其中所述抗體以小於500pM的親和力結合人MASP-3的絲胺酸蛋白酶結構域。
26A.  段落1-25中任一項的抗體或其抗原結合片段,其中所述抗體抑制哺乳動物血液中的替代途徑活化。
27A.  組合物,其包含段落1A-26A中任一項的抗體或抗原結合片段和藥學上可接受的賦形劑。 A.  結合SP結構域內的一個或多個表位的組IA高親和力MASP-3抑制性抗體(4D5、4B6、1A10加4D5變體)
1B. 結合MASP-3的分離的抗體或其抗原結合片段,其包含: (a) 重鏈可變區,其包含如SEQ ID NO: 209 (XXDIN,其中位置1的X是S或T,且其中位置2的X是N或D)所示的HC-CDR1;如SEQ ID NO: 210 (WIYPRDXXXKYNXXFXD,其中位置7的X是G或D;位置8的X是S、T或R;位置9的X是I或T;位置13的X是E或D;位置14的X是K或E;且位置16的X是T或K)所示的HC-CDR2;和如SEQ ID NO: 211 (XEDXY,其中位置1的X是L或V,且其中位置4的X是T或S)所示的HC-CDR3;和 (b)輕鏈可變區,其包含如SEQ ID NO: 212 (KSSQSLLXXRTRKNYLX,其中位置8的X是N、I、Q或A;其中位置9的X是S或T;且其中位置17的X是A或S)所示的LC-CDR1;如SEQ ID NO: 144 (WASTRES)所示的LC-CDR2和如SEQ ID NO: 146 (KQSYNLYT)所示的LC-CDR3。
2B. 段落1的分離的抗體或其抗原結合片段,其中根據(a)的重鏈可變區的HC-CDR1包含SEQ ID NO: 56 (TDDIN)。[4D5和變體]
3B. 段落1的分離的抗體或其抗原結合片段,其中根據(a)的重鏈可變區的HC-CDR1包含SEQ ID NO: 62 (SNDIN)。[1F3、4B6和1A10]
4B. 段落1的分離的抗體或其抗原結合片段,其中根據(a)的重鏈可變區的HC-CDR2包含SEQ ID NO: 58 (WIYPRDDRTKYNDKFKD) [4D5和變體]。
5B. 段落1的分離的抗體或其抗原結合片段,其中根據(a)的重鏈可變區的HC-CDR2包含SEQ ID NO: 63 (WIYPRDGSIKYNEKFTD)。[1F3]
6B. 段落1的分離的抗體或其抗原結合片段,其中根據(a)的重鏈可變區的HC-CDR2包含SEQ ID NO: 67 (WIYPRDGTTKYNEEFTD)。[4B6]
7B. 段落1的分離的抗體或其抗原結合片段,其中根據(a)的重鏈可變區的HC-CDR2包含SEQ ID NO: 69 (WIYPRDGTTKYNEKFTD)。[1A10]
8B. 段落1的分離的抗體或其抗原結合片段,其中根據(a)的重鏈可變區的HC-CDR3包含SEQ ID NO: 60 (LEDTY)[4D5和變體]
9B.  段落1的分離的抗體或其抗原結合片段,其中根據(a)的重鏈可變區的HC-CDR3包含SEQ ID NO: 65 (VEDSY)。[1F3、4B6和1A10]
10B. 段落1的分離的抗體或其抗原結合片段,其中根據(b)的輕鏈可變區的LC-CDR1包含SEQ ID NO: 142 (KSSQSLLNSRTRKNYLA);SEQ ID NO: 257 (KSSQSLL QSRTRKNYLA),SEQ ID NO: 258 (KSSQSLL ASRTRKNYLA);或SEQ ID NO: 259 (KSSQSLL NTRTRKNYLA)。[4D5和變體]
11B.  段落10的分離的抗體或其抗原結合片段,其中根據(b)的輕鏈可變區的LC-CDR1包含SEQ ID NO: 258 (KSSQSLL ASRTRKNYLA)。[4D5 NA突變體]
12B.  段落1的分離的抗體或其抗原結合片段,其中根據(b)的輕鏈可變區的LC-CDR1包含SEQ ID NO: 149 (KSSQSLLISRTRKNYLS)。[1F3和4B6]
13B.  段落1的分離的抗體或其抗原結合片段,其中HC-CDR1包含SEQ ID NO: 56,HC-CDR2包含SEQ ID NO: 58,HC-CDR3包含SEQ ID NO: 60,且其中LC-CDR1包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259;其中LC-CDR2包含SEQ ID NO: 144,且其中LC-CDR3包含SEQ ID NO: 146。[4D5的所有6個CDR,以及LC-CDR1中的變體]。
14B. 段落1的分離的抗體或其抗原結合片段,其中HC-CDR1包含SEQ ID NO: 62,HC-CDR2包含SEQ ID NO: 63、SEQ ID NO: 67或SEQ ID NO: 69,HC-CDR3包含SEQ ID NO: 65,且其中LC-CDR1包含SEQ ID NO: 149,LC-CDR2包含SEQ ID NO: 144,且LC-CDR3包含SEQ ID NO: 146。[1F3、4B6和1A10的所有6個CDR]
15B.  段落1-14中任一項的抗體或其抗原結合片段,其中所述抗體或抗原結合片段選自人抗體、人源化抗體、嵌合抗體、鼠抗體和上述任一者的抗原結合片段。
16B.  段落1-15中任一項的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段選自單鏈抗體、ScFv、Fab片段、Fab’片段、F(ab’)2片段、缺乏鉸鏈區的單價抗體,和全抗體。
17B.  段落1-16中任一項的抗體或其抗原結合片段,其還包含免疫球蛋白恒定區。
18B.  段落1-17中任一項的抗體或其抗原結合片段,其中所述抗體或抗原結合片段是人源化的。
19B.  段落1的分離的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 24、SEQ ID NO: 248或SEQ ID NO: 249的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 40、SEQ ID NO: 250或SEQ ID NO: 278的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[4D5親本、人源化和修飾版本]。
20B. 段落1的分離的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 25的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 41的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[1F3]。
21B. 段落1的分離的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 26的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 42的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[4B6]。
22B. 段落1的分離的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 27的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 42的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[1A10]。
23B.  段落1-22中任一項的抗體或其抗原結合片段,其中所述抗體以小於500pM的親和力結合人MASP-3。
24B.  段落1-23中任一項的抗體或其抗原結合片段,其中所述抗體抑制哺乳動物血液中的替代途徑活化。
25B.  組合物,其包含段落1B-24B中任一項的抗體或抗原結合片段和藥學上可接受的賦形劑。 B.  結合SP結構域內的一個或多個表位的組IB高親和力MASP-3抑制性抗體(10D12、35C1和10D12變體)
1C. 結合MASP-3的分離的抗體或其抗原結合片段,其包含: (a) 重鏈可變區,其包含如SEQ ID NO: 213 (SYGXX,其中位置4的X是M或I,且其中位置5的X是S或T)所示的HC-CDR1;如SEQ ID NO: 74所示的HC-CDR2;和如SEQ ID NO: 214 (GGXAXDY,其中位置3的X是E或D,且其中位置5的X是M或L)所示的HC-CDR3;和 (b)輕鏈可變區,其包含如SEQ ID NO: 215 (KSSQSLLDSXXKTYLX,其中位置10的X是D、E或A;其中位置11的X是G或A;且其中位置16的X是N或S)所示的LC-CDR1;如SEQ ID NO: 155所示的LC-CDR2;和如SEQ ID NO: 216  (WQGTHFPXT,其中位置8的X是W或Y)所示的LC-CDR3。
2C. 段落1的分離的抗體或其抗原結合片段,其中根據(a)的重鏈可變區的HC-CDR1包含SEQ ID NO: 72 (SYGMS)。[10D12和變體]
3C. 段落1的分離的抗體或其抗原結合片段,其中根據(a)的重鏈可變區的HC-CDR1包含SEQ ID NO: 79 (SYGIT)。[35C1]
4C. 段落1的分離的抗體或其抗原結合片段,其中根據(a)的重鏈可變區的HC-CDR3包含SEQ ID NO: 76 (GGEAMDY)。[10D12和變體]。
5C. 段落1的分離的抗體或其抗原結合片段,其中根據(a)的重鏈可變區的HC-CDR3包含SEQ ID NO: 82 (GGDALDY)。[35C1]
6C. 段落1的分離的抗體或其抗原結合片段,其中根據(b)的輕鏈可變區的LC-CDR1包含SEQ ID NO: 153 (KSSQSLLDSDGKTYLN);SEQ ID NO: 261 (KSSQSLLDSEGKTYLN),SEQ ID NO: 262 (KSSQSLLDSAGKTYLN)或SEQ ID NO: 263 (KSSQSLLDSDAKTYLN)。[10D12和變體]
7C. 段落6的分離的抗體或其抗原結合片段,其中輕鏈可變區的LC-CDR1包含SEQ ID NO: 263 (KSSQSLLDSDAKTYLN)。[10D12 GA變體]
8C.  段落1的分離的抗體或其抗原結合片段,其中輕鏈可變區的LC-CDR1包含SEQ ID NO: 152。[35C1]
9C. 段落1的分離的抗體或其抗原結合片段,其中根據(b)的輕鏈可變區的LC-CDR3包含SEQ ID NO: 159 (KSSQSLLDSDGKTYLS)。[10D12]
10C. 段落1的分離的抗體或其抗原結合片段,其中根據(b)的輕鏈可變區的LC-CDR3包含SEQ ID NO: 160 (WQGTHFPYT)。[35C1]
11C. 段落1的分離的抗體或其抗原結合片段,其中HC-CDR1包含SEQ ID NO: 72,HC-CDR2包含SEQ ID NO: 74,HC-CDR3包含SEQ ID NO: 76,LC-CDR1包含SEQ ID NO: 153、SEQ ID NO: 261、SEQ ID NO: 262或SEQ ID NO: 263;LC-CDR2包含SEQ ID NO: 155,且LC-CDR3包含SEQ ID NO: 157。[10D12的所有6個CDR,以及LC-CDR1中的變體]。
12C. 段落1的分離的抗體或其抗原結合片段,其中HC-CDR1包含SEQ ID NO: 79,HC-CDR2包含SEQ ID NO: 74,HC-CDR3包含SEQ ID NO: 82,LC-CDR1包含SEQ ID NO: 159,LC-CDR2包含SEQ ID NO: 155,且LC-CDR3包含SEQ ID NO: 160。[35C1的所有6個CDR]
13C.  段落1-12中任一項的抗體或其抗原結合片段,其中所述抗體或抗原結合片段選自人抗體、人源化抗體、嵌合抗體、鼠抗體和上述任一者的抗原結合片段。
14C.  段落1-13中任一項的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段選自單鏈抗體、ScFv、Fab片段、Fab’片段、F(ab’)2片段、缺乏鉸鏈區的單價抗體,和全抗體。
15C.  段落1-14中任一項的抗體或其抗原結合片段,其還包含免疫球蛋白恒定區。
16C.  段落1-15中任一項的抗體或其抗原結合片段,其中所述抗體或抗原結合片段是人源化的。
17C.  段落1的分離的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 28、SEQ ID NO: 251或SEQ ID NO: 252的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 43、SEQ ID NO: 253或SEQ ID NO: 279的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[10D12親本、人源化和變體]。
18C. 段落1的分離的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 29的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 44的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[35C1]。
19C.  段落1-18中任一項的抗體或其抗原結合片段,其中所述抗體以小於500pM的親和力結合人MASP-3。
20C.  段落1-19中任一項的抗體或其抗原結合片段,其中所述抗體抑制哺乳動物血液中的替代途徑活化。
21C.  組合物,其包含段落1C-20C中任一項的抗體或抗原結合片段和藥學上可接受的賦形劑。 C.  結合SP結構域內的一個或多個表位的組IC高親和力MASP-3抑制性抗體(13B1和變體)
1D.  結合MASP-3的分離的抗體或其抗原結合片段,其包含: (a) 重鏈可變區,其包含如SEQ ID NO: 84 (GKWIE)所示的HC-CDR1;如SEQ ID NO: 86 (EILPGTGSTNYNEKFKG)或SEQ ID NO: 275 (EILPGTGSTNYAQKFQG)所示的HC-CDR2;和如SEQ ID NO: 88 (SEDV)所示的HC-CDR3;和 (b)輕鏈可變區,其包含如SEQ ID NO: 142 (KSSQSLL NSRTRKNYLA)、SEQ ID NO: 257 (KSSQSLL QSRTRKNYLA);SEQ ID NO: 258 (KSSQSLL ASRTRKNYLA);或SEQ ID NO: 259 (KSSQSLL NTRTRKNYLA)所示的LC-CDR1,如SEQ ID NO: 144 (WASTRES)所示的LC-CDR2;和如SEQ ID NO: 161 (KQSYNIPT)所示的LC-CDR3。[13B1的所有6個CDR,以及LC-CDR1中的變體]
2D.  段落1的分離的抗體或其抗原結合片段,其中LC-CDR1包含SEQ ID NO: 258。[13B1 LC-CDR1 NA變體]
3D.  段落1-2中任一項的抗體或其抗原結合片段,其中所述抗體或抗原結合片段選自人抗體、人源化抗體、嵌合抗體、鼠抗體和上述任一者的抗原結合片段。
4D.  段落1-3中任一項的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段選自單鏈抗體、ScFv、Fab片段、Fab’片段、F(ab’)2片段、缺乏鉸鏈區的單價抗體,和全抗體。
5D.  段落1-4中任一項的抗體或其抗原結合片段,其還包含免疫球蛋白恒定區。
6D.  段落1-5中任一項的抗體或其抗原結合片段,其中所述抗體或抗原結合片段是人源化的。
7D.  段落1的分離的抗體或抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 30、SEQ ID NO: 254或SEQ ID NO: 255的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 45、SEQ ID NO: 256或SEQ ID NO: 280的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[13B1親本、人源化和變體]。
8D.  段落1-7中任一項的抗體或其抗原結合片段,其中所述抗體以小於500pM的親和力結合人MASP-3。
9D.  段落1-8中任一項的抗體或其抗原結合片段,其中所述抗體抑制哺乳動物血液中的替代途徑活化。
10D.  組合物,其包含段落1D-9D中任一項的抗體或抗原結合片段和藥學上可接受的賦形劑。 D.  結合SP結構域內的一個或多個表位的組II高親和力MASP-3抑制性抗體(1G4)
1E. 結合MASP-3的分離的抗體或其抗原結合片段,其包含: (a) 重鏈可變區,其包含如SEQ ID NO: 91 (GYWIE)所示的HC-CDR1;如SEQ ID NO: 93 (EMLPGSGSTHYNEKFKG)所示的HC-CDR2,和如SEQ ID NO: 95 (SIDY)所示的HC-CDR3;和 (b)輕鏈可變區,其包含如SEQ ID NO: 163 (RSSQSLVQSNGNTYLH)所示的LC-CDR1,如SEQ ID NO: 165 (KVSNRFS)所示的LC-CDR2和如SEQ ID NO: 167 (SQSTHVPPT)所示的LC-CDR3。
2E.  段落1的抗體或其抗原結合片段,其中所述抗體或抗原結合片段選自人抗體、人源化抗體、嵌合抗體、鼠抗體和上述任一者的抗原結合片段。
3E.  段落1-2中任一項的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段選自單鏈抗體、ScFv、Fab片段、Fab’片段、F(ab’)2片段、缺乏鉸鏈區的單價抗體,和全抗體。
4E.  段落1-3中任一項的抗體或其抗原結合片段,其還包含免疫球蛋白恒定區。
5E.  段落1-4中任一項的抗體或其抗原結合片段,其中所述抗體或抗原結合片段是人源化的。
6E. 段落1的分離的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 31的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 46的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[1G4]。
7E.  段落1-6中任一項的抗體或其抗原結合片段,其中所述抗體以小於500pM的親和力結合人MASP-3。
8E.  段落1-7中任一項的抗體或其抗原結合片段,其中所述抗體抑制哺乳動物血液中的替代途徑活化。
9E.  組合物,其包含段落1E-8E中任一項的抗體或抗原結合片段和藥學上可接受的賦形劑。 F. 結合SP結構域內的一個或多個表位的組III高親和力MASP-3抑制性抗體(1E7、2D7、15D9、2F5、1B11、2F2、11B6)
1F. 結合MASP-3的分離的抗體或其抗原結合片段,其包含: (a) 重鏈可變區,其包含如SEQ ID NO: 109 (RVHFAIRDTNYWMQ)所示的HC-CDR1;如SEQ ID NO: 110 (AIYPGNGDTSYNQKFKG)所示的HC-CDR2;如SEQ ID NO: 112 (GSHYFDY)所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 182 (RASQSIGTSIH)所示的LC-CDR1,如SEQ ID NO: 184 (YASESIS)所示的LC-CDR2和如SEQ ID NO: 186 (QQSNSWPYT)所示的LC-CDR3[1E7];或 (b)重鏈可變區,其包含如SEQ ID NO: 125 (DYYMN)所示的HC-CDR1,如SEQ ID NO: 127 (DVNPNNDGTTYNQKFKG)所示的HC-CDR2;如SEQ ID NO: 129 (CPFYYLGKGTHFDY)所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 196 (RASQDISNFLN)所示的LC-CDR1,如SEQ ID NO: 198 (YTSRLHS)所示的LC-CDR2和如SEQ ID NO: 200 (QQGFTLPWT)所示的LC-CDR3 [2D7];或 (c) 重鏈可變區,其包含如SEQ ID NO: 132所示的HC-CDR1,如SEQ ID NO: 133所示的HC-CDR2,如SEQ ID NO: 135所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 203所示的LC-CDR1,如SEQ ID NO: 165所示的LC-CDR2,和如SEQ ID NO: 204所示的LC-CDR3 [49C11];或 (d)重鏈可變區,其包含如SEQ ID NO: 137所示的HC-CDR1,如SEQ ID NO: 138所示的HC-CDR2,如SEQ ID NO: 140所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 206所示的LC-CDR1,如SEQ ID NO: 207所示的LC-CDR2,和如SEQ ID NO: 208所示的LC-CDR3 [15D9];或 (e) 重鏈可變區,其包含如SEQ ID NO: 98所示的HC-CDR1,如SEQ ID NO: 99所示的HC-CDR2,如SEQ ID NO: 101所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 169所示的LC-CDR1,如SEQ ID NO: 171所示的LC-CDR2,和如SEQ ID NO: 173所示的LC-CDR3 [2F5];或 (f) 重鏈可變區,其包含如SEQ ID NO: 103所示的HC-CDR1,如SEQ ID NO: 105所示的HC-CDR2,如SEQ ID NO: 107所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 176所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 193所示的LC-CDR3 [1B11];或 (g)重鏈可變區,其包含如SEQ ID NO: 114所示的HC-CDR1,如SEQ ID NO: 116所示的HC-CDR2,如SEQ ID NO: 118所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 188所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 190所示的LC-CDR3 [2F2];或 (h)重鏈可變區,其包含如SEQ ID NO: 114所示的HC-CDR1,如SEQ ID NO: 121所示的HC-CDR2,如SEQ ID NO: 123所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 191所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 193所示的LC-CDR3。[11B6]
2F.  段落1(a)-(g)的抗體或其抗原結合片段,其中所述抗體或抗原結合片段選自人抗體、人源化抗體、嵌合抗體、鼠抗體和上述任一者的抗原結合片段。
3F.  段落1-2中任一項的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段選自單鏈抗體、ScFv、Fab片段、Fab’片段、F(ab’)2片段、缺乏鉸鏈區的單價抗體,和全抗體。
4F.  段落1-3中任一項的抗體或其抗原結合片段,其還包含免疫球蛋白恒定區。
5F.  段落1-4中任一項的抗體或其抗原結合片段,其中所述抗體或抗原結合片段是人源化的。
6F. 段落1的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 32的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 47的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[1E7]。
7F. 段落1的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 33的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 48的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[2D7]。
8F. 段落1的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 34的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 49的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[49C11]。
9F. 段落1的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 35的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 50的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[15D9]
10F. 段落1的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 36的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 51的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[2F5]。
11F. 段落1的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 37的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 52的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[1B11]。
12F. 段落1的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 38的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 53的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[2F2]。
13F. 段落1的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 39的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 54的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈[11B6]。
14F.  段落1-13中任一項的抗體或其抗原結合片段,其中所述抗體以小於500pM的親和力結合人MASP-3。
15F.  段落1-14中任一項的抗體或其抗原結合片段,其中所述抗體抑制哺乳動物血液中的替代途徑活化。
16F.  組合物,其包含段落1F-15F中任一項的抗體或抗原結合片段和藥學上可接受的賦形劑。 E.  MASP-3抑制性抗體用於治療AP疾病的用途
1.抑制哺乳動物中的替代途徑補體活化的方法,所述方法包括向有此需要的哺乳動物物件施用足以抑制哺乳動物中的替代途徑補體途徑活化的量的包含高親和力MASP-3抑制性抗體或其抗原結合片段的組合物。
2. 如請求項1的方法,其中所述抗體或其抗原結合片段以小於500pM的親和力結合MASP-3。
3. 段落1的方法,其中作為施用包含抗體或抗原結合片段的組合物的結果,在哺乳動物物件中存在以下中的一種或多種: (a) 因子D成熟的抑制; (b)當向對象以約1:1至約2.5:1 (MASP-3靶標與mAb)的摩爾比施用時替代途徑的抑制; (c) 經典途徑不被抑制; (d)溶血和/或調理作用的抑制; (e) 溶血的減少或C3切割和C3b表面沉積的減少; (f) 在活化表面上的因子B和Bb沉積的減少; (g)相對於前因子D,降低活性因子D的靜息水準(在循環中,並且沒有實驗性添加活化表面); (h)回應於活化表面降低相對於前因子D的活性因子D的水準;和/或 (i)  流體相Ba、Bb、C3b或C3a的靜息和表面誘導水準的產生的減少。
4. 段落1的方法,其中所述抗體以約1:1至約2.5:1 (MASP-3靶標與mAb)的摩爾比抑制替代途徑。
5. 段落1-3中任一項的方法,其中根據如請求項27A、25B、21C、10D、9E或16F中任一項表徵所述高親和力MASP-3抗體。
6. 段落1-4中任一項的方法,其中所述抗體或其抗原結合片段選擇性抑制替代途徑,而不影響經典途徑活化。
7. 段落1-6中任一項的方法,其中所述哺乳動物物件患有或有風險發展替代途徑疾病或病症,所述疾病或病症選自陣發性夜間血紅蛋白尿(PNH)、年齡相關性黃斑變性(AMD,包括濕性和乾性AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病(包括溶血性尿毒癥徵候群(HUS)、非典型溶血性尿毒癥徵候群(aHUS)、血栓性血小板減少性紫癜(TTP)或移植相關的TMA)、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎、貝切特氏病、多發性硬化症、格林巴厘徵候群、阿茲海默氏病、肌萎縮性側索硬化症(ALS)、狼瘡性腎炎、系統性紅斑狼瘡(SLE)、糖尿病性視網膜病變、葡萄膜炎、慢性阻塞性肺病(COPD)、C3腎小球病、移植排斥反應、移植物抗宿主病(GVHD)、血液透析、敗血症、系統性炎性反應徵候群(SIRS)、急性呼吸窘迫徵候群(ARDS)、ANCA血管炎、抗磷脂徵候群、動脈粥樣硬化、IgA腎病和重症肌無力。
儘管已經說明和描述了本發明的優選實施方案,但是應當理解,在不脫離本發明的精神和範圍的情況下,可以進行各種改變。
通過參考下面的發明詳述並結合附圖,將更容易理解同時更好地理解本發明的前述方面以及許多附帶的優勢,所述附圖中: 圖1說明對凝集素途徑和替代途徑的新的理解; 圖2是改編自Schwaeble等人, Immunobiol205:455-466 (2002)的示意圖,由Yongqing等人, BBA1824:253 (2012)修改,說明MASP-1、MASP-3和MAp44蛋白結構域以及編碼它們的外顯子; 圖3描繪人MASP-3胺基酸序列(SEQ ID NO: 2),其中前導序列以底線顯示; 圖4顯示來自多種物種的全長MASP-3蛋白的比對; 圖5顯示來自多種物種的MASP-3蛋白的SP結構域的比對; 圖6是卡普蘭-邁耶曲線,其圖示說明在施用2.6 x 107 cfu的感染劑量的腦膜炎奈瑟氏菌( N. meningitidis)血清組A Z2491後的MASP-2 KO和WT小鼠的百分比存活率,表明MASP-2缺陷型小鼠受到保護免於腦膜炎奈瑟氏菌誘導的死亡,如實施例1中所述; 圖7是卡普蘭-邁耶曲線,其圖示說明在施用6 x 106 cfu的感染劑量的腦膜炎奈瑟氏菌血清組B菌株MC58後的MASP-2 KO和WT小鼠的百分比存活率,表明MASP-2缺陷型小鼠受到保護免於腦膜炎奈瑟氏菌誘導的死亡,如實施例1中所述; 圖8圖示說明在用6x106 cfu腦膜炎奈瑟氏菌血清組B菌株MC58 i.p.感染後的不同時間點,從MASP-2 KO和WT小鼠中回收的每毫升血中的腦膜炎奈瑟氏菌血清組B菌株MC58的log cfu/mL (對於這兩組小鼠,在不同的時間點,n=3),表明儘管MASP-2 KO小鼠用與用於WT小鼠的相同的劑量的腦膜炎奈瑟氏菌血清組B菌株MC58感染,但與WT相比,MASP-2 KO小鼠具有增高的菌血症清除率,如實施例1中所述; 圖9圖示說明在用6x106 cfu腦膜炎奈瑟氏菌血清組B菌株MC58感染後的3、6、12和24小時的MASP-2 KO和WT小鼠的平均疾病評分,表明與WT小鼠相比,MASP-2-缺陷型小鼠在感染後6小時、12小時和24小時顯示出低得多的疾病評分,如實施例1中所述; 圖10是卡普蘭-邁耶曲線,其圖示說明在施用4x106 cfu的感染劑量的腦膜炎奈瑟氏菌血清組B菌株MC58後,接著在感染後3小時施用抑制性MASP-2抗體(1 mg/kg)或對照同種型抗體的小鼠百分比存活率,表明MASP-2抗體有效治療和改善感染了腦膜炎奈瑟氏菌的對象的存活率,如實施例2中所述; 圖11圖示說明在與腦膜炎奈瑟氏菌血清組B菌株MC58孵育後的不同時間點採集的如表6所示的人血清樣品中的在不同時間點回收的腦膜炎奈瑟氏菌血清組B菌株MC58的活菌計數的log cfu/mL,如實施例3中所述; 圖12圖示說明在表8所示的人血清樣品中,在不同時間點回收的腦膜炎奈瑟氏菌血清組B-MC58的活菌計數的log cfu/mL,顯示在人20% (v/v)血清中的腦膜炎奈瑟氏菌的補體-依賴性殺傷是MASP-3和MBL-依賴性的,如實施例3中所述; 圖13圖示說明在表10所示的小鼠血清樣品中的在不同時間點回收的腦膜炎奈瑟氏菌血清組B-MC58的活菌計數的log cfu/mL,顯示與WT小鼠血清相比,MASP-2 -/- 敲除(knockout)小鼠(稱為“MASP-2 -/-“)血清對於腦膜炎奈瑟氏菌具有更高水準的殺菌活性,而相比之下,MASP-1/3 -/-小鼠血清沒有任何殺菌活性,如實施例3中所述; 圖14圖示說明在凝集素途徑-特異性條件下(1%血漿),在WT、C4-/-、MASP-1/3-/-、因子B-/-和MASP-2-/-小鼠的血清中的C3活化動力學,如實施例4中所述; 圖15圖示說明在得自MASP-3-缺陷型、C4-缺陷型和MBL-缺陷型人類物件的血清樣品中,在“傳統的”替代途徑-特異性(AP-特異性)條件(即BBS/EGTA/Mg ++無Ca ++)下,作為血清濃度的函數的,在酵母聚糖-包被的微量滴定板上的替代途徑-驅動的(AP-驅動的) C3b沉積水準,如實施例4中所述; 圖16圖示說明在得自MASP-3-缺陷型、C4-缺陷型和MBL-缺陷型人類物件的10%人血清樣品中,在“傳統的”AP-特異性條件(即BBS/EGTA/Mg ++無Ca ++)下,作為時間的函數的,在酵母聚糖-包被的微量滴定板上的AP-驅動的C3b沉積水準,如實施例4中所述; 圖17A圖示說明在得自WT、MASP-2-缺陷型和MASP-1/3-缺陷型小鼠的血清樣品中,在“傳統的”AP-特異性條件(即BBS/EGTA/Mg ++無Ca ++)下或在允許凝集素途徑和替代途徑(AP)兩者起作用的生理條件(BBS/Mg ++/Ca ++)下,作為血清濃度的函數的,在甘露聚糖-包被的微量滴定板上的C3b沉積水準,如實施例4中所述; 圖17B圖示說明在得自WT、MASP-2-缺陷型和MASP-1/3-缺陷型小鼠的血清樣品中,在傳統的AP-特異性條件(即BBS/EGTA/Mg ++無Ca ++)或在允許凝集素途徑和替代途徑兩者起作用的生理條件(BBS/Mg ++/Ca ++)下,作為血清濃度的函數的,在酵母聚糖-包被的微量滴定板上的C3b沉積水準,如實施例4中所述; 圖17C圖示說明在得自WT、MASP-2-缺陷型和MASP-1/3-缺陷型小鼠的血清樣品中,在傳統的AP-特異性條件(即BBS/EGTA/Mg ++無Ca ++)下或在允許凝集素途徑和替代途徑兩者起作用的生理條件(BBS/Mg ++/Ca ++)下,作為血清濃度的函數的,在肺炎鏈球菌( S. pneumoniae) D39-包被的微量滴定板上的C3b沉積水準,如實施例4中所述; 圖18A圖示說明在傳統的AP-特異性條件(即BBS/EGTA/Mg ++無Ca ++)或在允許凝集素途徑和替代途徑兩者起作用的生理條件(BBS/Mg ++/Ca ++)下,在甘露聚糖-包被的微量滴定板上進行的在高度稀釋的血清中的C3b沉積測定結果,使用血清濃度範圍為0%至1.25%,如實施例4中所述; 圖18B圖示說明在傳統的AP-特異性條件(即BBS/EGTA/Mg ++無Ca ++)或在允許凝集素途徑和替代途徑兩者起作用的生理條件(BBS/Mg ++/Ca ++)下,在酵母聚糖-包被的微量滴定板上進行的C3b沉積測定結果,使用血清濃度範圍為0%至1.25%,如實施例4中所述; 圖18C圖示說明在傳統的AP-特異性條件(即BBS/EGTA/Mg ++無Ca ++)或在允許凝集素途徑和替代途徑兩者起作用的生理條件(BBS/Mg ++/Ca ++)下,在肺炎鏈球菌D39-包被的微量滴定板上進行的C3b沉積測定結果,使用血清濃度範圍為0%至1.25%,如實施例4中所述; 圖19圖示說明在來自MASP-3-/-、熱滅活的正常人血清(HI NHS)、MBL-/-、NHS + MASP-2單株抗體和NHS對照的血清中,一系列血清稀釋度的人血清在生理條件下(即在Ca ++存在時)使甘露聚糖-包被的鼠紅細胞溶血的水準(如通過裂解的小鼠紅細胞(Crry/C3-/-)至上清液中的血紅蛋白釋放來測量,所述上清液根據光度測定法測量),如實施例5中所述; 圖20圖示說明在來自MASP-3-/-、熱滅活的(HI) NHS、MBL-/-、NHS + MASP-2單株抗體和NHS對照的血清中,一系列血清濃度的人血清在生理條件下(即在Ca ++存在時)使甘露聚糖-包被的鼠紅細胞溶血的水準(如通過裂解的小鼠紅細胞(Crry/C3-/-)至上清液中的血紅蛋白釋放來測量,所述上清液根據光度測定法測量),如實施例5中所述; 圖21圖示說明在來自3MC (MASP-3-/-)、熱滅活的(HI) NHS、MBL-/-、NHS + MASP-2單株抗體和NHS對照的血清中,一系列血清濃度的人血清在生理條件下(即在Ca ++存在時)使非-包被的鼠紅細胞溶血的水準(如通過裂解的WT小鼠紅細胞至上清液中的血紅蛋白釋放來測量,所述上清液根據光度測定法測量),如實施例5中所述; 圖22圖示說明在來自熱滅活的(HI) NHS、MBL-/-、NHS + MASP-2單株抗體和NHS對照的血清中,一系列血清濃度的人血清在生理條件下(即在Ca ++存在時)使非-包被的鼠紅細胞溶血(如通過裂解的小鼠紅細胞(CD55/59-/-)至上清液中的血紅蛋白釋放來測量,所述上清液根據光度測定法測量),如實施例5中所述; 圖23圖示說明一系列血清濃度的MASP-1/3-/-小鼠血清和WT對照小鼠血清在生理條件下(即在Ca ++存在時)使甘露聚糖-包被的兔紅細胞溶血(如通過裂解的兔紅細胞至上清液中的血紅蛋白釋放來測量,所述上清液根據光度測定法測量),如實施例6中所述; 圖24A是對於殖株M3J5,MASP-3抗原/抗體結合的FACS柱狀圖,如實施例7中所述; 圖24B是對於殖株M3M1,MASP-3抗原/抗體結合的FACS柱狀圖,如實施例7中所述; 圖25圖示說明對於MASP-3抗原,殖株M3J5 (殖株5)的飽和結合曲線,如實施例7中所述; 圖26A是M3J5、M3M1、D14和1E10的VH區與雞DT40 VH序列的胺基酸序列的比對,其中點表示與DT40序列的胺基酸同一性,且橫杠表示引入空位以使比對最大化,如實施例7中所述; 圖26B是M3J5、M3M1、D14和1E10的VL區與雞DT40 VL序列的胺基酸序列的比對,其中點表示與DT40序列的胺基酸同一性,且橫杠表示引入空位以使比對最大化,如實施例7中所述; 圖27是柱狀圖,顯示與測定試劑盒中提供的陽性血清以及同種型對照抗體相比,單株抗體(mAb) 1E10在Wieslab補體系統篩選MBL途徑中的抑制活性,表明mAb1E10部分抑制LEA-2-依賴性活化,(通過抑制MASP-2的MASP-1-依賴性活化),而同種型對照抗體卻非如此,如實施例7中所述; 圖28A提供在熱滅活的金黃色葡萄球菌( Staphylococcus aureus)上的C3b沉積的流式細胞術分析結果,表明在正常人血清中在EDTA存在時(其已知滅活凝集素和替代途徑),未觀察到C3b沉積(小圖1),在用Mg ++/EGTA處理的正常人血清中,觀察到替代途徑-驅動的C3b沉積(小圖2),和如小圖3、4和5所示,分別在因子B-耗盡的、因子D-耗盡的和備解素(因子P)-耗盡的血清中,未觀察到替代途徑驅動的C3b沉積,如實施例8中所述; 圖28B提供在熱滅活的金黃色葡萄球菌上的C3b沉積的流式細胞術分析結果,表明正如在EDTA-處理的正常血清中(小圖1),在3MC血清中在Mg ++/EGTA存在時不存在AP-驅動的C3b沉積(小圖3),而小圖4和5顯示活性全長rMASP-3 (小圖4)和活性rMASP-3 (CCP1-CCP2-SP) (小圖5)都使在3MC血清中的AP-驅動的C3b沉積恢復到用Mg ++/EGTA處理的正常血清中觀察到的水準(小圖2),而無活性rMASP-3 (S679A) (小圖6)或野生型rMASP-1 (小圖7)都不能恢復3MC血清中的AP-驅動的C3b沉積,如實施例8中所述; 圖29顯示在3MC血清中,在rMASP-3存在或不存在時,測定回應於金黃色葡萄球菌的因子B切割的Western印跡分析結果,表明在相對於在Mg ++/EGTA存在時的正常人血清而言(如泳道2 (陽性對照)所示),EDTA存在時的正常人血清(陰性對照,泳道1)顯示出非常少的因子B切割,如泳道3進一步所示,3MC血清在Mg ++/EGTA存在時顯示出非常少的因子B切割。然而,如泳道4所示,通過將全長、重組MASP-3蛋白加入3MC血清中並預孵育,恢復了因子B切割,如實施例8中所述; 圖30顯示蛋白凝膠的考馬斯染色,其中分析了因子B切割,表明因子B切割在C3、MASP-3和前因子D (pro-factor D)存在時是最佳的(泳道1);且如泳道4和5所示,單用MASP-3或單用前因子D都能介導因子B切割,只要C3存在,如實施例8中所述; 圖31圖示說明作為mAb濃度的函數作圖的,在3MC血清中在rMASP-3存在時,得自mAbD14 (其結合MASP-3)、mAb1A5 (陰性對照抗體)和同種型對照抗體的金黃色葡萄球菌的C3b染色平均螢光強度(MFI),表明mAbD14以濃度-依賴性方式抑制MASP-3-依賴性C3b沉積,如實施例8中所述; 圖32顯示了前因子D底物切割的Western印跡分析,其中與單用前因子D (泳道1)或無活性全長重組MASP-3 (S679A;泳道3)或MASP-1 (S646A;泳道4)相比,全長野生型重組MASP-3 (泳道2)和MASP-1 (泳道5)完全或部分地切割前因子D,產生成熟因子D,如實施例9中所述; 圖33是Western印跡,其顯示與含有僅MASP-3和前因子D的對照反應(無mAb,泳道1)以及含有得自DTLacO文庫的mAb (其與MASP-1結合,而不與MASP-3結合)的對照反應(泳道4)相比,結合MASP-3的mAbs D14 (泳道2)和M3M1 (泳道3)對MASP-3-依賴性前因子D切割的抑制活性,如實施例9中所述; 圖34圖示說明在得自MASP-3-缺陷型(3MC)、C4-缺陷型和MBL-缺陷型對象的血清樣品中,作為血清濃度的函數的,在酵母聚糖-包被的微量滴定板上的AP-驅動的C3b沉積水準,表明來自患者2和患者3的MASP-3-缺乏的血清在高血清濃度(25%、12.5%、6.25%血清濃度)時具有殘留的AP活性,但顯著更高AP 50(即需要8.2%和12.3%血清以達到50%最大C3沉積),如實施例10中所述; 圖35A圖示說明在得自MASP-3缺陷型、C4-缺陷型和MBL-缺陷型人類物件的10%人血清樣品中,在“傳統的”AP-特異性條件(即BBS/EGTA/Mg ++無Ca ++)下,作為時間的函數的,在酵母聚糖-包被的微量滴定板上的AP-驅動的C3b沉積水準,如實施例10中所述; 圖35B顯示對於獲自3MC患者#2 (MASP-3(-/-)、MASP-1(+/+))、3MC患者#3 (MASP-3(-/-)、MASP-1(-/-))的血漿和正常供體(W)的血清的Western印跡,其中用人因子D特異性抗體檢測人前因子D (25040道爾頓)和/或成熟因子D (24405道爾頓),如在實施例10中所述; 圖35C圖示說明對於獲自3MC患者#2、3MC患者#3的血漿和正常人血清,Weislab經典、凝集素和替代途徑測定的結果,如實施例10中所述; 圖36圖示說明在來自2個正常人類物件(NHS)和來自2個3MC患者(患者2和患者3)的血清中,在Ca ++不存在時測定的一系列血清濃度下,甘露聚糖-包被的兔紅細胞的溶血百分率(如通過裂解的兔紅細胞至上清液中的血紅蛋白釋放來測量,所述上清液根據光度測定法測量),表明與正常人血清相比,MASP-3缺陷降低了補體-介導的甘露聚糖-包被的紅細胞裂解的百分率,如實施例10中所述; 圖37圖示說明作為添加到得自人3MC患者2 (MASP-3 -/-)的血清樣品中的重組全長MASP-3蛋白的濃度的函數的,在酵母聚糖-包被的微量滴定板上的AP-驅動的C3b沉積水準,表明與陰性對照無活性重組MASP-3 (MASP-3A;S679A)相比,活性重組MASP-3蛋白以濃度-依賴性方式重構在酵母聚糖-包被的板上的AP-驅動的C3b沉積,如實施例10中所述; 圖38圖示說明在Ca ++不存在時測定的以下血清中,在一系列血清濃度下,甘露聚糖-包被的兔紅細胞的溶血百分率(如通過裂解的兔紅細胞至上清液中的血紅蛋白釋放來測量,所述上清液根據光度測定法測量):(1)正常人血清(NHS);(2) 3MC患者血清;(3) 3MC患者血清加活性全長重組MASP-3 (20 µg/ml);和(4)熱滅活的人血清(HIS);表明與在無重組MASP-3的3MC血清中的溶血百分率相比,兔紅細胞的裂解百分率在含有rMASP-3的3MC血清中顯著增加(p=0.0006),如實施例10中所述; 圖39圖示說明在含有濃度範圍為0至110 µg/ml的活性重組MASP-3 (在BBS/Mg ++/EGTA中)的來自3MC患者2和來自3MC患者3的7%人血清中兔紅細胞裂解的百分率,表明兔紅細胞裂解百分率以濃度-依賴性方式隨重組MASP-3量而增加,如實施例10中所述; 圖40圖示說明對於來自正常人類物件(NHS)、來自2個3MC患者(患者2和患者3)、來自患者3的父母和來自MBL-缺陷型對象的血清,作為在BBS緩衝液中稀釋的人血清濃度的函數的,在甘露聚糖-包被的ELISA板上的LEA-2-驅動的C3b沉積水準,如實施例10中所述; 圖41圖示說明用人MASP-3進行的結合實驗的代表性實例,其中M3-1 Fab (也稱為13B1)顯示與人蛋白的約0.117nM的表觀結合親和力(EC 50),如實施例11中所述; 圖42圖示說明用小鼠MASP-3進行的結合實驗的代表性實例,其中M3-1 Fab (也稱為13B1)顯示與小鼠蛋白的約0.214nM的表觀結合親和力(EC 50),如實施例11中所述; 圖43圖示說明在CFD耗盡的人血清中存在不同濃度的mAb M3-1 (也稱為13B1)的情況下,在酵母聚糖顆粒上的補體因子Bb沉積的水準(通過以MFI單位測量的流式細胞檢測所測定),如實施例11中所述; 圖44圖示說明在野生型小鼠中的mAb M3-1 (13B1) (10 mg/kg i.v.)的單次劑量後各個時間點在酵母聚糖顆粒上的C3沉積的水準,如實施例11中所述; 圖45圖示說明在用mAb M3-1 (13B1)(在第-11天、第04天、第-1天和第+6天,10 mg/kg)治療的野生型受體小鼠、mAb BB5.1治療或媒介物治療的小鼠中,經14天時段的供體RBC (WT或Crry-)的存活百分比,如實施例12中所述; 圖46圖示說明在用單劑量的mAb M3-1 (13B1)(在第-6天,20 mg/kg)治療的野生型受體小鼠或媒介物治療的小鼠中,經16天時段的供體RBC (WT或Crry-)的存活百分比,如實施例12中所述; 圖47圖示說明在膠原-抗體誘導的關節炎模型中,經14天時間過程的用mAb M3-1 (13B1) (5 mg/kg或20 mg/kg)或媒介物治療的小鼠的臨床評分,如實施例13中所述; 圖48圖示說明在膠原-抗體誘導的關節炎模型中,經14天時間過程的用mAb M3-1 (13B1) (5 mg/kg或20 mg/kg)或媒介物治療的小鼠的關節炎的百分比發生率,如實施例13中所述; 圖49A顯示高親和力(≤500pM)抗人MASP-3抑制性mAb的VH區的胺基酸序列,如實施例15中所述; 圖49B顯示高親和力(≤500pM)抗人MASP-3抑制性mAb的VL區的胺基酸序列,如實施例15中所述; 圖50A是高親和力抗人MASP-3抑制性mAb的VH區的樹狀圖,如實施例15中所述; 圖50B是高親和力抗人MASP-3抑制性mAb的VL區的樹狀圖,如實施例15中所述; 圖51A圖示說明結合實驗的結果,其中代表性純化的重組抗人MASP-3抑制性抗體對人MASP-3蛋白顯示小於500pM (例如,240pM至23pM)的表觀結合親合力,如實施例16中所述; 圖51B圖示說明結合實驗的結果,其中代表性純化的重組抗人MASP-3抑制性抗體對人MASP-3蛋白顯示小於500pM (例如,91pM至58pM)的表觀結合親合力,如實施例16中所述; 圖51C圖示說明結合實驗的結果,其中顯示代表性純化的重組高親和力抗人MASP-3抑制性抗體顯示對於與MASP-3的結合是選擇性的並且不結合人MASP-1,如實施例16中所述; 圖51D圖示說明結合實驗的結果,其中顯示代表性純化的重組高親和力抗人MASP-3抑制性抗體對於與MASP-3的結合是選擇性的並且不結合人MASP-2,如實施例16中所述; 圖52圖示說明結合實驗的結果,其中代表性純化的重組抗人MASP-3抑制性抗體還顯示與小鼠MASP-3蛋白的高結合親合力,如實施例16中所述; 圖53圖示說明測量代表性高親和力MASP-3抗體抑制螢光三肽切割的能力的實驗結果,如實施例16中所述; 圖54顯示Western印跡,其表明代表性高親和力MASP-3抑制性mAb在體外測定中阻斷重組MASP-3介導的前因子D切割為因子D的能力,如實施例16中所述; 圖55A圖示說明在因子D耗盡的人血清中存在不同濃度的高親和力MASP-3 mAb 1F3、1G4、2D7和4B6的情況下,在酵母聚糖顆粒上的補體因子Bb沉積的水準(通過以MFI單位測量的流式細胞檢測所測定),如實施例16中所述; 圖55B圖示說明在因子D耗盡的人血清中存在不同濃度的高親和力MASP-3 mAb 4D5、10D12和13B1的情況下,在酵母聚糖顆粒上的補體因子Bb沉積的水準(通過以MFI單位測量的流式細胞檢測所測定),如實施例16中所述; 圖56A圖示說明在不同濃度的高親和力MASP-3 mAb 1A10、1F3、4B6、4D5和2F2存在的情況下,兔血紅細胞裂解的抑制水準,如實施例16中所述; 圖56B圖示說明在不同濃度的高親和力MASP-3 mAb 1B11、1E7、1G4、2D7和2F5存在的情況下,兔血紅細胞裂解的抑制水準,如實施例16中所述; 圖57顯示Western印跡,其分析在活性重組MASP-3 (rMASP-3)、無活性rMASP-3和活性rMASP-3加高親和力MASP-3 mAb 4D5存在的情況下,3MC患者血清(患者B)中的前因子D和因子D的水準,如實施例16中所述; 圖58圖示說明在野生型小鼠中的高親和力MASP-3 mAb M3-1 (13B1, 10 mg/kg)或10D12 (10 mg/kg)的單次劑量後各個時間點在酵母聚糖顆粒上的C3/C3b/iC3b沉積的水準,如實施例17中所述; 圖59顯示Western印跡,其分析用高親和力MASP-3 mAb 10D12 (10mg/kg)治療的小鼠或媒介物對照治療的小鼠中的因子B的因子Ba片段的狀態,如實施例17中所述; 圖60圖示說明來自用高親和力MASP-3 mAb 10D12 (10 mg/kg或25 mg/kg)治療的小鼠的20%血清的溶血的抑制水準,如實施例17中所述; 圖61A圖示說明競爭結合分析以鑒定阻斷高親和力MASP-3 mAb 4D5和人MASP-3之間的相互作用的高親和力MASP-3 mAb的結果,如實施例18中所述; 圖61B圖示說明競爭結合分析以鑒定阻斷高親和力MASP-3 mAb 10D12和人MASP-3之間的相互作用的高親和力MASP-3 mAb的結果,如實施例18中所述; 圖61C圖示說明競爭結合分析以鑒定阻斷高親和力MASP-3 mAb 13B1和人MASP-3之間的相互作用的高親和力MASP-3 mAb的結果,如實施例18中所述; 圖61D圖示說明競爭結合分析以鑒定阻斷高親和力MASP-3 mAb 1F3和人MASP-3之間的相互作用的高親和力MASP-3 mAb的結果,如實施例18中所述; 圖61E圖示說明競爭結合分析以鑒定阻斷高親和力MASP-3 mAb 1G4和人MASP-3之間的相互作用的高親和力MASP-3 mAb的結果,如實施例18中所述; 圖62提供顯示如通過Pepscan分析確定的高親和力MASP-3 mAb在人MASP-3上的接觸區域的示意圖,如實施例18中所述; 圖63A顯示人MASP-3和高親和力MASP-3 mAb 1F3、4D5和1A10之間的接觸區域,包括MASP-3的胺基酸殘基498-509 (SEQ ID NO: 9)、胺基酸殘基544-558 (SEQ ID NO: 11)、胺基酸殘基639-649 (SEQ ID NO: 13)和胺基酸殘基704-713 (SEQ ID NO: 14),如實施例18中所述; 圖63B顯示人MASP-3和高親和力MASP-3 mAb 10D12之間的接觸區域,包括MASP-3的胺基酸殘基498至509 (SEQ ID NO: 9),如實施例18中所述; 圖64顯示人MASP-3和高親和力MASP-3 mAb 13B1之間的接觸區域,包括MASP-3的胺基酸殘基494至508 (SEQ ID NO: 10)和胺基酸殘基626至638 (SEQ ID NO: 12),如實施例18中所述; 圖65顯示人MASP-3和高親和力MASP-3 mAb 1B11之間的接觸區域,包括MASP-3的胺基酸殘基435-447 (SEQ ID NO: 16)、胺基酸殘基454-464 (SEQ ID NO: 17)、胺基酸殘基583-589 (SEQ ID NO: 21)和胺基酸殘基614-623 (SEQ ID NO: 22),如實施例18中所述; 圖66顯示人MASP-3和高親和力MASP-3 mAb 1E7、1G4和2D7之間的接觸區域,包括MASP-3的胺基酸殘基454至464 (SEQ ID NO: 17)、胺基酸殘基514至523 (SEQ ID NO: 19)和胺基酸殘基667至678 (SEQ ID NO: 23),如實施例18中所述; 圖67顯示人MASP-3和高親和力MASP-3 mAb 15D9和2F5之間的接觸區域,包括MASP-3的胺基酸殘基454-464 (SEQ ID NO: 17)、胺基酸殘基479-493 (SEQ ID NO: 18)、胺基酸殘基562-571 (SEQ ID NO: 20)和胺基酸殘基667-678 (SEQ ID NO: 23),如實施例18中所述; 圖68圖示說明用高親和力MASP-3抑制性mAb 13B1 (10 mg/kg)、因子B mAb 1379 (30 mg/kg)或同種型對照mAb (10 mg/kg)治療的小鼠中的實驗性自身免疫性腦脊髓炎(EAE)模型的結果,如實施例20中所述; 圖69圖示說明如通過檢測在摻入血清樣品中的抗因子D抗體存在或不存在的情況下,用高親和力MASP-3 mAb h13B1X治療後隨時間的從三隻食蟹猴組獲得的血清樣品中的酵母聚糖顆粒表面上的補體因子Bb的流式細胞測定法中的平均MFI所測定的APC活性,如實施例21中所述; 圖70圖示說明如通過從用高親和力MASP-3抑制性mAb h4D5X、h10D12X或h13B1X的單次5 mg/kg靜脈內劑量治療的食蟹猴組(3只動物/組)獲得的血清樣品中的酵母聚糖上的Bb沉積所測定的APC活性,如實施例21中所述; 圖71A圖示說明如通過從用mAb h4D5X、h10D12X和h13B1X的單次5 mg/kg靜脈內劑量治療後,隨時間的食蟹猴組(3只動物/組)獲得的血清樣品中的流體相Ba所測定的APC活性,如實施例21中所述; 圖71B圖示說明如通過從用mAb h4D5X、h10D12X和h13B1X的單次5 mg/kg靜脈內劑量治療後,隨時間的食蟹猴組(3只動物/組)獲得的血清樣品中的流體相Bb所測定的APC活性,如實施例21中所述; 圖71C圖示說明如通過從用mAb h4D5X、h10D12X和h13B1X的單次5 mg/kg靜脈內劑量治療後,隨時間的食蟹猴組(3只動物/組)獲得的血清樣品中的流體相C3a所測定的APC活性,如實施例21中所述; 圖72A圖示說明如通過流體相Ba所測量的,在完全APC抑制的時間點的靶標(MASP-3)與高親和力MASP-3抑制性抗體h4D5X的摩爾比,如實施例21中所述; 圖72B圖示說明如通過流體相Ba所測量的,在完全APC抑制的時間點的靶標(MASP-3)與高親和力MASP-3抑制性抗體h10D12X的摩爾比,如實施例21中所述; 圖72C圖示說明如通過流體相Ba所測量的,在完全APC抑制的時間點的靶標(MASP-3)與高親和力MASP-3抑制性抗體h13B1X的摩爾比,如實施例21中所述;且 圖73顯示Western印跡,其分析用mAb h13B1X的單次5 mg/kg靜脈內劑量治療後,隨著時間(小時)的來自食蟹猴的血清中的前因子D和因子D的水準,如實施例21中所述。
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0028
Figure 12_A0101_SEQ_0029
Figure 12_A0101_SEQ_0030
Figure 12_A0101_SEQ_0031
Figure 12_A0101_SEQ_0032
Figure 12_A0101_SEQ_0033
Figure 12_A0101_SEQ_0034
Figure 12_A0101_SEQ_0035
Figure 12_A0101_SEQ_0036
Figure 12_A0101_SEQ_0037
Figure 12_A0101_SEQ_0038
Figure 12_A0101_SEQ_0039
Figure 12_A0101_SEQ_0040
Figure 12_A0101_SEQ_0041
Figure 12_A0101_SEQ_0042
Figure 12_A0101_SEQ_0043
Figure 12_A0101_SEQ_0044
Figure 12_A0101_SEQ_0045
Figure 12_A0101_SEQ_0046
Figure 12_A0101_SEQ_0047
Figure 12_A0101_SEQ_0048
Figure 12_A0101_SEQ_0049
Figure 12_A0101_SEQ_0050
Figure 12_A0101_SEQ_0051
Figure 12_A0101_SEQ_0052
Figure 12_A0101_SEQ_0053
Figure 12_A0101_SEQ_0054
Figure 12_A0101_SEQ_0055
Figure 12_A0101_SEQ_0056
Figure 12_A0101_SEQ_0057
Figure 12_A0101_SEQ_0058
Figure 12_A0101_SEQ_0059
Figure 12_A0101_SEQ_0060
Figure 12_A0101_SEQ_0061
Figure 12_A0101_SEQ_0062
Figure 12_A0101_SEQ_0063
Figure 12_A0101_SEQ_0064
Figure 12_A0101_SEQ_0065
Figure 12_A0101_SEQ_0066
Figure 12_A0101_SEQ_0067
Figure 12_A0101_SEQ_0068
Figure 12_A0101_SEQ_0069
Figure 12_A0101_SEQ_0070
Figure 12_A0101_SEQ_0071
Figure 12_A0101_SEQ_0072
Figure 12_A0101_SEQ_0073
Figure 12_A0101_SEQ_0074
Figure 12_A0101_SEQ_0075
Figure 12_A0101_SEQ_0076
Figure 12_A0101_SEQ_0077
Figure 12_A0101_SEQ_0078
Figure 12_A0101_SEQ_0079
Figure 12_A0101_SEQ_0080
Figure 12_A0101_SEQ_0081
Figure 12_A0101_SEQ_0082
Figure 12_A0101_SEQ_0083
Figure 12_A0101_SEQ_0084
Figure 12_A0101_SEQ_0085
Figure 12_A0101_SEQ_0086
Figure 12_A0101_SEQ_0087
Figure 12_A0101_SEQ_0088
Figure 12_A0101_SEQ_0089
Figure 12_A0101_SEQ_0090
Figure 12_A0101_SEQ_0091
Figure 12_A0101_SEQ_0092
Figure 12_A0101_SEQ_0093
Figure 12_A0101_SEQ_0094
Figure 12_A0101_SEQ_0095
Figure 12_A0101_SEQ_0096
Figure 12_A0101_SEQ_0097
Figure 12_A0101_SEQ_0098
Figure 12_A0101_SEQ_0099
Figure 12_A0101_SEQ_0100
Figure 12_A0101_SEQ_0101
Figure 12_A0101_SEQ_0102
Figure 12_A0101_SEQ_0103
Figure 12_A0101_SEQ_0104
Figure 12_A0101_SEQ_0105
Figure 12_A0101_SEQ_0106
Figure 12_A0101_SEQ_0107
Figure 12_A0101_SEQ_0108
Figure 12_A0101_SEQ_0109
Figure 12_A0101_SEQ_0110
Figure 12_A0101_SEQ_0111
Figure 12_A0101_SEQ_0112
Figure 12_A0101_SEQ_0113
Figure 12_A0101_SEQ_0114
Figure 12_A0101_SEQ_0115
Figure 12_A0101_SEQ_0116
Figure 12_A0101_SEQ_0117
Figure 12_A0101_SEQ_0118
Figure 12_A0101_SEQ_0119
Figure 12_A0101_SEQ_0120
Figure 12_A0101_SEQ_0121
Figure 12_A0101_SEQ_0122
Figure 12_A0101_SEQ_0123
Figure 12_A0101_SEQ_0124
Figure 12_A0101_SEQ_0125
Figure 12_A0101_SEQ_0126
Figure 12_A0101_SEQ_0127
Figure 12_A0101_SEQ_0128
Figure 12_A0101_SEQ_0129
Figure 12_A0101_SEQ_0130
Figure 12_A0101_SEQ_0131
Figure 12_A0101_SEQ_0132
Figure 12_A0101_SEQ_0133
Figure 12_A0101_SEQ_0134
Figure 12_A0101_SEQ_0135
Figure 12_A0101_SEQ_0136
Figure 12_A0101_SEQ_0137
Figure 12_A0101_SEQ_0138
Figure 12_A0101_SEQ_0139
Figure 12_A0101_SEQ_0140
Figure 12_A0101_SEQ_0141
Figure 12_A0101_SEQ_0142
Figure 12_A0101_SEQ_0143
Figure 12_A0101_SEQ_0144
Figure 12_A0101_SEQ_0145
Figure 12_A0101_SEQ_0146
Figure 12_A0101_SEQ_0147
Figure 12_A0101_SEQ_0148
Figure 12_A0101_SEQ_0149
Figure 12_A0101_SEQ_0150
Figure 12_A0101_SEQ_0151
Figure 12_A0101_SEQ_0152
Figure 12_A0101_SEQ_0153
Figure 12_A0101_SEQ_0154
Figure 12_A0101_SEQ_0155
Figure 12_A0101_SEQ_0156
Figure 12_A0101_SEQ_0157
Figure 12_A0101_SEQ_0158
Figure 12_A0101_SEQ_0159
Figure 12_A0101_SEQ_0160
Figure 12_A0101_SEQ_0161
Figure 12_A0101_SEQ_0162
Figure 12_A0101_SEQ_0163
Figure 12_A0101_SEQ_0164
Figure 12_A0101_SEQ_0165
Figure 12_A0101_SEQ_0166
Figure 12_A0101_SEQ_0167
Figure 12_A0101_SEQ_0168
Figure 12_A0101_SEQ_0169
Figure 12_A0101_SEQ_0170
Figure 12_A0101_SEQ_0171
Figure 12_A0101_SEQ_0172
Figure 12_A0101_SEQ_0173
Figure 12_A0101_SEQ_0174
Figure 12_A0101_SEQ_0175
Figure 12_A0101_SEQ_0176
Figure 12_A0101_SEQ_0177
Figure 12_A0101_SEQ_0178
Figure 12_A0101_SEQ_0179
Figure 12_A0101_SEQ_0180
Figure 12_A0101_SEQ_0181
Figure 12_A0101_SEQ_0182
Figure 12_A0101_SEQ_0183
Figure 12_A0101_SEQ_0184
Figure 12_A0101_SEQ_0185
Figure 12_A0101_SEQ_0186
Figure 12_A0101_SEQ_0187
Figure 12_A0101_SEQ_0188
Figure 12_A0101_SEQ_0189
Figure 12_A0101_SEQ_0190
Figure 12_A0101_SEQ_0191
Figure 12_A0101_SEQ_0192
Figure 12_A0101_SEQ_0193
Figure 12_A0101_SEQ_0194
Figure 12_A0101_SEQ_0195
Figure 12_A0101_SEQ_0196
Figure 12_A0101_SEQ_0197
Figure 12_A0101_SEQ_0198
Figure 12_A0101_SEQ_0199
Figure 12_A0101_SEQ_0200
Figure 12_A0101_SEQ_0201
Figure 12_A0101_SEQ_0202
Figure 12_A0101_SEQ_0203
Figure 12_A0101_SEQ_0204
Figure 12_A0101_SEQ_0205
Figure 12_A0101_SEQ_0206
Figure 12_A0101_SEQ_0207
Figure 12_A0101_SEQ_0208
Figure 12_A0101_SEQ_0209
Figure 12_A0101_SEQ_0210
Figure 12_A0101_SEQ_0211
Figure 12_A0101_SEQ_0212
Figure 12_A0101_SEQ_0213
Figure 12_A0101_SEQ_0214
Figure 12_A0101_SEQ_0215
Figure 12_A0101_SEQ_0216
Figure 12_A0101_SEQ_0217
Figure 12_A0101_SEQ_0218

Claims (39)

  1. 一種結合MASP-3的分離的抗體或其抗原結合片段,其包含: 重鏈可變區,其包含如SEQ ID NO: 209 (XXDIN,其中位置1的X是S或T,和其中位置2的X是N或D)所示的HC-CDR1;如SEQ ID NO: 210 (WIYPRDXXXKYNXXFXD,其中位置7的X是G或D;位置8的X是S、T或R;位置9的X是I或T;位置13的X是E或D;位置14的X是K或E;和位置16的X是T或K)所示的HC-CDR2;和如SEQ ID NO: 211 (XEDXY,其中位置1的X是L或V,和其中位置4的X是T或S)所示的HC-CDR3;和輕鏈可變區,其包含如SEQ ID NO: 212 (KSSQSLLXXRTRKNYLX,其中位置8的X是N、I、Q或A;其中位置9的X是S或T;和其中位置17的X是A或S)所示的LC-CDR1;如SEQ ID NO: 144 (WASTRES)所示的LC-CDR2和如SEQ ID NO: 146 (KQSYNLYT)所示的LC-CDR3。
  2. 如請求項1的分離的抗體或抗原結合片段,其中所述抗體或其抗原結合片段含有包含與SEQ ID NO: 24、SEQ ID NO: 248或SEQ ID NO: 249的至少80%、85%、90%、95%、98%、99%或100%同一性的重鏈和包含與SEQ ID NO: 40、SEQ ID NO: 250或SEQ ID NO: 278的至少80%、85%、90%、95%、98%、99%或100%同一性的輕鏈。
  3. 如請求項1的抗體或其抗原結合片段,其中所述抗體或抗原結合片段選自人抗體、人源化抗體、嵌合抗體、鼠抗體和上述任一者的抗原結合片段。
  4. 如請求項1的抗體或其抗原結合片段,其中所述抗體或其抗原結合片段選自單鏈抗體、ScFv、Fab片段、Fab’片段、F(ab’)2片段、缺乏鉸鏈區的單價抗體,和全抗體。
  5. 如請求項1的抗體或其抗原結合片段,其還包含免疫球蛋白恒定區。
  6. 如請求項1的抗體或其抗原結合片段,其中所述抗體或抗原結合片段是人源化的。
  7. 如請求項1的抗體或其抗原結合片段,其中所述抗體以小於500pM的親和力結合人MASP-3的絲胺酸蛋白酶結構域。
  8. 如請求項1的抗體或其抗原結合片段,其中所述抗體抑制哺乳動物血液中的替代途徑活化。
  9. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區的所述HC-CDR1包含SEQ ID NO: 56 (TDDIN)。
  10. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區的所述HC-CDR1包含SEQ ID NO: 62 (SNDIN)。
  11. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區的所述HC-CDR2包含SEQ ID NO: 58 (WIYPRDDRTKYNDKFKD)。
  12. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區的所述HC-CDR2包含SEQ ID NO: 63 (WIYPRDGSIKYNEKFTD)。
  13. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區的所述HC-CDR2包含SEQ ID NO: 67 (WIYPRDGTTKYNEEFTD)。
  14. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區的所述HC-CDR2包含SEQ ID NO: 69 (WIYPRDGTTKYNEKFTD)。
  15. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區的所述HC-CDR3包含SEQ ID NO: 60 (LEDTY)。
  16. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區的所述HC-CDR3包含SEQ ID NO: 65 (VEDSY)。
  17. 如請求項1的分離的抗體或其抗原結合片段,其中所述輕鏈可變區的所述LC-CDR1包含SEQ ID NO: 142 (KSSQSLLNSRTRKNYLA);SEQ ID NO: 257 (KSSQSLLQSRTRKNYLA),SEQ ID NO: 258 (KSSQSLLASRTRKNYLA);或SEQ ID NO: 259 (KSSQSLLNTRTRKNYLA)。
  18. 如請求項17的分離的抗體或其抗原結合片段,其中所述輕鏈可變區的所述LC-CDR1包含SEQ ID NO: 258 (KSSQSLLASRTRKNYLA)。
  19. 如請求項1的分離的抗體或其抗原結合片段,其中所述輕鏈可變區的所述LC-CDR1包含SEQ ID NO: 149 (KSSQSLLISRTRKNYLS)。
  20. 如請求項1的分離的抗體或其抗原結合片段,其中所述HC-CDR1包含SEQ ID NO: 56,所述HC-CDR2包含SEQ ID NO: 58,所述HC-CDR3包含SEQ ID NO: 60,和其中所述LC-CDR1包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259;其中所述LC-CDR2包含SEQ ID NO: 144,和其中所述LC-CDR3包含SEQ ID NO: 146。
  21. 如請求項1的分離的抗體或其抗原結合片段,其中所述HC-CDR1包含SEQ ID NO: 62,所述HC-CDR2包含SEQ ID NO: 63、SEQ ID NO: 67或SEQ ID NO: 69,所述HC-CDR3包含SEQ ID NO: 65,和其中所述LC-CDR1包含SEQ ID NO: 149,所述LC-CDR2包含SEQ ID NO: 144,和所述LC-CDR3包含SEQ ID NO: 146。
  22. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區包含如SEQ ID NO:24、SEQ ID NO:250和SEQ ID NO:278中任一者所示的胺基酸序列。
  23. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區包含如SEQ ID NO:25所示的胺基酸序列。
  24. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區包含如SEQ ID NO:26所示的胺基酸序列。
  25. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區包含如SEQ ID NO:27所示的胺基酸序列。
  26. 如請求項1的分離的抗體或其抗原結合片段,其中所述輕鏈可變區包含如SEQ ID NO:40、SEQ ID NO:250和SEQ ID NO:278中任一者所示的胺基酸序列。
  27. 如請求項1的分離的抗體或其抗原結合片段,其中所述輕鏈可變區包含如SEQ ID NO:41所示的胺基酸序列。
  28. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區包含如SEQ ID NO:42所示的胺基酸序列。
  29. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區包含如SEQ ID NO:24、SEQ ID NO:248和SEQ ID NO:249中任一者所示的胺基酸序列,和所述輕鏈可變區包含如SEQ ID NO:40、SEQ ID NO:250和SEQ ID NO:278中任一者所示的胺基酸序列。
  30. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區包含如SEQ ID NO:25所示的胺基酸序列,和所述輕鏈可變區包含如SEQ ID NO:41所示的胺基酸序列。
  31. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區包含如SEQ ID NO:26所示的胺基酸序列,和所述輕鏈可變區包含如SEQ ID NO:42所示的胺基酸序列。
  32. 如請求項1的分離的抗體或其抗原結合片段,其中所述重鏈可變區包含如SEQ ID NO:27所示的胺基酸序列,和所述輕鏈可變區包含如SEQ ID NO:42所示的胺基酸序列。
  33. 一種分離的DNA序列,其編碼如請求項1-32中任一項的抗體或其抗原結合片段的重鏈和/或輕鏈可變區。
  34. 一種選殖載體,其包含一種或多種如請求項33的DNA序列。
  35. 一種表達載體,其包含一種或多種如請求項33的DNA序列。
  36. 一種宿主細胞,其包含一種或多種如請求項34的選殖載體或如請求項35的表達載體。
  37. 一種用於產生如請求項1-32中任一項的抗體或抗原結合片段的方法,其包括培養如請求項36的宿主細胞和分離所述抗體或其抗原結合片段。
  38. 一種組合物,其包含如請求項1-32中任一項的抗體或抗原結合片段和藥學上可接受的賦形劑。
  39. 一種使用如請求項38的組合物於製造一種治療、減輕、或預防一替代途徑疾病或病症的藥物之用途,所述替代途徑疾病或病症選自下列所組成的群組:陣發性夜間血紅蛋白尿(PNH)、年齡相關性黃斑變性(AMD,包括濕性和幹性AMD)、缺血-再灌注損傷、關節炎、彌散性血管內凝血、血栓性微血管病(包括溶血性尿毒癥徵候群(HUS)、非典型溶血性尿毒癥徵候群(aHUS)、血栓性血小板減少性紫癜(TTP)或移植相關的TMA)、哮喘、緻密沉積物病、微量免疫壞死性新月體腎小球腎炎、創傷性腦損傷、吸入性肺炎、眼內炎、視神經脊髓炎、貝切特氏病、多發性硬化症、格林巴厘徵候群、阿茲海默氏病、肌萎縮性側索硬化症(ALS)、狼瘡性腎炎、系統性紅斑狼瘡(SLE)、糖尿病性視網膜病變、葡萄膜炎、慢性阻塞性肺病(COPD)、C3腎小球病、移植排斥反應、移植物抗宿主病(GVHD)、血液透析、敗血症、系統性炎性反應徵候群(SIRS)、急性呼吸窘迫徵候群(ARDS)、ANCA血管炎、抗磷脂徵候群、動脈粥樣硬化、IgA腎病和重症肌無力。
TW110149487A 2016-08-01 2017-07-30 用於治療各種疾病和病症的抑制masp-3的組合物和方法 TWI820555B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662369674P 2016-08-01 2016-08-01
US62/369,674 2016-08-01
US201662419420P 2016-11-08 2016-11-08
US62/419,420 2016-11-08
US201762478336P 2017-03-29 2017-03-29
US62/478,336 2017-03-29

Publications (2)

Publication Number Publication Date
TW202214690A true TW202214690A (zh) 2022-04-16
TWI820555B TWI820555B (zh) 2023-11-01

Family

ID=61073545

Family Applications (4)

Application Number Title Priority Date Filing Date
TW110149485A TW202214689A (zh) 2016-08-01 2017-07-30 用於治療各種疾病和病症的抑制masp-3的組合物和方法
TW110149487A TWI820555B (zh) 2016-08-01 2017-07-30 用於治療各種疾病和病症的抑制masp-3的組合物和方法
TW106125649A TWI756248B (zh) 2016-08-01 2017-07-30 用於治療各種疾病和病症的抑制masp-3的組合物和方法
TW112116731A TW202334243A (zh) 2016-08-01 2017-07-30 用於治療各種疾病和病症的抑制masp-3的組合物和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110149485A TW202214689A (zh) 2016-08-01 2017-07-30 用於治療各種疾病和病症的抑制masp-3的組合物和方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW106125649A TWI756248B (zh) 2016-08-01 2017-07-30 用於治療各種疾病和病症的抑制masp-3的組合物和方法
TW112116731A TW202334243A (zh) 2016-08-01 2017-07-30 用於治療各種疾病和病症的抑制masp-3的組合物和方法

Country Status (25)

Country Link
US (4) US10639369B2 (zh)
EP (1) EP3490603A4 (zh)
JP (3) JP6971306B2 (zh)
KR (3) KR102553777B1 (zh)
CN (4) CN116333147A (zh)
AU (4) AU2017306069B2 (zh)
BR (1) BR112019001247A2 (zh)
CA (3) CA3173979A1 (zh)
CL (1) CL2019000230A1 (zh)
CO (1) CO2019001212A2 (zh)
CR (1) CR20190105A (zh)
CU (1) CU24568B1 (zh)
EC (1) ECSP19015192A (zh)
GE (1) GEP20247593B (zh)
IL (3) IL298689B2 (zh)
JO (6) JOP20170154B1 (zh)
MA (1) MA45798A (zh)
MX (3) MX2019000965A (zh)
PE (1) PE20190389A1 (zh)
PH (1) PH12019500204A1 (zh)
SA (1) SA519400950B1 (zh)
SG (3) SG10202010279YA (zh)
TW (4) TW202214689A (zh)
UY (1) UY37349A (zh)
WO (1) WO2018026722A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017035405A1 (en) 2015-08-26 2017-03-02 Achillion Pharmaceuticals, Inc. Amino compounds for treatment of immune and inflammatory disorders
WO2017035401A1 (en) 2015-08-26 2017-03-02 Achillion Pharmaceuticals, Inc. Amide compounds for treatment of immune and inflammatory disorders
WO2018160891A1 (en) 2017-03-01 2018-09-07 Achillion Pharmaceutical, Inc. Pharmaceutical compounds for treatment of medical disorders
CA3053818A1 (en) 2017-03-01 2018-09-07 Achillion Pharmaceuticals, Inc. Aryl, heteroaryl, and heterocyclic pharmaceutical compounds for treatment of medical disorders
EP3814374A4 (en) * 2018-05-25 2022-03-09 Achillion Pharmaceuticals, Inc. BIOMARKERS OF NEPHROPATHY ASSOCIATED WITH THE ALTERNATIVE COMPLEMENT PATHWAY
KR20210057086A (ko) 2018-09-06 2021-05-20 아칠리온 파르마세우티칼스 인코포레이티드 다니코판의 형태체 형태
WO2020051532A2 (en) 2018-09-06 2020-03-12 Achillion Pharmaceuticals, Inc. Macrocyclic compounds for the treatment of medical disorders
BR112021005506A2 (pt) 2018-09-25 2021-06-15 Achillion Pharmaceuticals, Inc. formas mórficas de inibidores de fator complementar d
CN110244053B (zh) * 2019-05-09 2022-03-11 北京大学第三医院(北京大学第三临床医学院) 用于诊断狼疮肾炎并肺动脉高压疾病的分子标志物及其用途
CN112812182B (zh) * 2019-11-15 2023-01-06 深圳宾德生物技术有限公司 一种靶向fgfr4的单链抗体、嵌合抗原受体、嵌合抗原受体t细胞及其制备方法和应用
CA3161701A1 (en) * 2020-01-21 2021-07-29 Zhaoli LI Semg2 antibody and use thereof
CA3189666A1 (en) * 2020-08-18 2022-02-24 William Jason Cummings Monoclonal antibodies, compositions and methods for detecting complement factor d
CN112950324B (zh) * 2021-03-15 2022-06-03 重庆邮电大学 一种知识图谱辅助的成对排序个性化电商推荐方法及系统
CN115304670A (zh) * 2021-05-07 2022-11-08 华南农业大学 一种猫冠状病毒核衣壳蛋白的鼠源单克隆抗体及其编码基因和应用
WO2023173036A2 (en) * 2022-03-10 2023-09-14 Omeros Corporation Masp-2 and masp-3 inhibitors, and related compositions and methods, for treatment of sickle cell disease

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331647A (en) 1980-03-03 1982-05-25 Goldenberg Milton David Tumor localization and therapy with labeled antibody fragments specific to tumor-associated markers
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
US5211657A (en) 1988-11-07 1993-05-18 The United States Government As Represented By The Secretary Of The Department Of Health And Human Services Laminin a chain deduced amino acid sequence, expression vectors and active synthetic peptides
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5549910A (en) 1989-03-31 1996-08-27 The Regents Of The University Of California Preparation of liposome and lipid complex compositions
JP3218637B2 (ja) 1990-07-26 2001-10-15 大正製薬株式会社 安定なリポソーム水懸濁液
JP2958076B2 (ja) 1990-08-27 1999-10-06 株式会社ビタミン研究所 遺伝子導入用多重膜リポソーム及び遺伝子捕捉多重膜リポソーム製剤並びにその製法
EP0672142B1 (en) 1992-12-04 2001-02-28 Medical Research Council Multivalent and multispecific binding proteins, their manufacture and use
US5856121A (en) 1994-02-24 1999-01-05 Case Western Reserve University Growth arrest homebox gene
US6074642A (en) * 1994-05-02 2000-06-13 Alexion Pharmaceuticals, Inc. Use of antibodies specific to human complement component C5 for the treatment of glomerulonephritis
US5741516A (en) 1994-06-20 1998-04-21 Inex Pharmaceuticals Corporation Sphingosomes for enhanced drug delivery
US5795587A (en) 1995-01-23 1998-08-18 University Of Pittsburgh Stable lipid-comprising drug delivery complexes and methods for their production
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5738868A (en) 1995-07-18 1998-04-14 Lipogenics Ltd. Liposome compositions and kits therefor
US7273925B1 (en) 1998-12-15 2007-09-25 Brigham And Women's Hospital, Inc. Methods and products for regulating lectin complement pathway associated complement activation
US20040031072A1 (en) * 1999-05-06 2004-02-12 La Rosa Thomas J. Soy nucleic acid molecules and other molecules associated with transcription plants and uses thereof for plant improvement
CA2391402A1 (en) 1999-12-02 2001-06-07 Jens Christian Jensenius Masp-3, a complement-fixing enzyme, and uses for it
SG98393A1 (en) 2000-05-19 2003-09-19 Inst Materials Research & Eng Injectable drug delivery systems with cyclodextrin-polymer based hydrogels
ES2601143T3 (es) 2002-07-19 2017-02-14 Omeros Corporation Copolímeros tribloque biodegradables, métodos de síntesis de los mismos, e hidrogeles y biomateriales preparados a partir de los mismos
US20040115194A1 (en) * 2002-09-06 2004-06-17 Yi Wang Method of treatment of asthma using antibodies to complement component C5
AU2004216176B2 (en) 2003-02-21 2008-04-03 Genentech, Inc. Methods for preventing and treating tissue damage associated with ischemia-reperfusion injury
DE102004017370A1 (de) 2004-04-08 2005-10-27 Nutrinova Nutrition Specialties & Food Ingredients Gmbh PUFA-PKS Gene aus Ulkenia
US7919094B2 (en) 2004-06-10 2011-04-05 Omeros Corporation Methods for treating conditions associated with MASP-2 dependent complement activation
US7612181B2 (en) 2005-08-19 2009-11-03 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
WO2007024715A2 (en) 2005-08-19 2007-03-01 Abbott Laboratories Dual variable domain immunoglobin and uses thereof
CA2685714C (en) 2007-05-31 2016-04-12 University Of Washington Inducible mutagenesis of target genes
AU2010272483B2 (en) 2009-07-17 2016-07-21 Omeros Corporation MASP isoforms as inhibitors of complement activation
EP2462161B1 (en) * 2009-08-06 2017-03-08 Immunas Pharma, Inc. Antibodies that specifically bind to a beta oligomers and use thereof
US8163283B2 (en) * 2009-09-03 2012-04-24 Vancouver Biotech Ltd. Monoclonal antibodies against gonadotropin-releasing hormone receptor
MX336682B (es) * 2010-03-05 2016-01-27 Hoffmann La Roche Anticuerpos contra csf-1r humanos y usos de los mismos.
US20120122107A1 (en) 2010-11-16 2012-05-17 Aarhus Universitet Homeostatic multidomain protein, and uses for it
CN107011443B (zh) * 2011-05-04 2021-04-30 奥默罗斯公司 用于抑制masp-2依赖的补体活化的组合物
SI2833907T1 (en) * 2012-04-06 2018-07-31 Omeros Corporation COMPOSITION AND METHODS OF INJECTION OF MASP-1 AND / OR MASP-3 FOR TREATMENT OF PAROXYSIMAL NIGHT CHEMOGLOBINURIA
BR112014031522A2 (pt) * 2012-06-18 2017-08-01 Omeros Corp métodos para inibir a ativação de complemento dependente de masp-3, para inibir a ativação de complemento dependente de masp-2 e para fabricar um medicamento
ES2760023T3 (es) * 2013-02-20 2020-05-12 Univ Pennsylvania Tratamiento del cáncer utilizando receptor de antígeno quimérico anti-EGFRvIII humanizado
AU2014248515B2 (en) * 2013-03-13 2019-03-07 Prothena Biosciences Limited Tau immunotherapy
KR102448454B1 (ko) * 2014-01-29 2022-09-28 다나-파버 캔서 인스티튜트 인크. Muc1-c/세포외 도메인 (muc1-c/ecd)에 대한 항체

Also Published As

Publication number Publication date
CA3031980A1 (en) 2018-02-08
AU2020204551A1 (en) 2020-07-30
AU2017306069B2 (en) 2020-09-03
US11027015B2 (en) 2021-06-08
UY37349A (es) 2018-02-28
BR112019001247A2 (pt) 2019-06-25
CA3031980C (en) 2022-12-06
AU2020204551B2 (en) 2022-09-15
CU20190006A7 (es) 2019-09-04
US11883493B2 (en) 2024-01-30
CA3173979A1 (en) 2018-02-08
AU2017306069A1 (en) 2019-01-03
JP7350822B2 (ja) 2023-09-26
CL2019000230A1 (es) 2019-07-12
EP3490603A4 (en) 2020-11-04
US20200270125A1 (en) 2020-08-27
JP2022033733A (ja) 2022-03-02
JP2019533982A (ja) 2019-11-28
JOP20220242A1 (ar) 2023-01-30
CO2019001212A2 (es) 2019-02-19
JP2022033732A (ja) 2022-03-02
IL298689A (en) 2023-01-01
PE20190389A1 (es) 2019-03-13
US20210275667A1 (en) 2021-09-09
PH12019500204A1 (en) 2020-01-20
JP7350821B2 (ja) 2023-09-26
JOP20220244A1 (ar) 2023-01-30
MX2019000965A (es) 2019-08-29
KR102624948B1 (ko) 2024-01-17
NZ751019A (en) 2021-10-29
IL298690B1 (en) 2023-06-01
TW201805304A (zh) 2018-02-16
AU2020250188A1 (en) 2020-11-05
KR102553777B1 (ko) 2023-07-11
TW202334243A (zh) 2023-09-01
CN116327918A (zh) 2023-06-27
US10745274B1 (en) 2020-08-18
IL264592B1 (en) 2023-06-01
AU2022256090A1 (en) 2022-11-24
IL264592B2 (en) 2023-10-01
AU2020250188B2 (en) 2023-03-09
US20200317510A1 (en) 2020-10-08
TWI820555B (zh) 2023-11-01
JOP20220245A1 (ar) 2023-01-30
MX2023000482A (es) 2023-02-13
KR20220046002A (ko) 2022-04-13
JOP20220243A1 (ar) 2023-01-30
SA519400950B1 (ar) 2022-03-16
JOP20170154A1 (ar) 2019-01-30
GEP20247593B (en) 2024-02-12
US20180140697A1 (en) 2018-05-24
KR20220045078A (ko) 2022-04-12
CA3122348A1 (en) 2018-02-08
CN109715209A (zh) 2019-05-03
CN116333147A (zh) 2023-06-27
IL298690A (en) 2023-01-01
JP6971306B2 (ja) 2021-11-24
KR20190035796A (ko) 2019-04-03
IL298689B2 (en) 2023-10-01
IL298689B1 (en) 2023-06-01
CN116333146A (zh) 2023-06-27
EP3490603A1 (en) 2019-06-05
CU24568B1 (es) 2022-01-13
TW202214689A (zh) 2022-04-16
IL264592A (en) 2019-02-28
JOP20220241A1 (ar) 2023-01-30
WO2018026722A1 (en) 2018-02-08
TWI756248B (zh) 2022-03-01
CR20190105A (es) 2019-05-14
SG10202010277SA (en) 2020-11-27
SG11201900606VA (en) 2019-02-27
WO2018026722A8 (en) 2018-12-27
ECSP19015192A (es) 2019-03-29
MA45798A (fr) 2019-06-05
SG10202010279YA (en) 2020-11-27
MX2023000525A (es) 2023-03-06
JOP20170154B1 (ar) 2023-03-28
IL298690B2 (en) 2023-10-01
CN109715209B (zh) 2022-12-06
KR102382804B1 (ko) 2022-04-11
US10639369B2 (en) 2020-05-05

Similar Documents

Publication Publication Date Title
TWI756248B (zh) 用於治療各種疾病和病症的抑制masp-3的組合物和方法
EA040888B1 (ru) Композиции и способы для ингибирования masp-3, применяемые в целях лечения различных заболеваний и расстройств