CN116327918A - 用于治疗各种疾病和病症的抑制masp-3的组合物和方法 - Google Patents

用于治疗各种疾病和病症的抑制masp-3的组合物和方法 Download PDF

Info

Publication number
CN116327918A
CN116327918A CN202210979607.3A CN202210979607A CN116327918A CN 116327918 A CN116327918 A CN 116327918A CN 202210979607 A CN202210979607 A CN 202210979607A CN 116327918 A CN116327918 A CN 116327918A
Authority
CN
China
Prior art keywords
masp
seq
lea
antibody
complement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210979607.3A
Other languages
English (en)
Inventor
W.J.卡明斯
G.A.德莫普洛斯
T.杜勒
H-W.施维布勒
L.W.祖尔克
C.L.伍德
M.亚布基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Leicester
Omeros Corp
Original Assignee
University of Leicester
Omeros Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Leicester, Omeros Medical Systems Inc filed Critical University of Leicester
Publication of CN116327918A publication Critical patent/CN116327918A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/16Central respiratory analeptics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21104Mannan-binding lectin-associated serine protease-2 (3.4.21.104)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/33Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Abstract

本发明涉及用于治疗各种疾病和病症的抑制MASP‑3的组合物和方法。具体地,本发明涉及MASP‑3抑制性抗体和包含此类抗体的组合物,其用于抑制MASP‑3依赖性补体活化的不良反应。

Description

用于治疗各种疾病和病症的抑制MASP-3的组合物和方法
本申请是申请日为2017年7月31的中国专利申请 201780047995.9“用于治疗各种疾病和病症的抑制MASP-3的组合物和方法”的分案申请。
相关申请的交叉引用
本申请要求于2016年8月1日提交的美国临时申请号62/369,674的权益,并要求于2016年11月8日提交的美国临时申请号62/419,420的权益,并要求于2017年3月29日提交的美国临时申请号62/478,336的权益,其全部三者都通过引用以其整体并入本文。
关于序列表的声明
提供文本格式的本申请相关的序列表以替代纸质拷贝,并通过引用并入本说明书中。含有序列表的文本文件的名称是MP_1_0254_US_Sequence_Listing_20170628_ST25;文件是191 KB;在2017年6月28日创建并经由EFS-Web随本说明书的提交而提交。
技术领域
本发明涉及抗体领域,具体本涉及MASP-3抑制性抗体和包含此类抗体的组合物。
背景技术
补体系统为在人和其他脊椎动物中启动、放大和安排针对微生物感染和其他急性损伤的免疫应答提供了早期的作用机制(M.K. Liszewski和J.P. Atkinson, 1993, 于Fundamental Immunology, 第3版, W.E. Paul编辑, Raven Press, Ltd., New York)。尽管补体活化提供了重要的针对潜在病原体的第一道防线,但是促进保护性免疫应答的补体活性也可以表现出对宿主的潜在威胁(K.R. Kalli等人, Springer Semin. Immunopathol.15:417-431, 1994;B.P. Morgan, Eur. J. Clinical Investig.24:219-228, 1994)。例如,C3和C5蛋白水解产物募集并活化嗜中性粒细胞。尽管对于宿主防御是必不可少的,但是活化的嗜中性粒细胞在它们破坏性酶的释放中是不加选择的,并可以导致器官损伤。此外,补体活化可以导致溶胞的补体成分沉积在附近的宿主细胞以及微生物靶上,导致宿主细胞裂解。
补体系统也与许多急性和慢性疾病状态的发病机制有牵连,所述疾病包括:心肌梗塞、中风、ARDS、再灌注损伤、败血性休克、热烧伤之后的毛细血管渗漏、心肺分流术后炎症、移植排斥、类风湿性关节炎、多发性硬化、重症肌无力和阿尔茨海默氏病。在几乎所有的这些病况中,补体都不是病因,而是发病机制所涉及的几种因素之一。尽管如此,补体活化可以是重要的病理机制,并对许多这类疾病状态中的临床控制表现出有效之处。对各种疾病状态中补体介导的组织损伤的重要性的逐渐增加的认识强调了对有效补体抑制药物的需求。迄今为止,依库丽单抗 (Solaris®),一种针对C5的抗体,是仅有的已被批准人用的补体靶向药物。然而,C5是位于补体系统“下游”的几个效应物分子之一,并且对C5的阻断并不抑制补体系统的活化。因此,补体活化的起始步骤的抑制剂将具有相对“下游”补体抑制剂的显著优势。
目前,普遍接受的是补体系统可通过三种截然不同的途径被活化:经典途径、凝集素途径和替代途径。经典途径通常是由结合外源颗粒(即抗原)的宿主抗体组成的复合物而触发,并且因此需要预先暴露于抗原以产生特异性抗体应答。因为经典途径的活化取决于宿主先前的获得性免疫应答,所以经典途径是获得性免疫系统的一部分。相反,凝集素途径和替代途径两者不依赖于获得性免疫,并且是先天性免疫系统的一部分。
补体系统的活化导致丝氨酸蛋白酶酶原(zymogen)的连续活化。经典途径活化的第一步是特异性识别分子C1q与结合了抗原的IgG和IgM分子的结合。C1q与C1r和C1s丝氨酸蛋白酶酶原结合成称为C1的复合物。当C1q与免疫复合物结合时,C1r的Arg-Ile位点进行自我蛋白水解切割,随后是C1r介导的Cls切割和活化,其从而获得切割C4和C2的能力。C4被切割成两个片段,称为C4a和C4b,并且,类似地,C2被切割成C2a和C2b。C4b片段能够与邻近的羟基或氨基形成共价键,并且通过与活化C2的C2a片段进行非共价相互作用而生成C3转化酶(C4b2b)。C3转化酶(C4b2b)通过蛋白水解切割成C3a和C3b亚成分而活化C3,导致C5转化酶(C4b2a3b)的生成,其通过切割C5导致可以破坏细胞膜导致细胞裂解的膜攻击复合物(结合C6、C7、C8和C9的C5b,也称为“MAC”)的形成。C3和C4的活化形式(C3b和C4b)共价沉积在外源靶表面上,其被多种吞噬细胞上的补体受体所识别。
独立地,补体系统通过凝集素途径活化的第一步也是特异性识别分子的结合,其随后是所结合的丝氨酸蛋白酶酶原的活化。然而,凝集素途径中的识别分子包括一组统称为凝集素的糖结合蛋白(甘露聚糖结合凝集素(MBL)、H-纤维胶凝蛋白(H-ficolin)、M-纤维胶凝蛋白、L-纤维胶凝蛋白和C型凝集素CL-11),而不是通过Clq来结合免疫复合物。参见J.Lu等人, Biochim. Biophys. Acta1572:387-400, (2002);Holmskov等人, Annu. Rev. Immunol. 21:547-578 (2003);Teh等人, Immunology101:225-232 (2000))。还参见J.Luet等人, Biochim Biophys Acta 1572:387-400 (2002);Holmskov等人, Annu Rev Immunol 21:547-578 (2003);Teh等人, Immunology 101:225-232 (2000);Hansen等人,J. Immunol 185(10):6096-6104 (2010)。
Ikeda等人首先证实,与C1q类似,MBL在与酵母甘露聚糖-包被的红细胞结合后可以以依赖C4的方式使补体系统活化(Ikeda等人, J.Biol. Chem.262:7451-7454,(1987))。MBL是胶原凝集素蛋白家族的成员,是钙依赖性凝集素,其与具有定向于吡喃糖环赤道面上的3-羟基和4-羟基的碳水化合物结合。因此MBL的重要配体是D-甘露糖和N-乙酰-D-葡糖胺,而不符合这种空间要求的碳水化合物则对MBL没有可检测的亲和力(Weis等人,Nature 360:127-134, (1992))。MBL和单价糖之间的相互作用是相当微弱的,解离常数通常在个位数毫摩尔的范围内。MBL通过亲合力,即通过同时与位置彼此靠近的多个单糖残基相互作用来实现对聚糖配体特异性地紧密结合(Lee等人, Archiv. Biochem. Biophys.299:129-136, (1992))。MBL识别通常修饰微生物如细菌、酵母、寄生虫和某些病毒的碳水化合物模式。相反,MBL不识别D-半乳糖和唾液酸,即倒数第二位和倒数第一位的糖,它们一般修饰哺乳动物血浆和细胞表面糖蛋白上存在的“成熟”复合糖缀合物。认为这种结合特异性促进“外源”表面的识别和有助于保护免于“自身活化”。然而,MBL确实以高亲和力结合高甘露糖“前体”聚糖簇,这些簇位于被隔离在哺乳动物细胞的内质网和高尔基体内的N-连接的糖蛋白和糖脂上(Maynard等人, J. Biol. Chem. 257:3788-3794, (1982))。另外,已经证实MBL可以结合可暴露在坏死的和凋亡的细胞上的多核苷酸、DNA和RNA (Palaniyar等人, Ann. N.Y. Acad. Sci., 1010:467-470 (2003);Nakamura等人, J. Leuk. Biol.86:737-748 (2009))。因此,受损细胞是经由MBL结合的凝集素途径活化的潜在目标。
纤维胶凝蛋白具有与MBL不同类型的凝集素结构域,称为纤维蛋白原-样结构域。纤维胶凝蛋白以不依赖Ca++的方式来结合糖残基。在人中,已经鉴定出三种类型的纤维胶凝蛋白(L-纤维胶凝蛋白、M-纤维胶凝蛋白和H-纤维胶凝蛋白)。L-纤维胶凝蛋白和H-纤维胶凝蛋白这两种血清纤维胶凝蛋白共同对N-乙酰-D-葡糖胺具有特异性;然而,H-纤维胶凝蛋白也结合N-乙酰-D-半乳糖胺。L-纤维胶凝蛋白、H-纤维胶凝蛋白、CL-1I和MBL的糖特异性的差异意味着不同的凝集素可以是互补的,并且尽管有重叠,但是可靶向不同的糖缀合物。这个观点得到了最近报道的支持,即在凝集素途径的已知凝集素中,只有L-纤维胶凝蛋白与脂磷壁酸特异性结合,所述脂磷壁酸是在所有革兰氏阳性菌上发现的一种细胞壁糖缀合物(Lynch等人, J. Immunol. 172:1198-1202, (2004))。除了乙酰化糖部分外,纤维胶凝蛋白还可结合乙酰化氨基酸和多肽(Thomsen等人, Mol. Immunol. 48(4):369-81(2011))。胶原凝集素(即MBL)和纤维胶凝蛋白在氨基酸序列上没有显著的相似性。然而,这两组蛋白质具有类似的结构域组构,且与C1q类似,装配成寡聚结构,这样就使得多位点结合的可能性最大化。
MBL的血清浓度在健康人群中是高度可变的,并且这在遗传上是由MBL基因的启动子和编码区二者中的多态性/突变所控制。作为急性期蛋白,MBL的表达在炎症期间进一步上调。L-纤维胶凝蛋白在血清中存在的浓度与MBL的浓度类似。因此,凝集素途径的L-纤维胶凝蛋白分支在强度上可能与MBL分支不相上下。MBL和纤维胶凝蛋白还可能作为调理素起作用,其允许吞噬细胞靶向MBL-和纤维胶凝蛋白-修饰的表面(参见Jack等人, J Leukoc Biol., 77(3):328-36 (2004), Matsushita和Fujita, Immunobiology, 205(4-5):490-7(2002), Aoyagi等人, J Immunol, 174(1):418-25(2005))。此调理素作用需要这些蛋白与吞噬细胞受体相互作用(Kuhlman等人, J. Exp. Med. 169:1733, (1989);Matsushita等人, J. Biol. Chem. 271:2448-54, (1996)),这些吞噬细胞受体的身份还未得到确定。
人MBL通过其胶原-样结构域与独特的C1r/C1s-样丝氨酸蛋白酶(称为MBL相关的丝氨酸蛋白酶(MASP))形成特异性和高亲和力的相互作用。迄今为止已经描述了三种MASP。首先,鉴定出单一的酶“MASP”,并且其特征是作为负责启动补体级联(即切割C2和C4)的酶(Matsushita等人, J Exp Med 176(6):1497-1502 (1992);Ji等人, J. Immunol. 150:571-578, (1993))。随后,确定MASP活性实际上是两种蛋白酶MASP-1和MASP-2的混合物(Thiel等人, Nature 386:506-510, (1997))。然而,证实MBL-MASP-2复合物单独就足以使补体活化(Vorup-Jensen等人, J. Immunol.165:2093-2100, (2000))。此外,只有MASP-2以高速切割C2和C4 (Ambrus等人, J. Immunol. 170:1374-1382, (2003))。因此,MASP-2是负责活化C4和C2以产生C3转化酶C4b2a的蛋白酶。这是不同于经典途径中C1复合物的显著差异,在经典途径中两种特异性丝氨酸蛋白酶(C1r和C1s)协同作用导致了补体系统的活化。另外,已经分离出第三种新的蛋白酶MASP-3 (Dahl, M.R.等人, Immunity 15:127-35,2001)。MASP-1和MASP-3是同一基因的可变剪接产物。
MASP与Cl复合物的酶成分C1r和C1s共享相同的结构域组构(Sim等人, Biochem. Soc. Trans. 28:545, (2000))。这些结构域包括N-末端C1r/C1s/海胆VEGF/骨形成蛋白(CUB)结构域、表皮生长因子-样结构域、第二CUB结构域、串联的补体调控蛋白结构域和丝氨酸蛋白酶结构域。与在C1蛋白酶中一样,MASP-2的活化通过丝氨酸蛋白酶结构域附近的Arg-I1e键裂解而发生,其将酶分成二硫键连接的A链和B链,后者由丝氨酸蛋白酶结构域构成。
MBL还与MASP-2的可变剪接形式,称为19 kDa MBL相关蛋白(MAp19)或者小MBL相关蛋白(sMAP)缔合,所述蛋白缺乏MASP-2的催化活性(Stover, J. Immunol. 162:3481-90, (1999);Takahashi等人, Int. Immunol. 11:859-863, (1999))。MAp19包括MASP-2的前两个结构域,其后接4个独特氨基酸的额外序列。MAp19的功能尚不清楚(Degn等人, J Immunol. Methods, 2011)。MASP-1基因和MASP-2基因分别位于人的3号和1号染色体上(Schwaeble等人, Immunobiology 205:455-466, (2002))。
几种证据表明存在不同的MBL-MASP复合物,且血清中大部分MASP不与MBL复合(Thiel等人, J. Immunol. 165:878-887, (2000))。H-纤维胶凝蛋白和L-纤维胶凝蛋白都与所有MASP结合,并且活化凝集素补体途径,如MBL所为(Dahl等人, Immunity 15:127-35,(2001);Matsushita等人, J. Immunol. 168:3502-3506, (2002))。凝集素途径和经典途径都形成共同的C3转化酶(C4b2a),并且这两条途径在这一步会合。
普遍认为凝集素途径在未经感染的(naïve)宿主中的宿主抵抗感染的防御中具有重要作用。MBL参与宿主防御的强有力证据来自于对功能性MBL血清水平降低的患者的分析(Kilpatrick, Biochim. Biophys. Acta1572:401-413, (2002))。这些患者表现出对复发性细菌和真菌感染的易感性。这些症状通常可见于生命早期,在易损性的表观窗期间,因为从母体获得的抗体效价降低,但处于完整的抗体应答谱(repertoire)发育之前。这种综合征经常是由于MBL胶原部分的数个位点突变引起的,其干扰了MBL寡聚体的正确形成。然而,由于MBL可以作为不依赖于补体的调理素起作用,所以还不知道对感染的易感性增加的多大程度是由于受损的补体活化所致。
与经典途径和凝集素途径相反,此前没有发现替代途径中完成识别功能的引发剂,而在其他两种途径中是C1q和凝集素来完成识别功能的。目前普遍接受的是,替代途径自发经历低水平的周转活化(turnover activation),其可以容易地在外来表面或其他异常表面(细菌、酵母、病毒感染的细胞或者受损组织)上放大,所述表面缺少保持受控的自发补体活化的适当分子元件。有四种血浆蛋白直接参与了替代途径的活化:C3、因子B和D,和备解素。
尽管大量证据表明经典补体途径和替代补体途径两者都涉及非感染性人类疾病的发病机制,但是对凝集素途径作用的评价才刚刚开始。最近研究提供的证据表明,凝集素途径的活化可负责缺血/再灌注损伤中补体活化和相关炎症。Collard等人(2000)报告受到氧化应激的培养的内皮细胞结合MBL,且在暴露于人血清时显示出C3沉积(Collard等人,Am. J. Pathol. 156:1549-1556, (2000))。此外,用封闭性抗MBL单克隆抗体处理人血清抑制了MBL结合和补体活化。将这些发现扩展到心肌缺血-再灌注大鼠模型上,其中比起用对照抗体处理的大鼠,用针对大鼠MBL的封闭性抗体处理的大鼠在冠状动脉闭塞时显示心肌损伤显著较轻(Jordan等人, Circulation 104:1413-1418, (2001))。尚不清楚氧化应激后MBL与血管内皮结合的分子机制;最近的研究表明,氧化应激后凝集素途径的活化可能是由MBL与血管内皮细胞角蛋白结合而介导,而不是与糖缀合物结合而介导(Collard等人,Am. J. Pathol. 159:1045-1054, (2001))。其他研究已表明缺血/再灌注损伤的发病机制中的经典途径和替代途径,并且凝集素途径在这种疾病中的作用仍然存在争议(Riedermann, N.C.等人, Am. J. Pathol. 162:363-367, 2003)。
近期的研究显示,MASP-1和MASP-3将替代途径活化酶因子D从其酶原形式转化成其酶活性形式(参见Takahashi M.等人, J Exp Med 207(1):29-37 (2010);Iwaki等人,J. Immunol. 187:3751-58 (2011))。此过程的生理重要性通过在MASP-1/3-缺陷小鼠的血浆中不存在替代途径功能活性而得以强调。对于替代途径,需要由天然C3蛋白水解生成的C3b发挥作用。由于替代途径C3转化酶(C3bBb)含有C3b作为必需亚基,因此关于经由替代途径的第一个C3b来源的疑问已提出了令人困扰的问题,且促使了相当多的研究工作。
C3属于含有被称为硫酯键的极少的翻译后修饰的蛋白质家族(与C4和α-2巨球蛋白一起)。硫酯基团由谷氨酰胺组成,其末端羰基与距离三个氨基酸外的半胱氨酸的巯基形成共价硫酯连接。该键不稳定,且亲电子的谷氨酰-硫酯可与亲核部分例如羟基或氨基反应并从而与其他分子形成共价键。当被隔离在完整C3的疏水口袋内部时,硫酯键是相当稳定的。然而,C3被蛋白水解切割成C3a和C3b,导致C3b上高反应性的硫酯键暴露出来,并随着通过包括羟基或氨基的邻近部分的亲核攻击,C3b与靶共价结合。除了充分记载的其在C3b与补体靶共价结合中的作用外,还认为C3硫酯具有触发替代途径的关键作用。根据普遍接受的“tick-over理论”,替代途径由液相转化酶iC3Bb的生成所启动,iC3Bb由C3与水解的硫酯(iC3;C3 (H2O))和因子B形成(Lachmann, P.J.等人, Springer Semin. Immunopathol. 7:143-162, (1984))。C3b-样C3 (H2O)由天然C3经蛋白质中内部硫酯的缓慢自发水解而产生(Pangburn, M.K.,等人, J. Exp. Med. 154:856-867, 1981)。通过C3(H2O)Bb转化酶的活性,C3b分子沉积在靶表面,从而启动替代途径。
在本文所述的发现之前,对替代途径活化的引发剂的了解甚少。认为活化剂包括酵母细胞壁(酵母聚糖)、许多纯的多糖、兔红细胞、某些免疫球蛋白、病毒、真菌、细菌、动物肿瘤细胞、寄生虫和受损细胞。这些活化剂所共有的唯一特征是碳水化合物的存在,但是碳水化合物结构的复杂性和多样性使得难以确定被识别的共享分子决定子。广泛接受的是替代途径活化通过此途径的抑制性调节成分之间的精细平衡控制,所述成分例如因子H、因子I、DAF和CR1和备解素,后者是替代途径唯一的阳性调节因子(参见Schwaeble W.J.和ReidK.B., Immunol Today 20(1):17-21 (1999))。
除了上文所述的明显的未调节的活化机制,替代途径还可以为凝集素/经典途径C3转化酶(C4b2a)提供强力的放大环,因为任何生成的C3b都可以与因子B参与形成额外的替代途径C3转化酶(C3bBb)。替代途径C3转化酶通过结合备解素被稳定化。备解素使替代途径C3转化酶的半衰期延长六到十倍。向替代途径C3转化酶添加C3b导致替代途径C5转化酶的形成。
一直以来认为所有三种途径(即经典、凝集素和替代途径)会合于C5,它被切割形成具有多种促炎作用的产物。会合的途径被称为末端补体途径。C5a是最有效的过敏毒素,引起平滑肌和血管紧张度以及血管通透性的改变。它还是嗜中性粒细胞和单核细胞两者的强有力的趋化因子和活化因子。C5a介导的细胞活化能够通过诱导释放多种另外的炎症介质来显著放大炎症反应,另外的炎症介质包括细胞因子、水解酶、花生四烯酸代谢物和活性氧类。C5裂解导致了C5b-9的形成,它也被称为膜攻击复合物(MAC)。目前强有力的证据表明,亚裂解的MAC沉积除了起到作为裂解的孔-形成复合物的作用外,还可能还在炎症中发挥重要作用。
除了其在免疫防御中的重要作用之外,补体系统还在很多临床病况中导致组织损伤。因此,对开发治疗有效的补体抑制剂以防止这些不良作用而言存在着迫切需要。
发明内容
在一个方面,本发明提供分离的单克隆抗体或其抗原结合片段,其以高亲和力(具有小于500pM的KD)特异性结合人MASP-3的丝氨酸蛋白酶结构域(SEQ ID NO: 2的氨基酸残基450至728),其中所述抗体或其抗原结合片段抑制替代途径补体活化。在一些实施方案中,抗体或抗原结合片段的特征在于以下性质中的至少一种或多种:(a)抑制前因子D成熟;(b)不结合人MASP-1 (SEQ ID NO: 8);(c)在哺乳动物对象中以约1:1至约2.5:1 (MASP-3靶标:mAb)的摩尔比抑制替代途径;(d)不抑制经典途径;(e)抑制溶血和/或调理作用;(f)抑制MASP-3丝氨酸蛋白酶底物特异性切割;(g)减少溶血或C3切割和C3b表面沉积的减少;(h)减少在活化表面上的因子B和/或Bb沉积;(i)相对于前因子D,降低活性因子D的静息水平(在循环中,并且没有实验性添加活化表面);(j)响应于活化表面降低相对于前因子D的活性因子D的水平;(k)降低流体相Ba、Bb、C3b或C3a的静息和表面诱导水平的产生;和/或(l)减少因子P沉积。在一些实施方案中,段落1或2的分离的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段特异性结合位于人MASP-3的丝氨酸蛋白酶结构域内的表位,其中所述表位位于以下中的至少一种或多种内:VLRSQRRDTTVI (SEQ ID NO: 9)、TAAHVLRSQRRDTTV(SEQ ID NO: 10)、DFNIQNYNHDIALVQ(SEQ ID NO: 11)、PHAECKTSYESRS(SEQ ID NO: 12)、GNYSVTENMFC (SEQ ID NO: 13)、VSNYVDWVWE (SEQ ID NO: 14)和/或VLRSQRRDTTV (SEQ ID NO: 15)。在一些实施方案中,所述抗体或其抗原结合片段结合以下中的至少一种内的表位:ECGQPSRSLPSLV (SEQ ID NO: 16)、RNAEPGLFPWQ(SEQ ID NO:17);KWFGSGALLSASWIL (SEQ ID NO: 18);EHVTVYLGLH (SEQ ID NO: 19);PVPLGPHVMP(SEQ ID NO: 20);APHMLGL (SEQ ID NO: 21);SDVLQYVKLP (SEQ ID NO: 22);和/或AFVIFDDLSQRW(SEQ ID NO: 23)。
在另一个方面,本发明提供结合MASP-3的分离的抗体或其抗原结合片段,其包含:(a)重链可变区,其包含如SEQ ID NO: 209 (XXDIN,其中位置1的X是S或T,且其中位置2的X是N或D)所示的HC-CDR1;如SEQ ID NO: 210 (WIYPRDXXXKYNXXFXD,其中位置7的X是G或D;位置8的X是S、T或R;位置9的X是I或T;位置13的X是E或D;位置14的X是K或E;位置16的X是T或K)所示的HC-CDR2;和如SEQ ID NO: 211 (XEDXY,其中位置1的X是L或V,且其中位置4的X是T或S)所示的HC-CDR3;和(b)轻链可变区,其包含如SEQ ID NO: 212(KSSQSLLXXRTRKNYLX,其中位置8的X是N、I、Q或A;其中位置9的X是S或T;且其中位置17的X是A或S)所示的LC-CDR1;如SEQ ID NO: 144 (WASTRES)所示的LC-CDR2和如SEQ ID NO:146 (KQSYNLYT)所示的LC-CDR3。
在另一个方面,本发明提供结合MASP-3的分离的抗体或其抗原结合片段,其包含:(a)重链可变区,其包含如SEQ ID NO: 213 (SYGXX,其中位置4的X是M或I,且其中位置5的X是S或T)所示的HC-CDR1;如SEQ ID NO: 74所示的HC-CDR2;和如SEQ ID NO: 214(GGXAXDY,其中位置3的X是E或D,且其中位置5的X是M或L)所示的HC-CDR3;和(b)轻链可变区,其包含如SEQ ID NO: 215 (KSSQSLLDSXXKTYLX,其中位置10的X是D、E或A;其中位置11的X是G或A;且其中位置16的X是N或S)所示的LC-CDR1;如SEQ ID NO: 155所示的LC-CDR2;和如SEQ ID NO: 216(WQGTHFPXT,其中位置8的X是W或Y)所示的LC-CDR3。
在另一个方面,本发明提供结合MASP-3的分离的抗体或其抗原结合片段,其包含:(a)重链可变区,其包含如SEQ ID NO: 84 (GKWIE)所示的HC-CDR1;如SEQ ID NO: 86(EILPGTGSTNYNEKFKG)或SEQ ID NO: 275 (EILPGTGSTNYAQKFQG)所示的HC-CDR2;和如SEQID NO: 88 (SEDV)所示的HC-CDR3;和(b)轻链可变区,其包含如SEQ ID NO: 142(KSSQSLLNSRTRKNYLA)、SEQ ID NO: 257 (KSSQSLLQSRTRKNYLA);SEQ ID NO: 258(KSSQSLLASRTRKNYLA);或SEQ ID NO: 259 (KSSQSLLNTRTRKNYLA)所示的LC-CDR1,如SEQID NO: 144 (WASTRES)所示的LC-CDR2;和如SEQ ID NO: 161 (KQSYNIPT)所示的LC-CDR3。
在另一个方面,本发明提供结合MASP-3的分离的抗体或其抗原结合片段,其包含:(a)重链可变区,其包含如SEQ ID NO: 91 (GYWIE)所示的HC-CDR1;如SEQ ID NO: 93(EMLPGSGSTHYNEKFKG)所示的HC-CDR2,和如SEQ ID NO: 95 (SIDY)所示的HC-CDR3;和(b)轻链可变区,其包含如SEQ ID NO: 163 (RSSQSLVQSNGNTYLH)所示的LC-CDR1,如SEQ IDNO: 165 (KVSNRFS)所示的LC-CDR2和如SEQ ID NO: 167 (SQSTHVPPT)所示的LC-CDR3。
在另一个方面,本发明提供结合MASP-3的分离的抗体或其抗原结合片段,其包含:
(a)重链可变区,其包含如SEQ ID NO: 109 (RVHFAIRDTNYWMQ)所示的HC-CDR1;如SEQ ID NO: 110 (AIYPGNGDTSYNQKFKG)所示的HC-CDR2;如SEQ ID NO: 112 (GSHYFDY)所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 182 (RASQSIGTSIH)所示的LC-CDR1,如SEQ ID NO: 184 (YASESIS)所示的LC-CDR2和如SEQ ID NO: 186 (QQSNSWPYT)所示的LC-CDR3;或
(b)重链可变区,其包含如SEQ ID NO: 125 (DYYMN)所示的HC-CDR1,如SEQ IDNO: 127 (DVNPNNDGTTYNQKFKG)所示的HC-CDR2;如SEQ ID NO: 129 (CPFYYLGKGTHFDY)所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 196 (RASQDISNFLN)所示的LC-CDR1,如SEQ ID NO: 198 (YTSRLHS)所示的LC-CDR2和如SEQ ID NO: 200 (QQGFTLPWT)所示的LC-CDR3;或
(c)重链可变区,其包含如SEQ ID NO: 137所示的HC-CDR1,如SEQ ID NO: 138所示的HC-CDR2,如SEQ ID NO: 140所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 206所示的LC-CDR1,如SEQ ID NO: 207所示的LC-CDR2,和如SEQ ID NO: 208所示的LC-CDR3;或
(d)重链可变区,其包含如SEQ ID NO: 98所示的HC-CDR1,如SEQ ID NO: 99所示的HC-CDR2,如SEQ ID NO: 101所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 169所示的LC-CDR1,如SEQ ID NO: 171所示的LC-CDR2,和如SEQ ID NO: 173所示的LC-CDR3;或
(e)重链可变区,其包含如SEQ ID NO: 103所示的HC-CDR1,如SEQ ID NO: 105所示的HC-CDR2,如SEQ ID NO: 107所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 176所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 193所示的LC-CDR3;或
(f)重链可变区,其包含如SEQ ID NO: 114所示的HC-CDR1,如SEQ ID NO: 116所示的HC-CDR2,如SEQ ID NO: 118所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 188所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 190所示的LC-CDR3;或
(g)重链可变区,其包含如SEQ ID NO: 114所示的HC-CDR1,如SEQ ID NO: 121所示的HC-CDR2,如SEQ ID NO: 123所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 191所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 193所示的LC-CDR3。
在另一个方面,本发明提供抑制哺乳动物中的替代途径补体活化的方法,所述方法包括向有此需要的哺乳动物对象施用足以抑制哺乳动物中的替代途径补体途径活化的量的包含高亲和力MASP-3抑制性抗体或其抗原结合片段的组合物。在该方法的一个实施方案中,所述抗体或其抗原结合片段以小于500pM的亲和力结合MASP-3。在该方法的一个实施方案中,作为施用包含抗体或抗原结合片段的组合物的结果,在哺乳动物对象中存在以下中的一种或多种:(a)因子D成熟的抑制;(b)当向对象以约1:1至约2.5:1(MASP-3靶标:mAb)的摩尔比施用时替代途径的抑制;(c)经典途径不被抑制;(d)溶血和/或调理作用的抑制;(e)溶血的减少或C3切割和C3b表面沉积的减少;(f)在活化表面上的因子B和Bb沉积的减少;(g)相对于前因子D,降低活性因子D的静息水平(在循环中,并且没有实验性添加活化表面);(h)响应于活化表面降低相对于前因子D的活性因子D的水平;和/或(i)流体相Ba、Bb、C3b或C3a的静息和表面诱导水平的产生的减少。在该方法的一个实施方案中,所述组合物包含以约1:1至约2.5:1 (MASP-3靶标:mAb)的摩尔比抑制替代途径的MASP-3抑制性抗体。
在另一个方面,本发明提供在患有阵发性夜间血红蛋白尿(PNH)、年龄相关性黄斑变性(AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎或贝切特氏病的对象中抑制MASP-3-依赖性补体活化的方法。所述方法包括向所述对象施用包含有效抑制MASP-3-依赖性补体活化的量的高亲和力MASP-3抑制剂的组合物的步骤。在一些实施方案中,所述方法进一步包括向所述对象施用包含MASP-2抑制剂的组合物。
在另一个方面,本发明提供制备用于在有此需要的活对象中抑制MASP-3-依赖性补体活化作用的药物的方法,其包括将治疗有效量的MASP-3抑制剂在药物载体中组合。在一些实施方案中,MASP-3抑制剂是高亲和力MASP-3抑制性抗体。在一些实施方案中,根据本发明的该方面的方法包括制备用于在患有或有风险发展选自以下疾病或病症的对象中抑制MASP-3-依赖性补体活化作用的药物:阵发性夜间血红蛋白尿(PNH)、年龄相关性黄斑变性(AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎或贝切特氏病。在一些实施方案中,所述方法进一步包括将治疗有效量的MASP-2抑制剂组合到包含MASP-3抑制剂的药物中或将治疗有效量的MASP-2抑制剂与包含MASP-3抑制剂的药物组合。
在另一个方面,本发明提供包含生理上可接受的载体和结合人类MASP-3且抑制替代途径补体活化的高亲和力MASP-3抑制性单克隆抗体或其抗原结合片段的药物组合物。在一个实施方案中,所述高亲和力MASP-3抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2和(iii)包含SEQ ID NO: 161的VLCDR3。
在另一个方面,本发明提供用于治疗患有或有风险发展阵发性夜间血红蛋白尿(PNH)的对象的方法,其包括向对象施用包含有效量的结合人MASP-3且抑制替代途径补体活化的高亲和力单克隆抗体或其抗原结合片段的药物组合物以治疗对象中的PNH或降低对象中的PNH的风险。在一个实施方案中,抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2和(iii)包含SEQ ID NO: 161的VLCDR3。在一些实施方案中,所述药物组合物增加患有PNH的对象中的红血细胞的存活。在一些实施方案中,其中患有或有风险发展PNH的对象表现出选自以下的一种或多种症状:(i)低于正常水平的血红蛋白,(ii)低于正常水平的血小板;(iii)高于正常水平的网织红细胞,和(iv)高于正常水平的胆红素。在一些实施方案中,将药物组合物全身性(例如,皮下、肌肉内、静脉内、动脉内或作为吸入剂)施用于患有或有风险发展PNH的对象。在一些实施方案中,患有或有风险发展PNH的对象先前已经经历或正在经历用抑制补体蛋白C5的切割的末端补体抑制剂的治疗。在一些实施方案中,所述方法进一步包括向对象施用抑制补体蛋白C5的切割的末端补体抑制剂。在一些实施方案中,所述末端补体抑制剂是人源化抗C5抗体或其抗原结合片段。在一些实施方案中,所述末端补体抑制剂是依库丽单抗。
在另一个方面,本发明提供用于治疗患有或有风险发展关节炎(炎性和非炎性关节炎)的对象的方法,其包括向对象施用包含有效量的结合人MASP-3且抑制替代途径补体活化的高亲和力单克隆抗体或其抗原结合片段的药物组合物以治疗对象中的关节炎或降低对象中的关节炎的风险。在一个实施方案中,所述抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ IDNO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ IDNO: 144的VLCDR2和(iii)包含SEQ ID NO: 161的VLCDR3。在一些实施方案中,所述对象患有选自骨关节炎、类风湿性关节炎、幼年型类风湿性关节炎、强直性脊柱炎、贝切特氏病、感染相关关节炎和银屑病关节炎的关节炎。在一些实施方案中,将药物组合物全身性(例如,皮下、肌肉内、静脉内、动脉内或作为吸入剂)施用。在一些实施方案中,将药物组合物局部施用于关节。
如本文所述,可在本发明的药物组合物中使用高亲和力MASP-3抑制性抗体的多个实施方案,任选组合MASP-2抑制剂的多个实施方案。
如本文所述,本发明的药物组合物可以根据本发明的方法来使用。
参考以下发明详述和附图,本文所述的发明的这些和其他方面和实施方案将是显而易见的。本说明书涉及的所有美国专利、美国专利申请公开、美国专利申请、外国专利、外国专利申请和非专利出版物都通过引用以其整体并入本文中,如同各自单独并入本文中。
附图说明
通过参考下面的发明详述并结合附图,将更容易理解同时更好地理解本发明的前述方面以及许多附带的优势,所述附图中:
图1说明对凝集素途径和替代途径的新的理解;
图2是改编自Schwaeble等人, Immunobiol 205:455-466 (2002)的示意图,由Yongqing等人, BBA 1824:253 (2012)修改,说明MASP-1、MASP-3和MAp44蛋白结构域以及编码它们的外显子;
图3描绘人MASP-3氨基酸序列(SEQ ID NO: 2),其中前导序列以下划线显示;
图4显示来自多种物种的全长MASP-3蛋白的比对;
图5显示来自多种物种的MASP-3蛋白的SP结构域的比对;
图6是卡普兰-迈耶曲线,其图示说明在施用2.6 x 107 cfu的感染剂量的脑膜炎奈瑟氏菌(N. meningitidis)血清组A Z2491后的MASP-2 KO和WT小鼠的百分比存活率,表明MASP-2缺陷型小鼠受到保护免于脑膜炎奈瑟氏菌诱导的死亡,如实施例1中所述;
图7是卡普兰-迈耶曲线,其图示说明在施用6 x 106 cfu的感染剂量的脑膜炎奈瑟氏菌血清组B菌株MC58后的MASP-2 KO和WT小鼠的百分比存活率,表明MASP-2缺陷型小鼠受到保护免于脑膜炎奈瑟氏菌诱导的死亡,如实施例1中所述;
图8图示说明在用6x106 cfu脑膜炎奈瑟氏菌血清组B菌株MC58 i.p.感染后的不同时间点,从MASP-2 KO和WT小鼠中回收的每毫升血中的脑膜炎奈瑟氏菌血清组B菌株MC58的log cfu/mL (对于这两组小鼠,在不同的时间点,n=3),表明尽管MASP-2 KO小鼠用与用于WT小鼠的相同的剂量的脑膜炎奈瑟氏菌血清组B菌株MC58感染,但与WT相比,MASP-2 KO小鼠具有增高的菌血症清除率,如实施例1中所述;
图9图示说明在用6x106 cfu脑膜炎奈瑟氏菌血清组B菌株MC58感染后的3、6、12和24小时的MASP-2 KO和WT小鼠的平均疾病评分,表明与WT小鼠相比,MASP-2-缺陷型小鼠在感染后6小时、12小时和24小时显示出低得多的疾病评分,如实施例1中所述;
图10是卡普兰-迈耶曲线,其图示说明在施用4x106 cfu的感染剂量的脑膜炎奈瑟氏菌血清组B菌株MC58后,接着在感染后3小时施用抑制性MASP-2抗体(1 mg/kg)或对照同种型抗体的小鼠百分比存活率,表明MASP-2抗体有效治疗和改善感染了脑膜炎奈瑟氏菌的对象的存活率,如实施例2中所述;
图11图示说明在与脑膜炎奈瑟氏菌血清组B菌株MC58孵育后的不同时间点采集的如表6所示的人血清样品中的在不同时间点回收的脑膜炎奈瑟氏菌血清组B菌株MC58的活菌计数的log cfu/mL,如实施例3中所述;
图12图示说明在表8所示的人血清样品中,在不同时间点回收的脑膜炎奈瑟氏菌血清组B-MC58的活菌计数的log cfu/mL,显示在人20% (v/v)血清中的脑膜炎奈瑟氏菌的补体-依赖性杀伤是MASP-3和MBL-依赖性的,如实施例3中所述;
图13图示说明在表10所示的小鼠血清样品中的在不同时间点回收的脑膜炎奈瑟氏菌血清组B-MC58的活菌计数的log cfu/mL,显示与WT小鼠血清相比,MASP-2 -/- 敲除(knockout)小鼠(称为“MASP-2 -/-“)血清对于脑膜炎奈瑟氏菌具有更高水平的杀菌活性,而相比之下,MASP-1/3 -/-小鼠血清没有任何杀菌活性,如实施例3中所述;
图14图示说明在凝集素途径-特异性条件下(1%血浆),在WT、C4-/-、MASP-1/3-/-、因子B-/-和MASP-2-/-小鼠的血清中的C3活化动力学,如实施例4中所述;
图15图示说明在得自MASP-3-缺陷型、C4-缺陷型和MBL-缺陷型人类对象的血清样品中,在“传统的”替代途径-特异性(AP-特异性)条件(即BBS/EGTA/Mg++无Ca++)下,作为血清浓度的函数的,在酵母聚糖-包被的微量滴定板上的替代途径-驱动的(AP-驱动的) C3b沉积水平,如实施例4中所述;
图16图示说明在得自MASP-3-缺陷型、C4-缺陷型和MBL-缺陷型人类对象的10%人血清样品中,在“传统的”AP-特异性条件(即BBS/EGTA/Mg++无Ca++)下,作为时间的函数的,在酵母聚糖-包被的微量滴定板上的AP-驱动的C3b沉积水平,如实施例4中所述;
图17A图示说明在得自WT、MASP-2-缺陷型和MASP-1/3-缺陷型小鼠的血清样品中,在“传统的”AP-特异性条件(即BBS/EGTA/Mg++无Ca++)下或在允许凝集素途径和替代途径(AP)两者起作用的生理条件(BBS/Mg++/Ca++)下,作为血清浓度的函数的,在甘露聚糖-包被的微量滴定板上的C3b沉积水平,如实施例4中所述;
图17B图示说明在得自WT、MASP-2-缺陷型和MASP-1/3-缺陷型小鼠的血清样品中,在传统的AP-特异性条件(即BBS/EGTA/Mg++无Ca++)或在允许凝集素途径和替代途径两者起作用的生理条件(BBS/Mg++/Ca++)下,作为血清浓度的函数的,在酵母聚糖-包被的微量滴定板上的C3b沉积水平,如实施例4中所述;
图17C图示说明在得自WT、MASP-2-缺陷型和MASP-1/3-缺陷型小鼠的血清样品中,在传统的AP-特异性条件(即BBS/EGTA/Mg++无Ca++)下或在允许凝集素途径和替代途径两者起作用的生理条件(BBS/Mg++/Ca++)下,作为血清浓度的函数的,在肺炎链球菌(S. pneumoniae) D39-包被的微量滴定板上的C3b沉积水平,如实施例4中所述;
图18A图示说明在传统的AP-特异性条件(即BBS/EGTA/Mg++无Ca++)或在允许凝集素途径和替代途径两者起作用的生理条件(BBS/Mg++/Ca++)下,在甘露聚糖-包被的微量滴定板上进行的在高度稀释的血清中的C3b沉积测定结果,使用血清浓度范围为0%至1.25%,如实施例4中所述;
图18B图示说明在传统的AP-特异性条件(即BBS/EGTA/Mg++无Ca++)或在允许凝集素途径和替代途径两者起作用的生理条件(BBS/Mg++/Ca++)下,在酵母聚糖-包被的微量滴定板上进行的C3b沉积测定结果,使用血清浓度范围为0%至1.25%,如实施例4中所述;
图18C图示说明在传统的AP-特异性条件(即BBS/EGTA/Mg++无Ca++)或在允许凝集素途径和替代途径两者起作用的生理条件(BBS/Mg++/Ca++)下,在肺炎链球菌D39-包被的微量滴定板上进行的C3b沉积测定结果,使用血清浓度范围为0%至1.25%,如实施例4中所述;
图19图示说明在来自MASP-3-/-、热灭活的正常人血清(HI NHS)、MBL-/-、NHS +MASP-2单克隆抗体和NHS对照的血清中,一系列血清稀释度的人血清在生理条件下(即在Ca++存在时)使甘露聚糖-包被的鼠红细胞溶血的水平(如通过裂解的小鼠红细胞(Crry/C3-/-)至上清液中的血红蛋白释放来测量,所述上清液根据光度测定法测量),如实施例5中所述;
图20图示说明在来自MASP-3-/-、热灭活的(HI) NHS、MBL-/-、NHS + MASP-2单克隆抗体和NHS对照的血清中,一系列血清浓度的人血清在生理条件下(即在Ca++存在时)使甘露聚糖-包被的鼠红细胞溶血的水平(如通过裂解的小鼠红细胞(Crry/C3-/-)至上清液中的血红蛋白释放来测量,所述上清液根据光度测定法测量),如实施例5中所述;
图21图示说明在来自3MC (MASP-3-/-)、热灭活的(HI) NHS、MBL-/-、NHS + MASP-2单克隆抗体和NHS对照的血清中,一系列血清浓度的人血清在生理条件下(即在Ca++存在时)使非-包被的鼠红细胞溶血的水平(如通过裂解的WT小鼠红细胞至上清液中的血红蛋白释放来测量,所述上清液根据光度测定法测量),如实施例5中所述;
图22图示说明在来自热灭活的(HI) NHS、MBL-/-、NHS + MASP-2单克隆抗体和NHS对照的血清中,一系列血清浓度的人血清在生理条件下(即在Ca++存在时)使非-包被的鼠红细胞溶血(如通过裂解的小鼠红细胞(CD55/59-/-)至上清液中的血红蛋白释放来测量,所述上清液根据光度测定法测量),如实施例5中所述;
图23图示说明一系列血清浓度的MASP-1/3-/-小鼠血清和WT对照小鼠血清在生理条件下(即在Ca++存在时)使甘露聚糖-包被的兔红细胞溶血(如通过裂解的兔红细胞至上清液中的血红蛋白释放来测量,所述上清液根据光度测定法测量),如实施例6中所述;
图24A是对于克隆M3J5,MASP-3抗原/抗体结合的FACS柱状图,如实施例7中所述;
图24B是对于克隆M3M1,MASP-3抗原/抗体结合的FACS柱状图,如实施例7中所述;
图25图示说明对于MASP-3抗原,克隆M3J5 (克隆5)的饱和结合曲线,如实施例7中所述;
图26A是M3J5、M3M1、D14和1E10的VH区与鸡DT40 VH序列的氨基酸序列的比对,其中点表示与DT40序列的氨基酸同一性,且横杠表示引入空位以使比对最大化,如实施例7中所述;
图26B是M3J5、M3M1、D14和1E10的VL区与鸡DT40 VL序列的氨基酸序列的比对,其中点表示与DT40序列的氨基酸同一性,且横杠表示引入空位以使比对最大化,如实施例7中所述;
图27是柱状图,显示与测定试剂盒中提供的阳性血清以及同种型对照抗体相比,单克隆抗体(mAb) 1E10在Wieslab补体系统筛选MBL途径中的抑制活性,表明mAb1E10部分抑制LEA-2-依赖性活化,(通过抑制MASP-2的MASP-1-依赖性活化),而同种型对照抗体却非如此,如实施例7中所述;
图28A提供在热灭活的金黄色葡萄球菌(Staphylococcus aureus)上的C3b沉积的流式细胞术分析结果,表明在正常人血清中在EDTA存在时(其已知灭活凝集素和替代途径),未观察到C3b沉积(小图1),在用Mg++/EGTA处理的正常人血清中,观察到替代途径-驱动的C3b沉积(小图2),和如小图3、4和5所示,分别在因子B-耗尽的、因子D-耗尽的和备解素(因子P)-耗尽的血清中,未观察到替代途径驱动的C3b沉积,如实施例8中所述;
图28B提供在热灭活的金黄色葡萄球菌上的C3b沉积的流式细胞术分析结果,表明正如在EDTA-处理的正常血清中(小图1),在3MC血清中在Mg++/EGTA存在时不存在AP-驱动的C3b沉积(小图3),而小图4和5显示活性全长rMASP-3 (小图4)和活性rMASP-3 (CCP1-CCP2-SP) (小图5)都使在3MC血清中的AP-驱动的C3b沉积恢复到用Mg++/EGTA处理的正常血清中观察到的水平(小图2),而无活性rMASP-3 (S679A) (小图6)或野生型rMASP-1 (小图7)都不能恢复3MC血清中的AP-驱动的C3b沉积,如实施例8中所述;
图29显示在3MC血清中,在rMASP-3存在或不存在时,测定响应于金黄色葡萄球菌的因子B切割的Western印迹分析结果,表明在相对于在Mg++/EGTA存在时的正常人血清而言(如泳道2 (阳性对照)所示),EDTA存在时的正常人血清(阴性对照,泳道1)显示出非常少的因子B切割,如泳道3进一步所示,3MC血清在Mg++/EGTA存在时显示出非常少的因子B切割。然而,如泳道4所示,通过将全长、重组MASP-3蛋白加入3MC血清中并预孵育,恢复了因子B切割,如实施例8中所述;
图30显示蛋白凝胶的考马斯染色,其中分析了因子B切割,表明因子B切割在C3、MASP-3和前因子D (pro-factor D)存在时是最佳的(泳道1);且如泳道4和5所示,单用MASP-3或单用前因子D都能介导因子B切割,只要C3存在,如实施例8中所述;
图31图示说明作为mAb浓度的函数作图的,在3MC血清中在rMASP-3存在时,得自mAbD14 (其结合MASP-3)、mAb1A5 (阴性对照抗体)和同种型对照抗体的金黄色葡萄球菌的C3b染色平均荧光强度(MFI),表明mAbD14以浓度-依赖性方式抑制MASP-3-依赖性C3b沉积,如实施例8中所述;
图32显示了前因子D底物切割的Western印迹分析,其中与单用前因子D (泳道1)或无活性全长重组MASP-3 (S679A;泳道3)或MASP-1 (S646A;泳道4)相比,全长野生型重组MASP-3 (泳道2)和MASP-1 (泳道5)完全或部分地切割前因子D,产生成熟因子D,如实施例9中所述;
图33是Western印迹,其显示与含有仅MASP-3和前因子D的对照反应(无mAb,泳道1)以及含有得自DTLacO文库的mAb (其与MASP-1结合,而不与MASP-3结合)的对照反应(泳道4)相比,结合MASP-3的mAbs D14 (泳道2)和M3M1 (泳道3)对MASP-3-依赖性前因子D切割的抑制活性,如实施例9中所述;
图34图示说明在得自MASP-3-缺陷型(3MC)、C4-缺陷型和MBL-缺陷型对象的血清样品中,作为血清浓度的函数的,在酵母聚糖-包被的微量滴定板上的AP-驱动的C3b沉积水平,表明来自患者2和患者3的MASP-3-缺乏的血清在高血清浓度(25%、12.5%、6.25%血清浓度)时具有残留的AP活性,但显著更高AP50 (即需要8.2%和12.3%血清以达到50%最大C3沉积),如实施例10中所述;
图35A图示说明在得自MASP-3缺陷型、C4-缺陷型和MBL-缺陷型人类对象的10%人血清样品中,在“传统的”AP-特异性条件(即BBS/EGTA/Mg++无Ca++)下,作为时间的函数的,在酵母聚糖-包被的微量滴定板上的AP-驱动的C3b沉积水平,如实施例10中所述;
图35B显示对于获自3MC患者#2 (MASP-3(-/-)、MASP-1(+/+))、3MC患者#3(MASP-3(-/-)、MASP-1(-/-))的血浆和正常供体(W)的血清的Western印迹,其中用人因子D特异性抗体检测人前因子D (25040道尔顿)和/或成熟因子D (24405道尔顿),如在实施例10中所述;
图35C图示说明对于获自3MC患者#2、3MC患者#3的血浆和正常人血清,Weislab经典、凝集素和替代途径测定的结果,如实施例10中所述;
图36图示说明在来自2个正常人类对象(NHS)和来自2个3MC患者(患者2和患者3)的血清中,在Ca++不存在时测定的一系列血清浓度下,甘露聚糖-包被的兔红细胞的溶血百分率(如通过裂解的兔红细胞至上清液中的血红蛋白释放来测量,所述上清液根据光度测定法测量),表明与正常人血清相比,MASP-3缺陷降低了补体-介导的甘露聚糖-包被的红细胞裂解的百分率,如实施例10中所述;
图37图示说明作为添加到得自人3MC患者2 (MASP-3-/-)的血清样品中的重组全长MASP-3蛋白的浓度的函数的,在酵母聚糖-包被的微量滴定板上的AP-驱动的C3b沉积水平,表明与阴性对照无活性重组MASP-3 (MASP-3A;S679A)相比,活性重组MASP-3蛋白以浓度-依赖性方式重构在酵母聚糖-包被的板上的AP-驱动的C3b沉积,如实施例10中所述;
图38图示说明在Ca++不存在时测定的以下血清中,在一系列血清浓度下,甘露聚糖-包被的兔红细胞的溶血百分率(如通过裂解的兔红细胞至上清液中的血红蛋白释放来测量,所述上清液根据光度测定法测量):(1)正常人血清(NHS);(2) 3MC患者血清;(3) 3MC患者血清加活性全长重组MASP-3 (20 µg/ml);和(4)热灭活的人血清(HIS);表明与在无重组MASP-3的3MC血清中的溶血百分率相比,兔红细胞的裂解百分率在含有rMASP-3的3MC血清中显著增加(p=0.0006),如实施例10中所述;
图39图示说明在含有浓度范围为0至110 µg/ml的活性重组MASP-3 (在BBS/Mg++/EGTA中)的来自3MC患者2和来自3MC患者3的7%人血清中兔红细胞裂解的百分率,表明兔红细胞裂解百分率以浓度-依赖性方式随重组MASP-3量而增加,如实施例10中所述;
图40图示说明对于来自正常人类对象(NHS)、来自2个3MC患者(患者2和患者3)、来自患者3的父母和来自MBL-缺陷型对象的血清,作为在BBS缓冲液中稀释的人血清浓度的函数的,在甘露聚糖-包被的ELISA板上的LEA-2-驱动的C3b沉积水平,如实施例10中所述;
图41图示说明用人MASP-3进行的结合实验的代表性实例,其中M3-1 Fab (也称为13B1)显示与人蛋白的约0.117nM的表观结合亲和力(EC50),如实施例11中所述;
图42图示说明用小鼠MASP-3进行的结合实验的代表性实例,其中M3-1 Fab (也称为13B1)显示与小鼠蛋白的约0.214nM的表观结合亲和力(EC50),如实施例11中所述;
图43图示说明在CFD耗尽的人血清中存在不同浓度的mAb M3-1 (也称为13B1)的情况下,在酵母聚糖颗粒上的补体因子Bb沉积的水平(通过以MFI单位测量的流式细胞检测所测定),如实施例11中所述;
图44图示说明在野生型小鼠中的mAb M3-1 (13B1) (10 mg/kg i.v.)的单次剂量后各个时间点在酵母聚糖颗粒上的C3沉积的水平,如实施例11中所述;
图45图示说明在用mAb M3-1 (13B1)(在第-11天、第04天、第-1天和第+6天,10mg/kg)治疗的野生型受体小鼠、mAb BB5.1治疗或媒介物治疗的小鼠中,经14天时段的供体RBC (WT或Crry-)的存活百分比,如实施例12中所述;
图46图示说明在用单剂量的mAb M3-1 (13B1)(在第-6天,20 mg/kg)治疗的野生型受体小鼠或媒介物治疗的小鼠中,经16天时段的供体RBC (WT或Crry-)的存活百分比,如实施例12中所述;
图47图示说明在胶原-抗体诱导的关节炎模型中,经14天时间过程的用mAb M3-1(13B1) (5 mg/kg或20 mg/kg)或媒介物治疗的小鼠的临床评分,如实施例13中所述;
图48图示说明在胶原-抗体诱导的关节炎模型中,经14天时间过程的用mAb M3-1(13B1) (5 mg/kg或20 mg/kg)或媒介物治疗的小鼠的关节炎的百分比发生率,如实施例13中所述;
图49A显示高亲和力(≤500pM)抗人MASP-3抑制性mAb的VH区的氨基酸序列,如实施例15中所述;
图49B显示高亲和力(≤500pM)抗人MASP-3抑制性mAb的VL区的氨基酸序列,如实施例15中所述;
图50A是高亲和力抗人MASP-3抑制性mAb的VH区的树状图,如实施例15中所述;
图50B是高亲和力抗人MASP-3抑制性mAb的VL区的树状图,如实施例15中所述;
图51A图示说明结合实验的结果,其中代表性纯化的重组抗人MASP-3抑制性抗体对人MASP-3蛋白显示小于500pM (例如,240pM至23pM)的表观结合亲合力,如实施例16中所述;
图51B图示说明结合实验的结果,其中代表性纯化的重组抗人MASP-3抑制性抗体对人MASP-3蛋白显示小于500pM (例如,91pM至58pM)的表观结合亲合力,如实施例16中所述;
图51C图示说明结合实验的结果,其中显示代表性纯化的重组高亲和力抗人MASP-3抑制性抗体显示对于与MASP-3的结合是选择性的并且不结合人MASP-1,如实施例16中所述;
图51D图示说明结合实验的结果,其中显示代表性纯化的重组高亲和力抗人MASP-3抑制性抗体对于与MASP-3的结合是选择性的并且不结合人MASP-2,如实施例16中所述;
图52图示说明结合实验的结果,其中代表性纯化的重组抗人MASP-3抑制性抗体还显示与小鼠MASP-3蛋白的高结合亲合力,如实施例16中所述;
图53图示说明测量代表性高亲和力MASP-3抗体抑制荧光三肽切割的能力的实验结果,如实施例16中所述;
图54显示Western印迹,其表明代表性高亲和力MASP-3抑制性mAb在体外测定中阻断重组MASP-3介导的前因子D切割为因子D的能力,如实施例16中所述;
图55A图示说明在因子D耗尽的人血清中存在不同浓度的高亲和力MASP-3 mAb1F3、1G4、2D7和4B6的情况下,在酵母聚糖颗粒上的补体因子Bb沉积的水平(通过以MFI单位测量的流式细胞检测所测定),如实施例16中所述;
图55B图示说明在因子D耗尽的人血清中存在不同浓度的高亲和力MASP-3 mAb4D5、10D12和13B1的情况下,在酵母聚糖颗粒上的补体因子Bb沉积的水平(通过以MFI单位测量的流式细胞检测所测定),如实施例16中所述;
图56A图示说明在不同浓度的高亲和力MASP-3 mAb 1A10、1F3、4B6、4D5和2F2存在的情况下,兔血红细胞裂解的抑制水平,如实施例16中所述;
图56B图示说明在不同浓度的高亲和力MASP-3 mAb 1B11、1E7、1G4、2D7和2F5存在的情况下,兔血红细胞裂解的抑制水平,如实施例16中所述;
图57显示Western印迹,其分析在活性重组MASP-3 (rMASP-3)、无活性rMASP-3和活性rMASP-3加高亲和力MASP-3 mAb 4D5存在的情况下,3MC患者血清(患者B)中的前因子D和因子D的水平,如实施例16中所述;
图58图示说明在野生型小鼠中的高亲和力MASP-3 mAb M3-1 (13B1, 10 mg/kg)或10D12 (10 mg/kg)的单次剂量后各个时间点在酵母聚糖颗粒上的C3/C3b/iC3b沉积的水平,如实施例17中所述;
图59显示Western印迹,其分析用高亲和力MASP-3 mAb 10D12 (10mg/kg)治疗的小鼠或媒介物对照治疗的小鼠中的因子B的因子Ba片段的状态,如实施例17中所述;
图60图示说明来自用高亲和力MASP-3 mAb 10D12 (10 mg/kg或25 mg/kg)治疗的小鼠的20%血清的溶血的抑制水平,如实施例17中所述;
图61A图示说明竞争结合分析以鉴定阻断高亲和力MASP-3 mAb 4D5和人MASP-3之间的相互作用的高亲和力MASP-3 mAb的结果,如实施例18中所述;
图61B图示说明竞争结合分析以鉴定阻断高亲和力MASP-3 mAb 10D12和人MASP-3之间的相互作用的高亲和力MASP-3 mAb的结果,如实施例18中所述;
图61C图示说明竞争结合分析以鉴定阻断高亲和力MASP-3 mAb 13B1和人MASP-3之间的相互作用的高亲和力MASP-3 mAb的结果,如实施例18中所述;
图61D图示说明竞争结合分析以鉴定阻断高亲和力MASP-3 mAb 1F3和人MASP-3之间的相互作用的高亲和力MASP-3 mAb的结果,如实施例18中所述;
图61E图示说明竞争结合分析以鉴定阻断高亲和力MASP-3 mAb 1G4和人MASP-3之间的相互作用的高亲和力MASP-3 mAb的结果,如实施例18中所述;
图62提供显示如通过Pepscan分析确定的高亲和力MASP-3 mAb在人MASP-3上的接触区域的示意图,如实施例18中所述;
图63A显示人MASP-3和高亲和力MASP-3 mAb 1F3、4D5和1A10之间的接触区域,包括MASP-3的氨基酸残基498-509 (SEQ ID NO: 9)、氨基酸残基544-558 (SEQ ID NO: 11)、氨基酸残基639-649 (SEQ ID NO: 13)和氨基酸残基704-713 (SEQ ID NO: 14),如实施例18中所述;
图63B显示人MASP-3和高亲和力MASP-3 mAb 10D12之间的接触区域,包括MASP-3的氨基酸残基498至509 (SEQ ID NO: 9),如实施例18中所述;
图64显示人MASP-3和高亲和力MASP-3 mAb 13B1之间的接触区域,包括MASP-3的氨基酸残基494至508 (SEQ ID NO: 10)和氨基酸残基626至638 (SEQ ID NO: 12),如实施例18中所述;
图65显示人MASP-3和高亲和力MASP-3 mAb 1B11之间的接触区域,包括MASP-3的氨基酸残基435-447 (SEQ ID NO: 16)、氨基酸残基454-464 (SEQ ID NO: 17)、氨基酸残基583-589 (SEQ ID NO: 21)和氨基酸残基614-623 (SEQ ID NO: 22),如实施例18中所述;
图66显示人MASP-3和高亲和力MASP-3 mAb 1E7、1G4和2D7之间的接触区域,包括MASP-3的氨基酸残基454至464 (SEQ ID NO: 17)、氨基酸残基514至523 (SEQ ID NO: 19)和氨基酸残基667至678 (SEQ ID NO: 23),如实施例18中所述;
图67显示人MASP-3和高亲和力MASP-3 mAb 15D9和2F5之间的接触区域,包括MASP-3的氨基酸残基454-464 (SEQ ID NO: 17)、氨基酸残基479-493 (SEQ ID NO: 18)、氨基酸残基562-571 (SEQ ID NO: 20)和氨基酸残基667-678 (SEQ ID NO: 23),如实施例18中所述;
图68图示说明用高亲和力MASP-3抑制性mAb 13B1 (10 mg/kg)、因子B mAb 1379(30 mg/kg)或同种型对照mAb (10 mg/kg)治疗的小鼠中的实验性自身免疫性脑脊髓炎(EAE)模型的结果,如实施例20中所述;
图69图示说明如通过检测在掺入血清样品中的抗因子D抗体存在或不存在的情况下,用高亲和力MASP-3 mAb h13B1X治疗后随时间的从三只食蟹猴组获得的血清样品中的酵母聚糖颗粒表面上的补体因子Bb的流式细胞测定法中的平均MFI所测定的APC活性,如实施例21中所述;
图70图示说明如通过从用高亲和力MASP-3抑制性mAb h4D5X、h10D12X或h13B1X的单次5 mg/kg静脉内剂量治疗的食蟹猴组(3只动物/组)获得的血清样品中的酵母聚糖上的Bb沉积所测定的APC活性,如实施例21中所述;
图71A图示说明如通过从用mAb h4D5X、h10D12X和h13B1X的单次5 mg/kg静脉内剂量治疗后,随时间的食蟹猴组(3只动物/组)获得的血清样品中的流体相Ba所测定的APC活性,如实施例21中所述;
图71B图示说明如通过从用mAb h4D5X、h10D12X和h13B1X的单次5 mg/kg静脉内剂量治疗后,随时间的食蟹猴组(3只动物/组)获得的血清样品中的流体相Bb所测定的APC活性,如实施例21中所述;
图71C图示说明如通过从用mAb h4D5X、h10D12X和h13B1X的单次5 mg/kg静脉内剂量治疗后,随时间的食蟹猴组(3只动物/组)获得的血清样品中的流体相C3a所测定的APC活性,如实施例21中所述;
图72A图示说明如通过流体相Ba所测量的,在完全APC抑制的时间点的靶标(MASP-3)与高亲和力MASP-3抑制性抗体h4D5X的摩尔比,如实施例21中所述;
图72B图示说明如通过流体相Ba所测量的,在完全APC抑制的时间点的靶标(MASP-3)与高亲和力MASP-3抑制性抗体h10D12X的摩尔比,如实施例21中所述;
图72C图示说明如通过流体相Ba所测量的,在完全APC抑制的时间点的靶标(MASP-3)与高亲和力MASP-3抑制性抗体h13B1X的摩尔比,如实施例21中所述;且
图73显示Western印迹,其分析用mAb h13B1X的单次5 mg/kg静脉内剂量治疗后,随着时间(小时)的来自食蟹猴的血清中的前因子D和因子D的水平,如实施例21中所述。
序列表的描述
SEQ ID NO: 1 人MASP-3 cDNA
SEQ ID NO: 2 人MASP-3蛋白(具有前导区)
SEQ ID NO: 3 小鼠MASP-3蛋白(具有前导区)
SEQ ID NO: 4 大鼠MASP-3蛋白
SEQ ID NO: 5 鸡MASP-3蛋白
SEQ ID NO: 6 兔MASP-3蛋白
SEQ ID NO: 7 食蟹猴MASP-3蛋白
SEQ ID NO: 8 人MASP-1蛋白(具有前导区)
人MASP-3 SP结构域肽片段:
SEQ ID NO: 9 (人MASP-3 w/前导区的aa 498-509)
SEQ ID NO: 10 (人MASP-3 w/前导区的aa 494-508)
SEQ ID NO: 11 (人MASP-3 w/前导区的aa 544-558)
SEQ ID NO: 12 (人MASP-3 w/前导区的aa 626-638)
SEQ ID NO: 13 (人MASP-3 w/前导区的aa 639-649)
SEQ ID NO: 14 (人MASP-3 w/前导区的aa 704-713)
SEQ ID NO: 15 (人MASP-3 w/前导区的aa 498-508)
SEQ ID NO: 16 (人MASP-3 w/前导区的aa 435-447)
SEQ ID NO: 17 (人MASP-3 w/前导区的aa 454-464)
SEQ ID NO: 18 (人MASP-3 w/前导区的aa 479-493)
SEQ ID NO: 19 (人MASP-3 w/前导区的aa 514-523)
SEQ ID NO: 20 (人MASP-3 w/前导区的aa 562-571)
SEQ ID NO: 21 (人MASP-3 w/前导区的aa 583-589)
SEQ ID NO: 22 (人MASP-3 w/前导区的aa 614-623)
SEQ ID NO: 23 (人MASP-3 w/前导区的aa 667-678)
SEQ ID NO: 24-39: 重链可变区-小鼠亲本
SEQ ID NO: 24 4D5_VH
SEQ ID NO: 25 1F3_VH
SEQ ID NO: 26 4B6_VH
SEQ ID NO: 27 1A10_VH
SEQ ID NO: 28 10D12_VH
SEQ ID NO: 29 35C1_VH
SEQ ID NO: 30 13B1_VH
SEQ ID NO: 31 1G4_VH
SEQ ID NO: 32 1E7_VH
SEQ ID NO: 33 2D7_VH
SEQ ID NO: 34 49C11_VH
SEQ ID NO: 35 15D9_VH
SEQ ID NO: 36 2F5_VH
SEQ ID NO: 37 1B11_VH
SEQ ID NO: 38 2F2_VH
SEQ ID NO: 39 11B6_VH
SEQ ID NO: 40-54: 轻链可变区-小鼠亲本
SEQ ID NO: 40 4D5_VL
SEQ ID NO: 41 1F3_VL
SEQ ID NO: 42 4B6/1A10_VL
SEQ ID NO: 43 10D12_VL
SEQ ID NO: 44 35C1_VL
SEQ ID NO: 45 13B1_VL
SEQ ID NO: 46 1G4_VL
SEQ ID NO: 47 1E7_VL
SEQ ID NO: 48 2D7_VL
SEQ ID NO: 49 49C11_VL
SEQ ID NO: 50 15D9_VL
SEQ ID NO: 51 2F5_VL
SEQ ID NO: 52 1B11_VL
SEQ ID NO: 53 2F2_VL
SEQ ID NO: 54 11B6_VL
SEQ ID NO: 55-140:来自小鼠亲本MASP-3 mAb的重链构架区(FR)和互补决定区(CDR)
SEQ ID NO: 141-208:来自小鼠亲本MASP-3 mAb的轻链FR和CDR
SEQ ID NO: 209-216:CDR共有序列
SEQ ID NO: 217-232:编码重链可变区(小鼠亲本)的DNA
SEQ ID NO: 233-247:编码轻链可变区(小鼠亲本)的DNA
SEQ ID NO: 248:人源化4D5_VH-14 (h4D5_VH-14)重链可变区
SEQ ID NO: 249:人源化4D5_VH-19 (h4D5_VH-19)重链可变区
SEQ ID NO: 250:人源化4D5_VL-1 (h4D5_VL-1)轻链可变区
SEQ ID NO: 251:人源化10D12_VH-45 (h10D12_VH-45)重链可变区
SEQ ID NO: 252:人源化10D12_VH-49 (h10D12_VH-49)重链可变区
SEQ ID NO: 253:人源化10D12_VL-21 (h10D12-VL-21)轻链可变区
SEQ ID NO: 254:人源化13B1_VH-9 (h13B1-VH-9)重链可变区
SEQ ID NO: 255:人源化13B1_VH-10 (h13B1-VH-10)重链可变区
SEQ ID NO: 256:人源化13B1-VL-1 (h13B1-VL-1)轻链可变区
SEQ ID NO: 257:4D5和13B1 LC-CDR1-NQ
SEQ ID NO: 258:4D5和13B1 LC-CDR1-NA
SEQ ID NO: 259:4D5和13B1 LC-CDR1-ST
SEQ ID NO: 260:4D5、13B1亲本和变体的共有LC-CDR1
SEQ ID NO: 261:10D12 LC-CDR1-DE
SEQ ID NO: 262:10D12 LC-CDR1-DA
SEQ ID NO: 263:10D12 LC-CDR1-GA
SEQ ID NO: 264-277:人源化4D5、10D12和13B1的HC FR和CDR
SEQ ID NO: 278:h4D5_VL-1-NA
SEQ ID NO: 279:h10D12_VL-21-GA
SEQ ID NO: 280:h13B1_VL-1-NA
SEQ ID NO: 281-287 人源化4D5、10D12和13B1的LC FR和CDR
SEQ ID NO: 288-293:编码人源化4D5、10D12、13B1重链可变区和变体的DNA
SEQ ID NO: 294-299:编码人源化4D5、10D12、13B1轻链可变区和变体的DNA
SEQ ID NO: 300:亲本DTLacO重链可变区(VH)多肽
SEQ ID NO: 301:MASP-3特异性克隆M3J5重链可变区(VH)多肽
SEQ ID NO: 302:MASP-3特异性克隆M3M1重链可变区(VH)多肽
SEQ ID NO: 303:亲本DTLacO轻链可变区(VL)多肽
SEQ ID NO: 304:MASP-3特异性克隆M3J5轻链可变区(VL)多肽
SEQ ID NO: 305:MASP-3特异性克隆M3M1轻链可变区(VL)多肽
SEQ ID NO: 306:MASP-3克隆D14重链可变区(VH)多肽
SEQ ID NO: 307:MASP-3克隆D14轻链可变区(VL)多肽
SEQ ID NO: 308:MASP-1克隆1E10重链可变区(VH)多肽
SEQ ID NO: 309:MASP-1克隆1E10轻链可变区(VL)多肽
SEQ ID NO: 310:人IgG4恒定区
SEQ ID NO: 311:具有S228P突变的人IgG4恒定区
SEQ ID NO: 312:具有S228P突变_X的人IgG4恒定区
SEQ ID NO: 313:人IgK恒定区。
具体实施方式
I. 定义
除非本文明确规定,否则本文使用的所有术语都具有如本发明领域的普通技术人员所理解的相同含义。当这些术语用于说明书和权利要求书以描述本发明时,提供下列定义以澄清所述术语。
如本文所用,凝集素途径效应物分支(arm) 1 (“LEA-1”)是指由MASP-3所致的因子B和因子D的凝集素-依赖性活化。
如本文所用,凝集素途径效应物分支2 (“LEA-2”)是指MASP-2-依赖性补体活化。
如本文所用,术语“MASP-3-依赖性补体活化”包含2部分:(i) 因子B和因子D的凝集素MASP-3-依赖性活化,其包括在LEA-1-介导的补体活化中,在Ca++存在时发生,通常导致C3bB转化为C3bBb和前因子D转化为因子D;和(ii) 因子B和因子D的凝集素-非依赖性转化,其可以发生在Ca++不存在时,通常导致C3bB转化为C3bBb和前因子D转化为因子D。已经确定LEA-1-介导的补体活化以及因子B和因子D的凝集素-非依赖性转化导致调理作用和/或细胞裂解。尽管不希望受到任何特定理论的束缚,但认为仅当多个C3b分子靠近地缔合和结合时,C3bBb C3转化酶才改变其底物特异性并切割C5为替代途径C5转化酶,即C3bBb(C3b)n。
如本文所用,术语“MASP-2-依赖性补体活化”在本文中也称为LEA-2-介导的补体活化,包括MASP-2凝集素-依赖性活化,其在Ca++存在时发生,导致凝集素途径C3转化酶C4b2a的形成和在C3切割产物C3b积累后随之导致C5转化酶C4b2a(C3b)n的形成,其被确定导致调理作用和/或细胞裂解。
如本文所用,术语“替代途径的传统理解”也称为“传统的替代途径”是指先于本文所述的发现的替代途径,即例如由以下触发的补体活化:来自真菌和酵母细胞壁的酵母聚糖,来自革兰氏阴性外膜的脂多糖(LPS),和兔红细胞,以及多种纯的多糖、病毒、细菌、动物肿瘤细胞、寄生虫和受损细胞,并且在传统上一直认为是由自补体因子C3自发蛋白水解产生的C3b而引起的。如本文所用,“传统的替代途径”(在本文中也称为“替代途径”)的活化在Mg++/EGTA缓冲液中(即在Ca++不存在时)测定。
如本文所用,术语“凝集素途径”是指通过血清和非血清糖-结合蛋白(包括甘露聚糖-结合凝集素(MBL)、CL-11和纤维胶凝蛋白(H-纤维胶凝蛋白、M-纤维胶凝蛋白或L-纤维胶凝蛋白))的特异性结合而发生的补体活化。如本文所述,本发明人已经发现凝集素途径被两个效应物分支驱动:凝集素途径效应物分支1 (LEA-1),其现在已知是MASP-3-依赖性的;和凝集素途径效应物分支2 (LEA-2),其是MASP-2-依赖性的。如本文所用,凝集素途径的活化使用含有Ca++的缓冲液来评价。
如本文所用,术语“经典途径”是指由抗体与外源颗粒结合而触发的并且需要结合识别分子C1q的补体活化。
如本文所用,术语“HTRA-1”是指丝氨酸肽酶高温需要丝氨酸蛋白酶A1。
如本文所用,术语“MASP-3抑制剂”是指直接抑制MASP-3-依赖性补体活化的任何试剂,包括与MASP-3结合或直接与MASP-3相互作用的试剂,包括MASP-3抗体和其MASP-3结合片段、天然的和合成的肽、竞争性底物、小分子、表达抑制剂和分离的天然抑制剂,并且也包括与MASP-3竞争性结合在凝集素途径中的另一识别分子(例如MBL、CL-11、H-纤维胶凝蛋白、M-纤维胶凝蛋白或L-纤维胶凝蛋白)的肽。在一个实施方案中,MASP-3抑制剂对MASP-3具有特异性,并且不结合MASP-1或MASP-2。直接抑制MASP-3的抑制剂可称为直接MASP-3抑制剂(例如MASP-3抗体),而间接抑制MASP-3的抑制剂可称为间接MASP-3抑制剂(例如抑制MASP-3活化的MASP-1抗体)。直接MASP-3抑制剂的实例是MASP-3特异性抑制剂,例如特异性地与人MASP-3 (SEQ ID NO: 2)的一部分结合的MASP-3抑制剂,其结合亲和力比补体系统中的其他成分高至少10倍。直接MASP-3抑制剂的另一个实例是高亲和力MASP-3抗体,其特异性地与人MASP-3 (SEQ ID NO: 2)的丝氨酸蛋白酶结构域结合,其亲和力为小于500pM,且不与MASP-1 (SEQ ID NO: 8)结合。在一个实施方案中,MASP-3抑制剂间接抑制MASP-3活性,例如,MASP-3活化抑制剂,包括MASP-1-介导的MASP-3活化抑制剂(例如MASP-1抗体或其MASP-1结合片段、天然的和合成的肽、小分子、表达抑制剂和分离的天然抑制剂,并且也包括与MASP-1竞争性结合至MASP-3的肽)。在一个优选实施方案中,MASP-3抑制剂例如抗体或其抗原结合片段或抗原结合肽抑制MASP-3-介导的因子D成熟。在另一个实施方案中,MASP-3抑制剂抑制MASP-3-介导的因子B活化。用于本发明方法的MASP-3抑制剂可以降低MASP-3-依赖性补体活化达大于10%、例如大于20%、大于50%或大于90%。在一个实施方案中,MASP-3抑制剂降低MASP-3-依赖性补体活化达大于90% (即导致MASP-3补体活化仅为10%或更低)。预计MASP-3抑制将会全部或部分地阻断LEA-1-相关的细胞裂解和调理作用以及因子B和因子D相关的细胞裂解和调理作用的凝集素-非依赖性转化两者。
在一个实施方案中,高亲和力MASP-3抑制性抗体以小于500pM(例如,小于250 pM、小于100pM、小于50pM或小于10pM)的亲和力结合MASP-3的丝氨酸蛋白酶结构域(SEQ IDNO: 2的氨基酸残基450至728),并且将哺乳动物对象的血液中补体活化的替代途径抑制至少50%(例如,至少60%、或至少70 %、或至少80%、或至少90%、或至少95%或更大)。
“抗体”是能够通过位于免疫球蛋白分子的可变区(本文也称为可变结构域)中的至少一个表位识别位点特异性结合靶标、例如多肽的免疫球蛋白分子。
如本文所用,术语“抗体”包括这样的抗体及其抗体片段:其得自产生抗体的任何哺乳动物(如小鼠、大鼠、兔和包括人在内的灵长类动物),或得自杂交瘤、噬菌体选择、重组表达或转基因动物(或产生抗体或抗体片段的其他方法),并与靶多肽(例如MASP-1、MASP-2或MASP-3多肽或其部分)特异性结合。不意欲根据抗体来源或其制备方式(例如通过杂交瘤、噬菌体选择、重组表达、转基因动物、肽合成等)来限制术语“抗体”。示例性的抗体包括多克隆抗体、单克隆抗体和重组抗体;泛-特异性、多特异性抗体(如双特异性抗体、三特异性抗体);人源化抗体;鼠抗体;嵌合的小鼠-人、小鼠-灵长类、灵长类-人单克隆抗体;和抗-独特型抗体,并且可以是任何完整的抗体或其片段。如本文所用,术语“抗体”不仅包括完整的多克隆或单克隆抗体,而且包括其片段,例如单一可变区抗体(dAb)、或其他已知抗体片段例如Fab、Fab'、F(ab')2、Fv等、单链(ScFv)、其合成变体、天然存在的变体,包括具有所需特异性的抗原-结合片段的抗体部分的融合蛋白、人源化抗体、嵌合抗体、双特异性抗体以及包含所需特异性的抗原-结合位点或片段(表位识别位点)的免疫球蛋白分子的任何其他修饰构型。
“单克隆抗体”是指同质抗体群,其中所述单克隆抗体由在选择结合表位中涉及的氨基酸(天然存在的和非-天然存在的)组成。单克隆抗体对靶抗原是高度特异性的。术语“单克隆抗体”不仅包括完整的单克隆抗体和全长单克隆抗体,而且包括其片段(例如Fab、Fab'、F(ab')2、Fv)、单链(ScFv)、其变体、包括抗原结合部分的融合蛋白、人源化单克隆抗体、嵌合单克隆抗体、以及包括具有所需特异性和结合表位的能力的抗原结合片段(表位识别位点)的免疫球蛋白分子的任何其他修饰构型。不意欲根据抗体来源或其制备方式(例如通过杂交瘤、噬菌体选择、重组表达、转基因动物等)来限制它。该术语包括完整免疫球蛋白以及根据以上“抗体”定义所描述的片段等。
如本文所用,术语“抗体片段”是指是指得自或涉及全长抗体(例如MASP-1、MASP-2或MASP-3的抗体)的一部分,一般包括其抗原结合区或其可变区。抗体片段的说明性实例包括Fab、Fab'、F(ab)2、F(ab')2和Fv片段、scFv片段、双抗体、线性抗体、单链抗体分子和由抗体片段形成的多特异性抗体。
在某些实施方案中,如本文所述的抗体及其抗原结合片段包括分别插入重链和轻链构架区(FR)集合之间的重链(VH)和轻链(VL)互补决定区(“CDR”)集合,其为CDR提供支持并且定义CDR相对于彼此的空间关系。如本文所用,术语“CDR集合”是指重链或轻链V区的三个高变区。从重链或轻链的N末端进行,这些区分别表示为“CDR1”、“CDR2”和“CDR3”。因此,抗原-结合位点包含六个CDR,其包含来自重链和轻链V区中的每一个的CDR集合。
如本文所用,术语“FR集合”是指作为重链或轻链V区的CDR集合的CDR构架的四个侧接氨基酸序列。一些FR残基可接触结合的抗原;然而,FR主要负责将V区折叠成抗原结合位点,特别是与CDR直接相邻的FR残基。在FR中,某些氨基酸残基和某些结构特征是非常高度保守的。在该方面,所有V区序列含有约90个氨基酸残基的内部二硫化物环。在V区折叠成结合位点的情况下,CDR显示为形成抗原结合表面的突出的环基序。通常认识到,存在FR的保守结构区域,其影响CDR环至某些“规范”结构的折叠形状 - 而不管精确的CDR氨基酸序列。
免疫球蛋白可变区的结构和位置可以参考Kabat, E.A.等人,Sequences ofProteins of Immunological Interest, 第4版, US Department of Health and HumanServices, 1987及其现在在因特网(immuno.bme.nwu.edu.)可得的更新进行确定。
如本文所用,“单链Fv”或“scFv”抗体片段包括抗体的VH和VL结构域,其中这些结构域存在于单一多肽链上。通常,Fv多肽还包括VH和VL结构域之间的多肽接头,这使得scFv能够形成所需的抗原结合结构。
如本文所用,“嵌合抗体”是含有得自非人物种(如啮齿动物)抗体的可变结构域和互补决定区的重组蛋白,而抗体分子的其余部分来源于人抗体。在一些实施方案中,嵌合抗体由可操作地连接或以其他方式融合至不同抗体的异源Fc部分的MASP-3抑制性抗体的抗原结合片段构成。在一些实施方案中,异源Fc结构域可以来自与亲本抗体不同的Ig类型,包括IgA(包括亚类IgA1和IgA2)、IgD、IgE、IgG(包括亚类IgG1、IgG2、IgG3和IgG4)和IgM。
如本文所用,“人源化抗体”是通常使用重组技术制备的嵌合分子,其具有源自非人物种的免疫球蛋白的抗原结合位点和基于人免疫球蛋白的结构和/或序列的分子的剩余免疫球蛋白结构。抗原结合位点可以包含融合至恒定结构域上的完全可变区或仅移植至可变结构域中的适当构架区上的CDR。表位结合位点可以是野生型,或者可以通过一个或多个氨基酸取代来修饰。另一种方法不仅聚焦于提供人类来源的恒定区,而且还聚焦于修饰可变区,以便尽可能近地将它们重塑为人形式。在一些实施方案中,人源化抗体保留所有CDR序列(例如,含有来自小鼠抗体的所有六个CDR的人源化小鼠抗体)。在其他实施方案中,人源化抗体具有相对于原始抗体改变的一个或多个CDR(一个、二个、三个、四个、五个、六个),其也称为“衍生自”原始抗体的一个或多个CDR的一个或多个CDR。
如果抗体以比其与其他物质结合的更大的亲和力和/或亲合力结合,则其“特异性结合”靶标。在一个实施方案中,所述抗体或其抗原结合片段特异性结合人MASP-3的丝氨酸蛋白酶结构域(SEQ ID NO: 2的氨基酸残基450至728)。在一个实施方案中,所述抗体或其抗原结合片段特异性结合表4、表28中描述或图62中显示的一种或多种表位。
如本文所用,术语“甘露聚糖-结合凝集素”("MBL")等同于甘露聚糖-结合蛋白(“MBP”)。
如本文所用,“膜攻击复合物”(“MAC”)是指插入并破坏膜的末端5种补体成分(C5b以及C6、C7、C8和C9)的复合物(也称为C5b-9)。
如本文所用,“对象”包括所有哺乳动物,包括但不限于人、非人灵长类动物、狗、猫、马、绵羊、山羊、牛、兔、猪和啮齿动物。
如本文所用,氨基酸残基的缩写如下:丙氨酸(Ala;A)、天冬酰胺(Asn;N)、天冬氨酸(Asp;D)、精氨酸(Arg;R)、半胱氨酸(Cys;C)、谷氨酸(Glu;E)、谷氨酰胺(Gln;Q)、甘氨酸(Gly;G)、组氨酸(His;H)、异亮氨酸(Ile;I)、亮氨酸(Leu;L)、赖氨酸(Lys;K)、甲硫氨酸(Met;M)、苯丙氨酸(Phe;F)、脯氨酸(Pro;P)、丝氨酸(Ser;S)、苏氨酸(Thr;T)、色氨酸(Trp;W)、酪氨酸(Tyr;Y)和缬氨酸(Val;V)。
从最广意义上看,天然存在的氨基酸可根据各个氨基酸侧链的化学特性来分组。“疏水”氨基酸是指Ile、Leu、Met、Phe、Trp、Tyr、Val、Ala、Cys或Pro的任一个。“亲水”氨基酸是指Gly、Asn、Gln、Ser、Thr、Asp、Glu、Lys、Arg或His的任一个。氨基酸的这种分组可进一步细分如下。“不带电荷的亲水”氨基酸是指Ser、Thr、Asn或Gln的任一个。“酸性”氨基酸是指Glu或Asp的任一个。“碱性”氨基酸是指Lys、Arg或His的任一个。
如本文所用,术语“保守氨基酸置换”通过下面每组中氨基酸之间的置换来说明:(1)甘氨酸、丙氨酸、缬氨酸、亮氨酸和异亮氨酸;(2)苯丙氨酸、酪氨酸和色氨酸;(3)丝氨酸和苏氨酸;(4)天冬氨酸和谷氨酸;(5)谷胺酰胺和天冬酰胺;和(6)赖氨酸、精氨酸和组氨酸。
如本文所用,术语“寡核苷酸”是指核糖核酸(RNA)或脱氧核糖核酸(DNA)或其模拟物的寡聚体或多聚体。该术语还包括由天然存在的核苷酸、糖和核苷酸间(骨架)共价键所组成的寡核苷酸碱基以及具有非天然存在的修饰的寡核苷酸。
如本文所用,“表位”是指在蛋白(例如人MASP-3蛋白)上的与抗体结合的位点。“重叠表位”包括至少一个(例如2、3、4、5或6个)共同氨基酸残基,包括线性和非线性表位。
如本文所用,术语“多肽”、“肽”和“蛋白”可互换使用,是指氨基酸的任何肽-连接的链,不管长度或翻译后修饰如何。本文所述的MASP-3蛋白可含有或可以是野生型蛋白,或可以是具有不超过50(例如不超过1、2、3、4、5、6、7、8、9、10、12、15、20、25、30、35、40或50个)保守氨基酸置换的变体。保守置换典型地包括以下组内的置换:甘氨酸和丙氨酸;缬氨酸、异亮氨酸和亮氨酸;天冬氨酸和谷氨酸;天冬酰胺、谷氨酰胺、丝氨酸和苏氨酸;赖氨酸、组氨酸和精氨酸;以及苯基丙氨酸和酪氨酸。
在一些实施方案中,人MASP-3蛋白可以具有这样的氨基酸序列:其与具有SEQ IDNO: 2所示的氨基酸序列的人MASP-3蛋白具有等于或大于70 (例如,71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99或100) %同一性。
在一些实施方案中,肽片段可以是至少6 (例如,至少7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、55、60、65、70、75、80、85、90、95、100、110、120、130、140、150、160、170、180、190、200、250、300、350、400、450、500或600或更多)氨基酸残基长度(例如,SEQ ID NO: 2的至少6个连续氨基酸残基)。在一些实施方案中,人MASP-3蛋白的抗原肽片段是少于500 (例如,少于450、400、350、325、300、275、250、225、200、190、180、170、160、150、140、130、120、110、100、95、90、85、80、75、70、65、60、55、50、49、48、47、46、45、44、43、42、41、40、39、38、37、36、35、34、33、32、31、30、29、28、27、26、25、24、23、22、21、20、19、18、17、16、15、14、13、12、11、10、9、8、7或6)氨基酸残基长度(例如,SEQ ID NO: 2中的少于500个连续氨基酸残基)。
在一些实施方案中,在产生结合MASP-3的抗体的情况下,肽片段是抗原性的,并且保留全长蛋白在哺乳动物中诱导抗原性反应的能力的至少10%(例如,至少10%、至少15%、至少20%、至少25%、至少30%、至少35%、至少40%、至少50%、至少55%、至少60%、至少70%、至少80%、至少90%、至少95%、至少98%、至少99%、至少99.5%、或100%或更多) (参见以下“产生抗体的方法”)。
氨基酸序列同一性的百分率(%)定义为在比对序列和引入缺口(如果必要)以实现最大百分率序列同一性后,与参考序列中的氨基酸相同的候选序列中的氨基酸的百分率。为确定序列同一性百分率的比对可以以本领域技术内的多种方式来实现,例如,使用公众可得的计算机软件例如BLAST、BLAST-2、ALIGN、ALIGN-2或Megalign (DNASTAR)软件。用于测定比对的合适参数,包括实现跨越待比较的序列全长的最大比对所需的任何算法,可以通过已知方法来确定。
在代表性实施方案中,人MASP-3蛋白(SEQ ID NO: 2)由SEQ ID NO: 1所示的cDNA序列编码。本领域技术人员将知道,SEQ ID NO: 1中公开的cDNA序列表示人MASP-3的单个等位基因,并且预期发生等位变异和可变剪接。SEQ ID NO: 1所示的核苷酸序列的等位变体,包括含有沉默突变的那些和其中突变导致氨基酸序列改变的那些,都在本发明范围内。可根据标准程序,通过探测来自不同个体的cDNA或基因组文库,克隆MASP-3序列的等位变体,或者可通过含有所述信息的数据库的同源性比较搜索(例如,BLAST搜索)来鉴定MASP-1、MASP-2或MASP-3序列的等位变体。
如本文所用,“分离的核酸分子”是未整合在生物体的基因组DNA中的核酸分子(例如,多核苷酸)。例如,已与细胞的基因组DNA分离的编码生长因子的DNA分子是分离的DNA分子。分离的核酸分子的另一个实例是化学合成的核酸分子,其不整合在生物体的基因组中。已从特定物种分离的核酸分子小于来自该物种的染色体的完整DNA分子。
如本文所用,“核酸分子构建体”是单链或双链的核酸分子,其已经通过人类干预进行修饰以含有以自然界中不存在的排列组合和并列的核酸区段。
如本文所用,“表达载体”是编码在宿主细胞中表达的基因的核酸分子。通常,表达载体包含转录启动子、基因和转录终止子。基因表达通常置于启动子的控制之下,并且这样的基因被称为与启动子“可操作地连接”。类似地,如果调节元件调节核心启动子的活性,则调节元件和核心启动子可操作地连接。
如本文所用,如本文所用的术语“约”旨在规定提供的具体值可以在特定程度上变化,例如±10%、优选±5%、最优选±2%的范围内的变化包括在给定值中。
在规定范围的情况下,在该范围内包括端点,除非另有说明或从上下文中显而易见。
如本文所用,单数形式“一(a)”、“一(an)”和“该”包括复数方面,除非上下文另有明确规定。因此,例如,提及“赋形剂”包括多种这样的赋形剂和本领域技术人员已知的其等效物,提及“药剂”包括一种药剂,以及两种或更多种试剂;提及“抗体”包括多种这样的抗体,并且提及“构架区”包括提及一个或多个构架区和本领域技术人员已知的其等效物等等。
除非另有明确说明,本说明书中的每个实施方案应当加上必要变更适用于每个其他实施方案。可以考虑,本说明书中讨论的任何实施方案可以相对于本发明的任何方法、试剂盒、试剂或组合物来实施,反之亦然。此外,本发明的组合物可用于实现本发明的方法。
II. 凝集素途径:新的理解
i. 概述:凝集素途径已被重新定义
如本文所述,本发明人已经作出惊人发现:补体的凝集素途径具有活化补体的两个效应物分支,两者都被由碳水化合物识别成分(MBL、CL-11和纤维胶凝蛋白)所形成的凝集素途径活化复合物驱动:i)由凝集素途径-相关丝氨酸蛋白酶MASP-1和MASP-3所形成的效应物分支,在本文中称为“凝集素途径效应物分支1”或“LEA-1”;和(ii) MASP-2驱动的活化效应物分支,在本文中称为“凝集素途径效应物分支2”或“LEA-2”。LEA-1和LEA-2都可以起到细胞裂解和/或调理作用的效果。
还已确定,MASP-3所致的因子B的凝集素-非依赖性转化以及HTRA-1、MASP-1和MASP-3所致的因子D的凝集素-非依赖性转化(这两者可在Ca++不存在时发生)通常导致C3bB转化为C3bBb和前因子D转化为因子D。因此,抑制MASP-3可以同时抑制LEA-1和因子B和/或因子D的凝集素-非依赖性活化,这可导致对细胞裂解和/或调理作用的抑制。
图1说明了对补体活化途径的这一新的理解。如图1所示,LEA-1被凝集素-结合的MASP-3所驱动,其可将因子D酶原活化为其活性形式和/或切割C3b-或C3b(H20)-结合的因子B,导致C3bB酶原复合物转化为其酶促活性形式C3bBb。MASP-3所产生的活化的因子D也可将C3bB或C3b(H20)酶原复合物转化为其酶促活性形式。MASP-1能够快速自我活化,而MASP-3不能。在许多情况下,MASP-1是MASP-3的活化剂。
尽管在许多实例中,凝集素(即MBL、CL-11或纤维胶凝蛋白)可将活性指向细胞表面,图1也概述了MASP-3、MASP-1和HTRA-1在因子B活化和/或因子D成熟中的凝集素-非依赖性功能。正如在LEA-1中的MASP-3的凝集素-相关形式,MASP-3的凝集素-非依赖性形式能够介导将C3bB或C3b(H20)转化为C3bBb (还参见图29和30)和将前因子D转化为因子D(参见图32)。MASP-1(还参见图32)和非-MASP-相关蛋白HTRA-1也可活化因子D(Stanton等人,Evidence That the HTRA1 Interactome Influences Susceptibility to Age-Related Macular Degeneration, 在2011年5月4日的The Association for Research in Visionand Ophthalmology 2011会议上提交),其方式无需凝集素成分。
因此,MASP-1 (经由LEA-1和凝集素-非依赖性形式)、MASP-3 (经由LEA-1和凝集素-非依赖性形式)和HTRA-1 (仅凝集素-非依赖性)能够在沿着MASP-3-因子D-因子B轴上的一点或多点上直接或间接活化。在这种情况下,它们产生C3bBb (替代途径的C3转化酶)和它们刺激C3b的产生并在微生物表面上沉积。C3b沉积在调理作用中起到关键性作用,标记微生物表面以便被宿主吞噬细胞(例如巨噬细胞)破坏。作为本文的一个实例(图28A和28B),MASP-3对于金黄色葡萄球菌的调理作用是至关重要的。C3b沉积在暴露给人血清的金黄色葡萄球菌上以MASP-3-依赖性方式快速发生(图28A和28B)。
然而,LEA-1和MASP-3、MASP-1或HTRA-1的凝集素-非依赖性功能的贡献不限于调理作用。如图1所示,这3种成分还可通过因子B的间接或直接活化而引起细胞裂解,和C3b的产生。这些成分形成复合物,其产生替代途径C5转化酶,C3bBb(C3b)n。正如本文中进一步描述的,在脑膜炎奈瑟氏菌的细胞裂解中(参见图11、12和13)对MASP-3和MBL而不是MASP-2(并且,因此在此实例中不是LEA-2)的需要,表明了LEA-1在细胞裂解中的作用。总之,得自金黄色葡萄球菌研究的调理作用结果和在脑膜炎奈瑟氏菌研究中观察到的细胞裂解结果支持LEA-1在这两个过程中的作用(如图1所示)。此外,这些研究表明调理作用和细胞裂解作用两者都可来自C3bB或C3b(H20)的转化和/或前因子D向因子D的转化;因此,这两个过程可能是MASP-3、MASP-1或HTRA-1的凝集素-非依赖性作用的结果。因此,在图1中的本发明人开发的模型支持主要使用MASP-3的抑制剂,以及MASP-1和/或HTRA-1的抑制剂,以阻断调理作用和/或细胞裂解和治疗这些过程的失调所致的病理学。
1. 凝集素途径效应物分支(LEA-1)
凝集素途径的第一效应物分支LEA-1是由凝集素途径-相关丝氨酸蛋白酶MASP-1和MASP-3所形成。如本文所述,本发明人现在已经表明,在MASP-3不存在时和在MASP-1存在时,在表面结构上不有效活化替代途径。这些结果表明MASP-3在启动替代途径中起到先前未公开的作用,并且使用得自患有稀有3MC常染色体隐性病症的患者的MASP-3-缺乏的3MC血清证实了这一点(Rooryck C,等人, Nat Genet. 43(3):197-203 (2011)),所述患者具有使MASP-3丝氨酸蛋白酶结构域功能失调的突变。基于这些新发现,预期涉及替代途径的补体活化,正如常规定义的,是MASP-3-依赖性的。事实上,MASP-3,及其LEA-1活化,可以代表至今未搞清楚的替代途径的引发剂。
如本文的实施例1-4中进一步描述,在MASP-2-缺乏的血清中,本发明人观察到更高活性的凝集素-依赖性替代途径活化,其导致针对脑膜炎奈瑟氏菌的更高杀菌活性(即细胞裂解活性)尽管不希望受到任何特定理论的束缚,认为在MASP-2不存在时,带有MASP-1的碳水化合物识别复合物更可能紧密结合至带有MASP-3的碳水化合物识别复合物上,以活化MASP-3。已知在许多情况下,MASP-3的活化依赖于MASP-1活性,因为MASP-3不是自我活化的酶并且常常需要MASP-1的活性以便从其酶原形式转化为其酶促活性形式。MASP-1 (如同MASP-2)是自我活化的酶,而MASP-3不是自我活化的,并且在许多情况下,需要MASP-1的酶促活性以便转化为其酶促活性形式。参见Zundel S,等人, J Immunol., 172(7):4342-50(2004)。在MASP-2不存在时,所有凝集素途径识别复合物都装载有MASP-1或MASP-3。因此,MASP-2不存在促进了MASP-1-介导的MASP-3向其酶促活性形式的转化。一旦MASP-3被活化,活化的MASP-3通过MASP-3-介导的C3bB向C3bBb的转化和/或前因子D向因子D的转化而启动替代途径活化(现在称为“LEA-1”活化)。C3bBb,也称为替代途径C3转化酶,切割额外的C3分子,得到调理素的C3b分子的沉积。如果几种C3b片段靠近而结合至C3bBb转化酶复合物上,则这导致形成替代途径C5转化酶C3bBb(C3b)n,其促进MAC形成。另外,C3b分子沉积在表面,形成因子B结合的新位点,其现在可以被因子D和/或MASP-3切割而形成额外位点,在此可以形成替代途径C3和C5转化酶复合物。需要后一过程以便有效裂解细胞,并且当已经发生起初的C3b沉积后,不需要凝集素。近期出版物(Iwaki D.等人, J Immunol 187(7):3751-8(2011))以及本发明人得到的数据(图30)表明,替代途径C3转化酶酶原复合物C3bB通过活化MASP-3而转化为其酶促活性形式。本发明人现在已经发现,MASP-3-介导的因子B的切割代表新描述的LEA-1的亚成分,其促进替代途径C3转化酶C3bBb的凝集素-依赖性形成。
2. 凝集素途径效应物分支(LEA-2)
凝集素途径的第二效应物分支LEA-2,是由凝集素途径-相关丝氨酸蛋白酶MASP-2所形成。当识别成分与其各自模式结合后,MASP-2被活化,并且也可被MASP-1活化,随后切割补体成分C4为C4a和C4b。当切割产物C4b与血浆C2结合后,C4b-结合的C2变为第二MASP-2-介导的切割步骤的底物,其将C4b-结合的C2转化为酶促活性复合物C4bC2a和小C2b切割片段。C4b2a是凝集素途径的C3-转化的C3转化酶,将丰富的血浆成分C3转化为C3a和C3b。C3b经由硫酯键结合至靠近的任何表面上。如果几个C3b片段靠近而结合至C3转化酶复合物C4b2a上,则该转化酶改变其特异性,将C5转化为C5b和C5a,形成C5转化酶复合物C4b2a(C3b)n。尽管该C5转化酶可以启动MAC的形成,但该过程被认为自身不能有效促进细胞裂解。而是,由LEA-2所产生的起初的C3b调理素形成核,用于形成新的替代途径C3转化酶和C5转化酶位点,其最终导致大量MAC形成和细胞裂解。这后一事件是由与LEA-2-形成的C3b相关的因子B的因子D活化所介导,因此由于MASP-1在因子D成熟中的必要作用而依赖于LEA-1。还存在MASP-2-依赖性C4-替代活化途径,以在C4不存在时活化C3,这在缺血-再灌注损伤的病理生理学中起到重要作用,因为C4-缺陷型小鼠不能保护自身免于缺血-再灌注损伤,而MASP-2-缺陷型小鼠却可以(Schwaeble等人, PNAS, 2011 supra)。LEA-2还涉及凝血途径,包括将凝血酶原切割为凝血酶(共同途径)并还切割XII因子(接触因子)以转化为其酶促活性形式XIIa。XIIa因子反过来将XI因子切割为XIa因子(固有途径)。凝血级联的固有途径活化导致纤维蛋白形成,其对于血栓形成是至关重要的。
图1基于本文提供的结果,说明了对凝集素途径和替代途径的新的理解。图1描绘了LEA-2在调理作用和细胞裂解两者中的作用。尽管MASP-2在生理性的多个凝集素-依赖性环境中是“下游”C3b沉积(和所导致的调理作用)的引发剂(图18A、18B、18C),但它在血清-敏感性细菌的细胞裂解中也起作用。如图1所示,对于血清-敏感性病原体例如脑膜炎奈瑟氏菌,所提出的负责MASP-2-缺乏的或MASP-2-耗尽的血清/血浆的杀菌活性增加的分子机制是,对于细菌的细胞裂解而言,与MASP-1和MASP-3缔合的凝集素途径识别复合物必须彼此靠近地结合至细菌表面上,从而允许MASP-1切割MASP-3。与MASP-1和MASP-2相反,MASP-3不是自我活化的酶,但是在许多情况下,需要被MASP-1活化/切割而转化为其酶促活性形式。
进一步如图1所示,活化的MASP-3然后可以切割病原体表面上的C3b-结合的因子B,通过分别形成酶促活性替代途径C3和C5转化酶C3bBb和C3bBb(C3b)n而启动替代活化级联。携带MASP-2的凝集素-途径活化复合物不参与MASP-3活化,并且,在MASP-2不存在时或耗尽后,所有凝集素途径活化复合物将装载有MASP-1或MASP-3。因此,在MASP-2不存在时,在微生物表面上携带MASP-1和MASP-3的凝集素-途径活化复合物将彼此靠近的可能性明显增加,导致更多MASP-3被活化,从而导致更高速率的MASP-3-介导的C3b-结合的因子B切割,在微生物表面上形成替代途径C3和C5转化酶C3bBb和C3bBb(C3b)n。这导致末端活化级联C5b-C9的活化,形成膜攻击复合物,其由表面-结合的C5b与C6缔合、C5bC6与C7缔合、C5bC6C7与C8缔合和C5bC6C7C8组成,导致C9聚合,其插入到细菌表面结构并在细菌壁中形成小孔,其将导致补体-靶向的细菌的渗透压杀伤。
这一新概念的核心就是本文提供的数据清楚地显示了凝集素途径活化复合物驱动以下两个不同的活化途径,如图1所示:
i) LEA-1:MASP-3-依赖性活化途径,其通过在活化剂表面上的因子B的最初切割和活化而产生替代途径转化酶C3bBb,来启动和驱动补体活化,然后催化C3b沉积和替代途径转化酶C3bBb的形成。MASP-3-驱动的活化途径在调理作用和微生物细胞裂解中起到重要作用,并驱动在细菌表面上的替代途径,导致最佳活化速率,产生膜攻击复合物;和
ii) LEA-2:MASP-2-依赖性活化途径,导致凝集素途径C3转化酶C4b2a的形成,并且在C3切割产物C3b积累后,随之形成C5转化酶C4b2a(C3b)n。在补体C4不存在时,MASP-2可以形成替代C3转化酶复合物,其包括C2和凝血因子XI。
除了在细胞裂解中的作用外,MASP-2-驱动的活化途径还在细菌调理作用中起重要作用,导致微生物被共价结合的C3b及其切割产物(即iC3b和C3dg)所包被,这将是携带C3受体的吞噬细胞(例如粒细胞、巨噬细胞、单核细胞、小胶质细胞)和网状内皮系统的摄取和杀伤的靶标。这是抵抗补体细胞裂解的细菌和微生物的清除的最有效途径。这些包括大部分革兰氏阳性菌。
除了LEA-1和LEA-2外,对于MASP-3、MASP-1和/或HTRA-1所致的因子D的凝集素-非依赖性活化存在可能性,并且对于MASP-3所致的因子B的凝集素-非依赖性活化也存在可能性。
尽管不希望受到任何特定理论的束缚,认为(i) LEA-1,(ii) LEA-2和(iii) 因子B和/或因子D的凝集素-非依赖性活化中的每一种导致调理作用和/或伴有所导致的细胞裂解的MAC形成。
ii. MASP-1、MASP-2和MASP-3的背景
3种甘露聚糖-结合凝集素-相关丝氨酸蛋白酶(MASP-1、MASP-2和MASP-3)目前已知与具有甘露聚糖-结合凝集素(MBL)的人血清有关。甘露聚糖-结合凝集素在最近的文献中也称为“甘露糖-结合蛋白”或“甘露糖-结合凝集素”。MBL-MASP复合物通过MBL与多种微生物上存在的碳水化合物结构结合而在先天免疫中起到重要作用。MBL与特定排列的碳水化合物结构的相互作用导致MASP前酶(proenzyme)活化,其反过来又通过切割补体成分C4和C2形成C3转化酶C4b2b而活化补体(Kawasaki等人, J. Biochem 106:483-489 (1989);Matsushita & Fujita, J. Exp Med. 176:1497-1502 (1992);Ji等人, J. Immunol 150:571-578 (1993))。
MBL-MASP前酶复合物直到最近都被认为含有仅仅一类蛋白酶(MASP-1),但目前很清楚的是有2种其他不同的蛋白酶(即MASP-2和MASP-3)与MBL有关(Thiel等人, Nature386:506-510 (1997);Dahl等人, Immunity 15:127-135 (2001)),以及19 kDa的另外的血清蛋白,称为“MAp19”或“sMAP” (Stover等人, J. Immunol 162:3481-3490 (1999);Stover等人, J. Immunol 163:6848-6859 (1999);Takahashi等人, Int. Immunol 11:859-63 (1999))。
MAp19是MASP-2的结构基因的可变剪接的基因产物并缺乏MASP-2的4个C-末端结构域,包括丝氨酸内肽酶结构域。MASP-2基因的可变剪接/聚腺苷酸化事件产生了编码MAp19的大量表达的截短的mRNA转录物。通过类似机制,MASP-1/3基因导致3种主要基因产物:2种丝氨酸蛋白酶MASP-1和MASP-3和称为“MAp44”的44 kDa的截短的基因产物(Degn等人, J. Immunol 183(11):7371-8 (2009);Skjoedt等人, J Biol Chem 285:8234-43(2010))。
MASP-1首次被描述为血清Ra-反应因子的P-100蛋白酶成分,其现在被认为是由MBL加MASP组成的复合物(Matsushita等人, Collectins and Innate Immunity, (1996);Ji等人, J Immunol 150:571-578 (1993)。MBL-MASP复合物内的MBL-相关内肽酶以与补体经典途径的C1q-(Clr)2-(Cls)2复合物内的C1s酶明显相同的方式作用于补体成分C4和C2的能力表明,存在功能类似于C1q-(C1r)2-(C1s)2复合物的MBL-MASP复合物。通过C1q与免疫复合物中存在的抗体IgG或IgM的Fc区相互作用而活化C1q-(C1r)2-(C1s)2复合物。这导致C1r前酶的自我活化,其反过来又活化C1s前酶,后者再作用于补体成分C4和C2。
MBL-MASP复合物的化学计量学不同于C1q-(C1r)2-(C1s)2复合物中发现的化学计量学之处在于,不同的MBL寡聚物看来与不同比例的MASP-1/MAp19或MASP-2/MASP-3相关(Dahl等人, Immunity 15:127-135 (2001)。血清中存在的大部分MASP和MAp19不与MBL复合(Thiel等人, J Immunol 165:878-887 (2000))并且可以部分地与纤维胶凝蛋白缔合,纤维胶凝蛋白是目前描述的一组凝集素,其具有纤维蛋白原-样结构域,能够结合至微生物表面的N-乙酰基葡糖胺残基上(Le等人, FEBS Lett 425:367 (1998);Sugimoto等人, J. Biol Chem 273:20721 (1998))。这其中,人L-纤维胶凝蛋白、H-纤维胶凝蛋白和M-纤维胶凝蛋白与MASP以及与MAp19缔合,并且在结合至纤维胶凝蛋白所识别的特异性碳水化合物结构上后可以活化凝集素途径(Matsushita等人, J Immunol 164:2281-2284 (2000);Matsushita等人, J Immunol 168:3502-3506 (2002))。除了纤维胶凝蛋白和MBL外,MBL-样凝集素胶原凝集素(称为CL-11)已被识别为凝集素途径识别分子(Hansen等人,J Immunol 185:6096-6104 (2010);Schwaeble等人,PNAS 108:7523-7528 (2011))。具有非常明确的证据表明这些替代碳水化合物识别分子的生理重要性,因此重要的是理解MBL不是凝集素活化途径的仅有的识别成分和MBL缺陷不被误认为是凝集素-途径缺陷。与MBL结构相关的一组替代碳水化合物-识别复合物的可能的存在可以拓宽经由补体活化而起始先天免疫系统的直接响应的微生物结构谱。
所有凝集素途径识别分子的特征在于在其胶原-同源茎区内的特异性MASP-结合基序(Wallis等人,J. Biol Chem 279:14065-14073 (2004))。在MBL、CL-11和纤维胶凝蛋白中的MASP-结合位点的特征在于在该结构域内的独特基序:Hyp-Gly-Lys-Xaa-Gly-Pro,其中Hyp是羟脯氨酸和Xaa通常是脂肪族残基。该序列中的点突变破坏了MASP结合。
1. MASP-1和MASP-3的各自的结构、序列、染色体定位和剪接变体
图2是示意图,其说明人MASP-1多肽(SEQ ID NO: 8)、人MASP-3多肽(SEQ ID NO:2)和人Map44多肽的结构域结构以及编码它们的外显子。如图2所示,丝氨酸蛋白酶MASP-1和MASP-3由6个独特结构域组成,其排列如同在C1r和C1s中所见;即(I) N-末端 C1r/C1s/海胆VEGF/骨形成蛋白(或CUBI)结构域;(II)表皮生长因子(EGF)-样结构域;(III)第二CUB结构域(CUBII);(IV和V) 2种补体对照蛋白(CCP1和CCP2)结构域;和(VI)丝氨酸蛋白酶(SP)结构域。
人和小鼠MASP-1的cDNA-衍生的氨基酸序列(Sato等人, Int Immunol 6:665-669(1994);Takada等人, Biochem Biophys Res Commun 196:1003-1009 (1993);Takayama等人, J. Immunol 152:2308-2316 (1994));人、小鼠和大鼠MASP-2的cDNA-衍生的氨基酸序列(Thiel等人, Nature 386:506-510 (1997);Endo等人, J Immunol 161:4924-30(1998);Stover等人, J. Immunol 162:3481-3490 (1999);Stover等人, J. Immunol163:6848-6859 (1999));以及人MASP-3的cDNA-衍生的氨基酸序列(Dahl等人, Immunity15:127-135 (2001))表明,这些蛋白酶是在其推定催化结构域中具有His、Asp和Ser残基的特征性三联体的丝氨酸肽酶(Genbank登录号:人MASP-1:BAA04477.1 (SEQ ID NO: 8);小鼠MASP-1:BAA03944;大鼠MASP-1:AJ457084;人MASP-3:AAK84071 (SEQ ID NO2);小鼠MASP-3:AB049755,正如2/15/2012访问的Genbank (SEQ ID NO: 3);大鼠MASP-3 (SEQ IDNO: 4);鸡MASP-3 (SEQ ID NO: 5);兔MASP-3 (SEQ ID NO: 6);和食蟹猴(SEQ ID NO:7))。
进一步如图2所示,当酶原转化为活性形式后,重链(α或A链)和轻链(β或B链)分裂而得到二硫键连接的A-链和代表丝氨酸蛋白酶结构域的较小的B-链。单链前酶MASP-1通过切割位于第二CCP结构域(结构域V)和丝氨酸蛋白酶结构域(结构域VI)之间的Arg-Ile键而被活化(像前酶C1r和C1s)。前酶MASP-2和MASP-3被认为是以类似于MASP-1的方式而活化。每种MASP蛋白形成同型二聚体并以Ca++-依赖性方式分别与MBL和纤维胶凝蛋白缔合。
人MASP-1多肽(SEQ ID NO: 8)和MASP-3多肽(SEQ ID NO: 2)来自一个结构基因(Dahl等人, Immunity 15:127-135 (2001),其已被作图到3号染色体长臂的3q27-28区(Takada等人, Genomics 25:757-759 (1995))。MASP-3和MASP-1的mRNA转录物是通过可变剪接/聚腺苷酸化过程而产生自初级转录物。MASP-3翻译产物是由α链(其是MASP-1和MASP-3共有的)和β链(丝氨酸蛋白酶结构域)(其是MASP-3独有的)组成。如图2所示,人MASP-1基因包括18个外显子。人MASP-1 cDNA是由外显子2、3、4、5、6、7、8、10、11、13、14、15、16、17和18所编码。进一步如图2所示,人MASP 3基因包括12个外显子。人MASP-3 cDNA (如SEQ IDNO: 1所述)是由外显子2、3、4、5、6、7、8、10、11和12所编码。可变剪接产生被称为MBL-相关蛋白44 (“MAp44”)的蛋白,来自外显子2、3、4、5、6、7、8和9。
人MASP-1多肽(来自Genbank BAA04477.1的SEQ ID NO: 8)具有699个氨基酸残基,其包括19个残基的前导肽。当省略前导肽时,MASP-1的计算分子量是76,976 Da。如图2中所示,MASP-1氨基酸序列含有4个N-连接的糖基化位点。人MASP-1蛋白结构域(参考SEQID NO: 8)显示于图2并且包括N-末端C1r/C1s/海胆VEFG/骨形成蛋白(CUBI)结构域(SEQID NO: 8的aa 25-137)、表皮生长因子-样结构域(SEQ ID NO: 8的aa 139-181)、第二CUB结构域(CUBII) (SEQ ID NO: 8的aa 185-296)以及补体对照蛋白(SEQ ID NO: 8的CCP1aa 301-363和CCP2 aa 367-432)结构域的串联和丝氨酸蛋白酶结构域(SEQ ID NO: 8的aa449-694)。
人MASP-3多肽(SEQ ID NO: 2,来自Genbank AAK84071)具有728个氨基酸残基(如图3中所示),其包括19个残基的前导肽(图3中显示为加下划线的氨基酸序列)。
当省略前导肽时,MASP-3的计算分子量是81,873 Da。如图2中所示,在MASP-3中有7个N-连接的糖基化位点。人MASP-3蛋白的结构域(参考SEQ ID NO: 2)显示于图2并且包括N-末端C1r/C1s/海胆VEGF/骨形成蛋白(CUBI)结构域(SEQ ID NO: 2的aa 25-137)、表皮生长因子-样结构域(SEQ ID NO: 2的aa 139-181)、第二CUB结构域(CUBII) (SEQ ID NO: 2的aa 185-296)以及补体对照蛋白(SEQ ID NO: 2的CCP1 aa 299-363和CCP2 aa 367-432)结构域的串联和丝氨酸蛋白酶结构域(SEQ ID NO: 2的aa 450-728)。
MASP-3翻译产物由α链(重链) (α链:SEQ ID NO: 2的aa 1-448)和轻链(β链:SEQID NO: 2的aa 449-728)构成;所述α链含有CUB-1-EGF-CUB-2-CCP-1-CCP-2结构域,其是MASP-1和MASP-3两者共有的,所述轻链含有丝氨酸蛋白酶结构域,其是MASP-3独有的。
2. 来自各种物种的MASP-3氨基酸序列的比较
图4提供MASP-3的多物种比对,其显示来自人(SEQ ID NO: 2)、食蟹猴(SEQ IDNO: 7)、大鼠(SEQ ID NO: 4)、鼠(SEQ ID NO: 3)、鸡(SEQ ID NO: 5)和兔(SEQ ID NO: 6)的全长MASP-3蛋白的比较。图5提供来自人(SEQ ID NO: 2的aa 450-728);兔(SEQ ID NO:6的aa 450-728);鼠(SEQ ID NO: 3的aa455-733);大鼠(SEQ ID NO: 4的aa 455-733)和鸡(SEQ ID NO: 5的aa aa448-730)的丝氨酸蛋白酶(SP)结构域的多物种比对。
如图4中所示,在不同物种中,特别是在SP结构域中存在MASP-3多肽的高水平氨基酸序列保守性(图5)。如图5中进一步所示,催化三联体(参考全长人MASP-3(SEQ ID NO:2),残基497的H;残基553的D和残基664的S)在物种间是保守的。表1概述物种间MASP-3 SP结构域的同一性百分比。
表 1:物种间的MASP-3 SP结构域的百分比同一性
食蟹猴 大鼠 小鼠
95% 94% 92% 91% 79%
食蟹猴 94% 90% 90% 79%
92% 92% 81%
大鼠 97% 78%
小鼠 78%
MASP-3对C4、C2或C3底物没有蛋白水解活性。相反,MASP-3最初据报道起到凝集素途径的抑制剂的作用(Dahl等人, Immunity 15:127-135 (2001))。得出该结论可能是因为与MASP-1和MASP-2相反,MASP-3不是自我活化的酶(Zundel S.等人, J Immunol 172:4342-4350 (2004);Megyeri等人, J. Biol. Chem. 288:8922–8934 (2013)。
最近,使用组合MASP-1和MASP-3缺陷的小鼠菌株,从转基因小鼠研究中得到MASP-1和MASP-3的可能的生理功能的证据。尽管MASP-1/3-敲除小鼠具有功能性凝集素途径(Schwaeble等人, PNAS 108:7523-7528 (2011)),但它们看来缺乏替代途径活性(Takahashi等人, JEM 207(1):29-37(2010))。替代途径活性的缺乏看来是因为补体因子D的加工缺陷,补体因子D是替代途径活性所必需的。在MASP-1/3敲除小鼠中,所有因子D以蛋白水解的无活性前形式(pro-form)循环,而在正常小鼠血清中,几乎所有因子D都呈活性形式。生化分析表明MASP-1可以能够将补体因子D从其酶原形式转化为其酶促活性形式(图32;Takahashi等人, JEM 207(1):29-37(2010))。MASP-3在体外也切割前因子D酶原和产生活性因子D(图32;Takahashi等人, JEM 207(1):29-37(2010))。因子D以活性酶形式存在于正常个体的循环中,并且MASP-1和MASP-3、以及HTRA-1,可能负责该活化。此外,具有组合MBL和纤维胶凝蛋白缺陷的小鼠仍然产生正常水平的因子D并具有完全功能性替代途径。因此,MASP-1和MASP-3的这些生理功能不一定涉及凝集素,并因此与凝集素途径无关。重组小鼠和人MASP-3还看来在体外切割因子B和支持C3沉积在金黄色葡萄球菌上(图29;Iwaki D.等人, J Immunol 187(7):3751-8(2011))。
从3MC综合征(先前称为Carnevale、Mingarelli、Malpuech和Michels综合征;OMIM# 257920)患者的近期研究中发现MASP-3的一个意外生理作用。这些患者表现出严重发育异常,包括腭裂、唇裂、颅骨畸形和智力迟钝。遗传学分析鉴定了功能失调的MASP-3基因为纯合子的3MC患者(Rooryck等人, Nat Genet. 43(3):197-203 (2011))。发现另一组3MC患者是MASP-1基因中的突变的纯合子,所述突变导致功能性MASP-1和MASP-3蛋白的不存在。再一组3MC患者缺乏功能性CL-11基因(Rooryck等人, Nat Genet. 43(3):197-203(2011))。因此,CL-11 MASP-3轴看来在胚胎发育期间起作用。该发育途径的分子机制尚不清楚。然而,这不太可能是由常规补体-驱动的过程介导,因为常见补体成分C3缺陷的个体并不出现这种综合征。因此,在本发明人的发现之前,如本文所述,MASP-3在凝集素-依赖性补体活化中的功能性作用在先前并未确定。
通过X射线晶体学已经确定了MASP-1和MASP-2催化片段的结构。MASP-1蛋白酶结构域与其他补体蛋白酶的结构比较揭示出其不严格的底物特异性的基础(Dobó等人, J. Immunol 183:1207-1214 (2009))。尽管MASP-2的底物结合沟的可达性受到表面环的限制(Harmat等人, J Mol Biol 342:1533-1546 (2004)),但MASP-1具有开放的底物结合口袋,其类似于胰蛋白酶而非其他补体蛋白酶。MASP-1结构的凝血酶-样性质是不寻常的大的60个氨基酸环(环B),其可以与底物相互作用。MASP-1结构的另一吸引人的性质是S1 Asp189和Arg224之间的内部盐桥。在因子D的底物结合口袋中可以发现类似的盐桥,其可以调节其蛋白酶活性。C1s和MASP-2具有几乎相同的底物特异性。令人惊讶的是,与C1s的相比,决定底物特异性的MASP-2的8个表面环中的一些具有完全不同的构象。这意味着这2种功能相关的酶以不同方式与相同底物相互作用。酶原MASP-2的结构显示了具有被破坏的氧阴离子洞和底物结合口袋的无活性蛋白酶结构域(Gál等人, J Biol Chem 280:33435-33444(2005))。令人惊讶的是,酶原MASP-2在大蛋白底物C4上显示了相当大的活性。很可能酶原MASP-2的结构相当柔韧,使得无活性和活性形式之间的转换成为可能。反映在结构中的这种柔韧性在自我活化过程中可能起作用。
Northern印迹分析指出肝脏是MASP-1和MASP-2 mRNA的主要来源。使用针对MASP-1的5'特异性cDNA探针,可见大MASP-1转录物在4.8 kb和小的在大约3.4 kb,这两者存在于人和小鼠肝脏内(Stover等人, Genes Immunity 4:374-84 (2003))。MASP-2 mRNA (2.6kb)和MAp19 mRNA (1.0 kb)在肝组织中大量表达。MASP-3在肝脏中表达,并且也在许多其他组织包括神经组织中表达(Lynch N. J.等人, J Immunol 174:4998-5006 (2005))。
发现具有感染和慢性炎性疾病史的患者具有MASP-2的突变形式,其不能形成活性MBL-MASP复合物(Stengaard-Pedersen等人, N Engl J Med 349:554-560 (2003))。一些研究人员已经确定MBL缺陷导致对儿童频繁感染的倾向(Super等人, Lancet 2:1236-1239(1989);Garred等人, Lancet 346:941-943 (1995)和对HIV感染的抵抗性增加(Nielsen等人, Clin Exp Immunol 100:219-222 (1995);Garred等人, Mol Immunol 33 (增刊1):8(1996))。然而,其他研究没有表明低MBL水平与增加的感染之间的显著相关(Egli等人,PLoS One. 8(1):e51983(2013);Ruskamp等人, J Infect Dis. 198(11):1707-13(2008);Israëls等人, Arch Dis Child Fetal Neonatal Ed. 95(6):F452-61 (2010))。尽管文献是混合的,但MASP的缺陷或无用性可能对个体产生针对某些病原体的直接非-抗体-依赖性防御的能力具有不良效应。
新的理解的支持数据,强调缺乏Ca++的传统测定条件和使用包括Ca++的更生理性 的条件设置而得到的结果。
本文提供了几条独立的有力实验证据,指出补体的凝集素途径活化途径经由以下2种独立的效应物机制而活化补体的结论:i) LEA-2:MASP-2-驱动的路径,其介导补体-驱动的调理作用、趋化作用(Schwaeble等人, PNAS 108:7523-7528 (2011))和细胞裂解,和ii) LEA-1:新的MASP-3-依赖性活化途径,其启动补体活化,即通过经活化剂表面上的因子B的切割和活化而产生替代途径转化酶C3bBb,其然后催化C3b沉积和形成替代途径转化酶C3bBb,其可导致细胞裂解以及微生物调理作用。另外,如本文所述,由MASP-1、MASP-3或HTRA-1或任何这3者的组合所致的因子B和/或因子D的单独的凝集素-非依赖性活化,也可经由替代途径导致补体活化。
替代途径的凝集素途径-依赖性MASP-3-驱动的活化看来有助于已充分确定的C3b-结合的因子B的因子D-介导的切割,以通过末端活化级联而达到补体-依赖性细胞裂解的最佳活化率,通过在细胞表面上形成C5b-9膜攻击复合物(MAC)而裂解细菌细胞(图12-13)。这种限速事件看来需要最佳协调,因为在MASP-3功能活性不存在时以及在因子D功能活性不存在时是有缺陷的。如本文的实施例1-4所述,本发明人在脑膜炎奈瑟氏菌感染的实验小鼠模型中研究MASP-2缺陷和MASP-2抑制的表型时,发现该MASP-3-依赖性凝集素途径功能。用基于抗体的MASP-2抑制剂治疗的基因-靶向的MASP-2-缺陷型小鼠和野生型小鼠对实验性脑膜炎奈瑟氏菌感染具有高度抗性(参见图6-10)。当将感染剂量调节至野生型同窝出生幼崽(littermate)达到大约60%死亡率时,所有MASP-2-缺乏的或MASP-2-耗尽的小鼠清除感染并且存活(参见图6和图10)。在MASP-2-缺乏的或MASP-2-耗尽的小鼠血清中血清杀菌活性显著增高反映了这种极高程度的抗性。进一步实验表明该杀菌活性依赖于替代途径-驱动的细菌裂解。缺乏因子B或因子D或C3的小鼠血清显示出无针对脑膜炎奈瑟氏菌的杀菌活性,表明替代途径对于驱动末端活化级联而言是必要的。令人惊讶的结果是缺乏MBL-A和MBL-C(这两者是识别脑膜炎奈瑟氏菌的凝集素-途径识别分子)的小鼠血清以及缺乏凝集素途径-相关丝氨酸蛋白酶MASP-1和MASP-3的小鼠血清失去所有针对脑膜炎奈瑟氏菌的溶菌活性(图13)。最近的论文(Takahashi M.等人,JEM 207: 29-37 (2010))和本文给出的工作(图32)表明MASP-1可以将因子D酶原形式转化为其酶促活性形式并且可以部分地解释通过这些血清中的酶促活性因子D的不存在而丧失细胞裂解活性。这未解释MBL-缺陷型小鼠中的杀菌活性的缺乏,因为这些小鼠具有正常酶促活性因子D(Banda等人, Mol Imunol 49(1-2):281-9 (2011))。值得注意的是,当测试来自稀有3MC常染色体隐性病症的患者(所述患者具有使MASP-3丝氨酸蛋白酶结构域功能失调的突变)的人血清(Rooryck C,等人, Nat Genet. 43(3):197-203),未检测到针对脑膜炎奈瑟氏菌的杀菌活性(注意:这些血清具有MASP-1和因子D,但没有MASP-3)。
人血清需要凝集素途径-介导的MASP-3-依赖性活性以发展杀菌活性的假说得到以下观察结果的进一步支持:MBL-缺陷型人血清也不能裂解脑膜炎奈瑟氏菌(图11-12)。MBL是结合至该病原体上的仅有的人凝集素-途径识别分子。因为MASP-3不是自我活化的,所以本发明人假设可以通过MASP-3经由MASP-1的有利活化解释MASP-2-缺乏的血清中细菌裂解活性更高,因为在MASP-2不存在时,结合至细菌表面上的所有凝集素-途径活化复合物都将装载有MASP-1或MASP-3。因为活化MASP-3在体外同时切割因子D(图32)和因子B,产生其各自的酶促活性形式(图30和Iwaki D.,等人, J. Immunol.187(7):3751-3758(2011)),所以MASP-3最可能的功能是促进替代途径C3转化酶(即C3bBb)的形成。
尽管凝集素-依赖性作用的数据是引人注意的,但多个实验表明MASP-3和MASP-1在与凝集素分子的复合物中不一定具有功能。例如图28B所示的实验表明,在其中与凝集素的复合物不存在的条件下(即EGTA存在时) MASP-3活化替代途径的能力(正如C3b沉积在金黄色葡萄球菌所表明的)。图28A表明在这些条件下的沉积依赖于因子B、因子D和因子P,所有这些都是替代途径的关键成分。另外,MASP-3和MASP-1所致的因子D活化(图32)和MASP-3所致的因子B活化(图30)可以在体外在凝集素不存在时发生。最后,在人血清存在时的小鼠红细胞的溶血研究表明MBL和MASP-3两者对于细胞裂解的清楚作用。然而,MBL的缺陷不完全重现MASP-3缺陷的严重性,与如果所有功能性MASP-3都与MBL复合时所预计的相反。因此,本发明人不希望受到以下概念的限制:本文表明的MASP-3 (和MASP-1)的所有作用可以仅归因于与凝集素相关的功能。
对凝集素途径的2个效应物分支以及MASP-1、MASP-3和HTRA-1的可能的凝集素-非依赖性功能的鉴定,呈现有效治疗指定人类病理学的治疗干预的新机遇,所述病理学是在微生物病原体或改变的宿主细胞或代谢沉积物的存在下由过度补体活化所致。如本文所述,本发明人现在已经发现,在MASP-3不存在时和在MASP-1存在时,在表面结构上不活化替代途径(参见图15-16、28B、34-35A、B、38-39)。因为替代途径在驱动导致细菌裂解以及细胞裂解的限速事件中是重要的(Mathieson PW,等人, J Exp Med 177(6):1827-3 (1993)),所以我们的结果表明活化MASP-3在补体的细胞裂解活性中起到重要作用。如图12-13、19-21、36-37和39-40所示,在缺乏MASP-3而非MASP-1的3MC患者血清中,补体的细胞裂解的末端活化级联是有缺陷的。图12和13所示的数据表明了在MASP-3和/或MASP-1/MASP-3功能活性不存在时损失溶菌活性。同样,在MASP-3-缺陷型人血清中的溶血活性的损失(图19-21、36-37和39-40),以及通过加入重组MASP-3而重构溶血的能力(图39-40),强烈支持以下结论:在靶表面上的替代途径的活化(其是驱动补体-介导的细胞裂解必不可少的)依赖于活化MASP-3的存在。根据以上详述的凝集素途径的新理解,靶表面的替代途径活化因此依赖于LEA-1和/或因子B和/或因子D的凝集素-非依赖性活化(其也由MASP-3介导),并且因此,阻断MASP-3-依赖性补体活化的试剂将阻止靶表面上的替代途径活化。
MASP-3-依赖性启动对替代途径活化的必要作用的公开内容暗示了替代途径并非补体活化的独立的、单一途径,正如基本上对补体的所有现有医学教科书和近期综述文章所述。现有的和广泛持有的科学概念是,替代途径通过自发的“tick-over”C3活化的放大而在某些特定靶(微生物、酵母聚糖和兔红细胞)的表面上活化。然而,在MASP-1和MASP-3双重-缺陷型小鼠血清中和人3MC患者血清中在酵母聚糖-包被的板上和2种不同细菌(脑膜炎奈瑟氏菌和金黄色葡萄球菌)上的任何替代途径活化的不存在,和来自人和小鼠的MASP-3-缺乏的血清中红细胞溶血的减少,都表明在这些表面上的替代途径活化的启动需要功能性MASP-3。MASP-3的所需作用可以是凝集素-依赖性的或凝集素-非依赖性的,并且分别导致替代途径C3转化酶和C5转化酶复合物即C3bBb和C3bBb(C3b)n的形成。因此,本发明人在此公开了对于替代途径而言存在先前难以捉摸的启动途径。该启动途径依赖于(i) LEA-1,一种新发现的凝集素途径的活化分支,和/或(ii)蛋白质MASP-3、MASP-1和HTRA-1的凝集素-非依赖性作用。
3. MASP-3抑制剂用于治疗替代途径相关的疾病和病况的用途。
如本文所述,高亲和力MASP-3抑制性抗体(例如,以小于500pM的结合亲和力)已被显示以小于MASP-3靶标的浓度的摩尔浓度(例如,以约1:1至约2.5:1 (MASP-3靶标:mAb)的摩尔比)完全抑制哺乳动物对象例如啮齿动物和非灵长类动物中的替代途径(参见实施例11-21中)。如实施例11中所述,向小鼠单剂量施用高亲和力MASP-3抑制性抗体mAb 13B1导致全身性替代途径补体活性的接近完全消除至少14天。如实施例12中进一步描述,在与PNH相关的良好建立的动物模型中进行的研究中,表明mAb 13B1显著地改善PNH样红血细胞的存活且比C5抑制显著更好地保护PNH样红血细胞。如实施例13中所述,进一步表明mAb 13B1降低关节炎小鼠模型中疾病的发生率和严重程度。本实施例中的结果表明代表性高亲和力MASP-3抑制性mAb 13B1、10D12和4D5在阻断灵长类动物中的替代途径方面是高度有效的。向食蟹猴单剂量施用mAb 13B1、10D12或4D5导致全身性替代途径活性的持续消除持续约16天。用高亲和力MASP-3抑制性抗体治疗的食蟹猴中替代途径消除的程度与通过体外和体内因子D阻断实现的程度相当,表明通过MASP-3抑制性抗体完全阻断因子D转化。因此,高亲和力MASP-3抑制性mAb在治疗患有与替代途径活性过高相关的疾病的患者中具有治疗效用。
因此,在一个方面,本发明提供在有此需要的哺乳动物对象中抑制替代途径的方法,其包括以有效抑制对象中的替代途径补体活化的量向对象施用组合物,所述组合物包含分离的单克隆抗体或其抗原结合片段,其以高亲和力(具有小于500pM的KD)特异性结合人MASP-3的丝氨酸蛋白酶结构域(SEQ ID NO: 2的氨基酸残基450至728)。在一些实施方案中,所述对象患有替代途径相关的疾病或病症(即与替代途径活性过高相关的疾病或病症),例如阵发性夜间血红蛋白尿(PNH)、年龄相关性黄斑变性(AMD,包括湿性和干性AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病(包括溶血性尿毒症综合征(HUS)、非典型溶血性尿毒症综合征(aHUS)、血栓性血小板减少性紫癜(TTP)或移植相关的TMA)、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎、贝切特氏病、多发性硬化症、格林巴利综合征、阿尔茨海默氏病、肌萎缩性侧索硬化症(ALS)、狼疮性肾炎、系统性红斑狼疮(SLE)、糖尿病性视网膜病变、葡萄膜炎、慢性阻塞性肺病(COPD)、C3肾小球病、移植排斥反应、移植物抗宿主病(GVHD)、血液透析、败血症、系统性炎性反应综合征(SIRS)、急性呼吸窘迫综合征(ARDS)、ANCA血管炎、抗磷脂综合征、动脉粥样硬化、IgA肾病和重症肌无力,如下文进一步描述。
A. MASP-3在阵发性夜间血红蛋白尿中的作用以及使用MASP-3抑制性抗体、任选组合MASP-2抑制性抗体的治疗方法
PNH的概述
阵发性夜间血红蛋白尿(PNH),有时也称为Marchiafava-Micheli综合征,是一种获得性的、可能危及生命的血液病。PNH可以自发产生,称为“原发性PNH”或在其他骨髓病症例如再生障碍性贫血的情况下发生,称为“继发性PNH”。大部分病例都是原发性PNH。PNH的特征在于补体-诱导的红细胞破坏(溶血)、低的红细胞计数(贫血)、血栓形成和骨髓衰竭。PNH的实验室发现显示与血管内溶血性贫血相符的变化:在作为可能诱因的自身反应性RBC-结合抗体不存在时,低的血红蛋白、升高的乳酸脱氢酶、升高的网织红细胞计数(由骨髓释放的不成熟的红细胞以置换被破坏的细胞)、升高的胆红素(血红蛋白的降解产物)。
PNH的标志是由在循环RBC表面上的未经调节的末端补体成分的活化所致的慢性补体-介导的溶血,所述补体成分包括膜攻击复合物。PNH RBC因在它们表面上的补体调节剂CD55和CD59不存在,而经历不受控制的补体活化和溶血(Lindorfer, M.A.,等人, Blood 115(11):2283-91 (2010), Risitano,等人, Mini-Reviews in Medicinal Chemistry,11:528-535 (2011))。CD55和CD59在正常RBC上大量表达并控制补体活化。CD55作为替代途径的阴性调节剂起作用,抑制替代途径C3转化酶(C3bBb)复合物的装配并加速预先形成的转化酶的衰退,因此阻断膜攻击复合物(MAC)的形成。CD59直接通过结合C5b678复合物并阻止C9的结合和聚合而抑制补体膜攻击复合物。
尽管溶血和贫血是PNH的主要临床特性,但该病是复杂的血液学病症,其进一步包括血栓形成和骨髓衰竭,作为临床发现的一部分(Risitano等人, MiniReviews in Med Chem11:528-535 (2011))。在分子水平上,PNH是由缺乏功能性PIG A基因的造血干细胞的异常克隆扩增所致。PIG A是编码糖基化-磷脂酰肌醇转移酶的伴X基因,所述酶是GPI-锚定的A类糖蛋白(包括CD55和CD59)的稳定的表面表达所需。为了目前尚在研究的原因,作为自发体细胞突变的结果的具有功能失调的PIG A基因的造血干细胞可以经过克隆扩增到它们的后代构成相当大部分的外周造血细胞池的那一点。尽管突变干细胞克隆的红细胞和淋巴细胞的后代缺乏CD55和CD59,但当它们进入循环后,仅有RBC经历明显的溶血。
PNH的目前治疗包括对付贫血的输血,对付血栓形成的抗凝,和使用单克隆抗体依库丽单抗 (Soliris®),其保护血细胞免于因抑制补体系统所致的免疫破坏(Hillmen P.等人, N. Engl. J. Med. 350(6):552-559 (2004))。依库丽单抗 (Soliris®)是人源化单克隆抗体,其靶向补体成分C5,封闭其被C5转化酶切割,从而阻止C5a的产生和MAC的装配。用依库丽单抗治疗PNH患者,在大约半数患者中导致血管内溶血减少(经乳酸脱氢酶(LDH)测定),导致血红蛋白稳定化和输血非依赖性(Risitano等人, Mini-Reviews in Medicinal Chemistry, 11(6) (2011))。尽管经历依库丽单抗治疗的几乎所有患者都达到正常或几乎正常的LDH水平(因为控制了血管内溶血),但仅有大约三分之一的患者的血红蛋白值达到大约11gr/dL,其余接受依库丽单抗的患者以大约相同比例继续表现出中度至严重(即输血-依赖性的)贫血(Risitano A.M.等人, Blood 113:4094-100 (2009))。正如Risitano等人, Mini-Reviews in Medicinal Chemistry 11:528-535 (2011)所述,已经表明接受依库丽单抗的PNH患者含有与他们PNH红细胞结合的大量C3片段(而未经治疗的患者则没有)。该发现导致以下的认识:在Soliris治疗的PNH患者中,因为C5阻断所致的不再被溶血的PNH RBC,现在可以积累大量的膜-结合的C3片段,其作为调理素起作用,导致它们通过特异性C3受体而被网罗到网状内皮细胞中并且随后导致血管外溶血。因此,尽管阻止了血管内溶血和所得结果,但依库丽单抗治疗仅仅是将这些RBC的处置从血管内转移到血管外溶血,在许多患者中导致大量剩余的未经治疗的贫血(Risitano A.M.等人, Blood113:4094-100 (2009))。因此,对于发生C3-片段-介导的血管外溶血的患者,需要除了使用依库丽单抗之外的治疗策略,因为他们继续需要输入红细胞。这样的C3片段靶向方法已经在实验系统中表明了用途(Lindorfer等人, Blood 115:2283-91, 2010)。
在PNH中的补体-启动机制
在PNH中的负面补体调节剂CD55和CD59的缺陷的表面表达之间的因果关系,以及依库丽单抗在预防血管内溶血中的有效性,清楚地定义了PNH为补体系统所介导的病况。尽管这一范例被广泛接受,但启动补体活化事件的性质,和所涉及的补体活化途径仍然有待解决。因为CD55和CD59负面地调节所有补体启动途径共有的补体级联中的末端放大步骤,所以这些分子的缺陷将会导致膜攻击复合物的过量形成和膜整合,无论补体活化是否被凝集素途径、被经典途径或被替代途径的自发更新所启动。因此,在PNH患者中,导致C3b沉积在RBC表面的任何补体活化事件都可以触发随后的放大和病理性溶血(血管内和/或血管外)和促成溶血危象。对于在PNH对象中触发溶血危象的分子事件的明确机制的理解,仍然是难以捉摸的。因为在经历溶血危象的PNH患者中没有补体启动事件是明显的,因此主流的观点是PNH中的补体活化可因替代途径的低水平“tick-over”活化而自发发生,其随后通过因缺乏CD55和CD59所致的末端补体活化的不适当控制而被放大。
然而,重要的是注意到在其自然史中,PNH通常在某些事件例如感染或损伤后发生或恶化(Risitano, Biologics 2:205-222 (2008)),已经表明所述事件触发补体活化。这样的补体活化反应不依赖于宿主针对刺激病原体的先前的免疫力,并且因此可能不涉及经典途径。而是,看起来这样的补体活化反应是由凝集素结合至在微生物作用物或受损宿主组织的表面上表达的外源或“自身改变的”碳水化合物模式而启动。因此,在PNH中促使溶血危象的事件与经由凝集素启动的补体活化是密切相关的。这使以下事实变为可能:凝集素活化途径提供启动的触发,其最终导致PNH患者中的溶血。
使用经由凝集素而活化补体的明确的病原体作为实验模型,以便在分子水平上分析活化级联,我们证明了根据刺激的微生物,补体活化可以被LEA-2或LEA-1启动,导致调理作用和/或细胞裂解。对于凝集素启动事件的双重反应(即调理作用和/或细胞裂解)的相同原理也可能适用于其他类型的感染物,或适用于在宿主组织损伤后的凝集素所致的补体活化,或可促成PNH的其他凝集素-驱动的补体活化事件。根据凝集素途径中的这种双重性,我们推断在PNH患者中,LEA-2-和/或LEA-1-启动的补体活化促进调理作用和/或通过C3b的RBC的裂解以及随后的血管外和血管内溶血。因此,在PNH的情况下,同时抑制LEA-1和LEA-2预计解决血管内和血管外溶血两者,提供了优于C5抑制剂依库丽单抗的明显优势。
已经确定,肺炎链球菌暴露优先触发LEA-2的凝集素-依赖性活化,其导致通过C3b的该微生物的调理作用。因为肺炎链球菌对MAC-介导的细胞裂解具有抗性,所以将其从循环中清除掉通过C3b的调理作用而发生。该调理作用和随后从循环中的清除是LEA-2-依赖性的,正如在MASP-2-缺陷型小鼠和在用MASP-2单克隆抗体(PLOS Pathog.,8: e1002793.(2012))治疗的小鼠中暴露的细菌对照所示。
在研究LEA-2在对微生物作用物的先天宿主反应中的作用时,我们测试了额外的病原体。当研究脑膜炎奈瑟氏菌(Neisseriameningitidis)作为模式生物时观察到极为不同的结果。脑膜炎奈瑟氏菌也经由凝集素活化补体,并且补体活化对于在首次用于实验的宿主中的脑膜炎奈瑟氏菌感染而言是必需的。然而,LEA-2在这种反应中没有起到宿主保护功能的作用:如图6和7所示,通过MASP-2的遗传消除的LEA-2阻断在脑膜炎奈瑟氏菌感染后不降低存活率。相反,在这些研究中,通过MASP-2消除的LEA-2阻断显著地提高了存活率(图6和7)以及疾病评分(图9)。通过施用MASP-2抗体所致的LEA-2阻断得到同样结果(图10),在敲除-小鼠品系中消除了作为可能的原因的次级或补偿效应。在LEA-2-消除的动物中的这些有利结果与脑膜炎奈瑟氏菌从血液中更快速清除有关(图8)。另外,如本文所述,将脑膜炎奈瑟氏菌与正常人血清一起孵育杀伤脑膜炎奈瑟氏菌(图11)。加入阻断LEA-2的人MASP-2特异性的功能性单克隆抗体,但不施用同种型对照单克隆抗体,可以增强其杀伤反应。但是,该过程取决于凝集素和至少部分功能性补体系统,因为MBL-缺乏的人血清或热灭活的人血清不能杀伤脑膜炎奈瑟氏菌(图11)。总之,这些新发现表明在功能性补体系统存在时脑膜炎奈瑟氏菌感染受到补体活化的凝集素-依赖性的但LEA-2-非依赖性的途径的控制。
使用来自一个3MC患者的血清标本,测试了LEA-1可能是负责脑膜炎奈瑟氏菌的凝集素-依赖性杀伤的补体途径的假设。该患者是MASP-1/3基因的外显子12中的无义突变的纯合体。结果,该患者缺乏功能性MASP-3蛋白,但其他补体足够(外显子12对MASP-3转录物是特异性的;该突变对MASP-1功能或表达水平无作用) (参见Nat Genet 43(3):197-203(2011))。正常人血清有效杀伤脑膜炎奈瑟氏菌,但缺乏MBL (凝集素途径的一种识别分子)的热灭活血清和MASP-3-缺乏的血清不能杀伤脑膜炎奈瑟氏菌(图12)。因此,LEA-1看来介导脑膜炎奈瑟氏菌杀伤。使用来自敲除小鼠品系的血清样品而证实了该发现。尽管含有补体的正常小鼠血清容易杀伤脑膜炎奈瑟氏菌,但MBL-缺陷型或MASP-1/3-缺陷型小鼠血清与缺乏功能性补体的热灭活的血清一样无效(图13)。相反,MASP-2-缺乏的血清表现出对脑膜炎奈瑟氏菌的有效杀伤。
这些发现通过揭示凝集素-依赖性补体活化的单独的LEA-2和LEA-1途径的存在,提供了凝集素途径中迄今未知的双重性的证据。在以上详述的实例中,LEA-2和LEA-1是非-冗余的并介导不同的功能性结果。数据表明某些类型的凝集素途径活化剂(包括但不限于肺炎链球菌)经由LEA-2而优先启动补体活化,导致调理作用,而其他(以脑膜炎奈瑟氏菌为例)经由LEA-1而优先启动补体活化并促进细胞裂解过程。然而,数据不一定将LEA-2限制在调理作用和将LEA-1限制在细胞裂解过程,因为在其他情况下这两个途径可以介导调理作用和/或细胞裂解。
在脑膜炎奈瑟氏菌所致的凝集素-依赖性补体活化的情况下,LEA-2和LEA-1分支看来彼此竞争,因为LEA-2的阻断在体外增强了LEA-1-依赖性的生物体的细胞裂解破坏(图13)。如以上详述的,该发现可以解释如下:在MASP-2不存在时,凝集素MASP-1复合物靠近凝集素MASP-3复合物滞留的可能性增加,这将增强LEA-1活化和因此促进脑膜炎奈瑟氏菌的更有效的细胞裂解。因为脑膜炎奈瑟氏菌的细胞裂解在首次进行实验的宿主中是主要的保护机制,所以LEA-2的阻断在体内增加了脑膜炎奈瑟氏菌的清除并导致增加的杀伤。
尽管上述实例说明了LEA-2和LEA-1对于脑膜炎奈瑟氏菌感染后的结果的相反作用,但也可能存在其他情况,其中LEA-2和LEA-1两者可协同产生某种结果。如下详述,在经由凝集素(例如在PNH中存在的那些)的病理性补体活化的其他情况下,LEA-2-和LEA-1-驱动的补体活化可以以协同方式合作促进PNH的总体病理学。另外,如本文所述,MASP-3也促进因子B和因子D的凝集素-非依赖性转化,其可在Ca++不存在时发生,通常导致C3bB转化为C3bBb和前因子D转化为因子D,其可进一步促进PNH病理学。
PNH中的生物学和预期的功能活性
本部分描述了在PNH体外模型中LEA-2和LEA-1阻断对于溶血的抑制作用。所得发现支持使用LEA-2-阻断剂(包括但不限于,与MASP-2结合并阻断其功能的抗体)和LEA-1-阻断剂(包括但不限于,与MASP-3结合并阻断MASP-3的MASP-1-介导的活化的功能、阻断MASP-3的功能或同时阻断这两者的抗体),以治疗患有PNH的一个或多个方面的对象,并且还使用LEA-2和/或LEA-1的抑制剂、和/或MASP-3-依赖性的、凝集素-非依赖性补体活化的抑制剂(包括MASP-2抑制剂、MASP-3抑制剂和双重-或双特异性MASP-2/MASP-3或MASP-1/MASP-2抑制剂、和泛特异性MASP-1/MASP-2/MASP-3抑制剂),以便在经历C5-抑制剂例如依库丽单抗治疗的PNH患者中改善C3-片段-介导的血管外溶血的作用。
MASP-2抑制剂通过网状内皮系统阻断调理作用和PNH RBC的血管外溶血
如上详述,PNH患者因为RBC从循环中清除的以下两种不同的机制而贫血:经由膜攻击复合物(MAC)的活化所致的血管内溶血,以及在C3b的调理作用和通过网状内皮系统的补体受体结合和摄取后的后续清除后的血管外溶血。当用依库丽单抗治疗患者时,极大地阻止了血管内溶血。因为依库丽单抗阻断末端裂解效应物机制(其发生在补体-启动的活化事件以及随后的调理作用的下游),因此依库丽单抗不阻断血管外溶血(Risitano A.M.等人, Blood 113:4094-100 (2009))。而是,在未经治疗的PNH对象中将经历溶血的RBC在其表面上现在可以积累活化的C3b蛋白,其加大了网状内皮系统的摄取和加大了它们的血管外溶血。因此,依库丽单抗治疗有效地将RBC的处置从血管内溶血转移到可能的血管外溶血。结果,某些依库丽单抗-治疗的PNH患者仍然贫血。因此,阻断补体活化上游和阻止PNHRBC的调理作用的试剂可特别适合阻断用依库丽单抗偶然可见的血管外溶血。
本文给出的微生物数据表明LEA-2通常是凝集素-依赖性调理作用的主要途径。此外,当在3种原型凝集素活化表面(甘露聚糖,图17A;酵母聚糖,图17B,和肺炎链球菌;图17C)上评价凝集素-依赖性调理作用(测量为C3b沉积)时,LEA-2看来在生理条件(即在Ca++存在时,其中所有补体途径是有效的)下是凝集素-依赖性调理作用的主要途径。在这些实验条件下,与WT血清相比,MASP-2-缺乏的血清(其缺乏LEA-2)在调理测试表面中实质上效果更差。MASP-1/3-缺陷型血清(其缺乏LEA-1)也是缺损的,尽管与缺乏LEA-2的血清相比,该效果更不明显得多。LEA-2和LEA-1对凝集素-驱动的调理作用的贡献的相对量在图18A–18C中有进一步显示。尽管已经报道了在凝集素途径或经典途径不存在时,补体的替代途径支持凝集素活化表面的调理作用(Selander等人, J Clin Invest 116(5):1425-1434(2006)),但在隔离中(在无Ca++的测定条件下测定)的替代途径看来比本文所述的LEA-2-和LEA-1-启动的过程实质上更加无效。通过外推,这些数据表明PNH RBC的调理作用也可被LEA-2优先启动,和在较小程度上被LEA-1 (可能被替代途径扩增环扩大)启动,而不是凝集素-非依赖性替代途径活化的结果。因此,可以预计LEA-2抑制剂在限制调理作用和预防PNH的血管外溶血中最有效。然而,认识到以下事实:凝集素而非MBL (例如纤维胶凝蛋白)结合至非-碳水化合物结构(例如乙酰化蛋白)上,并且MASP-3优先与H-纤维胶凝蛋白缔合(Skjoedt等人, Immunobiol. 215:921-931, 2010),也使LEA-1在PNH-相关RBC调理作用中的重要作用的可能性悬而未决。因此,预计LEA-1抑制剂具有额外的抗调理作用,而且预计LEA-1和LEA-2抑制剂的组合是最佳的并在PNH患者中在限制调理作用和血管外溶血中介导最有力的治疗益处。因此,LEA-2和LEA-1叠加或协同作用,以促进调理作用,并且预计交叉反应性或双特异性LEA-1/LEA-2抑制剂在PNH中在阻断调理作用和血管外溶血中最有效。
MASP-3抑制剂在PNH中的作用
使用PNH的体外模型,我们证明了在PNH中的补体活化和所得溶血的确是由LEA-2和/或LEA-1活化而启动,并且它不是替代途径的非依赖性功能。这些研究使用不同小鼠品系的甘露聚糖-敏化的RBC,包括来自Crry-缺陷型小鼠(小鼠的末端补体途径的一种重要的负面调节剂)的RBC,以及来自CD55/CD59-缺陷型小鼠(其缺乏在PNH患者中不存在的所述补体调节剂)的RBC。当将甘露聚糖-敏化的Crry-缺陷型RBC暴露给补体-足够的人血清时,在血清浓度3%时,RBC有效溶血(图19和20),而补体-缺乏的血清(HI:热灭活的)却不溶血。值得注意的是,补体-足够的血清(其中通过加入MASP-2抗体而阻断LEA-2)具有降低的溶血活性,并且为了有效溶血,需要6%血清。当测试CD55/CD59-缺陷型RBC时得到类似的观察结果(图22)。补充了MASP-2单克隆抗体的补体-足够的人血清(即其中LEA-2被抑制的血清)在支持溶血方面比未经处理的血清而言有效性大约低2倍。此外,与未经处理的血清相比,需要更高浓度的LEA-2-阻断血清(即经抗MASP-2单克隆抗体处理的)以促进未经处理的WT RBC的有效溶血(图21)。
甚至更令人惊讶的是,来自功能失调的MASP-3蛋白为纯合子的3MC患者的血清(并因此缺乏LEA-1)完全不能使甘露聚糖-敏化的Crry-缺陷型RBC溶血(图20和图21)。当使用未敏化的正常RBC时观察到类似结果:如图21所示,分离自3MC患者的LEA-1-缺乏的血清在介导溶血中完全无效。总之,这些数据表明尽管LEA-2明显地促进血管内溶血反应,但LEA-1是导致溶血的主要的补体-启动途径。因此,尽管预计LEA-2阻断剂在PNH患者中显著地降低RBC的血管内溶血,但预计LEA-1阻断剂具有更深远的作用并且大量消除补体-驱动的溶血。
应当注意,当在常规替代途径测定条件下测试时,在该研究中使用的LEA-1-缺陷型3MC患者的血清具有减少了的但有功能的替代途径(图15)。这一发现表明与替代途径活性相比,LEA-1在溶血上具有较大贡献,正如在PNH的该实验环境中常规定义的那样。经过推断,这表明LEA-1-阻断剂与替代途径的其他方面的阻断剂在预防或治疗PNH患者的血管内溶血中至少一样有效。
MASP-2抑制剂在PNH中的作用
本文给出的数据表明PNH中的贫血的以下发病机制:因末端补体成分的未经调节的活化和MAC形成所致的RBC溶血所致的血管内溶血,其主要是由(但并非唯一) LEA-1来启动;以及因通过C3b的RBC的调理作用所致的血管外溶血,其看来是主要由LEA-2来启动。尽管LEA-2在启动补体活化和促进MAC形成和溶血中的可识别的作用是显而易见的,但该过程看来比LEA-1-启动的补体活化而导致溶血的效果明显更差。因此,预计LEA-2-阻断剂在PNH患者中显著地降低血管内溶血,尽管预计该治疗活性仅仅是部分的。通过比较,对于LEA-1-阻断剂而言,预计在PNH患者中的血管内溶血更显著降低。
血管外溶血(尽管不显著,但仍然是导致PNH中的贫血的RBC破坏的同样重要的机制),主要是C3b的调理作用的结果,其看来主要是由LEA-2介导。因此,可预计LEA-2-阻断剂优先阻断在PNH中的RBC调理作用和随后的血管外溶血。预计LEA-2-阻断剂的这一独特治疗活性对于所有PNH患者提供重要的治疗益处,因为目前并无对经历这种病理过程的PNH患者的治疗方法。
LEA-2抑制剂作为LEA-1抑制剂或末端补体阻断剂的辅助治疗
本文给出的数据详述了RBC清除和PNH中的贫血的两种发病机制,可以通过不同类型的治疗剂分别或联合靶向这两种机制:主要是由(但并非唯一) LEA-1启动并因此预计通过LEA-1-阻断剂可有效预防的血管内溶血;以及主要由LEA-2驱动的C3b调理作用所致,并因此通过LEA-2-阻断剂有效预防的血管外溶血。
有文件充分证明血管内和血管外溶血机制两者在PNH患者中导致贫血(Risitano等人, Blood 113:4094-4100 (2009))。因此,预计预防血管内溶血的LEA-1-阻断剂和主要预防血管外溶血的LEA-2阻断剂的联用,比单用任一所述试剂更有效预防PNH患者中发生的贫血。事实上,预计LEA-1-和LEA-2-阻断剂的联用预防在PNH中的补体启动的所有相关机制并因此阻断PNH中的所有贫血症状。
还已知道C5-阻断剂(例如依库丽单抗)有效阻断血管内溶血,但不干扰调理作用。这留下了一些经抗C5-治疗的PNH患者,其患有因LEA-2介导的未被治疗的血管外溶血所致的大量残余的贫血。因此,预计预防血管内溶血的C5-阻断剂(例如依库丽单抗)与降低血管外溶血的LEA-2阻断剂的联用,比单用任一所述试剂更有效预防PNH患者中发生的贫血。
阻断补体系统的末端扩增环而导致C5活化和MAC沉积的其他试剂(包括但不限于阻断备解素、因子B或因子D或者增强因子I、因子H或其他补体抑制性因子的抑制活性的试剂)预计也抑制血管内溶血。然而,这些试剂在PNH患者中预计不干扰LEA-2-介导的调理作用。这留下了一些经所述试剂治疗的PNH患者,其患有因LEA-2介导的仍未被治疗的血管外溶血所致的大量残余的贫血。因此,预计用预防血管内溶血的所述试剂的治疗与使血管外溶血最小化的LEA-2阻断剂的联用,比单用任一所述试剂更有效预防PNH患者中发生的贫血。事实上,预计所述试剂和LEA-2-阻断剂的联用预防在PNH中的RBC破坏的所有相关机制并因此阻断PNH中的所有贫血症状。
使用LEA-1和LEA-2的多种双特异性或泛特异性抗体以治疗PNH
如上详述,预计分别阻断LEA-1和LEA-2并因此联合阻断介导血管内以及血管外溶血的所有补体活化事件的药物试剂的组合使用,为PNH患者提供了最佳临床结果。通过例如共同施用具有LEA-1-阻断活性的抗体以及具有LEA-2-阻断活性的抗体,可以达到这一结果。在某些实施方案中,将LEA-1-和LEA-2-阻断活性合并到一个分子实体中,并且具有合并的LEA-1-和LEA-2-阻断活性的这类实体将有效阻断血管内以及血管外溶血并在PNH中预防贫血。这类实体可包含这样的双特异性抗体或由这样的双特异性抗体组成:其中一个抗原-结合位点特异性地识别MASP-1和阻断LEA-1和减少LEA-2,而第二抗原-结合位点特异性地识别MASP-2和进一步阻断LEA-2。或者,这类实体可以由这样的双特异性单克隆抗体组成:其中一个抗原-结合位点特异性地识别MASP-3和因此阻断LEA-1,第二抗原-结合位点特异性地识别MASP-2和阻断LEA-2。这类实体可以最好由这样的双特异性单克隆抗体组成:其中一个抗原-结合位点特异性地识别MASP-1和MASP-3两者和因此阻断LEA-1和减少LEA-2,而第二抗原-结合位点特异性地识别MASP-2和进一步阻断LEA-2。根据总蛋白序列和结构中的相似性,还可预计可以开发具有两个相同结合位点的常规抗体,其以功能性方式特异性地结合至MASP-1和MASP-2和MASP-3上,因此达到功能性阻断LEA-1和LEA-2。预计这种具有泛-MASP抑制活性的抗体同时阻断血管内以及血管外溶血和因此在PNH患者中有效治疗贫血。
如本文实施例11-21中所述,已经产生高亲和力MASP-3抑制性抗体,其具有抑制AP相关疾病或病况例如PNH中的替代途径的治疗效用。
因此,在一个实施方案中,本发明提供用于治疗患有或有风险发展PNH的对象的方法,其包括施用有效量的结合人MASP-3且抑制替代途径补体活化的高亲和力单克隆抗体或其抗原结合片段以治疗对象中的PNH或降低对象中的PNH的风险。
在一个实施方案中,本发明提供用于治疗患有或有风险发展阵发性夜间血红蛋白尿(PNH)的对象的方法,其包括向对象施用包含有效量的结合人MASP-3且抑制替代途径补体活化的如本文公开的单克隆抗体或其抗原结合片段的药物组合物以治疗对象中的PNH或降低对象中的PNH的风险,例如其中所述抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。在一些实施方案中,所述药物组合物增加患有PNH的对象中的红血细胞的存活。在一些实施方案中,其中患有或有风险发展PNH的对象展现选自以下的一种或多种症状:(i)血红蛋白低于正常水平,(ii)血小板低于正常水平;(iii)网织红细胞高于正常水平,和(iv)胆红素高于正常水平。在一些实施方案中,将药物组合物全身性(例如,皮下、肌肉内、静脉内、动脉内或作为吸入剂)施用于患有或有风险发展PNH的对象。在一些实施方案中,患有或有风险发展PNH的对象先前已经经历或正在经历用抑制补体蛋白C5的切割的末端补体抑制剂的治疗。在一些实施方案中,所述方法进一步包括向对象施用抑制补体蛋白C5的切割的末端补体抑制剂。在一些实施方案中,所述末端补体抑制剂是人源化抗C5抗体或其抗原结合片段。在一些实施方案中,所述末端补体抑制剂是依库丽单抗。
B. MASP-3在年龄相关性黄斑变性中的作用以及使用MASP-3抑制性抗体、任选组合MASP-2抑制剂的治疗方法
年龄相关性黄斑变性(AMD)是老年人视力障碍和失明的首要原因,占发达国家失明病例的高达50%。成人中AMD的患病率约为3%,且随年龄增加,使得超过80岁的人口中将近三分之二会有一些病征。据估计,在美国超过175万个体患有晚期AMD,并且随着人口老龄化,患病率正在增加,预计到2020年达到将近3百万(Friedman, D.S.等人,Arch. Ophthalmol. 122:564-572, 2004)。AMD是视网膜色素上皮细胞(RPE)异常,其导致上覆中央视网膜光感受器或黄斑的变性和中心视力丧失。早期和中间形式的AMD的特征在于在邻近RPE的视网膜下间隙中玻璃疣渐进沉积,伴有视网膜中色素不规则性,玻璃疣是一种含脂质、蛋白质、脂蛋白和细胞碎片的淡黄色物质。晚期AMD由两个临床亚型组成:非新生血管的地理样萎缩(“干”)AMD和新生血管渗出(“湿”)AMD。尽管干性AMD占晚期AMD的80-90%,但大多数突发性和严重的视力丧失发生在湿性AMD患者中。还不知道这两种类型的AMD是否代表从类似的病理或两种不同的条件所产生的不同的表型。对于治疗干性AMD,美国食品和药物管理局(FDA)目前尚未批准疗法。湿性AMD的FDA批准的治疗选择包括抗血管生成药(兰尼单抗、哌加他尼钠、aflibercept)的玻璃体内注射、激光疗法、光动力激光疗法和可植入的望远镜。
AMD的病因和病理生理学是复杂和未被完全理解的。几条证据支持补体系统的失调在AMD的发病机制中的作用。基因关联研究已经确定与AMD相关的多个基因位点,包括编码一系列补体蛋白、因子和调节剂的基因。最强关联是与补体因子H(CFH)基因的多态性,其中与非风险基因型相比Y402H变体纯合子发生AMD的风险增加约6倍,Y402H变体杂合子增加约2.5倍(Khandhadia, S.等人,Immunobiol. 217:127-146, 2012)。在其他补体途径编码基因中的突变也已与AMD风险增加或降低关联,包括补体因子B(CFB)、C2、C3、因子I和CFH相关蛋白1和3(Khandhadia等)。在AMD患者的供体眼中的免疫组织化学和蛋白质组的研究表明,补体级联的蛋白增加并定位于玻璃疣(Issa, P.C.等人,Graefes. Arch. Clin. Exp. Ophthalmol. 249:163-174, 2011)。此外,AMD患者增加全身补体活化,如在外周血中测定的(Issa等人, 2011,同上)。
在AMD的发病机制中,补体替代途径似乎比经典途径更相关。通过免疫组织化学分析,在玻璃疣中未检测到C1q,其是用于活化经典途径的必需识别组分(Mullins等., FASEB J. 14:835-846, 2000; Johnson等人,Exp. Eye Res. 70:441-449, 2000)。遗传关联研究已经牵连CFH和CFB基因。这些蛋白参与替代途径扩增环,其中CFH是流体相抑制剂且CFB是替代途径的活化蛋白酶组分。CFH的Y402H变体影响与配体结合的相互作用,包括与C反应蛋白、肝素、M蛋白和糖胺聚糖结合。与配体结合的这一改变可降低与细胞表面的结合,这反过来又可能导致因子I介导的C3b活化片段降解降低和替代C3转化酶的调节受损,这导致过度活化替代途径(Khandhadia等人, 2012,同上)。CFB基因变异与对于AMD发展的保护作用相关联。功能变体fB32Q与C3b的结合亲和力为风险变体fB32R的1/4,导致C3转化酶形成减少(Montes, T.等人,Proc. Natl. Acad. Sci. U.S.A. 106:4366-4371, 2009)。
AMD中的补体启动机制
上面所讨论的人类遗传连锁研究表明对于AMD发病机制中的补体系统的重要作用。此外,补体活化产物大量存在于玻璃疣(Issa, P.C.等人,Graefes. Arch. Clin. Exp. Ophthalmol. 249:163-174, 2011),其是湿性和干性AMD两者的标志性病理损害。然而,启动补体活化的事件的性质和所涉及的补体活化途径仍然未被完全理解。
注意到玻璃疣沉积物由源自视网膜的细胞碎片和氧化废产物(其随着眼老化而积累在RPE之下)构成是重要的。另外,氧化应激似乎发挥着重要作用(Cai等; Front Biosci., 17:1976-95, 2012),并已被表明导致RPE补体活化(JBiol Chem., 284(25):16939-47, 2009)。广泛认为,氧化应激和细胞或组织损伤两者活化补体系统的凝集素。例如,Collard等人已经表明,暴露于氧化应激的内皮细胞触发由凝集素介导的大量补体沉积(Collard CD等人,Mol Immunol., 36(13-14):941-8, 1999; Collard C.D.等人,Am J Pathol., 156(5):1549-56, 2000),并且凝集素结合和凝集素依赖性补体活化的阻断改进氧化应激损伤的实验模型中的结果(Collard C.D.等人,Am J Pathol.,156(5):1549-56,2000)。因此,似乎可能的是,玻璃疣中存在的氧化废产物也经由凝集素活化补体。由此推断,凝集素依赖性补体活化可能在AMD的发病机制中发挥关键作用。
补体系统的作用已在AMD的小鼠模型中进行评估。在光损伤小鼠模型(氧化应激介导的光感受器变性实验模型)中,经典途径消除的敲除小鼠(C57BL/6背景中的C1qα-/-)与野生型同窝小鼠相比有相同的对于光损伤的敏感度,而消除替代途径的补体因子D(CFD-/-)导致保护免于光损伤(Rohrer, B.等人,Invest. Ophthalmol. Vis. Sci. 48:5282-5289,2007)。在由布鲁赫膜的激光光凝诱导的脉络膜新生血管形成(CNV)的小鼠模型中,与野生型小鼠相比,没有补体因子B的敲除小鼠(CFB-/-)被保护免于CNV (Rohrer, B.等人,Invest. Ophthalmol. Vis. Sci. 50:3056-3064, 2009)。在相同的模型中,靶向补体活化位点的补体因子H (CR2-fH)的重组形式的静脉内施用减少CNV的程度。不管CR2-fH是在激光损伤时施用还是(激光损伤后)治疗性施用,都观察这种保护作用。一种人类治疗形式的CR2-fH(TT30)在鼠CNV模型中也是有效的(Rohrer, B.等J. Ocul. Pharmacol. Ther.,28: 402-409, 2012)。因为fB由LEA-1活化,并且因为MASP-1和MASP-3有助于因子D的成熟,这些发现暗示LEA-1抑制剂可在AMD患者中具有治疗益处。此外,从2期研究报告的最近结果已显示,每月玻璃体内注射兰帕珠单抗(以前称为FCFD4514S和抗因子D,其是针对因子D的人源化单克隆抗体的抗原结合片段)降低了具有继发于AMD的地图状萎缩的患者中的地图状萎缩区域进展(Yaspan B.L.等人, Sci Transl. Med. 9, Issue 395, June 21, 2017)。
使用MBL缺陷小鼠在AMD啮齿动物模型的最初实验研究并不支持凝集素途径在致病性补体活化中的关键作用(Rohrer等人,Mol Immunol. 48:e1-8, 2011)。然而,MBL只是几种凝集素之一,并且除MBL外的凝集素可能在AMD中引发补体活化。事实上,我们以前的工作已经表明,在凝集素途径功能中极为需要的限速丝氨酸蛋白酶MASP-2在AMD中起关键作用。如在美国专利7919094中描述(转让给Omeros Corporation),通过引用并入本文,在激光诱导的CNV小鼠模型(经验证的湿性AMD临床前模型)中,MASP-2缺陷型小鼠和MASP-2抗体处理的小鼠被保护(Ryan等人,Tr Am Opth Soc LXXVII:707-745, 1979)。因此,LEA-2的抑制剂预期在AMD患者中有效防止CNV和改善结果。
因此,鉴于上述情况,在AMD中LEA-1和LEA-2抑制剂预期具有独立的治疗益处。此外,与单独的任一药剂相比,LEA-1和LEA-2抑制剂一起使用可以实现额外的治疗益处,或者可以为更广范围患者亚群提供有效的治疗。合并的LEA-1和LEA-2抑制可以由LEA-1阻断剂和LEA-2阻断剂的共同施用来实现。最佳地,LEA-1和LEA-2的抑制功能可以包含在单一的分子实体中,例如包含MASP-1/3和MASP-2特异性结合位点的双特异性抗体,或其中每个结合位点可以结合并阻断MASP-1/3或MASP-2的双重特异性抗体。
根据上述内容,本发明的一个方面因此提供了用于抑制LEA-1依赖性补体活化以治疗年龄相关性黄斑变性(湿和干形式)的方法,所述方法通过向患有所述病况的对象施用一种组合物来进行,所述组合物包含在药物载体中的治疗有效量的MASP-1抑制剂、MASP-3抑制剂或MASP-1/3抑制剂的组合。MASP-1、MASP-3或MASP-1/3抑制性组合物可以局部施用至眼,例如通过冲洗、玻璃体内施用或以凝胶、药膏或滴剂的形式施用该组合物。或者,MASP-1、MASP-3或MASP-1/3抑制剂可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或可能通过口服施用非肽能药剂。施用可由医师确定而重复进行,直到病况得到解决或控制。
在一个实施方案中,根据本发明此方面的方法进一步包括在患有年龄相关性黄斑变性的对象中抑制LEA-2依赖性补体活化,包括向有此需要的对象施用治疗有效量MASP-2抑制剂和MASP-1,MASP-3或MASP 1/3抑制剂。如上详述,在AMD患者中,与单独抑制LEA-1相比,采用各自阻断LEA-1和LEA-2的药理剂的组合预期提供改进的治疗结果。这个结果可以实现,例如,通过具有LEA-1阻断活性的抗体连同具有LEA-2-阻断活性的抗体的共同施用。在一些实施方案中,LEA-1-和LEA-2-阻断活性被组合成单一的分子实体,并且所述实体具有组合的LEA-1-和LEA-2-阻断活性。这种实体可以包括双特异性抗体或由其组成,其中一个抗原结合位点特异性识别MASP-1并阻断LEA-1而第二抗原结合位点特异性识别MASP-2并阻断LEA-2。或者,这样的实体可由双特异性单克隆抗体组成,其中一个抗原结合位点特异性识别MASP-3,因此阻断LEA-1而第二抗原结合位点特异性识别MASP-2,并阻断LEA-2。这样的实体可最佳地由双特异性单克隆抗体组成,其中一个抗原结合位点特异性地识别MASP-1和MASP-3两者,因此阻断LEA-1,而第二抗原结合位点特异性地识别MASP-2,并阻断LEA-2。
MASP-2抑制性组合物可以局部施用至眼,例如通过冲洗、玻璃体内注射或以凝胶、药膏或滴剂的形式局部施用组合物。或者,MASP-2抑制剂可以全身性施用对象,例如通过动脉内、静脉内、肌肉内、吸入、鼻、皮下或其他肠胃外施用,或可能通过口服施用非肽能药剂。施用可由医师确定而重复进行,直到病况得到解决或控制。
本发明的MASP-3抑制性组合物和任选MASP-2抑制性组合物的施用可通过组合物的单次施用(例如,含有MASP-2和MASP-3抑制剂或双特异性或双重抑制剂的单一组合物,或共同施用分开的组合物),或通过有限顺序的施用进行,用于治疗AMD。或者,组合物可以以周期性的间隔,例如每日、每两周、每周、每隔一周、每月或每两月在长时间内施用以治疗AMD。
如本文实施例11-21中所述,已经产生高亲和力MASP-3抑制性抗体,其具有抑制AP相关疾病或病况例如AMD中的替代途径的治疗效用。
因此,在一个实施方案中,本发明提供用于治疗患有或有风险发展AMD的对象的方法,其包括施用有效量的结合人MASP-3且抑制替代途径补体活化的高亲和力单克隆抗体或其抗原结合片段以治疗对象中的AMD或降低对象中的AMD的风险。在一个实施方案中,本发明提供用于治疗患有或有风险发展AMD的对象的方法,其包括向对象施用包含有效量的结合人MASP-3且抑制替代途径补体活化的如本文公开的单克隆抗体或其抗原结合片段的药物组合物以治疗对象中的AMD或降低对象中的AMD的风险,例如其中所述抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO:86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。
C. MASP-3在缺血再灌注损伤中的作用以及使用MASP-3抑制性抗体、任选组合MASP-2抑制剂的治疗方法
组织缺血是宽范围临床病症的基础。尽管及时恢复血流对于保护缺血组织是必要的,但早已认识到,再灌注,这可自发地或通过治疗性干预而发生,可能会导致额外的组织损伤,这一现象已被称为缺血再灌注(I/R)损伤(Eltzschig, H.K.和Tobias, E., Nat.Med. 17:1391-1401, 2011)。I/R损伤可影响单个器官,如心脏(急性冠状动脉综合征)、肾(急性肾损伤)、肠(肠I/R)和脑(中风)。I/R损伤也可影响多器官,如下列主要创伤和复苏(多器官衰竭)、循环停止(缺氧性脑损伤、急性肾损伤)、周围血管疾病和镰状细胞病(急性胸部综合征、急性肾损伤)。大手术可与I/R损伤相关,包括心脏手术(心肺转流术后的急性心衰竭)、胸外科手术(急性肺损伤)、外周血管手术(间隔综合征)、血管手术(急性肾损伤)和实体器官移植(急性移植失败)。目前,还没有针对I/R损伤的特定疗法,需要有效的治疗,以使缺血区组织的抢救最大化并改善这些常见情况下的功能性结果。
I/R损伤的病理生理学是复杂的,其特征在于再灌注后的稳健炎性反应。补体系统的活化已经暗示为I/R损伤的重要组成部分,补体活性的抑制在多种动物模型中是有效的(Diepenhorst, G.M.P.等人,Ann. Surg. 249:889-899, 2009)。I/R损伤中经典、凝集素和替代途径的相对重要性在很大程度上是不稳定的,并且取决于所影响的器官可能有所不同。最近可获得特定补体蛋白质和途径特异性抑制剂缺陷的敲除小鼠,这已经产生了涉及在I/R损伤中凝集素和替代途径的数据。
使用因子D缺乏(-/-)小鼠和杂合子(+/-)小鼠,研究了胃肠道I/R损伤中替代途径的作用(Stahl, G.L.等Am. J. Pathol. 162:449-455, 2003)。与杂合子小鼠相比,在因子D缺乏的小鼠中,在瞬时胃肠缺血后,减少但并未防止肠和肺损伤,并且将人因子D加入因子D(-/-)小鼠恢复I/R损伤。相同的模型在C1q缺陷和MBL- A / C缺陷的小鼠中进行评价,结果表明,胃肠I/R损伤独立于C1q和经典途径活化,但是MBL和凝集素途径活化对于肠损伤是必需的(Hart, M.L.等 J. Immunol. 174:6373-6380, 2005)。相反地,经典途径的C1q识别分子负责肠I/R后的肺损伤(Hart, M.L.等 J. Immunol. 174:6373-6380, 2005)。一种假说是I/R损伤期间,补体活化通过天然IgM与缺血性(但非正常)组织的表面上呈现的自身抗原(例如非肌肉肌球蛋白重链II型)结合而发生。在小鼠胃肠道I/R损伤模型中,在经典(C1q)、凝集素(MBL)或替代(因子B)途径中评价了来自肠组织的免疫复合物中引发因子的存在情况(Lee, H.等人,Mol. Immunol. 47:972-981, 2010)。结果表明,在这些免疫复合物中检测到C1q和MBL而未检测到因子B,指示经典和凝集素途径的参与,但不是替代途径。在相同的模型中,因子B缺陷型小鼠没有受到保护而免于局部组织损伤,提供缺乏替代途径的参与的额外支持。在MASP-2缺陷型小鼠中直接评价胃肠I/R损伤中凝集素途径的作用,结果表明,与野生型对照相比,这些小鼠中胃肠道损伤减少;用MASP-2单克隆抗体的治疗也同样具有保护性(Schwaeble, W.J.等人,Proc. Natl. Acad. Sci. 108:7523-7528, 2011)。总之,这些结果为胃肠道I/R损伤中凝集素途径的参与提供了支持,关于替代途径的参与具有冲突数据。
在小鼠心肌I/R损伤模型中,对于凝集素途径,显示了致病作用,因为MBL缺陷型小鼠被保护免于心肌损伤而C1q缺陷和C2/fB缺陷型小鼠没有(Walsh, M.C.等人,J. Immunol. 175:541-546, 2005)。在MASP-2缺陷型小鼠中也观察到免于心肌I/R损伤的保护作用(Schwaeble, W.J.等人,Proc. Natl. Acad. Sci. 108:7523-7528, 2011)。在心肌I/R模型中用针对大鼠MBL的单克隆抗体治疗大鼠,导致缺血后再灌注损伤减少(Jordan,J.E.等人,Circulation 104:1413-18, 2001)。在用血管成形术治疗的心肌梗死患者的研究中,与MBL-充分的对应物相比,MBL缺乏与减少的90天死亡率相关(M Trendelenburg等人, Eur Heart J. 31:1181, 2010)。此外,血管成形术后发生心功能不全的心肌梗死患者的MBL水平为具有功能恢复的患者的约3倍(Haahr-Pedersen S.等人,J Inv Cardiology,21:13, 2009)。MBL抗体还减少氧化应激后体外内皮细胞上的补体沉积,指示凝集素途径在心肌I/R损伤中的作用(Collard, C.D.等人,Am. J. Pathol. 156:1549-56, 2000)。在I/R损伤的小鼠异位同系移植的心脏移植模型中,使用途径特异性融合蛋白CR2-fH研究替代途径的作用(Atkinson, C.等人,J. Immunol. 185:7007-7013, 2010)。移植后立即全身施用CR2-fH导致心肌I/R损伤减少,其程度与用CR2-Crry治疗相当,用CR2-Crry治疗抑制所有补体途径,这表明在该模型中替代途径是极其重要的。
在肾I/R损伤的小鼠模型中,涉及替代途径,因为与野生型小鼠相比,因子B缺陷的小鼠被保护而免于肾功能和肾小管损伤的下降(Thurman, J.M.等人,J. Immunol. 170:1517-1523, 2003)。用针对因子B的抑制性单克隆抗体进行治疗,防止补体活化和减少鼠肾I/R损伤(Thurman, J.M.等人,J. Am. Soc. Nephrol. 17:707-715, 2006)。在双侧肾I/R损伤模型中,与野生型小鼠相比,MBL- A/C缺陷小鼠受到保护免于肾损伤,且重组人MBL逆转MBL-A / C缺陷型小鼠的保护作用,暗示了MBL在此模型中的作用(Moller-Kristensen,M.等人,Scand. J. Immunol. 61:426-434, 2005)。在大鼠单侧肾I/R损伤模型中,I/R后,用针对MBL-A的单克隆抗体抑制MBL,保留了肾功能(van der Pol, P.等人,Am. J. Transplant. 12:877-887, 2010)。引人注意的是,MBL在这一模型中的作用并未涉及终端补体成分的活化,因为用C5抗体治疗对于防止肾损伤是无效的。相反,MBL似乎对肾小管细胞具有直接毒性作用,因为与MBL孵育的人类近端肾小管细胞在体外使MBL内化,随后细胞凋亡。在肾I/R的猪模型中,Castellano G.等人,(Am J Pathol, 176(4):1648-59, 2010)测试了C1抑制剂,它不可逆的失活经典途径中的C1r和C1s蛋白酶以及凝集素途径的MBL复合物中的MASP-1和MASP-2蛋白酶,并且发现C1抑制剂降低了肾小管周围毛细血管和肾小球中的补体沉积和减少肾小管损害。
替代途径似乎参与实验性创伤性脑损伤,因为与野生型小鼠相比,因子B缺陷的小鼠具有降低的全身补体活化(如通过血清C5a水平测量)和降低的创伤后神经细胞死亡(Leinhase, I.等人,BMC Neurosci. 7:55-67, 2006)。在人中风中,通过在缺血性损伤中免疫组织化学染色检出补体成分C1q、C3c和C4d,表明经由经典途径的活化(Pedersen,E.D.等,Scand. J. Immunol. 69:555-562, 2009)。在脑缺血的动物模型中靶向经典途径已经产生了混合结果,有一些研究表明保护作用而其他显示没有益处(Arumugam, T.V.等人,Neuroscience 158:1074-1089, 2009)。实验和临床研究提供了凝集素途径参与的有力证据。在实验性中风模型中,与野生型小鼠相比,缺乏MBL或MASP-2导致减少梗死面积(Cervera A等; PLoS One 3;5(2):e8433, 2010; Osthoff M.等人,PLoS One, 6(6):e21338, 2011)。此外,与其MBL-充分的对应物相比,具有低水平MBL的中风患者有较好的预后(Osthoff M.等人, PLoS One, 6(6):e21338, 2011)。
在心肺转流术的狒狒模型中,用因子D单克隆抗体处理抑制全身性炎症(如通过C3a、SC5b-9和IL-6的血浆水平测定),并降低了心肌组织损伤,说明替代途径在这一模型中的参与(Undar, A.等人,Ann. Thorac. Surg. 74:355-362, 2002)。
因此,取决于受I/R影响的器官,补体的所有三个途径可促成发病和不良后果。根据上面详述的实验和临床发现,LEA-2抑制剂预计在大部分I/R情况下具有保护性。至少在一些情况下,LEA-1的凝集素依赖性活化可导致经由替代途径的补体活化。此外,LEA-2启动补体活化可进一步由替代途径扩增环而扩增,从而加剧I/R相关的组织损伤。因此,LEA-1抑制剂预期在患有缺血相关病况的患者中提供附加的或补充的治疗益处。
鉴于上述内容,LEA-1和LEA-2抑制剂预期在治疗、预防或减少缺血再灌注相关病况的严重程度中具有独立的治疗益处。此外,与单独的任一药剂相比,LEA-1和LEA-2抑制剂一起使用可以实现额外的治疗益处。因此,I/ R -相关病况的最佳有效治疗包括单独或组合阻断LEA-1和LEA-2两者的活性药物成分。组合的LEA-1和LEA-2抑制可以由LEA-1阻断剂和LEA-2阻断剂的共同施用来实现。优选地,LEA-1和LEA-2的抑制功能可以包含在单一的分子实体中,例如包含MASP-1/3和MASP-2特异性结合位点的双特异性抗体,或其中每个结合位点可以结合并阻断MASP-1/3或MASP-2的双重特异性抗体。
根据上述内容,本发明的一个方面因此提供了用于抑制LEA-1依赖性补体活化以治疗、预防或减少缺血再灌注损伤的严重程度的方法,所述方法通过向经历缺血再灌注的对象施用一种组合物来进行,所述组合物包含在药物载体中的治疗有效量的LEA-1抑制剂,所述LEA-1抑制剂包含MASP-1抑制剂、MASP-3抑制剂或MASP-1/3抑制剂的组合。MASP-1、MASP-3或MASP-1/3抑制性组合物可通过动脉内、静脉内、颅内、肌肉内、皮下或其他肠胃外施用,以及潜在地对于非肽能抑制剂经口服,并且最适宜通过动脉或静脉内施用而施用于对象。本发明的LEA-1抑制性组合物的施用适宜在缺血再灌注事件之后立即开始或尽快开始。在再灌注发生在受控环境中的情况下(例如,在主动脉动脉瘤修复、器官移植或切断或受创伤的肢体或手指/脚趾的复位后),LEA-1抑制剂可先于再灌注和/或在再灌注期间和/或在再灌注之后施用。施用可由医师确定而周期性重复进行,以达到最佳治疗效果。
在一些实施方案中,所述方法用于治疗或预防与以下至少一种相关联的缺血再灌注损伤:主动脉瘤修复、心肺转流术、器官移植和/或肢/手指/脚趾再植相关的血管再吻合术、中风、心肌梗死和休克和/或外科手术后的血流动力学复苏。
在一些实施方案中,所述方法用于在对象中治疗或预防与缺血再灌注损伤,所述对象即将经历、正在经历或已经经历器官移植。在一些实施方案,所述方法用于在对象中治疗或预防缺血再灌注损伤,所述对象即将经历、正在经历或已经经历器官移植,前提是器官移植不是肾移植。
在一个实施方案中,根据本发明此方面的方法进一步包括在经历缺血再灌注的对象中抑制LEA-2依赖性补体活化,包括向对象施用治疗有效量MASP-2抑制剂和MASP-1、MASP-3或MASP-1/3抑制剂。如上详述,在治疗、预防或减少缺血再灌注损伤的严重程度中,与单独抑制LEA-1相比,采用各自阻断LEA-1和LEA-2的药理剂的组合预期提供改进的治疗结果。这个结果可以实现,例如,通过具有LEA-1阻断活性的抗体连同具有LEA-2-阻断活性的抗体的共同施用。在一些实施方案中,LEA-1-和LEA-2-阻断活性被组合成单一的分子实体,并且所述实体具有组合的LEA-1-和LEA-2-阻断活性。这种实体可以包括双特异性抗体或由其组成,其中一个抗原结合位点特异性识别MASP-1并阻断LEA-1而第二抗原结合位点特异性识别MASP-2并阻断LEA-2。或者,这样的实体可由双特异性单克隆抗体组成,其中一个抗原结合位点特异性识别MASP-3,因此阻断LEA-1而第二抗原结合位点特异性识别MASP-2,并阻断LEA-2。这样的实体可最佳地由双特异性单克隆抗体组成,其中一个抗原结合位点特异性地识别MASP-1和MASP-3两者,因此阻断LEA-1,而第二抗原结合位点特异性地识别MASP-2,并阻断LEA-2。
MASP-2抑制性组合物可通过动脉内、静脉内、颅内、肌肉内、皮下或其他肠胃外施用,以及潜在地对于非肽能抑制剂经口服,并且最适宜通过动脉内或静脉内施用而施用于有此需要的对象。本发明的MASP-2抑制性组合物的施用适宜在缺血再灌注事件之后立即开始或尽快开始。在再灌注发生在受控环境中的情况下(例如,在主动脉动脉瘤修复、器官移植或切断或受创伤的肢体或手指/脚趾的复位后),MASP-2抑制剂可先于再灌注和/或在再灌注期间和/或在再灌注之后施用。施用可由医师确定而周期性重复进行,以达到最佳治疗效果。
本发明的MASP-3抑制性组合物和任选MASP-2抑制性组合物的施用可通过组合物的单次施用(例如,含有MASP-2和MASP-3抑制剂或双特异性或双重抑制剂的单一组合物,或共同施用分开的组合物),或通过有限顺序的施用进行,用于治疗或预防缺血再灌注损伤。或者,组合物可以以周期性的间隔,例如每日、每两周、每周、每隔一周、每月或每两月在长时间内施用以治疗经历缺血再灌注的对象。
如本文实施例11-21中所述,已经产生高亲和力MASP-3抑制性抗体,其具有抑制AP相关疾病或病况中(例如在经历缺血再灌注的对象中)的替代途径的治疗效用。
因此,在一个实施方案中,本发明提供用于治疗患有或有风险发展缺血-再灌注的对象的方法,其包括施用有效量的结合人MASP-3且抑制替代途径补体活化的高亲和力单克隆抗体或其抗原结合片段以治疗对象中的与缺血-再灌注相关的组织损伤或降低对象中的与缺血-再灌注相关的组织损伤的风险。
D. MASP-3在炎性和非炎性关节炎的作用以及使用MASP-3抑制性抗体、任选组合MASP-2抑制剂的治疗方法
类风湿性关节炎(RA)是滑膜关节的慢性炎性疾病,其也可以具有全身表现。RA影响到世界人口的大约1%,而女性的患病可能性是两到三倍。关节发炎体现在红肿、疼痛和僵硬。随着病情的发展,可存在关节侵蚀和破坏,导致运动范围受损和畸形。RA的治疗目标包括预防或控制关节损伤,预防关节功能损失和疾病进展,减轻症状和提高生活质量,并实现无药物缓解。药理治疗RA包括缓解疾病的抗风湿药(DMARD)、镇痛药和消炎药(糖皮质激素和非类固醇抗炎药)。DMARD是最重要的治疗,因为它们可诱导持久缓解和延迟或阻止不可逆的关节破坏的发展。传统的DMARD包括小分子,例如甲氨蝶呤、柳氮磺吡啶、羟氯喹、金盐、来氟米特、D-青霉胺、环孢菌素和硫唑嘌呤。如果传统的DMARD不足以控制疾病,那么靶向炎性细胞或介质的几种生物制剂是可用的治疗选择,如肿瘤坏死因子抑制剂(依那西普、英夫利昔单抗、阿达木单抗、certolizumab pegol和戈利木单抗(golimumab))、细胞因子拮抗剂(阿那白滞素和tocilizumab)、利妥昔单抗和阿巴西普。
尽管适应性免疫显然对RA发病是重要的(如通过与T细胞活化基因的遗传关联和自身抗体的存在所表明的),先天免疫机制也被牵连(McInnes, I.B.和Schett, G. New Engl. J. Med. 365:2205-2219, 2011)。在人类RA中,替代途径裂解片段Bb的滑液水平是晶体诱导的关节炎或退行性关节病患者的样品的滑液水平的数倍,暗示RA患者的替代途径优先活化(Brodeur, J.P.等人,Arthritis Rheum. 34:1531-1537, 1991)。在关节炎的实验性抗II型胶原抗体被动转移模型中,与野生型小鼠相比,因子B缺陷的小鼠具有减少的炎症和关节破坏,而C4缺陷型小鼠与野生型小鼠具有相似的疾病活性,指示在此模型中需要替代途径,而不是经典途径(Banda, N.K.等人,J. Immunol. 177:1904-1912, 2006)。在胶原抗体诱发的关节炎(CAIA)的相同实验模型中,仅经典途径具有活性或仅凝集素途径具有活性的小鼠不能够发展关节炎(Banda, N.K.等人,Clin. Exp. Immunol. 159:100-108,2010)。从本研究的数据表明,无论是经典或凝集素途径均能够活化体外低水平的C3。然而,在没有替代途径扩增环时,C3的关节沉积水平不足以产生临床疾病。在替代途径的活化中的关键步骤是因子D (前因子D)酶原转换为成熟因子D,它是由MASP-1和/或MASP-3(Takahashi, M.等人,J. Exp. Med. 207:29-37, 2010)和/或HTRA1(Stanton等人,Evidence That the HTRA1 Interactome Influences Susceptibility to Age-Related Macular Degeneration, 由The Association for Research in Vision andOphthalmology 2011年会议在2011年3月4日提供)介导的。在鼠CAIA中评价MASP-1/3的作用,结果表明与野生型小鼠相比,MASP-1/3缺陷小鼠受到保护免于关节炎(Banda, N.K.等人,J. Immunol. 185:5598-5606, 2010)。在MASP-1/3缺陷型小鼠中,在CAIA发展期间,在血清中检测到前因子D而不是成熟因子D,并且使用这些小鼠的血清,体外加入人因子D重构了C3活化和C5a产生。相比之下,在关节炎的效应阶段的鼠模型中,与WT小鼠相比,C3缺陷的小鼠发展十分轻微的关节炎,而因子B缺陷的小鼠仍然发展关节炎,表示经典/凝集素和替代途径两者的独立贡献(Hietala, M.A.等人,Eur. J. Immunol. 34:1208-1216, 2004)。在炎性关节炎的K/BxN T细胞受体转基因小鼠模型中,缺乏C4或C1q的小鼠发展类似于野生型小鼠的关节炎,而缺乏因子B的小鼠没有发展关节炎或有轻度关节炎,表明在此模型中需要替代途径而不是经典途径(Ji H.等人,Immunity 16:157-168, 2002)。在K/BxN模型中,缺乏MBL-A的小鼠不受保护免于血清诱导的关节炎,但由于没有研究MBL-C的作用,对于凝集素途径的潜在作用不能被排除(Ji等人,2002年,同上)。
两个研究小组已独立地提出,凝集素依赖性补体活化通过MBL与特异性IgG糖形相互作用而促进RA患者的炎症(Malhotra等人,Nat. Med. 1:237-243, 1995; Cuchacovich等人,J. Rheumatol. 23:44-51, 1996)。应该注意的是,类风湿性病况与在该分子的Fc区缺乏半乳糖的IgG糖形(被称为IgG0糖形)的显著增加相关(Rudd等人,Trends Biotechnology 22:524-30, 2004)。IgG0糖形的百分比随类风湿性病况的疾病进展而增加,并当患者缓解时返回到正常。在体内,IgG0沉积在滑膜组织,并且MBL以增加的水平存在于RA个体的滑液中。RA相关的聚集无半乳糖(agalactosyl) IgG (IgG0)可结合MBL,因此可通过LEA-1和/或LEA-2启动凝集素依赖性补体活化。而且,从临床研究中观察RA患者的MBL等位基因变体的结果表明,MBL在该疾病中可具有炎性增强的作用(Garred等人,J. Rheumatol. 27:26-34, 2000)。因此,经由LEA-1和/或LEA-2的凝集素依赖的补体活化可以在RA的发病机理中起重要作用。
补体活化还在幼年型类风湿性关节炎起着重要作用(Mollnes, T.E.等人,Arthritis Rheum. 29:1359-64, 1986)。类似于成人RA,在幼年型类风湿性关节炎中,与C4d (经典或LEA-2活化的标志)相比,替代途径补体活化产物Bb的血清和滑液水平升高,表明补体活化主要由LEA-1介导(El-Ghobarey, A.F.等人,J. Rheumatology 7:453-460,1980; Agarwal, A.等人,Rheumatology 39:189-192, 2000)。
类似地,补体活化在银屑病关节炎中起重要作用。患有该病况的患者在其循环中具有增加的补体活化产物,并且它们的红血细胞似乎具有较低水平的补体调节剂CD59(Triolo,. Clin Exp Rheumatol., 21(2):225-8, 2003)。补体水平与疾病活动相关,并具有高的预测值,以确定治疗效果(Chimenti等人,Clin Exp Rheumatol., 30(1):23-30,2012)。事实上,最近的研究表明,对于该病况的抗TNF疗法的效果可归因于补体调节(Ballanti等人,Autoimmun Rev., 10(10):617-23, 2011)。尽管补体在银屑病关节炎的精确作用还没有被确定,但C4d和Bb补体活化产物在这些患者循环中的存在表明在发病机制中起重要作用。基于所观察到的产物,认为LEA-1,并且还可能LEA-2负责这些患者中的病理补体活化。
骨关节炎(OA)是关节炎中最常见的形式,在美国影响超过2500万人。OA的特征在于关节软骨断裂和最终丧失,伴随着新骨形成和滑膜增生,导致疼痛、僵硬、关节功能的丧失和残疾。经常受OA影响的关节是手部、颈部、腰部、膝盖和髋部。该病是渐进的和目前的治疗是对症缓解疼痛的,并不会改变疾病的自然史。OA的发病机制尚不清楚,但已涉及补体的作用。在从OA患者滑液的蛋白质组和转录组分析中,与来自健康个体的样品相比,补体的几种组分异常表达,所述来自健康个体的样品包括经典(C1s和C4A)和替代(因子B)途径,并且还包括C3、C5、C7和C9(Wang, Q.等人,Nat. Med. 17:1674-1679, 2011)。此外,在内侧半月板切除术诱导的OA小鼠模型中,C5缺陷的小鼠比C5阳性小鼠具有更少的软骨丧失、骨赘形成和滑膜炎,并且用CR2-fH (抑制替代途径的融合蛋白)治疗野生型小鼠减弱了OA的发展(Wang等人,2011同上)。
罗斯河病毒(RRV)和基孔肯雅病毒(CHIKV)属于一组蚊子传播的病毒,可在人类引起急性和持续性关节炎和肌炎。除了引起地方病,这些病毒可引起涉及数百万感染个体的流行病。关节炎被认为是由关节中病毒复制和宿主炎症反应诱导而启动,并且补体系统已作为在这个过程中的一个关键组分被调用。患RRV诱导多关节炎的人滑液比患OA的人滑液含有更高水平的C3a (Morrison, T.E.等人,J. Virol. 81:5132-5143, 2007)。在RRV感染的小鼠模型中,与野生型小鼠相比,C3缺陷型小鼠发展不太严重的关节炎,暗示补体的作用(Morrison等人,2007,同上)。研究了所涉及的具体补体途径,和具有灭活凝集素途径的小鼠(MBL-A-/-和MBL-C-/-)与野生型小鼠相比具有衰减的关节炎。相比之下,具有灭活的经典途径(C1q-/-)或替代途径(因子B-/-)的小鼠发展严重的关节炎,指示由MBL引发的凝集素途径在这个模型中具有重要作用(Gunn, B.M.等人,PLoS Pathog. 8:e1002586, 2012)。由于关节炎涉及关节损害,由各种病因引起的初步关节损伤可触发通过LEA-2的第二波补体活化。为了支持这一概念,我们以前的工作已经表明,在胶原诱发的RA模型中,相比于WT小鼠,MASP-2 KO小鼠具有降低的关节损伤。
鉴于上面详述的大量证据,单独或组合的LEA-1和LEA-2抑制剂预期可在治疗上用于治疗关节炎。因此关节炎的最佳有效治疗可包含活性药物成分,其单独或组合能阻断LEA-1和LEA-2两者。组合的LEA-1和LEA-2抑制可以通过共同施用LEA-1阻断剂和LEA2阻断剂来实现。优选地,LEA-1和LEA-2的抑制功能可以包含在单一的分子实体中,例如包含MASP-1/3和MASP-2特异性结合位点的双特异性抗体,或其中每个结合位点可以结合并阻断MASP-1/3或MASP-2的双重特异性抗体。根据上述内容,本发明的一个方面因此提供了用于抑制LEA-1依赖性补体活化以治疗、预防或减少炎性或非炎性关节炎(包括骨关节炎、类风湿性关节炎、幼年型类风湿性关节炎和银屑病关节炎)的严重程度的方法,所述方法通过向患有炎性或非炎性关节炎或具有发展炎性或非炎性关节炎风险的对象施用一种组合物来进行,所述组合物包含在药物载体中的治疗有效量的LEA-1抑制剂,所述LEA-1抑制剂包含MASP-1抑制剂、MASP-3抑制剂或MASP-1/3抑制剂的组合。MASP-1、MASP-3或MASP-1/3抑制性组合物可全身性施用对象,例如通过动脉内、静脉内、肌肉内、皮下或其他肠胃外施用,或通过口服。或者,施用可以是通过局部递送,例如通过关节内注射。所述LEA-1抑制剂可以在延长的时间内周期性施用以治疗或控制慢性病况,或者可以在急性创伤或损伤(包括对关节进行的外科手术)之前、期间和/或之后的时间段通过单次或重复施用。
在一个实施方案中,根据本发明此方面的方法进一步包括在患有或有风险发展炎性或非炎性关节炎(包括骨关节炎、类风湿性关节炎、幼年型类风湿性关节炎和银屑病关节炎)的对象中抑制LEA-2依赖性补体活化:通过将治疗有效量的MASP-2抑制剂和MASP-1、MASP-3或MASP-1/3抑制剂施用于对象。如上详述,与单独抑制LEA-1相比,采用各自阻断LEA-1和LEA-2的药理剂的组合预期提供改进的治疗或预防关节炎的治疗结果。这个结果可以实现,例如,通过具有LEA-1阻断活性的抗体连同具有LEA-2-阻断活性的抗体的共同施用。在一些实施方案中,LEA-1-和LEA-2-阻断活性被组合成单一的分子实体,并且所述实体具有组合的LEA-1-和LEA-2-阻断活性。这种实体可以包括双特异性抗体或由其组成,其中一个抗原结合位点特异性识别MASP-1并阻断LEA-1,而第二抗原结合位点特异性识别MASP-2并阻断LEA-2。或者,这样的实体可由双特异性单克隆抗体组成,其中一个抗原结合位点特异性识别MASP-3,因此阻断LEA-1而第二抗原结合位点特异性识别MASP-2,并阻断LEA-2。这样的实体可最佳地由双特异性单克隆抗体组成,其中一个抗原结合位点特异性地识别MASP-1和MASP-3两者,因此阻断LEA-1,而第二抗原结合位点特异性地识别MASP-2,并阻断LEA-2。
MASP-2抑制性组合物可全身性施用于有此需要的对象,例如通过动脉内、静脉内、肌肉内、皮下或其他肠胃外施用,或潜在地对于非肽能抑制剂经口服施用。或者,施用可以是通过局部递送,例如通过关节内注射。所述MASP-2抑制剂可以在延长的时间内周期性施用以治疗或控制慢性病况,或者可以在急性创伤或损伤(包括对关节进行的外科手术)之前、期间和/或之后的时间段通过单次或重复施用。
本发明的MASP-3抑制性组合物和任选MASP-2抑制性组合物的施用可通过组合物的单次施用(例如,含有MASP-2和MASP-3抑制剂或双特异性或双重抑制剂的单一组合物,或共同施用分开的组合物),或通过有限顺序的施用进行,用于治疗、预防或减少炎性或非炎性关节炎的严重程度。或者,组合物可以以周期性的间隔,例如每日、每两周、每周、每隔一周、每月或每两月在长时间内施用以治疗患有炎性或非炎性关节炎的对象。
如本文实施例11-21中所述,已经产生高亲和力MASP-3抑制性抗体,其具有抑制AP相关疾病或病况例如关节炎中的替代途径的治疗效用。
因此,在一个实施方案中,本发明提供用于治疗患有或有风险发展关节炎(炎性和非炎性关节炎)的对象的方法,其包括向对象施用包含有效量的结合人MASP-3且抑制替代途径补体活化的如本文公开的高亲和力单克隆抗体或其抗原结合片段的药物组合物以治疗对象中的关节炎或降低对象中的关节炎的风险,例如其中所述抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。在一些实施方案中,所述对象患有选自骨关节炎、类风湿性关节炎、幼年型类风湿性关节炎、强直性脊柱炎、贝切特氏病、感染相关关节炎和银屑病关节炎的关节炎。在一些实施方案中,将药物组合物全身性(例如,皮下、肌肉内、静脉内、动脉内或作为吸入剂)施用。在一些实施方案中,将药物组合物局部施用于关节。
E. MASP-3在弥散性血管内凝血(DIC)中的作用和使用MASP-3抑制性抗体、任选组合MASP-2抑制剂的治疗方法
弥散性血管内凝血(DIC)是凝血系统的病理性过度刺激的综合征,可以在临床表现为出血和/或血栓形成。DIC不会作为主病况出现,而是与各种疾病过程关联,所述疾病过程包括组织损伤(创伤、烧伤、中暑、输血反应、急性移植排斥)、瘤形成、感染、产科病况(前置胎盘、羊水栓塞、妊娠毒血症)以及其他各种病况,如心源性休克、近乎溺死、脂肪栓塞、主动脉瘤。血小板减少症是重症监护病房患者的常见异常,发病率为35%-44%,并且在约25%的这些病例中DIC是病因,即,DIC在约10%重症患者中发生(Levi, M.和Opal, S.M.Crit. Care 10:222-231, 2006)。DIC的病理生理学在于,潜在的疾病进程启动生理的凝血反应。然而,促血栓形成物质压制正常制衡机制,使得微循环中不适当沉积纤维蛋白和血小板,导致器官缺血、低纤维蛋白原血症和血小板减少。DIC的诊断基于在合适潜在的疾病或过程中的临床表现,以及实验室参数异常(凝血酶原时间、部分凝血活酶时间、纤维蛋白降解产物、D-二聚体或血小板计数)。DIC的主要治疗方法是解决作为负责的触发器的潜在病况。以红血细胞、血小板、新鲜冷冻血浆和冷沉淀物形式的血液产品支持对治疗或预防临床并发症可能是必要的。
在一些研究中研究了DIC中补体途径的作用。在脑膜炎球菌感染的儿科患者中评价补体活化,相对于MBL基因型比较临床过程(Sprong, T.等人,Clin. Infect. Dis. 49:1380-1386, 2009)。在入院时,MBL缺乏的患者比MBL-足够的患者具有较低循环水平的C3bc、末端补体复合物、C4bc和C3bBbP,表明共同补体、末端补体和替代途径活化的程度较低。另外,全身性补体活化的程度与DIC疾病的严重程度和参数相关联,MBL缺乏的患者比MBL-足够的患者具有较温和的临床过程。因此,尽管MBL缺乏是感染易感性的危险因素,但败血性休克期间的MBL缺乏可与较低的疾病严重程度相关联。
如本文实施例1-4中所示,实验研究已经强调了MBL和MASP-1/3在对于脑膜炎奈瑟氏菌(脑膜炎球菌感染的病原)的天然免疫应答中的重要贡献。小鼠或人的MBL缺陷型血清、MASP-3缺陷型人血清或MASP-1/3敲除小鼠相比野生型血清在体外活化补体和裂解脑膜炎球菌的有效性较差。同样,首次用于实验的MASP-1/3敲除小鼠比其野生型对应物更容易受到奈瑟氏球菌感染。因此,在没有适应性免疫的情况下,LEA-1途径有助于对奈瑟氏感染的先天宿主抵抗力。相反,LEA-1增强病理补体活化,引发有害的宿主反应,包括DIC。
在动脉血栓形成的鼠模型中,与野生型或C2/无因子B的小鼠相比,无MBL和MASP-1/-3敲除小鼠的FeCl3诱导的血栓形成减少,并且该缺陷被重组人MBL重构(La Bonte,L.R.等人,J. Immunol. 188:885-891, 2012)。在体外,与野生型或C2/无因子B的小鼠血清相比,无MBL或MASP-1/-3敲除小鼠的血清具有减少的凝血酶底物裂解;在MASP-1/-3敲除小鼠的血清中,重组人MASP-1的添加恢复了凝血酶底物裂解(La Bonte等人,2012,同上)。这些结果表明,MBL/MASP复合物,特别是MASP-1,在血栓形成中起到关键作用。因此,LEA-1可在病理血栓形成,包括DIC中起重要作用。
实验研究已经确立了LEA-2在病理血栓形成中的同样重要作用。体外研究还表明LEA-2提供了补体系统和凝血系统之间的分子联系。MASP-2具有因子Xa样活性,并通过裂解活化凝血酶原形成凝血酶,其随后可清除纤维蛋白原和促进纤维蛋白凝块形成(也参见Krarup等人,PLoS One,18:2(7):e623,2007)。
独立的研究已经表明,凝集素MASP复合物可在MASP-2依赖的过程中促进凝块形成、纤维蛋白沉积和纤维蛋白肽释放(Gulla等人,Immunology, 129(4):482-95, 2010)。因此,LEA-2促进补体和凝血系统的同时凝集素依赖性活化。
体外研究还表明,MASP-1具有类似凝血酶的活性(Presanis JS,等人,Mol Immunol, 40(13):921-9, 2004),并切割纤维蛋白原和因子XIII (Gulla K. C.等人,Immunology, 129(4):482-95, 2010),这表明LEA-1可以独立地或与LEA-2共同活化凝血途径。
上文详述的数据表明LEA-1和LEA-2提供凝集素依赖的补体活化和凝血之间的独立联系。因此,鉴于上述情况,LEA-1和LEA-2抑制剂预期在治疗患有弥散性血管内凝血的对象中具有独立的治疗益处。在一些实施方案中,对象患有继发于以下的弥散性血管内凝血:败血症、创伤、感染(细菌感染、病毒感染、真菌感染、寄生虫感染)、恶性肿瘤、移植排斥、输血反应、产科并发症、血管动脉瘤、肝衰竭、中暑、烧伤、辐射暴露、休克或严重的毒性反应(如蛇咬伤、昆虫叮咬、输血反应)。在一些实施方案中,创伤是神经创伤。在一些实施方案中,感染是细菌感染,如脑膜炎奈瑟氏菌感染。
此外,相比于单独的任一药剂,LEA-1和LEA-2抑制剂一起使用可实现额外的治疗益处。由于LEA-1和LEA-2两者已知通过导致DIC(例如感染或创伤)的病况而活化,LEA-1-和LEA-2阻断剂,单独或组合地,预计在DIC的治疗中具有治疗效用。LEA-1和LEA-2阻断剂可以防止补体和凝血之间不同的交叉对话机制。LEA-1-和LEA-2阻断剂可因此在预防DIC和其他血栓形成病症中具有互补效应、累加效应或协同效应。
此外,相比于单独的任一药剂,LEA-1和LEA-2抑制剂一起使用可实现额外的治疗益处,或者可以为更宽范围的患者亚群提供有效的治疗。组合的LEA-1和LEA-2抑制可以由LEA-1阻断剂和LEA-2阻断剂的共同施用来实现。最佳地,LEA-1和LEA-2的抑制功能可以包含在单一的分子实体中,例如包含MASP-1/3和MASP-2特异性结合位点的双特异性抗体,或其中每个结合位点可以结合并阻断MASP-1/3或MASP-2的双重特异性抗体。
根据上述内容,本发明的一个方面因此提供了用于抑制LEA-1依赖性补体活化的方法,以在有此需要的对象中治疗、预防或减少弥散性血管内凝血的严重程度,所述方法包括将组合物施用于患有弥散性血管内凝血或有发展弥散性血管内凝血风险的对象,所述组合物包含在药物载体中的治疗有效量的LEA-1抑制剂,其包含MASP-1抑制剂、MASP-3抑制剂或MASP-1/3抑制剂的组合。MASP-1、MASP-3或MASP-1/3抑制性组合物可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或可能通过口服施用非肽能药剂。施用可由医师确定而重复进行,直到病况得到解决或控制。对于治疗或预防继发于创伤或其他急性事件的DIC,LEA-1抑制性组合物可在外伤性损伤后立即施用,或创伤诱导损伤或情况(如被视为有DIC风险患者的手术)之前、期间、之后立即或在1至7天或更长的时间例如24小时至72小时内预防性施用。在一些实施方案中,LEA-1抑制性组合物可以适当地以快速作用的剂型施用,例如通过含有LEA-1抑制剂组合物的推注溶液的静脉内或动脉内递送。
在一个实施方案中,根据本发明这个方面的方法还包括在有此需要的对象中抑制LEA-2依赖性补体活化,以治疗、预防或减少弥散性血管内凝血的严重程度,包括向对象施用治疗有效量的MASP-2抑制剂和MASP-1、MASP-3或MASP-1/3抑制剂。如上详述,与单独抑制LEA-1相比,采用各自阻断LEA-1和LEA-2的药理剂的组合预期在治疗或预防弥散性血管内凝血中提供改进的治疗结果。这个结果可以实现,例如,通过具有LEA-1阻断活性的抗体连同具有LEA-2-阻断活性的抗体的共同施用。在一些实施方案中,LEA-1-和LEA-2-阻断活性被组合成单一的分子实体,并且所述实体具有组合的LEA-1-和LEA-2-阻断活性。这种实体可以包括双特异性抗体或由其组成,其中一个抗原结合位点特异性识别MASP-1并阻断LEA-1而第二抗原结合位点特异性识别MASP-2并阻断LEA-2。或者,这样的实体可由双特异性单克隆抗体组成,其中一个抗原结合位点特异性识别MASP-3,因此阻断LEA-1而第二抗原结合位点特异性识别MASP-2,并阻断LEA-2。这样的实体可最佳地由双特异性单克隆抗体组成,其中一个抗原结合位点特异性地识别MASP-1和MASP-3两者,因此阻断LEA-1,而第二抗原结合位点特异性地识别MASP-2,并阻断LEA-2。
MASP-2抑制剂可全身性施用于有此需要的对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,以及潜在地对于非肽能药剂经口服施用。施用可由医师确定而重复进行,直到病况得到解决或控制。对于继发于创伤或其他急性事件的DIC,MASP-2抑制性组合物可在外伤性损伤后立即施用,或创伤诱导损伤或情况(如被视为有DIC风险患者的手术)之前、期间、之后立即或在1至7天或更长的时间例如24小时至72小时内预防性施用。在一些实施方案中,MASP-2抑制性组合物可以适当地以快速作用的剂型施用,例如通过含有MASP-2抑制性组合物的推注溶液的静脉内或动脉内递送。
本发明的MASP-3抑制性组合物和任选MASP-2抑制性组合物的施用可通过组合物的单次施用(例如,含有MASP-2和MASP-3抑制剂或双特异性或双重抑制剂的单一组合物,或共同施用分开的组合物),或通过有限顺序的施用进行,用于治疗、预防或减少有此需要的对象中弥散性血管内凝血的严重程度。或者,组合物可以以周期性的间隔,例如每日、每两周、每周、每隔一周、每月或每两月在长时间内施用以治疗患有弥散性血管内凝血或有发展弥散性血管内凝血风险的对象。
如本文实施例11-21中所述,已经产生高亲和力MASP-3抑制性抗体,其具有抑制AP相关疾病或病况例如弥散性血管内凝血中的替代途径的治疗效用。
因此,在一个实施方案中,本发明提供用于治疗患有或有风险发展弥散性血管内凝血的对象的方法,其包括施用有效量的结合人MASP-3且抑制替代途径补体活化的高亲和力单克隆抗体或其抗原结合片段以治疗弥散性血管内凝血或降低发展弥散性血管内凝血的风险,例如,其中所述抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ IDNO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。
F. MASP-3在血栓性微血管病(TMA)包括溶血性尿毒症综合征(HUS)、非典型溶血性尿毒症综合征(AHUS)和血栓性血小板减少性紫癜(TTP)中的作用,以及使用MASP-3抑制性抗体、任选组合MASP-2抑制剂的治疗方法
血栓性微血管病(TMA)是指一组临床特征为血小板减少、微血管病性溶血性贫血和多器官缺血的病症。TMA的特征性病理特征是血小板活化和微血栓在小动脉和小静脉中的形成。经典的TMA是溶血性尿毒症综合征(HUS)和血栓性血小板减少性紫癜(TTP)。HUS与TTP区别在于急性肾衰竭的存在。HUS以两种形式发生:腹泻相关的(D+)或典型HUS和无腹泻(D-)或非典型HUS(aHUS)。
HUS
D+HUS与通常由大肠杆菌O157或另一个志贺毒素产生细菌株引起的前驱腹泻疾病相关联,占儿童HUS病例中的90%以上,并且是儿童急性肾衰竭的最常见原因。尽管人感染大肠杆菌O157是相对频繁的,但发展到D+HUS的血性腹泻百分比范围在散发病例中为3%至7%和在一些爆发中为20%至30%(Zheng, X.L.和Sadler, J.E., Annu. Rev. Pathol.3:249-277, 2008)。HUS通常发生在腹泻发病后4至6天,在疾病的急性期大约三分之二的儿童需要透析。D+HUS的治疗是支持性的,因为没有特定的治疗已被表明是有效的。D+HUS的预后良好,大部分患者恢复肾功能。
D+HUS的发病机制涉及了结合于微血管内皮细胞、单核细胞和血小板的膜的细菌生产的志贺毒素。肾脏微血管最常受到影响。在结合后,毒素被内化,导致释放炎症介质,细胞最终死亡。据认为,内皮细胞损伤通过促进凝血级联的活化而触发肾脏微血管血栓形成。有证据表明D+HUS中补体系统活化。与正常对照相比,在住院时,D+HUS儿童的Bb和SC5b-9的血浆水平增加,并在出院后第28天,血浆水平已正常(Thurman, J.M.等人,Clin. J. Am. Soc. Nephrol. 4:1920-1924, 2009)。发现由于活化在阻断经典途径的乙二醇四乙酸存在时进行,因此志贺毒素2 (Stx2)在体外主要通过替代途径活化流体相中的人补体(Orth,D.等人,J. Immunol. 182:6394-6400, 2009)。此外,Stx2结合因子H而不是因子I,并延迟细胞表面上因子H的辅因子活性(Orth等人,2009, 同上)。这些结果表明,志贺毒素可能通过多个潜在机制导致肾损害,包括直接的毒性作用,并间接地通过活化补体或抑制补体调节剂。预计对血管内皮的毒性作用通过LEA-2来活化补体,如在各种血管床中MASP-2阻断在防止补体介导的再灌注损伤中的有效性所表明,如Schwaeble, W.J.等人,Proc. Natl. Acad. Sci. 108:7523-7528, 2011中所述。
在共注射志贺毒素和脂多糖诱导的鼠HUS模型中,与野生型小鼠相比,因子B缺陷的小鼠具有更少的血小板减少症和被保护免于肾损害,暗示替代途径在微血管血栓形成中LEA-1依赖性活化(Morigi, M.等人,J. Immunol. 187:172-180, 2011)。如本文描述的,在相同的模型中,MASP-2抗体施用也是有效的,并在STX攻击后增加存活,暗示在微血管血栓形成中的LEA-2依赖性补体途径。
鉴于上述内容,LEA-1和LEA-2抑制剂预期在治疗或预防HUS中具有独立的治疗益处。此外,与单独的任一药剂相比,LEA-1和LEA-2抑制剂一起使用可以实现额外的治疗益处,或可以为更宽范围的患者亚群提供有效治疗。组合的LEA-1和LEA-2抑制可以由LEA-1阻断剂和LEA-2阻断剂的共同施用来实现。最佳地,LEA-1和LEA-2的抑制功能可以包含在单一的分子实体中,例如包含MASP-1/3和MASP-2特异性结合位点的双特异性抗体,或其中每个结合位点可以结合并阻断MASP-1/3或MASP-2的双重特异性抗体。
aHUS
非典型HUS是一种罕见的疾病,在美国发病率估计为百万分之二(Loirat, C.和Fremeaux-Bacchi, V. Orphanet J. Rare Dis. 6:60-90, 2011)。非典型HUS可在任何年龄发展,但多数患者在儿童期有发作。非典型HUS是异质的:某些病例是家族性的,有些是复发的,而有些是由传染性疾病,通常为上呼吸道或肠胃炎引起。aHUS的发病通常是突然的,大多数患者在入院时需要透析。额外肾脏表现存在于大约20%的患者中和可能涉及中枢神经系统、心肌梗死、远端缺血性坏疽或多器官衰竭。aHUS的治疗包括器官功能障碍的支持性护理、血浆输注或血浆置换和依库珠单抗(依库丽单抗),其为针对C5的人源化单克隆抗体,最近批准在美国和欧盟使用。aHUS的预后不如D+HUS的预后好,在急性期大约有25%的死亡率,多数幸存者发展为终末期肾病。
非典型HUS表征为补体调节异常的疾病,大约50%患者的编码补体调节蛋白的基因具有突变(Zheng和Sadler,2008同上)。大多数突变见于因子H (FH);其他突变包括膜辅因子蛋白(MCP)、因子I (FI)、因子B及C3。功能研究表明,FH、MCP和FI突变导致功能丧失,因此更多补体活化,而因子B突变是功能获得。这些突变的作用主要影响替代途径。这些遗传异常是危险因素,而不是疾病的唯一原因,因为约50%携带该突变的家庭成员到45岁时并不呈现该疾病(Loirat和Fremeaux-Bacchi,2011同上)。
因子H是一种补体调控蛋白,其保护宿主组织免于替代途径补体攻击。FH以三种方式调节替代途径扩增环:它是裂解C3b的FI的辅因子,它抑制替代途径C3转化酶C3bBb的形成,并且它结合至细胞表面和组织基质上的聚阴离子并阻断C3b沉积(Atkinson, J.P.和Goodship, T.H.J., J. Exp. Med. 6:1245-1248, 2007)。aHUS患者的多数FH突变发生在蛋白质的C-末端短共有重复结构域,这导致FH与肝素、C3b和内皮结合缺陷,但不改变驻留在N-末端结构域中的血浆C3调节(Pickering, M.C.等人,J. Exp. Med. 204:1249-1256,2007)。FH-缺陷小鼠有不受控制的血浆C3活化和自发发展膜增生性肾小球肾炎II型,但不是aHUS。然而,转基因表达功能上等同于aHUS相关人FH突变体的小鼠FH蛋白的FH缺陷小鼠自发发展HUS但不是膜增生性肾小球肾炎II型,这提供了体内证据,表明肾内皮中替代途径活化的缺陷控制是FH-相关aHUS发病机制的关键事件(Pickering等人,2007同上)。FH相关aHUS的另一形式发生在具有导致FH功能活性损失的抗FH自身抗体的患者;大多数这些患者的编码5个FH相关蛋白的基因缺失(Loirat和Fremeaux-Bacchi,2011,同上)。
类似于FH,MCP通过调节靶细胞上的C3b沉积而抑制补体活化。MCP突变产生具有低的C3b结合和辅因子活性的蛋白,因此允许失调的替代途径活化。FI是一种丝氨酸蛋白酶,其在辅因子例如FH和MCP存在时裂解C3b和C4b,由此防止C3和C5转化酶的形成和抑制替代和经典补体途径二者。大多数的FI-相关aHUS突变导致FI对C3b和C4b降解活性减少(Zheng和Stadler,2008年,同前)。FB是携带替代途径转化酶C3bBb的催化位点的酶原。功能分析表明,aHUS相关FB突变导致增加的替代途径活化(Loirat和Fremeaux-Bacchi,2011,同上)。C3的杂合突变与aHUS相关联。大多数C3突变引起C3结合MCP缺陷,导致FB结合C3b的能力提高和C3转化酶的形成增加(Loirat和Fremeaux-Bacchi,2011,同上)。因此,aHUS是与导致替代途径扩增环控制不足的补体基因突变密切相关的疾病。由于替代途径扩增环依赖于因子B蛋白水解活性,并且由于LEA-1对于因子B活化是需要的(通过MASP-3依赖性裂解,或通过因子D型介导的裂解,其中MASP-1有助于因子D的成熟),LEA-1阻断剂预期在易感个体中防止不受控制的补体活化。因此,预期LEA-1阻断剂将有效治疗aHUS。
尽管aHUS中失调替代途径扩增环的中心作用已被广泛接受,但启动补体活化的触发器和所涉及的分子途径是未解决的。不是所有的携带上述突变的个体发展aHUS。事实上,家族性的研究表明,aHUS的外显率只有约50%(Sullivan M.等人,Ann Hum Genet 74:17-26 2010)。疾病的自然史表明,aHUS最常见在启动事件如感染性发作或受伤后发展。众所周知感染剂活化补体系统。在没有预先存在的适应性免疫时,感染剂的补体活化可主要通过LEA-1或LEA-2启动。因此,在aHUS-易感个体中,由感染引发的凝集素依赖的补体活化可代表补体活化后续病理扩增的启动触发器,这可能最终导致疾病进展。因此,本发明的另一个方面包括通过施用有效量的LEA-1-或LEA-2-抑制剂而治疗患有继发于感染的aHUS的患者。
其他形式的宿主组织损伤将通过LEA-2活化补体,特别是血管内皮损伤。人血管内皮细胞经受氧化应激,例如通过表达结合凝集素和活化LEA-2补体途径的表面部分而响应(Collard等人,Am J. Pathol 156(5):1549-56, 2000)。缺血/再灌注后血管损伤也通过体内LEA-2而活化补体(Moller-Kristensen等人,Scand J Immunol 61(5):426-34, 2005)。在此情况下凝集素途径的活化对于宿主具有病理学后果,并且如实施例22和23中所示,通过阻断MASP-2而抑制LEA-2阻止进一步宿主组织损伤和不良结果(还参见Schwaeble PNAS,2011,同上)。
因此,还已知促成aHUS的其他方法活化LEA-1或LEA-2。因此可能的是,在遗传倾向于aHUS的个体中,LEA-1和/或LEA-2途径可代表以失调方式被不适当扩增的初始补体活化机制,从而启动aHUS发病。由此推断,在aHUS易感个体中,通过LEA-1和/或LEA-2阻断补体活化的药剂预期阻止疾病进展或减少病情加重。
进一步支持这一概念的是,最近的研究已经确定肺炎链球菌在aHUS的儿科病例中是重要的病原(Lee, C.S.等人,Nephrology, 17(1):48-52 (2012); Banerjee R.等人,Pediatr Infect Dis J., 30(9):736-9 (2011))。该特定病因似乎有不利的预后,伴随显著死亡率和长期病态。值得注意的是,这些病例涉及非肠道感染,导致表现微血管病变、尿毒症和溶血,而无已知易患aHUS的补体基因并发突变的证据。注意到肺炎链球菌对于活化补体特别有效并且主要通过LEA-2实现这一点是重要的。因此,在与肺炎球菌感染相关的非肠道HUS的情况下,微血管病、尿毒症和溶血的表现预计主要由LEA-2活化而驱动,并且阻断LEA-2的药剂,包括MASP-2抗体,预期在这些患者中防止aHUS的进展或降低疾病的严重程度。因此,本发明的另一个方面包括通过施用有效量的MASP-2抑制剂而治疗患有与肺炎链球菌感染相关的非肠道aHUS的患者。
TTP
血栓性血小板减少性紫癜(TTP)是一种威胁生命的血液凝固系统病症,其由活化凝血级联或补体系统的自身免疫或遗传性功能障碍引起(George, JN, N Engl J Med;354:1927-35, 2006)。这导致整个身体的小血管中大量的微观凝块或者血栓,这是TMA的特有特征。红细胞受到剪切应力,其损害它们的膜,导致血管内溶血。所产生的血流量减少和内皮损伤导致器官损伤,包括脑、心脏和肾脏。TTP的临床特征是血小板减少、微血管病性溶血性贫血、神经学变化、肾衰竭和发烧。在血浆置换前的时代,急性发作期间的病死率为90%。即使采用血浆交换,六个月存活率为约80%。
TTP可源于酶ADAMTS-13的遗传性或获得性抑制,该酶是负责将血管性血友病因子(vWF)的大的多聚体裂解成较小单元的金属蛋白酶。ADAMTS-13抑制或不足最终导致凝血增加(Tsai, H. J Am Soc Nephrol 14: 1072–1081, 2003)。ADAMTS-13调节vWF活性;在不存在ADAMTS-13时,vWF形成大的多聚体,其更有可能结合血小板和使患者易患血小板聚集和微血管血栓形成。
已在患有TTP的个体中确定众多ADAMTS13突变。该病还可由于针对ADAMTS-13的自身抗体而发展。此外,TTP可在乳腺癌、胃肠道癌或前列腺癌(George JN., Oncology(Williston Park). 25:908-14, 2011)、妊娠(妊娠中期或产后) (George JN., Curr Opin Hematol 10:339-344, 2003)期间发展,或与疾病如HIV或自体免疫疾病如系统性红斑狼疮相关联(Hamasaki K等人, Clin Rheumatol.22:355-8, 2003)。TTP也可通过某些药物疗法引起,包括肝素、奎宁、免疫介导的成分、癌症化疗剂(博来霉素、顺铂、阿糖胞苷、柔红霉素、吉西他滨、丝裂霉素C和他莫昔芬)、环孢菌素A、口服避孕药、青霉素、利福平和抗血小板药物包括噻氯匹定和氯吡格雷(Azarm, T.等人,J Res Med Sci., 16: 353–357,2011)。与TTP相关的其他因素或病况为毒素如蜜蜂毒液、败血症、脾隔离症、移植、血管炎、血管手术和感染如肺炎链球菌和巨细胞病毒感染(Moake JL., N Engl J Med., 347:589–600, 2002)。由于瞬时功能性ADAMTS-13缺乏的TTP可由于与肺炎链球菌感染有关的内皮细胞损伤而发生(Pediatr Nephrol, 26:631-5, 2011)。
血浆置换为TTP的标准治疗(Rock GA等人,N Engl J Med 325:393-397, 1991)。血浆置换在遗传缺陷患者中补充ADAMTS-13活性,并除去获得性自身免疫性TTP的那些患者的ADAMTS-13自身抗体(Tsai, H-M, Hematol Oncol Clin North Am., 21(4): 609–v,2007)。将额外药剂如免疫抑制药物常规添加到疗法中(George, JN, N Engl J Med, 354:1927-35, 2006)。然而,血浆置换对于约20%的患者不成功,在超过三分之一的患者中出现复发,而且血浆置换成本高,技术要求高。此外,许多患者无法耐受血浆置换。因此仍然迫切需要TTP的额外和更好的治疗。
因为TTP是血液凝固级联的病症,所以用补体系统的拮抗剂治疗可有助于稳定和校正疾病。尽管替代补体途径的病理活化与aHUS关联,但补体活化在TTP中的作用不太清楚。ADAMTS13的功能不足对于TTP易感性是重要的,但是它不足以引起急性发作。环境因素和/或其他遗传变异可有助于TTP的表现。例如,编码参与凝血级联调节的蛋白的基因、vWF、血小板功能、内皮血管表面的组分或补体系统可涉及急性血栓性微血管病的发展(Galbusera, M.等人,Haematologica, 94: 166–170, 2009)。具体地,补体活化已经显示出发挥关键作用;来自与ADAMTS-13缺乏有关的血栓形成性微血管病的血清已显示导致C3和MAC沉积和随后的嗜中性粒细胞活化,这可能通过补体失活而消除(Ruiz-Torres MP等人,Thromb Haemost, 93:443-52, 2005)。此外,最近已表明,在TTP的急性发作期间C4d、C3bBbP或C3a的水平增加(M. Réti等人,J Thromb Haemost. 10(5):791-798, 2012),这与经典、凝集素和替代途径的活化一致。在急性发作中该增加量的补体活化可启动终端途径活化,并负责TTP的进一步恶化。
ADAMTS-13和vWF在TTP中的作用显然是负责血小板活化和聚集,并其随后在微血管病的剪切应力和沉积中的作用。活化血小板与经典和替代补体途径两者相互作用并引发这两者。血小板介导的补体活化增加了炎症介质C3a和C5a (Peerschke E.等人,Mol Immunol, 47:2170-5 (2010))。血小板可因此作为遗传或自身免疫TTP中经典补体活化的靶标。
如上所述,凝集素依赖性补体活化,凭借MASP-1的类似凝血酶活性和LEA-2介导的凝血酶原活化,是连接内皮损伤与HUS中发生的凝固和微血管血栓形成的主要分子途径。同样地,LEA-1和LEA-2的活化可以直接驱动TTP中的凝血系统。LEA-1和LEA-2途径活化可响应于TTP中ADAMTS-13缺乏导致的初始内皮损伤而启动。因此,预期LEA-1和LEA-2抑制剂,包括但不限于阻断MASP-2功能、MASP-1功能、MASP-3功能或MASP-1和MASP-3功能的抗体,将在患有TTP的患者中减轻与微血管内凝血、血栓形成和溶血相关联的微血管病。
患有TTP的患者通常在急诊室且具有以下的一种或多种:紫癜、肾衰竭、低血小板、贫血和/或血栓形成,包括中风。护理TTP的当前标准包括导管内递送(例如,静脉内或其他形式导管)血浆置换达两周或更长的时间,一般为每周三次,但高达每日。如果对象对于ADAMTS13抑制剂(即,针对ADAMTS13的内源性抗体)的存在测试为阳性,则可与免疫抑制疗法(例如,皮质类固醇、利妥昔单抗(rituxan)或环孢素)组合进行血浆置换。患有难治性TTP(TTP患者的约20%)的对象不响应至少两周的血浆置换疗法。
根据前述内容,在一个实施方案中,在TTP的初步诊断的情况下,或者在表现出与TTP的诊断一致的一种或多种症状(例如,中枢神经系统的参与,严重的血小板减少症(如果没有阿司匹林,血小板计数小于或等于5000/μL,如果使用阿司匹林,小于或等于20,000/μL),严重的心脏受累,严重肺部受累,胃肠梗死或坏疽)的对象中,提供了用有效量的LEA-2抑制剂(例如,MASP-2抗体)或LEA-1抑制剂(例如,MASP-1或MASP-3抗体)作为第一线疗法(不存在血浆置换,或与血浆置换组合)治疗对象的方法。作为第一线疗法,LEA-1和/或LEA-2抑制剂可全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用。在一些实施方案中,LEA-1和/或LEA-2抑制剂在不存在血浆置换时向对象施用作为第一线疗法,以避免血浆置换的潜在并发症,例如出血、感染和暴露于血浆供体所固有的病症和/或变态反应,或另外反感血浆置换的对象中,或者在血浆置换不可用的情况下。在一些实施方案中,LEA-1和/或LEA-2抑制剂与免疫抑制剂(例如,皮质类固醇、利妥昔单抗或环孢素)组合(包括共同施用)和/或与浓ADAMTS-13组合施用于患有TTP的对象。
在一些实施方案中,该方法包括在第一时间段(例如,持续至少一天至一周或两周的急性期)经由导管(例如,静脉内)向患有TTP的对象施用LEA-1和/或LEA-2抑制剂,然后在第二时间段(例如,至少两周或更长的慢性期)向对象皮下施用LEA-1和/或LEA-2抑制剂。在一些实施方案中,在第一和/或第二时间段的施用在无血浆置换时进行。在一些实施方案中,该方法用于维持对象以防止对象患有一种或多种与TTP相关的症状。
在另一个实施方案中,提供了通过施用有效减少TTP的一种或多种症状的量的LEA-1和/或LEA-2抑制剂而治疗患有难治性TTP的对象(也就是,对至少两周血浆置换疗法没有响应的对象)的方法。在一个实施方案中,在至少两周或更长的时间段,通过皮下或其他胃肠外施用将LEA-1和/或LEA-2抑制剂施用于患有慢性难治性TTP的对象。施用可由医师确定而重复进行,直到病况得到解决或控制。
在一些实施方案中,该方法进一步包括在治疗之前以及任选在治疗期间在对象中判定至少一种补体因子(例如C3、C5)的水平,其中相比于标准值或健康对照对象,至少一种补体因子的水平减小的判定指示需要用LEA-1和/或LEA-2抑制剂的继续治疗。
在一些实施方案中,该方法包括将LEA-1和/或LEA-2抑制剂皮下或静脉内施用于患有TTP或有发展TTP风险的对象。治疗优选每天进行,但也可以没那么频繁如每月进行。继续治疗,直至对象的血小板计数至少连续两天大于150,000/ ml。
总之,LEA-1和LEA-2抑制剂预期在治疗TMA包括HUS、aHUS和TTP中提供独立的治疗益处。此外,与单独任一药剂相比,LEA-1和LEA-2抑制剂一起使用预期实现额外的治疗益处,或者可以为更广范围的患有TMA变体形式的患者亚群提供有效的治疗。合并的LEA-1和LEA-2抑制可通过LEA-1阻断剂和LEA2阻断剂的共同施用来实现。最佳地,LEA-1和LEA-2的抑制功能可以包含在单一的分子实体,例如包含MASP-1/3和MASP-2特异性结合位点的双特异性抗体,或其中每个结合位点可以结合并阻断MASP-1/3或MASP-2的双重特异性抗体。
根据上述内容,本发明的一个方面因此提供了用于抑制LEA-1依赖性补体活化以治疗、预防或减少血栓性微血管病的严重程度的方法,所述血栓性微血管病例如溶血性尿毒症综合征(HUS)、非典型溶血性尿毒症综合征(aHUS)或血栓性血小板减少性紫癜(TTP),所述方法包括向患有血栓性微血管病的对象或有发展血栓性微血管病风险的对象施用一种组合物,所述组合物包含在药物载体中的治疗有效量的LEA-1抑制剂,其包含MASP-1抑制剂、MASP-3抑制剂或MASP-1/3抑制剂的组合。MASP-1、MASP-3或MASP-1/3抑制性组合物可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或对于非肽能药剂可能通过口服施用。施用可由医师确定而重复进行,直到病况得到解决或控制。
在一个实施方案中,根据本发明此方面的方法进一步包括抑制LEA-2依赖性补体活化以治疗、预防或减少血栓性微血管病的严重程度,所述血栓性微血管病例如溶血性尿毒症综合征(HUS)、非典型溶血性尿毒症综合征(aHUS)或血栓性血小板减少性紫癜(TTP),所述方法包括向患有血栓性微血管病的对象或有发展血栓性微血管病风险的对象施用治疗有效量的MASP-2抑制剂和MASP-1、MASP-3或MASP-1/3抑制剂。如上详述,在治疗或预防或减少血栓性微血管病的严重程度中,与单独抑制LEA-1相比,采用各自阻断LEA-1和LEA-2的药理剂的组合预期提供改进的治疗结果。这个结果可以实现,例如,通过具有LEA-1阻断活性的抗体连同具有LEA-2-阻断活性的抗体的共同施用。在一些实施方案中,LEA-1-和LEA-2-阻断活性被组合成单一的分子实体,并且所述实体具有组合的LEA-1-和LEA-2-阻断活性。这种实体可以包括双特异性抗体或由其组成,其中一个抗原结合位点特异性识别MASP-1并阻断LEA-1,而第二抗原结合位点特异性识别MASP-2并阻断LEA-2。或者,这样的实体可由双特异性单克隆抗体组成,其中一个抗原结合位点特异性识别MASP-3,因此阻断LEA-1而第二抗原结合位点特异性识别MASP-2,并阻断LEA-2。这样的实体可最佳地由双特异性单克隆抗体组成,其中一个抗原结合位点特异性地识别MASP-1和MASP-3两者,因此阻断LEA-1,而第二抗原结合位点特异性地识别MASP-2,并阻断LEA-2。
MASP-2抑制剂可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或对于非肽能药剂可能通过口服施用。施用可由医师确定而重复进行,直到病况得到解决或控制。
本发明的MASP-3抑制性组合物和任选的MASP-2抑制性组合物的施用可以通过组合物的单次施用(例如,包含MASP-2和MASP-3抑制剂或双特异性或双重抑制剂的单一组合物,或共同施用分开的组合物)或有限顺序的施用来实施,用于治疗、预防或降低患有或有风险发展血栓性微血管病变的对象中的血栓性微血管病变的严重程度。或者,可在延长的时间期间以定期时间间隔(例如每天、每两周、每周、每隔一周、每月或每两月)施用组合物,用于治疗有此需要的对象。
如本文实施例11-21中所述,已经产生高亲和力MASP-3抑制性抗体,其具有抑制AP相关疾病或病况例如血栓性微血管病(例如,溶血性尿毒症综合征(HUS)、非典型溶血性尿毒症综合征(aHUS)或血栓性血小板减少性紫癜(TTP))中的替代途径的治疗效用。
因此,在一个实施方案中,本发明提供用于治疗患有或有风险发展血栓性微血管病(例如,溶血性尿毒症综合征(HUS)、非典型溶血性尿毒症综合征(aHUS)或血栓性血小板减少性紫癜(TTP))的对象的方法,其包括施用有效量的结合人MASP-3且抑制替代途径补体活化的高亲和力单克隆抗体或其抗原结合片段以治疗血栓性微血管病(例如,溶血性尿毒症综合征(HUS)、非典型溶血性尿毒症综合征(aHUS)、血栓性血小板减少性紫癜(TTP)或移植相关的TMA (TA-TMA))或降低发展血栓性微血管病(例如,溶血性尿毒症综合征(HUS)、非典型溶血性尿毒症综合征(aHUS)、血栓性血小板减少性紫癜(TTP)或移植相关的TMA (TA-TMA))的风险,例如,其中所述抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142、SEQ IDNO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。
G. MASP-3在哮喘中的作用和使用MASP-3抑制性抗体、任选组合MASP-2抑制剂的治疗方法
哮喘是呼吸道的一种常见的慢性炎性疾病。在美国大约2500万人有哮喘,包括18岁以下的700万儿童,其中一半以上每年至少经历一次哮喘发作,每年导致超过170万急诊和450000住院(world-wide-web在gov/health/prof/lung/asthma/naci/asthma-info/index.htm,在2012年5月4日进行访问)。该病是异类的,具有多个临床表型。最常见的表型是过敏性哮喘。其他表型包括非过敏性哮喘、阿司匹林加剧呼吸道疾病、感染后哮喘、职业性哮喘、空气传播的刺激剂诱发的哮喘及运动诱发的哮喘。过敏性哮喘的主要特征包括:对多种特异性和非特异性刺激的呼吸道高反应性(AHR)、过度呼吸道粘液生产、肺嗜酸粒细胞增多和升高的血清IgE浓度。哮喘的症状包括咳嗽、气喘、胸闷和气短。哮喘治疗的目标是控制疾病并使病情加重、每日症状最小化,并让患者进行身体活动。目前的治疗指南推荐逐步治疗直到哮喘控制实现。第一治疗步骤是根据需要速效吸入β2激动剂,随后加入控制药物如吸入皮质类固醇、长效吸入β2激动剂、白三烯改进剂药物、茶碱、口服糖皮质激素和抗IgE单克隆抗体。
尽管哮喘起源是多因素的,但普遍认为它由于在遗传上易感的个体中对于共同环境抗原的不适当免疫反应而产生。哮喘与补体活化有关,而过敏毒素(AT) C3a和C5a具有促炎性和免疫调节性质,这与过敏反应的发展和调节相关(Zhang, X.和Kohl, J. Expert. Rev. Clin. Immunol., 6:269-277, 2010)。然而,经典、替代和凝集素补体途径在哮喘中的相对参与并不是很了解。替代途径可在变应原的表面上被活化而凝集素途径可以通过识别变应原多糖结构而活化,这两个过程导致产生AT。根据所涉及的病因性变应原,补体可通过不同的途径被活化。例如Parietaria科的高度变应性草花粉非常有效地促进C4的MBL依赖性活化,这牵涉LEA-2。相反地,屋尘螨变应原不需要MBL用于补体活化(Varga等Mol Immunol., 39(14):839-46, 2003)。
哮喘的环境触发因子可以由替代途径活化补体。例如,在体外将人血清暴露于香烟烟雾或柴油机排气颗粒导致活化补体,该效果不受EDTA存在的影响,表明活化经由替代途径,而不是经典途径(Robbins, R.A.等人,Am. J. Physiol. 260:L254-L259, 1991;Kanemitsu, H.等人,Biol. Pharm. Bull. 21:129-132, 1998)。在小鼠卵白蛋白致敏和攻击模型中评估过敏性呼吸道炎症中补体途径的作用。野生型小鼠响应于气源性变应原攻击而发展AHR和呼吸道炎症。在过敏性肺部炎症的小鼠卵白蛋白模型中,当全身施用或通过吸入局部施用时,抑制补体活化的所有途径的Crry-Ig融合蛋白有效预防AHR和肺部炎症(Taube等人,Am J Respir Crit Care Med., 168(11):1333-41, 2003)。
相比于野生型小鼠,因子B缺陷的小鼠显示出较少的AHR和呼吸道炎症,而C4缺陷型小鼠具有与野生型小鼠相似的效果(Taube, C.等人,Proc. Natl. Acad. Sci. USA103:8084-8089, 2006)。这些结果支持了替代途径而不是经典途径参与鼠气源性变应原攻击模型的作用。在使用相同小鼠的模型中,因子H (FH)的研究提供了替代途径重要性的进一步证据(Takeda, K.等人,J. Immunol. 188:661-667, 2012)。FH是替代途径的负调节剂,其作用是防止自身组织的自体伤害。在变应原攻击期间内源性FH被发现存在于呼吸道中,而用重组竞争性拮抗剂抑制FH增加了AHR和呼吸道炎症的程度(Takeda等人,2012,同上)。治疗性递送CR2-fH(连接CR2的iC3b/C3d结合区与FH的补体调节区的嵌合蛋白,其将fH的补体调节活性靶向现有的补体活化位点)防护变应原攻击后AHR的发展和嗜酸性粒细胞渗入呼吸道(Takeda等人,2012,同上)。用卵白蛋白以及豚草变应原(其是人类相关变应原)表明了该防护作用。
凝集素依赖性补体活化在哮喘中的作用在真菌哮喘的小鼠模型中进行评价(Hogaboam等人,J. Leukocyte Biol. 75:805-814, 2004)。这些研究使用甘露聚糖结合凝集素A(MBL-A)遗传缺陷的小鼠,所述MBL-A是碳水化合物结合蛋白,其用作活化凝集素补体途径的识别组分。在用烟曲霉分生孢子i.t.攻击后第4和28天检查MBL-A(+/+)和MBL-A(-/-)烟曲霉致敏小鼠。与致敏的MBL-A(+/+)组相比,在分生孢子攻击后的两个时间点,致敏MBL-A(-/-)小鼠的AHR显著衰减。与野生型组相比,肺TH2细胞因子水平(IL-4、IL-5和IL13)在分生孢子后第4天显著低于烟曲霉致敏的MBL-A(-/-)小鼠。这些结果表明,MBL-A和凝集素途径在慢性真菌哮喘期间AHR的发展和维持中起主要作用。
上文详述的发现表明凝集素依赖性补体活化在哮喘发病机制中的参与。实验数据表明,因子B活化起着关键作用。鉴于LEA-1在因子B的凝集素依赖性活化和替代途径的随后活化中的基本作用,预期LEA-1阻断剂将有利于治疗替代途径介导的某些形式哮喘。因此,这样的治疗可特别用于屋尘螨引起的哮喘或环境触发剂例如香烟烟雾或柴油废气引起的哮喘。另一个方面,由草花粉触发的哮喘反应有可能引起LEA-2依赖性补体活化。因此,LEA-2阻断剂预期可特别用于治疗该患者亚群的哮喘病况。
鉴于上文详述的数据,本发明人相信,LEA-1和LEA-2介导哮喘中的病理补体活化。根据引发过敏剂,LEA-1或LEA-2可优先参与。因此,LEA-1阻断剂与LEA-2阻断剂组合可具有治疗多种形式哮喘的效用,而与潜在病因学无关。LEA-1和LEA-2阻断剂可在预防、治疗或逆转肺部炎症和哮喘症状中具有互补、累加或协同效应。
合并的LEA-1和LEA-2抑制可以由LEA-1阻断剂和LEA2阻断剂的共同施用来完成。最佳地,LEA-1和LEA-2抑制功能可以包含在单一的分子实体,例如包含MASP-1/3和MASP-2特异性结合位点的双特异性抗体,或其中每个结合位点可以结合并阻断MASP-1/3或MASP-2的双重特异性抗体。
根据上述内容,本发明的一个方面因此提供了用于抑制LEA-1依赖性补体活化以治疗、预防或减少哮喘的严重程度的方法,所述方法包括向患有哮喘或有风险发展哮喘的对象施用一种组合物,所述组合物包含在药物载体中的治疗有效量的LEA-1抑制剂,其包含MASP-1抑制剂、MASP-3抑制剂或MASP-1/3抑制剂的组合。MASP-1、MASP-3或MASP-1/3抑制性组合物可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或对于非肽能药剂可能通过口服施用。施用可由医师确定而重复进行,直到病况得到解决或控制。
在一个实施方案中,根据本发明此方面的方法进一步包括抑制LEA-2依赖性补体活化以治疗、预防或减少哮喘的严重程度,所述方法包括向患有哮喘的对象或有发展哮喘风险的对象施用治疗有效量的MASP-2抑制剂和MASP-1、MASP-3或MASP-1/3抑制剂。如上详述,在治疗或预防或减少哮喘的严重程度中,与单独抑制LEA-1相比,采用各自阻断LEA-1和LEA-2的药理剂的组合预期提供改进的治疗结果。这个结果可以实现,例如,通过具有LEA-1阻断活性的抗体连同具有LEA-2-阻断活性的抗体的共同施用。在一些实施方案中,LEA-1-和LEA-2-阻断活性被组合成单一的分子实体,并且所述实体具有组合的LEA-1-和LEA-2-阻断活性。这种实体可以包括双特异性抗体或由其组成,其中一个抗原结合位点特异性识别MASP-1并阻断LEA-1而第二抗原结合位点特异性识别MASP-2并阻断LEA-2。或者,这样的实体可由双特异性单克隆抗体组成,其中一个抗原结合位点特异性识别MASP-3,因此阻断LEA-1而第二抗原结合位点特异性识别MASP-2,并阻断LEA-2。这样的实体可最佳地由双特异性单克隆抗体组成,其中一个抗原结合位点特异性地识别MASP-1和MASP-3两者,因此阻断LEA-1,而第二抗原结合位点特异性地识别MASP-2,并阻断LEA-2。
MASP-2抑制剂可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或对于非肽能药剂可能通过口服施用。施用可由医师确定而重复进行,直到病况得到解决或控制。
本发明的MASP-3抑制性组合物和任选MASP-2抑制性组合物的施用可通过组合物的单次施用(例如,含有MASP-2和MASP-3抑制剂或双特异性或双重抑制剂的单一组合物,或共同施用分开的组合物),或通过有限顺序的施用进行,用于治疗、预防或减少患有哮喘的对象或有发展哮喘风险的对象的哮喘的严重程度。或者,组合物可以以周期性的间隔,例如每日、每两周、每周、每隔一周、每月或每两月在长时间内施用以治疗有此需要的对象。
如本文实施例11-21中所述,已经产生高亲和力MASP-3抑制性抗体,其具有抑制AP相关疾病或病况例如哮喘中的替代途径的治疗效用。
因此,在一个实施方案中,本发明提供用于治疗患有或有风险发展哮喘的对象的方法,其包括施用有效量的结合人MASP-3且抑制替代途径补体活化的高亲和力单克隆抗体或其抗原结合片段以治疗哮喘或降低发展哮喘的风险,例如,其中所述抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO:86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。
H. MASP-3在致密沉积物病中的作用以及使用MASP-3抑制性抗体、任选组合MASP-2抑制剂的治疗方法
膜增生性肾小球肾炎(MPGN)是一种肾脏病症,形态学特征在于由于肾小球系膜的内皮下延伸而致的肾小球系膜细胞的增殖和肾小球毛细血管壁的增厚。MPGN被分类为原发性(也称为特发性)或继发性,基础疾病为例如感染性疾病、全身性免疫复合物疾病、肿瘤、慢性肝病等。特发性MPGN包括三种形态类型。I型,或经典MPGN,特点是免疫复合物的内皮下沉积和经典补体途径的活化。II型,或致密沉积物病(DDD),其特征在于额外的膜内致密沉积物。III型的特征在于额外的上皮下沉积物。特发性MPGN是罕见的,约占肾病综合征的原发性肾脏病因的4%至7% (Alchi, B.和Jayne, D. Pediatr. Nephrol. 25:1409-1418,2010)。MPGN主要影响儿童和青少年,可能表现为肾病综合征、急性肾炎综合征、无症状性蛋白尿和血尿或复发性肉眼血尿。肾功能障碍在多数患者发生,该疾病具有缓慢渐进过程,约40%患者在10年诊断内发展终末期肾脏病(Alchi和Jayne,2010,同上)。目前的治疗选项包括糖皮质激素、免疫抑制剂、抗血小板治疗方案和血浆置换。
通过肾活检的免疫荧光染色,通过缺乏免疫球蛋白和存在C3而诊断DDD,电子显微术显示沿肾小球基底膜的特征性密集嗜锇沉积物。DDD由补体替代途径的失调引起(Sethi等人,Clin J Am Soc Nephrol. 6(5):1009-17, 2011),这可起因于许多不同的机制。在DDD中最常见的补体系统的异常是C3肾炎因子的存在,其是针对替代途径C3转化酶(C3bBb)的自身抗体,这增加其半衰期和因此该途径的活化(Smith, R.J.H.等人,Mol. Immunol.48:1604-1610, 2011)。其他替代途径异常包括阻断因子H功能的因子H自身抗体、功能获得性C3突变和因子H的遗传缺陷(Smith等人,2011,同上)。最近的病例报告显示,在两个DDD患者中,eclizumab(抗C5单克隆抗体)治疗与肾功能改善相关(Daina, E.等人,New Engl. J. Med. 366:1161-1163, 2012; Vivarelli, M.等人,New Engl. J. Med. 366:1163-1165,2012),这表明补体活化在肾脏后果中的致病作用。
鉴于上述遗传性、功能性和免疫组化和轶事的临床数据,充分确立了补体在DDD发病机制中的关键作用。因此,阻断补体活化的致病机制或随后的补体活化产物的干预,预计治疗上可用于治疗这种病况。
尽管人类遗传数据表明,替代途径扩增环的不恰当控制或过度活化起着关键的作用,但启动补体的事件还没有被确定。肾活组织检查的免疫组织化学研究表明了患病组织中MBL沉积的证据,表明了在DDD中凝集素途径参与启动病理性补体活化(Lhotta等人,Nephrol Dial Transplant., 14(4):881-6, 1999)。已在实验模型中进一步证实替代途径的重要性。因子H缺陷小鼠发展进行性蛋白尿和人类病况特有的肾脏病理病变(Pickering等人,Nat Genet., 31(4):424, 2002)。Pickering等进一步表明,介导替代途径的LEA-1依赖性活化的因子B除去充分保护因子H缺陷小鼠免于DDD (Pickering等人,Nat Genet., 31(4):424, 2002)。
因此,可以预期,阻断LEA-1的药剂将有效阻断替代途径的凝集素依赖性活化,并因此将对DDD提供有效的治疗。鉴于替代途径扩增环在DDD患者中失调,可进一步预期阻断扩增环的药剂将是有效的。因为阻断MASP-1或MASP-1和MASP-3的LEA-1靶向剂抑制因子D的成熟,这种剂被预测为有效阻断替代途径扩增环。
如上文详述,在患病的肾脏标本中发现明显MBL沉积,突出表明了凝集素驱动的活化事件可能参与DDD发病。一旦肾小球毛细血管的初始组织损伤被建立,则很可能出现额外的MBL结合至受损肾小球内皮和基础性肾小球系膜结构。这种组织损伤公知导致LEA-2活化,从而可引起进一步的补体活化。因此,LEA-2阻断剂也预期在防止受损肾小球结构的进一步补体活化方面具有效用,因此防止向终末期肾衰竭的进一步疾病进展。
上文详述的数据表明LEA-1和LEA-2促进DDD中的单独病理补体活化过程。因此,LEA-1阻断剂和LEA-2阻断剂,单独或组合,预计可用于治疗DDD。
当组合使用时,LEA-1-和LEA-2阻断剂预计会比任一单独剂更有效,或可用于治疗不同阶段的疾病。LEA-1-和LEA-2阻断剂可因此在预防、治疗或逆转DDD相关的肾功能障碍中具有互补、累加或协同效应。
合并的LEA-1和LEA-2抑制可通过LEA-1阻断剂和LEA2阻断剂的共同施用来实现。最佳地,具有抑制功能的LEA-1和LEA-2阻断剂可以包含在单一的分子实体,例如包含MASP-1/3和MASP-2特异性结合位点的双特异性抗体,或其中每个结合位点可以结合并阻断MASP-1/3或MASP-2的双重特异性抗体。
根据上述内容,本发明的一个方面因此提供了用于抑制LEA-1依赖性补体活化以治疗、预防或减少致密沉积物病的严重程度的方法,所述方法包括向患有致密沉积物病或有风险发展致密沉积物病的对象施用一种组合物,所述组合物包含在药物载体中的治疗有效量的LEA-1抑制剂,其包含MASP-1抑制剂、MASP-3抑制剂或MASP-1/3抑制剂的组合。MASP-1、MASP-3或MASP-1/3抑制性组合物可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或对于非肽能药剂可能通过口服施用。施用可由医师确定而重复进行,直到病况得到解决或控制。
在另一个方面,提供了用于抑制LEA-2依赖性补体活化以治疗、预防或减少致密沉积物病的严重程度的方法,所述方法包括向患有致密沉积物病或有风险发展致密沉积物病的对象施用治疗有效量的MASP-2抑制剂。在另一个方面,提供了包括抑制LEA-1和LEA-2依赖性补体活化两者以治疗、预防或减少致密沉积物病的严重程度的方法,所述方法包括向患有致密沉积物病或有风险发展致密沉积物病的对象施用治疗有效量的MASP-2抑制剂和MASP-1、MASP-3或MASP-1/3抑制剂。
在一些实施方案中,所述方法包括抑制LEA-1依赖性补体活化和LEA-2依赖性补体活化两者。如上详述,在治疗、预防或减少致密沉积物病的严重程度中,与单独抑制LEA-1相比,采用各自阻断LEA-1和LEA-2的药理剂的组合预期提供改进的治疗结果。这个结果可以实现,例如,通过具有LEA-1阻断活性的抗体连同具有LEA-2-阻断活性的抗体的共同施用。在一些实施方案中,LEA-1-和LEA-2-阻断活性被组合成单一的分子实体,并且所述实体具有组合的LEA-1-和LEA-2-阻断活性。这种实体可以包括双特异性抗体或由其组成,其中一个抗原结合位点特异性识别MASP-1并阻断LEA-1而第二抗原结合位点特异性识别MASP-2并阻断LEA-2。或者,这样的实体可由双特异性单克隆抗体组成,其中一个抗原结合位点特异性识别MASP-3,因此阻断LEA-1而第二抗原结合位点特异性识别MASP-2,并阻断LEA-2。这样的实体可最佳地由双特异性单克隆抗体组成,其中一个抗原结合位点特异性地识别MASP-1和MASP-3两者,因此阻断LEA-1,而第二抗原结合位点特异性地识别MASP-2,并阻断LEA-2。
LEA-1和/或LEA-2抑制剂可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或对于非肽能药剂可能通过口服施用。施用可由医师确定而重复进行,直到病况得到解决或控制。
本发明的MASP-3抑制性组合物和/或MASP-2抑制性组合物的施用可通过组合物的单次施用(例如,含有MASP-2和/或MASP-3抑制剂或双特异性或双重抑制剂的单一组合物,或共同施用分开的组合物),或通过有限顺序的施用进行,用于在有此需要的对象中治疗、预防或减少致密沉积物病的严重程度。或者,组合物可以以周期性的间隔,例如每日、每两周、每周、每隔一周、每月或每两月在长时间内施用以治疗有此需要的对象。
如本文实施例11-21中所述,已经产生高亲和力MASP-3抑制性抗体,其具有抑制AP相关疾病或病况例如致密沉积物病中的替代途径的治疗效用。
因此,在一个实施方案中,本发明提供用于治疗患有或有风险发展致密沉积物病的对象的方法,其包括施用有效量的结合人MASP-3且抑制替代途径补体活化的高亲和力单克隆抗体或其抗原结合片段以治疗致密沉积物病或降低发展致密沉积物病的风险,例如,其中所述抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ IDNO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQID NO: 161的VLCDR3。
I. MASP-3在微量免疫坏死性新月体肾小球肾炎中的作用以及使用MASP-3抑制性抗体、任选组合MASP-2抑制剂的治疗方法
微量免疫坏死性新月体肾小球肾炎(NCGN)是快速进行性肾小球肾炎的一种形式,其中肾小球毛细血管壁显示炎症迹象但还具有微量可检测的免疫复合物沉积或抗肾小球基底膜抗体。该病况与肾功能快速下降有关。发现大多数NCGN患者具有抗中性粒细胞胞浆自身抗体(ANCA),因此属于一组称为ANCA相关血管炎的疾病。血管炎是一种特征为血管壁的炎症和纤维素样坏死的血管病症。全身性血管炎根据血管大小:大、中和小而分类。几种形式的小血管炎与ANCA的存在,即韦格纳肉芽肿、显微镜下多血管炎、Churg-Strauss综合征和肾限定性血管炎(NCGN)相关联。它们也可以是潜在病况如系统性红斑狼疮的表现。ANCA的靶抗原包括蛋白酶-3(PR3)和髓过氧化物酶(MPO)。微量免疫NCGN是罕见的,在英国Wessex每百万中约4人报告发病(Hedger, N.等人,Nephrol. Dial. Transplant. 15:1593-1599, 2000)。在Wessex系列的128例微量免疫NCGN患者中,73%为ANCA阳性,59%患者需要初始透析而36%患者需要长期透析。微量免疫NCGN的治疗包括皮质类固醇和免疫抑制剂如环磷酰胺和硫唑嘌呤。对于ANCA相关血管炎的其他治疗选项包括利妥昔单抗和血浆置换(Chen, M.和Kallenberg, C.G.M. Nat. Rev. Rheumatol. 6:653-664, 2010)。
尽管NCGN的特征在于微量补体沉积,但补体替代途径已经牵涉其发病机理。对7例MPO-ANCA相关微量免疫NCGN患者的肾活检评估检测到膜攻击复合物、C3d、因子B和因子P的存在(其在正常对照或微小病变疾病患者的活检中未检测到),而未检出C4d和甘露糖结合凝集素,表明替代途径的选择性活化(Xing, G.Q.等J. Clin. Immunol. 29:282-291,2009)。实验NCGN可以通过转移抗MPO IgG到野生型小鼠或转移抗MPO脾细胞到免疫缺陷小鼠来诱导(Xiao, H.等J. Clin. Invest. 110:955-963, 2002)。在NCGN的该小鼠模型中,使用基因敲除小鼠研究特定的补体活化途径的作用。在注射抗MPO IgG后,C4-/-小鼠发展与野生型小鼠可比的肾病,而C5-/-和因子B-/-小鼠没有发展肾病,这表明替代途径参与了该模型而经典和凝集素途径没有(Xiao, H.等Am. J. Pathol. 170:52-64, 2007)。而且,将患者的MPO-ANCA或PR3-ANCA IgG与TNF-α-引发的人中性粒细胞孵育,引起在正常人血清中导致补体活化的因子释放,如通过C3a产生所检测的;对于健康对象的IgG没有观察到这种效果,提示ANCA在嗜中性粒细胞和补体活化的潜在致病作用(Xiao等人,2007,同上)。
基于以上对于替代途径在该病况中概述的作用,预计阻断替代途径的活化将在ANCA阳性NCGN的治疗中具有效用。鉴于发病需要fB活化,预计LEA-1的抑制剂将特别可用于治疗此病况和在这些患者中防止肾功能进一步下降。
然而,患者的另一亚群发展具有新月体形成的进行性肾血管炎,在无ANCA时伴随肾功能的快速下降。这种形式的病况被称为ANCA阴性NCGN并构成患有微量免疫NCGN的所有患者的大约三分之一(Chen等人,JASN 18(2): 599-605, 2007)。这些患者趋于年轻化,且肾的结果往往特别严重(Chen等人,Nat Rev Nephrol., 5(6):313-8, 2009)。这些患者的鉴别性病理特征是MBL和C4d在肾脏病变的沉积(Xing等人,J Clin Immunol. 30(1):144-56, 2010)。肾活组织检查中MBL和C4d的染色强度与肾功能负相关(Xing等人,2010,同上)。这些结果表明凝集素依赖性补体活化在发病机制中起重要作用。C4d而不是因子B通常存在于患病组织标本中的事实表明LEA-2参与。
基于上述凝集素依赖性补体活化在ANCA阴性NCGN中的作用,预计阻断LEA-2途径的活化将在ANCA阴性NCGN治疗中具有效用。
上文详述的数据表明LEA-1和LEA-2在ANCA阳性和ANCA阴性NCGN中分别介导病理补体活化。因此,LEA-1阻断剂与LEA-2阻断剂组合预期具有治疗所有形式的微量免疫NCGN的效用,而与潜在病因学无关。LEA-1和LEA-2阻断剂可因此在预防、治疗或逆转NCGN相关肾功能障碍中具有互补、累加或协同效应。
与单独任一药剂相比,LEA-1和LEA-2抑制剂一起使用可实现额外的治疗益处,或者可以为更广范围的患者亚群提供有效的治疗。合并的LEA-1和LEA-2抑制可以由LEA-1阻断剂和LEA-2阻断剂的共同施用来完成。最佳地,LEA-1和LEA-2抑制功能可以包含在单一的分子实体,例如包含MASP-1/3和MASP-2特异性结合位点的双特异性抗体,或其中每个结合位点可以结合并阻断MASP-1/3或MASP-2的双重特异性抗体。
根据上述内容,本发明的一个方面因此提供了用于抑制LEA-1依赖性补体活化以治疗、预防或减少微量免疫坏死性新月体肾小球肾炎的严重程度的方法,所述方法包括向患有微量免疫坏死性新月体肾小球肾炎或有风险发展微量免疫坏死性新月体肾小球肾炎的对象施用一种组合物,所述组合物包含在药物载体中的治疗有效量的LEA-1抑制剂,其包含MASP-1抑制剂、MASP-3抑制剂或MASP-1/3抑制剂的组合。MASP-1、MASP-3或MASP-1/3抑制性组合物可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或对于非肽能药剂可能通过口服施用。施用可由医师确定而重复进行,直到病况得到解决或控制。
在另一个方面,提供了用于抑制LEA-2依赖性补体活化以治疗、预防或减少微量免疫坏死性新月体肾小球肾炎的严重程度的方法,所述方法包括向患有微量免疫坏死性新月体肾小球肾炎或有风险发展微量免疫坏死性新月体肾小球肾炎的对象施用治疗有效量的MASP-2抑制剂。在另一个方面,提供了包括抑制LEA-1和LEA-2依赖性补体活化两者以治疗、预防或减少微量免疫坏死性新月体肾小球肾炎的严重程度的方法,所述方法包括向有此需要的对象施用治疗有效量的MASP-2抑制剂和MASP-1、MASP-3或MASP-1/3抑制剂。
在一些实施方案中,所述方法包括抑制LEA-1依赖性补体活化和LEA-2依赖性补体活化两者。如上详述,在治疗或预防或减少微量免疫坏死性新月体肾小球肾炎的严重程度中,与单独抑制LEA-1相比,采用各自阻断LEA-1和LEA-2的药理剂的组合预期提供改进的治疗结果。这个结果可以实现,例如,通过具有LEA-1阻断活性的抗体连同具有LEA-2-阻断活性的抗体的共同施用。在一些实施方案中,LEA-1-和LEA-2-阻断活性被组合成单一的分子实体,并且所述实体具有组合的LEA-1-和LEA-2-阻断活性。这种实体可以包括双特异性抗体或由其组成,其中一个抗原结合位点特异性识别MASP-1并阻断LEA-1而第二抗原结合位点特异性识别MASP-2并阻断LEA-2。或者,这样的实体可由双特异性单克隆抗体组成,其中一个抗原结合位点特异性识别MASP-3,因此阻断LEA-1而第二抗原结合位点特异性识别MASP-2,并阻断LEA-2。这样的实体可最佳地由双特异性单克隆抗体组成,其中一个抗原结合位点特异性地识别MASP-1和MASP-3两者,因此阻断LEA-1,而第二抗原结合位点特异性地识别MASP-2,并阻断LEA-2。
MASP-2抑制剂可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或对于非肽能药剂可能通过口服施用。施用可由医师确定而重复进行,直到病况得到解决或控制。
本发明的MASP-3抑制性组合物和/或MASP-2抑制性组合物的施用可通过组合物的单次施用(例如,含有MASP-2和/或MASP-3抑制剂或双特异性或双重抑制剂的单一组合物,或共同施用分开的组合物),或通过有限顺序的施用进行,用于治疗、预防或减少微量免疫坏死性新月体肾小球肾炎的严重程度。或者,组合物可以以周期性的间隔,例如每日、每两周、每周、每隔一周、每月或每两月在长时间内施用以治疗有此需要的对象。
如本文实施例11-21中所述,已经产生高亲和力MASP-3抑制性抗体,其具有抑制AP相关疾病或病况例如微量免疫坏死性新月体肾小球肾炎(NCGN)中的替代途径的治疗效用。
因此,在一个实施方案中,本发明提供用于治疗患有或有风险发展微量免疫坏死性新月体肾小球肾炎(NCGN)的对象的方法,其包括施用有效量的结合人MASP-3且抑制替代途径补体活化的高亲和力单克隆抗体或其抗原结合片段以治疗微量免疫坏死性新月体肾小球肾炎(NCGN)或降低发展微量免疫坏死性新月体肾小球肾炎(NCGN)的风险,例如,其中所述抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO:258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ IDNO: 161的VLCDR3。
J. MASP-3在创伤性脑损伤中的作用以及使用MASP-3抑制性抗体、任选组合MASP-2抑制剂的治疗方法
创伤性脑损伤(TBI)是每年导致至少1千万人死亡或住院治疗的全球主要健康问题(Langlois, J.A.等人,J. Head Trauma Rehabil. 21:375-378, 2006)。2003年在美国估计有160万TBI,包括120万例急诊、290000例住院和51000例死亡(Rutland-Brown, W.等人,J. Head Trauma Rehabil. 21:544-548, 2006)。在美国大多数TBI是由跌倒和机动车交通造成的。TBI可导致长期或终身的身体、认知、行为和情绪后果。超过500万美国人患有与TBI相关的长期或终生残疾(Langlois等人,2006年,同上)。
TBI可能涉及脑物质穿透(“穿透”损伤)或不穿透脑的损伤(“封闭”的损伤)。损伤概况和相关的神经行为后遗症在穿透和关闭性TBI之间可能非常不同。尽管各损伤是独特的,但某些脑区域特别容易受到外伤引起的损害,包括额皮层和额下白质、基底节和间脑、喙脑干和颞叶包括海马(McAllister, T.W. Dialogues Clin. Neurosci. 13:287-300,2011)。TBI可以导致急性期几种神经递质系统的改变,包括谷氨酸和其他兴奋性氨基酸的释放以及儿茶酚胺能和胆碱能系统中的慢性改变,其可与神经行为残疾相关联(McAllister,2011,同上)。显著TBI幸存者常患认知缺损、人格改变和增加的精神病症,尤其是抑郁、焦虑和创伤后应激病症。尽管大量研究,但对于TBI,尚未发现可以降低死亡率和发病率并改善功能性结果的临床上有效的治疗。
补体因子和TBI
大量的研究已经确定了补体蛋白和神经病症,包括阿尔茨海默氏病、多发性硬化、重症肌无力、格林-巴利综合征、脑狼疮和中风的关系(在Wagner, E.等人,Nature Rev Drug Disc. 9: 43-56, 2010中综述)。最近已证实C1q和C3在突触消除中的作用,从而补体因子可能参与正常CNS功能和神经变性疾病两者(Stevens, B.等人,Cell 131: 1164–1178, 2007)。MASP-1和MASP-3基因广泛表达于大脑以及神经胶质瘤细胞系T98G(Kuraya,M.等人,Int Immunol., 15:109-17, 2003),这与凝集素途径在CNS中的作用一致。
MASP-1和MASP-3对针对病原体和改变的自身细胞的直接防御是关键的,但凝集素途径还导致中风、心脏发作和其他缺血再灌注损伤后的严重组织损伤。同样,MASP-1和MASP-3是TBI引起的组织损伤中的可能介质。在两种小鼠模型中,替代途径中因子B的抑制已显示使TBI减弱。因子B敲除小鼠被保护免于TBI后的补体介导的神经炎症和神经病理(Leinhase I等人,BMC Neurosci. 7:55, 2006)。此外,抗因子B抗体在TBI诱导的小鼠中减弱脑组织损伤和神经元细胞死亡(Leinhase I等人,J Neuroinflammation 4:13, 2007)。MASP-3直接活化因子B(Iwaki, D.等人,J Immunol. 187:3751-8, 2011),因此也是TBI中的可能介质。类似于因子B的抑制,LEA-1抑制剂如抗MASP-3抗体预期提供有前景的策略用于治疗TBI中的组织损伤和随后的后遗症。
因此,LEA-1和LEA-2抑制剂可在TBI中具有独立的治疗益处。与单独任一药剂相比,LEA-1和LEA-2抑制剂一起使用可实现额外的治疗益处,或者可以为更广范围的患者亚群提供有效的治疗。合并的LEA-1和LEA-2抑制可以由LEA-1阻断剂和LEA2阻断剂的共同施用来完成。最佳地,LEA-1和LEA-2抑制功能可以包含在单一的分子实体,例如包含MASP-1/3和MASP-2特异性结合位点的双特异性抗体,或其中每个结合位点可以结合并阻断MASP-1/3或MASP-2的双重特异性抗体。
根据上述内容,本发明的一个方面因此提供了用于抑制LEA-1依赖性补体活化以治疗或减少创伤性脑损伤的严重程度的方法,所述方法包括向患有创伤性脑损伤的对象施用一种组合物,所述组合物包含在药物载体中的治疗有效量的LEA-1抑制剂,其包含MASP-1抑制剂、MASP-3抑制剂或MASP-1/3抑制剂的组合。MASP-1、MASP-3或MASP-1/3抑制性组合物可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、颅内、皮下或其他肠胃外施用,或对于非肽能药剂可能通过口服施用。施用可由医师确定而重复进行,直到病况得到解决或控制。
在另一个方面,提供了用于抑制LEA-2依赖性补体活化以治疗或减少创伤性脑损伤的严重程度的方法,所述方法包括向患有创伤性脑损伤的对象施用治疗有效量的MASP-2抑制剂。在另一个方面,提供了包括抑制LEA-1和LEA-2依赖性补体活化两者以治疗或减少创伤性脑损伤的严重程度的方法,所述方法包括向患有创伤性脑损伤的对象施用治疗有效量的MASP-2抑制剂和MASP-1、MASP-3或MASP-1/3抑制剂。
在一些实施方案中,所述方法包括抑制LEA-1依赖性补体活化和LEA-2依赖性补体活化两者。如上详述,在治疗或减少创伤性脑损伤的严重程度中,与单独抑制LEA-1相比,采用各自阻断LEA-1和LEA-2的药理剂的组合预期提供改进的治疗结果。这个结果可以实现,例如,通过具有LEA-1阻断活性的抗体连同具有LEA-2-阻断活性的抗体的共同施用。在一些实施方案中,LEA-1-和LEA-2-阻断活性被组合成单一的分子实体,并且所述实体具有组合的LEA-1-和LEA-2-阻断活性。这种实体可以包括双特异性抗体或由其组成,其中一个抗原结合位点特异性识别MASP-1并阻断LEA-1而第二抗原结合位点特异性识别MASP-2并阻断LEA-2。或者,这样的实体可由双特异性单克隆抗体组成,其中一个抗原结合位点特异性识别MASP-3,因此阻断LEA-1而第二抗原结合位点特异性识别MASP-2,并阻断LEA-2。这样的实体可最佳地由双特异性单克隆抗体组成,其中一个抗原结合位点特异性地识别MASP-1和MASP-3两者,因此阻断LEA-1,而第二抗原结合位点特异性地识别MASP-2,并阻断LEA-2。
MASP-2抑制剂可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下、颅内或其他肠胃外施用,或对于非肽能药剂可能通过口服施用。施用可由医师确定而重复进行,直到病况得到解决或控制。
本发明的MASP-3抑制性组合物和/或MASP-2抑制性组合物的施用可通过组合物的单次施用(例如,含有MASP-2和/或MASP-3抑制剂或双特异性或双重抑制剂的单一组合物,或共同施用分开的组合物),或通过有限顺序的施用进行,用于治疗或减少创伤性脑损伤的严重程度。或者,组合物可以以周期性的间隔,例如每日、每两周、每周、每隔一周、每月或每两月在长时间内施用以治疗有此需要的对象。
如本文实施例11-21中所述,已经产生高亲和力MASP-3抑制性抗体,其具有抑制AP相关疾病或病况例如创伤性脑损伤中的替代途径的治疗效用。
因此,在一个实施方案中,本发明提供用于治疗患有或有风险发展创伤性脑损伤的对象的方法,其包括施用有效量的结合人MASP-3且抑制替代途径补体活化的高亲和力单克隆抗体或其抗原结合片段以治疗创伤性脑损伤或降低发展创伤性脑损伤的风险,例如,其中所述抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ IDNO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQID NO: 161的VLCDR3。
K. MASP-3在吸入性肺炎中的作用以及使用MASP-3抑制性抗体、任选组合MASP-2抑制剂的治疗方法
吸入被定义为将口咽或胃内容物吸入到下呼吸道。吸入可导致吸入(化学)性肺炎、原发性细菌吸入性肺炎或化学性肺炎的继发性细菌感染的并发症。吸入的危险因素包括降低水平的意识(例如,头部创伤、酒精或药物引起的感觉中枢变化、中风)、各种胃肠道和食道异常以及神经肌肉疾病。据估计,450万例社区获得性肺炎中的5-15%是由于吸入性肺炎(Marik, P.E. New Engl. J. Med. 344:665-671, 2001)。化学性肺炎的治疗主要是支持性的,而使用经验性抗生素是有争议的。细菌吸入性肺炎的治疗是用适当的抗生素,这是基于吸入发生在社区还是医院,这是因为可能的致病微生物在这些情况下是不同的。应采取措施,以防止高危患者的吸入,例如养老院中咽反射受损的老年患者。已被表明是有效预防的措施包括喂养时床的头部抬高、牙科预防和良好的口腔卫生。预防性抗生素没有被表明是有效的并阻止使用,因为它们可能导致抗性微生物的出现。
补体组分的调节已被建议用于许多临床适应症,包括传染病(脓毒症、病毒、细菌和真菌感染)和肺部病况(呼吸窘迫综合征、慢性阻塞性肺病和囊性纤维化) (综述在Wagner, E.等人,Nature Rev Drug Disc. 9: 43-56, 2010)。很多临床和遗传研究对这个建议提供了支持。例如,患有临床结核且具有低的MBL水平的患者的频率显著降低(Soborg等人,Journal of Infectious Diseases 188:777–82, 2003),这表明MBL低水平与免于该疾病的保护相关。
在酸吸入损伤的鼠模型中,Weiser MR等人, J. Appl. Physiol. 83(4): 1090–1095, 1997,表明C3敲除小鼠受到保护免于严重的伤害;而C4敲除小鼠没有受到保护,这表明补体活化是通过替代途径介导的。因此,在吸入性肺炎中用LEA-1抑制剂阻断替代途径预计将提供治疗益处。
因此,LEA-1和LEA-2抑制剂在吸入性肺炎中可具有独立的治疗益处。此外,与单独任一药剂相比,LEA-1和LEA-2抑制剂一起使用可实现额外的治疗益处,或者可以为更广范围的患者亚群提供有效的治疗。合并的LEA-1和LEA-2抑制可以由LEA-1阻断剂和LEA2阻断剂的共同施用来完成。最佳地,LEA-1和LEA-2抑制功能可以包含在单一的分子实体,例如包含MASP-1/3和MASP-2特异性结合位点的双特异性抗体,或其中每个结合位点结合并阻断MASP-1/3或MASP-2的双重特异性抗体。
本发明的一个方面因此提供了用于抑制LEA-1依赖性补体活化以治疗吸入性肺炎的方法,所述方法通过向患有所述疾病或其他补体介导的肺炎的对象施用一种组合物来进行,所述组合物包含在药物载体中的治疗有效量的MASP-1抑制剂、MASP-3抑制剂或MASP-1/3抑制剂的组合。MASP-1、MASP-3或MASP-1/3抑制组合物可以局部施用至肺,如通过吸入器。或者,MASP-1、MASP-3或MASP-1/3抑制剂可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或可能通过口服施用。施用可由医师确定而重复进行,直到病况得到解决或控制。
根据上述内容,本发明的一个方面因此提供了用于抑制LEA-1依赖性补体活化以治疗、预防或减少吸入性肺炎的严重程度的方法,所述方法包括向患有吸入性肺炎或有风险发展吸入性肺炎的对象施用一种组合物,所述组合物包含在药物载体中的治疗有效量的LEA-1抑制剂,其包含MASP-1抑制剂、MASP-3抑制剂或MASP-1/3抑制剂的组合。MASP-1、MASP-3或MASP-1/3抑制性组合物可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或对于非肽能药剂可能通过口服施用。施用可由医师确定而重复进行,直到病况得到解决或控制。
在另一个方面,提供了用于抑制LEA-2依赖性补体活化以治疗、预防或减少吸入性肺炎的严重程度的方法,所述方法包括向患有吸入性肺炎或有风险发展吸入性肺炎的对象施用治疗有效量的MASP-2抑制剂。在另一个方面,提供了包括抑制LEA-1和LEA-2依赖性补体活化两者以治疗或减少吸入性肺炎的严重程度的方法,所述方法包括向患有吸入性肺炎的对象施用治疗有效量的MASP-2抑制剂和MASP-1、MASP-3或MASP-1/3抑制剂。在一些实施方案中,所述方法包括抑制LEA-1依赖性补体活化和LEA-2依赖性补体活化两者。如上详述,在治疗或减少吸入性肺炎的严重程度中,与单独抑制LEA-1相比,采用各自阻断LEA-1和LEA-2的药理剂的组合预期提供改进的治疗结果。这个结果可以实现,例如,通过具有LEA-1阻断活性的抗体连同具有LEA-2-阻断活性的抗体的共同施用。在一些实施方案中,LEA-1-和LEA-2-阻断活性被组合成单一的分子实体,并且所述实体具有组合的LEA-1-和LEA-2-阻断活性。这种实体可以包括双特异性抗体或由其组成,其中一个抗原结合位点特异性识别MASP-1并阻断LEA-1而第二抗原结合位点特异性识别MASP-2并阻断LEA-2。或者,这样的实体可由双特异性单克隆抗体组成,其中一个抗原结合位点特异性识别MASP-3,因此阻断LEA-1而第二抗原结合位点特异性识别MASP-2,并阻断LEA-2。这样的实体可最佳地由双特异性单克隆抗体组成,其中一个抗原结合位点特异性地识别MASP-1和MASP-3两者,因此阻断LEA-1,而第二抗原结合位点特异性地识别MASP-2,并阻断LEA-2。
MASP-2抑制剂可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或对于非肽能药剂可能通过口服施用。施用可由医师确定而重复进行,直到病况得到解决或控制。
本发明的MASP-3抑制性组合物和/或MASP-2抑制性组合物的施用可通过组合物的单次施用(例如,含有MASP-2和/或MASP-3抑制剂或双特异性或双重抑制剂的单一组合物,或共同施用分开的组合物),或通过有限顺序的施用进行,用于在有此需要的对象中治疗、预防或减少吸入性肺炎的严重程度。或者,组合物可以以周期性的间隔,例如每日、每两周、每周、每隔一周、每月或每两月在长时间内施用以治疗有此需要的对象。
如本文实施例11-21中所述,已经产生高亲和力MASP-3抑制性抗体,其具有抑制AP相关疾病或病况例如吸入性肺炎中的替代途径的治疗效用。
因此,在一个实施方案中,本发明提供用于治疗患有或有风险发展吸入性肺炎的对象的方法,其包括施用有效量的结合人MASP-3且抑制替代途径补体活化的高亲和力单克隆抗体或其抗原结合片段以治疗吸入性肺炎或降低发展吸入性肺炎的风险,例如,其中所述抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO:258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ IDNO: 161的VLCDR3。
L. MASP-3在眼内炎中的作用以及使用MASP-3抑制性抗体、任选组合MASP-2抑制剂的治疗方法
眼内炎是眼内腔的炎性病况,通常由感染引起。眼内炎可以是内源性的,起因于生物自远端感染源(例如,心内膜炎)的血行播散,或外源性的,起因于从外部直接接种生物,作为眼科手术、异物和/或钝性或穿透性眼外伤的并发症。外源性眼内炎比内源性眼内炎更常见,且大多数外源性眼内炎病例在眼科手术后发生。在美国,白内障手术是眼内炎的主要原因,并在0.1-0.3%的该手术中发生,在过去十年的发病率明显增加(Taban, M.等人,Arch. Ophthalmol. 123:613-620, 2005)。手术后眼内炎可呈现为急性,术后2周之内,或延迟,术后数月。急性眼内炎的典型表现为疼痛、发红、眼睑肿胀和视力下降。延迟发作的眼内炎相比急性形式不太常见,且患者可能会仅报告轻度疼痛和光敏性。眼内炎的治疗取决于潜在病因,并且可包括全身性和/或玻璃体内抗生素。眼内炎可导致视力降低或丧失。
如先前对于AMD描述的,多个补体途径基因已与眼科病症相关,并且这些具体包括凝集素途径的基因。例如,对于AMD亚型已经鉴定MBL2 (Dinu V等人,Genet Epidemiol 31:224–37, 2007)。LEA-1和LEA-2途径有可能参与眼炎性病况例如眼内炎(Chow SP等人,Clin Experiment Ophthalmol. 39:871-7, 2011)。Chow等检查眼内炎患者的MBL水平,表明MBL水平和功能性凝集素途径活性两者在发炎的人眼睛中都显著升高,但在非炎症对照眼中几乎检测不到。这表明了MBL和凝集素途径在威胁视力的眼炎性病况特别是眼内炎中的作用。此外,在角膜真菌性角膜炎的鼠模型中,MBL-A基因是五个上调炎性途径基因之一(Wang Y.等人,Mol Vis 13: 1226–33, 2007)。
因此,LEA-1和LEA-2抑制剂预期在治疗眼内炎中具有独立的治疗益处。此外,与单独任一药剂相比,LEA-1和LEA-2抑制剂一起使用可实现额外的治疗益处,或者可以为更广范围的患者亚群提供有效的治疗。合并的LEA-1和LEA-2抑制可以由LEA-1阻断剂和LEA-2阻断剂的共同施用来完成。最佳地,LEA-1和LEA-2抑制功能可以包含在单一的分子实体,例如包含MASP-1/3和MASP-2特异性结合位点的双特异性抗体,或其中每个结合位点结合并阻断MASP-1/3或MASP-2的双重特异性抗体。
根据上述内容,本发明的一个方面因此提供了用于抑制LEA-1依赖性补体活化以治疗、预防或减少眼内炎的严重程度的方法,所述方法包括向患有眼内炎或有风险发展眼内炎的对象施用一种组合物,所述组合物包含在药物载体中的治疗有效量的LEA-1抑制剂,其包含MASP-1抑制剂、MASP-3抑制剂或MASP-1/3抑制剂的组合。MASP-1、MASP-3或MASP-1/3抑制性组合物可局部施用至眼,例如通过冲洗或以局部凝胶、药膏或滴剂的形式施用该组合物,例如,通过玻璃体内施用。或者,MASP-1、MASP-3或MASP-1/3抑制剂可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或可能通过口服施用非肽能药剂。施用可由医师确定而重复进行,直到病况得到解决或控制。
在另一个方面,提供了用于抑制LEA-2依赖性补体活化以治疗、预防或减少眼内炎的严重程度的方法,所述方法包括向患有眼内炎或有风险发展眼内炎的对象施用治疗有效量的MASP-2抑制剂。在另一个方面,提供了包括抑制LEA-1和LEA-2依赖性补体活化两者以治疗或减少眼内炎的严重程度的方法,所述方法包括向患有眼内炎的对象施用治疗有效量的MASP-2抑制剂和MASP-1、MASP-3或MASP-1/3抑制剂。
在一些实施方案中,所述方法包括抑制LEA-1依赖性补体活化和LEA-2依赖性补体活化两者。如上详述,在治疗或预防或减少眼内炎的严重程度中,与单独抑制LEA-1相比,采用各自阻断LEA-1和LEA-2的药理剂的组合预期提供改进的治疗结果。这个结果可以实现,例如,通过具有LEA-1阻断活性的抗体连同具有LEA-2-阻断活性的抗体的共同施用。在一些实施方案中,LEA-1-和LEA-2-阻断活性被组合成单一的分子实体,并且所述实体具有组合的LEA-1-和LEA-2-阻断活性。这种实体可以包括双特异性抗体或由其组成,其中一个抗原结合位点特异性识别MASP-1并阻断LEA-1而第二抗原结合位点特异性识别MASP-2并阻断LEA-2。或者,这样的实体可由双特异性单克隆抗体组成,其中一个抗原结合位点特异性识别MASP-3,因此阻断LEA-1而第二抗原结合位点特异性识别MASP-2,并阻断LEA-2。这样的实体可最佳地由双特异性单克隆抗体组成,其中一个抗原结合位点特异性地识别MASP-1和MASP-3两者,因此阻断LEA-1,而第二抗原结合位点特异性地识别MASP-2,并阻断LEA-2。
MASP-2抑制剂可局部施用至眼,例如通过冲洗或以局部凝胶、药膏或滴剂的形式施用该组合物,或通过玻璃体内注射。或者,MASP-2抑制剂可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或可能通过口服施用非肽能药剂。施用可由医师确定而重复进行,直到病况得到解决或控制。
本发明的MASP-3抑制性组合物和/或MASP-2抑制性组合物的施用可通过组合物的单次施用(例如,含有MASP-2和/或MASP-3抑制剂或双特异性或双重抑制剂的单一组合物,或共同施用分开的组合物),或通过有限顺序的施用进行,用于在有此需要的对象中治疗、预防或减少眼内炎的严重程度。或者,组合物可以以周期性的间隔,例如每日、每两周、每周、每隔一周、每月或每两月在长时间内施用以治疗有此需要的对象。
如本文实施例11-21中所述,已经产生高亲和力MASP-3抑制性抗体,其具有抑制AP相关疾病或病况例如眼内炎中的替代途径的治疗效用。
因此,在一个实施方案中,本发明提供用于治疗患有或有风险发展眼内炎的对象的方法,其包括施用有效量的结合人MASP-3且抑制替代途径补体活化的高亲和力单克隆抗体或其抗原结合片段以治疗眼内炎或降低发展眼内炎的风险,例如,其中所述抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ IDNO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。
M. MASP-3在视神经脊髓炎中的作用以及使用MASP-3抑制性抗体、任选组合MASP-2抑制剂的治疗方法
视神经脊髓炎(NMO)是一种靶向视神经和脊髓的自身免疫性疾病。这导致视神经的炎症(被称为视神经炎)和脊髓的炎症(被称为脊髓炎)。NMO中的脊髓病变可导致腿或手臂无力或瘫痪、失明、膀胱及肠道功能障碍和感觉功能障碍。
NMO与多发性硬化症(MS)具有数个相似之处,因为两者都是由于CNS靶标的免疫攻击并且都导致脱髓鞘(Papadopoulos和Verkman, Lancet Neurol., 11(6):535-44,2013)。然而,NMO的分子靶标、治疗以及病变均不同于MS。尽管MS在很大程度上是由T细胞介导的,但NMO患者通常具有靶向水通道蛋白水通道蛋白4 (AQP4)的抗体,水通道蛋白是在包围血脑屏障的星形细胞中存在的蛋白质。对于MS,干扰素β是最常用的疗法,但在NMO中一般认为是有害的。NMO的炎性病变存在于脊髓和视神经中,并且可发展到大脑,包括白质和灰质。发生在NMO病变的脱髓鞘是通过补体介导的(Papadopoulos和Verkman, LancetNeurol., 11(6):535-44, 2013)。
补体依赖性细胞毒性似乎是引起NMO发展的主要机制。超过90%的NMO患者有抗AQP4的IgG抗体 (Jarius和Wildemann, Jarius S, Wildemann B., Nat Rev Neurol.2010 Jul;6(7):383-92)。这些抗体在血脑屏障处启动病变形成。星形细胞表面上的初始抗原-抗体复合物(AQP4/AQP4-IgG)活化经典补体途径。这导致在星形细胞表面上形成膜攻击复合物,导致粒细胞浸润、脱髓鞘,最终导致星形细胞、少突胶质细胞和神经元坏死(Misu等人,Acta Neuropathol 125(6):815-27, 2013)。这些细胞事件反映在组织破坏和囊性、坏死病变的形成中。
经典补体途径显然是NMO发病机制的关键。NMO病变显示免疫球蛋白的血管中心沉积(vasculocentric deposition)和活化补体成分(Jarius等人, Nat Clin PractNeurol. 4(4):202-14, 2008)。此外,补体蛋白例如C5a已从NMO患者的脑脊髓液中分离(Kuroda等人, J Neuroimmunol.,254(1-2):178-82, 2013)。此外,在小鼠NMO模型中,从NMO患者获得的血清IgG可导致补体依赖性细胞毒性(Saadoun等人,Brain, 133(Pt 2):349-61, 2010)。在NMO的小鼠模型中,抗C1q的单克隆抗体阻止星形细胞的补体介导的破坏和病变(Phuan等人, Acta Neuropathol, 125(6):829-40, 2013)。
补体替代途径用于放大整体补体活性。Harboe及其同事(2004)表明了替代途径的选择性阻断抑制80%以上的经典途径诱导的膜攻击复合物形成(Harboe等人,Clin Exp Immunol 138(3):439-46, 2004)。Tüzün及其同事(2013)检查了NMO患者的经典和替代途径产物两者(Tüzün E等人,J Neuroimmunol. 233(1-2): 211-5, 2011)。测定C4的分解产物C4d以评价经典途径活性,其与对照组相比在NMO患者血清中增加(2.14倍的增加)。此外,相比于MS患者或正常对照个体,观察到在NMO患者中替代途径因子B的分解产物因子Bb增加(1.33倍的增加)。这表明,在NMO中替代途径功能也增加。这种活化可以预期会提高整体补体活化,而且事实上,补体级联的最终产物sC5b-9显著增加(4.14倍增加)。
MASP-3的特异性抑制剂预期在治疗患有NMO的患者中提供益处。如本文中所示,缺乏MASP-3的血清无法活化因子B或因子D,因子B是C5转化酶的必需成分,因子D是替代途径的中心活化剂。因此,用抑制剂例如抗体或小分子阻断MASP-3活性也预期将抑制因子B和因子D的活化。抑制这两个因子将阻止替代途径的扩增,从而导致整体补体活性减小。因此在NMO中抑制MASP-3将显著提高治疗结果。
因此,LEA-1和/或LEA-2抑制剂预期在治疗NMO中具有独立的治疗益处。此外,与单独任一药剂相比,LEA-1和LEA-2抑制剂一起使用可实现额外的治疗益处,或者可以为更广范围的患者亚群提供有效的治疗。合并的LEA-1和LEA-2抑制可以由LEA-1阻断剂和LEA-2阻断剂的共同施用来完成。最佳地,LEA-1和LEA-2抑制功能可以包含在单一的分子实体,例如包含MASP-1/3和MASP-2特异性结合位点的双特异性抗体,或其中每个结合位点结合并阻断MASP-1/3或MASP-2的双重特异性抗体。
根据上述内容,本发明的一个方面因此提供了用于抑制LEA-1依赖性补体活化以治疗、预防或减少NMO的严重程度的方法,所述方法包括向患有NMO或有风险发展NMO的对象施用一种组合物,所述组合物包含在药物载体中的治疗有效量的LEA-1抑制剂,其包含MASP-1抑制剂、MASP-3抑制剂或MASP-1/3抑制剂的组合。MASP-1、MASP-3或MASP-1/3抑制性组合物可局部施用至眼,例如通过冲洗或以局部凝胶、药膏或滴剂的形式施用该组合物,或通过玻璃体内施用。或者,MASP-1、MASP-3或MASP-1/3抑制剂可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或可能通过口服施用非肽能药剂。施用可由医师确定而重复进行,直到病况得到解决或控制。
在另一个方面,提供了用于抑制LEA-2依赖性补体活化以治疗、预防或减少NMO的严重程度的方法,所述方法包括向患有NMO或有风险发展NMO的对象施用治疗有效量的MASP-2抑制剂。在另一个方面,提供了包括抑制LEA-1和LEA-2依赖性补体活化两者以治疗或减少NMO的严重程度的方法,所述方法包括向患有NMO的对象施用治疗有效量的MASP-2抑制剂和MASP-1、MASP-3或MASP-1/3抑制剂。
在一些实施方案中,所述方法包括抑制LEA-1依赖性补体活化和LEA-2依赖性补体活化两者。如上详述,在治疗或预防或减少NMO的严重程度中,与单独抑制LEA-1相比,采用各自阻断LEA-1和LEA-2的药理剂的组合预期提供改进的治疗结果。这个结果可以实现,例如,通过具有LEA-1阻断活性的抗体连同具有LEA-2-阻断活性的抗体的共同施用。在一些实施方案中,LEA-1-和LEA-2-阻断活性被组合成单一的分子实体,并且所述实体具有组合的LEA-1-和LEA-2-阻断活性。这种实体可以包括双特异性抗体或由其组成,其中一个抗原结合位点特异性识别MASP-1并阻断LEA-1而第二抗原结合位点特异性识别MASP-2并阻断LEA-2。或者,这样的实体可由双特异性单克隆抗体组成,其中一个抗原结合位点特异性识别MASP-3,因此阻断LEA-1而第二抗原结合位点特异性识别MASP-2,并阻断LEA-2。这样的实体可最佳地由双特异性单克隆抗体组成,其中一个抗原结合位点特异性地识别MASP-1和MASP-3两者,因此阻断LEA-1,而第二抗原结合位点特异性地识别MASP-2,并阻断LEA-2。
MASP-2抑制剂可局部施用至眼,例如通过冲洗或以局部凝胶、药膏或滴剂的形式施用该组合物,或通过玻璃体内注射。或者,MASP-2抑制剂可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或可能通过口服施用非肽能药剂。施用可由医师确定而重复进行,直到病况得到解决或控制。
本发明的MASP-3抑制性组合物和/或MASP-2抑制性组合物的施用可通过组合物的单次施用(例如,含有MASP-2和/或MASP-3抑制剂或双特异性或双重抑制剂的单一组合物,或共同施用分开的组合物),或通过有限顺序的施用进行,用于在有此需要的对象中治疗、预防或减少NMO的严重程度。或者,组合物可以以周期性的间隔,例如每日、每两周、每周、每隔一周、每月或每两月在长时间内施用以治疗有此需要的对象。
如本文实施例11-21中所述,已经产生高亲和力MASP-3抑制性抗体,其具有抑制AP相关疾病或病况例如视神经脊髓炎(NMO)中的替代途径的治疗效用。
因此,在一个实施方案中,本发明提供用于治疗患有或有风险发展视神经脊髓炎(NMO)的对象的方法,其包括施用有效量的结合人MASP-3且抑制替代途径补体活化的高亲和力单克隆抗体或其抗原结合片段以治疗视神经脊髓炎(NMO)或降低发展视神经脊髓炎(NMO)的风险,例如,其中所述抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ ID NO: 84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142、SEQ IDNO: 257、SEQ ID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。
N. MASP-3在贝切特氏病中的作用以及使用MASP-3抑制性抗体、任选组合MASP-2抑制剂的治疗方法
贝切特氏病,或贝切特氏综合征,是一种罕见的免疫介导的小血管系统性血管炎,往往呈现粘膜溃疡和眼的问题。贝切特氏病(BD)是1937年以土耳其皮肤学家Hulusi Behçet命名的,Hulusi Behçet首次描述了复发性口腔溃疡、生殖器溃疡和葡萄膜炎的三重症状联合体。BD是一种原因不明的全身性、复发性炎性病症。BD的炎性血管周炎可涉及胃肠道、肺、肌肉骨骼、心血管和神经系统。由于破裂的血管动脉瘤或严重的神经系统并发症,BD可能是致命的。视神经病变和萎缩可起因于血管炎和供给视神经的血管闭塞。见Al-Araji A等人, Lancet Neurol., 8(2):192-204, 2009。
BD发病率最高的是中东和远东地区,但它在欧洲和北美是罕见的。BD往往最初用皮质类固醇和免疫抑制剂控制,但很多病例是难治性的,伴随严重发病率和死亡率。生物剂,包括干扰素-α、IVIG、抗TNF、抗IL-6和抗CD20,在一些病例中已显示益处,但对最佳治疗没有达成共识。
尽管BD显然是炎性病症,但其病理生物学尚不清楚。与HLA抗原有遗传关联,且基因组范围的关联研究已经牵连很多细胞因子基因(Kirino等人,Nat Genet, 45(2):202-7,2013)。免疫系统的机能亢进似乎是由补体系统来调节。在BD患者血清中已观察到增加的C3水平(Bardak和Aridoğan, Ocul Immunol Inflamm 12(1):53-8, 2004),而脑脊液中升高的C3和C4与疾病相关(Jongen等人,Arch Neurol, 49(10):1075-8, 1992)。
Tüzün及其同事(2013)检查了BD患者血清中经典和替代途径产物两者(Tüzün E等人, J Neuroimmunol, 233(1-2):211-5, 2011)。C4的分解产物4d在替代途径上游产生,经测量以评价初始经典途径的活性。与对照相比在BD患者血清中C4d增加(2.18倍的增加)。因子Bb是因子B的分解产物,经测定以确定替代途径的活性。与正常对照个体相比,BD患者的因子Bb增加(2.19倍的增加),这与BD替代途径功能提高是一致的。因为补体替代途径用于放大整体补体活性,这种活化可以预期会提高整体的补体活化。Harboe及其同事(2004)表明了替代途径的选择性阻断抑制了80%以上的经典途径诱导的膜攻击复合物形成(HarboeM等人, Clin Exp Immunol, 138(3):439-46, 2004)。事实上,补体级联的最终产物SC5b-9在BD患者中显著增加(5.46倍的增加)。MASP-3的特异性抑制剂应在BD中提供益处。阻断MASP-3应抑制因子B和因子D的活化。这将终止替代途径的放大,从而导致整体补体活性的反应减弱。因而MASP-3抑制应在BD中显著改善治疗结果。因此,LEA-1和/或LEA-2抑制剂预期在治疗BD中具有独立的治疗益处。此外,与单独任一药剂相比,LEA-1和LEA-2抑制剂一起使用可实现额外的治疗益处,或者可以为更广范围的患者亚群提供有效的治疗。合并的LEA-1和LEA-2抑制可以由LEA-1阻断剂和LEA-2阻断剂的共同施用来完成。最佳地,LEA-1和LEA-2抑制功能可以包含在单一的分子实体,例如包含MASP-1/3和MASP-2特异性结合位点的双特异性抗体,或其中每个结合位点结合并阻断MASP-1/3或MASP-2的双重特异性抗体。
根据上述内容,本发明的一个方面因此提供了用于抑制LEA-1依赖性补体活化以治疗、预防或减少BD的严重程度的方法,所述方法包括向患有BD或有风险发展BD的对象施用一种组合物,所述组合物包含在药物载体中的治疗有效量的LEA-1抑制剂,其包含MASP-1抑制剂、MASP-3抑制剂或MASP-1/3抑制剂的组合。MASP-1、MASP-3或MASP-1/3抑制性组合物可局部施用至眼,例如通过冲洗或以局部凝胶、药膏或滴剂的形式施用该组合物,或通过玻璃体内施用。或者,MASP-1、MASP-3或MASP-1/3抑制剂可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或可能通过口服施用非肽能药剂。施用可由医师确定而重复进行,直到病况得到解决或控制。
在另一个方面,提供了用于抑制LEA-2依赖性补体活化以治疗、预防或减少BD的严重程度的方法,所述方法包括向患有BD或有风险发展BD的对象施用治疗有效量的MASP-2抑制剂。在另一个方面,提供了包括抑制LEA-1和LEA-2依赖性补体活化两者以治疗或减少BD的严重程度的方法,所述方法包括向患有BD的对象施用治疗有效量的MASP-2抑制剂和MASP-1、MASP-3或MASP-1/3抑制剂。
在一些实施方案中,所述方法包括抑制LEA-1依赖性补体活化和LEA-2依赖性补体活化两者。如上详述,在治疗或预防或减少BD的严重程度中,与单独抑制LEA-1相比,采用各自阻断LEA-1和LEA-2的药理剂的组合预期提供改进的治疗结果。这个结果可以实现,例如,通过具有LEA-1阻断活性的抗体连同具有LEA-2-阻断活性的抗体的共同施用。在一些实施方案中,LEA-1-和LEA-2-阻断活性被组合成单一的分子实体,并且所述实体具有组合的LEA-1-和LEA-2-阻断活性。这种实体可以包括双特异性抗体或由其组成,其中一个抗原结合位点特异性识别MASP-1并阻断LEA-1而第二抗原结合位点特异性识别MASP-2并阻断LEA-2。或者,这样的实体可由双特异性单克隆抗体组成,其中一个抗原结合位点特异性识别MASP-3,因此阻断LEA-1而第二抗原结合位点特异性识别MASP-2,并阻断LEA-2。这样的实体可最佳地由双特异性单克隆抗体组成,其中一个抗原结合位点特异性地识别MASP-1和MASP-3两者,因此阻断LEA-1,而第二抗原结合位点特异性地识别MASP-2,并阻断LEA-2。
MASP-2抑制剂可局部施用至眼,例如通过冲洗或以局部凝胶、药膏或滴剂的形式施用该组合物,或通过玻璃体内注射。或者,MASP-2抑制剂可以全身性施用于对象,例如通过动脉内、静脉内、肌肉内、吸入、经鼻、皮下或其他肠胃外施用,或可能通过口服施用非肽能药剂。施用可由医师确定而重复进行,直到病况得到解决或控制。
本发明的MASP-3抑制性组合物和/或MASP-2抑制性组合物的施用可通过组合物的单次施用(例如,含有MASP-2和/或MASP-3抑制剂或双特异性或双重抑制剂的单一组合物,或共同施用分开的组合物),或通过有限顺序的施用进行,用于在有此需要的对象中治疗、预防或减少BD的严重程度。或者,组合物可以以周期性的间隔,例如每日、每两周、每周、每隔一周、每月或每两月在长时间内施用以治疗有此需要的对象。
如本文实施例11-21中所述,已经产生高亲和力MASP-3抑制性抗体,其具有抑制AP相关疾病或病况例如贝切特氏病中的替代途径的治疗效用。
因此,在一个实施方案中,本发明提供用于治疗患有或有风险发展贝切特氏病(BD)的对象的方法,其包括施用有效量的结合人MASP-3且抑制替代途径补体活化的高亲和力单克隆抗体或其抗原结合片段以治疗贝切特氏病(BD)或降低发展贝切特氏病(BD)的风险,例如,其中所述抗体或其抗原结合片段包含(a)重链可变区,其包含(i)包含SEQ ID NO:84的VHCDR1,(ii)包含SEQ ID NO: 86或SEQ ID NO: 275的VHCDR2,和(iii)包含SEQ IDNO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142、SEQ ID NO: 257、SEQID NO: 258或SEQ ID NO: 259的VLCDR1,(ii)包含SEQ ID NO: 144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。
MASP-3抑制剂
认识到补体的凝集素途径由两个主要的补体活化臂LEA-1和LEA-2组成,并且还存在不依赖于凝集素的补体活化臂,认识到非常期望特异性抑制这些效应子臂中的一种或多种,其引起与替代途径补体活化相关的病理学,例如阵发性夜间血红蛋白尿(PNH)、年龄相关性黄斑变性(AMD,包括湿性和干性AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病(包括溶血性尿毒症综合征(HUS)、非典型溶血性尿毒症综合征(aHUS)、血栓性血小板减少性紫癜(TTP)或移植相关的TMA)、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎、贝切特氏病、多发性硬化症、格林巴利综合征、阿尔茨海默氏病、肌萎缩性侧索硬化症(ALS)、狼疮性肾炎、系统性红斑狼疮(SLE)、糖尿病性视网膜病变、葡萄膜炎、慢性阻塞性肺病(COPD)、C3肾小球病、移植排斥反应、移植物抗宿主病(GVHD)、血液透析、败血症、系统性炎性反应综合征(SIRS)、急性呼吸窘迫综合征(ARDS)、ANCA血管炎、抗磷脂综合征、动脉粥样硬化、IgA肾病和重症肌无力中的一种或多种,而不完全关闭补体的免疫防御能力(即,使经典途径完整)。这将留下完整的C1q-依赖性补体活化系统,以进行免疫复合物的加工和有助于针对感染的宿主防御。
抑制LEA-1-介导的补体活化的组合物
如本文所述,本发明人已经意外地发现导致细胞裂解的LEA-1的活化是MASP-3-依赖性的。正如本文进一步所述,在生理条件下,MASP-3-依赖性LEA-1活化还促进调理作用,从而提供具有LEA-2-介导的补体活化的附加效应。正如本文所示,在Ca++存在时,不需要因子D,因为MASP-3在因子D-/-血清中可以驱动LEA-1活化。MASP-3、MASP-1和HTRA-1能够将前因子D转化为活性因子D。同样,MASP-3活化在许多情况下看来依赖于MASP-1,因为MASP-3(与MASP-1和MASP-2相反)不是自我活化酶并且在没有MASP-1的帮助下不能转化为其活性形式(Zundel, S.等人, J.Immunol. 172: 4342-4350 (2004);Megyeri等人, J. Biol. Chem. 288:8922–8934 (2013)。因为MASP-3不是自我活化的,并且在许多情况下需要MASP-1活性以转化为其酶促活性形式,所以替代途径C3转化酶C3Bb的MASP-3-介导的活化可以通过靶向MASP-3酶原或已被活化的MASP-3而被抑制,或通过靶向MASP-3的MASP-1-介导的活化而被抑制,或通过以上两者而被抑制,因为在许多情况下,在MASP-1功能活性不存在时,MASP-3保持其酶原形式,不能通过直接形成替代途径C3转化酶(C3bBb)而驱动LEA-1。
因此,在本发明的一个方面,在特异性地抑制LEA-1的治疗剂的开发中作为目标的优选蛋白成分是MASP-3的抑制剂(包括MASP-1-介导的MASP-3活化的抑制剂(例如抑制MASP-3活化的MASP-1抑制剂))。
根据前述内容,一个方面,本发明提供在患有或有风险发展选自阵发性夜间血红蛋白尿(PNH)、年龄相关性黄斑变性(AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病(包括溶血性尿毒症综合征(HUS),非典型溶血性尿毒症综合征(aHUS)和血栓性血小板减少性紫癜(TTP))、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎、贝切特氏病、多发性硬化症、格林巴利综合征、阿尔茨海默氏病、肌萎缩性侧索硬化症(ALS)、狼疮性肾炎、系统性红斑狼疮(SLE)、糖尿病性视网膜病变、葡萄膜炎、慢性阻塞性肺病(COPD)、C3肾小球病、移植排斥反应、移植物抗宿主病(GVHD)、血液透析、败血症、系统性炎性反应综合征(SIRS)、急性呼吸窘迫综合征(ARDS)、ANCA血管炎、抗磷脂综合征、动脉粥样硬化、IgA肾病和重症肌无力的疾病或病症的对象中通过施用MASP-3抑制剂、例如MASP-3抑制性抗体来抑制LEA-1的不良反应(即溶血和调理作用)的方法,其包括向所述对象施用药物组合物,所述药物组合物包含有效抑制MASP-3-依赖性补体活化的一定量的MASP-3抑制剂和药学上可接受的载体。
在患有或有风险发展选自阵发性夜间血红蛋白尿(PNH)、年龄相关性黄斑变性(AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病(包括溶血性尿毒症综合征(HUS),非典型溶血性尿毒症综合征(aHUS)和血栓性血小板减少性紫癜(TTP))、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎、贝切特氏病、多发性硬化症、格林巴利综合征、阿尔茨海默氏病、肌萎缩性侧索硬化症(ALS)、狼疮性肾炎、系统性红斑狼疮(SLE)、糖尿病性视网膜病变、葡萄膜炎、慢性阻塞性肺病(COPD)、C3肾小球病、移植排斥反应、移植物抗宿主病(GVHD)、血液透析、败血症、系统性炎性反应综合征(SIRS)、急性呼吸窘迫综合征(ARDS)、ANCA血管炎、抗磷脂综合征、动脉粥样硬化、IgA肾病和重症肌无力的疾病或病症的活对象中以有效抑制MASP-3-依赖性补体活化的量施用MASP-3抑制剂。在本发明该方面的实践中,代表性的MASP-3抑制剂包括:抑制MASP-3生物活性的分子,包括抑制以下至少一项或多项的分子:因子B的凝集素MASP-3-依赖性活化,前因子D的凝集素MASP-3-依赖性活化,因子B的MASP-3-依赖性的、凝集素-非依赖性活化,和前因子D的MASP-3-依赖性的、凝集素-非依赖性活化(例如小分子抑制剂、MASP-3抗体及其片段或与MASP-3相互作用或干扰蛋白-蛋白相互作用的阻断肽);和降低MASP-3表达的分子(例如MASP-3反义核酸分子、MASP-3特异性RNAi分子和MASP-3核酶)。MASP-3抑制剂可以有效地阻断MASP-3蛋白与蛋白的相互作用,干扰MASP-3二聚化或装配,阻断Ca++结合,干扰MASP-3丝氨酸蛋白酶活性位点,或降低MASP-3蛋白表达,从而阻止MASP-3免于活化LEA-1-介导的补体活化或凝集素-非依赖性的补体活化。MASP-3抑制剂可以单独用作主要治疗,或作为辅助治疗与其他治疗剂联用以增强其他药物治疗的治疗益处,如本文进一步所述。
高亲和力单克隆MASP-3抑制性抗体
如本文实施例11-21中所述且在下面表2A、2B和表3中概述,本发明人已经产生令人惊讶高亲和力(即≤500pM)MASP-3抑制性抗体,其结合人MASP-3的丝氨酸蛋白酶结构域中的表位。如本文所述,本发明人已经表明,这些高亲和力MASP-3抗体能够抑制人血清、啮齿动物和非人灵长类动物中的替代途径补体活化。这些抗体的可变轻链和重链区已经以Fab格式和全长IgG格式进行测序、分离和分析。如实施例15中所述且图50A和50B中所示的树状图中所示,可以根据序列相似性将抗体分组。这些抗体的重链可变区和轻链可变区的概述显示于图49A和49B中且提供于下面表2A和2B中。代表性高亲和力MASP-3抑制性抗体的人源化形式如实施例19中所述产生,并且概述于表3中。
表2A:MASP-3高亲和力抑制抗体序列:小鼠亲本
MASP-3抗体参考号 重链可变区   (氨基酸) 轻链可变区   (氨基酸) 重链可变区    (DNA) 轻链可变区      (DNA)
4D5 IA SIN:24 SIN:40 SIN:217 SIN:233
1F3 IA SIN:25 SIN:41 SIN:218 SIN:234
4B6 IA SIN:26 SIN:42 SIN:219 SIN:235
1A10 IA SIN:27 SIN:42 SIN:220 SIN:235
10D12 IB SIN:28 SIN:43 SIN:221 SIN:236
35C1 IB SIN:29 SIN:44 SIN:222 SIN:237
13B1 IC SIN:30 SIN:45 SIN:223 SIN:238
1G4 II SIN:31 SIN:46 SIN:224 SIN:239
1E7 IIIA SIN:32 SIN:47 SIN:225 SIN:240
2D7 IIIA SIN:33 SIN:48 SIN:226 SIN:241
49C11 IIIA SIN:34 SIN:49 SIN:227 SIN:242
15D9 IIIB SIN:35 SIN:50 SIN:228 SIN:243
2F5 IIIB SIN:36 SIN:51 SIN:229 SIN:244
1B11 IIIC SIN:37 SIN:52 SIN:230 SIN:245
2F2 IIID SIN:38 SIN:53 SIN:231 SIN:246
11B6 IIID SIN:39 SIN:54 SIN:232 SIN:247
注:“SIN”是指“SEQ ID NO: ”。
表2B:MASP-3高亲和力抑制性抗体:CDR
MASP-3抗体参考号 重链可变区(氨基酸) 轻链可变区(氨基酸) 重链:CDR1;CDR2;CDR3(SEQ ID NOs) 轻链:CDR1;CDR2;CDR3(SEQ ID NOs)
4D5 SIN:24 SIN:40 56;58;60 142;144;146
1F3 SIN:25 SIN:41 62;63;65 149;144;146
4B6 SIN:26 SIN:42 62;67;65 149;144;146
1A10 SIN:27 SIN:42 62;69;65 149;144;146
10D12 SIN:28 SIN:43 72;74;76 153;155;157
35C1 SIN:29 SIN:44 79;74;82 159;155;160
13B1 SIN:30 SIN:45 84;86;88 142;144;161
1G4 SIN:31 SIN:46 91;93;95 163;165;167
1E7 SIN:32 SIN:47 109;110;112 182;184;186
2D7 SIN:33 SIN:48 125;127;129 196;198;200
49C11 SIN:34 SIN:49 132;133;135 203;165;204
15D9 SIN:35 SIN:50 137;138;140 206;207;208
2F5 SIN:36 SIN:51 98;99;101 169;171;173
1B11 SIN:37 SIN:52 103;105;107 176;178;180
2F2 SIN:38 SIN:53 114;116;118 188;178;190
11B6 SIN:39 SIN:54 114;121;123 191;178;193
表3:代表性高亲和力MASP-3抑制性抗体:人源化和修饰以去除翻译后修饰位点
Figure 841778DEST_PATH_IMAGE001
因此,在一个方面,本发明提供分离的单克隆抗体或抗原结合片段,其以高亲和力(具有小于500pM的KD)特异性结合人MASP-3的丝氨酸蛋白酶结构域(SEQ ID NO: 2的氨基酸残基450至728),其中所述抗体或其抗原结合片段抑制替代途径补体活化。在一些实施方案中,高亲和力MASP-3抑制性抗体或其抗原结合片段在哺乳动物对象中以约1:1至约2.5:1靶标 MASP-3与mAb的摩尔比抑制替代途径。
替代途径补体活化的抑制的特征在于作为根据本发明的多种方法施用高亲和力MASP-3抑制性抗体的结果而发生的补体系统的成分的以下变化中的至少一项或多项:溶血和/或调理作用的抑制;因子B的凝集素-非依赖性转化的抑制;因子D的凝集素-非依赖性转化的抑制;MASP-3丝氨酸蛋白酶底物-特异性切割的抑制;溶血的减少;溶血的减少或C3切割和C3b表面沉积的减少;在活化表面上的因子B和Bb沉积的减少;相对于前因子D降低活性因子D的静息水平(在循环中并且没有实验性添加活化表面);响应于活化表面降低相对于前因子D的活性因子D的水平;和/或流体相Ba、Bb、C3b或C3a的静息和表面诱导水平的产生。
例如,如本文所述,高亲和力MASP-3抑制性抗体是在哺乳动物对象中能够抑制因子D成熟(即因子D切割为因子D)的抗体或其抗原结合片段。在一些实施方案中,所述高亲和力MASP-3抑制性抗体能够将全血清中的因子D成熟抑制至小于未处理的对照血清中发现的50%(例如小于40%,例如小于30%,例如小于25%,例如小于20%,例如小于15%,例如小于10%,例如小于5%未与MASP-3抑制性抗体接触的未处理对照血清)的水平。
在优选实施方案中,所述高亲和力MASP-3抑制性抗体选择性地抑制替代途径,使C1q依赖性补体活化系统功能完整。
在另一个方面,本公开的特征在于编码本文公开的任何MASP-3抑制性抗体或抗原结合片段的重链和轻链多肽中的一种或多种的核酸分子。还特征在于包含核酸的载体(例如,克隆或表达载体)和包含所述载体的细胞(例如,昆虫细胞、细菌细胞、真菌细胞或哺乳动物细胞)。本公开进一步提供用于产生本文公开的任何MASP-3抑制性抗体或抗原结合片段的方法。所述方法包括提供含有表达载体的细胞,所述表达载体含有编码本文公开的任何抗体或抗原结合片段的重链和轻链多肽中的一种或多种的核酸。在足以允许细胞(或细胞培养物)表达由核酸编码的抗体或其抗原结合片段的条件和时间下培养细胞或细胞的培养物。所述方法还可以包括从细胞(或细胞的培养物)或其中培养一个或多个细胞的培养基中分离抗体或其抗原结合片段。
MASP-3表位和肽
如实施例18中所述、图62中所说明和下表4中所概述,发现根据本发明的高亲和力MASP-3抑制性抗体及其抗原结合片段特异性识别人MASP-3的丝氨酸蛋白酶结构域(SEQ IDNO: 2的氨基酸残基450至728)内的一个或多个表位。“特异性识别”意味着抗体以比任何其他分子或其部分显著更高的亲和力结合所述表位。
表4:代表性高亲和力MASP-3抑制性抗体:MASP-3的表位结合区(还参见图62)
Figure 821235DEST_PATH_IMAGE002
/>
Figure 460027DEST_PATH_IMAGE003
因此,在一些实施方案中,所述高亲和力MASP-3抑制性抗体或其抗原结合片段特异性结合位于人MASP-3的丝氨酸蛋白酶结构域内的表位,其中所述表位位于以下中的至少一种或多种内:VLRSQRRDTTVI (SEQ ID NO: 9)、TAAHVLRSQRRDTTV(SEQ ID NO: 10)、DFNIQNYNHDIALVQ(SEQ ID NO: 11)、PHAECKTSYESRS (SEQ ID NO: 12)、GNYSVTENMFC (SEQID NO: 13)、VSNYVDWVWE (SEQ ID NO: 14)和/或VLRSQRRDTTV (SEQ ID NO: 15)。在一些实施方案中,所述抗体或其抗原结合片段结合SEQ ID NO: 15内的表位。在一些实施方案中,所述抗体或抗原结合片段结合SEQ ID NO: 9内的表位。在一些实施方案中,所述抗体或其抗原结合片段结合SEQ ID NO: 10内的表位。在一些实施方案中,所述抗体或其抗原结合片段结合SEQ ID NO: 12内的表位。在一些实施方案中,所述抗体或其抗原结合片段结合SEQ ID NO: 10和SEQ ID NO: 12内的表位。在一些实施方案中,所述抗体或其抗原结合片段结合SEQ ID NO: 11、SEQ ID NO: 13和/或SEQ ID NO: 14中的至少一种内的表位。
在其他实施方案中,所述高亲和力MASP-3抑制性抗体或其抗原结合片段特异性结合位于人MASP-3的丝氨酸蛋白酶结构域内的表位,其中所述表位位于以下中的至少一种或多种内:ECGQPSRSLPSLV (SEQ ID NO: 16),RNAEPGLFPWQ(SEQ ID NO: 17);KWFGSGALLSASWIL(SEQ ID NO: 18);EHVTVYLGLH (SEQ ID NO: 19);PVPLGPHVMP (SEQ IDNO: 20);APHMLGL (SEQ ID NO: 21);SDVLQYVKLP (SEQ ID NO: 22);和/或AFVIFDDLSQRW(SEQ ID NO: 23)。在一个实施方案中,所述抗体或抗原结合片段结合SEQ ID NO: 17内的表位。在一个实施方案中,所述抗体或抗原结合片段结合EHVTVYLGLH (SEQ ID NO: 19)和/或AFVIFDDLSQRW(SEQ ID NO: 23)内的表位。在一个实施方案中,所述抗体或抗原结合片段结合SEQ ID NO: 18、SEQ ID NO: 20和/或SEQ ID NO: 23内的表位。在一个实施方案中,所述抗体或抗原结合片段结合SEQ ID NO: 16、SEQ ID NO: 21和/或SEQ ID NO: 22中的至少一种内的表位。
CDR区域
在本发明的一个方面,所述抗体或其功能等效物包含特定高变区,被称为CDR。优选地,CDR是根据Kabat CDR定义的CDR。CDR或高变区可以例如通过与其他抗体的序列比对来鉴定。高亲和力MASP-3抑制性抗体的CDR区域显示于表18-23中。
组IA mAb
在一个方面,本发明提供结合MASP-3的分离的抗体或其抗原结合片段,其包含:(a)重链可变区,其包含如SEQ ID NO: 209 (XXDIN,其中位置1的X是S或T,且其中位置2的X是N或D)所示的HC-CDR1;如SEQ ID NO: 210 (WIYPRDXXXKYNXXFXD,其中位置7的X是G或D;位置8的X是S、T或R;位置9的X是I或T;位置13的X是E或D;位置14的X是K或E;位置16的X是T或K)所示的HC-CDR2;和如SEQ ID NO: 211 (XEDXY,其中位置1的X是L或V,且其中位置4的X是T或S)所示的HC-CDR3;和(b)轻链可变区,其包含如SEQ ID NO: 212(KSSQSLLXXRTRKNYLX,其中位置8的X是N、I、Q或A;其中位置9的X是S或T;且其中位置17的X是A或S)所示的LC-CDR1;如SEQ ID NO: 144 (WASTRES)所示的LC-CDR2和如SEQ ID NO:146 (KQSYNLYT)所示的LC-CDR3。在一个实施方案中,根据(a)的重链可变区的HC-CDR1包含SEQ ID NO: 56 (TDDIN)。在一个实施方案中,根据(a)的重链可变区的HC-CDR1包含SEQ IDNO: 62 (SNDIN)。在一个实施方案中,根据(a)的重链可变区的HC-CDR2包含SEQ ID NO: 58(WIYPRDDRTKYNDKFKD)。在一个实施方案中,根据(a)的重链可变区的HC-CDR2包含SEQ IDNO: 63 (WIYPRDGSIKYNEKFTD)。在一个实施方案中,根据(a)的重链可变区的HC-CDR2包含SEQ ID NO: 67 (WIYPRDGTTKYNEEFTD)。在一个实施方案中,根据(a)的重链可变区的HC-CDR2包含SEQ ID NO: 69 (WIYPRDGTTKYNEKFTD)。在一个实施方案中,根据(a)的重链可变区的HC-CDR3包含SEQ ID NO: 60 (LEDTY)。在一个实施方案中,根据(a)的重链可变区的HC-CDR3包含SEQ ID NO: 65 (VEDSY)。在一个实施方案中,轻链可变区的LC-CDR1包含SEQID NO: 142 (KSSQSLLNSRTRKNYLA);SEQ ID NO: 257 (KSSQSLLQSRTRKNYLA);SEQ ID NO:258 (KSSQSLLASRTRKNYLA);或SEQ ID NO: 259 (KSSQSLLNTRTRKNYLA)。在一个实施方案中,LC-CDR1包含SEQ ID NO: 258 (KSSQSLLASRTRKNYLA)。在一个实施方案中,LC-CDR1包含SEQ ID NO: 149 (KSSQSLLISRTRKNYLS)。
在一个实施方案中,the HC-CDR1包含SEQ ID NO: 56,HC-CDR2包含SEQ ID NO:58,HC-CDR3包含SEQ ID NO: 60且LC-CDR1包含SEQ ID NO: 142、SEQ ID NO: 257、SEQ IDNO: 258或SEQ ID NO: 259;LC-CDR2包含SEQ ID NO: 144且LC-CDR3包含SEQ ID NO: 146。
在一个实施方案中,HC-CDR1包含SEQ ID NO: 62,HC-CDR2包含SEQ ID NO: 63、SEQ ID NO: 67或SEQ ID NO: 69,HC-CDR3包含SEQ ID NO: 65且LC-CDR1包含SEQ ID NO:149,LC-CDR2包含SEQ ID NO: 144且LC-CDR3包含SEQ ID NO: 146。
组IB mAb
在另一个方面,本发明提供结合MASP-3的分离的抗体或其抗原结合片段,其包含:(a)重链可变区,其包含如SEQ ID NO: 213 (SYGXX,其中位置4的X是M或I,且其中位置5的X是S或T)所示的HC-CDR1;如SEQ ID NO: 74所示的HC-CDR2;和如SEQ ID NO: 214(GGXAXDY,其中位置3的X是E或D,且其中位置5的X是M或L)所示的HC-CDR3;和(b)轻链可变区,其包含如SEQ ID NO: 215 (KSSQSLLDSXXKTYLX,其中位置10的X是D、E或A;其中位置11的X是G或A;且其中位置16的X是N或S)所示的LC-CDR1;如SEQ ID NO: 155所示的LC-CDR2;和如SEQ ID NO: 216(WQGTHFPXT,其中位置8的X是W或Y)所示的LC-CDR3。
在一个实施方案中,根据(a)的重链可变区的HC-CDR1包含SEQ ID NO: 72(SYGMS)。在一个实施方案中,HC-CDR1包含SEQ ID NO: 79 (SYGIT)。在一个实施方案中,HC-CDR3包含SEQ ID NO: 76 (GGEAMDY)。在一个实施方案中,HC-CDR3包含SEQ ID NO: 82(GGDALDY)。在一个实施方案中,LC-CDR1包含SEQ ID NO: 153 (KSSQSLLDSDGKTYLN);SEQID NO: 261 (KSSQSLLDSEGKTYLN)、SEQ ID NO: 262 (KSSQSLLDSAGKTYLN)或SEQ ID NO:263 (KSSQSLLDSDAKTYLN)。在一个实施方案中,LC-CDR1包含SEQ ID NO: 263(KSSQSLLDSDAKTYLN)。在一个实施方案中,LC-CDR1包含SEQ ID NO: 152。在一个实施方案中,LC-CDR3包含SEQ ID NO: 159 (KSSQSLLDSDGKTYLS)。
在一个实施方案中,LC-CDR3包含SEQ ID NO: 160 (WQGTHFPYT)。在一个实施方案中,HC-CDR1包含SEQ ID NO: 72,HC-CDR2包含SEQ ID NO: 74,HC-CDR3包含SEQ ID NO: 76且LC-CDR1包含SEQ ID NO: 153、SEQ ID NO: 261、SEQ ID NO: 262或SEQ ID NO: 263;LC-CDR2包含SEQ ID NO: 155且LC-CDR3包含SEQ ID NO: 157。
在一个实施方案中,HC-CDR包含SEQ ID NO: 72,HC-CDR2包含SEQ ID NO: 74,HC-CDR3包含SEQ ID NO: 76且LC-CDR1包含SEQ ID NO: 153或SEQ ID NO: 263,LC-CDR2包含SEQ ID NO: 155且LC-CDR3包含SEQ ID NO: 157。
在一个实施方案中,HC-CDR1包含SEQ ID NO: 79,HC-CDR2包含SEQ ID NO: 74,HC-CDR3包含SEQ ID NO: 82且LC-CDR1包含SEQ ID NO: 159,LC-CDR2包含SEQ ID NO: 155且LC-CDR3包含SEQ ID NO: 160。
组IC mAb
在一个方面,本发明提供结合MASP-3的分离的抗体或其抗原结合片段,其包含(a)重链可变区,其包含如SEQ ID NO: 84 (GKWIE)所示的HC-CDR1;如SEQ ID NO: 86(EILPGTGSTNYNEKFKG)或SEQ ID NO: 275 (EILPGTGSTNYAQKFQG)所示的HC-CDR2;和如SEQID NO: 88 (SEDV)所示的HC-CDR3;和(b)轻链可变区,其包含如SEQ ID NO: 142(KSSQSLLNSRTRKNYLA)、SEQ ID NO: 257 (KSSQSLLQSRTRKNYLA);SEQ ID NO: 258(KSSQSLLASRTRKNYLA);或SEQ ID NO: 259 (KSSQSLLNTRTRKNYLA)所示的LC-CDR1,如SEQID NO: 144 ( WASTRES)所示的LC-CDR2;和如SEQ ID NO: 161 (KQSYNIPT)所示的LC-CDR3。在一个实施方案中,LC-CDR1包含SEQ ID NO: 258。
组II mAb
在一个方面,本发明提供结合MASP-3的分离的抗体或其抗原结合片段,其包含:(a)重链可变区,其包含如SEQ ID NO: 91 (GYWIE)所示的HC-CDR1;如SEQ ID NO: 93(EMLPGSGSTHYNEKFKG)所示的HC-CDR2,和如SEQ ID NO: 95 (SIDY)所示的HC-CDR3;和(b)轻链可变区,其包含如SEQ ID NO: 163 (RSSQSLVQSNGNTYLH)所示的LC-CDR1,如SEQ IDNO: 165 (KVSNRFS)所示的LC-CDR2和如SEQ ID NO: 167 (SQSTHVPPT)所示的LC-CDR3。
组III mAb
在另一个方面,本发明提供结合MASP-3的分离的抗体或其抗原结合片段,其包含:(a)重链可变区,其包含如SEQ ID NO: 109 (RVHFAIRDTNYWMQ)所示的HC-CDR1;如SEQ IDNO: 110 (AIYPGNGDTSYNQKFKG)所示的HC-CDR2;如SEQ ID NO: 112 (GSHYFDY)所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 182 (RASQSIGTSIH)所示的LC-CDR1,如SEQ IDNO: 184 (YASESIS)所示的LC-CDR2和如SEQ ID NO: 186 (QQSNSWPYT)所示的LC-CDR3;或
(b)重链可变区,其包含如SEQ ID NO: 125 (DYYMN)所示的HC-CDR1,如SEQ IDNO: 127 (DVNPNNDGTTYNQKFKG)所示的HC-CDR2;如SEQ ID NO: 129 (CPFYYLGKGTHFDY)所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 196 (RASQDISNFLN)所示的LC-CDR1,如SEQ ID NO: 198 (YTSRLHS)所示的LC-CDR2和如SEQ ID NO: 200 (QQGFTLPWT)所示的LC-CDR3;或
(c)重链可变区,其包含如SEQ ID NO: 137所示的HC-CDR1,如SEQ ID NO: 138所示的HC-CDR2,如SEQ ID NO: 140所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 206所示的LC-CDR1,如SEQ ID NO: 207所示的LC-CDR2,和如SEQ ID NO: 208所示的LC-CDR3;或
(d)重链可变区,其包含如SEQ ID NO: 98所示的HC-CDR1,如SEQ ID NO: 99所示的HC-CDR2,如SEQ ID NO: 101所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 169所示的LC-CDR1,如SEQ ID NO: 171所示的LC-CDR2,和如SEQ ID NO: 173所示的LC-CDR3;或
(e)重链可变区,其包含如SEQ ID NO: 103所示的HC-CDR1,如SEQ ID NO: 105所示的HC-CDR2,如SEQ ID NO: 107所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 176所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 193所示的LC-CDR3;或
(f)重链可变区,其包含如SEQ ID NO: 114所示的HC-CDR1,如SEQ ID NO: 116所示的HC-CDR2,如SEQ ID NO: 118所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 188所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 190所示的LC-CDR3;或
(g)重链可变区,其包含如SEQ ID NO: 114所示的HC-CDR1,如SEQ ID NO: 121所示的HC-CDR2,如SEQ ID NO: 123所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 191所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 193所示的LC-CDR3;或
(h)重链可变区,其包含如SEQ ID NO: 132所示的HC-CDR1,如SEQ ID NO: 133所示的HC-CDR2,如SEQ ID NO: 135所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 203所示的LC-CDR1,如SEQ ID NO: 165所示的LC-CDR2,和如SEQ ID NO: 204所示的LC-CDR3。
重链和轻链可变区
在一个实施方案中,本发明提供高亲和力MASP-3抑制性抗体,其包含重链可变区,所述重链可变区包含与SEQ ID NO: 24-39、248-249、251-252、254-255中任一者具有至少80%、85%、90%、95%、98%、99%同一性的序列或由其组成,或者其中所述抗体包含重链可变区,所述重链可变区包含SEQ ID NO: 24、SEQ ID NO: 25、SEQ ID NO: 26、SEQ ID NO:27、SEQ ID NO: 28、SEQ ID NO: 29、SEQ ID NO: 30、SEQ ID NO: 31、SEQ ID NO: 32、SEQID NO: 33、SEQ ID NO: 34、SEQ ID NO: 35、SEQ ID NO: 36、SEQ ID NO: 37、SEQ ID NO:38、SEQ ID NO: 39、SEQ ID NO: 248、SEQ ID NO: 249、SEQ ID NO:251、SEQ ID NO: 252、SEQ ID NO: 254或SEQ ID NO: 255。
在一个实施方案中,本发明提供高亲和力MASP-3抑制性抗体,其包含轻链可变区,所述轻链可变区包含与SEQ ID NO: 40-54、250、253、256、278、279或280中任一者具有至少80%、85%、90%、95%、98%、99%同一性的序列或由其组成,或者其中所述抗体包含轻链可变区,所述轻链可变区包含SEQ ID NO: 40、SEQ ID NO: 41、SEQ ID NO: 42、SEQ ID NO:43、SEQ ID NO: 44、SEQ ID NO: 45、SEQ ID NO: 46、SEQ ID NO: 47、SEQ ID NO: 48、SEQID NO: 49、SEQ ID NO: 50、SEQ ID NO: 51、SEQ ID NO: 52、SEQ ID NO: 53、SEQ ID NO:54、SEQ ID NO: 250、SEQ ID NO: 253、SEQ ID NO: 256、SEQ ID NO: 278、SEQ ID NO: 279或SEQ ID NO: 280。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 24、SEQ ID NO:248或SEQ ID NO: 249的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQID NO: 40、SEQ ID NO: 250或SEQ ID NO: 278的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 25的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 41的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 26的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 42的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 27的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 42的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 28、SEQ ID NO:251或SEQ ID NO: 252的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQID NO: 43、SEQ ID NO: 253或SEQ ID NO: 279的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 29的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 44的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 30、SEQ ID NO:254或SEQ ID NO: 255的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQID NO: 45、SEQ ID NO: 256或SEQ ID NO: 280的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 31的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 46的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 32的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 47的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 33的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 48的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 34的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 49的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 35的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 50的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 36的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 51的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 37的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 52的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 38的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 53的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
在一个实施方案中,MASP-3单克隆抗体含有包含与SEQ ID NO: 39的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 54的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链。
高亲和力MASP-3抗体的交叉竞争
如本文所述,本文公开的高亲和力MASP-3抑制性抗体识别MASP-3的丝氨酸蛋白酶结构域内的重叠表位。如实施例18中所述,图61A-E和62-67中所示,且表4和28中所概述,交叉竞争分析和pepscan结合分析显示高亲和力MASP-3抑制性抗体交叉竞争和结合位于MASP-3丝氨酸蛋白酶结构域内的共同表位。因此,在一个实施方案中,本发明提供高亲和力MASP-3抑制性抗体,其特异性识别人MASP-3的丝氨酸蛋白酶结构域内的一个或多个表位或其部分,其被选自以下的一种或多种所识别:
包含如SEQ ID NO: 24所示的重链可变区和如SEQ ID NO: 40所示的轻链可变区的单克隆抗体;
包含如SEQ ID NO: 25所示的重链可变区和如SEQ ID NO: 41所示的轻链可变区的单克隆抗体;
包含如SEQ ID NO: 26所示的重链可变区和如SEQ ID NO: 42所示的轻链可变区的单克隆抗体;
包含如SEQ ID NO: 27所示的重链可变区和如SEQ ID NO: 42所示的轻链可变区的单克隆抗体;
包含如SEQ ID NO: 28所示的重链可变区和如SEQ ID NO: 43所示的轻链可变区的单克隆抗体;
包含如SEQ ID NO: 29所示的重链可变区和如SEQ ID NO: 44所示的轻链可变区的单克隆抗体;
包含如SEQ ID NO: 30所示的重链可变区和如SEQ ID NO: 45所示的轻链可变区的单克隆抗体;
包含如SEQ ID NO: 31所示的重链可变区和如SEQ ID NO: 46所示的轻链可变区的单克隆抗体;
包含如SEQ ID NO: 32所示的重链可变区和如SEQ ID NO: 47所示的轻链可变区的单克隆抗体;
包含如SEQ ID NO: 33所示的重链可变区和如SEQ ID NO: 48所示的轻链可变区的单克隆抗体;
包含如SEQ ID NO: 34所示的重链可变区和如SEQ ID NO: 49所示的轻链可变区的单克隆抗体;
包含如SEQ ID NO: 35所示的重链可变区和如SEQ ID NO: 50所示的轻链可变区的单克隆抗体;
包含如SEQ ID NO: 36所示的重链可变区和如SEQ ID NO: 51所示的轻链可变区的单克隆抗体;
包含如SEQ ID NO: 37所示的重链可变区和如SEQ ID NO: 52所示的轻链可变区的单克隆抗体;
包含如SEQ ID NO: 38所示的重链可变区和如SEQ ID NO: 53所示的轻链可变区的单克隆抗体;和
包含如SEQ ID NO: 39所示的重链可变区和如SEQ ID NO: 54所示的轻链可变区的单克隆抗体。
根据本发明,当给定抗体识别由另一给定抗体识别的表位的至少一部分时,据称这两种抗体识别相同或重叠的表位。
可以使用本领域技术人员可得的不同测定法来确定抗体(也称为测试抗体)是否识别与特定单克隆抗体(也称为参考抗体)相同或重叠的表位。优选地,所述测定法涉及以下步骤:
•提供MASP-3或其包含参考抗体识别的表位的片段
•将所述测试抗体和参考抗体加入所述MASP-3,其中所述测试抗体或参考抗体用可检测标记物标记。或者,两种抗体可以用不同的可检测标记物标记
•检测MASP-3处可检测标记物的存在
•从而检测测试抗体是否可取代参考抗体。
如果替代参考抗体,则测试抗体识别与参考抗体相同或重叠的表位。因此,如果参考抗体用可检测标记物标记,则MASP-3处的低可检测信号指示参考抗体的替代。如果测试抗体用可检测标记物标记,则MASP-3处的高可检测信号指示参考抗体的替代。MASP-3片段可以优选固定在固体支持物上,从而能够容易地处理。可检测标记物可以是任何直接或间接检测的标记物,例如酶、放射性同位素、重金属、有色化合物或荧光化合物。在下文的章节“竞争结合分析”中的实施例18中描述了确定测试抗体是否识别与参考抗体相同或重叠的表位的示例性方法。本领域技术人员可以容易地将所述方法适应于所讨论的特定抗体。
用于本发明该方面的MASP-3抗体包括得自产生抗体的任何哺乳动物的单克隆抗体或重组抗体并且可以是多特异性抗体(即双特异性或三特异性抗体)、嵌合抗体、人源化抗体、完整人抗体、抗独特型抗体和抗体片段。抗体片段包括Fab、Fab'、F(ab)2、F(ab')2、Fv片段、scFv片段和单链抗体,如本文进一步描述。
可以使用本文所述的测定法筛选MASP-3抗体抑制替代途径补体活化系统的能力。替代途径补体活化的抑制的特征在于由于施用根据本发明的各个实施方案的高亲和力MASP-3抑制性抗体而发生的补体系统的组分中的至少一种或多种以下变化:溶血和/或调理作用的抑制;因子B的凝集素-非依赖性转化的抑制;因子D的凝集素-非依赖性转化的抑制;MASP-3丝氨酸蛋白酶底物特异性切割的抑制;溶血的减少或C3切割和C3b表面沉积的减少;在活化表面上的因子B和Bb沉积的减少;相对于前因子D降低活性因子D的静息水平(在循环中并且没有实验性添加活化表面);响应于活化表面降低相对于前因子D的活性因子D的水平;和/或流体相Ba、Bb、C3b或C3a的静息和表面诱导水平的产生。
效应物功能降低的MASP-3抗体
在本发明的该方面的一些实施方案中,为了减少可由经典补体途径活化所致的炎症,本文所述的高亲和力MASP-3抑制性抗体降低了效应物功能。IgG分子触发经典补体途径的能力已被表明是在分子的Fc部分内(Duncan, A.R.,等人, Nature332:738-740(1988))。分子的Fc部分被酶切割除去的IgG分子缺乏这种效应物功能(参见Harlow,Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York,1988)。因此,通过具有使效应物功能减到最低的遗传改造Fc序列,或者成为人IgG2或IgG4同种型,由于缺少分子的Fc部分,可产生效应物功能降低的抗体。
可对IgG重链的Fc部分进行标准分子生物学操作来产生效应物功能降低的抗体,如Jolliffe等人, Int'l Rev. Immunol. 10:241-250, (1993)和Rodrigues等人, J. Immunol. 151:6954-6961, (1998)中所述。效应物功能降低的抗体还包括人IgG2和IgG4同种型,其活化补体和/或与Fc受体相互作用的能力降低(Ravetch, J.V.,等人, Annu. Rev. Immunol. 9:457-492, (1991);Isaacs, J.D.,等人, J. Immunol.148:3062-3071, 1992;van de Winkel, J.G.,等人, Immunol. Today 14:215-221, (1993))。包含IgG2或IgG4同种型的人MASP-1、MASP-2或MASP-3特异性的人源化或全长人抗体(包括双重、泛、双特异性或三特异性抗体)可以通过本领域普通技术人员已知的几种方法之一来产生,如Vaughan,T.J.,等人, Nature Biotechnical 16:535-539, (1998)所述。
高亲和力MASP-3抑制性抗体的产生
使用MASP-3多肽(例如全长MASP-3)或使用携带抗原性MASP-表位的肽(例如MASP-3多肽的一部分),可以产生MASP-3抗体,例如如本文下面实施例14中所述。免疫原性肽可以少至5个氨基酸残基。用于产生抗体的MASP-3肽和多肽可作为天然多肽、或者重组肽或合成肽以及无催化活性的重组多肽而被分离。用于产生MASP-3抗体的抗原还包括融合多肽,例如MASP-3多肽或其部分与免疫球蛋白多肽或者与麦芽糖结合蛋白的融合物。多肽免疫原可以是全长分子或其部分。如果多肽部分是半抗原样的,则所述部分可有利地结合或连接到大分子载体(例如匙孔
Figure 589657DEST_PATH_IMAGE004
血蓝蛋白(KLH)、牛血清白蛋白(BSA)或破伤风类毒素)上用于免疫。
单克隆抗体
本文所用的修饰语“单克隆”是指获自基本同源的抗体群的抗体性质,不理解为需要通过任何特定方法来产生抗体。可采用通过培养物中的连续细胞系以提供抗体分子产生的任何技术来获得单克隆抗体,例如Kohler, G.,等人, Nature256:495, (1975)中所述的杂交瘤方法,或者可以通过重组DNA方法制备单克隆抗体(参见例如Cabilly的美国专利号4,816,567)。还可以采用Clackson, T.,等人, Nature 352:624-628, (1991)和Marks,J.D.,等人, J. Mol. Biol. 222:581-597, (1991)中所述的技术,从噬菌体抗体文库中分离单克隆抗体。这些抗体可以具有任何免疫球蛋白类别,包括IgG、IgM、IgE、IgA、IgD及其任何亚类。
例如,可通过将包含MASP-3多肽或其部分的组合物注射给合适的哺乳动物(例如BALB/c小鼠)而获得单克隆抗体。在预定时间之后,从小鼠中取出脾细胞,使之悬浮于细胞培养基中。然后将脾细胞与无限增殖细胞系融合形成杂交瘤。将形成的杂交瘤在细胞培养基中培养,对它们产生抗MASP-3的单克隆抗体的能力进行筛选。(还参见Current Protocols in Immunology, 第1卷, John Wiley & Sons, 第2.5.1-2.6.7页, 1991.)。
可通过使用转基因小鼠来获得人单克隆抗体,所述转基因小鼠已被工程改造以在响应于抗原攻击时产生特异性人抗体。在这种技术中,将人免疫球蛋白重链和轻链基因座元件引入得自胚胎干细胞系的小鼠品系中,所述胚胎干细胞系含有被定向破坏的内源免疫球蛋白重链和轻链基因座。该转基因小鼠可合成对人抗原(例如本文所述MASP-2抗原)特异性的人抗体,可使用该小鼠来产生分泌人MASP-2抗体的杂交瘤,具体方法是通过采用常规Kohler-Milstein技术,将来自所述动物的B细胞与合适的骨髓瘤细胞系融合。自转基因小鼠获得人抗体的方法例如描述于Green, L.L.,等人, Nature Genet. 7:13, 1994;Lonberg, N.,等人, Nature 368:856, 1994;和Taylor, L.D.,等人, Int. Immun.6:579,1994。
可通过各种已确立的技术从杂交瘤培养物中分离和纯化单克隆抗体。这些分离技术包括用A蛋白琼脂糖凝胶的亲和色谱、大小排阻色谱和离子交换色谱(参见例如,Coligan第2.7.1-2.7.12页和第2.9.1-2.9.3页;Baines等人, " Purification ofImmunoglobulin G (IgG)," 于Methods in Molecular Biology, The Humana Press,Inc., 第10卷, 第79-104页, 1992)。
一旦产生,首先要测试单克隆抗体对MASP-3结合的特异性,或者如有需要,测试其对双重MASP-1/3、MASP-2/3或MASP-1/2结合的特异性。测定抗体是否结合至蛋白抗原上和/或抗体对蛋白抗原的亲和力的方法是本领域已知的。例如,可使用各种技术来测定和/或定量测定抗体与蛋白抗原的结合,所述技术例如但不限于Western印迹、斑点印迹、等离子体表面共振方法(例如BIAcore系统;Pharmacia Biosensor AB, Uppsala, Sweden和Piscataway, NJ)或酶联免疫吸附测定法(ELISA)。参见例如Harlow和Lane (1988) "Antibodies: A Laboratory Manual" Cold Spring Harbor Laboratory Press, ColdSpring Harbor, N. Y.;Benny K. C. Lo (2004) " Antibody Engineering: Methodsand Protocols," Humana Press (ISBN: 1588290921);Borrebaek (1992) " AntibodyEngineering, A Practical Guide," W.H. Freeman and Co., NY;Borrebaek (1995) "Antibody Engineering," 第2版, Oxford University Press, NY, Oxford;Johne等人(1993), Immunol. Meth. 160:191-198;Jonsson等人 (1993) Ann. Biol. Clin. 51:19-26;和Jonsson等人(1991) Biotechniques 11:620-627。还参见美国专利号6,355,245。
本领域普通技术人员可以容易地测定MASP-3单克隆抗体的亲和力(参见例如Scatchard, A., NY Acad. Sci.51:660-672, 1949)。在一个实施方案中,用于本发明方法的MASP-3的单克隆抗体与MASP-3结合,其结合亲和力<100 nM,优选地<10 nM、优选<2 nM和最优选地<500pM的高亲和力。
一旦鉴定特异性结合MASP-3的抗体,就在几种功能测定法之一中测试MASP-3抗体作为替代途径抑制剂发挥功能的能力,所述测定法例如,替代途径补体活化的抑制的特征在于由于施用根据本发明的各个实施方案的高亲和力MASP-3抑制性抗体而发生的补体系统的组分中的至少一种或多种以下变化:溶血和/或调理作用的抑制;因子B的凝集素-非依赖性转化的抑制;因子D的凝集素-非依赖性转化的抑制;MASP-3丝氨酸蛋白酶底物特异性切割的抑制;溶血的减少或C3切割和C3b表面沉积的减少;在活化表面上的因子B和Bb沉积的减少;相对于前因子D降低活性因子D的静息水平(在循环中并且没有实验性添加活化表面);响应于活化表面的相对于前因子D的活性因子D的水平的降低;流体相Ba、Bb、C3b或C3a的静息和表面诱导水平的产生的降低;和/或因子P的沉积的减少。
嵌合/人源化抗体
用于本发明方法的单克隆抗体包括嵌合抗体以及这些抗体的片段,其中重链和/或轻链的一部分与得自特定物种的抗体的相应序列相同或同源,或者属于特定抗体类别或亚类,而链的其余部分与得自另一物种的抗体的相应序列相同或同源,或者属于另一抗体类别或亚类(Cabilly的美国专利号4,816,567;和Morrison, S.L.,等人, Proc. Nat'l Acad. Sci.USA 81:6851-6855, (1984))。
用于本发明的一种形式的嵌合抗体是人源化单克隆MASP-3抗体。非人(例如鼠)抗体的人源化形式是嵌合抗体,其含有得自非人免疫球蛋白的最小序列。通过将非人(例如小鼠)互补决定区(CDR)从小鼠免疫球蛋白的可变重链和可变轻链转移到人可变结构域,从而产生人源化单克隆抗体。然后,典型的做法是将人抗体的其余部分代入非人对应部分的构架区。此外,人源化抗体可包括受体抗体或供体抗体中不存在的残基。这些修饰被用来进一步改进抗体性能。一般而言,人源化抗体将包含至少一种、通常两种可变结构域的基本全部,其中所有或基本上所有的超变环都对应于非人免疫球蛋白的超变环,所有或基本上所有的Fv构架区都是人免疫球蛋白序列的Fv构架区。人源化抗体任选还包含免疫球蛋白恒定区(Fc) (通常为人免疫球蛋白的恒定区)的至少一部分。更多详情可参见Jones, P.T.,等人, Nature 321:522-525, (1986);Reichmann, L.,等人, Nature 332:323-329,(1988);和Presta, Curr. Op. Struct. Biol. 2:593-596, (1992)。
用于本发明的人源化抗体包括至少含有MASP-3结合CDR3区的人单克隆抗体。此外,可以替换Fc部分以便产生IgA或IgM以及人IgG抗体。这样的人源化抗体将具有特定的临床效用,因为它们特异性地识别人MASP-3,但是却不会引起人体对抗体本身的免疫应答。因此它们更适用于人体的体内施用,尤其是必须重复或长期施用的时候。
产生人源化单克隆抗体的技术还描述于例如Jones, P.T.,等人, Nature 321:522, (1986);Carter, P.,等人, Proc. Nat'l. Acad. Sci. USA 89:4285, (1992);Sandhu, J.S., Crit. Rev. Biotech. 12:437, (1992);Singer, I.I.,等人, J. Immun. 150:2844, (1993);Sudhir (编著), Antibody Engineering Protocols, Humana Press,Inc., (1995);Kelley, " Engineering Therapeutic Antibodies," 于Protein Engineering: Principles and Practice, Cleland等人(编著), John Wiley & Sons,Inc., 第399-434页, (1996);和Queen的美国专利号5,693,762, 1997。此外,还有从特定鼠抗体区合成人源化抗体的商业公司,例如Protein Design Labs (Mountain View, CA)。
重组抗体
还可使用重组方法制备MASP-3的抗体。例如,可使用人免疫球蛋白表达文库(可获自例如Stratagene, Corp., La Jolla, CA)来制备人抗体,以产生人抗体片段(VH、VL、Fv、因子D、Fab或F(ab')2)。然后使用类似于产生嵌合抗体的技术,将这些片段用以构建完整的人抗体。
免疫球蛋白片段
用于本发明方法的MASP-3的抑制剂不仅包括完整的免疫球蛋白分子,而且还包括众所周知的片段,包括Fab、Fab'、F(ab)2、F(ab')2和Fv片段、scFv片段、双抗体、线性抗体、单链抗体分子以及由抗体片段形成的多特异性(例如双特异性和三特异性)抗体。
本领域众所周知的是,抗体分子的仅小部分即互补位(paratope)参与抗体与其表位的结合(参见例如Clark, W.R., The Experimental Foundations of Modern Immunology, Wiley & Sons, Inc., NY, 1986)。抗体的pFc'区和Fc区是经典补体途径的效应物,但不参与抗原结合。其中pFc'区已被酶切割的抗体,或者所产生的没有pFc’区的抗体被称为F(ab')2片段,它保留了完整抗体的抗原结合位点中的两个。分离的F(ab')2片段由于有两个抗原结合位点而被称为二价单克隆片段。类似地,其中Fc区已被酶切割的抗体,或者所产生的没有Fc区的抗体被称为Fab片段,它保留了完整抗体分子的抗原结合位点中的一个。
抗体片段可通过蛋白水解而获得,例如通过常规方法经胃蛋白酶或木瓜蛋白酶消化完整抗体。例如,可通过用胃蛋白酶进行酶切割抗体来产生抗体片段,从而提供称为F(ab')2的5S片段。该片段可再使用硫醇还原试剂切割,得到3.5S Fab'单价片段。任选可使用二硫键裂解产生的巯基的封闭基团来进行裂解反应。作为替代方法,使用胃蛋白酶的酶切割直接产生两个单价Fab片段和一个Fc片段。这些方法描述于例如,Goldenberg的美国专利号4,331,647;Nisonoff, A.,等人, Arch. Biochem. Biophys. 89:230, (1960);Porter, R.R., Biochem. J.73:119, (1959);Edelman,等人, 于Methods in Enzymology1:422, Academic Press, (1967);和Coligan的第2.8.1-2.8.10页和第2.10.-2.10.4页。
在一些实施方案中,优选使用缺乏Fc区的抗体片段以避免Fc结合Fcγ受体时启动的经典补体途径的活化。有几种方法可产生避免与Fcγ受体相互作用的单克隆抗体。例如,单克隆抗体的Fc区可通过使用蛋白水解酶部分消化(例如无花果蛋白酶消化),从而用化学法去除,因此产生例如结合抗原的抗体片段,例如Fab或F(ab)2片段(Mariani, M.,等人,Mol. Immunol.28:69-71, (1991))。或者,可以在构建本文所述的人源化抗体期间使用不结合Fcγ受体的人γ4 IgG同种型。还可使用本文所述的重组技术来工程改造缺少Fc结构域的抗体、单链抗体和抗原结合结构域。
单链抗体片段
或者,可以建立对MASP-3特异性的单一肽链结合分子,其中重链和轻链Fv区相连接。Fv片段可通过肽接头相连,形成单链抗原结合蛋白(scFv)。通过构建包含编码VH和VL结构域的DNA序列的结构基因来制备这些单链抗原结合蛋白,所述DNA序列通过寡核苷酸连接。将这些结构基因插入表达载体中,随后将其引入宿主细胞(例如大肠杆菌)中。重组宿主细胞合成了由接头肽桥接两个V结构域的单一多肽链。scFv的制备方法描述于例如Whitlow,等人, "Methods: A Companion to Methods in Enzymology" 2:97, (1991);Bird,等人, Science 242:423, (1988);Ladner的美国专利号4,946,778;Pack, P.,等人,Bio/Technology11:1271, (1993)。
举例来说,可通过将淋巴细胞体外暴露于MASP-3多肽,并在噬菌体或类似载体中选择抗体展示文库(例如通过使用固定化的或标记的MASP-3蛋白或肽),获得MASP-3特异性scFv。可通过对噬菌体或细菌(如大肠杆菌)上展示的随机肽文库进行筛选而获得编码具有可能的MASP-3多肽结合结构域的多肽的基因。这些随机肽展示文库可用于筛选与MASP-3相互作用的肽。构建和筛选这些随机肽展示文库的技术是本领域众所周知的(Lardner的美国专利号5,223,409,;Lardner的美国专利号4,946,778;Lardner的美国专利号5,403,484;Lardner的美国专利号5,571,698;和Kay等人, Phage Display of Peptides and Proteins Academic Press, Inc., 1996),随机肽展现文库和用于筛选这些文库的试剂盒是市售可得的,例如来自CLONTECH Laboratories, Inc. (Palo Alto, Calif.)、Invitrogen Inc. (San Diego, Calif.)、New England Biolabs, Inc. (Beverly,Mass.)和Pharmacia LKB Bio technology Inc. (Piscataway, N.J.)。
用于本发明这个方面的MASP-3抗体片段的另一种形式是编码单一互补决定区(CDR)的肽,其结合MASP-3抗原上的表位并抑制替代补体途径活化。
可通过构建编码目标抗体CDR的基因而获得CDR肽(“最小识别单元”)。例如通过使用聚合酶链式反应从抗体生成细胞的RNA合成可变区,从而制备这些基因(参见例如,Larrick等人, Methods: A Companion to Methods in Enzymology 2:106, (1991);Courtenay-Luck, "Genetic Manipulation of Monoclonal Antibodies," 于Monoclonal Antibodies: Production, Engineeringand Clinical Application, Ritter等人 (编著), 第166页, Cambridge University Press, (1995);和Ward等人, " GeneticManipulation and Expression of Antibodies," 于Antibodies: Principles and Applications, Birch等人 (编著), 第137页, Wiley-Liss, Inc., 1995)。
将本文所述的高亲和力MASP-3抑制性抗体施用于有此需要的对象以抑制替代途径活化。在一些实施方案中,高亲和力MASP-3抑制性抗体是任选效应物功能降低的人源化单克隆MASP-3抗体。
双特异性抗体
用于本发明方法的高亲和力MASP-3抑制性抗体包括多特异性(即双特异性和三特异性)抗体。双特异性抗体是单克隆抗体,优选地为人或人源化抗体,所述抗体对至少两种不同抗原具有结合特异性。在一个实施方案中,所述组合物和方法包括双特异性抗体的使用,所述双特异性抗体包含对MASP-3的丝氨酸蛋白酶结构域的结合特异性和对MASP-2的结合特异性(例如,结合至MASP-2的CCP1-CCP2或丝氨酸蛋白酶结构域的至少一个)。在另一个实施方案中,所述方法包括双特异性抗体的使用,所述双特异性抗体包含对MASP-3的丝氨酸蛋白酶结构域的结合特异性和对MASP-1的结合特异性(例如结合至MASP-1的丝氨酸蛋白酶结构域)。在另一个实施方案中,所述方法包括三特异性抗体的使用,所述三特异性抗体包含对MASP-2的结合特异性(例如结合至MASP-2的CCP1-CCP2或丝氨酸蛋白酶结构域的至少一个)和对MASP-1的结合特异性(例如结合至MASP-1的丝氨酸蛋白酶结构域)。
制备双特异性抗体的方法在本领域技术人员能力范围之内。传统上,双特异性抗体的重组产生是根据两个免疫球蛋白重链/轻链对的共表达,其中两条重链具有不同特异性(Milstein和Cuello, Nature 305:537-539 (1983))。具有所需结合特异性(抗体-抗原结合位点)的抗体可变结构域可以与免疫球蛋白恒定结构域序列融合。融合物优选具有免疫球蛋白重链恒定结构域,其包括至少部分的铰链区、CH2区和CH3区。将编码免疫球蛋白重链融合物和(如有必要)免疫球蛋白轻链的DNA插入到分开的表达载体中,然后共转染到合适宿主生物体中。对于产生双特异性抗体的说明性的现有已知方法的更多细节参见例如Suresh等人, Methods in Enzymology 121:210 (1986);WO96/27011;Brennan等人,Science 229:81 (1985);Shalaby等人, J. Exp. Med. 175:217-225 (1992);Kostelny等人, J. Immunol. 148(5):1547-1553 (1992);Hollinger等人,Proc. Natl. Acad. SciUSA 90:6444-6448 (1993);Gruber等人, J. Immunol. 152:5368 (1994);和Tutt等人,J. Immunol. 147:60 (1991)。双特异性抗体还包括交联的或异型缀合的抗体(heteroconjugate antibodies)。可使用任何常规交联方法制备异型缀合的抗体。合适的交联剂是本领域众所周知的并公开于美国专利号4,676,980以及许多交联技术。
还已经描述了直接从重组细胞培养物中制备和分离双特异性抗体片段的多种技术。例如,使用亮氨酸拉链,已经制备了双特异性抗体。(参见例如Kostelny等人,J.Immunol. 148(5):1547-1553 (1992))。Hollinger等人,Proc. Natl. Acad. Sci USA90:6444-6448 (1993)所述的“双抗体”技术已经提供了制备双特异性抗体片段的替代机制。所述片段包含通过接头与轻链可变结构域(VL)连接的重链可变结构域(VH),所述接头太短而不允许同一链上的两个结构域之间配对。因此,一个片段的VH结构域和VL结构域被迫与另一片段的互补VL结构域和VH结构域配对,从而形成2个抗原-结合位点。与双特异性完整抗体相反,双特异性双抗体也可能是特别有用的,因为它们可以被容易地构建和在大肠杆菌中表达。使用噬菌体展示(WO94/13804),可从文库中容易地选择具有合适的结合特异性的双抗体(和许多其他多肽例如抗体片段)。如果双抗体的一个臂保持恒定,例如,具有针对抗原X的特异性,则可以构建文库,其中另一臂不同并选择具有合适特异性的抗体。
还已报道了通过使用单链Fv (scFv)二聚体而制备双特异性抗体片段的另一策略(参见例如Gruber等人,J. Immunol., 152:5368 (1994))。或者,抗体可以是“线性抗体”,例如描述于Zapata等人, Protein Eng. 8(10):1057-1062 (1995)。简要描述,这些抗体包含一对串联的因子D区段(VH-CHI-VH-CHI),其形成一对抗原结合区。线性抗体可以是双特异性或单特异性的。本发明的方法还包括使用双特异性抗体的变体形式,例如Wu等人, Nat Biotechnol 25:1290-1297 (2007)所述的四价双重可变结构域免疫球蛋白(DVD-Ig)分子。之所以称为DVD-Ig分子,是因为来自两个不同母体抗体的2个不同的轻链可变区(VL)通过重组DNA技术直接或经由短接头而串联连接,接着是轻链恒定区。从两个母体抗体产生DVD-Ig分子的方法进一步描述于例如WO08/024188和WO07/024715,其各自的公开内容通过引用以其整体并入本文中。
XVIII. 药物组合物和递送方法
给药
在另一个方面,本发明提供包含高亲和力MASP-3抑制性抗体的组合物,其用于抑制有此需要的对象、例如患有替代途径相关疾病或病况、例如溶血性疾病、例如PNH、或选自年龄相关性黄斑变性(AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病(包括溶血性尿毒症综合征(HUS)、非典型溶血性尿毒症综合征(aHUS)或血栓性血小板减少性紫癜(TTP))、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎、贝切特氏病、多发性硬化症(MS)、格林巴利综合征、阿尔茨海默氏病、肌萎缩性侧索硬化症(ALS)、狼疮性肾炎、系统性红斑狼疮(SLE)、糖尿病性视网膜病变、葡萄膜炎、慢性阻塞性肺病(COPD)、C3肾小球病、移植排斥反应、移植物抗宿主病(GVHD)、血液透析、败血症、系统性炎性反应综合征(SIRS)、急性呼吸窘迫综合征(ARDS)、ANCA血管炎、抗磷脂综合征、动脉粥样硬化、IgA肾病和重症肌无力的疾病或病症的对象中的替代途径补体活化的不利影响。
本发明的该方面的方法包括径补体活化的量的高亲和力MASP-3抑制性抗体和药学上可接受的载体的组合物。在一些实施方案中,所述方法进一步包括施用包含MASP-2抑制剂的组合物。可以以治疗或改善与替代途径补体活化和任选还有MASP-2依赖性补体活化相关的病况的治疗有效剂量向有此需要的对象施用高亲和力MASP-3抑制性抗体和MASP-2抑制剂。治疗有效剂量是指MASP-3抑制性抗体或MASP-3抑制性抗体和MASP-2抑制剂的组合足以导致病况的症状的改善的量。替代途径补体活化的抑制的特征在于由于施用根据本发明的各个实施方案的高亲和力MASP-3抑制性抗体而发生的补体系统的组分中的至少一种或多种以下变化:溶血和/或调理作用的抑制;因子B的凝集素-非依赖性转化的抑制;因子D的凝集素-非依赖性转化的抑制;MASP-3丝氨酸蛋白酶底物特异性切割的抑制;溶血的减少或C3切割和C3b表面沉积的减少;在活化表面上的因子B和Bb沉积的减少;相对于前因子D降低活性因子D的静息水平(在循环中并且没有实验性添加活化表面);响应于活化表面降低相对于前因子D的活性因子D的水平;和/或流体相Ba、Bb、C3b或C3a的静息和表面诱导水平的产生的减少。
可通过标准药学方法,使用实验动物模型来测定MASP-3和MASP-2的抑制剂的毒性和治疗功效。使用这些动物模型,可使用标准方法来确定NOAEL (无明显不良作用水平)和MED (最小有效剂量)。NOAEL和MED效应之间的剂量比是治疗比率,用NOAEL/MED之比表示。最优选的是治疗比率或指数高的MASP-3抑制剂和MASP-2抑制剂。从细胞培养测定和动物研究中获得的数据可用来制定用于人体的剂量范围。MASP-3抑制剂和MASP-2抑制剂的剂量优选在循环浓度的范围之内,包括几乎无毒性或没有毒性的MED。剂量可在这个范围内变化,这取决于所采用的剂型和所使用的施用途径。
对于任何化合物制剂,可使用动物模型来评价治疗有效剂量。例如,可在动物模型中配制达到包括MED在内的循环血浆浓度范围的剂量。还可通过例如高效液相色谱法来测量血浆中MASP-3抑制剂或MASP-2抑制剂的定量水平。
除了毒性研究之外,还可根据活的对象中存在的靶MASP蛋白的量以及MASP-3或MASP-2的抑制剂的结合亲和力来估计有效剂量。
已报道在正常人类对象血清中存在的MASP-1水平在1.48至12.83 µg/mL的范围内(Terai I.等人, Clin Exp Immunol 110:317-323 (1997);Theil等人, Clin. Exp. Immunol. 169:38 (2012))。已报道正常人类对象的平均血清MASP-3浓度在大约2.0至12.9µg/mL的范围内(Skjoedt M等人, Immunobiology 215(11):921-31 (2010);Degn等人, J. Immunol Methods, 361-37 (2010);Csuka等人, Mol. Immunol. 54:271 (2013)。已经证实正常人类对象血清中存在的MASP-2水平在500ng / ml的低水平范围内,可使用以下文献所述的MASP-2定量测定法来测定具体对象的MASP-2水平:Moller-Kristensen M.,等人,J. Immunol. Methods282:159-167 (2003)和Csuka等人, Mol. Immunol. 54:271(2013)。
通常,包含MASP-3抑制剂或MASP-2抑制剂的组合物的施用剂量根据例如对象年龄、体重、身高、性别、一般疾病状况和病史等因素而变化。举例来说,可在大约0.010至100.0 mg/kg、优选地0.010至10 mg/kg、优选地0.010至1.0 mg/kg、更优选地0.010至0.1mg/kg对象体重的剂量范围内施用MASP-3抑制剂或MASP-2抑制剂(例如MASP-3抗体、MASP-1抗体或MASP-2抗体)。在某些实施方案中,施用MASP-2抑制剂(例如MASP-2抗体)的剂量范围为大约优选地0.010至10 mg/kg,优选地0.010至1.0 mg/kg,更优选地0.010至0.1 mg/kg的对象体重。在某些实施方案中,施用MASP-1抑制剂(例如MASP-1抗体)或MASP-3抑制剂(例如MASP-3抗体)的剂量范围为大约0.010至100.0 mg/kg,优选地0.010至10 mg/kg,例如约1mg/kg至约10 mg/kg,优选0.010至1.0 mg/kg,更优选0.010至0.1 mg/kg的对象体重。
根据本领域技术人员众所周知的补体测定法,可以测定在指定对象中的MASP-3抑制性组合物(任选与MASP-2抑制性组合物组合)或MASP-1抑制性组合物(任选与MASP-2抑制性组合物组合)以及本发明方法的治疗功效和合适剂量。补体产生多种特定产物。在最近十年中,对于这些活化产物的大部分,已经开发出灵敏而专一的测定法并且是市售可得的,所述活化产物包括小的活化片段C3a、C4a和C5a和大的活化片段iC3b、C4d、Bb和sC5b-9。大多数的这类测定法都利用了与暴露在片段而不是暴露在其所形成的天然蛋白上的新抗原(neoantigen)起反应的单克隆抗体,这使得这些测定法非常简单而专一。大多数都依赖于ELISA技术,尽管有时放射免疫测定法仍用于C3a和C5a。放射免疫测定法测定未经加工的片段及其“脱Arg”片段两者,这些片段是存在于循环中的主要形式。未经加工的片段和C5adesArg通过结合细胞表面受体而被迅速清除掉,因而以极低浓度存在,而3adesArg则不结合细胞,并在血浆中蓄积。测定C3a提供了补体活化灵敏的、不依赖途径的标志物。可通过测定Bb片段和/或测定因子D活化来评价替代途径活化。检测膜攻击途径活化的流体相产物sC5b-9,提供了补体被完全活化的证据。因为凝集素途径和经典途径都产生同样的活化产物C4a和C4d,所以测定这两种片段并不提供有关这两条途径中哪一条途径产生了所述活化产物的任何信息。
哺乳动物对象中替代途径的抑制的特征在于用本文公开的高亲和力MASP-3抑制性抗体治疗后哺乳动物对象中以下中的至少一种或多种:因子D成熟的抑制;当向对象以约1:1至约2.5:1 (MASP-3靶标:mAb)的摩尔比施用时替代途径的抑制;经典途径不被抑制;溶血和/或调理作用的抑制;溶血的减少或C3切割和C3b表面沉积的减少;在活化表面上的因子B和Bb沉积的减少;相对于前因子D降低活性因子D的静息水平(在循环中并且没有实验性添加活化表面);响应于活化表面降低相对于前因子D的活性因子D的水平;和/或流体相Ba、Bb、C3b或C3a的静息和表面诱导水平的产生的减少。
对MASP-2-依赖性补体活化的抑制特征在于作为根据本发明方法施用MASP-2抑制剂的结果而发生的补体系统的成分的以下变化中的至少一项:抑制MASP-2-依赖性补体活化系统产物C4b、C3a、C5a和/或C5b-9 (MAC)的产生或生产(例如如美国专利号7,919,094实施例2中所述而测定);减少C4切割和C4b沉积;或减少C3切割和C3b沉积。
药用载体和递送媒介物
一般而言,MASP-3抑制性抗体组合物或包含MASP-2和MASP-3的抑制剂的组合的组合物,可以与任何其他所选治疗剂组合,并合适地包含在药学上可接受的载体中。载体是无毒的、生物相容的并且可被选择以便不会有害影响MASP-3抑制性抗体或MASP-2抑制剂(和与其组合的任何其他治疗剂)的生物学活性。用于肽的示例性药学可接受的载体描述于Yamada的美国专利号5,211,657。如本文所述,用于本发明的MASP-3抗体可以配制成固体、半固体、凝胶、液体或气体形式的制备物,例如片剂、胶囊剂、粉剂、颗粒剂、软膏剂、溶液剂、栓剂、吸入剂和注射剂,允许口服、胃肠外或外科施用。本发明还包括通过将组合物涂敷在医疗装置上进行局部施用等。
用于经由注射、输注或冲洗的胃肠外递送和局部递送的合适载体包括蒸馏水、磷酸盐缓冲生理盐水、标准林格氏液或乳酸盐林格氏液、葡萄糖溶液、Hank氏溶液或丙二醇。此外,无菌不挥发油可用作溶剂或悬浮介质。对于此目的,可采用任何生物相容性油,包括合成的甘油单酯或甘油二酯。此外,脂肪酸(例如油酸)可用于注射剂的制备中。可将载体和试剂配制成为液体制剂、混悬剂、可聚合或不可聚合的凝胶剂、糊剂或药膏。
载体还可包括递送媒介物以使一种或多种试剂的递送持续(即延长、延缓或调节),或者增强一种或多种治疗剂的递送、摄取、稳定性或药代动力学。这种递送媒介物以非限制性实例的方式可包括:由蛋白质、脂质体、碳水化合物、合成有机化合物、无机化合物、聚合水凝胶或共聚水凝胶和聚合物胶束组成的微粒、微球、纳米球、纳米粒。合适的水凝胶和胶束递送系统包括WO 2004/009664 A2中公开的PEO:PHB:PEO共聚物和共聚物/环糊精复合物和美国专利申请公开号2002/0019369 A1中公开的PEO和PEO/环糊精复合物。这些水凝胶可局部注射到预期作用部位,或者皮下或肌肉内注射以形成缓释贮库(depot)。
本发明的组合物可配制成用于皮下、肌肉内、静脉内、动脉内递送或作为吸入剂递送。
对于关节内递送,MASP-3抑制性抗体、任选组合MASP-2抑制剂可被装载于上述可注射的液体或凝胶载体、上述可注射的缓释递送媒介物、或者透明质酸或透明质酸衍生物中。
对于非肽能药物的口服施用,MASP-3抑制性抗体、任选组合MASP-2抑制剂可被装载于惰性填充物或稀释剂例如蔗糖、玉米淀粉或纤维素中。
对于局部施用,MASP-3抑制性抗体、任选组合MASP-2抑制剂可装载于软膏剂、洗剂、乳膏剂、凝胶剂、滴剂、栓剂、喷雾剂、液体制剂或粉剂中,或者经由透皮贴剂的凝胶或微胶囊递送系统中。
各种经鼻和经肺的递送系统正在开发中,包括气雾器、剂量吸入器、干粉吸入器和雾化器,可分别适于在气雾剂、吸入剂或雾化递送媒介物中的本发明的递送。
对于鞘内(IT)或脑室内(ICV)递送,合适的无菌递送系统(例如液体制剂;凝胶剂、混悬剂等)可用来施用本发明。
本发明的组合物还可包括生物相容性赋形剂,例如分散剂或润湿剂、助悬剂、稀释剂、缓冲剂、渗透促进剂、乳化剂、粘合剂、增稠剂、矫味剂(用于口服施用)。
抗体和肽的药用载体
更具体地,至于如本文所述的高亲和力MASP-3抑制性抗体,示例性制剂可以按注射剂量的所述化合物的溶液剂或混悬剂经胃肠外施用,所述化合物包含在生理上可接受的稀释剂与药用载体内,药用载体可以是无菌液体,例如水、油、盐水、甘油或乙醇。此外,包含MASP-3抗体的组合物中可存在例如润湿剂或乳化剂、表面活性剂、PH缓冲物质等辅助物质。药物组合物的其外组分包括石油(petroleum) (例如动物、植物或合成来源的石油),例如大豆油和矿物油。一般而言,二元醇例如丙二醇或聚乙二醇是用于注射溶液剂的优选液体载体。
还能以储库注射制剂或植入制剂的形式施用MASP-3抗体,这些制剂可按允许活性剂缓释或脉冲释放的方式来配制。
XVIX. 施用模式
可以多种方式施用包含MASP-3抑制性抗体、任选组合MASP-2抑制剂的药物组合物,这取决于是局部还是全身性施用模式最适于待治疗的病况。此外,本发明的组合物可通过将组合物涂布或掺入可植入的医疗装置上面或里面而递送。
全身性递送
如本文所用,术语“全身性递送”和“全身性施用”意图包括但不限于口服和胃肠外途径,包括肌肉内(IM)、皮下、静脉内(IV)、动脉内、吸入、舌下、含服、局部、经皮、经鼻、直肠、阴道和其他施用途径,它们将所递送的药物有效地分散到预期治疗作用的一个或多个部位。用于本发明组合物的全身性递送的优选途径包括静脉内、肌肉内、皮下、动脉内和吸入。应当理解,对于用于本发明具体组合物中所选用的药物,确切的全身性施用途径将部分地考虑药物对与特定施用途径相关的代谢转化途径的敏感性加以确定。例如,肽能药物可能最适于通过口服以外的途径施用。
可通过任何合适的方法将本文所述的MASP-3抑制性抗体递送到有此需要的对象中。递送MASP-3抗体和多肽的方法包括经口服、肺部、胃肠外(例如肌肉内、腹膜内、静脉内(IV)或皮下注射)、吸入(例如经由微细粉制剂)、经皮、经鼻、阴道、直肠或者舌下施用途径,并且可将其配制成适于各自施用途径的剂型。
代表性地举例来说,可以通过将MASP-3抑制性抗体和肽应用到能够吸收所述多肽的身体膜上,例如鼻膜、胃肠膜和直肠膜,而将其引入活体内。通常将多肽和渗透促进剂一起应用到可吸收膜上(参见例如Lee, V.H.L., Crit. Rev. Ther. Drug Carrier Sys. 5:69, (1988);Lee, V.H.L., J. Controlled Release13:213, (1990);Lee, V.H.L.主编,Peptide and Protein Drug Delivery, Marcel Dekker, New York (1991);DeBoer,A.G.,等人, J. Controlled Release13:241, (1990)。例如,STDHF是梭链孢酸的合成衍生物,是结构上类似于胆盐的甾类表面活性剂,已被用作经鼻递送的渗透促进剂(Lee, W.A.,Biopharm. 22, 1990年11/12月)。
可以引入与其他分子(例如脂质)缔合的本文所述的MASP-3抑制性抗体,以保护多肽不被酶降解。例如,共价结合的聚合物、尤其是聚乙二醇(PEG)已被用来保护某些蛋白质不被体内的酶水解,从而延长半寿期(Fuertges, F.,等人, J. Controlled Release11:139, (1990))。已经报道了许多用于蛋白质递送的聚合物系统(Bae, Y.H.,等人, J. Controlled Release9:271, (1989);Hori, R.,等人, Pharm. Res. 6:813, (1989);Yamakawa, I.,等人, J. Pharm. Sci. 79:505, (1990);Yoshihiro, I.,等人, J. Controlled Release10:195, (1989);Asano, M.,等人, J. Controlled Release9:111,(1989);Rosenblatt, J.,等人, J. Controlled Release9:195, (1989);Makino, K., J. Controlled Release12:235, (1990);Takakura, Y.,等人, J. Pharm. Sci. 78:117,(1989);Takakura, Y.,等人, J. Pharm. Sci. 78:219, (1989))。
最近,开发出血清稳定性和循环半寿期得到改进的脂质体(参见例如Webb的美国专利号5,741,516)。而且,对脂质体和脂质体样制备物作为可能的药物载体的各种方法进行了综述(参见例如Szoka的美国专利号5,567,434;Yagi的美国专利号5,552,157;Nakamori的美国专利号5,565,213;Shinkarenko的美国专利号5,738,868以及Gao的美国专利号5,795,587)。
对于经皮应用,可将本文所述的MASP-3抑制性抗体与其他合适的成分(例如载体和/或佐剂)混合。对这些其他成分的性质没有限制,只是对于其预期施用来说必须是药学上可接受的,并且不能降低组合物中活性成分的活性。合适媒介物的实例包括含或不含纯化胶原的软膏、乳膏、凝胶或混悬液。MASP-3抑制性抗体还可被浸渍到透皮贴剂、膏药和绷带中,优选以液体或半液体形式。
可以在为维持治疗效果所需水平而确定的间隔的周期性基础上,全身性施用本发明的组合物。例如,可按每2-4周或者以更低频率的间隔施用组合物(例如经皮下注射)。剂量方案将由医师考虑可能影响药物联用的作用的各种因素来确定。这些因素包括待治疗疾病的进展程度、对象年龄、性别和体重和其他临床因素。各独立药物的剂量将随组合物中所包含的MASP-3抑制性抗体或MASP-2抑制剂以及任何递送媒介物(例如缓释递送媒介物)的存在和性质而变化。此外,可在考虑施用频率和所递送药物的药代动力学行为的变化后对剂量进行调整。
局部递送
如本文所用,术语“局部”包括药物在预期局部化作用部位上或其周围的应用,可包括例如局部递送到皮肤或其他受累组织;眼部递送;鞘内(IT)、脑室内(ICV)、关节内、腔内、颅内或肺泡内施用、安置或冲洗。可优选能够给予较低剂量的局部施用以避免全身性不良作用,以及更精确地控制递送时间和局部递送部位的活性剂浓度。不论患者之间在新陈代谢、血流等方面的变化,局部施用都在目标部位提供已知的浓度。通过直接递送方式还提供改进的剂量控制。
MASP-3抑制性抗体或MASP-2抑制剂的局部递送可在手术方法的情况下实现以治疗疾病或病况,例如在动脉旁路术、经皮腔内斑块旋切术、激光手术、超声波手术、气囊血管成形术以及支架安置等手术期间。例如,可将MASP-3抑制性抗体或MASP-2抑制剂与气囊血管成形手术结合起来施用于对象。气囊血管成形手术包括将连有已排气的气囊的导管插入动脉内。将已排气的气囊置于动脉粥样硬化斑块附近,给气囊充气使得斑块向血管壁挤压。结果,气囊表面与血管表面的血管内皮细胞层接触。可以按允许药物在动脉粥样硬化斑块部位释放的方式,将MASP-3抑制性抗体或MASP-2抑制剂附着到气囊血管成形术导管上。可根据本领域已知标准方法将药物附着在气囊导管上。例如,可将药物保存在气囊导管的隔室中直到气囊充气,此时药物被释放到局部环境中。或者,可将药物浸渍在气囊表面,使得当气囊充气时,药物就接触到动脉壁的细胞。还可在多孔气囊导管中递送药物,例如Flugelman, M.Y.,等人, Circulation85:1110-1117, (1992)中公开的那些。还参见已公开的PCT申请WO 95/23161中对于将治疗用蛋白附着到气囊血管成形术导管上的示例性方法。同样地,可将MASP-3抑制剂或MASP-2抑制剂包入应用于支架上的凝胶或聚合涂层材料中,或者可将其掺入支架材料中,使得支架在血管安置之后将MASP-3抑制剂或MASP-2抑制剂洗脱出来。
用于治疗关节炎和其他肌肉骨骼疾病的MASP-3抑制性抗体可通过关节内注射来局部递送。这样的组合物可适当地包括缓释递送媒介物。作为其中可能需要局部递送的另一个实例,用于治疗泌尿生殖病况的MASP-3抑制性组合物可适当地滴入膀胱内或者其他泌尿生殖结构中。
XX. 治疗方案
在预防性应用中,将药物组合物施用于易患或否则有风险患有替代途径相关疾病或病症,例如选自阵发性夜间血红蛋白尿(PNH)、年龄相关性黄斑变性(AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病(包括溶血性尿毒症综合征(HUS),非典型溶血性尿毒症综合征(aHUS)和血栓性血小板减少性紫癜(TTP))、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎、贝切特氏病、多发性硬化症、格林巴利综合征、阿尔茨海默氏病、肌萎缩性侧索硬化症(ALS)、狼疮性肾炎、系统性红斑狼疮(SLE)、糖尿病性视网膜病变、葡萄膜炎、慢性阻塞性肺病(COPD)、C3肾小球病、移植排斥反应、移植物抗宿主病(GVHD)、血液透析、败血症、系统性炎性反应综合征(SIRS)、急性呼吸窘迫综合征(ARDS)、ANCA血管炎、抗磷脂综合征、动脉粥样硬化、IgA肾病和重症肌无力的替代途径疾病或病症的对象,其量足以消除或降低所述病况的症状发展的风险。在治疗性应用中,以足以缓解或至少部分减少所述病况的症状的治疗有效量,将药物组合物施用于疑似患有或已经患有替代途径相关疾病或病症,例如选自阵发性夜间血红蛋白尿(PNH)、年龄相关性黄斑变性(AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病(包括溶血性尿毒症综合征(HUS),非典型溶血性尿毒症综合征(aHUS)和血栓性血小板减少性紫癜(TTP))、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎、贝切特氏病、多发性硬化症、格林巴利综合征、阿尔茨海默氏病、肌萎缩性侧索硬化症(ALS)、狼疮性肾炎、系统性红斑狼疮(SLE)、糖尿病性视网膜病变、葡萄膜炎、慢性阻塞性肺病(COPD)、C3肾小球病、移植排斥反应、移植物抗宿主病(GVHD)、血液透析、败血症、系统性炎性反应综合征(SIRS)、急性呼吸窘迫综合征(ARDS)、ANCA血管炎、抗磷脂综合征、动脉粥样硬化、IgA肾病和重症肌无力的替代途径疾病或病症的对象。
在一个实施方案中,将包含高亲和力MASP-3抑制性抗体的药物组合物施用于患有或有风险发展PNH的对象。根据这一点,所述对象的红细胞在组合物不存在时被C3片段调理,将所述组合物施用于所述对象,在对象中增加红细胞存活。在一个实施方案中,所述对象在组合物不存在时表现出选自以下的一种或多种症状:(i)血红蛋白低于正常水平,(ii)血小板低于正常水平;(iii)网织红细胞高于正常水平,和(iv)胆红素高于正常水平,并且将组合物施用于对象改善至少一种或多种症状,导致(i)增加、正常或几乎正常水平的血红蛋白(ii)增加、正常或几乎正常水平的血小板,(iii)减少、正常或几乎正常水平的网织红细胞,和/或(iv)减少、正常或几乎正常水平的胆红素。
在用于治疗、预防或减少选自阵发性夜间血红蛋白尿(PNH)、年龄相关性黄斑变性(AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病(包括溶血性尿毒症综合征(HUS),非典型溶血性尿毒症综合征(aHUS)和血栓性血小板减少性紫癜(TTP))、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎和贝切特氏病的疾病或病症的严重程度中的预防和治疗方案中,可以在几个剂量中施用包含高亲和力MASP-3抑制性抗体和任选MASP-2抑制剂的组合物,直到在对象中获得充分的治疗结果。在本发明的一个实施方案中,高亲和力MASP-3抑制性抗体和/或MASP-2抑制剂可合适地施用于成年患者(例如平均成年体重70 kg),剂量为0.1 mg至10,000 mg,更合适地为1.0 mg至5,000 mg,更合适地为10.0 mg至2,000 mg,更合适地为10.0mg至1,000 mg和还更合适地为50.0 mg至500 mg,或10至200 mg。对于儿科患者,可根据患者体重的比例来调节剂量。
本发明的高亲和力MASP-3抑制性抗体和任选的MASP-2抑制性组合物的施用可通过单次施用组合物(例如包含MASP-3和任选MASP-2抑制剂、或双特异性或双重抑制剂的单一组合物,或共同施用分开的组合物),或有限顺序的施用来进行,用于治疗替代途径相关的疾病或病症,例如选自以下的疾病或病症:阵发性夜间血红蛋白尿(PNH)、年龄相关性黄斑变性(AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病(包括溶血性尿毒症综合征(HUS),非典型溶血性尿毒症综合征(aHUS)和血栓性血小板减少性紫癜(TTP))、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎、贝切特氏病、多发性硬化症、格林巴利综合征、阿尔茨海默氏病、肌萎缩性侧索硬化症(ALS)、狼疮性肾炎、系统性红斑狼疮(SLE)、糖尿病性视网膜病变、葡萄膜炎、慢性阻塞性肺病(COPD)、C3肾小球病、移植排斥反应、移植物抗宿主病(GVHD)、血液透析、败血症、系统性炎性反应综合征(SIRS)、急性呼吸窘迫综合征(ARDS)、ANCA血管炎、抗磷脂综合征、动脉粥样硬化、IgA肾病和重症肌无力。
或者,在医师确定的延长的时间周期内,可以定期间隔施用组合物,例如每天、每两周、每周、每隔一周、每月或每两月,以达到最佳治疗效果。
在某些实施方案中,将包含至少一种高亲和力MASP-3抑制性抗体的第一组合物和包含至少一种MASP-2抑制剂的第二组合物施用于患有或有风险发展选自阵发性夜间血红蛋白尿(PNH)、年龄相关性黄斑变性(AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病(包括溶血性尿毒症综合征(HUS),非典型溶血性尿毒症综合征(aHUS)和血栓性血小板减少性紫癜(TTP))、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎、贝切特氏病、多发性硬化症、格林巴利综合征、阿尔茨海默氏病、肌萎缩性侧索硬化症(ALS)、狼疮性肾炎、系统性红斑狼疮(SLE)、糖尿病性视网膜病变、葡萄膜炎、慢性阻塞性肺病(COPD)、C3肾小球病、移植排斥反应、移植物抗宿主病(GVHD)、血液透析、败血症、系统性炎性反应综合征(SIRS)、急性呼吸窘迫综合征(ARDS)、ANCA血管炎、抗磷脂综合征、动脉粥样硬化、IgA肾病和重症肌无力的疾病或病症的对象。
在一个实施方案中,将包含至少一种高亲和力MASP-3抑制性抗体的第一组合物和包含至少一种MASP-2抑制剂的第二组合物同时施用(即在不超过大约15分钟或更短、例如不超过10、5或1分钟的任一种的间隔时间内)。在一个实施方案中,将包含至少一种高亲和力MASP-3抑制性抗体的第一组合物和包含至少一种MASP-2抑制剂的第二组合物相继施用(即在施用第二组合物之前或之后施用第一组合物,其中施用的间隔时间超过15分钟)。在一些实施方案中,将包含至少一种高亲和力MASP-3抑制性抗体的第一组合物和包含至少一种MASP-2抑制剂的第二组合物并发施用(即第一组合物的施用时间与第二组合物的施用重叠)。例如,在一些实施方案中,施用第一组合物和/或第二组合物达至少1、2、3或4周或更长的时间周期。在一个实施方案中,至少一种高亲和力MASP-3抑制性抗体和至少一种MASP-2抑制剂在单位剂型中组合。在一个实施方案中,将包含至少一种高亲和力MASP-3抑制性抗体的第一组合物和包含至少一种MASP-2抑制剂的第二组合物一起包装在药盒中,用于治疗替代途径相关疾病或病症、例如阵发性夜间血红蛋白尿(PNH)、年龄相关性黄斑变性(AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病(包括溶血性尿毒症综合征(HUS),非典型溶血性尿毒症综合征(aHUS)和血栓性血小板减少性紫癜(TTP))、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎、贝切特氏病、多发性硬化症、格林巴利综合征、阿尔茨海默氏病、肌萎缩性侧索硬化症(ALS)、狼疮性肾炎、系统性红斑狼疮(SLE)、糖尿病性视网膜病变、葡萄膜炎、慢性阻塞性肺病(COPD)、C3肾小球病、移植排斥反应、移植物抗宿主病(GVHD)、血液透析、败血症、系统性炎性反应综合征(SIRS)、急性呼吸窘迫综合征(ARDS)、ANCA血管炎、抗磷脂综合征、动脉粥样硬化、IgA肾病或重症肌无力。
在某些实施方案中,患有PNH、年龄相关性黄斑变性(AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病(包括溶血性尿毒症综合征(HUS),非典型溶血性尿毒症综合征(aHUS)和血栓性血小板减少性紫癜(TTP))、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎、贝切特氏病、多发性硬化症、格林巴利综合征、阿尔茨海默氏病、肌萎缩性侧索硬化症(ALS)、狼疮性肾炎、系统性红斑狼疮(SLE)、糖尿病性视网膜病变、葡萄膜炎、慢性阻塞性肺病(COPD)、C3肾小球病、移植排斥反应、移植物抗宿主病(GVHD)、血液透析、败血症、系统性炎性反应综合征(SIRS)、急性呼吸窘迫综合征(ARDS)、ANCA血管炎、抗磷脂综合征、动脉粥样硬化、IgA肾病和重症肌无力的对象先前已经经历、或目前正经历用抑制补体蛋白C5切割的末端补体抑制剂的治疗。在某些实施方案中,所述方法包含向所述对象施用本发明的组合物,所述组合物包含高亲和力MASP-3抑制性抗体和任选MASP-2的抑制剂;和进一步向所述对象施用抑制补体蛋白C5切割的末端补体抑制剂。在某些实施方案中,所述末端补体抑制剂是人源化抗C5抗体或其抗原-结合片段。在某些实施方案中,所述末端补体抑制剂是依库丽单抗。
XXI. 实施例
下面的实施例仅说明目前预期的用于实施本发明的最佳模式,但是不应解释为限制本发明。本文所引用的所有文献都通过引用明确地并入。
实施例1
本实施例表明用脑膜炎奈瑟氏菌血清组A或脑膜炎奈瑟氏菌血清组B感染后,MASP-2缺陷型小鼠受到保护免于脑膜炎奈瑟氏菌诱导的死亡。
方法:
如US 7,919,094的实施例1所述,产生MASP-2敲除小鼠(MASP-2 KO小鼠),所述文献通过引用并入本文中。10周龄MASP-2 KO小鼠(n=10)和野生型(WT) C57/BL6小鼠(n=10)经腹膜内(i.p.)注射接种剂量为2.6 x 107 CFU、体积为100 µl的脑膜炎奈瑟氏菌血清组AZ2491。将感染剂量连同右旋糖酐铁施用于小鼠,终浓度为400 mg/kg。在72小时时间周期内,监测感染后的小鼠存活率。
在不同的实验中,10周龄MASP-2 KO小鼠(n=10)和WT C57/BL6小鼠(n=10)经i.p.注射接种剂量为6 x 106 CFU、体积为100 µL的脑膜炎奈瑟氏菌血清组B菌株MC58。将感染剂量连同右旋糖酐铁施用于小鼠,终剂量为400 mg/kg。在72小时时间周期内,监测感染后的小鼠存活率。在感染后72小时时间周期中,根据下表5所述的疾病评分参数,还对WT和MASP-2 KO小鼠测定疾病评分,所述参数是基于略加修改的Fransen等人(2010)的方案。
表5:在感染小鼠中与临床体征相关的疾病评分
体征 评分
正常 0
稍微皱缩的皮毛 1
皱缩的皮毛,迟钝和发粘的眼睛 2
皱缩的皮毛,昏睡和闭眼 3
严重生病和刺激后不动 4
死亡 5
感染后根据每小时间隔从小鼠采集血液样品并分析,以测定脑膜炎奈瑟氏菌的血清水平(log cfu/mL),以证实感染和测定细菌从血清中的清除率。
结果:
图6是卡普兰-迈耶曲线,其图示说明在施用2.6 x 107 cfu的感染剂量的脑膜炎奈瑟氏菌血清组A Z2491后的MASP-2 KO和WT小鼠的百分比存活率。如图6所示,100% MASP-2 KO小鼠在感染后72小时周期内生存。相比之下,仅80%的WT小鼠(p=0.012)在感染后24小时仍生存,仅50%的WT小鼠在感染后72小时仍生存。这些结果表明MASP-2-缺陷型小鼠受到保护免于脑膜炎奈瑟氏菌血清组A Z2491-诱导的死亡。
图7是卡普兰-迈耶曲线,其图示说明在施用6 x 106 cfu的感染剂量的脑膜炎奈瑟氏菌血清组B菌株MC58后的MASP-2 KO和WT小鼠的百分比存活率。如图7所示,90%的MASP-2 KO小鼠在感染后72小时周期内生存。相比之下,仅20%的WT小鼠(p=0.0022)在感染后24小时仍生存。这些结果表明MASP-2-缺陷型小鼠受到保护免于脑膜炎奈瑟氏菌血清组B菌株MC58-诱导的死亡。
图8图示说明在i.p.感染6x106 cfu脑膜炎奈瑟氏菌血清组B菌株MC58后,从MASP-2 KO和WT小鼠在不同时间点采集的血液样品中回收的脑膜炎奈瑟氏菌血清组B菌株MC58的log cfu/mL (n=3,在不同的时间点,对于这两组小鼠)。结果表示为平均值±SEM。如图8所示,在WT小鼠中,血液中的脑膜炎奈瑟氏菌水平在感染后24小时达到大约6.0 log cfu/mL的峰值,并在感染后36小时降至大约4.0 log cfu/mL。相比之下,在MASP-2 KO小鼠中,脑膜炎奈瑟氏菌水平在感染后12小时达到大约4.0 log cfu/mL的峰值,并在感染后36小时降至大约1.0 log cfu/mL (符号“*”表示p<0.05;符号“**”表示p=0.0043)。这些结果表明尽管MASP-2 KO小鼠用与用于WT小鼠的相同的剂量的脑膜炎奈瑟氏菌血清组B菌株MC58感染,但与WT相比,MASP-2 KO小鼠具有增高的菌血症清除率。
图9图示说明在感染6x106 cfu脑膜炎奈瑟氏菌血清组B菌株MC58后的3、6、12和24小时的MASP-2 KO和WT小鼠的平均疾病评分。如图9所示,MASP-2-缺陷型小鼠显示出对感染的高抗性,与WT小鼠相比,其在感染后6小时(符号“*”表示p=0.0411)、12小时(符号“**”表示p=0.0049)和24小时(符号“***”表示p=0.0049)具有低得多的疾病评分。图9中的结果表示为平均值±SEM。
总之,本实施例的结果表明在脑膜炎奈瑟氏菌血清组A或脑膜炎奈瑟氏菌血清组B感染后,MASP-2-缺陷型小鼠受到保护免于脑膜炎奈瑟氏菌-诱导的死亡。
实施例2
本实施例表明在脑膜炎奈瑟氏菌感染后施用MASP-2抗体增加了脑膜炎奈瑟氏菌感染小鼠的存活率。
背景/基本原理:
如美国专利7,919,094的实施例24所述(通过引用并入本文中),大鼠MASP-2蛋白用于淘选Fab噬菌体展示文库,从中鉴定出Fab2 #11为功能活性抗体。从Fab2 #11产生大鼠IgG2c和小鼠IgG2a同种型的全长抗体。表征了小鼠IgG2a同种型的全长MASP-2抗体的药效动力学参数(如美国专利7,919,094的实施例38所述)。
在该实施例中,在脑膜炎奈瑟氏菌感染的小鼠模型中分析来自Fab2 #11的小鼠的MASP-2全长抗体。
方法:
在脑膜炎奈瑟氏菌感染的小鼠模型中,如下测试如上产生的来自Fab2 #11的小鼠IgG2a全长MASP-2抗体同种型。
1. 感染后施用小鼠-MASP-2单克隆抗体(MoAb)
在i.p.注射高剂量(4x106 cfu)脑膜炎奈瑟氏菌血清组B菌株MC58后3小时,9周龄C57/BL6 Charles River小鼠用抑制性小鼠MASP-2抗体(1.0 mg/kg) (n=12)或对照同种型抗体(n=10)治疗。
结果:
图10是卡普兰-迈耶曲线,其图示说明在施用4x106 cfu的感染剂量的脑膜炎奈瑟氏菌血清组B菌株MC58,接着在感染后3小时施用抑制性MASP-2抗体(1.0 mg/kg)或对照同种型抗体后的小鼠百分比存活率。如图10所示,用MASP-2抗体治疗的小鼠的90%在感染后72小时周期内生存。相比之下,用同种型对照抗体治疗的小鼠的仅50%在感染后72小时周期内生存。符号“*”表示p=0.0301,如通过两条生存曲线的比较而测定。
这些结果表明施用MASP-2抗体有效治疗和改善感染了脑膜炎奈瑟氏菌的对象的存活率。
如本文所表明,当在感染后3小时内施用时,在感染脑膜炎奈瑟氏菌的对象的治疗中使用MASP-2抗体是有效的,并且预期在感染后24小时至48小时内有效。脑膜炎球菌性疾病(脑膜炎球菌血症或脑膜炎)是医学急症,并且如果怀疑脑膜炎球菌性疾病(即在脑膜炎奈瑟氏菌被明确鉴定为病原之前),通常将会立即启动治疗。
考虑到实施例1中给出的MASP-2 KO小鼠的结果,认为在脑膜炎奈瑟氏菌感染之前施用MASP-2抗体也将有效预防或改善感染的严重程度。
实施例3
本实施例表明在人血清中的脑膜炎奈瑟氏菌的补体-依赖性杀伤是MASP-3-依赖性的。
基本原理:
功能性MBL血清水平降低的患者对复发性细菌和真菌感染的敏感性增加(Kilpatrick等人, Biochim Biophys Acta 1572:401-413 (2002))。已知脑膜炎奈瑟氏菌被MBL识别,和已经证实MBL-缺乏的血清不裂解脑膜炎奈瑟氏菌。
考虑到实施例1和2中所述的结果,进行了一系列实验以确定在补体-缺乏的和对照人血清中施用MASP-2抗体治疗脑膜炎奈瑟氏菌感染的功效。在高浓度血清(20%)中进行实验以保护补体途径.
方法:
1. 在不同补体-缺乏的人血清和在用人MASP-2抗体处理的人血清中的血清杀菌 活性
以下补体-缺乏的人血清和对照人血清用于本实验:
表6:所测试的人血清样品(如图11所示)
样品 血清类型
A 正常人血清(NHS) +人MASP-2 Ab
B NHS + 同种型对照Ab
C MBL -/-人血清
D NHS
E 热灭活的(HI) NHS
针对人MASP-2的重组抗体分离自组合抗体文库(Knappik, A.,等人, J. Mol. Biol. 296:57-86 (2000)),使用重组人MASP-2A作为抗原(Chen, C.B.和Wallis, J. Biol. Chem. 276:25894-25902 (2001))。在人血浆中强力抑制C4和C3的凝集素途径-介导的活化(IC50~20 nM)的抗人scFv片段被鉴定并转化为全长人IgG4抗体。
在37℃并伴随振荡,将脑膜炎奈瑟氏菌血清组B-MC58与表6所示的不同血清(各自的血清浓度为20%)一起孵育,加或不加抑制性人MASP-2抗体(3 µg在100 µl 总体积中)。在以下时间点采集样品:0-、30-、60-和90-分钟间隔,倒平板(plated out),然后测定活菌计数。热灭活的人血清用作阴性对照。
结果:
图11图示说明在表6所示的人血清样品中,在不同时间点回收的脑膜炎奈瑟氏菌血清组B菌株MC58的活菌计数的log cfu/mL。表7提供图11的Student's t-检验结果。
表7:图11的Student's t-检验结果(时间点60分钟)
平均差(Log) 显著性
Figure 138450DEST_PATH_IMAGE005
Figure 695333DEST_PATH_IMAGE006
P值概述
A vs B -0.3678 ***(0.0002)
A vs C -1.1053 ***(p<0.0001)
A vs D -0.2111 **(0.0012)
C vs D 1.9 ***(p<0.0001)
如图11和表7所示,通过加入人MASP-2抑制性抗体而显著增强了在人20%血清中的脑膜炎奈瑟氏菌的补体-依赖性杀伤。
2. 在不同补体-缺乏的人血清中的血清杀菌活性
以下补体-缺乏的人血清和对照人血清用于本实验:
表8:所测试的人血清样品(如图12所示)
样品 血清类型
A 正常人血清(NHS)
B 热灭活的NHS
C MBL -/-
D MASP-3 -/- (MASP-1 +)
注意:在样品D中的MASP-3 -/- (MASP-1 +)血清是取自3MC综合征对象,3MC综合征是覆盖Carnevale、Mingarelli、Malpuech和Michels综合征的统一术语。正如实施例4的进一步描述,MASP-1/3基因的外显子12中的突变使MASP-3 (而非MASP-1)的丝氨酸蛋白酶结构域功能失调。如实施例10所述,前-因子D优先存在于3MC血清中,而活化因子D优先存在于正常人血清中。
在37℃并伴随振荡,将脑膜炎奈瑟氏菌血清组B-MC58与不同补体-缺乏的人血清(各自的血清浓度为20%)一起孵育。在以下时间点采集样品:0-、15-、30-、45-、60-、90-和120-分钟间隔,倒平板,然后测定活菌计数。热灭活的人血清用作阴性对照。
结果:
图12图示说明在表8所示的人血清样品中,在不同时间点回收的脑膜炎奈瑟氏菌血清组B-MC58的活菌计数的log cfu/mL。如图12所示,WT (NHS)血清对脑膜炎奈瑟氏菌具有最高水平的杀菌活性。相比之下,MBL -/-和MASP-3 -/- (其是MASP-1-足够的)人血清不具有任何杀菌活性。这些结果表明在人20% (v/v)血清中的脑膜炎奈瑟氏菌的补体-依赖性杀伤是MASP-3-和MBL-依赖性的。表9提供图12的Student's t-检验结果。
表9:图12的Student's t-检验结果
Figure 821421DEST_PATH_IMAGE007
总之,图12和表9所示结果表明在20%人血清中的脑膜炎奈瑟氏菌的补体-依赖性杀伤是MASP-3-和MBL-依赖性的。
3. 在缺乏MASP-2、MASP-1/3或MBL A/C的20% (v/v)小鼠血清中,脑膜炎奈瑟氏菌的补体-依赖性杀伤。
以下补体-缺乏的小鼠血清和对照小鼠血清用于本实验:
表10:所测试的小鼠血清样品(如图13所示)
样品 血清类型
A WT
B MASP-2 -/-
C MASP-1/3 -/-
D MBL A/C -/-
E WT热灭活的(HIS)
在37℃并伴随振荡,脑膜炎奈瑟氏菌血清组B-MC58与不同的补体-缺乏的小鼠血清(各自的血清浓度为20%)一起孵育。在以下时间点采集样品:0-、15-、30-、60-、90-和120-分钟间隔,倒平板,然后测定活菌计数。热灭活的人血清用作阴性对照。
结果:
图13图示说明在表10所示的小鼠血清样品中,在不同时间点回收的脑膜炎奈瑟氏菌血清组B-MC58的活菌计数的log cfu/mL。如图13所示,MASP-2 -/-小鼠血清与WT小鼠血清相比,对脑膜炎奈瑟氏菌具有更高水平的杀菌活性。相比之下,MASP-1/3 -/-小鼠血清没有任何杀菌活性。符号“**”表示p=0.0058,符号“***”表示p=0.001。表11提供图13的Student's t-检验结果。
表11:图13的Student's t-检验结果
比较 时间点 平均差(LOG) 显著性
Figure 754742DEST_PATH_IMAGE005
Figure 158042DEST_PATH_IMAGE008
P值概述
A vs. B 60 min. 0.39 yes ** (0.0058)
A vs. B 90 min. 0.6741 yes *** (0.001)
总之,本实施例的结果表明与WT血清相比,MASP-2 -/-血清对脑膜炎奈瑟氏菌具有更高水平的杀菌活性,并且20%血清中的脑膜炎奈瑟氏菌的补体-依赖性杀伤是MASP-3-和MBL-依赖性的。
实施例4
本实施例描述了一系列实验,进行这些实验以确定在如实施例1-3所述的MASP-2KO小鼠中观察到的针对脑膜炎奈瑟氏菌感染的MASP-3-依赖性抵抗的机制。
基本原理:
为了测定在MASP-2 KO小鼠中观察到的针对脑膜炎奈瑟氏菌感染的MASP-3-依赖性抵抗(在以上实施例1-3中所述)的机制,如下进行了一系列实验。
1. MASP-1/3-缺陷型小鼠不缺乏凝集素途径功能活性(也称为“LEA-2”)
方法:
为了测定MASP-1/3-缺陷型小鼠是否缺乏凝集素途径功能活性(也称为LEA-2),进行测定以检测在凝集素活化途径-特异性测定条件(1%血浆)下测定的在来自不同补体-缺陷型小鼠品系的血清中的C3转化酶活性的动力学,例如描述于Schwaeble W.等人, PNAS第108(18)卷:7523-7528 (2011),通过引用并入本文中。
测试来自WT、C4-/-、MASP-1/3-/-;因子B-/-和MASP-2-/-小鼠的血浆,如下所述。
为了测定C3活化,用含甘露聚糖(1 µg/孔)、酵母聚糖(1 µg/孔)的包被缓冲液(15mM Na2Co3, 35 mM NaHCO3)或免疫复合物包被微量滴定板,所述免疫复合物通过用含1%人血清白蛋白(HSA)的包被缓冲液来包被,然后加入含绵羊抗HAS血清(2 µg/mL)的TBS (10mMTris, 140 mM NaCl, pH 7.4)和0.05% Tween 20和5 mM Ca++原位产生。将各板用含0.1%HAS的TBS封闭并用TBS/Tween 20/ Ca++洗涤3次。血浆样品在4 mM巴比妥、145 mM NaCl、2mM CaCl2、1 mM MgCl2 (pH 7.4)中稀释,加入到各板并在37℃孵育1.5 h。洗涤后,使用兔抗人C3c (Dako)、接着是碱性磷酸酶-缀合的山羊抗兔IgG和磷酸对硝基苯酯,测定结合的C3b。
结果:
在凝集素途径-特异性条件下的C3活化动力学(通过C3b沉积在甘露聚糖-包被的板上而测定,用1%血清)见图14。在MASP-2-/-血浆中未见C3切割。因子B-/- (因子B-/-)血浆以WT血浆的一半的速率切割C3,可能是因为扩增环的缺乏。在C4-/-中(T1/2=33min)以及在MASP-1/3-/-缺乏的血浆(T1/2=49 min)中,在C3向C3b的凝集素途径-依赖性转化中观察到明显延迟。这种在MASP-1/3 -/-血浆中的C3活化的延迟已被表明是MASP-1-依赖性的,而非MASP-3-依赖性的(参见Takahashi M.等人, J Immunol 180:6132-6138 (2008))。这些结果表明MASP-1/3-缺陷型小鼠不缺乏凝集素途径功能活性(也称为“LEA-2”)。
2. 遗传性MASP-3缺陷对替代途径活化的影响。
基本原理:
通过测定MASP-3-缺乏的3MC综合征(因编码MASP-3丝氨酸蛋白酶的外显子中的移码突变所致)患者的血清,测定遗传性MASP-3缺陷对替代途径活化的影响。3MC综合征是覆盖Carnevale、Mingarelli、Malpuech和Michels综合征的统一术语。这些罕见的常染色体隐性病症表现出发育特征谱,包括特征性面部畸形、唇裂和/或腭裂、颅缝早闭、学习障碍以及生殖器、肢体和膀胱肾异常。Rooryck等人, Nature Genetics 43:197-203 (2011)研究了11个3MC综合征家族并鉴定了2个突变基因:COLEC11和MASP-1。MASP-1基因中的突变使得编码MASP-3的丝氨酸蛋白酶结构域的外显子而非编码MASP-1的丝氨酸蛋白酶的外显子功能失调。因此,在编码MASP-3的丝氨酸蛋白酶的外显子中具有突变的3MC患者缺乏MASP-3,但MASP-1却足够。
方法:
MASP-3-缺乏的血清得自3MC患者、3MC患者的父母(两者是携带突变的等位基因的杂合体,所述突变使编码MASP-3丝氨酸蛋白酶结构域的外显子功能失调)以及得自C4-缺陷型患者(在两种人C4基因中缺陷)和MBL-缺陷型对象。如Bitter-Suermann等人, Eur. J. Immunol 11:291-295 (1981))所述,在酵母聚糖-包被的微量滴定板上,在0.5至25%血清浓度范围内,在传统的AP-特异性条件(BBS/Mg++/EGTA, 无Ca++, 其中BBS =含有蔗糖的巴比妥缓冲盐水)下进行替代途径测定,并且随时间测定C3b沉积。
结果:
图15图示说明在得自MASP-3-缺陷型、C4-缺陷型和MBL-缺陷型对象的血清样品中,作为血清浓度的函数的,在酵母聚糖-包被的微量滴定板上的替代途径-驱动的C3b沉积水平。如图15所示,MASP-3-缺陷型患者血清在高血清浓度(25%、12.5%、6.25%血清浓度)时具有残留的替代途径(AP)活性,但显著更高的AP50 (即需要9.8%血清以达到50%最大C3沉积)。
图16图示说明在得自MASP-3-缺陷型、C4-缺陷型和MBL-缺陷型人类对象的10%人血清样品中,在“传统的”替代途径-特异性(AP-特异性)条件(即BBS/EGTA/Mg++无Ca++)下,作为时间的函数的,在酵母聚糖-包被的微量滴定板上的替代途径-驱动的C3b沉积水平。
下表12概述了图15所示的AP50结果和图16所示的C3b沉积的一半时间。
表12:图15和16中所示结果的概述
血清类型 AP50 (%) T1/2 (min)
MASP-3-缺陷型(3MC患者) 9.8 37.4
3MC对象的母亲(杂合子) 4.3 17.2
3MC对象的父亲(杂合子) 4.3 20.9
C4-缺陷型 4.0 11.6
MBL-缺陷型 4.8 11.0
注意:在BBS/Mg++/EGTA缓冲液中,凝集素途径-介导的作用缺乏,因为在该缓冲液中缺乏Ca++
总之,在这些测定的条件下,3MC患者中的替代途径显著受损。
3. 在缺乏MASP-2或MASP-1/3的小鼠血清中,测定在甘露聚糖、酵母聚糖和肺炎链球菌D39上的C3b沉积。
方法:
在甘露聚糖、酵母聚糖和肺炎链球菌D39-包被的微量滴定板上测定C3b沉积,使用得自MASP-2-/-、MASP-1/3-/-和WT小鼠的浓度范围0%至20%的小鼠血清。在“传统的”替代途径-特异性条件(即BBS/EGTA/Mg++无Ca++),或在允许凝集素途径和替代途径两者起作用的生理条件(即BBS/Mg++/Ca++)下,进行C3b沉积测定。
结果:
图17A图示说明在得自WT、MASP-2-缺陷型和MASP-1/3-缺陷型小鼠的血清样品中,在传统的替代途径-特异性条件(即BBS/EGTA/Mg++无Ca++)下,或在允许凝集素途径和替代途径两者起作用的生理条件(BBS/Mg++/Ca++)下,作为血清浓度的函数的,在甘露聚糖-包被的微量滴定板上的C3b沉积水平。图17B图示说明在得自WT、MASP-2-缺陷型和MASP-1/3-缺陷型小鼠的血清样品中,在传统的AP-特异性条件(即BBS/EGTA/Mg++无Ca++)或在允许凝集素途径和替代途径两者起作用的生理条件(BBS/Mg++/Ca++)下,作为血清浓度的函数的,在酵母聚糖-包被的微量滴定板上的C3b沉积水平。图17C图示说明在得自WT、MASP-2-缺陷型和MASP-1/3-缺陷型小鼠的血清样品中,在传统的AP-特异性条件(即BBS/EGTA/Mg++无Ca++)下,或在允许凝集素途径和替代途径两者起作用的生理条件(BBS/Mg++/Ca++)下,作为血清浓度的函数的,在肺炎链球菌D39-包被的微量滴定板上的C3b沉积水平。
图18A图示说明在传统的AP-特异性条件(即BBS/EGTA/Mg++无Ca++)或在允许凝集素途径和替代途径两者起作用的生理条件(BBS/Mg++/Ca++)下,在甘露聚糖-包被的微量滴定板上进行的在高度稀释的血清中的C3b沉积测定结果,使用血清浓度范围为0%至1.25%。图18B图示说明在传统的AP-特异性条件(即BBS/EGTA/Mg++无Ca++)或在允许凝集素途径和替代途径两者起作用的生理条件(BBS/EGTA/Mg++/Ca++)下,在酵母聚糖-包被的微量滴定板上进行的C3b沉积测定结果,使用血清浓度范围为0%至1.25%。图18C图示说明在传统的AP-特异性条件(即BBS/EGTA/Mg++无Ca++)或在允许凝集素途径和替代途径两者起作用的生理条件(BBS/EGTA/Mg++/Ca++)下,在肺炎链球菌D39-包被的微量滴定板上进行的C3b沉积测定结果,使用血清浓度范围为0%至1.25%。
如图18A-C所示,还在传统的替代途径-特异性条件(即BBS/EGTA/Mg++无Ca++)或在允许凝集素途径和替代途径两者起作用的生理条件(BBS/Mg++/Ca++)下,进行C3b沉积测定,使用更高稀释度范围为0%至1.25%血清,在甘露聚糖-包被的板(图18A);酵母聚糖-包被的板(图18B)和肺炎链球菌D39-包被的板上(图18C)。在更高血清稀释度下替代途径逐渐消失,使得在Ca++存在时在MASP-1/3-缺乏的血清中观察到的活性是MASP-2-介导的LP活性,并且在Ca++存在时在MASP-2-缺乏的血清中的活性是MASP-1/3-介导的AP残留活化。
讨论:
本实施例中所述的结果表明,MASP-2抑制剂(或MASP-2 KO)通过促进MASP-3-驱动的替代途径活化而提供免于脑膜炎奈瑟氏菌感染的显著保护作用。小鼠血清溶菌测定和人血清溶菌测定的结果进一步表明,通过监测针对脑膜炎奈瑟氏菌的血清杀菌活性,在MBL-缺陷型(小鼠MBL A和MBL C双重-缺陷型和人MBL-缺陷型血清)中,针对脑膜炎奈瑟氏菌的杀菌活性不存在。
图1基于本文提供的结果,说明了对凝集素途径和替代途径的新的理解。图1描绘了LEA-2在调理作用和细胞裂解中的作用。尽管MASP-2在多个生理性的凝集素-依赖性环境中是“下游”C3b沉积(和所导致的调理作用)的引发剂(图18A、18B、18C),但它在血清-敏感性细菌的溶菌中也起作用。如图1所示,对于血清-敏感性病原体例如脑膜炎奈瑟氏菌,所提出的负责MASP-2-缺乏的或MASP-2-耗尽的血清/血浆的增加的杀菌活性的分子机制就是,对于细菌的溶菌,与MASP-1和MASP-3缔合的凝集素途径识别复合物必须彼此靠近地结合至细菌表面上,从而允许MASP-1切割MASP-3。与MASP-1和MASP-2相反,MASP-3不是自我活化的酶,但是在许多情况下,需要被MASP-1活化/切割而转化为其酶促活性形式。
进一步如图1所示,活化的MASP-3然后可以切割病原体表面上的C3b-结合的因子B,通过分别形成酶促活性替代途径C3和C5转化酶C3bBb和C3bBb(C3b)n而启动替代活化级联。携带MASP-2的凝集素-途径活化复合物不参与MASP-3活化,并且,在MASP-2不存在时或耗尽后,所有凝集素途径活化复合物将会装载MASP-1或装载MASP-3。因此,在MASP-2不存在时,在微生物表面携带MASP-1和MASP-3的凝集素-途径活化复合物将彼此靠近的可能性明显增加,导致更多MASP-3被活化,从而导致MASP-3-介导的C3b-结合的因子B切割的更高速率,在微生物表面形成替代途径C3和C5转化酶C3bBb和C3bBb(C3b)n。这导致末端活化级联C5b-C9的活化,形成膜攻击复合物,其是由表面-结合的C5b与C6缔合、C5bC6与C7缔合、C5bC6C7与C8缔合和C5bC6C7C8组成,导致C9聚合,其插入到细菌表面结构并在细菌壁中形成小孔,其将导致补体-靶向的细菌的渗透压杀伤。
这一新概念的核心就是本文提供的数据清楚地显示了凝集素途径活化复合物驱动两个不同的活化途径,如图1所示。
实施例5
本实施例表明MASP-2缺乏和/或MASP-3缺乏对得自阵发性夜间血红蛋白尿(PNH)小鼠模型的血液样品的红细胞裂解的抑制性作用。
背景/基本原理:
阵发性夜间血红蛋白尿(PNH),也称为Marchiafava-Micheli综合征,是一种获得性的、可能危及生命的血液病,特征在于补体-诱导的血管内溶血性贫血。PNH的标志是慢性补体-介导的血管内溶血,这是PNH红细胞上缺乏补体调节剂CD55和CD59所致的补体替代途径的未经调节的活化的结果,随后是血红蛋白尿和贫血。Lindorfer, M.A.,等人, Blood 115(11) (2010), Risitano, A.M, Mini-Reviews in Medicinal Chemistry, 11:528-535 (2011)。PNH中的贫血是因为血流中的红细胞破坏所致。PNH的症状包括血尿(因尿中可见血红蛋白)、背痛、疲劳、呼吸短促和血栓形成。PNH可以自发产生,称为“原发性PNH”或在其他骨髓病症例如再生障碍性贫血的情况下发生,称为“继发性PNH”。PNH的治疗包括对付贫血的输血,对付血栓形成的抗凝,和使用单克隆抗体依库丽单抗 (Soliris®),该抗体保护血细胞免于因抑制补体系统所致的免疫破坏(Hillmen P.等人, N. Engl. J. Med. 350(6):552-9 (2004))。依库丽单抗(Soliris®)是人源化单克隆抗体,其靶向补体成分C5,封闭其被C5转化酶切割,从而阻止C5a的产生和MAC的装配。用依库丽单抗治疗PNH患者,在大约半数患者中导致血管内溶血减少(经乳酸脱氢酶(LDH)测定),导致血红蛋白稳定化和输血非依赖性(Hillmen P,等人, Mini-Reviews in Medicinal Chemistry, vol 11(6)(2011))。尽管经历依库丽单抗治疗的几乎所有患者都达到正常或几乎正常的LDH水平(因为控制了血管内溶血),但仅有大约三分之一的患者的血红蛋白值达到大约11gr/dL,接受依库丽单抗的其余患者以大约相同比例继续表现出中度至严重(即输血-依赖性的)贫血(Risitano A.M.等人, Blood 113:4094-100 (2009))。正如Risitano等人, Mini-Reviewsin Medicinal Chemistry 11:528-535 (2011)所述,已经表明接受依库丽单抗的PNH患者含有与他们的大部分PNH红细胞结合的C3片段(而未经治疗的患者则没有),导致以下结论:膜-结合的C3片段作为调理素对PNH红细胞起作用,导致它们通过特异性C3受体而被网罗到网状内皮细胞中并且随后导致血管外溶血。因此,对于发生C3-片段-介导的血管外溶血的那些患者,需要除了使用依库丽单抗之外的治疗策略,因为他们继续需要输入红细胞。
本实施例描述了评价MASP-2-和MASP-3-缺乏的血清对得自PNH小鼠模型的血液样品的红细胞裂解的作用的方法,并且表明了MASP-2抑制和/或MASP-3抑制对治疗PNH对象的功效,并且还支持在经历C5抑制剂例如依库丽单抗治疗的PNH对象中使用MASP-2抑制剂和/或MASP-3抑制剂(包括双重或双特异性MASP-2/MASP-3抑制剂)以改善C3片段-介导的血管外溶血的作用。
方法:
PNH动物模型:
血液样品得自具有Crry和C3缺陷(Crry/C3-/-)的基因靶向小鼠和CD55/CD59-缺陷型小鼠。这些小鼠丢失了其红细胞上的各自的表面补体调节剂,因此这些红细胞易于发生自发补体自我裂解,如同PNH人红细胞那样。
为了进一步敏化这些红细胞,使用这些细胞,用或不用甘露聚糖包被,然后在WTC56/BL6血浆、无MBL血浆、MASP-2 -/-血浆、MASP-1/3 -/-血浆、人NHS、人MBL -/-血浆和用人MASP-2抗体处理的NHS中测试其溶血。
1. 在MASP-2-缺乏的/耗尽的血清和对照中,Crry/C3和CD55/CD59双重-缺陷型鼠 红细胞的溶血测定
第一天。鼠RBC的制备(±甘露聚糖包被)。
材料包括:新鲜小鼠血液,BBS/Mg++/Ca++ (4.4 mM巴比妥酸、1.8 mM巴比妥钠、145mM NaCl、pH 7.4, 5mM Mg++、5mM Ca++)、氯化铬、CrCl3·6H20 (0.5mg/mL在BBS/Mg++/ Ca++中)和甘露聚糖,100 µg/mL在BBS/Mg++/Ca++中。
在4℃冷冻离心机中在2000xg将全血(2 mL)离心1-2 min。吸去血浆和血沉棕黄层。然后通过将RBC沉淀物重悬于2 mL冰冷的BBS/明胶/Mg++/Ca++中并重复离心步骤,将样品洗涤3次。第3次洗涤后,将沉淀物重悬于4 mL BBS/Mg++/Ca++中。将2 mL等分试样的RBC留出,作为未包被对照。向剩余的2 mL中加入2 mL CrCl3和2 mL 甘露聚糖,并将样品在室温下孵育并温和搅拌5分钟。反应通过加入7.5 mL BBS/明胶/Mg++/Ca++而终止。将样品如上所述地离心,重悬于2 mL BBS/明胶/Mg++/Ca++和如上所述地再洗涤2次,然后贮存于4℃。
第二天。溶血测定
材料包括BBS/明胶/Mg++/Ca++ (如上)、测试血清、96-孔圆底和平底板和分光光度计,其在410-414 nm处阅读96孔板。
首先测定RBC浓度并将细胞调整至109/mL,并在此浓度下贮存。使用前,将细胞在测定缓冲液中稀释至108/mL,然后使用100 µL每孔。在410-414 nm处(允许比541nm更高的灵敏度)测定溶血。在冰冷的BBS/明胶/Mg++/Ca++中制备测试血清稀释液。将100 µL每种血清稀释液移入圆底板中。加入100 µL适当稀释的RBC制备物(即108/mL),在37℃孵育大约1小时,并观察溶血。(此时可对各板拍照。)然后将板在最大速率离心5分钟。吸出100 µL液相,移至平底板中,并在410-414 nm处记录OD。保留RBC沉淀物(这些可以在随后用水裂解,以得到相反结果)。
实验#1
新鲜血液得自CD55/CD59双重-缺陷型小鼠,并且如以上方案详述,制备Crry/C3双重-缺陷型小鼠的血液和红细胞。将细胞分开,一半细胞用甘露聚糖包被,另一半不处理,调节终浓度至108/mL,其中100 µL用于溶血测定,所述测定如上所述地进行。
实验#1的结果: 在PNH动物模型中,凝集素途径参与红细胞裂解
在初步实验中,已经确定非-包被的WT小鼠红细胞在任何小鼠血清中都不裂解。进一步确定了甘露聚糖-包被的Crry-/-小鼠红细胞在WT小鼠血清中缓慢裂解(在37度时超过3小时),但它们在无MBL血清中不裂解(数据未显示)。
已经确定甘露聚糖-包被的Crry-/-小鼠红细胞在人血清中快速裂解,但在热灭活的NHS中不裂解。重要的是,甘露聚糖-包被的Crry-/-小鼠红细胞在稀释低至1/640的NHS中裂解(即1/40、1/80、1/160、1/320和1/640稀释度中全都裂解) (数据未显示)。在这一稀释度中,替代途径不起作用(AP功能活性在低于8%血清浓度中显著降低)。
实验#1的结论
甘露聚糖-包被的Crry-/-小鼠红细胞在具有MBL的高度稀释的人血清中裂解得非常好,但在无MBL的高度稀释的人血清中不裂解。在所测的各个血清浓度中的有效裂解暗示替代途径不参与这种裂解或这种裂解无需替代途径。MBL-缺乏的小鼠血清和人血清不能裂解甘露聚糖-包被的Crry-/-小鼠红细胞,表明经典途径对所观察的裂解也不起作用。因为需要凝集素途径识别分子(即MBL),所以这种裂解是由凝集素途径介导。
实验#2
新鲜血液得自Crry/C3和CD55/CD59双重-缺陷型小鼠,并且在如上所述的溶血测定中,在以下人血清存在时,分析甘露聚糖-包被的Crry-/-小鼠红细胞:MASP-3 -/-;无MBL;WT;用人MASP-2抗体预处理的NHS;和热灭活的NHS作为对照。
实验#2的结果:在PNH动物模型中,MASP-2抑制剂和MASP-3缺陷阻止红细胞裂解
将甘露聚糖-包被的Crry-/-小鼠红细胞与以下一起孵育:在稀释至1/640的NHS稀释液中(即1/40、1/80、1/160、1/320和1/640)、人MBL-/-血清、人MASP-3-缺乏的血清(来自3MC患者)和用MASP-2 mAb预处理的NHS、和热灭活的NHS作为对照。
离心ELISA微量滴定板并在圆孔板底部收集非-裂解的红细胞。收集各孔的上清液,并通过在ELISA读板器中读取OD415 nm而测定从裂解的红细胞中释放的血红蛋白量。
观察到MASP-3-/-血清完全不裂解甘露聚糖-包被的小鼠红细胞。在对照热灭活的NHS (阴性对照)中,正如所料,未见裂解。MBL-/-人血清在1/8和1/16稀释度裂解甘露聚糖-包被的小鼠红细胞。MASP-2-抗体-预处理的NHS在1/8和1/16稀释度裂解甘露聚糖-包被的小鼠红细胞,而WT人血清在低至1/32稀释度裂解甘露聚糖-包被的小鼠红细胞。
图19图示说明在来自MASP-3-/-、热灭活的(HI) NHS、MBL-/-、用MASP-2抗体预处理的NHS和NHS对照的血清中,一系列血清稀释度的人血清使甘露聚糖-包被的鼠红细胞溶血(如通过裂解的小鼠红细胞(Crry/C3-/-)至上清液中的血红蛋白释放来测量,所述上清液根据光度测定法测定)。
图20图示说明在来自MASP-3-/-、热灭活的(HI) NHS、MBL-/-、用MASP-2抗体预处理的NHS和NHS对照的血清中,一系列血清浓度的人血清使甘露聚糖-包被的鼠红细胞溶血(如通过裂解的小鼠红细胞(Crry/C3-/-)至上清液中的血红蛋白释放来测量,所述上清液根据光度测定法测定)。
根据图19和20所示的结果,表明了抑制MASP-3将会阻止任何补体-介导的敏化红细胞的裂解,所述红细胞缺乏来自自体补体活化的保护作用。MASP-2抗体对MASP-2的抑制显著地改变了CH50并在某种程度上具有保护性,但MASP-3抑制更有效。
实验#3
在如上所述的溶血测定中,在以下血清存在时分析得自Crry/C3和CD55/CD59双重-缺陷型小鼠的新鲜血液的非-包被的Crry-/-小鼠红细胞:MASP-3-/-;MBL-/-;WT;用人MASP-2抗体预处理的NHS;和热灭活的NHS作为对照。
结果:
图21图示说明在一系列血清浓度的来自3MC (MASP-3-/-)患者、热灭活的(HI)NHS、MBL-/-,用MASP-2抗体预处理的NHS和NHS对照的人血清中,非-包被的鼠红细胞的溶血(如通过裂解的WT小鼠红细胞至上清液中的血红蛋白释放来测量,所述上清液根据光度测定法测定)。如图21所示和表13所概述的,表明了抑制MASP-3抑制补体-介导的非-敏化的WT小鼠红细胞的裂解。
图22图示说明在来自热灭活的(HI) NHS、MBL-/-、用MASP-2抗体预处理的NHS和NHS对照的人血清中,一系列血清浓度的人血清使非-包被的鼠红细胞溶血(如通过裂解的小鼠红细胞(CD55/59-/-)至上清液中的血红蛋白释放来测量,所述上清液根据光度测定法测定)。如图22所示和表13所概述的,表明了抑制MASP-2在有限程度上具有保护性。
表13:表示为血清浓度的CH50
血清 WT CD55/59 -/-
3MC患者 不裂解 不裂解
热灭活的NHS 不裂解 不裂解
MBL AO/XX供体(MBL缺陷型) 7.2% 2.1%
NHS + MASP-2抗体 5.4% 1.5%
NHS 3.1% 0.73%
注意:“CH50”是补体-介导的溶血达到50%的点。
总之,本实施例的结果表明了抑制MASP-3阻止任何补体的敏化和非-敏化红细胞的裂解,所述红细胞缺乏来自自体补体活化的保护作用。MASP-2抑制在某种程度上也具有保护性。因此,MASP-2和MASP-3的抑制剂单独或联用(即共同施用、相继施用)或MASP-2/MASP-3双特异性或双重抑制剂可以用于治疗PNH对象,并且还可用于在经历用C5抑制剂例如依库丽单抗 (Soliris®)的治疗的PNH患者中改善(即抑制、阻止或降低其严重程度)血管外溶血。
实施例6
本实施例描述了溶血测定,在WT或MASP-1/3-/-小鼠血清存在时测定了甘露聚糖-包被的兔红细胞的裂解。
方法:
1. 在小鼠MASP-1/3-缺陷型血清和WT对照血清中对兔RBC (甘露聚糖包被的)的 溶血测定
第一天。兔RBC的制备。
材料包括:新鲜兔血、BBS/ Mg++/Ca++ (4.4 mM巴比妥酸、1.8 mM巴比妥钠、145 mMNaCl、pH 7.4、5 mM Mg++、5 mM Ca++)、含0.1%明胶的BBS/ Mg++/Ca++、含氯化铬的缓冲液即CrCl3.6 H2O (0.5 mg /mL在BBS/ Mg++/Ca++中)和甘露聚糖,100 µg/mL在BBS/ Mg++/Ca++中。
1. 将兔全血(2 mL)分到2个1.5 mL微量离心管中并在4℃冷冻微量离心机中在8000 rpm (大约 5.9 rcf)离心3分钟。重悬于冰冷的BBS/Mg++/Ca++后,将RBC沉淀物洗涤3次。第3次洗涤后,将沉淀物重悬于4 mL BBS/Mg++/Ca++中。将2 mL该等分试样加入到15-mLfalcon管中,用作未包被对照。将剩余的2 mL RBC等分试样在2 mL CrCl3缓冲液中稀释,加入2 mL甘露聚糖溶液并将悬液在室温下孵育5分钟,同时温和搅拌。通过向该混合物中加入7.5 mL BBS/0.1%明胶/Mg++/Ca++而终止反应。将红细胞沉淀,并如上所述地用BBS/0.1%明胶/Mg++/Ca++将RBC洗涤2次。将RBC悬液在4℃贮存于BBS/0.1%明胶/ Mg++/Ca++中。
2. 100 µL悬浮的RBC用1.4 mL水稀释并在8000 rpm (大约 5.9 rcf)离心3分钟,将上清液在541nm处的OD调节至0.7 (在541nm处的OD为0.7,相当于大约109红细胞/mL)。
3. 将重悬的RBC用BBS/0.1%明胶/Mg++/Ca++稀释至浓度为108 /mL。
4. 在冰冷的BBS/明胶/Mg++/Ca++中制备测试血清稀释液,并将100µL每种血清稀释液移入圆底板的相应孔中。加入100 µL适当稀释的RBC (即108/mL)到各孔中。作为完全裂解的对照,将纯净水(100 µL)与稀释RBC (100 µL)混合,导致100%裂解,而BBS/0.1%明胶/ Mg++/Ca++无血清(100 µL)用作阴性对照。然后将板在37℃孵育1小时。
5. 将圆底板在3250 rpm离心5分钟。将来自各孔的上清液(100 µL)移至平底板的相应孔中并在ELISA读板器中在415-490处读取OD。结果报告为在415 nm处的OD与在490 nm处的OD之比。
结果:
图23图示说明在来自MASP-1/3-/-和WT对照的血清中,一系列血清浓度的小鼠血清使甘露聚糖-包被的兔红细胞溶血(如通过裂解的兔红细胞至上清液中的血红蛋白释放来测量,所述上清液根据光度测定法测定)。如图23所示,表明了抑制MASP-3阻止补体-介导的甘露聚糖-包被的WT兔红细胞的裂解。这些结果进一步支持使用MASP-3抑制剂来治疗如实施例5所述的PNH的一个或多个方面。
实施例7
本实施例描述了MASP-1和MASP-3的单克隆抗体的产生,使用包含修饰的DT40细胞系DTLacO的体外系统。
背景/基本原理:
使用包含修饰的DT40细胞系DTLacO的体外系统,产生针对人MASP-1和MASP-3的抗体,所述系统允许特定多肽的多样化的可逆诱导,如WO2009029315和US2010093033中的进一步描述。DT40是已知在培养中其重链和轻链免疫球蛋白(Ig)基因发生组成型突变的鸡B细胞系。正如其他B细胞,该组成型诱变将突变靶向Ig基因的V区,和因此,所表达抗体分子的CDR。DT40细胞中的组成型诱变是通过基因转化而发生,使用作为供体序列的位于各功能性V区上游的一组非-功能性V基因区段(假-V基因;ψV)。先前已经表明ψV区的缺失引起多样化机制的转换(从基因转化到体细胞超变),所述机制通常可见于人B细胞。已经表明DT40鸡B细胞淋巴瘤细胞系对于离体的抗体进化而言是有希望的起点(Cumbers, S.J.等人,Nat Biotechnol 20, 1129-1134 (2002);Seo, H.等人,Nat Biotechnol 23, 731-735(2005))。DT40细胞在培养中稳定增殖,倍增时间为8-10小时(与人B细胞系的20-24 hr相比),它们支持非常有效的同源基因打靶(Buerstedde, J.M.等人,Embo J 9, 921-927(1990))。鉴于DT40细胞可以进入多样化、基因转化和体细胞超变的2种独特的生理途径,其分别产生模板化和非模板化的突变,因此DT40细胞控制大量潜在的V区序列多样化(Maizels, N. Annu Rev Genet 39, 23-46 (2005))。多样化的重链和轻链免疫球蛋白(Ig)以细胞表面展示的IgM的形式表达。表面IgM具有双价形式,结构上类似于IgG分子。可以通过与固定的可溶性的或膜展示的抗原形式结合,而分离展示对特定抗原具有特异性的IgM的细胞。然而,对于抗体进化,使用DT40细胞在实践中是受限的,因为正如在其他转化的B细胞系中,多样化以小于1%生理比率而发生。
在用于本实施例的系统中,正如WO2009029315和US2010093033所述,DT40细胞经改造以加速Ig基因多样化率,而不牺牲进一步进行遗传修饰的能力或者基因转化和体细胞超变以促进诱变的潜力。对DT40进行了两个关键性修饰,以增加多样化率,并因此在我们的细胞文库中增加结合特异性的复杂性。首先,在强效大肠杆菌乳糖操纵子/阻遏物调节性网络的控制之下进行Ig基因多样化。将由强效大肠杆菌乳糖操纵子的大约100个聚合重复单位组成的多聚物(PolyLacO)插入到通过同源基因打靶而重排和表达的Igλ和IgH基因的上游。然后可将融合到乳糖阻遏蛋白(LacI)上的调节因子与LacO调节元件相连,以调控多样化,利用乳糖阻遏物对操纵子DNA的高亲和力(kD=10-14 M)。与进行任何改造之前的亲本DT40细胞相比,DT40 PolyLacO-λR细胞(其中PolyLacO仅在Igλ整合)在Ig基因多样化率上表现出5倍的增加(Cummings, W.J.等人,PLoS Biol 5, e246 (2007))。在经改造而携带同时靶向Igλ和IgH基因的PolyLacO的细胞(“DTLacO”)中,多样化进一步升高。相对于亲本DT40 PolyLacO-λR LacI-HP1系的2.8%特征,DTLacO细胞已表明其多样化率升高了2.5-至9.2-倍。因此,相对于DT40亲本细胞系,将PolyLacO元件靶向重链和轻链基因,加速了多样化达21.7倍。将调节因子与Ig基因座相连,不仅改变了诱变频率,而且可改变诱变途径,产生独特序列变化的更大的集合(Cummings等人,2007;Cummings等人,2008)。第二,产生了序列起点的多样化集合,用于连接的因子-加速的Ig基因多样化。通过将重排的Ig重链可变区(分离自2月龄鸡)靶向重链基因座,将这些多样化序列起点加到DTLacO。这些重链可变区的加入产生了107个新起点谱(repertoire),用于抗体多样化。将这些新起点构建到DTLacO细胞系中,允许鉴定与特定靶结合的克隆,并随之允许通过连接的因子所致的快速亲和力成熟。亲和力成熟后,通过将成熟的、重排的重链-和轻链-可变序列(VH和Vλ;包括鸡构架区和互补决定区或CDR)克隆到含有人IgG1和λ恒定区的表达载体中,产生全长、重组嵌合IgG。这些重组mAb适于体外和体内应用,并且它们可用作人源化的起点。
方法:
对MASP-1和MASP-3抗原结合的选择
通过结合DTLacO群体,进行初步选择,所述群体是通过以下方式而多样化:通过基因靶向到与人MASP-1 (SEQ ID NO: 8)和MASP-3抗原(SEQ ID NO: 2)复合的珠;并且随后通过FACS选择,使用荧光标记的可溶性抗原(Cumbers, S.J.等人,Nat Biotechnol20,1129-1134 (2002);Seo, H.等人,Nat Biotechnol23, 731-735 (2005)。因为MASP-1和MASP-3之间共享的α链中的保守氨基酸序列(显示于图2)和独特的β链序列(显示于图2),进行了MASP-1和MASP-3的结合剂的单独的、平行的筛选,以鉴定MASP-1特异性mAb、MASP-3特异性mAb以及能够与MASP-1和MASP-3两者结合的(双重-特异性) mAb。2种形式的抗原用于选择和筛选结合剂。首先,将与Fc结构域融合的重组MASP-1或MASP-3 (全长或片段)与Dynal磁性蛋白G珠结合或用于基于FACS的选择,使用PECy5-标记的抗人IgG(Fc)第二抗体。或者,将重组形式的MASP-1或MASP-3蛋白用Dylight粉直接标记并用于选择和筛选。
结合和亲和力
通过将PCR扩增的V区克隆到支持人IgG1在293F细胞中表达的载体中,产生重组抗体(Yabuki等人, PLoS ONE, 7(4):e36032 (2012))。通过用不同浓度的荧光-标记的可溶性抗原染色表达结合MASP-1或MASP-3的抗体的DTLacO细胞,来测定饱和结合动力学。分别如实施例8和9所述,进行用于MASP-3特异性活性(包括MASP-3-依赖性C3b沉积和MASP-3-依赖性因子D切割)的功能测定法。如下所述,进行MASP-1-特异性活性(即抑制MASP-1-依赖性C3b沉积)的功能测定法。
结果:
所用上述方法,产生多种MASP-1和MASP-3的结合抗体。如FACS分析所示,对于在MASP-3结合剂的筛选中分离的代表性的克隆M3J5和M3M1,描述了结合。
图24A是对于DTLacO克隆M3J5,MASP-3抗原/抗体结合的FACS柱状图。图24B是对于DTLacO克隆M3M1,MASP-3抗原/抗体结合的FACS柱状图。在图24A和24B中,灰色填充曲线是IgG1-染色的阴性对照,黑色曲线是MASP-3-染色。
图25图示说明对于MASP-3抗原,克隆M3J5 (克隆5)的饱和结合曲线。如图25所示,M3J5抗体对MASP-3的表观结合亲和力为大约31 nM。
使用标准方法,对已鉴定的克隆进行序列分析。将所有克隆与共同的(DT40) VH和VL的序列比较并且彼此比较。提供两个前述克隆M3J5和M3M1的序列,与2个额外代表性的克隆D14和1E10进行比对,后两者分别是在MASP-1和MASP-3的CCP1-CCP2-SP片段的筛选中鉴定出来的。D14和1E10与MASP-1和MASP-3两者共有的区域结合。
图26A是M3J5、M3M1、D14和1E10的VH区与鸡DT40 VH序列的氨基酸序列的比对。
图26B是M3J5、M3M1、D14和1E10的VL区与鸡DT40 VL序列的氨基酸序列的比对。
每个克隆的VH和VL的氨基酸序列提供如下。
重链可变区(VH)序列
图26A显示了亲本DTLacO (SEQ ID NO: 300)、MASP-3-结合克隆M3J5 (SEQ IDNO: 301)以及M3M1 (SEQ ID NO: 302)和MASP-1/MASP-3双重结合克隆D14 (SEQ ID NO:306)和1E10 (SEQ ID NO: 308)的重链可变区(VH)序列的氨基酸比对。
以下VH序列中的Kabat CDR位于以下氨基酸位置:H1:aa 31-35;H2:aa 50-62;和H3:aa 95-102。
以下VH序列中的Chothia CDR位于以下氨基酸位置:H1:aa 26-32;H2: aa 52-56;和H3: aa 95-101。
亲本DTLacO VH: (SEQ ID NO: 300)
AVTLDESGGGLQTPGGALSLVCKASGFTFSSNAMGWVRQAPGKGLEWVAGIDDDGSGTRYAPAVKGRATISRDNGQSTLRLQLNNLRAEDTGTYYCTKCAYSSGCDYEGGYIDAWGHGTEVIVSS
克隆M3J5 VH: (SEQ ID NO: 301)
AVTLDESGGGLQTPGGGLSLVCKASGFTFSSYAMGWMRQAPGKGLEYVAGIRSDGSFTLYATAVKGRATISRDNGQSTVRLQLNNLRAEDTATYFCTRSGNVGDIDAWGHGTEVIVSS
克隆M3M1 VH: (SEQ ID NO: 302)
AVTLDESGGGLQTPGGGLSLVCKASGFDFSSYQMNWIRQAPGKGLEFVAAINRFGNSTGHGAAVKGRVTISRDDGQSTVRLQLSNLRAEDTATYYCAKGVYGYCGSYSCCGVDTIDAWGHGTEVIVSS
克隆D14 VH: (SEQ ID NO: 306)
AVTLDESGGGLQTPGGALSLVCKASGFTFSSYAMHWVRQAPGKGLEWVAGIYKSGAGTNYAPAVKGRATISRDNGQSTVRLQLNNLRAEDTGTYYCAKTTGSGCSSGYRAEYIDAWGHGTEVIVSS
克隆1E10 VH: (SEQ ID NO: 308)
AVTLDESGGGLQTPGGALSLVCKASGFTFSSYDMVWVRQAPGKGLEFVAGISRNDGRYTEYGSAVKGRATISRDNGQSTVRLQLNNLRAEDTATYYCARDAGGSAYWFDAGQIDAWGHGTEVIVSS
轻链可变区(VL)序列
图26B显示了亲本DTLacO (SEQ ID NO: 303)和MASP-3-结合克隆M3J5 (SEQ IDNO: 304)和M3M1 (SEQ ID NO: 305)和MASP-1/MASP-3双重结合克隆D14 (SEQ ID NO:307)和1E10 (SEQ ID NO: 309)的轻链可变区(VL)序列的氨基酸比对。
亲本DTLacO VL: (SEQ ID NO: 303)
ALTQPASVSANLGGTVKITCSGGGSYAGSYYYGWYQQKSPGSAPVTVIYDNDKRPSDIPSRFSGSLSGSTNTLTITGVRADDEAVYFCGSADNSGAAFGAGTTLTVL
克隆M3J5 VL: (SEQ ID NO: 304)
ALTQPASVSANPGETVKITCSGGYSGYAGSYYYGWYQQKAPGSAPVTLIYYNNKRPSDIPSRFSGSLSGSTNTLTITGVRADDEAVYFCGSADNSGAAFGAGTTLTVL
克隆M3M1 VL: (SEQ ID NO: 305)
ALTQPASVSANPGETVKITCSGGGSYAGSYYYGWYQQKAPGSAPVTLIYYNNKRPSDIPSRFSGSLSGSTNTLTITGVRADDEAVYFCGSADNSGAAFGAGTTLTVL
克隆D14 VL: (SEQ ID NO: 307)
ALTQPASVSANPGETVKITCSGGGSYAGSYYYGWYQQKAPGSAPVTLIYYNNKRPSDIPSRFSGSLSGSTNTLTITGVRADDEAVYFCGSADNSGAAFGAGTTLTVL
克隆1E10 VL: (SEQ ID NO: 309)
ALTQPASVSANPGETVKITCSGGGSYAGSYYYGWYQQKAPGSAPVTLIYYNNKRPSDIPSRFSGSLSGSTNTLTITGVRADDEAVYFCGSADNSGAAFGAGTTLTVL
LEA-2 (MASP-2-依赖性的)功能测定
MASP-1经由其活化MASP-2的能力而有助于LEA-2 (参见图1)。Wieslab®补体系统筛选MBL测定法(Euro Diagnostica, Malmö, Sweden)在分离LEA-2-依赖性活化(即传统的凝集素途径活性)的条件下测定了C5b-C9沉积。根据制造商的说明书进行该测定法,用代表性的克隆1E10,其终浓度经测定为400 nM。
图27是柱状图,其显示与测定试剂盒中提供的阳性血清以及同种型对照抗体比较的mAb 1E10的抑制活性。如所示图27,mAb 1E10表明部分抑制LEA-2-依赖性活化(通过抑制MASP-2的MASP-1-依赖性活化),而同种型对照抗体却不。在DTLacO系统中使用连接的因子,通过对MASP-1结合的该抗体的持续亲和力成熟,应该达到更强烈的抑制。
对代表性的mAb的LEA-1 (MASP-3-依赖性的)功能测定法描述于以下实施例8和9。
结果概述:
以上结果表明DTLacO平台允许快速离体发现具有对LEA-1(如以下实施例8和9所示)和对LEA-2 (如本实施例所示)的抑制性质的MASP-1和MASP-3单克隆抗体。
实施例8
在3MC血清中用金黄色葡萄球菌分析补体途径。
背景/基本原理:
已经确定,在正常人血清存在或不存在时,通过暴露给非-固定化的液相甘露聚糖、酵母聚糖A或N-乙酰基半胱氨酸,MASP-3不被活化。然而,已经确定,在有和没有正常人血清(NHS)或热灭活的人血清(HIS)存在时,重组和天然MASP-3在热灭活的金黄色葡萄球菌表面上活化(数据未显示)。也已确定,在正常人血清存在时,C3b沉积发生在金黄色葡萄球菌表面上,并可以使用流式细胞术监测沉积。因此,根据本实施例所述,测定响应于金黄色葡萄球菌的替代途径(AP),作为评价MASP-3对LEA-1的贡献的方式。
方法:
重组MASP-3: 将编码全长重组人MASP-3、截短的丝氨酸蛋白酶(SP)活性形式的MASP-3 (CCP1-CCP2-SP)、和SP-灭活形式的MASP-3 (S679A)的多核苷酸序列克隆到pTriEx7哺乳动物表达载体(Invivogen)中。所得表达构建体编码具有氨基-末端Strep标签和羧基-末端His6标签的全长MASP-3或CCP1-CCP2-SP片段。根据制造商提供的方案,将表达构建体转染到Freestyle 293-F或Expi293F细胞(Invitrogen)中。在5%CO2中在37℃培养3-4天后,重组蛋白用Streptactin亲和色谱来纯化。
重组MASP-1: 如以上对于重组MASP-3所述,产生全长或截短的CCP1-CCP2-SP形式的重组MASP-1,其有或无稳定化的R504Q (Dobo等人, J. Immunol 183:1207, 2009)或SP灭活(S646A)突变并携带氨基-末端Step标签和羧基-末端His6标签。
1. 在3MC (人)血清中,在金黄色葡萄球菌上的C3b沉积和因子B切割。
进行初步试验,以表明流式细胞术测定法能够如下检测AP-驱动的C3b沉积(AP-C3b)的存在或不存在。将5%的以下血清:正常人血清、因子B(因子B)-耗尽的人血清、因子D-耗尽的人血清和备解素-耗尽的人血清(得自Complement Technology, Tyler, Texas,USA)与测试抗体一起,在Mg++/EGTA缓冲液或EDTA中混合,在4℃过夜。将热灭活的金黄色葡萄球菌(108/反应)加入到每种混合物中至总体积100 µL并在37℃旋转40分钟。在洗涤缓冲液中洗涤细菌,将细菌沉淀物重悬于洗涤缓冲液中,分析每种样品的80 µL等分试样在细菌表面上的C3b沉积,并使用流式细胞术,用抗人C3c (Dako, UK)对其进行测定。
C3b的流式细胞术检测结果见图28A。如图28A小图1所示,在EDTA存在时在正常人血清中(其已知不活化AP),未见C3b沉积(阴性对照)。在用Mg++/EGTA处理的正常人血清中,仅凝集素-非依赖性补体途径可以起作用。在小图2中,使用Mg++/EGTA缓冲液,因此AP是有活性的,并观察到AP-驱动的C3b沉积(阳性对照)。如小图3、4和5所示,分别在因子B-耗尽的、因子D-耗尽的和备解素-耗尽的血清中,不出所料,未见替代途径驱动的C3b沉积。这些结果表明该测定法能够测定AP-依赖性C3b沉积。
如上所述,进行C3b在金黄色葡萄球菌上沉积的测定法,以评价重组MASP-3在人3MC血清中重构AP (LEA-1)的能力,所述血清缺乏MASP-3 (Rooryck C,等人, Nat Genet.43(3):197-203 (2011))。测试了以下试剂组合。
1. 5%正常人血清+EDTA
2. 5%正常人血清+Mg/EGTA
3. 5%人3MC (MASP-3-/-)血清+ Mg++/EGTA
4. 5%人3MC (MASP-3-/-)血清+ Mg++/EGTA加活性全长rMASP-3
5. 5%人3MC (MASP-3-/-)血清+ Mg++/EGTA加截短的活性rMASP-3 (CCP1/CCP2/SP)
6. 5%人3MC (MASP-3-/-)血清+ Mg++/EGTA加无活性rMASP-3 (S679A)
7. 5%人3MC (MASP-3-/-)血清+ Mg++/EGTA加活性全长rMASP-1。
将上述的5%血清和重组蛋白(各5 µg)的不同混合物在指定缓冲液条件(Mg++ /EGTA缓冲液或EDTA)中在4℃孵育过夜。孵育过夜后,将108热灭活的金黄色葡萄球菌加入到各混合物中,总体积100 µL,并在37℃旋转40分钟。细菌经洗涤并重悬于洗涤缓冲液中,通过FACS分析每种样品的80 µL等分试样的C3b沉积。每种样品的剩余20 µL等分试样用于通过Western印迹来测定因子B切割,使用下述的抗因子B抗体。
C3b的流式细胞术检测结果见图28B。小图编号对应于以上概述的每种试剂组合的编号。阴性对照(小图1)和阳性对照(小图2)显示C3b沉积不存在和存在,正如所料。小图3显示了在3MC血清中,AP-驱动的C3b沉积不存在。小图4和5显示活性全长rMASP-3 (小图4)和活性rMASP-3 (CCP1-CCP2-SP) (小图5)两者在3MC血清中都恢复了AP-驱动的C3b沉积。小图6显示了无活性rMASP-3 (S679A)在3MC血清中不恢复AP-驱动的C3b沉积。小图7显示了rMASP-1在3MC血清中不恢复AP-驱动的C3b沉积。
总之,这些结果表明MASP-3是在人血清中的AP-驱动的C3b沉积在金黄色葡萄球菌上所需要的。
因子B的MASP-3-依赖性活化
为了分析因子B的MASP-3-依赖性活化,如上所述地测定上述的5%血清(正常人血清或3MC患者血清)和重组蛋白的不同混合物。从各反应混合物中,取出20 µL并加入到蛋白样品装载缓冲液中。将样品在70℃加热10分钟并装载到SDS-PAGE凝胶上。进行Western印迹分析,使用因子B多克隆抗体(R&D Systems)。通过形成两个较低分子量切割产物(Bb和Ba)(衍生自较高分子量前-因子B蛋白),因子B的活化是明显的。
图29显示了在响应于金黄色葡萄球菌时,在3MC血清中在rMASP-3存在或不存在时测定因子B切割的Western印迹分析结果。如泳道1所示,在EDTA存在时的正常人血清(阴性对照,泳道1)显示出非常少的因子B切割,相对于在Mg++/EGTA存在时的正常人血清而言,如泳道2 (阳性对照)所示。如泳道3所示,3MC血清在Mg++/EGTA存在时显示出非常少的因子B切割。然而,如泳道4所示,通过将全长、重组MASP-3蛋白(5 µg)加入3MC血清中并预孵育,恢复了因子B切割。
在因子B/C3(H2O)切割中,测定rMASP-3对前因子D的作用的测定法
进行以下测定法,以确定因子B的MASP-3-依赖性活化/切割的最低要求。
将C3(H2O) (200ng)、纯化的血浆因子B(20 µg)、重组前因子D(200 ng)和重组人MASP-3 (200 ng)以不同组合而混合在一起(如图30所示),总体积为在BBS/Ca++/ Mg++中的100 µL,并在30℃孵育30分钟。通过加入含有5% 2-巯基乙醇的25 uL SDS装载染料而终止反应。在振摇(300 rpm)下在95℃煮沸10分钟后,将混合物在1400 rpm离心5分钟,然后将20uL上清液装载到10% SDS凝胶上并分离。凝胶用考马斯亮蓝染色。
结果:
图30显示了考马斯染色的SDS-PAGE凝胶,其中分析了因子B切割。如泳道1所示,因子B切割在C3、MASP-3和前因子D存在时是最佳的。如泳道2所示,绝对需要C3;然而,如泳道4和5所示,MASP-3或前因子D都能介导因子B切割,只要C3存在。
对MASP-3 mAb抑制MASP-3-依赖性AP-驱动的C3b沉积的能力的分析
如本实施例所述,已经表明了在人血清中,MASP-3是AP-驱动的C3b沉积在金黄色葡萄球菌上所需要的。因此,进行以下测定法,以确定如实施例7中所述而鉴定的代表性的MASP-3 mAb是否能抑制MASP-3活性。在冰上,将有活性的、重组MASP-3 (CCP1-CCP2-SP)片段蛋白(250 ng)与同种型对照mAb、mAb1A5 (得自DTLacO平台的对照,其不与MASP-3或MASP-1结合)、或mAbD14 (与MASP-3结合)以3种不同浓度(0.5、2和4 µM)预孵育1小时。将酶-mAb混合物暴露给5% 3MC血清(缺乏MASP-3)和5x107热灭活的金黄色葡萄球菌,最终反应体积50 µL。将反应物在37℃孵育30分钟,然后染色,用于检测C3b沉积。通过流式细胞术分析染色后的细菌细胞。
图31图示说明作为mAb浓度的函数作图的,在3MC血清中在rMASP-3存在时,得自3种抗体的C3b染色的平均荧光强度(MFI)。如图31所示,mAbD14表现出以浓度-依赖性方式抑制C3b沉积。相比之下,对照mAbs都不抑制C3b沉积。这些结果表明mAbD14能够抑制MASP-3-依赖性C3b沉积。在DTLacO系统中使用连接的因子,通过对MASP-3结合的该抗体的持续亲和力成熟后,预期mAbD14的改进的抑制活性。
结果概述:
总之,本实施例的结果表明在缺乏MASP-3的血清中明显缺乏AP。因此,MASP-3已被表明对AP作出关键性贡献,使用因子B活化和C3b沉积作为功能终点。此外,加入功能性的、重组MASP-3 (包括MASP-3的催化活性C-末端部分),纠正了在来自3MC患者的血清中的因子B活化和C3b沉积的缺陷。相反,如本实施例进一步表明的,在含有rMASP-3的3MC血清中加入MASP-3抗体(例如mAbD14),抑制AP-驱动的C3b沉积。以下观察结果表明了MASP-3在因子B活化中和因此在AP活化中的直接作用:重组MASP-3以及C3,足以活化重组因子B。
实施例9
本实施例表明MASP-1和MASP-3活化因子D。
方法:
测试了重组MASP-1和MASP-3切割2种不同重组形式的前因子D的能力。第一种形式(前因子D-His)缺乏N-末端标签,但具有C-末端His标签。因此,这种形式的前因子D含有5个氨基酸前肽,其在活化期间被切割而除去。第二种形式(ST-前因子D-His)在N端具有Strep-TagII序列,因此将切割的N-末端片段增加至15个氨基酸。ST-前因子D在C末端也含有His6标签。ST-前因子D-His的前肽的长度增加,与前因子D-HIS形式的可能分辨率相比,改善了切割和未切割形式的SDS-PAGE的分辨率。
将重组MASP-1或MASP-3蛋白(2 µg)加入到前因子D-His或ST-前因子D-His底物(100 ng)中并在37℃孵育1小时。将反应物在12% Bis-Tris凝胶上进行电泳,以分离前因子D和活性因子D切割产物。将分离的蛋白质移至PVDF膜上并通过Western印迹,通过用生物素化因子D抗体(R&D Systems)检测来分析。
结果:
图32显示了前因子D底物切割的Western印迹分析。
表14:图32中所示Western印迹的泳道描述。
实验条件 泳道1 泳道2 泳道3 泳道4 泳道5
前因子D + + + + +
rMASP-3(全长) - + _ _ _
rMASP-3a (S679A) - - + - -
rMASP-1A (S646A) - - - + -
rMASP-1 (CCP-1-CCP2-SP) - - - - +
如图32所示,仅全长MASP-3 (泳道2)和MASP-1 (CCP1-CCP2-SP)片段(泳道5)才切割ST-前因子D-His6。无催化活性的全长MASP-3 (S679A;泳道3)和MASP-1 (S646A;泳道3)不能切割任一种底物。用前因子D-His6多肽得到相同结果(未显示)。摩尔过量的MASP-1(CCP1-CCP2-SP)相对于MASP-3的比较表明,与MASP-1相比,MASP-3是前因子D切割的更有效的催化剂,至少在本文所述的条件下如此。
结论:MASP-1和MASP-3两者都能切割和活化因子D。这一活性将LEA-1与AP活化直接联系起来。更具体地讲,MASP-1或MASP-3对因子D的活化,将会导致因子B活化、C3b沉积和可能的调理作用和/或细胞裂解。
用MASP-3抗体抑制MASP-3-依赖性的前因子D切割的测定法
进行测定法,以测定如实施例7中所述而鉴定的代表性的MASP-3和MASP-1 mAb对MASP-3-依赖性因子D切割的抑制作用。将活性重组MASP-3蛋白(80 ng)与1 µg代表性的mAbD14、M3M1和对照抗体(其与MASP-1特异性结合,但不与MASP-3结合)在室温下预孵育15分钟。加入具有N-末端Strep-标签的前因子D(ST-前因子D-His,70 ng)并将混合物在37℃孵育75分钟。然后将反应物电泳,印迹和用抗因子D染色,如上所述。
图33是Western印迹,显示mAb D14和M3M1的部分抑制活性,与含有仅MASP-3和ST-前因子D-His的对照反应物(无mAb,泳道1)以及含有得自DTLacO文库的mAb (其与MASP-1结合,而不与MASP-3结合)的对照反应物(泳道4)相比。如图33所示,在抑制性抗体不存在时,MASP-3将大约50%前因子D切割成因子D(泳道1)。对照MASP-1特异性抗体(泳道4)不改变前因子D与因子D的比率。相比之下,如泳道2和3所示,mAb D14和mAb M3M1两者都抑制MASP-3-依赖性的前因子D切割为因子D,导致所产生的因子D的减少。
结论:这些结果表明MASP-3 mAb D14和M3M1不能抑制MASP-3-依赖性因子D切割。在DTLacO系统中使用连接的因子,通过对MASP-3结合的这些抗体的持续亲和力成熟后,预期mAbD14和mAb M3M1的改进的抑制活性。
实施例10
本实施例表明MASP-3缺乏阻止了补体-介导的甘露聚糖-包被的WT兔红细胞的裂解。
背景/基本原理:
如本文的实施例5和6所述,MASP-2-和MASP-3-缺乏的血清对得自PNH小鼠模型的血液样品的红细胞裂解的作用,表明了MASP-2抑制和/或MASP-3抑制在治疗PNH对象中的功效,并且也支持了使用MASP-2抑制剂和/或MASP-3抑制剂(包括双重或双特异性MASP-2/MASP-3抑制剂)以在经历用C5抑制剂例如依库丽单抗治疗的PNH对象中改善C3片段-介导的血管外溶血的效果。
如本实施例所述,在来自额外3MC患者的MASP-3缺乏的血清中进行了C3b沉积实验和溶血实验,证实了实施例5和6中获得的结果。另外,进行了实验,表明了将rMASP-3加入到3MC血清中,能够重构C3b沉积和溶血活性。
方法:
MASP-3-缺乏的血清得自以下3个不同的3MC患者:
3MC患者1:含有携带突变的等位基因,所述突变使编码MASP-3丝氨酸蛋白酶结构域的外显子功能失调,其是由3MC患者的父母提供(两者是携带突变的等位基因的杂合体,所述突变使编码MASP-3丝氨酸蛋白酶结构域的外显子功能失调),
3MC患者2:在MASP-1外显子12、编码MASP-3的丝氨酸蛋白酶结构域的外显子中具有C1489T (H497Y)突变,导致非功能性MASP-3,但导致功能性MASP-1蛋白。
3MC患者3:在MASP-1基因中具有经证实的缺陷,导致非功能性MASP-3和非功能性MASP-1蛋白。
实验#1:C3b沉积测定
如Bitter-Suermann等人, Eur. J. Immunol 11:291-295 (1981))所述,在传统的AP-特异性条件(BBS/ Mg++/EGTA无Ca++,其中BBS= 含蔗糖的巴比妥缓冲盐水)下,在酵母聚糖-包被的微量滴定板上,进行AP测定法,血清浓度范围为0.5至25%,并且测定C3b沉积随时间的变化。
结果:
图34图示说明在得自MASP-3-缺陷型(3MC)、C4-缺陷型和MBL-缺陷型对象的血清样品中,作为血清浓度的函数的,在酵母聚糖-包被的微量滴定板上的AP-驱动的C3b沉积水平。如图34所示和如下表15所述,来自患者2和患者3的MASP-3-缺陷型患者血清在高浓度(25%、12.5%、6.25%血清浓度)时具有残留的AP活性,但显著更高AP50 (即需要8.2%和12.3%血清以达到50%最大C3沉积)。
图35A图示说明在得自MASP-3缺陷型、C4-缺陷型和MBL-缺陷型人类对象的10%人血清样品中,在“传统的”AP-特异性条件(即BBS/EGTA/Mg++无Ca++)下,作为时间的函数的,在酵母聚糖-包被的微量滴定板上的AP-驱动的C3b沉积水平。
下表15概述了图14所示的AP50结果和图35A所示的C3b沉积的一半时间。
表15:图34和35A中所示结果的概述
血清类型 AP50 (%) T1/2 (min)
正常 4.5 26.3
MBL-缺陷型(MBL-/-) 5.7 27.5
C4-缺陷型(C4-/-) 5.1 28.6
3MC (患者3) 8.2 58.2
3MC (患者2) 12.3 72.4
注意:在BBS/Mg++/EGTA缓冲液中,凝集素途径-介导的作用缺乏,因为该缓冲液中缺乏Ca++
实验#2:通过Western印迹分析3MC患者血清的前因子D裂解
方法:血清从3MC患者#2 (MASP-3(-/-)、MASP-1(+/+)),并从3MC患者#3 (MASP-3(-/-)、MASP-1(-/-))得到。患者血清,连同来自正常供体(W)的血清,用SDS-聚丙烯酰胺凝胶分离,并且将解析的Western印迹至聚偏氟乙烯膜。用人因子D特异性抗体检测人前因子D(25040道尔顿)和/或成熟因子D (24405道尔顿)。
结果:Western印迹的结果示于图35B。如图35B所示,在正常供体(W)的血清中,因子D抗体检测到与成熟因子D (24405道尔顿)一致大小的蛋白质。如在图35B中进一步示出,在3MC患者#2 (P2)和3MC患者#3 (P3)血清中,因子D抗体检测到稍大蛋白质,这与前因子D (25040道尔顿)在这些3MC患者中的存在一致。
实验#3:用3MC患者血清的Wieslab补体测定
方法:根据制造商的说明,使用Wieslab补体系统Screen (Euro-Diagnostica,Malmö, Sweden),还测试了获自3MC患者#2 (MASP-3(-/-)、MASP-1(+/+))和3MC患者#3(MASP-3(-/-)、MASP-1(-/-))的血清中的经典、凝集素和替代途径的活性。正常人血清作为对照平行试验。
结果:图35C图示说明用获自3MC患者#2、3MC患者#3的血浆和正常人血清,Weislab经典、凝集素和替代途径测定的结果。如图35C所示,在Wieslab测定的条件下,经典、替代和MBL(凝集素)途径均在正常人血清起作用。3MC患者#2 (MASP-3(-/-)、MASP-1(+/+))的血清中,经典途径和凝集素途径是功能性的,但不存在可检测的替代途径的活性。3MC患者#3 (MASP-3(-/-)、MASP-1(-/-))的血清中,经典途径是功能性的,但不存在可检测的凝集素途径活性和没有可检测的替代途径的活性。
图35B和35C中的结果进一步支持我们对于MASP-1和MASP-3在LEA-1和LEA-2途径中作用的理解。具体地讲,在仅乏MASP-3的患者2血清中,不存在替代途径且凝集素途径具有几乎完全功能,证实了MASP-3对于替代途径活化是必需的。缺乏MASP-1和MASP-3两者的患者3血清已经失去活化凝集素途径以及替代途径的能力。这一结果证实功能性的LEA-2途径需要MASP-1,并且与实施例7以及表明MASP-1活化MASP-2的文献是一致的。两种血清明显不能活化前因子D,这也符合实施例9中描述的数据,该数据表明MASP-3裂解前因子D。这些观察结果与LEA-1和LEA-2途径一致,如图1中图解的。
实验#4:测定甘露聚糖-包被的兔红细胞在人正常或3MC血清存在时(在Ca++不存 在时)细胞裂解的溶血测定法
方法:
在Ca++不存在时制备兔RBC (即通过使用EGTA)
将兔全血(2 mL)分到2个1.5 mL微量离心管中并在4℃冷冻微量离心机中在8000rpm (大约5.9 rcf)离心3分钟。重悬于冰冷的BBS/Mg++/Ca++ (4.4 mM巴比妥酸、1.8 mM巴比妥钠、145 mM NaCl, pH 7.4, 5 mM Mg++, 5 mM Ca++)后,将RBC沉淀物洗涤3次。第3次洗涤后,将沉淀物重悬于4 mL BBS/Mg++/Ca++中。沉淀红细胞,并将RBC用BBS/0.1%明胶/Mg++/Ca++洗涤,如上所述。将RBC悬液在4℃贮存于BBS/0.1%明胶/ Mg++/Ca++中。然后,100 µl悬浮的RBC用1.4 mL水稀释并在8000 rpm (大约5.9 rcf)离心3分钟,将上清液在541 nm处的OD调节至0.7 (在541 nm处的OD为0.7相当于大约109红细胞/mL)。然后,将1 mL重悬的RBC(OD 0.7)加入到9 ml BBS/Mg++/EGTA中,以达到108红细胞/ml的浓度。在冰冷的BBS、Mg++、EGTA中制备测试血清或血浆的稀释液,并将100µl每种血清或血浆稀释液移入圆底板的相应孔中。加入100 µl适当稀释的RBC (108红细胞/mL)到各孔中。Nano-water用于产生阳性对照(100%细胞裂解),而BBS/Mg++/EGTA无血清或血浆的稀释液用作阴性对照。然后将板在37℃孵育1小时。将圆底板在3250 rpm离心5分钟。将来自各孔的上清液(100 µL)移至平底板的相应孔中并在415-490处读取OD。
结果:
图36图示说明在来自正常对象和来自2个3MC患者(患者2和患者3)的血清中,在Ca++不存在时测定的一系列血清浓度使甘露聚糖-包被的兔红细胞的溶血的百分率(如通过裂解的兔红细胞至上清液中的血红蛋白释放来测量,所述上清液根据光度测定法测定)。如图36所示,表明与正常人血清相比,MASP-3缺陷降低了补体-介导的甘露聚糖-包被的红细胞裂解的百分率。来自正常人血清的两条曲线和来自3MC患者的两条曲线之间的差异是显著的(p=0.013,Friedman检验)。
下表16概述了图36所示的AP50结果。
表16:图36所示的结果概述
血清类型 AP50 (%)
正常人血清#1 7.1
正常人血清#2 8.6
3MC患者#2 11.9
3MC患者#3 14.3
注意:当将表16所示的血清样品合并时,正常人血清的AP50值= 7.9,3MC血清的AP50值= 12.8 (p=0.031, Wilcox配对符号秩检验)。
实验#5:由重组MASP-3重构的人3MC血清恢复在酵母聚糖包被板上的AP-驱动的 C3b沉积
方法:
如Bitter-Suermann等人, Eur. J. Immunol 11:291-295 (1981))所述,在酵母聚糖-包被的微量滴定板上,在传统的AP-特异性条件(BBS/Mg++/EGTA无Ca++,其中BBS=含有蔗糖的巴比妥缓冲盐水)下,在以下血清样品中进行AP测定:(1)来自3MC患者#2的5%人血清并加入范围为0至20 µg/mL的全长活性rMASP-3;(2)来自3MC患者#2的10%人血清并加入范围为0至20 µg/mL的全长活性rMASP-3;和(3)来自3MC患者#2的5%人血清并加入范围为0至20 µg/mL的无活性rMASP-3A (S679A)。
结果:
图37图示说明作为添加到得自人3MC患者2 (MASP-3缺陷型)的血清样品中的rMASP-3蛋白的浓度的函数的,在酵母聚糖-包被的微量滴定板上的AP-驱动的C3b沉积水平。如图37所示,活性重组MASP-3蛋白以浓度-依赖性方式重构在酵母聚糖-包被板上的AP-驱动的C3b沉积。如图37进一步所示,在含无活性rMASP-3 (S679A)的3MC血清中未见C3b沉积。
实验#6:由重组MASP-3重构人的3MC血清在3MC患者血清中恢复溶血活性
方法:
使用兔RBC,使用以上实验#2中所述的方法进行溶血测定法,使用范围为0至12%血清的以下测试血清:(1)正常人血清;(2) 3MC患者血清;(3) 3MC患者血清加活性全长rMASP-3 (20 µg/ml);和(4)热灭活的人血清。
结果:
图38图示说明在以下血清中,在Ca++不存在时测定的一系列血清浓度使甘露聚糖-包被的兔红细胞的溶血的百分率(如通过裂解的兔红细胞至上清液中的血红蛋白释放来测量,所述上清液根据光度测定法测定):(1)正常人血清;(2) 3MC患者血清;(3) 3MC患者血清加活性全长rMASP-3 (20 µg/ml);和(4)热灭活的人血清。如图38所示,兔红细胞的溶血百分率在含有rMASP-3的3MC血清中显著增加,与在无重组MASP-3的3MC血清中的溶血百分率相比(p=0.0006)。
图39图示说明在含有浓度范围为0至110 µg/ml的活性rMASP-3 (在BBS/ Mg++/EGTA中)的来自3MC患者2和来自3MC患者3的7%人血清中,兔红细胞裂解的百分率。如图39所示,一定量的rMASP-3以浓度-依赖性方式使兔RBC裂解百分率恢复至最多100%活性。
实验#7:MASP-3缺陷型(3MC)患者血清具有功能性MASP-2,如果MBL存在的话
方法:
使用甘露聚糖-包被的ELISA板进行C3b沉积测定法,以检测3MC血清是否缺乏LEA-2。将柠檬酸盐血浆在BBS缓冲液中系列稀释(开始于1:80、1:160、1: 320、1:640、1:1280、1:2560)并铺板到甘露聚糖-包被板上。使用鸡抗人C3b测定法检测沉积的C3b。在来自正常人类对象(NHS)、来自2个3MC患者(患者2和患者3)、来自患者3的父母和来自MBL-缺陷型对象的血清中,评价在甘露聚糖-包被的ELISA板上的LEA-2驱动的C3b沉积(血浆稀释液高到使AP和LEA-1可起作用)随人血清浓度的变化。
结果:
图40图示说明对于来自正常人类对象(NHS)、来自2个3MC患者(患者2和患者3)、来自患者3的父母和来自MBL-缺陷型对象的血清,作为在BBS缓冲液中稀释的人血清浓度的函数的,在甘露聚糖-包被的ELISA板上的LEA-2-驱动的(即MASP-2-驱动的) C3b沉积水平。这些数据表明患者2是MBL足够的。然而,患者3和患者3的母亲是MBL缺陷型,因此他们的血清不能经由LEA-2将C3b沉积在甘露聚糖上。在这些血清中替换MBL,在患者3 (其是SNP纯合体,导致MASP-3缺陷)和他的母亲(其对于突变的MASP-3等位基因是杂合体)的血清中恢复了LEA-2介导的C3b沉积(数据未显示)。该发现说明了3MC血清不缺乏LEA-2,而是看来具有功能性MASP-2。
总体概述和结论:
这些结果表明在人血清中的MASP-3缺陷导致AP活性的损失,正如在酵母聚糖-包被的孔上的C3b沉积减少和兔红细胞裂解减少所表明的那样。在这两种测定法中通过给血清补充功能性的重组人MASP-3可恢复AP。
实施例11
本实施例表明嵌合小鼠V区/人IgG4恒定区抗人MASP-3单克隆抗体(mAb M3-1,也称为mAb 13B1)是MASP-3介导的替代途径补体(APC)活化的有效抑制剂。
方法
生成嵌合小鼠V区/人IgG恒定区抗人MASP-3单克隆抗体(mAb M3-1)
通过用人MASP-3 CCP1-CCP2-SP结构域(SEQ ID NO: 2的aa 301-728)免疫MASP-1/3敲除小鼠来产生鼠抗人MASP-3抑制性抗体(mAb M3-1) )(还参见实施例14)。简要描述,将来自免疫的小鼠的脾细胞与P3/NS1/1-Ag4-1融合,并筛选来自所得杂交瘤克隆的上清液的结合人MASP-3的抗体的产生以及阻断MASP-3-介导的补体前因子D(pro-CFD)切割为因子D(CFD)。通过RT-PCR分离单克隆抗体(mAb)可变区,测序并克隆至人IgG4表达载体中。在瞬时转染的HEK293T细胞中表达嵌合单克隆抗体,将其纯化并测试与小鼠和人MASP-3的结合亲和力以及抑制MASP-3介导的前CFD切割为CFD的能力。
MASP-3抑制性单克隆抗体M3-1 (13B1)包含如SEQ ID NO: 30所示的重链可变区(VH)和如SEQ ID NO: 45所示的轻链可变区(VL)。M3-1单克隆抗体的可变区的序列如下:
重链可变区
下面呈现的是mAb M3-1的重链可变区(VH)序列。Kabat CDR (31-35 (H1)、50-65(H2)和95-102 (H3)加下划线,其对应于SEQ ID NO: 30的氨基酸残基31-35 (H1)、50-66(H2)和99-102 (H3)。
mAb M3-1重链可变区(VH)(SEQ ID NO: 30)
QVQLKQSGAELMKPGASVKLSCKATGYTFTGKWIEWVKQRPGHGLEWIGEILPGTGSTNYNEKFKGKATFTADSSSNTAYMQLSSLTTEDSAMYYCLRSEDVWGTGTTVTVSS。
轻链可变区
下面呈现的是mAb M3-1的轻链可变区(VL)序列。Kabat CDR (24-34 (H1)、50-56(H2)和89-97 (H3)加下划线,其对应于SEQ ID NO: 45的氨基酸残基24-40 (L1);56-62(L2)和95-102 (L3)。这些区域是相同的,无论是通过Kabat还是Chothia系统编号。
mAb M3-1轻链可变区(VL)(SEQ ID NO: 45)
DIVMTQSPSSLAVSAGEKVTMSCKSSQSLLNSRTRKNYLAWYQQKPGQSPKLLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCKQSYNIPTFGGGTKLEIKR
mAb M3-1 VH CDRs
VHCDR1: GKWIE (SEQ ID NO: 84)
VHCDR2: EILPGTGSTNYNEKFKG (SEQ ID NO: 86)
VHCDR3: SEDV (SEQ ID NO: 88)
mAb M3-1 VL CDRs
VLCDR1: KSSQSLLNSRTRKNYLA (SEQ ID NO: 142)
VLCDR2: WASTRES (SEQ ID NO: 144)
VLCDR3: KQSYNIPT (SEQ ID NO: 161)。
如上所示,MASP-3单克隆抗体M3-1包含(a)重链可变区,其包含(i)包含SEQ IDNO: 84的VHCDR1,(ii)包含SEQ ID NO: 86的VHCDR2,和(iii)包含SEQ ID NO: 88的VHCDR3;和(b)轻链可变区,其包含(i)包含SEQ ID NO: 142的VLCDR1,(ii)包含SEQ ID NO:144的VLCDR2,和(iii)包含SEQ ID NO: 161的VLCDR3。
mAb M3-1与人和小鼠MASP-3的重组形式的结合
在ELISA实验中测试M3-1的单价Fab版本与重组的全长人和小鼠MASP-3蛋白的结合。通过用结合来自多种物种的蛋白的抗MASP-3捕获抗体包被96孔板进行结合亲和力测定。已经显示捕获抗体结合MASP-1和MASP-3的CCP1-CCP2区域。将人和小鼠蛋白的全长版本固定在用捕获抗体包被的ELISA平板上,并使不同浓度的M3-1 Fab在单独的孔中结合靶蛋白。使用与HRP缀合的抗κ轻链抗体(Novus Biologicals NBP1-75064)检测结合的M3-1,并用TMB底物试剂组(BD Biosciences 555214)显色。
图41图示说明用人MASP-3进行的结合实验的代表性实例,其中M3-1 Fab(也称为13B1)显示与人蛋白的约0.117nM的表观结合亲和力(EC50)。
图42图示说明用小鼠MASP-3进行的结合实验的代表性实例,其中M3-1 Fab显示与小鼠蛋白的约0.214nM的表观结合亲和力(EC50)。
这些结果表明mAb M3-1 (13B1)对人和小鼠MASP-3两者都具有高结合亲和力。
mAb M3-1能够抑制替代途径补体(APC)活化的证明和mAb M3-1的体外效力的测量
如本公开中所述,已经确定MASP-3是APC的关键调节剂,至少部分是由于其需要CFD(中枢APC酶)的活化。如本公开中所述,MASP-3在体内以相对低的浓度循环并且具有缓慢的分解代谢速率,其允许通过MASP-3抗体施用的静脉内、皮下和口服途径长期抑制促炎性途径。进行以下实验以确定mAb M3-1在人血清中抑制MASP-3介导的CFD成熟和抑制APC的效力。正常人血清主要含有活性或加工(即成熟)的CFD,因此我们进行了实验,其中用CFD的重组、未加工形式(前-CFD)重构CFD耗尽的人血清(Complement Technology A336)。因此,在该实验系统中,APC活化需要将前-CFD加工成活性CFD。
通过添加酵母聚糖颗粒(其作为补体沉积的活化表面发挥功能)诱导APC。在添加重组前-CFD和酵母聚糖之前,将不同浓度的mAb M3-1添加至血清中。将混合物在37℃下孵育75分钟,并通过在酵母聚糖颗粒表面上的补体因子Bb(Quidel A252)的流式细胞术检测来测量APC活性。
图43图示说明在CFD耗尽的人血清中存在不同浓度的mAb M3-1的情况下,在酵母聚糖颗粒上的补体因子Bb沉积的水平(通过以MFI单位测量的流式细胞检测所测定)。如图43中所示,mAb M3-1显示在10%人血清中的APC的有效抑制,其中在该实验实施例中IC50为0.311nM。
这些结果表明,MASP-3在人血清中的体外模型中的APC活化中起关键作用,并且进一步表明mAb M3-1是APC的有效抑制剂。
mAb M3-1对APC的体内抑制:
为了确定mAb M3-1用于体内抑制APC的效力,一组小鼠(n = 4)接受10 mg/kg mAbM3-1的单次静脉内尾静脉注射。使用从动物收集的血液来制备血清,为离体测定中的APC活性的流式细胞术评估提供基质,所述离体测定测量酵母聚糖颗粒上的C3(也是C3b和iC3b)沉积的水平。将从在剂量前时间点和多次剂量后时间点(96小时、1周和2周)收获的血液制备的血清稀释至7.5%,并且添加酵母聚糖颗粒以诱导APC。将抗体处理的小鼠与给予单次静脉内剂量的媒介物的一组对照小鼠(n = 4)进行比较。
图44图示说明在野生型小鼠中的mAb M3-1 (10 mg/kg i.v.)的单次剂量后各个时间点在酵母聚糖颗粒上的C3沉积的水平。如图44中所示,在剂量前时间点,两种条件显示相当水平的APC活性。在96小时和两个后面时间点,mAb M3-1治疗组显示基本上完全的APC抑制,而媒介物治疗组的APC活性仍然不减弱。如图44中所示,向小鼠静脉内施用的单剂量的mAb M3-1导致全身性APC活性的接近完全消除至少14天。
这些结果表明mAb M3-1是小鼠模型的APC的体内有效抑制剂。
实施例12
本实施例表明嵌合小鼠V区/人IgG4恒定区抗人MASP-3单克隆抗体(mAb M3-1,也称为mAb 13B1)为与阵发性夜间血红蛋白尿(PNH)有关的小鼠模型中的缺乏Crry的红血细胞的存活提供了明显益处。
方法
如实施例11和实施例14所述产生嵌合小鼠V区/人IgG4恒定区抗人MASP-3单克隆抗体(mAb M3-1)。如实施例11中进一步所述,确定mAb M3-1是小鼠模型中的APC的体内有效抑制剂。本实施例描述了mAb M3-1在与PNH相关的鼠模型中的效力的分析。
mAb M3-1在与PNH相关的鼠模型中的效力的分析
在与PNH相关的小鼠模型中,获得来自缺乏小鼠中APC的主要细胞表面阻遏物的Crry-缺陷小鼠的红血细胞(RBC)用于用作供体细胞。平行运行从野生型(WT)供体小鼠获得的RBC。这些供体RBC用荧光亲脂性染料(Sigma)差异标记:WT(红色)和Crry-(绿色)。在两个不同的实验中,将标记的WT和Crry-供体细胞1:1混合并静脉内注射到野生型受体小鼠中,并通过20,000个活细胞事件的流式细胞仪评估来测定受体小鼠中WT和Crry-缺陷的RBC存活(相对于早期时间点)百分比。在第一个实验中,给予mAb M3-1抗体的多次剂量前处理,并将mAb M3-1的作用与另一种抑制性补体抗体mAb BB5.1(可得自Hycult Biotech)的作用进行比较,所述mAb BB5.1是已显示在多种小鼠研究中的效力的C5抑制性抗体(Wang等人,PNAS vol 92:8955-8959, 1995; Hugen等人, Kidney Int 71(7):646-54, 2007)。C5抑制剂的施用是人PNH患者的目前治疗标准。在第二个实验中,评估mAb M3-1的单一治疗前剂量。
在第一个实验中,评估三种不同的小鼠组(n = 4/每种条件):媒介物治疗的条件、mAb M3-1治疗的条件和mAb BB5.1(阻断小鼠C5的mAb)治疗的条件。将标记的细胞在“第0天”注射至小鼠中,并且如下施用多次剂量的M3-1和BB5.1两者:第-11天、第-4天、第-1天和第+6天静脉内(10 mg/kg)施用mAb M3-1。在第-1天、第+3天、第+6天和第+10天通过腹膜内注射(40 mg/kg)施用mAb BB5.1。媒介物治疗遵循与mAb M3-1相同的给药方案。
图45图示说明在用mAb M3-1(在第-11天、第04天、第-1天和第+6天,10 mg/kg)治疗的WT受体小鼠、mAb BB5.1治疗或媒介物治疗的小鼠中经14天时段的供体RBC(WT或Crry-)的存活百分比。如图45中所示,与在媒介物治疗的动物中显示小鼠中RBC的典型存活的WT RBC相比,Crry-缺陷的RBC具有快速的清除(在24小时内清除超过75%)。用mAb BB5.1治疗小鼠,在Crry-缺陷的RBC存活方面,相对于媒介物治疗没有提供改善。相比之下,mAbM3-1治疗,与mAb BB5.1和媒介物治疗的动物相比,引起了Crry-缺陷的RBC存活的显著改善。在实验持续期间观察到mAb M3-1的保护性作用。
在第二项研究中,在两组不同的WT小鼠(n = 4/每种条件)中评估差异标记的WT(红色)和Crry-(绿色)RBC:媒介物治疗和mAb M3-1治疗。在将标记的供体细胞注射到受体小鼠中之前6天(-6天),通过静脉内施用向受体小鼠给予单剂量的媒介物或抗体(20 mg/kg)。然后在经16天时段注射后的增量时间点分析标记的供体RBC在受体小鼠中的存活百分比。
图46图示说明在用单剂量的mAb M3-1(在第-6天,20 mg/kg)治疗的WT受体小鼠或媒介物治疗的小鼠中经16天时段的供体RBC(WT或Crry-)的存活百分比。如图46中所示,与媒介物治疗的小鼠中的Crry-RBC的存活相比,单次治疗前剂量的mAb M3-1表明Crry-RBC的改善的存活。在注射后96小时,约90%的媒介物治疗的WT RBC在对照条件下存活,而仅5%的Crry-RBC在媒介物治疗的WT小鼠中存活。与媒介物治疗的小鼠相反,40%的Crry-RBC在用mAb M3-1治疗的小鼠中存活。
总之,这些结果表明,MASP-3抑制性抗体mAb M3-1为缺乏Crry(与PNH相关的小鼠模型中的关键表面补体抑制剂)的RBC的存活提供了明显的益处。
实施例13
该实施例描述了一项研究,表明嵌合MASP-3抑制性单克隆抗体(mAb M3-1,也称为mAb 13B1)降低胶原抗体诱导的关节炎(CAIA)(类风湿性关节炎(RA)的鼠模型)中的临床评分。
背景/基本原理
CAIA是一种良好确立的关节炎动物模型。除了提供对RA的了解之外,CAIA模型的病理学具有与APC的建立的连接。Banda和同事已经表明,在携带APC的组分(例如B因子和因子D)的缺陷的小鼠中的CAIA模型中的改善结果(Banda等人, J. Immunol vol 177:1904-1912, 2006和Banda等人, Clinical & Exp Imunol vol 159:100-108, 2009).APC小鼠敲除显示滑膜和周围组织中相对于WT对照的降低的关节炎(疾病)评分、较低的发生率和较少的C3和因子H沉积。另外,在MASP1/3敲除小鼠中,疾病活动评分,关节中的补体C3组织沉积和组织病理学损伤评分显著降低(Banda等人, J Immunol vol 185:5598-5606, 2010)。因此,分析了MASA-3抑制性抗体mAb M3-1在CAIA中的效力。
方法
如实施例11和实施例14所述产生嵌合MASP-3单克隆抗体(mAb M3-1)。如实施例11中进一步所述,确定mAb M3-1是小鼠模型中的APC的体内有效抑制剂。
如下在CAIA模型中测试mAb M3-1。在第0天用3mg抗胶原抗体的混合物静脉注射野生型小鼠(n=7)。在第+3天,向小鼠腹膜内给予大肠杆菌脂多糖(LPS)(25μg/小鼠)。如Nandakumar等人(Am J Pathol 163(5):1827-1837, 2003)中所述,关节炎通常在第+3天至第+10天在该模型中发生。在第+14天收集终末血清样品。第-12天、第-5天、第+1天和第+7天给予mAb M3-1 (5 mg/kg和20 mg/kg)。注射媒介物(PBS)作为阴性对照。
使用以下评分标准,在第0至14研究日,对每只小鼠的所有4只爪子评估临床评分:
0= 正常
1= 1个后爪和/或前爪关节受影响或弥漫性红斑和肿胀最小
2= 2个后爪和/或前爪关节受影响或弥漫性红斑和肿胀轻微
3= 3个后爪和/或前爪关节受影响或弥漫性红斑和肿胀适度
4= 弥漫性红斑和肿胀显著,或4个足趾关节受影响
5= 整个爪的弥漫性红斑严重和肿胀严重,无法弯曲足趾。
还测定发生率=%治疗组内显示关节炎症状的小鼠。
结果显示于图47 (临床评分)和图48 (关节炎的发生率)中。图47图示说明经14天时间过程的用mAb M3-1 (5 mg/kg或20 mg/kg)或媒介物治疗的小鼠的临床评分。图48图示说明经14天时间过程的用mAb M3-1 (5 mg/kg或20 mg/kg)或媒介物治疗的小鼠的关节炎的百分比发生率。如图47中所示,mAb M3-1对于从第5天开始并在整个研究期间持续的两个终点表明明显的治疗益处。如图48中所示,尽管在媒介物治疗的动物中疾病的发生率达到100%,但在5 mg/kg mAb M3-1条件下,三分之二的动物仍然无病。另外,动物中只有一只(即总共n=7中只有一只)在20 mg/kg mAb M3-1条件下显示任何关节炎症状。
该研究的结果表明,MASP-3抑制性抗体mAb M3-1在CAIA模型(类风湿性关节炎(RA)的良好确立的鼠模型和与APC活化强烈相关的模型)中提供了明显的治疗益处。如实施例11中所示,向小鼠静脉内施用的单剂量的mAb M3-1导致全身性APC活性的接近完全消除至少14天。如本实施例中所示,在通过施用针对小鼠结缔组织的自身抗体诱导的动物模型中,mAb M3-1以剂量依赖性方式降低临床关节炎评分的发生率和严重程度。与对照治疗的动物相比,mAb M3-1在所测试的最高剂量下将疾病的发生率和严重程度降低约80%。因此,预期MASP-3抑制性抗体例如mAb M3-1的施用在患有关节炎例如类风湿性关节炎、骨关节炎、幼年型类风湿性关节炎、感染相关关节炎、银屑病关节炎以及强直性脊柱炎和贝切特氏病的患者中是有效的疗法。
实施例14
本实施例描述高亲和力抗人MASP-3抑制性抗体的产生。
背景/基本原理
已经描述了有限数量的针对MASP-3的抗体(Thiel等人, Mol. Immunol. 43:122,2006; Moller-Kristensen等人, Int. Immunol. 19:141, 2006; Skjoedt等人,Immunobiol 215:921, 2010)。这些抗体可用于检测测定,例如Western印迹、免疫沉淀、以及作为ELISA测定中的捕获或检测试剂。然而,尚未发现Thiel等人, 2006, Moller-Kristensen等人, 2006和Skjoedt等人, 2010中描述的抗体抑制MASP-3催化活性。
还先前如本文实施例7中所述(也在WO2013/192240中公开为实施例15)通过针对MASP-3结合分子筛选修饰的DT40细胞系(DTLacO)中的鸡抗体文库来产生MASP-3抗体。这些抗体在纳摩尔范围(EC50在10nM和100nM之间)内与人MASP-3结合,并且部分抑制由MASP-3对前-CFD的切割。
本实施例描述了具有非常强的结合亲和力(即亚纳摩尔结合亲和力,范围为≤500pM至20pM)的抗人MASP-3抑制性抗体的产生。本实施例中描述的抗体以高亲和力(例如,≤500pM)特异性结合人MASP-3,抑制因子D成熟,并且不结合人MASP-1(SEQ ID NO: 8)。
方法
1. 嵌合小鼠V区/人IgG恒定区抗人MASP-3单克隆抗体的产生
7至14周龄C57BL/6、MASP-1/3敲除小鼠用在N-末端包括StrepTag II表位标签的人MASP-3 CCP1/CCP2/SP多肽(SEQ ID NO: 2的氨基酸残基299-728)免疫;或者用在N-末端包括StrepTagII的人MASP-3SP结构域(SEQ ID NO: 2的氨基酸残基450-728)免疫,其使用Sigma佐剂系统(Sigma-Aldrich, St Louis, MO)。向小鼠腹腔内注射50μg免疫原/每只小鼠。14天后用佐剂中的另外免疫原加强免疫的小鼠。此后,持续数周,用PBS中的免疫原每14至21天加强小鼠。定期从尾部出血制备小鼠血清样品,并通过ELISA测试抗原特异性抗体的存在。具有显著抗体滴度的小鼠在脾融合前四天接受PBS中的融合前免疫原增强。在融合前三天,将小鼠在尾基部用PBS中的50μg抗CD40激动剂mAb (R&D Systems, Minneapolis,MN)皮下处理以增加B细胞数(参见Rycyzyn等人, Hybridoma 27:25-30, 2008).处死小鼠,并收获脾细胞,并使用50%聚乙二醇或50%聚乙二醇加10% DMSO与所选鼠骨髓瘤细胞系P3/NSI/1-AG4-1 (NS-1) (ATCC No. TIB18)融合。融合产生杂交瘤细胞,将其铺板于含有HAT(次黄嘌呤、氨基蝶呤和胸苷)培养基的96孔组织培养板中,以抑制非融合细胞、骨髓瘤杂交物和脾脏杂交物的增殖。杂交瘤选择后,测定培养上清液的MASP-3结合(ELISA)和前因子D活化的抑制。通过连续稀释法鉴定和亚克隆阳性杂交瘤。
表17:融合实验的概述
融合体 免疫原:        人MASP-3 总杂交瘤 MASP-3结合杂交瘤 MASP-3功能杂交瘤
1 SP 434 38 10
2 SP 279 13 0
3 CCP1/CCP2/SP 348 40 2
4 CCP1/CCP2/SP 319 60 2
5 CCP1/CCP2/SP 651 152 1
6 CCP1/CCP2/SP 1297 ND 1
注:“ND”意味着仅针对前CFD活化的功能性抑制筛选该融合体。
结果
如表17中所示,筛选来自免疫的MASP1/3 KO小鼠的总共3328个杂交瘤,发现其中>303个与MASP-3结合,并且发现其中16个与MASP-3结合并抑制前-CFD活化。实施例11中描述的mAb M3-1 (13B1)是表17中所述的16种功能性MASP-3抑制性抗体之一。如实施例15中所述,确定所有16种功能性MASP-3抑制性抗体以非常强的结合亲和力(≤500pM)与人MASP- 3结合。
讨论
本实施例描述了通过免疫MASP1/3敲除小鼠来产生抗体,所述抗体以非常强的结合亲和力(即亚纳摩尔结合亲和力,范围为≤500pM至20pM)抑制人MASP-3。本实施例中描述的抗体以高亲和力(例如,≤500pM)特异性结合人MASP-3,抑制因子D成熟,并且不结合人MASP-1。如本文所述,人、小鼠和鸡MASP-3的氨基酸序列揭示MASP-3的SP结构域是高度保守的,特别是在活性位点(参见图4和5)。可能的是,如本实施例中所述的在MASP1/3 KO小鼠中产生具有非常强的结合亲和力的MASP-3抑制性抗体的能力可能部分归因于避免免疫耐受性,这可能阻碍在野生型动物中产生高度有效的MASP-3催化位点特异性抗体。
实施例15
本实施例描述高亲和力抗人MASP-3抑制性mAb的克隆和序列分析。
方法
重组抗体的克隆和纯化:
使用RT-PCR从实施例11和14中描述的杂交瘤克隆重链和轻链可变区,并进行测序。在Expi293F细胞中产生由与人IgG4重链(SEQ ID NO: 311)和κ轻链(SEQ ID NO: 313)恒定区融合的小鼠mAb可变区组成的小鼠-人嵌合mAb。IgG4恒定铰链区(SEQ ID NO: 311)含有稳定化的S228P氨基酸取代。在一个实施方案中,将嵌合mAb与含有S228P氨基酸取代以及在低pH下促进FcRn相互作用的突变的人IgG4恒定铰链区(SEQ ID NO: 312)融合。
重链可变区和轻链可变区的序列分别显示于图49A和49B中(图49A和图49B中的“SIN” = “SEQ ID NO: ”),并且包括在下面。在下表18-22中提供各自的互补区(CDR)和构架区(FR)。
图50A是在MASP1/3 KO小鼠中产生的高亲和力抗人MASP-3抑制性mAb的VH区的树状图。图50B是在MASP1/3 KO小鼠中产生的高亲和力抗人MASP-3抑制性mAb的VL区的树状图。如图50A和50B中所示,鉴定了几组相关抗体。
下面呈现的是每种高亲和力MASP-3抑制性抗体的重链可变区(VH)序列。KabatCDR加下划线。
重链可变区:
4D5_VH: SEQ ID NO: 24
QVQLKQSGPELVKPGASVKLSCKASGYTFTTDDINWVKQRPGQGLEWIGWIYPRDDRTKYNDKFKDKATLTVDTSSNTAYMDLHSLTSEDSAVYFCSSLEDTYWGQGTLVAVSS
1F3_VH: SEQ ID NO: 25
QVQLKQSGPELVKPGASVKLSCKASGYTFTSNDINWVKQRPGQGLEWIGWIYPRDGSIKYNEKFTDKATLTVDVSSSTAYMELHSLTSEDSAVYFCSGVEDSYWGQGTLVTVSS
4B6_VH: SEQ ID NO: 26
QVQLKQSGPELVKPGASVKLSCKASGYTFTSNDINWVKQRPGQGLEWIGWIYPRDGTTKYNEEFTDKATLTVDVSSSTAFMELHSLTSEDSAVYFCSSVEDSYWGQGTLVTVSS
1A10_VH: SEQ ID NO: 27
QVQLKQSGPELVKPGASVKLSCKASGYTFTSNDINWVKQRPGQGLEWIGWIYPRDGTTKYNEKFTDKATLTVDVSSSTAFMELHRLTSEDSAVYFCSSVEDSYWGQGTLVTVSS
10D12_VH: SEQ ID NO: 28
QIQLVQSGPELKKPGETVKISCKASGYIFTSYGMSWVRQAPGKGLKWMGWINTYSGVPTYADDFKGRFAFSLETSARTPYLQINNLKNEDTATYFCARGGEAMDYWGQGTSVTVSS
35C1_VH: SEQ ID NO: 29
QIQLVQSGPELKTPGETVKISCKASGYIFTSYGITWVKQAPGKGLKWMGWINTYSGVPTYADDFKGRFAFSLETSASTAYLQINNLKNEDTTTYFCTRGGDALDYWGQGTSVTVSS
13B1_VH: SEQ ID NO: 30
QVQLKQSGAELMKPGASVKLSCKATGYTFTGKWIEWVKQRPGHGLEWIGEILPGTGSTNYNEKFKGKATFTADSSSNTAYMQLSSLTTEDSAMYYCLRSEDVWGTGTTVTVSS
1G4_VH: SEQ ID NO: 31
QVQLKQSGAELMKPGASVKLACKATGYTFTGYWIEWIKQRPGQGLEWIGEMLPGSGSTHYNEKFKGKATFTADTSSNTAYMQLSGLTTEDSAIYYCVRSIDYWGQGTTLTVSS
1E7_VH: SEQ ID NO: 32
QVQLKQSGPELARPWASVKISCQAFYTFSRRVHFAIRDTNYWMQWVKQRPGQGLEWIGAIYPGNGDTSY NQKFKGKATLTADKSSSTAYMQLSSLTSEDSAVYYCASGSHYFDYWGQGTTLTVSS
2D7_VH: SEQ ID NO: 33
EVQLQQSGPELVKPGASVKVSCKASGYTLTDYYMNWVKQSHGKSLEWIGDVNPNNDGTTYNQKFKGRATLTVDKSSNTASMELRSLTSEDSAVYYCAICPFYYLGKGTHFDYWGQGTSLTVSS
49C11_VH: SEQ ID NO: 34
EVQLQQSGPVLVKPGASGKMSCKASGYKFTDYYMIWVKQSHGKSLEWIGVIKIYNGGTSYNQKFKGKATLTVDKSSSTAYMELNSLTSEDSAVYYCARGPSLYDYDPYWYFDVWGTGTTVTVSS
15D9_VH: SEQ ID NO: 35
QVQLKQSGTELMKPGASVNLSCKASGYTFTAYWIEWVKQRPGHGLEWIGEILPGSGTTNYNENFKDRATFTADTSSNTAYMQLSSLTSEDSAIYYCARSYYYASRWFAFWGQGTLVTVSS
2F5_VH: SEQ ID NO: 36
EVQLQQPGAELVKPGASVKMSCKASGYTFTSYWITWVKQRPGQGLEWIGDIYPGSGSTNYNEKFKSKATLTVDTSSSTAYMQLSSLTSEDSAVYYCARRRYYATAWFAYWGQGTLVTVSS
1B11_VH: SEQ ID NO: 37
QVQLKQSGAELVRPGASVKLSCKASGYTFTDYYINWVKQRPGQGLEWIARIYPGSGNTYYNEKFKGKATLTAEKSSSTAYMQLSSLTSEDSAVYFCARNYYISSPWFAYWGQGTLVTVSS
2F2_VH: SEQ ID NO: 38
QVQLKQSGAELVTPGASVKMSCKASGYTFTTYPIEWMKQNHGKSLEWIGNFHPYNDDTKYNEKFKGKATLTVEKSSNTVYLELSRLTSDDSAVYFCARRVYYSYFWFGYWGHGTLVTVSS
11B6_VH: SEQ ID NO: 39
QVQLKQSGAELVKPGASVKMSCKASGYTFTTYPIEWMKQNHGKSLEWIGNFHPYNGDSKYNEKFKGKATLTVEKSSSTVYLELSRLPSADSAIYYCARRHYAASPWFAHWGQGTLVTVSS。
表 18:MASP-3抗体VH序列(CDR和FR区域,Kabat)
Figure 885826DEST_PATH_IMAGE009
/>
Figure 997745DEST_PATH_IMAGE010
/>
Figure 469178DEST_PATH_IMAGE011
/>
Figure 726984DEST_PATH_IMAGE012
/>
Figure 219145DEST_PATH_IMAGE013
下面呈现的是高亲和力MASP-3抑制性抗体的轻链可变区(VL)序列。Kabat CDR加下划线。这些区域是相同的,无论是通过Kabat还是Chothia系统编号。
轻链可变区:
4D5_VL: SEQ ID NO: 40
DIVMTQSPSSLAVSAGEKVTMTCKSSQSLLNSRTRKNYLAWYQQKPGQSPKLLIYWASTRESGVPDRFTGSGSGTDFSLTISSVQAEDLAVYYCKQSYNLYTFGGGTKLEIKR
1F3_VL: SEQ ID NO: 41
DIVMTQSPSSLAVSAGERVTMSCKSSQSLLISRTRKNYLSWYQQKPGQSPKLLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCKQSYNLYTFGGGTKLEIKR
4B6_VL: SEQ ID NO: 42 (与1A10_VL相同)
DIVMTQSPSSLAVSAGEKVTMSCKSSQSLLISRTRKNYLSWYQQKPGQSPKLLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCKQSYNLYTFGGGTKLEIKR
10D12_VL: SEQ ID NO: 43
DVLMTQTPLTLSVTIGQPASISCKSSQSLLDSDGKTYLNWLLQRPGQSPKRLIYLVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYCWQGTHFPWTFGGGTKLEIKR
35C1_VL: SEQ ID NO: 44
DIVMTQAPLTLSVTIGQPASISCKSSQSLLDSDGKTYLSWLLQRPGQSPKRLIYLVSKLDSGVPDRFTGSGSGTDFTLKISRVEAEDLGVYYCWQGTHFPYTFGGGTKLEIKR
13B1_VL: SEQ ID NO: 45
DIVMTQSPSSLAVSAGEKVTMSCKSSQSLLNSRTRKNYLAWYQQKPGQSPKLLIYWASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCKQSYNIPTFGGGTKLEIKR
1G4_VL: SEQ ID NO: 46
DVLMTQTPLSLPVSLGEQASISCRSSQSLVQSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVPPTFGGGTKLEIKR
1E7_VL: SEQ ID NO: 47
DIQLTQSPAILSVSPGERVSFSCRASQSIGTSIHWYQQRTNGSPRLLIKYASESISGIPSRFSGSGSGTDFTLSINSVESEDIADYYCQQSNSWPYTFGGGTKLEIKR
2D7_VL: SEQ ID NO: 48
DIQMTQTPASLSASLGDRVTISCRASQDISNFLNWYQQKPNGTVKLLVFYTSRLHSGVPSRFSGSGSGAEHSLTISNLEQEDVATYFCQQGFTLPWTFGGGTKVEIKR
49C11_VL:SEQ ID NO: 49
DVLMTQTPLSLPVSLGDQASFSCRSSQSLIHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVPWTFGGGTKLEIKR
15D9_VL: SEQ ID NO: 50
DIVMTQSQKFMSTSIGDRVSVTCRASQNVGPNLAWYQQKPGQSPKALIYSASYRFSGVPDRFTGSGSGTDFTLTISNVQSEDLAEYFCQQYNRYPFTFGSGTKLEIKR
2F5_VL: SEQ ID NO: 51
DIVMTQSQKFMSTSVGDRVSITCKASQNVGTAVAWYQQKPGQSPKLLISSASNRYTGVPDRFTGSGSGTDFTLTISNMQSEDVADYFCQQYNSYPLTFGAGTKLELKR
1B11_VL: SEQ ID NO: 52
DIVMTQSQKFMSTSVGDRVSVTCKASQNVGPNVAWYQQKPGQSPKALIYSASYRYSGVPDRFTGSGSGTDFTLTISNVQSEDLADYFCQQYNRYPLTFGAGTKLELKR
2F2_VL: SEQ ID NO: 53
DIVMTQSQKFMSTSVGDRVNVTCKASQNVGTHVAWYQQKPGQSPKALIYSASYRYSGVPDRFTGSGSGTDFTLTISNVQSEDLAEYFCQQYNSYPRALTFGAGTKLELKR
11B6_VL: SEQ ID NO: 54
DIVMTQSQKFMSTSVGDRVNVTCKASQNVGPTVAWYQQKPGQSPKALIYSASYRYSGVPDRFTGSGSGTDFTLTISNVHSEDLAEYFCQQYNSYPFTFGSGTKLEIKR。
表 19:MASP-3抗体VL序列(CDR和FR区域,Kabat和Chothia)
Figure 195191DEST_PATH_IMAGE014
/>
Figure 329370DEST_PATH_IMAGE015
/>
Figure 707261DEST_PATH_IMAGE016
/>
Figure 573586DEST_PATH_IMAGE017
*注:没有鉴定mAb 1A10的轻链,所以来自4B6的轻链与1A10 HC一起使用。
表 20:组IA HC CDR的共有序列:
Figure 663027DEST_PATH_IMAGE018
表 21:组IA LC CDR的共有序列:
Figure 476262DEST_PATH_IMAGE019
*注:CDR-L1共有序列包括如实施例19中所述的变体。
表 22组IB HC CDR的共有序列:
Figure 443081DEST_PATH_IMAGE020
表 23组IB LC CDR的共有序列:
Figure 73783DEST_PATH_IMAGE021
*注:CDR-L1共有序列包括如实施例19中所述的变体。
编码小鼠mAb重链和轻链的DNA:
SEQ ID NO: 217: 编码4D5重链可变区(亲本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGTTGTCCTGCAAGGCTTCTGGCTACACCTTCACAACCGACGATATAAACTGGGTGAAGCAGAGGCCTGGACAGGGACTTGAGTGGATTGGATGGATTTATCCTAGAGATGATAGAACTAAGTACAATGACAAGTTCAAGGACAAGGCCACATTGACTGTAGACACATCTTCCAACACAGCGTACATGGACCTCCACAGCCTGACATCTGAGGACTCTGCGGTCTATTTCTGTTCAAGCCTCGAGGATACTTACTGGGGCCAAGGGACTCTGGTCGCTGTCTCTTCA
SEQ ID NO: 218: 编码1F3重链可变区(亲本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGTTGTCCTGCAAGGCTTCTGGCTACACCTTCACAAGTAACGATATAAACTGGGTGAAGCAGAGGCCTGGACAGGGACTTGAGTGGATTGGATGGATTTATCCTAGAGATGGGAGTATTAAATATAATGAGAAATTCACGGACAAGGCCACATTGACAGTTGACGTATCCTCCAGCACAGCGTACATGGAGCTCCACAGCCTGACATCTGAGGACTCTGCGGTCTATTTCTGTTCAGGTGTCGAGGATTCTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTTCA
SEQ ID NO: 219: 编码4B6重链可变区(亲本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGACCTGAACTGGTGAAGCCTGGGGCTTCAGTGAAATTGTCCTGCAAGGCTTCTGGCTACACCTTCACAAGTAACGATATAAACTGGGTGAAACAGAGGCCTGGACAGGGACTTGAGTGGATTGGATGGATTTATCCTAGAGATGGTACTACTAAGTACAATGAGGAGTTCACGGACAAGGCCACATTGACTGTTGACGTATCCTCCAGCACAGCGTTCATGGAGCTCCACAGCCTGACATCTGAGGACTCTGCTGTCTATTTCTGTTCAAGTGTCGAGGATTCTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTTCA
SEQ ID NO: 220: 编码1A10重链可变区(亲本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGACCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGTTGTCCTGCAAGGCTTCTGGCTACACCTTCACAAGTAACGATATAAACTGGGTGAAGCAGAGGCCTGGACAGGGACTTGAGTGGATTGGATGGATTTATCCTAGAGATGGTACTACTAAGTACAATGAGAAGTTCACGGACAAGGCCACATTGACTGTTGACGTATCCTCCAGCACAGCGTTCATGGAGCTCCACAGGCTGACATCTGAGGACTCTGCGGTCTATTTCTGTTCAAGTGTCGAGGATTCTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTTCA
SEQ ID NO: 221: 编码10D12重链可变区(亲本)的DNA
CAGATCCAGTTGGTACAGTCTGGACCTGAGCTGAAGAAGCCTGGAGAGACAGTCAAGATCTCCTGCAAGGCTTCTGGGTATATTTTCACAAGCTATGGAATGAGCTGGGTGAGACAGGCTCCAGGAAAGGGTTTAAAGTGGATGGGCTGGATAAACACCTACTCTGGAGTGCCAACATATGCTGATGACTTCAAGGGACGGTTTGCCTTCTCTTTGGAAACCTCTGCCAGAACTCCCTATTTGCAGATCAACAACCTCAAAAATGAGGACACGGCTACATATTTCTGCGCAAGAGGGGGCGAAGCTATGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA
SEQ ID NO: 222: 编码35C1重链可变区(亲本)的DNA
CAGATCCAGTTGGTACAGTCTGGACCTGAGCTGAAGACGCCAGGAGAGACAGTCAAGATCTCCTGCAAGGCTTCTGGGTATATCTTCACATCCTATGGAATTACCTGGGTGAAACAGGCTCCAGGAAAGGGTTTAAAGTGGATGGGCTGGATAAACACCTACTCTGGAGTGCCAACATATGCTGATGACTTCAAGGGACGGTTTGCCTTCTCTTTGGAAACGTCTGCCAGCACTGCCTATTTGCAGATCAACAACCTCAAAAATGAGGACACGACTACATATTTCTGTACAAGAGGGGGTGATGCTTTGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA
SEQ ID NO: 223: 编码13B1重链可变区(亲本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGAGCTGAGCTGATGAAGCCTGGGGCCTCAGTGAAGCTTTCCTGCAAGGCTACTGGCTACACATTCACTGGCAAGTGGATAGAGTGGGTAAAACAGAGGCCTGGACATGGCCTAGAGTGGATTGGAGAGATTTTACCTGGAACTGGTAGTACTAACTACAATGAGAAGTTCAAGGGCAAGGCCACATTCACTGCAGACTCATCCTCCAACACAGCCTACATGCAACTCAGCAGCCTGACAACTGAAGACTCTGCTATGTATTATTGTTTAAGATCCGAGGATGTCTGGGGCACAGGGACCACGGTCACCGTCTCCTCA
SEQ ID NO: 224: 编码1G4重链可变区(亲本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGAGCTGAGCTGATGAAGCCTGGGGCCTCAGTGAAGCTTGCCTGCAAGGCTACTGGCTACACATTCACTGGCTACTGGATAGAGTGGATAAAGCAGAGGCCTGGACAAGGCCTTGAGTGGATTGGAGAGATGTTACCTGGAAGTGGTAGTACTCACTACAATGAGAAGTTCAAGGGTAAGGCCACATTCACTGCAGATACATCCTCCAACACAGCCTACATGCAACTCAGCGGCCTGACAACTGAGGACTCTGCCATCTATTACTGTGTAAGAAGCATAGACTACTGGGGCCAAGGCACCACTCTCACAGTCTCCTCA
SEQ ID NO: 225: 编码1E7重链可变区(亲本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGGCCTGAGCTGGCAAGGCCTTGGGCTTCAGTGAAGATATCCTGCCAGGCTTTCTACACCTTTTCCAGAAGGGTGCACTTTGCCATTAGGGATACCAACTACTGGATGCAGTGGGTAAAACAGAGGCCTGGACAGGGTCTGGAATGGATCGGGGCTATTTATCCTGGAAATGGTGATACTAGTTACAATCAGAAGTTCAAGGGCAAGGCCACATTGACTGCAGACAAATCCTCCAGCACAGCCTACATGCAACTCAGCAGCCTGACATCTGAGGACTCTGCGGTCTATTACTGTGCATCCGGTAGCCACTACTTTGACTACTGGGGCCAAGGCACCACTCTCACAGTCTCCTCA
SEQ ID NO: 226: 编码2D7重链可变区(亲本)的DNA
GAGGTCCAGCTGCAACAATCTGGGCCTGAGCTGGTGAAGCCTGGGGCTTCAGTGAAGGTATCCTGTAAGGCTTCTGGATACACGCTCACTGACTACTACATGAACTGGGTGAAGCAGAGCCATGGAAAGAGCCTTGAGTGGATTGGAGATGTTAATCCTAACAATGATGGTACTACCTACAACCAGAAATTCAAGGGCAGGGCCACATTGACTGTAGACAAGTCTTCCAACACAGCCTCCATGGAGCTCCGCAGCCTGACATCTGAGGACTCTGCAGTCTACTACTGTGCAATATGCCCCTTTTATTACCTCGGTAAAGGGACCCACTTTGACTACTGGGGCCAAGGCACCTCTCTCACAGTCTCCTCA
SEQ ID NO: 227: 编码49C11重链可变区(亲本)的DNA
GAGGTCCAGCTGCAACAATCTGGACCTGTGCTGGTGAAGCCTGGGGCTTCAGGGAAGATGTCCTGTAAGGCTTCTGGATACAAATTCACTGACTACTATATGATCTGGGTGAAGCAGAGCCATGGAAAGAGCCTTGAGTGGATTGGAGTTATTAAAATTTATAACGGTGGTACGAGCTACAACCAGAAGTTCAAGGGCAAGGCCACATTGACTGTTGACAAGTCCTCCAGCACAGCCTACATGGAGCTCAACAGCCTGACATCTGAGGACTCTGCAGTCTATTACTGTGCAAGAGGGCCATCTCTCTATGATTACGACCCTTACTGGTACTTCGATGTCTGGGGCACAGGGACCACGGTCACCGTCTCCTCA
SEQ ID NO: 228: 编码15D9重链可变区(亲本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGAACTGAGCTGATGAAGCCTGGGGCCTCAGTGAACCTTTCCTGCAAGGCTTCTGGCTACACATTCACTGCCTACTGGATAGAGTGGGTAAAGCAGAGGCCTGGACATGGCCTTGAGTGGATTGGAGAGATTTTACCTGGAAGTGGTACTACTAACTACAATGAGAACTTCAAGGACAGGGCCACATTCACTGCAGATACATCCTCCAACACAGCCTACATGCAACTCAGCAGCCTGACAAGTGAGGACTCTGCCATCTATTACTGTGCAAGATCCTATTACTACGCTAGTAGATGGTTTGCTTTCTGGGGCCAAGGGACTCTGGTCACTGTCTCTTCA
SEQ ID NO: 229: 编码2F5重链可变区(亲本)的DNA
GAGGTCCAGCTGCAGCAGCCTGGGGCTGAGCTTGTGAAGCCTGGGGCTTCAGTGAAGATGTCCTGTAAGGCTTCTGGCTACACCTTCACCAGCTACTGGATAACCTGGGTGAAGCAGAGGCCTGGACAAGGCCTTGAGTGGATTGGAGATATTTATCCTGGTAGTGGTAGTACTAACTACAATGAGAAGTTCAAGAGCAAGGCCACACTGACTGTAGACACATCCTCCAGCACAGCCTACATGCAGCTCAGCAGCCTGACATCTGAGGACTCTGCGGTCTATTACTGTGCAAGAAGGAGATACTACGCTACGGCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTTCA
SEQ ID NO: 230: 编码1B11重链可变区(亲本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGGGCTGAGCTGGTGAGGCCTGGGGCTTCAGTGAAGCTGTCCTGCAAGGCTTCTGGCTACACTTTCACTGACTACTATATAAACTGGGTGAAGCAGAGGCCTGGACAGGGACTTGAGTGGATTGCAAGGATTTATCCTGGAAGTGGTAATACTTACTACAATGAGAAGTTCAAGGGCAAGGCCACACTGACTGCAGAAAAATCCTCCAGCACTGCCTACATGCAGCTCAGCAGCCTGACATCTGAGGACTCTGCTGTCTATTTCTGTGCAAGAAATTACTACATTAGTAGTCCCTGGTTTGCTTACTGGGGCCAAGGGACTCTGGTCACTGTCTCTTCA
SEQ ID NO: 231: 编码2F2重链可变区(亲本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGGGCTGAGCTAGTGACGCCTGGAGCCTCAGTGAAGATGTCCTGCAAGGCTTCTGGCTACACCTTCACTACCTATCCTATAGAGTGGATGAAACAGAATCATGGAAAGAGCCTAGAGTGGATTGGAAATTTTCATCCTTACAATGATGATACTAAGTACAATGAAAAGTTCAAGGGCAAGGCCACATTGACTGTAGAAAAATCCTCTAACACAGTCTACTTGGAGCTCAGCCGATTAACATCTGATGACTCTGCTGTTTATTTCTGTGCAAGGAGGGTCTACTATAGTTACTTCTGGTTTGGTTACTGGGGCCACGGGACTCTGGTCACTGTCTCTTCA
SEQ ID NO: 232: 编码11B6重链可变区(亲本)的DNA
CAGGTGCAGCTGAAGCAGTCTGGGGCTGAGCTAGTGAAACCTGGAGCCTCAGTGAAGATGTCCTGCAAGGCTTCTGGCTACACCTTCACTACCTATCCTATAGAGTGGATGAAGCAGAATCATGGGAAGAGCCTAGAGTGGATTGGAAATTTTCATCCTTACAATGGTGATTCTAAGTACAATGAAAAGTTCAAGGGCAAGGCCACCTTGACTGTAGAAAAATCCTCTAGCACAGTCTACTTAGAACTCAGCCGATTACCATCTGCTGACTCTGCTATTTATTACTGTGCAAGGAGGCACTACGCTGCTAGTCCCTGGTTTGCTCACTGGGGCCAAGGGACTCTGGTCACTGTCTCTTCA
编码轻链可变区(小鼠mAb)的DNA
SEQ ID NO: 233: 编码4D5轻链可变区(亲本)的DNA
GACATTGTGATGACCCAGTCTCCATCCTCCCTGGCTGTGTCAGCAGGAGAGAAGGTCACTATGACCTGCAAATCCAGTCAGAGTCTGCTCAACAGTAGAACCCGAAAGAACTACTTGGCTTGGTACCAGCAGAAACCAGGGCAGTCTCCTAAACTGCTGATCTACTGGGCATCCACTAGGGAATCTGGGGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCTCTCTCACCATCAGCAGTGTGCAGGCTGAAGACCTGGCAGTTTATTACTGCAAGCAATCTTATAATCTGTACACGTTCGGAGGGGGGACCAAGCTGGAAATAAAACGG
SEQ ID NO: 234: 编码1F3轻链可变区(亲本)的DNA
GACATTGTGATGACCCAGTCTCCATCCTCCCTGGCTGTGTCAGCAGGAGAGAGGGTCACTATGAGCTGCAAATCCAGTCAGAGTCTGCTCATCAGTAGAACCCGAAAGAACTATTTGTCTTGGTACCAGCAGAAACCAGGGCAGTCTCCTAAACTGCTGATCTACTGGGCATCCACTAGGGAATCTGGGGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTGTACAGGCTGAAGACCTGGCAGTTTATTACTGCAAGCAATCTTATAATCTGTACACGTTCGGCGGGGGGACCAAGCTGGAAATAAAACGG
SEQ ID NO: 235: 编码4B6/1A10轻链可变区(亲本)的DNA
GACATTGTGATGACCCAGTCTCCATCCTCCCTGGCTGTGTCAGCAGGAGAGAAGGTCACTATGAGCTGCAAATCCAGTCAGAGTCTGCTCATCAGTAGAACCCGAAAGAACTATTTGTCTTGGTACCAGCAGAAACCAGGGCAGTCTCCTAAACTGCTGATCTATTGGGCATCCACTAGGGAATCTGGGGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTGTACAGGCTGAAGACCTGGCAGTTTATTACTGCAAACAATCTTATAATCTGTACACGTTCGGCGGGGGGACCAAGCTGGAAATCAAACGG
SEQ ID NO: 236: 编码10D12轻链可变区(亲本)的DNA
GATGTTTTGATGACCCAAACTCCACTCACTTTGTCGGTTACCATTGGACAACCAGCCTCCATCTCTTGCAAGTCAAGTCAGAGCCTCTTAGATAGTGATGGAAAGACATATTTGAATTGGTTGTTACAGAGGCCAGGCCAGTCTCCAAAGCGCCTAATCTATCTGGTGTCTAAACTGGACTCTGGAGTCCCTGACAGGTTCACTGGCAGTGGATCAGGGACAGATTTCACACTGAAAATCAGCAGAGTGGAGGCTGAGGATTTGGGAGTTTATTATTGCTGGCAAGGTACACATTTTCCGTGGACGTTCGGTGGAGGCACCAAGCTGGAAATCAAACGG
SEQ ID NO: 237:编码35C1轻链可变区(亲本)的DNA
GATATTGTGATGACGCAGGCTCCACTCACTTTGTCGGTTACCATTGGACAACCAGCCTCCATCTCTTGCAAGTCAAGTCAGAGCCTCTTAGATAGTGATGGAAAGACATATTTGAGTTGGTTGTTACAGAGGCCAGGCCAGTCTCCAAAGCGCCTAATCTATCTGGTGTCTAAACTGGACTCTGGAGTCCCTGACAGGTTCACTGGCAGTGGATCAGGGACAGATTTCACACTGAAAATCAGCAGAGTGGAGGCTGAGGATTTGGGAGTTTATTATTGCTGGCAAGGTACACATTTTCCGTACACGTTCGGAGGGGGGACCAAGCTGGAAATAAAACGG
SEQ ID NO: 238: 编码13B1轻链可变区(亲本)的DNA
GACATTGTGATGACCCAGTCTCCATCCTCCCTGGCTGTGTCAGCAGGAGAGAAGGTCACTATGAGCTGCAAATCCAGTCAGAGTCTGCTCAACAGTAGAACCCGAAAGAACTACTTGGCTTGGTACCAGCAGAAACCAGGGCAGTCTCCTAAACTGCTGATCTACTGGGCATCCACTAGGGAATCTGGGGTCCCTGATCGCTTCACAGGCAGTGGATCTGGAACAGATTTCACTCTCACCATCAGCAGTGTGCAGGCTGAAGACCTGGCAGTTTATTACTGCAAGCAATCTTATAATATTCCGACGTTCGGTGGAGGCACCAAGCTGGAAATCAAACGG
SEQ ID NO: 239: 编码1G4轻链可变区(亲本)的DNA
GATGTTTTGATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGAACAAGCCTCCATCTCTTGCAGATCAAGTCAGAGCCTTGTACAAAGTAATGGAAACACCTATTTACATTGGTACCTGCAGAAGCCAGGCCAGTCTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTGGGAGTTTATTTCTGCTCTCAAAGTACACATGTTCCTCCGACGTTCGGTGGAGGCACCAAGCTGGAAATCAAACGG
SEQ ID NO: 240: 编码1E7轻链可变区(亲本)的DNA
GACATCCAGCTGACTCAGTCTCCAGCCATCCTGTCTGTGAGTCCAGGAGAAAGAGTCAGTTTCTCCTGCAGGGCCAGTCAGAGCATTGGCACAAGCATACACTGGTATCAGCAAAGAACAAATGGTTCTCCAAGGCTTCTCATAAAGTATGCTTCTGAGTCTATCTCTGGGATCCCTTCCAGGTTTAGTGGCAGTGGATCAGGGACAGATTTTACTCTTAGCATCAACAGTGTGGAGTCTGAAGATATTGCAGATTATTACTGTCAACAAAGTAATAGCTGGCCGTACACGTTCGGAGGGGGGACCAAGCTGGAAATAAAACGG
SEQ ID NO: 241: 编码2D7轻链可变区(亲本)的DNA
GATATCCAGATGACACAGACTCCAGCCTCCCTGTCTGCCTCTCTGGGAGACAGAGTCACCATCAGTTGTAGGGCAAGTCAGGACATTAGCAATTTTTTAAACTGGTATCAACAGAAACCGAATGGAACTGTTAAACTCCTAGTCTTCTACACATCAAGATTACACTCAGGAGTCCCATCAAGGTTCAGTGGCAGTGGGTCTGGAGCAGAGCATTCTCTCACCATTAGCAACCTGGAGCAGGAAGATGTTGCCACTTACTTTTGCCAACAGGGTTTTACGCTTCCGTGGACGTTCGGTGGGGGCACCAAGGTGGAAATCAAACGG
SEQ ID NO: 242:编码49C11轻链可变区(亲本)的DNA
GATGTTTTGATGACCCAAACTCCACTCTCCCTGCCTGTCAGTCTTGGAGATCAAGCCTCCTTCTCTTGCAGATCTAGTCAGAGCCTTATACACAGTAATGGAAACACCTATTTACATTGGTACCTGCAGAAGCCAGGCCAGTCTCCAAAGCTCCTGATCTACAAAGTTTCCAACCGATTTTCTGGGGTCCCAGACAGGTTCAGTGGCAGTGGATCAGGGACAGATTTCACACTCAAGATCAGCAGAGTGGAGGCTGAGGATCTGGGAGTTTATTTCTGCTCTCAAAGTACACATGTTCCGTGGACGTTCGGTGGAGGCACCAAGCTGGAAATCAAACGG
SEQ ID NO: 243: 编码15D9轻链可变区(亲本)的DNA
GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACATCAATAGGAGACAGGGTCAGCGTCACCTGCAGGGCCAGTCAGAATGTGGGTCCCAATTTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACTGATTTACTCGGCATCCTACCGATTCAGTGGAGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACTTGGCAGAGTATTTCTGTCAGCAATATAACAGGTATCCATTCACGTTCGGCTCGGGGACAAAGTTGGAAATAAAACGG
SEQ ID NO: 244: 编码2F5轻链可变区(亲本)的DNA
GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCATCACCTGCAAGGCCAGTCAGAATGTGGGTACTGCTGTAGCCTGGTATCAACAGAAACCAGGACAATCTCCTAAACTACTGATTTCCTCGGCATCCAATCGGTACACTGGAGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGTAATATGCAGTCTGAAGACGTGGCAGATTATTTCTGCCAGCAATATAACAGCTATCCTCTCACGTTCGGTGCTGGGACCAAGCTGGAGCTGAAACGG
SEQ ID NO: 245: 编码1B11轻链可变区(亲本)的DNA
GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACTTCAGTAGGAGACAGGGTCAGCGTCACCTGCAAGGCCAGTCAGAATGTGGGTCCTAATGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACTGATTTACTCGGCATCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACTTGGCAGACTATTTCTGTCAGCAATATAACCGCTATCCTCTCACGTTCGGTGCTGGGACCAAACTGGAGCTGAAACGG
SEQ ID NO: 246: 编码2F2轻链可变区(亲本)的DNA
GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACATCAGTAGGAGACAGGGTCAACGTCACCTGCAAGGCCAGTCAGAATGTGGGTACTCATGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACTGATTTACTCGGCATCCTACCGGTACAGTGGCGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAATGTGCAGTCTGAAGACCTGGCAGAGTATTTCTGTCAGCAATATAACAGCTATCCTCGAGCGCTCACGTTCGGTGCTGGGACCAAGCTGGAGCTGAAACGG
SEQ ID NO: 247: 编码11B6轻链可变区(亲本)的DNA
GACATTGTGATGACCCAGTCTCAAAAATTCATGTCCACATCAGTAGGAGACAGGGTCAACGTCACCTGCAAGGCCAGTCAGAATGTGGGTCCTACTGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAAGCACTAATTTACTCGGCATCCTACCGGTACAGTGGAGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAATGTGCACTCTGAAGACTTGGCAGAGTATTTCTGTCAGCAATATAACAGCTATCCATTCACGTTCGGCTCGGGGACAAAGTTGGAAATAAAACGG
SEQ ID NO: 310: 人IgG4恒定区
ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK
SEQ ID NO: 311: 具有S228P突变的人IgG4恒定区
ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK
SEQ ID NO: 312: 具有S228P突变且还有在低pH下促进FcRn相互作用的突变(Xtend)的人IgG4恒定区
ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVLHEALHSHYTQKSLSLSLGK
SEQ ID NO: 313: 人IgK恒定区
TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC。
实施例16
本实施例描述了几种体外测定中重组纯化的高亲和力MASP-3抑制性抗体的功能表征。
方法:
针对以下表征如实施例11和14中所述产生的重组MASP-3 mAb:(i)与人MASP-3和其他物种的MASP-3的结合;(ii)抑制人工底物的切割的能力;(iii)抑制前因子D至因子D切割的能力;(iv)抑制人血清中的补体沉积,和(v)抑制人血清中的兔红细胞裂解,如下:
1. 确定与人和小鼠MASP-3的结合的测定
ELISA测定
用纯化的重组MASP-3 mAb的MASP-3结合测定
人MASP-3
如下进行夹心ELISA测定以测量16种纯化的重组MASP-3抗体与人MASP-3(CCP1-CCP2-SP片段)的结合。将ELISA平板在4℃下在碳酸盐/二碳酸盐缓冲液中用4μg/mL的捕获抗体αM3-259包被过夜。αM3-259是来自用人MASP-3的CCP1-CCP2-SP区域免疫的鸡的高亲合力重组、嵌合鸡-人MASP-3 mAb。结构域作图研究揭示,αM3-259结合来自多种物种(包括人、食蟹猴、小鼠、大鼠和狗)的MASP-3的CCP1-CCP2区域。如图51C中所示,αM3-259也结合MASP-1。
随后将平板用1% BSA/PBS封闭,在PBS中洗涤,然后在室温下与MASP-3 CCP1-CCP2-SP (2 µg/mL)孵育1小时。然后洗涤平板(PBS-T,0.05%),并添加候选MASP-3抗体,随后在室温下孵育1小时。将平板洗涤(PBS-T, 0.05%),并在室温下添加检测抗体(小鼠抗人κ-HRP,SouthernBiotech #9230-05) 1小时。在另一次洗涤(PBS-T, 0.05%)后,将平板用OPT EIA TMB (BD Biosciences #555214)显色(5分钟)。使用Spectramax M5e读板器测量A450处的吸光度读数。
结果
图51A和图51B图示说明人MASP-3 (CCP1-CCP2-SP)的MASP-3 mAb(纯化重组体)的亲合力。如图51A、图51B和表24中所示,MASP-3 mAb对于人MASP-3具有高亲合力,范围为0.241nM到0.023nM。这些值比先前描述的MASP-3 mAb所报道的那些低10至100倍(参见本文实施例7,也作为实施例15公开于WO2013/192240中)。
MASP-3 mAb结合特异性
为了确定高亲和力MASP-3 mab对MASP-3的特异性,进行结合实验以测量16种纯化的重组MASP-3抗体与人MASP-1和人MASP-2的结合。如对于MASP-3结合ELISA所述测定结合,除了将重组MASP-1A (S646A,CCP1-CCP2-SP片段)和MASP-2(CCP1-CCP2-SP片段)直接固定在平板上。
结果
图51C图示说明结合实验的结果,其中显示代表性纯化的重组高亲和力人MASP-3抑制性抗体对于与MASP-3的结合是选择性的并且不结合人MASP-1。
图51D图示说明结合实验的结果,其中显示代表性纯化的重组高亲和力人MASP-3抑制性抗体对于与MASP-3的结合是选择性的并且不结合人MASP-2。
小鼠MASP-3
如上对于人MASP-3所述测量MASP-3 mAb与小鼠MASP-3的结合,除了用αM3-259在平板上捕获重组、全长小鼠MASP-3(SEQ ID NO: 3)。在两个实验中使用的阴性对照mAb是mAb77,从与αM3-259相同的免疫鸡获得的重组的嵌合鸡-人mAb,然而,mAb 77不结合小鼠MASP-3。
结果
图52图示说明代表性MASP-3 mAb(纯化重组体)对于小鼠全长MASP-3的亲合力。如图52中所示,大多数测试的MASP-3 mAb对于小鼠MASP-3也具有高亲合力。
16种重组嵌合MASP-3 mAb对于人和小鼠MASP-3的亲合力值(EC50)概述于表24中。
表24:MASP-3 mAb对于人和小鼠MASP-3的结合亲合力(图51A、51B和52)
Figure 758842DEST_PATH_IMAGE022
还测试MASP-3 mAb-13B1、10D12和4D5中的三种与重组食蟹猴、狗和大鼠MASP-3的结合。这些结果下面概述于表25中。
表25:MASP-3 mAb交叉物种结合实验的概述
MASP-3的物种 Fab结合的排序
13B1 (pM) ≈ 10D12 (pM) ≈ 4D5 (pM)
食蟹猴 13B1 (pM) ≈ 4D5 (pM) > 10D12 (pM)
13B1 (pM) > 10D12 (pM) >> 4D5 (nM)
大鼠 13B1 (pM) ≈ 10D12 (pM) >> 4D5 (nM)
小鼠 10D12 (pM) > 13B1 (pM) >> 4D5 (nM)
如表25中所示,MASP-3 mAb 13B1、10D12和4D5与测试的所有五种物种的MASP-3(人、小鼠、大鼠、狗和食蟹猴)结合。尽管这些mAb以高亲和力(≤500pM)与人结合,但它们以不同亲合力与其他物种的MASP-3结合。
2. 荧光三肽切割测定
背景/基本原理:
除了其已知的天然底物(Iwaki等人, J. Immunol. 187:3751, 2011; Cortesio和Jiang, Arch. Biochem. Biophys. 449:164-170, 2006),已经显示MASP-3水解各种三肽底物(Cortesio and Jiang, Ibid.)。作为非常小的底物,这些分子可以用于将蛋白酶的催化位点作图。三肽切割的抑制指示抑制剂(例如抗体)直接阻断小底物进入催化部位或引起同样拒绝进入的SP结构域中的构象移位。因此,也可以预期抗体通过干扰酶的活性位点来阻断大天然底物的催化。在功能上,这将最接近于MASP-3无效小鼠或3MC患者(MASP-3缺陷的)。
方法
将重组mAb的滴定物(从666 nM至0.91nM的3倍稀释度)在室温下与MASP-3 CCP1-CCP2-SP (197 nM)孵育15分钟。以0.2mM的最终浓度添加三肽底物BOC-V-P-R-AMC (叔丁氧基羰基-Val-Pro-Arg-7-氨基-4-甲基香豆素)(R&D Systems,目录号ES011)。Arg-AMC酰胺键的水解释放AMC,一种高度荧光的基团。使用Spectramax M5e荧光读板器,在37℃下每5分钟记录激发380nm /发射460nm动力学值70分钟。
结果
图53图示说明测量用MASP-3单克隆抗体抑制MASP-3依赖性荧光三肽切割的测定的结果。如图53中所示,测试的MASP-3 mAb分为三个不同的组:
1. 作为MASP-3的肽切割的强抑制剂的MASP-3 mAb:
1A10 (29.77 nM)、1G4 (29.64 nM)、1F3 (32.99 nM)、4B6 (26.03 nM)、4D5(27.54 nM)、10D12 (30.94 nM)和13B1 (30.13 nM).
2. 作为MASP-3的肽切割的弱或非常弱抑制剂的MASP-3 mAb:15D9、11B6、2F5、1E7和2D7
3. 中性或似乎刺激MASP-3的肽切割的MASP-3 mAb:1B11;2F2;77 (对照mAb)
3. 前因子D至因子D切割的抑制。
方法
将活性、重组人MASP-3蛋白(每个反应240ng)与代表性MASP-3 mAb和对照mAb(其结合MASP-1,但不结合MASP-3)在GVB++缓冲液中以9μL的总体积在室温下预孵育15分钟。然后将70ng具有N-末端Strep-tag II表位标签的前因子D(ST-前因子D-His)添加至每个管中,使每个反应的最终体积为10μL。将反应物在37℃的热循环仪中孵育6小时。然后将每个反应物的十分之一在12%Bis-Tris凝胶上电泳以分辨前因子D和活性因子D切割产物。将分离的蛋白转移至PVDF膜,并使用Western印迹通过用生物素化因子D抗体(R&D Systems)检测来分析。
结果
图54显示Western印迹分析,其表明代表性MASP-3 mAb在体外测定中阻断重组MASP-3介导的前CFD切割为CFD的能力。如图54中所示,代表性高亲和力MASP-3抑制性mAb13B1、4B6、1G4、2D7、10D12、1A10、4D5、1E7和1F3小鼠-人嵌合mAb在该测定中显示前CFD切割的部分至完全抑制。
4. 酵母聚糖测定上的因子Bb沉积
方法
将不同浓度的MASP-3 mAb添加至10% CFD耗尽的人血清(ComplementTechnology A336)和GVB + Mg/EGTA (20 nM),并在冰上孵育30分钟,然后添加重组ST-前因子D-His(最终2μg/mL)和酵母聚糖(最终0.1 mg/mL)。酵母聚糖颗粒作为用于补体沉积的活化表面发挥功能。将混合物在37℃下孵育,并通过在酵母聚糖颗粒表面上的补体因子Bb(Quidel抗体A252)的流式细胞术检测来测量APC活性。
结果
图55A图示说明在37℃下在因子D耗尽的人血清中存在不同浓度的MASP-3 mAb1F3、1G4、2D7和4B6的情况下持续70分钟,在酵母聚糖颗粒上的因子Bb沉积的水平(通过以MFI单位测量的流式细胞检测所测定)。
图55B图示说明在37℃下在CFD耗尽的人血清中存在不同浓度的MASP-3 mAb 4D5、10D12和13B1的情况下持续70分钟,在酵母聚糖颗粒上的因子Bb沉积的水平(通过以MFI单位测量的流式细胞检测所测定)。
图55A和55B中所示的结果在下面概述于表26中。
表26:MASP-3 mAb对酵母聚糖上的因子Bb沉积的抑制
(图55A和图55B)
抗体 酵母聚糖上的因子Bb沉积的抑制(IC50 nM)
1F3 0.1
1G4 1.1
2D7 3.5
4B6 0.2
4D5 0.4
10D12 0.5
13B1 0.3
如图55A、图55B和表26中所示,MASP-3 mAb显示人血清中的APC的有效抑制,其中IC50值范围为0.1 nM至3.5 nM。这些结果表明,MASP-3在人血清中的体外模型中的APC活化中起关键作用,并且进一步表明MASP-3抑制性抗体是APC的有效抑制剂。
5. 测量代表性MASP-3 mAb抑制兔红细胞裂解的能力的测定
方法:
为了监测APC在另一个实验环境中的抑制,我们评估代表性MASP-3 mAb阻断人血清中兔红细胞的裂解的能力。将不同浓度的MASP-3 mAb添加至10%因子D耗尽的人血清和GVB + Mg/EGTA (20 nM),并在冰上孵育30分钟,然后添加重组ST-前因子B-His(最终2 µg/mL)和红细胞(最终2.5x108个细胞/mL)。将混合物在37℃下孵育70分钟,并通过稀释反应物并测量吸光度(A405)(其指示游离血红蛋白的水平)测量APC介导的溶血。
结果:
图56A图示说明在CFD耗尽的人血清中存在不同浓度的MASP-3 mAb 1A10、1F3、4B6、4D5、1G4和2F2的情况下兔血红细胞裂解的抑制水平。图56B图示说明在CFD耗尽的人血清中存在不同浓度的MASP-3 mAb 1B11、1E7、1G4、2D7和2F5的情况下兔血红细胞裂解的抑制水平。结果概述于表27中。
表27:通过MASP-3 mAb抑制兔红细胞裂解
(图56A和图56B)
抗体 兔红细胞裂解的抑制(IC50 nM)
1A10 0.2
1F3 0.2
4B6 0.2
4D5 0.1
1G4 2.7
2F2 0.8
1B11 NA
1E7 NA
2D7 5.4
2F5 0.9
如图56A、图56B和表27中所示,MASP-3 mAb显示兔红细胞的APC驱动的溶血的抑制,其中IC50值范围为0.1 nM至5.4 nM。这些结果证实了酵母聚糖测定中MASP-3抗体的观察结果,并进一步证明MASP-3抑制性抗体是APC的有效抑制剂。
6. 3MC患者血清中前因子D切割的抑制
方法
测试代表性重组MASP-3 mAb (4D5)阻断源自正常人血清和3MC患者B(“Pat B”)(在血清中没有可检测到的MASP-3并且在APC中表现出缺陷的个体)的血清的前因子D的重组MASP-3切割(和活化)的能力。
将正常人血清和患者B血清(最终10%)和GVB + Mg/EGTA (30 nM)与无酶或与活性重组(rMASP-3; 0.5 µg/mL)、无活性rMASP-3或活性rMASP-3加MASP-3 mAb 4D5 (最终500 nM)在冰上孵育1小时。添加酵母聚糖(最终0.1 mg/mL),并将混合物在37℃下孵育。2小时后,将样品离心并收集上清液。将样品用针对人因子D产生的山羊抗体(R&D SystemsAF1824)免疫沉淀,热变性并用肽-N-糖苷酶(New England Biolabs P0704L)处理。用SDS-PAGE分辨捕获和去糖基化的蛋白,并将凝胶用生物素化的抗CFD (R&D Systems BAF1824)和高灵敏度链霉抗生物素蛋白-HRP (Thermo Fischer Scientific 21130)进行电泳印迹以进行Western印迹分析。
结果:
图57显示分析在活性rMASP-3、无活性rMASP-3和活性rMASP-3加mAb 4D5存在的情况下3MC患者B血清中的前因子D和因子D的水平的Western印迹。如图57中所示,正常人血清主要含有成熟形式,而患者B血清主要含有因子D的酶原形式。如图57中进一步所示,在酵母聚糖存在的情况下的活性rMASP-3引起患者3血清中的前因子D的切割,而无活性(酶原)形式的MASP-3则不是如此。最后,如图57中所示,MASP-3 mAb 4D5在活性rMASP-3存在的情况下阻断患者3血清中前因子D的切割。这些结果进一步表明MASP-3在APC活化中前因子D的切割中的作用,并且表明MASP-3抑制性mAb能够阻断MASP-3介导的前因子D切割,从而阻断APC。
实施例17
代表性MASP-3抑制性mAb 10D12和13B1在体内抑制APC的能力的分析。
1.mAb M3-1 (13B1)和10D12对APC的体内抑制:
方法:
为了确定MASP-3 mAb 13B1 (M3-1)和10D12在体内抑制APC的效力,一组小鼠(n =4)接受10 mg/kg mAb 13B1的单次静脉内尾静脉注射,且第二组小鼠(n = 4)接受10 mg/kgmAb 10D12的单次静脉内尾静脉注射。使用从动物收集的血液来制备血清,为离体测定中的APC活性的流式细胞术评估提供基质,所述离体测定测量酵母聚糖颗粒上的C3(也是C3b和iC3b,Dako F020102-2)沉积的水平。将从在剂量前时间点和多次剂量后时间点(96小时、1周和2周)收获的血液制备的血清稀释至7.5%,并且添加酵母聚糖颗粒(最终0.1 mg/mL)以诱导APC。将抗体处理的小鼠与给予单次静脉内剂量的媒介物的一组对照小鼠(n = 4)进行比较。
结果
图58图示说明在野生型小鼠中的mAb M3-1 (13B1)、mAb 10D12或媒介物的单次剂量后各个时间点在酵母聚糖颗粒上的C3沉积的水平。如图58中所示,在剂量前时间点,三种条件显示相当水平的APC活性。在96小时和两个后面时间点,两个mAb治疗组均显示全身性APC活性的接近完全消除,而媒介物治疗组的APC活性仍然不减弱。
这些结果表明,MASP-3 mAb M3-1 (13B1)和mAb 10D12是小鼠体内APC的有效抑制剂。
2. 用MASP-3 mAb 10D12治疗的小鼠中的因子B的状态
方法
在将因子B酶原转化为活性蛋白水解酶期间,因子B被因子D切割成Ba (~30 kDa)和Bb (~60 kDa)片段。如下测定从用MASP-3 mAb 10D12治疗的小鼠获得的小鼠血清中的Ba片段的状态。
向小鼠(n=4)给予10 mg/kg mAb 10D12的两次静脉内尾静脉注射。治疗分开7天进行,并且在第二次注射后3天从动物收集血液。四只小鼠的第二集合接受媒介物(PBS)的单次静脉内剂量。从两组收集的血液用于制备血清,提供用于补体活化的基质。将酵母聚糖颗粒(最终0.1 mg/mL)添加至稀释的血清(最终7.5%),并在37℃下孵育35分钟。
结果
作为APC活化的量度,图59显示Western印迹,其分析从用mAb 10D12或PBS处理的小鼠获得并用酵母聚糖刺激的小鼠血清中的Ba片段的状态。图59中的每个泳道表示不同的小鼠,并且为了比较的目的,泳道交替显示来自与MASP-3 mAb治疗的小鼠相邻的代表性媒介物小鼠的血清。来自用媒介物或mAb 10D12治疗的小鼠的两种对照条件分别在泳道1和2中(从印迹的左侧开始)显示为在酵母聚糖不存在的情况下血清样品中存在的Ba的基础水平的代表。泳道3至10均显示与酵母聚糖孵育后存在的Ba片段的水平。在所有情况下,与媒介物治疗的动物相比,MASP-3 mAb治疗的小鼠表明Ba片段的水平降低。
3. 来自用mAb 10D12治疗小鼠的血清抑制溶血
方法
作为MASP-3抑制性抗体的APC抑制的另一种量度,我们评估了与来自媒介物对照治疗的小鼠的血清相比MASP-3抗体阻断来自用代表性MASP-3 mAb 10D12治疗的小鼠的血清中兔红细胞的裂解的能力。
向小鼠(n=4/组)给予媒介物对照(PBS)、10 mg/kg MASP-3 mAb 10D12或25 mg/kgMASP-3 mAb 10D12的三次静脉内尾静脉注射。治疗彼此分开7天进行,并且在第三次注射后3天从动物收集血液。血液用于制备血清,为溶血反应提供了基质。将红细胞(最终2.5 x108个细胞/mL)添加至GVB + Mg/EGTA (20 nM)中的来自四只小鼠的20%合并血清中。将混合物在37℃下孵育,并通过稀释反应物并测量吸光度(A405)来测量APC介导的溶血。
结果
图60图示说明来自用MASP-3 mAb 10D12 (10 mg/kg或25 mg/kg)治疗的小鼠或媒介物对照治疗的小鼠的20%血清的溶血的抑制水平。如图60中所示,与媒介物治疗的小鼠相比,来自用10mg/kg和25 mg/kg的MASP-3 mAb 10D12治疗的小鼠的血清在1小时测试期间表明较少的总体溶血。
结果的总体概述
如本实施例中所述,代表性高亲和力MASP-3抑制性mAb 13B1和10D12在体内抑制APC。如实施例12中所述,确定MASP-3单克隆抗体13B1(也称为mAb M3-1)为与阵发性夜间血红蛋白尿(PNH)有关的小鼠模型中的缺乏Crry的红血细胞的存活提供了明显益处。如实施例13中所述,确定MASP-3 mAb M3-1以剂量依赖性方式降低临床关节炎评分的发生率和严重程度。
实施例18
本实施例描述高效力MASP-3抑制性mAb的表位结合分析的结果。
1. 竞争结合分析
方法
用捕获抗体αM3-259 (IgG4同种型mAb,已经显示其结合MASP-1和MASP-3的CCP1-CCP2区域)包被96孔ELISA测定平板。经由捕获抗体αM3-259将全长人MASP-3蛋白固定在平板上。在分开、未包被的孔中,将IgG4同种型的一种测试MASP-3 mAb的2倍稀释系列与恒定浓度的IgG1同种型的另一种测试MASP-3抗体混合。将混合物添加至包被的孔中并使其与捕获的MASP-3结合。通过使用HRP缀合的针对人IgG1铰链区的抗体(Southern Biotech 9052-05)和TMB底物试剂盒(BD Biosciences 555214)检测IgG1同种型来确定两种抗体之间的潜在竞争。
结果
图61A-61E图示说明竞争结合分析的结果。
图61A图示说明竞争结合分析以鉴定阻断mAb 4D5 (IgG1)和人MASP-3之间的相互作用的MASP-3 mAbs (IgG4)的结果。
图61B图示说明竞争结合分析以鉴定阻断mAb 10D12 (IgG1)和人MASP-3之间的相互作用的MASP-3 mAbs (IgG4)的结果。
图61C图示说明竞争结合分析以鉴定阻断mAb 13B1 (IgG1)和人MASP-3之间的相互作用的MASP-3 mAbs (IgG4)的结果。
图61D图示说明竞争结合分析以鉴定阻断mAb 1F3 (IgG1)和人MASP-3之间的相互作用的MASP-3 mAbs (IgG4)的结果。
图61E图示说明竞争结合分析以鉴定阻断mAb 1G4 (IgG1)和人MASP-3之间的相互作用的MASP-3 mAbs (IgG4)的结果。
来自图61A至61E的数据在下面概述于表28中。
这些数据表明MASP-3 mAb 4D5、10D12、13B1、1A10、1F3和1G4在人MASP-3上共享共同的表位或重叠的表位。令人惊讶的是,1G4具有非常有限的阻断其他五种mAb与MASP-3结合的能力,但那些mAb几乎完全阻断1G4本身与MASP-3的结合。
2. mAb与代表线性和不连续MASP-3表位的肽的结合的分析
方法:
由Pepscan评估16种MASP-3 mAb中的14种以鉴定它们结合的MASP-3的区域。为了重构靶分子的线性和潜在不连续表位,合成对应于SEQ ID NO: 2 (人MASP-3)的氨基酸残基299至728的肽文库。MASP-3的氨基酸残基1-298不存在于免疫原中,且不包括在该分析中。
Pepscan表位分析包括使用CLIPS技术,其在结构上将肽固定至限定的三维结构中(参见Timmerman等人, J Mol Recog. 20:283-299, 2007和Langedijk等人, Analytical Biochemistry 417:149-155, 2011). 在基于Pepscan的ELISA中测试每种抗体与每种合成肽的结合。
结果
对于分析的每种抗体,来自Pepscan的肽结合结果描述如下,并且概述于表4、表28和图62-67中。
抗体1F3、4B6、4D5和1A10 (组IA)
当在中度严格条件下测试时,抗体1F3、4B6、4D5和1A10结合不连续表位模拟物,并且还结合简单约束和线性模拟物。数据分析表明抗体1F3、4B6、4D5和1A10都主导地识别MASP-3的肽延伸段498VLRSQRRDTTVI509 (SEQ ID NO: 9)。该肽紧邻于活性位点组氨酸H497定位。对于具有不连续模拟物的这些抗体获得的数据表明,MASP-3的肽延伸段544DFNIQNYNHDIALVQ558 (SEQ ID NO: 11)、639GNYSVTENMFC649 (SEQ ID NO: 13)和704VSNYVDWVWE713 (SEQ ID NO: 14)也有助于结合。肽544DFNIQNYNHDIALVQ558 (SEQ ID NO:11)含有活性位点天冬氨酸(D553)。
抗体10D12 (组IB)
当在中度严格条件下测试时,抗体10D12结合具有MASP-3的核心序列498VLRSQRRDTTVI509 (SEQ ID NO: 9)的肽,与活性位点组氨酸H497相邻的序列。
抗体13B1 (组IC)
当在中度严格条件下测试时,抗体13B1识别包含MASP-3的肽延伸段494TAAHVLRSQRRDTTV508 (SEQ ID NO: 10)和626PHAECKTSYESRS638 (SEQ ID NO: 12)的不连续表位,其中肽延伸段626PHAECKTSYESRS638 (SEQ ID NO: 12)似乎是表位的主要部分,因为它也可以以简单的约束形式结合。肽494TAAHVLRSQRRDTTV508 (SEQ ID NO: 10)包括活性位点组氨酸H497。
抗体1G4 (组II)
当在低严格条件下测试时,抗体1G4识别包含MASP-3的肽延伸段454RNAEPGLFPWQ464 (SEQ ID NO: 17)、514EHVTVYLGLH523 (SEQ ID NO: 19)和667AFVIFDDLSQRW678 (SEQ ID NO: 23)的不连续表位,其中肽延伸段667AFVIFDDLSQRW678(SEQ ID NO: 23)是表位的主要部分。主要肽位于活性位点丝氨酸S664的三个氨基酸内。
抗体1E7和2D7 (组IIIA)
当分别在高和低严格条件下测试时,抗体1E7和2D7识别包含MASP-3的肽延伸段454RNAEPGLFPWQ464 (SEQ ID NO: 17)、514EHVTVYLGLH523 (SEQ ID NO: 19)和667AFVIFDDLSQRW678 (SEQ ID NO: 23)的不连续表位,其中肽延伸段667AFVIFDDLSQRW678(SEQ ID NO: 23)是表位的主要部分,且其位于活性位点丝氨酸S664的三个氨基酸内。
抗体2F5和15D9 (组IIIB)
当在低严格条件下测试时,抗体2F5和15D9主要识别包含MASP-3的肽延伸段454RNAEPGLFPWQ464 (SEQ ID NO: 17)、479KWFGSGALLSASWIL493 (SEQ ID NO: 18)、562PVPLGPHVMP571 (SEQ ID NO: 20)和667AFVIFDDLSQRW678 (SEQ ID NO: 23)的不连续表位。肽479KWFGSGALLSASWIL493 (SEQ ID NO: 18)和667AFVIFDDLSQRW678 (SEQ ID NO:23)分别位于活性位点残基H497和S664的四个或三个氨基酸内。
抗体1B11 (组IIIC)
当在中度严格条件下测试时,抗体1B11识别包含MASP-3的肽延伸段435ECGQPSRSLPSLV447 (SEQ ID NO: 16)、454RNAEPGLFPWQ464 (SEQ ID NO: 17)、583APHMLGL589(SEQ ID NO: 21)和614SDVLQYVKLP623 (SEQ ID NO: 22)的不连续表位。
表28:表位结合分析的概述
Figure 375768DEST_PATH_IMAGE023
/>
Figure 462673DEST_PATH_IMAGE024
图62提供显示如通过Pepscan分析确定的MASP-3 mAb在人MASP-3上的接触区域的示意图。如图62中所示,所有MASP-3 mAb在含有MASP-3的SP结构域的β链中具有接触区域。一个mAb 1B11也在MASP-3的α链中的CCP2和SP结构域之间具有接触区域。
图63A至67显示说明人MASP-3的CCP1/2/SP结构域上的高亲和力MASP-3 mAb的接触区域的3-D模型,其中MASP-3的SP结构域活性位点面向前面,并且催化三联体显示为侧链。
图63A显示人MASP-3和高亲和力MASP-3 mAb 1F3、4D5和1A10之间的接触区域,包括aa残基498-509 (SEQ ID NO: 9)、aa残基544-558 (SEQ ID NO: 11)、aa残基639至649(SEQ ID NO: 13)和aa残基704至713 (SEQ ID NO: 14)。
图63B显示人MASP-3和高亲和力MASP-3 mAb 10D12之间的接触区域,包括aa残基498至509(SEQ ID NO: 9)。
图64显示人MASP-3和高亲和力MASP-3 mAb 13B1之间的接触区域,包括aa残基494至508(SEQ ID NO: 10)和aa残基626至638(SEQ ID NO: 12)。
图65显示人MASP-3和高亲和力MASP-3 mAb 1B11之间的接触区域,包括aa残基435至447(SEQ ID NO: 16)、aa残基454至464(SEQ ID NO: 17)、aa残基583至589(SEQ ID NO:21)和aa残基614至623(SEQ ID NO: 22)。
图66显示人MASP-3和高亲和力MASP-3 mAb 1E7、1G4和2D7之间的接触区域,包括aa残基454至464(SEQ ID NO: 17)、aa残基514至523(SEQ ID NO: 19)和aa残基667至678(SEQ ID NO: 23)。
图67显示人MASP-3和高亲和力MASP-3 mAb 15D9和2F5之间的接触区域,包括aa残基454至464(SEQ ID NO: 17)、aa残基479至493(SEQ ID NO: 18)、aa残基562至571(SEQ IDNO: 20)和aa残基667至678(SEQ ID NO: 23)。
总之,对于14种抗体中的12种获得了结论性结合概况。所有12种作图的抗体识别肽酶S1结构域内的溶剂暴露的表位。许多表位决定簇与活性位点催化性三联体的残基(H497、D553、S664)的密切邻近与其中高亲和力抑制性MASP-3 mAb通过干扰酶底物相互作用阻断酶活性的模型一致。
实施例19
本实施例描述代表性MASP-3 mAb的人源化和潜在的翻译后修饰位点的工程改造。
方法
1. 代表性高亲和力MASP-3 mAb的人源化
方法
为了降低免疫原性风险,通过CDR-移植方法将代表性高亲和力MASP-3抑制性抗体4D5、10D12和13B1人源化。将每种MASP-3抗体的CDR移植至最接近的共有人构架序列中。通过Quickchange定点诱变(Agilent Technologies)修饰一些Vernier区残基。将所得人源化VH和VL区转移至基于pcDNA3.1的人IgG1或IgG4和IgK表达构建体中,并且重组抗体如上所述进行表达和纯化。通过使用单价Fab片段的ELISA测定人源化抗体的亲和力,并且通过使用完整IgG4格式的C3沉积测定来评估效力。
结果
下面提供mAb 4D5、10D12和13B1的重链可变区和轻链可变区的代表性人源化版本的氨基酸序列。CDR (Kabat)加下划线。
4D5:
h4D5_VH-14 (SEQ ID NO: 248)
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTDDINWVRQAPGQGLEWIGWIYPRDDRTKYNDKFKDKATLTVDTSSNTAYMELSSLRSEDTAVYYCSSLEDTYWGQGTLVTVSS
h4D5_VH-19 (SEQ ID NO: 249)
QVQLVQSGAEVKKPGASVKVSCKASGYTFTTDDINWVRQAPGQGLEWIGWIYPRDDRTKYNDKFKDRATLTVDTSSNTAYMELSSLRSEDTAVYYCSSLEDTYWGQGTLVTVSS
h4D5_VL-1 (SEQ ID NO: 250)
DIVMTQSPDSLAVSLGERATINCKSSQSLLNSRTRKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCKQSYNLYTFGQGTKVEIKR
10D12:
h10D12_VH-45 (SEQ ID NO: 251)
QIQLVQSGSELKKPGASVKVSCKASGYIFTSYGMSWVRQAPGKGLKWMGWINTYSGVPTYADDFKGRFVFSLDTSVRTPYLQISSLKAEDTAVYFCARGGEAMDYWGQGTLVTVSS
h10D12_VH-49 (SEQ ID NO: 252)
QIQLVQSGSELKKPGASVKVSCKASGYIFTSYGMSWVRQAPGKGLKWMGWINTYSGVPTYADDFKGRFVFSLDTSVRTPYLQISSLKAEDTATYFCARGGEAMDYWGQGTLVTVSS
h10D12_VL-21 (SEQ ID NO: 253)
DVLMTQTPLSLSVTPGQPASISCKSSQSLLDSDGKTYLNWLLQRPGQSPKRLIYLVSKLDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCWQGTHFPWTFGQGTKVEIKR
13B1
h13B1_VH-9 (SEQ ID NO: 254)
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGKWIEWVRQAPGQGLEWIGEILPGTGSTNYAQKFQGRATFTADSSTSTAYMELSSLRSEDTAVYYCLRSEDVWGQGTLVTVSS
h13B1_VH-10 (SEQ ID NO: 255)
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGKWIEWVRQAPGQGLEWIGEILPGTGSTNYNEKFKGRATFTADSSTSTAYMELSSLRSEDTAVYYCLRSEDVWGQGTLVTVSS
h13B1_VL-1 (SEQ ID NO: 256)
DIVMTQSPDSLAVSLGERATINCKSSQSLLNSRTRKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCKQSYNIPTFGQGTKVEIKR。
代表性人源化4D5、10D12和13B1抗体对于人MASP-3的亲和力在下面显示于表29中。
表29:代表性人源化MASP-3 mAb与MASP-3的结合
Figure 264276DEST_PATH_IMAGE025
人源化构架序列与人种系构架序列的百分比同一性:
h4D5_VH-14=90%; h4D5_VH-19=91%; h4D5_VL-1=100%;
h10D12_VH-45=92%; h10D12_VH-49=91%; h10D12_VL-21=93%;
h13B1_VH-9=95%; h13B1_VH-10=94%; h13B1_VL-1=100%。
2. 诱变代表性MASP-3 mAb以除去4D5、10D12和13B1的轻链可变区的CDR-1中的Asn/Asp修饰位点
分析代表性高亲和力MASP-3抑制性mAb 4D5、10D12和13B1用于翻译后修饰。天冬酰胺残基与后续甘氨酸、丝氨酸、组氨酸、丙氨酸或天冬酰胺(“NG”、“NS”、“NH”、“NA”或“NN”基序)通常易受天冬酰胺侧链的酰胺基团的水解或“脱酰胺基”的影响。天冬氨酸残基与后续的甘氨酸或脯氨酸(“DG”或“DP”基序)通常易受相互转化或“异构化”的影响。此类修饰导致电荷异质性并且如果它们存在于结合界面中则可以影响抗体功能。它们也可以增加片段化、免疫原性和聚集的风险。
在4D5、10D12和13B1的轻链可变区的CDR-1中鉴定了潜在的翻译后修饰基序。
4D5和13B1在轻链的CDR1中含有一个可能的Asn脱酰氨基位点(在下表30中加下划线的SEQ ID NO: 142的位置8和9显示为“NS”。如下表30中进一步所示,10D12在轻链的CDR1中含有一个可能的Asp异构化位点。
通过定点诱变产生这些MASP-3 mAb的人源化形式的变体,如表30中所示。如上所述表达和纯化变体。通过使用单价Fab片段的ELISA测定亲和力,并且通过使用完整IgG4格式的C3沉积测定来评估效力,如上所述。
表30:4D5、10D12和13B1的CDR-L1的变体
Figure 436631DEST_PATH_IMAGE026
表31:人源化4D5、10D12和13B1 mAb的诱变候选与人MASP-3的结合
Figure 591669DEST_PATH_IMAGE027
表32:MASP-3抗体人源化VH序列(CDR和FR区域,Kabat)
Figure 798659DEST_PATH_IMAGE028
/>
Figure 505584DEST_PATH_IMAGE029
/>
Figure 165236DEST_PATH_IMAGE030
/>
Figure 123964DEST_PATH_IMAGE031
具有变体的代表性人源化轻链可变区:
h4D5_VL-1-NA (SEQ ID NO: 278)
DIVMTQSPDSLAVSLGERATINCKSSQSLLASRTRKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCKQSYNLYTFGQGTKVEIKR
h10D12_VL-21-GA (SEQ ID NO: 279)
DVLMTQTPLSLSVTPGQPASISCKSSQSLLDSDAKTYLNWLLQRPGQSPKRLIYLVSKLDSGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCWQGTHFPWTFGQGTKVEIKR
h13B1_VL-1-NA (SEQ ID NO: 280)
DIVMTQSPDSLAVSLGERATINCKSSQSLLASRTRKNYLAWYQQKPGQPPKLLIYWASTRESGVPDRFSGSGSGTDFTLTISSLQAEDVAVYYCKQSYNIPTFGQGTKVEIKR。
表33:MASP-3抗体人源化VL序列(CDR和FR区域,Kabat)[加LC-CDR1中的变体]
Figure 277472DEST_PATH_IMAGE032
/>
Figure 296243DEST_PATH_IMAGE033
/>
Figure 302245DEST_PATH_IMAGE034
/>
Figure 64665DEST_PATH_IMAGE035
实施例20
在多发性硬化的小鼠模型中的代表性MASP-3抑制性mAb 13B1的分析。
背景/基本原理:实验性自身免疫性脑脊髓炎(EAE),一种获得性炎性和脱髓鞘性自身免疫性疾病,是多发性硬化症(MS)的建立动物模型。表明APC在EAE的发展/进展中起重要作用的证据由该疾病在用因子B中和抗体治疗的小鼠中减弱的报道提供(Hu等人, Mol. Immunol. 54:302, 2013).本实施例描述了EAE模型中的代表性高亲和力MASP-3抑制性抗体13B1的分析。
方法
EAE诱导
购自Hooke Laboratories (Lawrence, MA)的用于诱导EAE的试剂盒用于在该研究中诱导EAE。该试剂盒含有完全弗氏佐剂(CFA)中的神经抗原MOG35-55以及百日咳毒素。
将30只野生型C57B1/6J雌性小鼠用于该研究,并在EAE诱导前适应于该设施至少一周。小鼠在诱导时为约10周龄。如下表34中所示,在诱导时,每只小鼠接受MOG35-55的两次100μL皮下(sc)注射和100μL(400ng)百日咳毒素的一次腹膜内(ip)注射。在第一次注射后24小时给予百日咳毒素的第二次注射。
治疗:将30只小鼠分成三组,每组10只,并用不相关的同种型对照mAb 10 mg/kgi.v.);mAb 13B1 (抗MASP-3, 10 mg/kg i.v.)或mAb 1379 (抗因子B (Hu等人, Mol. Immunol. 54:302, 2013) 40 mg/kg i.p.)治疗。如表34中所示,每周用同种型对照mAb和MASP-3 mAb 13B1给药,在从-16天开始并在第+12天结束。根据Hu等人, Mole Immunol 54:302-308, (2013)中描述的给药方案,从第+3天至第+11天每隔一天用mAb 1379给药。
表34:用MASP-3 mAb 13B1的EAE实验的实验方法
Figure 980668DEST_PATH_IMAGE036
评分:每隔一天检查小鼠,直到出现症状,其后它们每天检查一次。如预期,疾病的首次症状在免疫后7-12天出现。根据下面表35中所示的标度将小鼠评分。
表35:EAE模型评分标准
Figure 904762DEST_PATH_IMAGE037
结果:
图68图示说明用MASP-3抑制性mAb 13B1 (10mg/kg)、因子B mAb 1379 (40 mg/kg)或同种型对照mAb (10 mg/kg)治疗的小鼠中的EAE模型的结果,其中向下指向的箭头指示抗因子B抗体的给药,且向上指向的箭头指示mAb 13B1的最后剂量。如图68中所示,与同种型对照相比,用MASP-3抑制性mAb 13B1和因子B mAb 1379治疗的小鼠表现出根据表35中所示的参数评分的临床症状的改善。
根据上述,预期MASP-3抑制性抗体,例如本文公开的高亲和力MASP-3抑制性抗体在患有多发性硬化症、巴洛同心性硬化、视神经脊髓炎、Marburg多发性硬化症、Schilder氏病、肿起性多发性硬化症和急性播散性脑脊髓炎(ADM)的对象的治疗和/或康复中是有益的(神经保护或神经再生的)。
实施例21
在食蟹猴中用代表性高亲和力MASP-3 mAb的药效学研究。
背景/基本原理:如啮齿动物研究中所表明(图44),高亲和力MASP-3抑制性抗体能够在体内抑制稳态(静息)前因子D成熟。本实施例描述了在食蟹猴中进行的研究,其确定代表性高亲和力MASP-3抑制性mAb是否能够抑制非人灵长类动物中的APC活性。
方法:为了证实MASP-3在非人灵长类动物中的APC中发挥功能且高亲和力MASP-3抗体能够抑制非人灵长类动物中的APC,向9只食蟹猴(每种mAb条件3只动物)给予三种代表性高亲和力MASP-3抑制性抗体之一的单次5 mg/kg静脉内剂量:h4D5X、h10D12X或h13B1X。(“h”是指人源化的,“X”是指含有稳定化S228P氨基酸取代的IgG4恒定铰链区(SEQ ID NO:312)和具有S228P突变且还有促进在低pH下的FcRn相互作用的突变的突变人IgG4恒定区)。经三周或更长的时段以定期时间间隔收集血浆(EDTA)和血清样品。
采用两种测定法来测量来自治疗猴的血清中的APC活性。第一种测定法评价沉积在添加至稀释血清中的酵母聚糖珠上的补体因子Bb的水平。第二个测定法测量酵母聚糖活化的APC的流体相产物,补体因子Ba和Bb以及C3a。
使用因子Bb抗体A252(Quidel)的流式细胞术用于检测沉积在酵母聚糖上的因子Bb。作为用于测定在完全抑制APC后测定中的背景信号的方法,向从MASP-3 mAb治疗的食蟹猴制备的血浆(最终5%,在GVB + Mg/EGTA中稀释)的等分试样中掺入300nM抑制因子D抗体。为了确定通过静脉内递送至猴的MASP-3 mAb的APC抑制程度,在测试因子Bb沉积在酵母聚糖上之前,向稀释血清的另一等分试样中掺入300nM中性同种型对照抗体(其没有APC抑制活性)。将掺入的抗体-血清混合物在冰上孵育30分钟,然后添加酵母聚糖(最终0.1 mg/mL)。将混合物在37℃下孵育65分钟,并通过在酵母聚糖颗粒表面上的补体因子Bb(Quidel抗体A252)的流式细胞术检测来测量APC活性。
为了确定流体相标志物Ba、Bb和C3a的产生,通过将从抗MASP-3 mAb治疗的食蟹猴制备的血清(最终5%,在GVB + Mg/EGTA中稀释)中的酵母聚糖(最终1 mg/mL)孵育而在离体测定中诱导APC。将混合物在37℃下孵育40分钟,并且通过基于ELISA的补体端点检测来测量APC活性。使用市售的ELISA试剂盒(Quidel)在反应上清液中检测Ba、Bb和C3a。通过将治疗前值设置为100%活性并且将孵育、但未暴露于酵母聚糖的治疗前样品设置为0%活性来将所有测试的吸光度值进行归一化。
为了将APC抑制程度与MASP-3 mAb治疗的猴中的抗体与靶标比率相关联,定量血清MASP-3和抑制性MASP-3 mAb水平。通过夹心ELISA测定法测量血清MASP-3。将MASP-3蛋白捕获在具有αM3-259的平板(在实施例16中描述)上。首先将血清样品(1:40稀释)与未标记(非生物素化)MASP-3 mAb(对应于治疗mAb)在37℃下孵育1小时,然后进一步1:250(最终1:10,000)稀释并添加至平板并在37℃下孵育另一小时。洗涤平板,并使用mAb 10D12的生物素化版本作为检测抗体。使用在检测步骤前的大量血清稀释液来解偶联靶标和治疗mAb,并且防止治疗抗体与检测抗体之间的竞争。将平板洗涤多次后,使用链霉抗生物素蛋白-HRP用于最终检测步骤。在读板机上收集A450的吸光度值。从通过测定重组、全长cyno MASP-3蛋白产生的标准曲线外推MASP-3血清浓度。遵循制造商的说明书,使用人TherapeuticIgG4 ELISA试剂盒(Cayman Chemicals)检测存在于血清中的抗MASP-3抗体的量。
使用Western印迹分析来分析用mAb h13B1X的单次5 mg/kg静脉内剂量治疗后随着时间(小时)推移的来自食蟹猴的血清中的前因子D和因子D的水平。简要描述,通过将在治疗前(-120小时、-24小时)和治疗后(72小时、168小时、336小时、504小时、672小时和840小时)的不同时间点获得的20μL食蟹猴血浆与PBS和11.2μL抗CFD抗体(0.5μg/μL)在400μL的总体积中在4℃下混合1小时来进行Western印迹分析。添加12μL蛋白A/G Plus琼脂糖(Santa Cruz Biotech),并将混合物在4℃下孵育过夜。通过在4℃下以1000 x g离心5分钟来收集免疫沉淀物。将沉淀物用PBS洗涤5次。最终洗涤后,将沉淀物重新悬浮于30μl的1x糖蛋白变性缓冲液中,并通过在100℃加热反应10分钟来使糖蛋白变性。将10X G2反应缓冲液、10% NP-40和2.5μL肽-N-糖苷酶(New England Biolabs, P0704L)添加至每个管中,并将反应物在37℃下孵育2小时。通过以1000 x g离心5分钟来沉淀琼脂糖珠,并将20μL上清液收集至新管中。用SDS-PAGE (NuPAGE 12% Bis-Tris Mini Gel)分辨捕获和去糖基化的蛋白,并将凝胶用生物素化的抗CFD (R&D Systems BAF1824)和Pierce ™高灵敏度链霉抗生物素蛋白-HRP (Thermo Fischer Scientific 21130)进行电泳印迹以进行Western印迹分析。
结果
图69图示说明在时间= 0用高亲和力MASP-3 mAb h13B1X的单次治疗后随时间推移从三只食蟹猴组获得的血清样品中的APC活性。该图显示流式细胞测定中的平均MFI,所述流式细胞测定检测在用APC抑制因子D mAb或中性同种型对照mAb掺入的5%血清中的酵母聚糖颗粒表面上的补体因子Bb。如图69中所示,早在4小时时,动物表现出降低的APC活性。如果MASP-3抗体治疗与因子D抑制一样有效地阻断APC,则两种掺入抗体条件将表明在剂量后样品中的相同的Bb沉积抑制水平,但在剂量前(或时间= 0;图69)条件下不是如此。如图69中所示,到治疗后72小时,APC活性降低到通过将因子D mAb添加至血浆样品所达到的活性。如通过与掺入的因子D抗体的比较所实验确定的由于h13B1X治疗导致的几乎完全抑制持续直至剂量后336小时(14天)。因此,这些结果表明用高亲和力MASP-3抑制性mAb的治疗提供非人灵长类动物中APC的完全、持续的抑制。
图70图示说明如通过从用高亲和力MASP-3抑制性mAb h4D5X、h10D12X或h13B1X的单次5 mg/kg静脉内剂量治疗的食蟹猴组(3只动物/组)获得的血清样品中的酵母聚糖上的Bb沉积所测定的APC活性。如上所述收集Bb沉积数据。通过将掺入非抑制性、同种型对照抗体的样品的治疗前MFI设置为100%活性,并将与50mM EDTA一起孵育(以抑制所有补体活性)的治疗前样品设置为0%活性,将治疗时间点的APC活性归一化。用于图70的h13BX治疗数据也反映于图69中。如图70中所示,用所有三种高亲和力MASP-3抑制性抗体的治疗导致APC的大于95%抑制。h4D5X-、h10D12X-和h13B1X-治疗的动物分别将APC的至少90%抑制维持6.7、11.7和16天。因此,这些结果表明用这些代表性高亲和力MASP-3抑制性mAb的治疗以单次5 mg/kg剂量提供非人灵长类动物中APC的持续的抑制。
图71A-C图示说明APC活性的额外量度。在用如上所述的h4D5X、h10D12X和h13B1X的单一5 mg/kg静脉内剂量处理后,在酵母聚糖处理的从食蟹猴组(3只动物/组)获得的稀释血清样品中随时间测量流体相Ba(图71A)、Bb(图71B)和C3a(图71C)。
如图71A-C中所示,所有三种高亲和力MASP-3抑制性抗体的单次施用导致APC的抑制,如通过三个不同的流体相终点所定义。这些数据与图70的Bb沉积研究中证明的APC抑制水平一致,并进一步说明这些mAb持续多周抑制途径的效力。
图72A-C图示说明如通过流体相Ba产生测定的APC活性相对于在用h4D5X(图72A)、h10D12X(图72B)或h13B1X(图72C)处理的猴血清中检测到的单体MASP-3和MASP-3 mAb抗体的摩尔比的关系。图72A-C中的每个小图表示来自一只猴的数据。本研究中使用的猴对象和获得的血清(或血浆)与上述那些相同(图69、70和71)。
图72A-C图示说明在完全APC抑制的时间点的靶标(MASP-3)与高亲和力MASP-3抑制性抗体h4D5X(图72A)、h10D12X(图72B)和h13B1X(图72C)的摩尔比,通过流体相Ba所测量。为了参考目的,1:1靶标与抗体的摩尔比每个图中显示为虚线。如图72A-C中所示,摩尔比在约2:1至约2.5:1(靶标与抗体)范围内的靶标(MASP-3)与高亲和力MASP-3抑制性mAbh4D5X、h10D12X和h13B1X足以完全抑制APC。这些数据表明,这三种代表性MASP-3抑制性mAb是有效、高亲和力的MASP-3抑制性抗体,其当以小于靶标浓度的摩尔浓度存在时能够抑制APC。这些效力水平强烈地表明,mAb可能临床用于治疗由APC引起的疾病或适应症。
图73显示分析用mAb h13B1X的单次5 mg/kg静脉内剂量治疗前后随着时间(小时)的来自食蟹猴的血清中的前因子D和因子D的水平的Western印迹。如图73中所示,在单剂量的mAb h13B1X之后,因子D作为前因子D在血浆中存在至少336小时(14天)。
结果概述
如实施例11中所述,向小鼠单剂量施用高亲和力MASP-3抑制性抗体mAb 13B1导致全身性替代途径补体活性的接近完全消除至少14天。如实施例12中进一步描述,在与PNH相关的良好建立的动物模型中进行的研究中,表明mAb 13B1显著地改善PNH样红血细胞的存活且比C5抑制显著更好地保护PNH样红血细胞。如实施例13中所述,进一步表明mAb 13B1降低关节炎小鼠模型中疾病的发生率和严重程度。本实施例中的结果表明代表性高亲和力MASP-3抑制性mAb 13B1、10D12和4D5在阻断灵长类动物中的替代途径方面是高度有效的。向食蟹猴单剂量施用mAb 13B1、10D12或4D5导致全身性替代途径活性的持续消除持续约16天。用高亲和力MASP-3抑制性抗体治疗的食蟹猴中替代途径消除的程度与通过体外因子D阻断实现的程度相当,表明通过MASP-3抑制性抗体完全阻断因子D转化。因此,高亲和力MASP-3抑制性mAb在治疗患有与替代途径活性过度相关的疾病的患者中具有治疗效用,所述疾病例如阵发性夜间血红蛋白尿(PNH)、年龄相关性黄斑变性(AMD,包括湿性和干性AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病(包括溶血性尿毒症综合征(HUS)、非典型溶血性尿毒症综合征(aHUS)、血栓性血小板减少性紫癜(TTP)或移植相关的TMA)、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎、贝切特氏病、多发性硬化症、格林巴利综合征、阿尔茨海默氏病、肌萎缩性侧索硬化症(ALS)、狼疮性肾炎、系统性红斑狼疮(SLE)、糖尿病性视网膜病变、葡萄膜炎、慢性阻塞性肺病(COPD)、C3肾小球病、移植排斥反应、移植物抗宿主病(GVHD)、血液透析、败血症、系统性炎性反应综合征(SIRS)、急性呼吸窘迫综合征(ARDS)、ANCA血管炎、抗磷脂综合征、动脉粥样硬化、IgA肾病和重症肌无力。
VII. 其他实施方案
本说明书中提及的所有出版物、专利申请和专利通过引用并入本文。
在不脱离本发明的范围和精神的情况下,本发明的所述方法、组合物和化合物的各种修改和变化对于本领域技术人员将是显而易见的。尽管已经结合具体期望实施方案描述了本发明,但应当理解,如请求保护的本发明不应不适当地限于此类具体实施方案。实际上,对于医学、免疫学、药理学、肿瘤学或相关领域的技术人员显而易见的用于实施本发明的所述模式的各种修改意在本发明的范围内。
根据前述,本发明的特征在于以下实施方案。
A.结合SP结构域内的一个或多个表位的高亲和力MASP-3抑制性抗体
1A. 分离的单克隆抗体或其抗原结合片段,其以高亲和力(具有小于500pM的KD)特异性结合人MASP-3的丝氨酸蛋白酶结构域(SEQ ID NO: 2的氨基酸残基450至728),其中所述抗体或其抗原结合片段抑制替代途径补体活化。
2A. 段落1的分离的抗体或其抗原结合片段,其中所述抗体或抗原结合片段的特征在于以下性质中的至少一种或多种:
(a)抑制前因子D成熟;
(b) 不结合人MASP-1 (SEQ ID NO: 8);
(c)在哺乳动物对象中以约1:1至约2.5:1 (MASP-3靶标与mAb)的摩尔比抑制替代途径;
(d) 不抑制经典途径;
(e) 溶血和/或调理作用的抑制;
(f) MASP-3丝氨酸蛋白酶底物特异性切割的抑制;
(g) 溶血的减少或C3切割和C3b表面沉积的减少;
(h) 在活化表面上的因子B和Bb沉积的减少;
(i) 相对于前因子D,降低活性因子D的静息水平(在循环中,并且没有实验性添加活化表面);
(j) 响应于活化表面的相对于前因子D的活性因子D的水平的降低;
(k) 流体相Ba、Bb、C3b或C3a的静息和/或表面诱导水平的产生的减少,和/或
(l) 因子P沉积的减少。
3A. 段落1或2的分离的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段特异性结合位于人MASP-3的丝氨酸蛋白酶结构域内的表位,其中所述表位位于以下中的至少一种或多种内:VLRSQRRDTTVI (SEQ ID NO: 9)、TAAHVLRSQRRDTTV(SEQ ID NO: 10)、DFNIQNYNHDIALVQ(SEQ ID NO: 11)、PHAECKTSYESRS (SEQ ID NO: 12)、GNYSVTENMFC (SEQID NO: 13)、VSNYVDWVWE (SEQ ID NO: 14)和/或VLRSQRRDTTV (SEQ ID NO: 15)。[组I]
4A. 段落3的抗体或其抗原结合片段,其中所述抗体或抗原结合片段结合SEQ IDNO: 15内的表位。[包括所有组I ab]
5A. 段落3的抗体或抗原结合片段,其中所述抗体或抗原结合片段结合SEQ IDNO: 9内的表位。[10D12]
6A. 段落3的抗体或抗原结合片段,其中所述抗体或抗原结合片段结合SEQ IDNO: 10内的表位。[13B1]
7A. 段落6的抗体或抗原结合片段,其中所述抗体或抗原结合片段还结合SEQ IDNO: 12内的表位。[13B1]
8A. 段落3的抗体或抗原结合片段,其中所述抗体或抗原结合片段还结合SEQ IDNO: 10和/或SEQ ID NO: 12内的表位。[13B1]
9A. 段落3的抗体或抗原结合片段,其中所述抗体或抗原结合片段结合SEQ IDNO: 9内的表位。[1F3、4B6、4D5、1A10]
10A. 段落7的抗体或抗原结合片段,其中所述抗体或抗原结合片段还结合SEQ IDNO: 11、SEQ ID NO: 13和/或SEQ ID NO: 14中的至少一种内的表位。[1F3、4B6、4D5、1A10]
11A. 段落7的抗体或抗原结合片段,其中所述抗体或抗原结合片段还结合SEQ IDNO: 10、SEQ ID NO: 11、SEQ ID NO: 13和/或SEQ ID NO: 14中的至少一种内的表位。[1F3、4B6、4D5、1A10]
12A. 段落1或2的抗体或抗原结合片段,其中所述抗体结合以下中的至少一种内的表位:ECGQPSRSLPSLV (SEQ ID NO: 16);RNAEPGLFPWQ(SEQ ID NO: 17);KWFGSGALLSASWIL(SEQ ID NO: 18);EHVTVYLGLH (SEQ ID NO: 19);PVPLGPHVMP (SEQ IDNO: 20);APHMLGL (SEQ ID NO: 21);SDVLQYVKLP (SEQ ID NO: 22);和/或AFVIFDDLSQRW(SEQ ID NO: 23)。[组II和III]
13A. 段落12的抗体或抗原结合片段,其中所述抗体或抗原结合片段结合SEQ IDNO: 17内的表位。[所有组II和III ab]
14A. 段落13的抗体或抗原结合片段,其中所述抗体或抗原结合片段还结合EHVTVYLGLH (SEQ ID NO: 19)和/或AFVIFDDLSQRW(SEQ ID NO: 23)内的表位。[1G4, 1E7,2D7 15D9]
15A. 段落14的抗体或抗原结合片段,其中所述抗体或抗原结合片段还结合SEQID NO: 23内的表位。[1G4、1E7、2D7、15D9、2F5]
16A. 段落14的抗体或抗原结合片段,其中所述抗体或抗原结合片段还结合SEQID NO: 19和/或SEQ ID NO: 23内的表位。[Ig4、1E7、2D7]
17A. 段落14的抗体或抗原结合片段,其中所述抗体或抗原结合片段还结合SEQID NO: 18、SEQ ID NO: 20和/或SEQ ID NO: 23内的表位。[15D9、2F5]
18A. 段落14的抗体或抗原结合片段,其中所述抗体或抗原结合片段还结合SEQID NO: 18、SEQ ID NO: 20和/或SEQ ID NO: 23中的至少一种内的表位[15D9、2F5]。
19A. 段落14的抗体或抗原结合片段,其中所述抗体或抗原结合片段还结合SEQID NO: 16、SEQ ID NO: 21和/或SEQ ID NO: 22中的至少一种内的表位。[1B11]
20A. 段落14的抗体或抗原结合片段,其中所述抗体或抗原结合片段还结合SEQID NO: 16、SEQ ID NO: 21和/或SEQ ID NO: 22中的至少一种内的表位[1B11]。
21A. 段落1-20中任一项的抗体或其抗原结合片段,其中所述抗体或抗原结合片段选自人抗体、人源化抗体、嵌合抗体、鼠抗体和上述任一者的抗原结合片段。
22A. 段落1-21中任一项的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段选自单链抗体、ScFv、Fab片段、Fab’片段、F(ab’)2片段、缺乏铰链区的单价抗体,和全抗体。
23A. 段落1-22中任一项的抗体或其抗原结合片段,其还包含免疫球蛋白恒定区。
24A. 段落1-23中任一项的抗体或其抗原结合片段,其中所述抗体或抗原结合片段是人源化的。
25A. 段落1-24中任一项的抗体或其抗原结合片段,其中所述抗体以小于500pM的亲和力结合人MASP-3的丝氨酸蛋白酶结构域。
26A. 段落1-25中任一项的抗体或其抗原结合片段,其中所述抗体抑制哺乳动物血液中的替代途径活化。
27A. 组合物,其包含段落1A-26A中任一项的抗体或抗原结合片段和药学上可接受的赋形剂。
B.结合SP结构域内的一个或多个表位的组IA高亲和力MASP-3抑制性抗体(4D5、4B6、1A10加4D5变体)
1B. 结合MASP-3的分离的抗体或其抗原结合片段,其包含:
(a)重链可变区,其包含如SEQ ID NO: 209 (XXDIN,其中位置1的X是S或T,且其中位置2的X是N或D)所示的HC-CDR1;如SEQ ID NO: 210 (WIYPRDXXXKYNXXFXD,其中位置7的X是G或D;位置8的X是S、T或R;位置9的X是I或T;位置13的X是E或D;位置14的X是K或E;且位置16的X是T或K)所示的HC-CDR2;和如SEQ ID NO: 211 (XEDXY,其中位置1的X是L或V,且其中位置4的X是T或S)所示的HC-CDR3;和
(b)轻链可变区,其包含如SEQ ID NO: 212 (KSSQSLLXXRTRKNYLX,其中位置8的X是N、I、Q或A;其中位置9的X是S或T;且其中位置17的X是A或S)所示的LC-CDR1;如SEQ IDNO: 144 (WASTRES)所示的LC-CDR2和如SEQ ID NO: 146 (KQSYNLYT)所示的LC-CDR3。
2B. 段落1的分离的抗体或其抗原结合片段,其中根据(a)的重链可变区的HC-CDR1包含SEQ ID NO: 56 (TDDIN)。[4D5和变体]
3B. 段落1的分离的抗体或其抗原结合片段,其中根据(a)的重链可变区的HC-CDR1包含SEQ ID NO: 62 (SNDIN)。[1F3、4B6和1A10]
4B. 段落1的分离的抗体或其抗原结合片段,其中根据(a)的重链可变区的HC-CDR2包含SEQ ID NO: 58 (WIYPRDDRTKYNDKFKD) [4D5和变体]。
5B. 段落1的分离的抗体或其抗原结合片段,其中根据(a)的重链可变区的HC-CDR2包含SEQ ID NO: 63 (WIYPRDGSIKYNEKFTD)。[1F3]
6B. 段落1的分离的抗体或其抗原结合片段,其中根据(a)的重链可变区的HC-CDR2包含SEQ ID NO: 67 (WIYPRDGTTKYNEEFTD)。[4B6]
7B. 段落1的分离的抗体或其抗原结合片段,其中根据(a)的重链可变区的HC-CDR2包含SEQ ID NO: 69 (WIYPRDGTTKYNEKFTD)。[1A10]
8B. 段落1的分离的抗体或其抗原结合片段,其中根据(a)的重链可变区的HC-CDR3包含SEQ ID NO: 60 (LEDTY)[4D5和变体]
9B. 段落1的分离的抗体或其抗原结合片段,其中根据(a)的重链可变区的HC-CDR3包含SEQ ID NO: 65 (VEDSY)。[1F3、4B6和1A10]
10B. 段落1的分离的抗体或其抗原结合片段,其中根据(b)的轻链可变区的LC-CDR1包含SEQ ID NO: 142 (KSSQSLLNSRTRKNYLA);SEQ ID NO: 257(KSSQSLLQSRTRKNYLA),SEQ ID NO: 258 (KSSQSLLASRTRKNYLA);或SEQ ID NO: 259(KSSQSLLNTRTRKNYLA)。[4D5和变体]
11B. 段落10的分离的抗体或其抗原结合片段,其中根据(b)的轻链可变区的LC-CDR1包含SEQ ID NO: 258 (KSSQSLLASRTRKNYLA)。[4D5 NA突变体]
12B. 段落1的分离的抗体或其抗原结合片段,其中根据(b)的轻链可变区的LC-CDR1包含SEQ ID NO: 149 (KSSQSLLISRTRKNYLS)。[1F3和4B6]
13B. 段落1的分离的抗体或其抗原结合片段,其中HC-CDR1包含SEQ ID NO: 56,HC-CDR2包含SEQ ID NO: 58,HC-CDR3包含SEQ ID NO: 60,且其中LC-CDR1包含SEQ ID NO:142、SEQ ID NO: 257、SEQ ID NO: 258或SEQ ID NO: 259;其中LC-CDR2包含SEQ ID NO:144,且其中LC-CDR3包含SEQ ID NO: 146。[4D5的所有6个CDR,以及LC-CDR1中的变体]。
14B. 段落1的分离的抗体或其抗原结合片段,其中HC-CDR1包含SEQ ID NO: 62,HC-CDR2包含SEQ ID NO: 63、SEQ ID NO: 67或SEQ ID NO: 69,HC-CDR3包含SEQ ID NO:65,且其中LC-CDR1包含SEQ ID NO: 149,LC-CDR2包含SEQ ID NO: 144,且LC-CDR3包含SEQID NO: 146。[1F3、4B6和1A10的所有6个CDR]
15B. 段落1-14中任一项的抗体或其抗原结合片段,其中所述抗体或抗原结合片段选自人抗体、人源化抗体、嵌合抗体、鼠抗体和上述任一者的抗原结合片段。
16B. 段落1-15中任一项的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段选自单链抗体、ScFv、Fab片段、Fab’片段、F(ab’)2片段、缺乏铰链区的单价抗体,和全抗体。
17B. 段落1-16中任一项的抗体或其抗原结合片段,其还包含免疫球蛋白恒定区。
18B. 段落1-17中任一项的抗体或其抗原结合片段,其中所述抗体或抗原结合片段是人源化的。
19B. 段落1的分离的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 24、SEQ ID NO: 248或SEQ ID NO: 249的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 40、SEQ ID NO: 250或SEQ ID NO: 278的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[4D5亲本、人源化和修饰版本]。
20B. 段落1的分离的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 25的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 41的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[1F3]。
21B. 段落1的分离的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 26的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 42的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[4B6]。
22B. 段落1的分离的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 27的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 42的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[1A10]。
23B. 段落1-22中任一项的抗体或其抗原结合片段,其中所述抗体以小于500pM的亲和力结合人MASP-3。
24B. 段落1-23中任一项的抗体或其抗原结合片段,其中所述抗体抑制哺乳动物血液中的替代途径活化。
25B. 组合物,其包含段落1B-24B中任一项的抗体或抗原结合片段和药学上可接受的赋形剂。
C.结合SP结构域内的一个或多个表位的组IB高亲和力MASP-3抑制性抗体(10D12、35C1和10D12变体)
1C. 结合MASP-3的分离的抗体或其抗原结合片段,其包含:
(a)重链可变区,其包含如SEQ ID NO: 213 (SYGXX,其中位置4的X是M或I,且其中位置5的X是S或T)所示的HC-CDR1;如SEQ ID NO: 74所示的HC-CDR2;和如SEQ ID NO: 214(GGXAXDY,其中位置3的X是E或D,且其中位置5的X是M或L)所示的HC-CDR3;和
(b)轻链可变区,其包含如SEQ ID NO: 215 (KSSQSLLDSXXKTYLX,其中位置10的X是D、E或A;其中位置11的X是G或A;且其中位置16的X是N或S)所示的LC-CDR1;如SEQ ID NO:155所示的LC-CDR2;和如SEQ ID NO: 216(WQGTHFPXT,其中位置8的X是W或Y)所示的LC-CDR3。
2C. 段落1的分离的抗体或其抗原结合片段,其中根据(a)的重链可变区的HC-CDR1包含SEQ ID NO: 72 (SYGMS)。[10D12和变体]
3C. 段落1的分离的抗体或其抗原结合片段,其中根据(a)的重链可变区的HC-CDR1包含SEQ ID NO: 79 (SYGIT)。[35C1]
4C. 段落1的分离的抗体或其抗原结合片段,其中根据(a)的重链可变区的HC-CDR3包含SEQ ID NO: 76 (GGEAMDY)。[10D12和变体]。
5C. 段落1的分离的抗体或其抗原结合片段,其中根据(a)的重链可变区的HC-CDR3包含SEQ ID NO: 82 (GGDALDY)。[35C1]
6C. 段落1的分离的抗体或其抗原结合片段,其中根据(b)的轻链可变区的LC-CDR1包含SEQ ID NO: 153 (KSSQSLLDSDGKTYLN);SEQ ID NO: 261 (KSSQSLLDSEGKTYLN),SEQ ID NO: 262 (KSSQSLLDSAGKTYLN)或SEQ ID NO: 263 (KSSQSLLDSDAKTYLN)。[10D12和变体]
7C. 段落6的分离的抗体或其抗原结合片段,其中轻链可变区的LC-CDR1包含SEQID NO: 263 (KSSQSLLDSDAKTYLN)。[10D12 GA变体]
8C. 段落1的分离的抗体或其抗原结合片段,其中轻链可变区的LC-CDR1包含SEQID NO: 152。[35C1]
9C. 段落1的分离的抗体或其抗原结合片段,其中根据(b)的轻链可变区的LC-CDR3包含SEQ ID NO: 159 (KSSQSLLDSDGKTYLS)。[10D12]
10C. 段落1的分离的抗体或其抗原结合片段,其中根据(b)的轻链可变区的LC-CDR3包含SEQ ID NO: 160 (WQGTHFPYT)。[35C1]
11C. 段落1的分离的抗体或其抗原结合片段,其中HC-CDR1包含SEQ ID NO: 72,HC-CDR2包含SEQ ID NO: 74,HC-CDR3包含SEQ ID NO: 76,LC-CDR1包含SEQ ID NO: 153、SEQ ID NO: 261、SEQ ID NO: 262或SEQ ID NO: 263;LC-CDR2包含SEQ ID NO: 155,且LC-CDR3包含SEQ ID NO: 157。[10D12的所有6个CDR,以及LC-CDR1中的变体]。
12C. 段落1的分离的抗体或其抗原结合片段,其中HC-CDR1包含SEQ ID NO: 79,HC-CDR2包含SEQ ID NO: 74,HC-CDR3包含SEQ ID NO: 82,LC-CDR1包含SEQ ID NO: 159,LC-CDR2包含SEQ ID NO: 155,且LC-CDR3包含SEQ ID NO: 160。[35C1的所有6个CDR]
13C. 段落1-12中任一项的抗体或其抗原结合片段,其中所述抗体或抗原结合片段选自人抗体、人源化抗体、嵌合抗体、鼠抗体和上述任一者的抗原结合片段。
14C. 段落1-13中任一项的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段选自单链抗体、ScFv、Fab片段、Fab’片段、F(ab’)2片段、缺乏铰链区的单价抗体,和全抗体。
15C. 段落1-14中任一项的抗体或其抗原结合片段,其还包含免疫球蛋白恒定区。
16C. 段落1-15中任一项的抗体或其抗原结合片段,其中所述抗体或抗原结合片段是人源化的。
17C. 段落1的分离的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 28、SEQ ID NO: 251或SEQ ID NO: 252的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 43、SEQ ID NO: 253或SEQ ID NO: 279的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[10D12亲本、人源化和变体]。
18C. 段落1的分离的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 29的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 44的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[35C1]。
19C. 段落1-18中任一项的抗体或其抗原结合片段,其中所述抗体以小于500pM的亲和力结合人MASP-3。
20C. 段落1-19中任一项的抗体或其抗原结合片段,其中所述抗体抑制哺乳动物血液中的替代途径活化。
21C. 组合物,其包含段落1C-20C中任一项的抗体或抗原结合片段和药学上可接受的赋形剂。
D.结合SP结构域内的一个或多个表位的组IC高亲和力MASP-3抑制性抗体(13B1和变体)
1D.结合MASP-3的分离的抗体或其抗原结合片段,其包含:
(a)重链可变区,其包含如SEQ ID NO: 84 (GKWIE)所示的HC-CDR1;如SEQ ID NO:86 (EILPGTGSTNYNEKFKG)或SEQ ID NO: 275 (EILPGTGSTNYAQKFQG)所示的HC-CDR2;和如SEQ ID NO: 88 (SEDV)所示的HC-CDR3;和
(b)轻链可变区,其包含如SEQ ID NO: 142 (KSSQSLLNSRTRKNYLA)、SEQ ID NO:257 (KSSQSLLQSRTRKNYLA);SEQ ID NO: 258 (KSSQSLLASRTRKNYLA);或SEQ ID NO: 259(KSSQSLLNTRTRKNYLA)所示的LC-CDR1,如SEQ ID NO: 144 (WASTRES)所示的LC-CDR2;和如SEQ ID NO: 161 (KQSYNIPT)所示的LC-CDR3。[13B1的所有6个CDR,以及LC-CDR1中的变体]
2D. 段落1的分离的抗体或其抗原结合片段,其中LC-CDR1包含SEQ ID NO: 258。[13B1 LC-CDR1 NA变体]
3D. 段落1-2中任一项的抗体或其抗原结合片段,其中所述抗体或抗原结合片段选自人抗体、人源化抗体、嵌合抗体、鼠抗体和上述任一者的抗原结合片段。
4D. 段落1-3中任一项的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段选自单链抗体、ScFv、Fab片段、Fab’片段、F(ab’)2片段、缺乏铰链区的单价抗体,和全抗体。
5D. 段落1-4中任一项的抗体或其抗原结合片段,其还包含免疫球蛋白恒定区。
6D. 段落1-5中任一项的抗体或其抗原结合片段,其中所述抗体或抗原结合片段是人源化的。
7D. 段落1的分离的抗体或抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 30、SEQ ID NO: 254或SEQ ID NO: 255的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 45、SEQ ID NO: 256或SEQ ID NO: 280的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[13B1亲本、人源化和变体]。
8D. 段落1-7中任一项的抗体或其抗原结合片段,其中所述抗体以小于500pM的亲和力结合人MASP-3。
9D. 段落1-8中任一项的抗体或其抗原结合片段,其中所述抗体抑制哺乳动物血液中的替代途径活化。
10D. 组合物,其包含段落1D-9D中任一项的抗体或抗原结合片段和药学上可接受的赋形剂。
E.结合SP结构域内的一个或多个表位的组II高亲和力MASP-3抑制性抗体(1G4)
1E. 结合MASP-3的分离的抗体或其抗原结合片段,其包含:
(a)重链可变区,其包含如SEQ ID NO: 91 (GYWIE)所示的HC-CDR1;如SEQ ID NO:93 (EMLPGSGSTHYNEKFKG)所示的HC-CDR2,和如SEQ ID NO: 95 (SIDY)所示的HC-CDR3;和
(b)轻链可变区,其包含如SEQ ID NO: 163 (RSSQSLVQSNGNTYLH)所示的LC-CDR1,如SEQ ID NO: 165 (KVSNRFS)所示的LC-CDR2和如SEQ ID NO: 167 (SQSTHVPPT)所示的LC-CDR3。
2E. 段落1的抗体或其抗原结合片段,其中所述抗体或抗原结合片段选自人抗体、人源化抗体、嵌合抗体、鼠抗体和上述任一者的抗原结合片段。
3E. 段落1-2中任一项的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段选自单链抗体、ScFv、Fab片段、Fab’片段、F(ab’)2片段、缺乏铰链区的单价抗体,和全抗体。
4E. 段落1-3中任一项的抗体或其抗原结合片段,其还包含免疫球蛋白恒定区。
5E. 段落1-4中任一项的抗体或其抗原结合片段,其中所述抗体或抗原结合片段是人源化的。
6E. 段落1的分离的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 31的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ ID NO: 46的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[1G4]。
7E. 段落1-6中任一项的抗体或其抗原结合片段,其中所述抗体以小于500pM的亲和力结合人MASP-3。
8E. 段落1-7中任一项的抗体或其抗原结合片段,其中所述抗体抑制哺乳动物血液中的替代途径活化。
9E. 组合物,其包含段落1E-8E中任一项的抗体或抗原结合片段和药学上可接受的赋形剂。
F. 结合SP结构域内的一个或多个表位的组III高亲和力MASP-3抑制性抗体(1E7、2D7、15D9、2F5、1B11、2F2、11B6)
1F. 结合MASP-3的分离的抗体或其抗原结合片段,其包含:
(a)重链可变区,其包含如SEQ ID NO: 109 (RVHFAIRDTNYWMQ)所示的HC-CDR1;如SEQ ID NO: 110 (AIYPGNGDTSYNQKFKG)所示的HC-CDR2;如SEQ ID NO: 112 (GSHYFDY)所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 182 (RASQSIGTSIH)所示的LC-CDR1,如SEQ ID NO: 184 (YASESIS)所示的LC-CDR2和如SEQ ID NO: 186 (QQSNSWPYT)所示的LC-CDR3[1E7];或
(b)重链可变区,其包含如SEQ ID NO: 125 (DYYMN)所示的HC-CDR1,如SEQ IDNO: 127 (DVNPNNDGTTYNQKFKG)所示的HC-CDR2;如SEQ ID NO: 129 (CPFYYLGKGTHFDY)所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 196 (RASQDISNFLN)所示的LC-CDR1,如SEQ ID NO: 198 (YTSRLHS)所示的LC-CDR2和如SEQ ID NO: 200 (QQGFTLPWT)所示的LC-CDR3 [2D7];或
(c)重链可变区,其包含如SEQ ID NO: 132所示的HC-CDR1,如SEQ ID NO: 133所示的HC-CDR2,如SEQ ID NO: 135所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 203所示的LC-CDR1,如SEQ ID NO: 165所示的LC-CDR2,和如SEQ ID NO: 204所示的LC-CDR3[49C11];或
(d)重链可变区,其包含如SEQ ID NO: 137所示的HC-CDR1,如SEQ ID NO: 138所示的HC-CDR2,如SEQ ID NO: 140所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 206所示的LC-CDR1,如SEQ ID NO: 207所示的LC-CDR2,和如SEQ ID NO: 208所示的LC-CDR3[15D9];或
(e)重链可变区,其包含如SEQ ID NO: 98所示的HC-CDR1,如SEQ ID NO: 99所示的HC-CDR2,如SEQ ID NO: 101所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 169所示的LC-CDR1,如SEQ ID NO: 171所示的LC-CDR2,和如SEQ ID NO: 173所示的LC-CDR3[2F5];或
(f)重链可变区,其包含如SEQ ID NO: 103所示的HC-CDR1,如SEQ ID NO: 105所示的HC-CDR2,如SEQ ID NO: 107所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 176所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 193所示的LC-CDR3[1B11];或
(g)重链可变区,其包含如SEQ ID NO: 114所示的HC-CDR1,如SEQ ID NO: 116所示的HC-CDR2,如SEQ ID NO: 118所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 188所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 190所示的LC-CDR3[2F2];或
(h)重链可变区,其包含如SEQ ID NO: 114所示的HC-CDR1,如SEQ ID NO: 121所示的HC-CDR2,如SEQ ID NO: 123所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 191所示的LC-CDR1,如SEQ ID NO: 178所示的LC-CDR2,和如SEQ ID NO: 193所示的LC-CDR3。[11B6]
2F.段落1(a)-(g)的抗体或其抗原结合片段,其中所述抗体或抗原结合片段选自人抗体、人源化抗体、嵌合抗体、鼠抗体和上述任一者的抗原结合片段。
3F.段落1-2中任一项的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段选自单链抗体、ScFv、Fab片段、Fab’片段、F(ab’)2片段、缺乏铰链区的单价抗体,和全抗体。
4F.段落1-3中任一项的抗体或其抗原结合片段,其还包含免疫球蛋白恒定区。
5F.段落1-4中任一项的抗体或其抗原结合片段,其中所述抗体或抗原结合片段是人源化的。
6F. 段落1的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 32的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ IDNO: 47的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[1E7]。
7F. 段落1的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 33的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ IDNO: 48的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[2D7]。
8F. 段落1的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 34的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ IDNO: 49的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[49C11]。
9F. 段落1的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 35的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ IDNO: 50的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[15D9]
10F. 段落1的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 36的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ IDNO: 51的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[2F5]。
11F. 段落1的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 37的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ IDNO: 52的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[1B11]。
12F. 段落1的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 38的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ IDNO: 53的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[2F2]。
13F. 段落1的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段含有包含与SEQ ID NO: 39的至少80%、85%、90%、95%、98%、99%或100%同一性的重链和包含与SEQ IDNO: 54的至少80%、85%、90%、95%、98%、99%或100%同一性的轻链[11B6]。
14F. 段落1-13中任一项的抗体或其抗原结合片段,其中所述抗体以小于500pM的亲和力结合人MASP-3。
15F. 段落1-14中任一项的抗体或其抗原结合片段,其中所述抗体抑制哺乳动物血液中的替代途径活化。
16F. 组合物,其包含段落1F-15F中任一项的抗体或抗原结合片段和药学上可接受的赋形剂。
F.MASP-3抑制性抗体用于治疗AP疾病的用途
1. 抑制哺乳动物中的替代途径补体活化的方法,所述方法包括向有此需要的哺乳动物对象施用足以抑制哺乳动物中的替代途径补体途径活化的量的包含高亲和力MASP-3抑制性抗体或其抗原结合片段的组合物。
2. 权利要求1的方法,其中所述抗体或其抗原结合片段以小于500pM的亲和力结合MASP-3。
3. 段落1的方法,其中作为施用包含抗体或抗原结合片段的组合物的结果,在哺乳动物对象中存在以下中的一种或多种:
(a) 因子D成熟的抑制;
(b) 当向对象以约1:1至约2.5:1 (MASP-3靶标:mAb)的摩尔比施用时替代途径的抑制;
(c) 经典途径不被抑制;
(d) 溶血和/或调理作用的抑制;
(e) 溶血的减少或C3切割和C3b表面沉积的减少;
(f) 在活化表面上的因子B和Bb沉积的减少;
(g) 相对于前因子D,降低活性因子D的静息水平(在循环中,并且没有实验性添加活化表面);
(h) 响应于活化表面降低相对于前因子D的活性因子D的水平;和/或
(i) 流体相Ba、Bb、C3b或C3a的静息和表面诱导水平的产生的减少。
4. 段落1的方法,其中所述抗体以约1:1至约2.5:1 (MASP-3靶标:mAb)的摩尔比抑制替代途径。
5. 段落1-3中任一项的方法,其中根据权利要求27A、25B、21C、10D、9E或16F中任一项表征所述高亲和力MASP-3抗体。
6. 段落1-4中任一项的方法,其中所述抗体或其抗原结合片段选择性抑制替代途径,而不影响经典途径活化。
7. 段落1-6中任一项的方法,其中所述哺乳动物对象患有或有风险发展替代途径疾病或病症,所述疾病或病症选自阵发性夜间血红蛋白尿(PNH)、年龄相关性黄斑变性(AMD,包括湿性和干性AMD)、缺血-再灌注损伤、关节炎、弥散性血管内凝血、血栓性微血管病(包括溶血性尿毒症综合征(HUS)、非典型溶血性尿毒症综合征(aHUS)、血栓性血小板减少性紫癜(TTP)或移植相关的TMA)、哮喘、致密沉积物病、微量免疫坏死性新月体肾小球肾炎、创伤性脑损伤、吸入性肺炎、眼内炎、视神经脊髓炎、贝切特氏病、多发性硬化症、格林巴利综合征、阿尔茨海默氏病、肌萎缩性侧索硬化症(ALS)、狼疮性肾炎、系统性红斑狼疮(SLE)、糖尿病性视网膜病变、葡萄膜炎、慢性阻塞性肺病(COPD)、C3肾小球病、移植排斥反应、移植物抗宿主病(GVHD)、血液透析、败血症、系统性炎性反应综合征(SIRS)、急性呼吸窘迫综合征(ARDS)、ANCA血管炎、抗磷脂综合征、动脉粥样硬化、IgA肾病和重症肌无力。
尽管已经说明和描述了本发明的优选实施方案,但是应当理解,在不脱离本发明的精神和范围的情况下,可以进行各种改变。

Claims (8)

1.结合MASP-3并且包含以下部分的分离的抗体或抗原结合片段在制备药物中的用途:
重链可变区,其包含如SEQ ID NO: 84 (GKWIE)所示的HC-CDR1;如SEQ ID NO: 86(EILPGTGSTNYNEKFKG)或SEQ ID NO: 275 (EILPGTGSTNYAQKFQG)所示的HC-CDR2;和如SEQID NO: 88 (SEDV)所示的HC-CDR3;和轻链可变区,其包含如SEQ ID NO: 142(KSSQSLLNSRTRKNYLA)、SEQ ID NO: 257 (KSSQSLLQSRTRKNYLA)、SEQ ID NO: 258(KSSQSLLASRTRKNYLA)或SEQ ID NO: 259 (KSSQSLLNTRTRKNYLA)所示的LC-CDR1;如SEQ IDNO: 144 (WASTRES)所示的LC-CDR2;和如SEQ ID NO: 161 (KQSYNIPT)所示的LC-CDR3,
所述药物用于抑制哺乳动物中的替代途径补体活化,治疗与MASP-3依赖性补体活化相关的疾病或病症,所述疾病或病症选自格林巴利综合征、阿尔茨海默氏病、肌萎缩性侧索硬化症、狼疮性肾炎、系统性红斑狼疮、糖尿病性视网膜病变、葡萄膜炎、慢性阻塞性肺病、C3肾小球病、移植排斥反应、移植物抗宿主病、血液透析、败血症、系统性炎性反应综合征、急性呼吸窘迫综合征、ANCA血管炎、抗磷脂综合征、动脉粥样硬化、IgA肾病和重症肌无力。
2.权利要求1的用途,其中所述抗体或抗原结合片段选自人抗体、人源化抗体、嵌合抗体、鼠抗体和上述任一者的抗原结合片段。
3.权利要求1的用途,其中所述抗体或其抗原结合片段选自单链抗体、Fab片段、Fab'片段、F(ab')2片段、缺乏铰链区的单价抗体,和全抗体。
4.权利要求1的用途,其中所述抗体或其抗原结合片段还包含免疫球蛋白恒定区。
5.权利要求1的用途,其中所述抗体或其抗原结合片段是人源化的。
6.权利要求1的用途,其中所述抗体或其抗原结合片段抗体以小于500pM的亲和力结合人MASP-3的丝氨酸蛋白酶结构域。
7.权利要求1的用途,其中所述抗体或其抗原结合片段抑制哺乳动物血液中的替代途径活化。
8.权利要求1的用途,其中所述抗体或抗原结合片段是用药学上可接受的赋形剂提供的。
CN202210979607.3A 2016-08-01 2017-07-31 用于治疗各种疾病和病症的抑制masp-3的组合物和方法 Pending CN116327918A (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201662369674P 2016-08-01 2016-08-01
US62/369674 2016-08-01
US201662419420P 2016-11-08 2016-11-08
US62/419420 2016-11-08
US201762478336P 2017-03-29 2017-03-29
US62/478336 2017-03-29
PCT/US2017/044714 WO2018026722A1 (en) 2016-08-01 2017-07-31 Compositions and methods of inhibiting masp-3 for the treatment of various diseases and disorders
CN201780047995.9A CN109715209B (zh) 2016-08-01 2017-07-31 用于治疗各种疾病和病症的抑制masp-3的组合物和方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201780047995.9A Division CN109715209B (zh) 2016-08-01 2017-07-31 用于治疗各种疾病和病症的抑制masp-3的组合物和方法

Publications (1)

Publication Number Publication Date
CN116327918A true CN116327918A (zh) 2023-06-27

Family

ID=61073545

Family Applications (4)

Application Number Title Priority Date Filing Date
CN202210980626.8A Pending CN116333147A (zh) 2016-08-01 2017-07-31 用于治疗各种疾病和病症的抑制masp-3的组合物和方法
CN202210979607.3A Pending CN116327918A (zh) 2016-08-01 2017-07-31 用于治疗各种疾病和病症的抑制masp-3的组合物和方法
CN201780047995.9A Active CN109715209B (zh) 2016-08-01 2017-07-31 用于治疗各种疾病和病症的抑制masp-3的组合物和方法
CN202210979606.9A Pending CN116333146A (zh) 2016-08-01 2017-07-31 用于治疗各种疾病和病症的抑制masp-3的组合物和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210980626.8A Pending CN116333147A (zh) 2016-08-01 2017-07-31 用于治疗各种疾病和病症的抑制masp-3的组合物和方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201780047995.9A Active CN109715209B (zh) 2016-08-01 2017-07-31 用于治疗各种疾病和病症的抑制masp-3的组合物和方法
CN202210979606.9A Pending CN116333146A (zh) 2016-08-01 2017-07-31 用于治疗各种疾病和病症的抑制masp-3的组合物和方法

Country Status (25)

Country Link
US (4) US10639369B2 (zh)
EP (1) EP3490603A4 (zh)
JP (3) JP6971306B2 (zh)
KR (3) KR102553777B1 (zh)
CN (4) CN116333147A (zh)
AU (4) AU2017306069B2 (zh)
BR (1) BR112019001247A2 (zh)
CA (3) CA3173979A1 (zh)
CL (1) CL2019000230A1 (zh)
CO (1) CO2019001212A2 (zh)
CR (1) CR20190105A (zh)
CU (1) CU24568B1 (zh)
EC (1) ECSP19015192A (zh)
GE (1) GEP20247593B (zh)
IL (3) IL298689B2 (zh)
JO (6) JOP20170154B1 (zh)
MA (1) MA45798A (zh)
MX (3) MX2019000965A (zh)
PE (1) PE20190389A1 (zh)
PH (1) PH12019500204A1 (zh)
SA (1) SA519400950B1 (zh)
SG (3) SG10202010279YA (zh)
TW (4) TW202214689A (zh)
UY (1) UY37349A (zh)
WO (1) WO2018026722A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017035405A1 (en) 2015-08-26 2017-03-02 Achillion Pharmaceuticals, Inc. Amino compounds for treatment of immune and inflammatory disorders
WO2017035401A1 (en) 2015-08-26 2017-03-02 Achillion Pharmaceuticals, Inc. Amide compounds for treatment of immune and inflammatory disorders
WO2018160891A1 (en) 2017-03-01 2018-09-07 Achillion Pharmaceutical, Inc. Pharmaceutical compounds for treatment of medical disorders
CA3053818A1 (en) 2017-03-01 2018-09-07 Achillion Pharmaceuticals, Inc. Aryl, heteroaryl, and heterocyclic pharmaceutical compounds for treatment of medical disorders
EP3814374A4 (en) * 2018-05-25 2022-03-09 Achillion Pharmaceuticals, Inc. BIOMARKERS OF NEPHROPATHY ASSOCIATED WITH THE ALTERNATIVE COMPLEMENT PATHWAY
KR20210057086A (ko) 2018-09-06 2021-05-20 아칠리온 파르마세우티칼스 인코포레이티드 다니코판의 형태체 형태
WO2020051532A2 (en) 2018-09-06 2020-03-12 Achillion Pharmaceuticals, Inc. Macrocyclic compounds for the treatment of medical disorders
BR112021005506A2 (pt) 2018-09-25 2021-06-15 Achillion Pharmaceuticals, Inc. formas mórficas de inibidores de fator complementar d
CN110244053B (zh) * 2019-05-09 2022-03-11 北京大学第三医院(北京大学第三临床医学院) 用于诊断狼疮肾炎并肺动脉高压疾病的分子标志物及其用途
CN112812182B (zh) * 2019-11-15 2023-01-06 深圳宾德生物技术有限公司 一种靶向fgfr4的单链抗体、嵌合抗原受体、嵌合抗原受体t细胞及其制备方法和应用
CA3161701A1 (en) * 2020-01-21 2021-07-29 Zhaoli LI Semg2 antibody and use thereof
CA3189666A1 (en) * 2020-08-18 2022-02-24 William Jason Cummings Monoclonal antibodies, compositions and methods for detecting complement factor d
CN112950324B (zh) * 2021-03-15 2022-06-03 重庆邮电大学 一种知识图谱辅助的成对排序个性化电商推荐方法及系统
CN115304670A (zh) * 2021-05-07 2022-11-08 华南农业大学 一种猫冠状病毒核衣壳蛋白的鼠源单克隆抗体及其编码基因和应用
WO2023173036A2 (en) * 2022-03-10 2023-09-14 Omeros Corporation Masp-2 and masp-3 inhibitors, and related compositions and methods, for treatment of sickle cell disease

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331647A (en) 1980-03-03 1982-05-25 Goldenberg Milton David Tumor localization and therapy with labeled antibody fragments specific to tumor-associated markers
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
US5211657A (en) 1988-11-07 1993-05-18 The United States Government As Represented By The Secretary Of The Department Of Health And Human Services Laminin a chain deduced amino acid sequence, expression vectors and active synthetic peptides
US5530101A (en) 1988-12-28 1996-06-25 Protein Design Labs, Inc. Humanized immunoglobulins
US5549910A (en) 1989-03-31 1996-08-27 The Regents Of The University Of California Preparation of liposome and lipid complex compositions
JP3218637B2 (ja) 1990-07-26 2001-10-15 大正製薬株式会社 安定なリポソーム水懸濁液
JP2958076B2 (ja) 1990-08-27 1999-10-06 株式会社ビタミン研究所 遺伝子導入用多重膜リポソーム及び遺伝子捕捉多重膜リポソーム製剤並びにその製法
EP0672142B1 (en) 1992-12-04 2001-02-28 Medical Research Council Multivalent and multispecific binding proteins, their manufacture and use
US5856121A (en) 1994-02-24 1999-01-05 Case Western Reserve University Growth arrest homebox gene
US6074642A (en) * 1994-05-02 2000-06-13 Alexion Pharmaceuticals, Inc. Use of antibodies specific to human complement component C5 for the treatment of glomerulonephritis
US5741516A (en) 1994-06-20 1998-04-21 Inex Pharmaceuticals Corporation Sphingosomes for enhanced drug delivery
US5795587A (en) 1995-01-23 1998-08-18 University Of Pittsburgh Stable lipid-comprising drug delivery complexes and methods for their production
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5738868A (en) 1995-07-18 1998-04-14 Lipogenics Ltd. Liposome compositions and kits therefor
US7273925B1 (en) 1998-12-15 2007-09-25 Brigham And Women's Hospital, Inc. Methods and products for regulating lectin complement pathway associated complement activation
US20040031072A1 (en) * 1999-05-06 2004-02-12 La Rosa Thomas J. Soy nucleic acid molecules and other molecules associated with transcription plants and uses thereof for plant improvement
CA2391402A1 (en) 1999-12-02 2001-06-07 Jens Christian Jensenius Masp-3, a complement-fixing enzyme, and uses for it
SG98393A1 (en) 2000-05-19 2003-09-19 Inst Materials Research & Eng Injectable drug delivery systems with cyclodextrin-polymer based hydrogels
ES2601143T3 (es) 2002-07-19 2017-02-14 Omeros Corporation Copolímeros tribloque biodegradables, métodos de síntesis de los mismos, e hidrogeles y biomateriales preparados a partir de los mismos
US20040115194A1 (en) * 2002-09-06 2004-06-17 Yi Wang Method of treatment of asthma using antibodies to complement component C5
AU2004216176B2 (en) 2003-02-21 2008-04-03 Genentech, Inc. Methods for preventing and treating tissue damage associated with ischemia-reperfusion injury
DE102004017370A1 (de) 2004-04-08 2005-10-27 Nutrinova Nutrition Specialties & Food Ingredients Gmbh PUFA-PKS Gene aus Ulkenia
US7919094B2 (en) 2004-06-10 2011-04-05 Omeros Corporation Methods for treating conditions associated with MASP-2 dependent complement activation
US7612181B2 (en) 2005-08-19 2009-11-03 Abbott Laboratories Dual variable domain immunoglobulin and uses thereof
WO2007024715A2 (en) 2005-08-19 2007-03-01 Abbott Laboratories Dual variable domain immunoglobin and uses thereof
CA2685714C (en) 2007-05-31 2016-04-12 University Of Washington Inducible mutagenesis of target genes
AU2010272483B2 (en) 2009-07-17 2016-07-21 Omeros Corporation MASP isoforms as inhibitors of complement activation
EP2462161B1 (en) * 2009-08-06 2017-03-08 Immunas Pharma, Inc. Antibodies that specifically bind to a beta oligomers and use thereof
US8163283B2 (en) * 2009-09-03 2012-04-24 Vancouver Biotech Ltd. Monoclonal antibodies against gonadotropin-releasing hormone receptor
MX336682B (es) * 2010-03-05 2016-01-27 Hoffmann La Roche Anticuerpos contra csf-1r humanos y usos de los mismos.
US20120122107A1 (en) 2010-11-16 2012-05-17 Aarhus Universitet Homeostatic multidomain protein, and uses for it
CN107011443B (zh) * 2011-05-04 2021-04-30 奥默罗斯公司 用于抑制masp-2依赖的补体活化的组合物
SI2833907T1 (en) * 2012-04-06 2018-07-31 Omeros Corporation COMPOSITION AND METHODS OF INJECTION OF MASP-1 AND / OR MASP-3 FOR TREATMENT OF PAROXYSIMAL NIGHT CHEMOGLOBINURIA
BR112014031522A2 (pt) * 2012-06-18 2017-08-01 Omeros Corp métodos para inibir a ativação de complemento dependente de masp-3, para inibir a ativação de complemento dependente de masp-2 e para fabricar um medicamento
ES2760023T3 (es) * 2013-02-20 2020-05-12 Univ Pennsylvania Tratamiento del cáncer utilizando receptor de antígeno quimérico anti-EGFRvIII humanizado
AU2014248515B2 (en) * 2013-03-13 2019-03-07 Prothena Biosciences Limited Tau immunotherapy
KR102448454B1 (ko) * 2014-01-29 2022-09-28 다나-파버 캔서 인스티튜트 인크. Muc1-c/세포외 도메인 (muc1-c/ecd)에 대한 항체

Also Published As

Publication number Publication date
CA3031980A1 (en) 2018-02-08
AU2020204551A1 (en) 2020-07-30
AU2017306069B2 (en) 2020-09-03
US11027015B2 (en) 2021-06-08
UY37349A (es) 2018-02-28
BR112019001247A2 (pt) 2019-06-25
CA3031980C (en) 2022-12-06
AU2020204551B2 (en) 2022-09-15
CU20190006A7 (es) 2019-09-04
US11883493B2 (en) 2024-01-30
CA3173979A1 (en) 2018-02-08
AU2017306069A1 (en) 2019-01-03
JP7350822B2 (ja) 2023-09-26
CL2019000230A1 (es) 2019-07-12
EP3490603A4 (en) 2020-11-04
US20200270125A1 (en) 2020-08-27
JP2022033733A (ja) 2022-03-02
JP2019533982A (ja) 2019-11-28
JOP20220242A1 (ar) 2023-01-30
CO2019001212A2 (es) 2019-02-19
JP2022033732A (ja) 2022-03-02
IL298689A (en) 2023-01-01
PE20190389A1 (es) 2019-03-13
US20210275667A1 (en) 2021-09-09
PH12019500204A1 (en) 2020-01-20
JP7350821B2 (ja) 2023-09-26
TW202214690A (zh) 2022-04-16
JOP20220244A1 (ar) 2023-01-30
MX2019000965A (es) 2019-08-29
KR102624948B1 (ko) 2024-01-17
NZ751019A (en) 2021-10-29
IL298690B1 (en) 2023-06-01
TW201805304A (zh) 2018-02-16
AU2020250188A1 (en) 2020-11-05
KR102553777B1 (ko) 2023-07-11
TW202334243A (zh) 2023-09-01
US10745274B1 (en) 2020-08-18
IL264592B1 (en) 2023-06-01
AU2022256090A1 (en) 2022-11-24
IL264592B2 (en) 2023-10-01
AU2020250188B2 (en) 2023-03-09
US20200317510A1 (en) 2020-10-08
TWI820555B (zh) 2023-11-01
JOP20220245A1 (ar) 2023-01-30
MX2023000482A (es) 2023-02-13
KR20220046002A (ko) 2022-04-13
JOP20220243A1 (ar) 2023-01-30
SA519400950B1 (ar) 2022-03-16
JOP20170154A1 (ar) 2019-01-30
GEP20247593B (en) 2024-02-12
US20180140697A1 (en) 2018-05-24
KR20220045078A (ko) 2022-04-12
CA3122348A1 (en) 2018-02-08
CN109715209A (zh) 2019-05-03
CN116333147A (zh) 2023-06-27
IL298690A (en) 2023-01-01
JP6971306B2 (ja) 2021-11-24
KR20190035796A (ko) 2019-04-03
IL298689B2 (en) 2023-10-01
IL298689B1 (en) 2023-06-01
CN116333146A (zh) 2023-06-27
EP3490603A1 (en) 2019-06-05
CU24568B1 (es) 2022-01-13
TW202214689A (zh) 2022-04-16
IL264592A (en) 2019-02-28
JOP20220241A1 (ar) 2023-01-30
WO2018026722A1 (en) 2018-02-08
TWI756248B (zh) 2022-03-01
CR20190105A (es) 2019-05-14
SG10202010277SA (en) 2020-11-27
SG11201900606VA (en) 2019-02-27
WO2018026722A8 (en) 2018-12-27
ECSP19015192A (es) 2019-03-29
MA45798A (fr) 2019-06-05
SG10202010279YA (en) 2020-11-27
MX2023000525A (es) 2023-03-06
JOP20170154B1 (ar) 2023-03-28
IL298690B2 (en) 2023-10-01
CN109715209B (zh) 2022-12-06
KR102382804B1 (ko) 2022-04-11
US10639369B2 (en) 2020-05-05

Similar Documents

Publication Publication Date Title
JP7350821B2 (ja) 様々な疾患および障害の治療のためのmasp-3を阻害する組成物および方法
CN115040653A (zh) 抑制masp-1和/或masp-2和/或masp-3的组合物和方法
EA040888B1 (ru) Композиции и способы для ингибирования masp-3, применяемые в целях лечения различных заболеваний и расстройств
NZ751019B2 (en) Compositions and methods of inhibiting masp-3 for the treatment of various diseases and disorders
OA19469A (en) Compositions and methods of inhibiting MASP-3 for the treatment of various deseases and disorders.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40092382

Country of ref document: HK