TW202202451A - 排水處理劑、及排水處理劑之製造方法 - Google Patents
排水處理劑、及排水處理劑之製造方法 Download PDFInfo
- Publication number
- TW202202451A TW202202451A TW110116198A TW110116198A TW202202451A TW 202202451 A TW202202451 A TW 202202451A TW 110116198 A TW110116198 A TW 110116198A TW 110116198 A TW110116198 A TW 110116198A TW 202202451 A TW202202451 A TW 202202451A
- Authority
- TW
- Taiwan
- Prior art keywords
- treatment agent
- drainage treatment
- mentioned
- powder
- flocculant polymer
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/01—Separation of suspended solid particles from liquids by sedimentation using flocculating agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
- B01J2/20—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by expressing the material, e.g. through sieves and fragmenting the extruded length
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/54—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
- C02F1/56—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Glanulating (AREA)
Abstract
本發明之排水處理劑包含含有植物粉末及絮凝劑聚合物之粒子,且靜止角為38度以下。
Description
本發明係關於一種排水處理劑、及排水處理劑之製造方法。
近年來,於工廠製造各種製品之過程中,會產生大量包含作為無機離子之金屬離子或氟離子等環境負荷物質之排水,為了淨化該排水而使用排水處理劑。
由於排水處理本身係於經由複數個水槽之過程中執行,故供給至各水槽之藥劑(排水處理劑)通常以液狀之形態供給,如絮凝劑聚合物之類的固體粉末之藥劑使用專用之溶解設備製成水飴狀水溶液後供給至處理用水槽。當欲處理之排水量較多或藉由自動運轉來處理時,大多情況下使用配備有將藥劑自動供給至上述溶解設備之系統者。於此情形時,為了獲得一定濃度之溶解液,廣泛使用配備有利用自身重量與流動性來定量供給固體粉末藥劑之機構的設備。再者,當排水量較少、或處理之排水之變動較大時,有時亦可手動改變條件來進行溶解,但由於步驟數增加等現場負擔增加,故大多採用上述自動供給系統。
作為以往之排水處理劑,例如提出了一種具有植物粉末之造粒物之排水處理劑,其目的在於可適宜地用於能夠低成本且穩定供給之自動供給系統(例如,參照專利文獻1)。
又,提出了一種排水處理劑,其係包含植物粉末與絮凝劑聚合物之混合物之造粒物,其目的在於可適宜地用於以低成本、進而使所需性能之排水處理劑穩定、且可重複精度良好地進行供給之自動供給系統(例如,參照專利文獻2)。
於專利文獻1所記載之技術中,存在如下問題:於利用排水處理劑之自身重量自給粉機之料斗向溶解機供給排水處理劑之自動供給系統中,由於排水處理劑含有流動性較差之植物粉末,故給粉機之料斗內會產生架橋(bridge)或鼠洞(rat hole)等,無法穩定地製備包含一定濃度之排水處理劑之水溶液。
又,專利文獻2所記載之技術存在如下問題:由於僅將流動性較差之植物粉末與絮凝劑聚合物單純地混合,故排水處理劑之流動性未得到改善,與專利文獻1所記載之技術同樣地,給粉機之料斗內會產生架橋或鼠洞等,無法穩定地製備包含一定濃度之排水處理劑之水溶液。
[先前技術文獻]
[專利文獻]
專利文獻1:日本專利第6301802號公報
專利文獻2:日本特開2015-231600號公報
[發明所欲解決之課題]
本發明之課題在於解決以往之上述諸多問題,達成以下目的。即,本發明之目的在於提供一種排水處理劑、及排水處理劑之製造方法,該排水處理劑即便含有大量植物粉末之類的流動性差之成分,流動性亦優異,可防止自動供給系統中之料斗內之架橋或鼠洞之產生。
[解決課題之技術手段]
作為用以解決上述課題之手段,如以下所述。即,
<1>一種排水處理劑,其特徵在於包含含有植物粉末及絮凝劑聚合物之粒子,且
靜止角為38度以下。
<2>如上述<1>中記載之排水處理劑,其容積密度(bulk density)為0.55 g/mL以上。
<3>如上述<1>或<2>記載之排水處理劑,其靜止角為37度以下。
<4>如上述<1>至<3>中任一項記載之排水處理劑,其中,上述植物粉末之靜止角為47度~57度。
<5>如上述<1>至<4>中任一項記載之排水處理劑,其中,上述植物粉末與上述絮凝劑聚合物之質量比(植物粉末:絮凝劑聚合物)為10%:90%~30%:70%。
<6>如上述<1>至<5>中任一項記載之排水處理劑,其中,上述植物粉末含有陽離子性成分,上述絮凝劑聚合物含有陰離子性成分。
<7>一種排水處理劑之製造方法,其特徵在於包含:
混練物製備步驟,其係使用加壓捏合機對植物粉末與絮凝劑聚合物進行加水混練而製備混練物;及
擠出成形步驟,其係使用雙螺桿成形機將上述混練物擠出成形而獲得成形物。
<8>如上述<7>中記載之排水處理劑之製造方法,其包含:
一次乾燥步驟,其係以含水率成為15%~25%之方式使上述成形物乾燥而獲得一次乾燥物;
粒子化步驟,其係將上述一次乾燥物粉碎而獲得粒子;及
二次乾燥步驟,其係使上述粒子乾燥。
<9>如上述<8>中記載之排水處理劑之製造方法,其中,於上述粒子化步驟中,粒徑未達250 μm之細粉末之產生率相對於全部粒子為18質量%以下。
[發明之效果]
根據本發明,可解決以往之上述諸多問題,達成上述目的;本發明可提供一種排水處理劑、及排水處理劑之製造方法,該排水處理劑即便含有大量植物粉末之類的流動性差之成分,流動性亦優異,可防止自動供給系統中之料斗內之架橋或鼠洞之產生。
(排水處理劑)
本發明之排水處理劑包含含有植物粉末及絮凝劑聚合物之粒子,進而視需要包含其他成分。
作為上述排水處理劑之靜止角,為38度以下,較佳為37度以下。若上述靜止角為38度以下,則上述排水處理劑之流動性提高,可防止自動供給系統中之料斗內之架橋或鼠洞之產生。
作為上述排水處理劑之靜止角,例如可使用粉末測試機PT-X(Hosokawa Micron股份有限公司製造)等進行測定,使待測定之上述排水處理劑經由漏斗慢慢落至圓形狀之承受台,測定形成山型層時之斜面與水平面所成之角度。
本發明之排水處理劑使用下述本發明之排水處理劑之製造方法而製造,藉此形成為上述植物粉末與上述絮凝劑聚合物經一體化之粒子,靜止角為38度以下。於先前技術文獻2中記載之製造方法中,由於將上述植物粉末與上述絮凝劑聚合物單純地混合,故未形成為上述植物粉末與上述絮凝劑聚合物經一體化之粒子,且靜止角並非為38度以下。
<粒子>
作為上述粒子,含有上述植物粉末及上述絮凝劑聚合物,視需要含有其他成分。
於上述粒子中,由於纖維質植物粉末與絮凝劑聚合物之纖維彼此相互纏繞而物理結合,故上述植物粉末與上述絮凝劑聚合物一體化。
藉此,上述排水處理劑之流動性提高,可防止自動供給系統中之料斗內之架橋或鼠洞之產生。又,上述植物粉末中之陽離子性成分與上述絮凝劑聚合物之陰離子性成分以電化學之方式部分結合,藉此,於使用者將上述排水處理劑製成水溶液時,成為需要時間來將上述植物粉末與上述絮凝劑聚合物分離之狀態,可防止上述植物粉末之非水溶性成分於短時間內分離、沈澱。
作為上述粒子之形狀,只要上述排水處理劑之靜止角為38度以下,則無特別限制,可根據目的適當選擇,例如可列舉:大致球狀、針狀、非球狀等。其中,就具有高流動性之方面而言,較佳為大致球狀。
-植物粉末-
上述植物粉末係將植物製成粉末狀而成者。
作為上述植物,只要為可將排水中之無機系無用物(鎳、銅、氟等)凝聚並分離之植物,則無特別限制,可根據目的適當選擇,例如可列舉:長蒴黃麻(Corchorus olitorius)、國王菜、小松菜、鴨兒芹、日本蕪菁、菠菜等。其中,較佳為長蒴黃麻及國王菜。
作為上述植物之部位,例如可列舉:葉、皮、莖、根等,其中,較佳為葉與皮。
作為上述植物粉末之靜止角,較佳為47度以上57度以下。其原因在於,為了獲得所需之高凝聚特性及降低污泥之含水率之效果,需要使作為原材料而投入之植物粉末之粒子尺寸為適當範圍(53 μm~710 μm)。然而,若將原本密度較小之植物縮小至此種尺寸之細粉末,則其流動性大幅惡化,作為流動性之指標之一的靜止角會顯示47度至57度之值。進而,若進一步縮小上述粒子尺寸,則靜止角超過57度而顯示更大之值,但若將上述粒子尺寸縮小至此種程度,則會對含有其之排水處理劑之性能造成不良影響,故欠佳。
關於上述排水處理劑中之植物粉末與絮凝劑聚合物之含有比率(質量比),根據待處理之排水中之環境負荷物質成分之種類或濃度、起到干擾之共存物質之種類或濃度,最佳值會發生變化,因此,針對每種排水選擇最佳摻合比之製品。其中,尤其是用以處理各種重金屬或氟化物之排水處理劑中,植物粉末與絮凝劑聚合物之含有比率(質量比)較佳為10%:90%~30%:70%。
作為上述植物粉末,較佳為保有一定量之陽離子性成分。
-絮凝劑聚合物-
作為上述絮凝劑聚合物,只要保有一定量之陰離子性成分,且具有完全水溶性,則可根據目的適當選擇,例如較佳為丙烯酸丙烯醯胺共聚物(通稱PAM)。
作為上述PAM,例如可列舉具有羧酸鹽以帶有陰離子性者等。
作為上述PAM,可使用市售品,作為上述市售品,例如可列舉Flopan AN913(側鏈具有羧酸鹽之PAM)(均為SNF股份有限公司製造)等。
作為市售品之絮凝劑聚合物之流動性大多良好,其靜止角亦幾乎為38度以下。其原因在於,絮凝劑聚合物之製造商為了確保良好之流動性,而控制了其物性值(容積密度或粒徑)。因此,市售品中絕大多數都可用於本發明之原材料所使用之絮凝劑聚合物,用於研究之絮凝劑聚合物之靜止角為37度。
上述排水處理劑之容積密度並無特別限制,可根據目的適當選擇,較佳為0.55 g/mL以上,更佳為0.60 g/mL以上。若上述容積密度為0.55 g/mL以上,則可不改造迄今用於溶解絮凝劑聚合物之設備而轉用,因此可節省導入本發明之排水處理劑所需之初始費用。
作為上述排水處理劑之容積密度,可使用作為業界標準器之粉末測試機PT-X型(Hosokawa Micron股份有限公司製造)等進行測定,於100 cc之不鏽鋼杯中慢慢加入100 cc之上述排水處理劑,測定此時之上述排水處理劑之容積密度。
為了確保使用時之高流動性與溶解性,上述排水處理劑之粒子尺寸需要控制為150 μm以上1 mm以下之粒子尺寸。作為其粒度分佈,更佳為250 μm以上850 μm以下。
上述排水處理劑之粒度分佈原則上較佳為乾式測定,例如可使用Morphologi G3(Malvern Instruments公司製造)等進行測定。
(排水處理劑之製造方法)
本發明之排水處理劑之製造方法包含混練物製備步驟、及擠出成形步驟,且較佳為包含一次乾燥步驟、粒子化步驟、二次乾燥步驟,視需要進而包含其他步驟。藉由本發明之排水處理劑之製造方法,可適宜地製造本發明之排水處理劑。
<混練物製備步驟>
上述混練物製備步驟係使用加壓捏合機,一面加水一面對上述植物粉末與上述絮凝劑聚合物進行混練而製備混練物之步驟。於上述混練物製備步驟中,藉由使用加壓捏合機,可對混練物施加較高之剪力,其結果為,實現使上述植物粉末與上述絮凝劑聚合物此異質材料彼此結合,並使兩者一體化。具體而言,投入至混練設備中之水會產生優先被上述絮凝劑聚合物吸收,而不被上述植物粉末吸收之狀態。然而,藉由加壓捏合機所具有之較高之剪力,強制性地自上述絮凝劑聚合物中部分擠出之水分會被上述植物粉末吸收,結果可形成上述植物粉末與上述絮凝劑聚合物雙方均部分溶解於水中之狀態。藉此,實現上述植物粉末與上述絮凝劑聚合物之物理結合(纖維相互纏繞)與電化學結合同時產生而一體化之狀態。
再者,於本發明中,為了獲得較高之剪力,使用2片葉片之加壓捏合機進行研究,發現所需之結果。另一方面,例如於變更為3片葉片等提高剪力之葉片規格之捏合機之情形時,即便不加壓亦有可能獲得同樣高之剪力,可容易地推測出,若使用此種增加了葉片片數之捏合機,則可獲得同等之結果。
上述加壓捏合機之葉片之片數並無特別限制,可根據目的適當選擇,但若增加葉片片數而過度提高剪力,則會產生變成過度混練之狀態而損害成品之品質之風險,因此,考慮到其平衡性,較佳為2片。
上述加壓捏合機之加壓蓋並無特別限制,可根據目的適當選擇,例如可列舉能夠使用加壓用氣缸進行加壓者等。藉由使加壓捏合機具有加壓蓋,可對混練物均勻地施加剪力,又,可抑制加水混練時產生之粉塵之飛散。作為上述加壓蓋之壓力,較佳為0.6 MPa以上。
作為上述加水混練時之溫度,為了抑制待混練之原材料之熱劣化或機械特性變化,較佳為15℃以上40℃以下。
關於上述加水混練時賦予之水之添加量,該水之添加量係不僅影響混練步驟,而且還影響到後續之擠出成形步驟或乾燥步驟之因素,因此需要管理為最佳值。具體而言,較佳為相對於將上述植物粉末與上述絮凝劑聚合物混合所得之合計質量為1倍量左右。
作為上述加水混練時之葉片之轉速,處於10 rpm~40 rpm之範圍。雖需要較高之剪力,但若該剪力過高,則會產生絮凝劑聚合物之劣化而損害成品之品質,因此,葉片之轉速或混練時間需要管理為最佳值。
<擠出成形步驟>
上述擠出成形步驟係使用雙螺桿成形機將上述混練物擠出成形而獲得成形物之步驟。於上述擠出成形步驟中,藉由使用雙螺桿成形機對混練物一面進行加壓一面擠出成形,可促進混練物之緻密化,提高成形物之真比重。藉由該效果,可提高成品之疏充填容積密度(aerated bulk density),實現流動性較高之上述排水處理劑。又,藉由擠出後立即將成形物連續切割成顆粒狀,可同時進行混練物之緻密化與造粒,下述乾燥步驟(一次乾燥步驟及二次乾燥步驟)及粒子化步驟之效率提高,可提高上述排水處理劑之生產性。
上述雙螺桿成形機所適合之材質等會根據螺桿之葉片形狀等而變化,因此需要注意。又,根據擠出混練物之模具之孔形狀(孔徑、孔數、或孔配置),緻密化程度或生產性會大幅變化,因此需要根據投入之混練物之物性值進行最佳化。於本發明中,使用設計用於製造輪胎橡膠用顆粒之雙螺桿擠出機,模具之孔徑為ϕ3.5 mm。
上述擠出成形之溫度例如較佳為15℃以上40℃以下。
作為上述擠出成形中之雙螺桿之轉速,例如較佳為10 rpm以上36 rpm以下。若上述轉速為40 rpm以上,則存在雙螺桿內之混練加速而導致混練過度,從而使成品之品質惡化之風險。
<一次乾燥步驟>
上述一次乾燥步驟係以含水率成為15%~25%之方式使成形物乾燥而獲得一次乾燥物之步驟。藉由以上述成形物之含水率成為15%~25%之方式進行乾燥,成形物具有柔軟性,因此可抑制下述粒子化步驟中對一次乾燥物造成之物理損傷,可抑制粒子化步驟中之細粉末之產生。
作為上述一次乾燥步驟,需要於乾燥中使成形物(顆粒狀)不會彼此結合而形成巨大之塊,同時以成形物之含水率成為15%~25%之方式進行乾燥。因此,於本發明中,使用振動式流化乾燥機以連續處理之方式進行乾燥。關於此時之乾燥條件,於熱風溫度80℃以下、乾燥時間(乾燥機內之滯留時間)5分鐘~10分鐘之條件下進行處理。
<粒子化步驟>
上述粒子化步驟係將上述一次乾燥物粉碎而獲得粒子之步驟,粒子尺寸未達250 μm之細粉末之產生率較佳為相對於全部粒子為18質量%以下。
作為上述粒子化步驟,需要藉由1次處理便將數mm尺寸之顆粒粉碎成250 μm~850 μm之粉末。又,所適合之粉碎方式因顆粒之硬度與構成材料而異,因此需要選擇兼顧必要之處理能力與加工性之粉碎機。
於本發明中,將多刃式切碎機與空氣輸送系統加以組合,連續地將一定量之顆粒供給至粉碎機進行粉碎。
<二次乾燥步驟>
上述二次乾燥步驟係使上述粉碎之粒子乾燥至水分含有率為6%以下之步驟。
作為上述二次乾燥步驟,需要一面經常測定、監視乾燥機內之製品之溫度,一面以不使該製品溫度上升至80℃以上之方式控制熱風溫度與乾燥時間,進行乾燥處理。因此,於本發明中,將流動層乾燥機與空氣輸送系統組合,每次對4 kg~5 kg之製品輸送約100℃之熱風,並且以製品溫度成為80℃以下之方式進行乾燥處理。此時之乾燥時間為10分鐘~15分鐘。
<其他步驟>
作為上述其他步驟,例如可列舉分級步驟等。
於上述分級步驟中,較佳為使用振動篩機、筒式篩機等分級機以使乾燥之粒子成為良品粒徑250 μm以上850 μm以下之方式將粒子分級。
(排水處理劑之使用方法)
作為上述排水處理劑之使用方法,將使本發明之排水處理劑以特定濃度溶解於水中所得之水溶液供至添加無機絮凝劑後之排水中,藉此,使排水中之無機系無用物之微小粒子凝聚、沈澱而自排水中去除。
作為上述無機系無用物,例如可列舉具有鎳、氟、鐵、銅、鋅、鉻、砷、鎘、錫、及鉛中之至少任一者之無機系無用物等。
對本發明之水淨化方法進行具體說明。
欲去除之無機系無用物(鎳、鉻、銅、鋅、氟等)通常以離子之形態溶解於排水中。因此,首先進行使用與各成分對應之中和劑或凝結劑等使上述離子固體化之處理,形成微絮凝物。繼而,添加PAC(聚氯化鋁)等無機絮凝劑,改善上述微絮凝物之表面電位平衡以促進凝結作用,藉此增大尺寸。然而,若僅添加上述無機絮凝劑,則無法使絮凝物增大至能夠於短時間內凝聚、沈澱之尺寸,因此,於其中投入適量之製成0.1質量%~0.2質量%之水溶液的本發明之排水處理劑溶解液。結果,上述微絮凝物晶粒生長至能夠於短時間內凝聚、沈澱之尺寸,藉由僅分離、回收其沈澱物,便去除排水中之無用物,獲得淨化後之排水。
於進行上述排水處理時,所使用之藥劑(中和劑、無機絮凝劑、本發明之排水處理劑)之使用量根據排水中之各成分濃度、初始pH值、或排水量等而大有不同,需要分別根據排水來調整投入量。然而,上述藥劑之使用量增加直接導致排水處理費用之成本上升,因此其使用量越少越佳。
[實施例]
以下,對本發明之實施例進行說明,但本發明不受該等實施例任何限定。
<植物粉末之製備例1>
藉由日曬乾燥等使整個長蒴黃麻乾燥至水分含量成為10%以下。
繼而,藉由切碎機等將該乾燥之植物粉碎至其粒度分佈成為50 μm~710 μm,獲得植物粉末。
(實施例1)
-加水混練步驟-
將上述植物粉末20質量%與絮凝劑聚合物(聚丙烯醯胺、Flopan AN 926 SNF股份有限公司製造)80質量%混合而獲得混合物後,對所獲得之混合物添加水95質量%,使用加壓捏合機進行3分鐘加水混練,獲得混練物。
-擠出成形步驟-
使用設計用於製造輪胎橡膠用顆粒之雙螺桿擠出機對所獲得之混練物進行擠出成形,藉由旋轉刀將自尺寸(ϕ)3.5 mm之模具孔擠出之成形物切割成長度(L)5 mm以下。
-一次乾燥步驟-
對於所獲得之成形物,使用DALTON公司製造之振動流動式乾燥機,以於乾燥中使得成形物(顆粒狀)不會彼此結合而形成巨大塊之方式進行管理,並且連續地進行乾燥而獲得一次乾燥物。使用紅外線式水分計測定所獲得之一次乾燥物之含水率,結果為15%~25%。
-粒子化步驟-
使用HORAI公司製造之多刃式切碎機將所獲得之一次乾燥物粉碎而獲得粒子。藉由切碎機進行粉碎時之粒子尺寸未達250 μm之細粉末之產生率相對於全部粒子為10質量%~18質量%。
-二次乾燥步驟-
為了消除粒子彼此之附著、結合,使用DALTON公司製造之流動層乾燥機對所獲得之粒子進行二次乾燥。此時,為了不使製品溫度上升至80℃以上,於乾燥機內部插入溫度感測器,測量製品溫度,並且分批進行處理。使用紅外線式水分計測定所獲得之二次乾燥物之含水率,結果為6%以下。
-分級步驟-
所獲得之排水處理劑中之粒徑大於850 μm之粒子利用標稱網眼850 μm(目數No.20)之篩而去除,粒徑小於250 μm之粒子利用標稱網眼250 μm(目數No.60)之篩而去除,獲得其粒徑為250 μm以上850 μm以下之排水處理劑。
(比較例1)
將上述植物粉末30質量%與絮凝劑聚合物(聚丙烯醯胺,Flopan AN 926 SNF股份有限公司製造)70質量%投入塑膠袋後,手動搖晃5分鐘以上以進行混合,獲得排水處理劑。
(比較例2)
於比較例1中,將植物粉末之含量變更為20質量%,將絮凝劑聚合物之含量變更為80質量%,除此以外,以與比較例1相同之方式獲得排水處理劑。
(比較例3)
於比較例1中,將植物粉末之含量變更為10質量%,將絮凝劑聚合物之含量變更為90質量%,除此以外,以與比較例1相同之方式獲得排水處理劑。
(比較例4)
首先,將植物粉末之含量設為20質量%,將絮凝劑聚合物之含量設為80質量%,藉由行星式攪拌機進行加水混練步驟(加水量相對於原材料混合物之重量為約230%,混練時間為10分鐘左右)。繼而,藉由人工作業將該混練物撕成適當尺寸(ϕ30~50 mm左右)之塊,載置於鋪有網之架子上,藉由熱風乾燥機連同架子一起進行乾燥(於80℃乾燥20小時以上)。藉由切碎機將水分含有率為6%以下之塊狀乾燥物分2個階段進行粉碎,製成粉末狀。最後,以使其粒度分佈成為250 μm~850 μm之方式,利用振動篩等進行分級而獲得排水處理劑。
(比較例5)
首先,將植物粉末之含量設為20質量%,將絮凝劑聚合物之含量設為80質量%,藉由行星式攪拌機進行加水混練步驟(加水量相對於原材料混合物之重量為約230%,混練時間為10分鐘左右)。繼而,將該混練物放入長方形箱中,蓋上壓蓋,施加0.5 MPa之壓力1分鐘左右而進行加壓成形,獲得塊狀之成形體。進而,將該成形體裁斷成15 cm見方左右之尺寸,使用延伸機將該裁斷之塊體逐個成形為厚度7 mm以下之片狀。將所獲得之成形物載置於鋪有網之架子上,藉由熱風乾燥機連同架子一起進行乾燥(於80℃乾燥20小時以上)。藉由切碎機將水分含有率為6%以下之塊狀乾燥物分2個階段進行粉碎,製成粉末狀。最後,以使其粒度分佈成為250 μm~850 μm之方式,利用振動篩等進行分級而獲得排水處理劑。
首先,測定本研究中使用之原材料單質之各靜止角、及容積密度。繼而,測定實施例1及比較例1~5之排水處理劑之靜止角、及容積密度。又,針對實施例1及比較例4~5之排水處理劑,對製造前置時間、及製造良率進行評價。將結果示於表1。
[靜止角]
靜止角係使用粉末測試機PT-X型(Hosokawa Micron公司製造)進行測定。利用該公司之標準測定條件,使待測定之試樣經由漏斗落至圓形狀之承受台,測定形成山型層時之斜面與水平面所成之角度。
[容積密度]
使用粉末測試機PT-X型(Hosokawa Micron公司製造)測定疏充填容積密度。利用該公司之標準測定條件,將排水處理劑自上方慢慢一點一點地投入100 cc之不鏽鋼杯中,並故意使其溢出,對去除自上述杯之上表面溢出之部分時的杯之內容物重量進行測定,藉此求出此時之排水處理劑之疏充填容積密度。
(評價)
<供給穩定性>
將各排水處理劑加入角度60度之料斗中,並自動供給至溶解槽,此時,按照下述基準評價能否穩定供給。
-評價基準-
A:未產生架橋、或鼠洞,可繼續進行穩定之供給。
B:雖產生架橋、或鼠洞,但藉由對料斗施加振動,架橋或鼠洞消失,可繼續進行供給。
C:產生架橋、或鼠洞,且即便對料斗施加振動,架橋或鼠洞亦未被消除,無法進行穩定之供給。
<製造前置時間>
製造前置時間(製造L/T)係測定自稱量上述植物粉末及上述絮凝劑聚合物之時間點至獲得排水處理劑這段時間。
<製造良率>
製造良率係測定製品完成量(重量)/合計之原材料投入量(重量)。
[表1]
摻合條件 | 物性值 | 評價 | ||||||
植物粉末 (質量%) | 絮凝劑聚合物 (質量%) | 靜止角 (度) | 疏充填容積密度 (g/ML) | 供給穩定性 | 製造L/T (分鐘) | 製造良率 (%) | 細粉末產生率 (%) | |
植物粉末單質 | 100 | - | 52.3 | 0.10~0.20 | C | - | - | - |
絮凝劑聚合物單質 | - | 100 | 37.1 | 0.62~0.78 | A | - | - | - |
比較例1 | 30 | 70 | 44.7 | - | C | - | - | - |
比較例2 | 20 | 80 | 43.1 | 0.44~0.50 | C | - | - | - |
比較例3 | 10 | 90 | 41.2 | - | C | - | - | - |
比較例4 | 20 | 80 | 40.8 | 0.48~0.54 | B | 2880 | 48 | 34~42 |
比較例5 | 20 | 80 | 39.8 | 0.56~0.62 | B | 2160 | 58 | 34~42 |
實施例1 | 20 | 80 | 35.9 | 0.63~0.70 | A | 162 | 81 | 10~18 |
無
無
Claims (9)
- 一種排水處理劑,其特徵在於包含含有植物粉末及絮凝劑聚合物之粒子,且 靜止角為38度以下。
- 如請求項1之排水處理劑,其容積密度(bulk density)為0.55 g/mL以上。
- 如請求項1或2之排水處理劑,其靜止角為37度以下。
- 如請求項1至3中任一項之排水處理劑,其中,上述植物粉末之靜止角為47度~57度。
- 如請求項1至4中任一項之排水處理劑,其中,上述植物粉末與上述絮凝劑聚合物之質量比(植物粉末:絮凝劑聚合物)為10%:90%~30%:70%。
- 如請求項1至5中任一項之排水處理劑,其中,上述植物粉末含有陽離子性成分,上述絮凝劑聚合物含有陰離子性成分。
- 一種排水處理劑之製造方法,其特徵在於包含: 混練物製備步驟,其係使用加壓捏合機對植物粉末與絮凝劑聚合物進行加水混練而製備混練物;及 擠出成形步驟,其係使用雙螺桿成形機將上述混練物擠出成形而獲得成形物。
- 如請求項7之排水處理劑之製造方法,其包含: 一次乾燥步驟,其係以含水率成為15%~25%之方式使上述成形物乾燥而獲得一次乾燥物; 粒子化步驟,其係將上述一次乾燥物粉碎而獲得粒子;及 二次乾燥步驟,其係使上述粒子乾燥。
- 如請求項8之排水處理劑之製造方法,其中,於上述粒子化步驟中,粒徑未達250 μm之細粉末之產生率相對於全部粒子為18質量%以下。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP2020-084888 | 2020-05-14 | ||
JP2020084888A JP2021178290A (ja) | 2020-05-14 | 2020-05-14 | 排水処理剤、及び排水処理剤の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202202451A true TW202202451A (zh) | 2022-01-16 |
Family
ID=78510228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110116198A TW202202451A (zh) | 2020-05-14 | 2021-05-05 | 排水處理劑、及排水處理劑之製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2021178290A (zh) |
CN (1) | CN115397536A (zh) |
TW (1) | TW202202451A (zh) |
WO (1) | WO2021230038A1 (zh) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK1974806T3 (da) * | 2007-03-21 | 2012-01-09 | Omya Development Ag | Fremgangsmåde til rensning af vand |
JP2014008428A (ja) * | 2012-06-28 | 2014-01-20 | Sony Corp | 凝集剤混合物及び凝集方法 |
MX2015002998A (es) * | 2012-09-10 | 2015-06-22 | Procter & Gamble | Composiciones de limpieza que comprenden particulas estructuradas. |
JP6109225B2 (ja) * | 2015-03-30 | 2017-04-05 | デクセリアルズ株式会社 | 水浄化剤、及び水浄化方法 |
JP6885826B2 (ja) * | 2016-09-15 | 2021-06-16 | デクセリアルズ株式会社 | 水浄化剤の製造方法、及び排水処理方法 |
JP6320662B2 (ja) * | 2018-01-05 | 2018-05-09 | デクセリアルズ株式会社 | 水浄化剤、水浄化剤の製造方法、及び水浄化方法 |
-
2020
- 2020-05-14 JP JP2020084888A patent/JP2021178290A/ja active Pending
-
2021
- 2021-04-23 WO PCT/JP2021/016415 patent/WO2021230038A1/ja active Application Filing
- 2021-04-23 CN CN202180030020.1A patent/CN115397536A/zh active Pending
- 2021-05-05 TW TW110116198A patent/TW202202451A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
WO2021230038A1 (ja) | 2021-11-18 |
JP2021178290A (ja) | 2021-11-18 |
CN115397536A (zh) | 2022-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11104036B2 (en) | Process for preparing a polyolefin composition | |
JP6425341B2 (ja) | ポリアクリル酸(塩)系吸水性樹脂の製造方法 | |
CN1056503A (zh) | 高吸水性树脂粉末的连续造粒方法及其装置 | |
KR20070096831A (ko) | 흡수성 수지 조성물의 제조방법 | |
CN105164186A (zh) | 吸水性树脂组合物的制造方法 | |
CN106458646B (zh) | 水净化剂和水净化方法 | |
WO2018224523A1 (en) | Method for producing aggregates from returned concrete | |
CN110980911A (zh) | 水净化剂及水净化方法 | |
CN110744744A (zh) | 一种塑料颗粒生产工艺 | |
CN103642133B (zh) | 不溶性硫磺预分散胶母粒及其制备方法 | |
TW202202451A (zh) | 排水處理劑、及排水處理劑之製造方法 | |
JP2008050592A (ja) | 粉体一体化樹脂粒子及びその造粒方法、並びに粒子含有成形体及び粒子含有シート材並びにこれらの成形方法 | |
CN210632617U (zh) | 一种用于垃圾焚烧厂的飞灰稳定化成型处理装置 | |
CN113666470B (zh) | 废水处理剂和废水处理剂的制造方法 | |
CN111825916A (zh) | 一种复合助剂及其制备方法 | |
JP4034419B2 (ja) | 路盤材料として再利用するための脱水ケーキの処理方法 | |
JP6841256B2 (ja) | 造粒物、造粒物の製造方法および焼結鉱の製造方法 | |
EP3478401A1 (en) | Method for manufacturing of granular fillers using a granular nuclei, producing device and granulate obtained by this method | |
JPH05115254A (ja) | 粒状デンプンおよびその製造方法 | |
JPH105722A (ja) | 石粉粒状体の製造方法 | |
JPH061855A (ja) | 顆粒状ポリフェニレンスルフィドの製造方法 | |
JP2007044601A (ja) | 泥土、汚泥等の再資源化方法および再資源化装置 | |
CN115611386A (zh) | 水净化剂及其制造方法、以及水净化方法 | |
JPH02199166A (ja) | 熱可塑性ポリウレタン成形体及びその製造法 | |
JPS60239446A (ja) | N−アルキル−n′−フエニル−p−フエニレンジアミン粒子の表面処理法 |