TW202139600A - 峰值偵測器電路及用於評估第一輸入電壓之峰值的方法 - Google Patents

峰值偵測器電路及用於評估第一輸入電壓之峰值的方法 Download PDF

Info

Publication number
TW202139600A
TW202139600A TW109141142A TW109141142A TW202139600A TW 202139600 A TW202139600 A TW 202139600A TW 109141142 A TW109141142 A TW 109141142A TW 109141142 A TW109141142 A TW 109141142A TW 202139600 A TW202139600 A TW 202139600A
Authority
TW
Taiwan
Prior art keywords
terminal
voltage
capacitor
peak detector
input
Prior art date
Application number
TW109141142A
Other languages
English (en)
Inventor
達利博爾 柯樂
Original Assignee
奧地利商Ams有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奧地利商Ams有限公司 filed Critical 奧地利商Ams有限公司
Publication of TW202139600A publication Critical patent/TW202139600A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/153Arrangements in which a pulse is delivered at the instant when a predetermined characteristic of an input signal is present or at a fixed time interval after this instant
    • H03K5/1532Peak detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/04Measuring peak values or amplitude or envelope of ac or of pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

一種峰值偵測器電路(10),包括用於提供第一輸入電壓(VIN1)的第一輸入端子(11)、具有陽極連接至該第一輸入端子(11)的第一整流元件(15)、具有第一電極連接至該第一整流元件(15)之陰極的第一電容器(16)、耦合至該第一電容器(16)之該第一電極的第一端子(13)、具有陰極連接至該第一輸入端子(11)的第二整流元件(20)、第二電容器(21)、將該第二整流元件(20)之陽極耦合至該第二電容器(21)之第一電極的第一開關(23)、以及耦合至該第二電容器(21)之該第一電極的第二端子(22)。

Description

峰值偵測器電路及用於評估第一輸入電壓之峰值的方法
本發明係關於一種峰值偵測器電路、具有峰值偵測器電路的一種電流測量配置(current measurement arrangement)、包括該電流測量配置的一種光達系統(light-detection-and-ranging system)以及一種用於評估第一輸入電壓之峰值的方法。
峰值偵測器電路係普遍被組構成用來捕捉信號的峰值,特別是電壓信號的峰值。通常,要被偵測的峰值相對於參考電位(reference potential)為正。然而在某些情況中,也需要偵測低於參考電位的峰值。為了實現信號評估的高準確性,需要以高準確性偵測峰值。
目標係提供一種峰值偵測器電路、一種電流測量配置、一種光達系統以及一種用於評估實現高準確性峰值偵測的第一輸入電壓之峰值的方法。
這些目標係藉由獨立請求項的專利標的來實現。進一步的發展與實施例係描述在附屬請求項中。
在一個實施例中,峰值偵測器電路包括用於提供第一輸入電壓的第一輸入端子、具有陽極連接至該第一輸入端子的第一整流元件、具有第一電極連接至該第一整流元件之陰極的第一電容器、以及耦合至該第一電容器之該第一電極的第一端子。此外,峰值偵測器電路包括具有陰極連接至該第一輸入端子的第二整流元件、第二電容器、將該第二整流元件之陽極耦合至該第二電容器之第一電極的第一開關、以及耦合至該第二電容器之該第一電極的第二端子。
有利地,第一和第二端子電壓可在第一和第二端子處分接。使用第一和第二端子電壓可決定第一輸入電壓之峰值的值。例如,第一輸入電壓的峰值可能等於第一和第二端子電壓的總和。
在一個實施例中,峰值偵測器電路進一步包括將第一電容器的第一電極耦合至參考電位端子的第一放電開關(discharge switch)。有利地,第一電容器可在測量之後放電。
在一個實施例中,峰值偵測器電路進一步包括將第二電容器的第一電極耦合至參考電位端子的第二放電開關。有利地,第二放電開關係組構成使第二電容器在測量之後放電。
在一個實施例中,峰值偵測器電路進一步包括將第二整流元件的陽極耦合至參考電位端子的第一接地開關(ground switch)。有利地,第一接地開關將第二整流元件保持在低電壓,使得第一開關可實行為低電壓開關。
在一個實施例中,第一和第二整流元件係實現為包括二極體(diode)、肖特基二極體(Schottky diode)、接面二極體(junction diode)以及連接成二極體組構的雙極性電晶體(bipolar transistor)之群組的其中一者。二極體係可為pn-二極體。有利地,二極體可容易地使用互補式金屬氧化半導體的技術(簡稱 CMOS技術)來製造。有利地,肖特基二極體具有低順向壓降(low forward voltage drop)。
在一個實施例中,峰值偵測器電路進一步包括評估電路(evaluation circuit)。該評估電路可包含加法電路(adding circuit),具有耦合至第一端子之第一輸入、耦合至第二端子的第二輸入、以及用來提供第一偵測電壓的第一偵測器輸出。第一偵測器電壓可為在第一端子分接之第一端子電壓及在第二端子分接之第二端子電壓的總和的函數。有利地,第一偵測器電壓代表具有高準確性之第一輸入電壓的峰值。
在一個實施例中,峰值偵測器電路進一步包括第二輸入端子、具有陽極連接至第二輸入端子的第三整流元件、具有第一電極連接至第三整流元件之陰極的第三電容器以及耦合至第三電容器之第一電極的第三端子。除此之外,峰值偵測器電路包括具有陰極連接至第二輸入端子的第四整流元件、第四電容器、將第四整流元件之陽極耦合至第四電容器之第一電極的第二開關以及耦合至第四電容器之第一電極的第四端子。有利地,可以高準確性偵測到在第二輸入端子處分接之第二輸入電壓的峰值。
在一個實施例中,第三和第四整流元件係實現為包括二極體、肖特基二極體、接面二極體以及連接成二極體組構的雙極性電晶體之群組中的其中一者。
在一個實施例中,峰值偵測器電路的評估電路包括第一差動放大器,該第一差動放大器在輸入側耦合至第一和第三端子以及在輸出側耦合至峰值偵測器電路之第一和第二偵測器輸出。評估電路包括第二差動放大器,該第二差動放大器在輸入側耦合至第二和第四端子以及在輸出側耦合至峰值偵測器電 路之第一和第二偵測器輸出。藉由第一和第二差動放大器,可以評估在第一至第四端子處分接的第一至第四端子電壓,以產生第一和第二偵測器電壓。
在一個實施例中,例如藉由從第一和第二端子電壓的總和減去第三和第四端子電壓的總和,評估電路在第一和第二偵測器輸出之間產生偵測器輸出信號。例如,偵測器輸出信號具有電壓的形式。
在一個實施例中,第一和第二差動放大器係實現為轉導放大器(transconductance amplifier)。因此,第一和第二差動放大器在各自的輸出提供電流。通常,電流可比電壓更容易添加。
在一個實施例中,評估電路包括共模端子(common mode terminal)與第一和第二電阻器。共模端子係透過第一電阻器耦合至峰值偵測器電路的第一偵測器輸出以及透過第二電阻器耦合至峰值偵測器電路的第二偵測器輸出。
在一個實施例中,電流測量配置包括峰值偵測器電路和分路電阻器(shunt resistor),該分路電阻器將第一輸出端子耦合至峰值偵測器電路的第二輸入端子。電流流過分路電阻器。分路電阻器可稱之為測量電阻器。電流的峰值係可藉由峰值偵測器電路來評估。
在一個實施例中,光達系統(light-detection-and-ranging system),簡稱LIDAR系統,至少包括電流測量配置、光源(lightsource)、用來提供電流的驅動器(driver)以及接收配置(receiving arrangement)。電流流過分路電阻器來驅動光源。有利地,驅動器係可根據先前峰值之資訊來調整,該資訊意指例如第一偵測器電壓及/或偵測器輸出信號及/或數位化偵測器輸出信號的函數。此外,LIDAR系統包括傳輸光學元件(transmitting optics),其中光源透過傳輸光學元件發射光。接收配置包含至少一接收光學元件以及一光偵測器(photodetector)。除此之外, LIDAR系統可包括控制電路,該控制電路可耦合至驅動器、電流測量配置以及接收配置。LIDAR系統可包含進一步的子系統。
在一個實施例中,一種用於評估第一輸入電壓之峰值的方法包括:
透過第一輸入端子提供第一輸入電壓至第一整流元件的陽極,其中,第一電容器的第一電極係連接至第一整流元件的陰極,
在第一端子處提供第一端子電壓,該第一端子係耦合至第一電容器的第一電極,
透過第一輸入端子提供第一輸入電壓給第二整流元件的陰極,其中,第一開關將第二整流元件的陽極耦合至第二電容器的第一電極,以及
在第二端子處提供第二端子電壓,該第二端子係耦合至第二電容器的第一電極。
有利地,第二端子電壓係可用來決定第一輸入電壓以及第一端子電壓的峰值。
用於評估第一輸入電壓之峰值的方法可例如藉由根據上述定義的其中一個實施例之峰值偵測器電路、電流測量配置或是光達系統來實施。
峰值偵測器電路係組構成用於脈衝狀信號,特別是脈衝狀電壓。峰值偵測器電路係組構成捕捉信號(像是第一和第二輸入電壓)的峰值。峰值偵測器電路可與光達系統的驅動器中的高電壓脈衝狀信號一起使用,但不僅限於此。或者,峰值偵測器電路可用於保護功率電晶體(power transistor)(受峰值電流/電壓的限制)、用於包絡偵測器(envelope detector)或是用於自動增益控制。
峰值偵測器電路能夠例如在高電壓環境之下測量奈秒範圍內之 脈衝的峰值。短脈衝及高電壓這兩個要求還需要藉由介接(interface)提供控制的低電壓電路來權衡。
在一個實施例中,一種方法可包括用於評估第一輸入電壓之峰值的方法之步驟以及用於評估第二輸入電壓之峰值的進一步的步驟。
10:峰值偵測器電路、電路部位
11:第一輸入端子
13:第一端子
15:第一整流元件、整流元件
16:第一電容器
18:參考電位端子
19,19’:主要電路
20:第二整流元件、整流元件
21:第二電容器
22:第二端子
23:第一開關
25:第一放電開關、開關
26:第二放電開關、開關
27:第一接地開關、開關、接地開關
28:控制電路
29,29’:輔助電路
30:第二輸入端子
31:第三整流元件、整流元件
32:第三電容器
33:第三端子
40:第三放電開關
41:第四整流元件、整流元件
42:第四電容器
43:第二開關
44:第四放電開關
45:第二接地開關、接地開關
46:第四端子
50:電流測量配置
51:分路電阻器
52:評估電路
53:第一偵測器輸出
54:第二偵測器輸出
55:加法電路
56:操作放大器
57:第一加法器電阻器
58:第二加法器電阻器
59:第三加法器電阻器
60:緩衝器
61:緩衝器
63:第一差動放大器、差動放大器、級
64:第二差動放大器、差動放大器、級
65,67:第一輸入
66,68:第二輸入
69,71:第一輸出
70,72:第二輸出
73,74:放大器電阻器
77:共模端子
78:第一電阻器
79:第二電阻器
80:光源
81:驅動器、電路部位
82:類比至數位轉換器、電路部位
83:光達系統、LIDAR系統
84:傳輸光學元件
85:物體
86:接收裝置
87:接收光學元件
88:光偵測器、電路部位
89:類比電路、電路部位
EA.ER:誤差
GND:參考電位
I:電流
QF,QR:電荷
SD,S1-S4:控制信號
SDO,SDD:偵測器輸出信號
SDT:資料信號
SE:電子信號
SOP:脈衝停止信號
SST:脈衝開始信號
t:時間
t1-t11:第一至第十一個時間點
VCM:共模電壓VCM
VDI:差動輸入電壓、電壓降
VD1:第一偵測器電壓
VD2:第二偵測器電壓
VPK,VPKN:峰值
VIN1:第一輸入電壓、輸入電壓
VIN2:第二輸入電壓、輸入電壓
VT1:第一端子電壓
VT2:第二端子電壓
VT3:第三端子電壓
VT4:第四端子電壓
gm:放大因子
MP:量測期間
實施例之附圖的下列描述可進一步說明及解釋峰值偵測器電路、電流測量配置、LIDAR系統以及用於評估第一輸入電壓之峰值的方法之態樣。具有相同結構及相同效果的裝置(device)及電路部件分別用相同的元件符號表示。只要裝置及電路部件在不同附圖中就功能而言互相對應,則以下各圖中的描述將不再重覆。
圖1顯示傳統峰值偵測器電路以及該峰值偵測器電路之信號的實例;
圖2A及2B顯示峰值偵測器電路以及在這種峰值偵測器電路偵測到的信號的實例;
圖3顯示一種峰值偵測器電路的實例,其峰值相對於參考電位具有正值或負值;
圖4A及4B顯示具有峰值偵測器電路及相應信號之電流測量配置的實例;
圖5顯示峰值偵測器電路之特性的實例;
圖6顯示具有評估電路之峰值偵測器電路的實例;
圖7顯示具有峰值偵測器電路之電流測量配置的實例;以及
圖8顯示具有電流測量配置之光達系統的實例。
圖1顯示一種傳統峰值偵測器電路10的實例。峰值偵測器電路10包括第一輸入端子11、第一端子13、第一整流元件15以及第一電容器16。此外,峰值偵測器電路10包括參考電位端子18。第一輸入端子11係透過第一整流元件15耦合至第一電容器16的第一電極。第一電容器16的第一電極係耦合至第一端子13。第一電容器16的第二電極係耦合至參考電位端子18。
更具體地,第一整流元件15係可實施為一種二極體,特別是作為接面二極體。第一整流元件15的陽極係直接且永久地連接至第一輸入端子11。第一整流元件15的陰極係直接且永久地連接至第一電容器16的第一電極。第一電容器16的第一電極係直接且永久地連接至第一端子13。第一電容器16的第二電極係直接且永久地連接至參考電位端子18。
在參考電位端子18處分接參考電位GND。第一輸入電壓VIN1係施加於第一輸入端子11。在第一端子13處,可分接第一端子電壓VT1。相對於參考電位GND測量第一輸入電壓VIN1及第一端子電壓VT1。
如圖1底下所顯示,第一輸入電壓VIN1顯示具有小的上升時間(rising time)及小的衰退時間(decay time)的脈衝。如圖1底下藉由虛線所表示的,第一端子電壓VT1應該具有第一輸出電壓VIN1的最大值,該最大值係第一輸入電壓VIN1之脈衝的峰值VPK。然而,如圖1中間部分所表示的,在第一輸入電壓VIN1的下降週期時,電荷QF向後流向第一輸入端子11。電荷QF的來源係第一整流元件15中的電荷載子(charge carrier)的流動,必須將其去除才能在第一整流元件15內產生空乏區(depletion region)。這些電荷載子導致第一端子電壓VT1的下降並因此導致誤差(error)ER。
誤差ER係在第一輸入電壓VIN1下降之後,特別是在脈衝結束時,第一輸入電壓VIN1的峰值VPK與第一端子電壓VT1之間的差。第一整流元件15的閾值電壓(threshold voltage),例如最小順向電壓,可能導致進一步的誤差(此處未示出)。
峰值偵測器電路10捕捉第一輸入電壓VIN1之最大值(其為峰值VPK)的操作如下:一般來說,峰值偵測器電路10包含第一整流元件15以及第一電容器16,該第一電容器16具有儲存元件的功能並且實現為保持電容器(hold capacitor)。峰值偵測器電路10的優點在於,峰值VPK維持儲存在第一電容器16,從而消除了捕捉短脈衝的時序要求,短脈衝係例如用來操作功率雙擴散金氧半導體電晶體(double diffused MOS transistor)(簡稱為DMOS電晶體)的快速控制位準移位信號。
在如圖1所示的峰值偵測器電路的傳統實施中,描繪一pn-接面二極體作為第一整流元件15,當第一整流元件15將偏壓從順向改變為逆向時,典型的峰值偵測器電路10會遭受逆向恢復效應(reverse-recovery effect,RRE)。這是因為在滿足逆向偏壓條件時,需要清除第一整流元件15的接面中存在的移動電荷,以使第一整流元件15停止導通。電荷QF係來自第一電容器16,從而降低其電壓並且產生被視為誤差ER的“下降階躍(down-step)”。相同的效果會導致逆向恢復時間。
圖1的峰值偵測器電路可能存在其他問題,從而引起誤差和非線性。這些問題可包含:可變輸入阻抗(variable input impedance);二極體接通電壓(turn-on voltage)使得電路對於低於其的信號位準(signal level)不敏感,也使其因為這個接通電壓而變得不準確(同樣的變化,例如溫度及製程變化);以及信號變 化率(rate of signal change)。
圖2A顯示峰值偵測器電路10的進一步的實例,該實例係圖1所示之實例的進一步發展。峰值偵測器電路10進一步包括第二整流元件20、第二電容器21以及第二端子22。第二整流元件20將第一輸入端子11耦合至第二電容器21的第一電極。第二電容器21的第一電極係耦合至第二端子22。此外,峰值偵測器電路10包括將第二整流元件20耦合至第二電容器21之第一電極的第一開關23。第二電容器21的第二電極係耦合至參考電位端子18。
更具體地,第二整流元件20的陰極係直接且永久地連接至第一輸入端子11。第二整流元件20的陽極係透過第一開關23耦合至第二電容器21的第一電極。第二電容器21的第一電極係直接且永久地連接至第二端子22。第二電容器21的第二電極係直接且永久地連接至參考電位端子18。
第一和第二整流元件15、20兩者係連接至第一輸入端子11。然而,第二整流元件20係相對於第一整流元件15在相反的方向上定向。第二整流元件20可以是二極體,特別是作為接面二極體。
此外,峰值偵測器電路10的第一放電開關25將第一電容器21的第一電極耦合至參考電位端子18。峰值偵測器電路10的第二放電開關26將第二電容器21的第一電極耦合至參考電位端子18。峰值偵測器電路10的第一接地開關27將第二整流元件20與第一開關23之間的節點耦合至參考電位端子18。因此,第二整流元件20的陽極係透過第一接地開關27耦合至參考電位端子。第二端子電壓VT2係提供在第二端子22處。此外,控制電路28係藉由未顯示的連接導線耦合至開關23、25、26、27的控制端子。
因此,峰值偵測器電路10包括主要電路19以及輔助電路 (supplementary circuit)29,且該主要電路19及輔助電路29兩者的輸入側皆連接至第一輸入端子11。主要電路19包含第一整流元件15、第一電容器16、第一放電開關25以及第一端子13。輔助電路29包含第二整流元件20、第二電容器21、第一開關23、第二放電開關26、第一接地開關27以及第二端子22。
在一個替代的實施例中(未顯示),第一和第二整流元件15、20係實現為肖特基二極體、接面二極體或是連接成二極體組構的雙極性電晶體。
圖2B顯示圖2A之峰值偵測器電路的信號之實例。在圖2B中,第一輸入電壓VIN1、第一端子電壓VT1、第二端子電壓VT2、第一偵測器電壓VD1以及第一至第四控制信號S1至S4係顯示如時間t的函數。第一輸入電壓VIN1顯示具有小上升時間與小下降時間。第一輸入電壓VIN1的脈衝具有一峰值VPK。第一端子電壓VT1對應於第一輸入電壓VIN1上升。在第一輸入電壓VIN1的下降中,第一端子電壓VT1也具有如上所述的小下降。第二端子電壓VT2在第一輸入電壓VIN1上升時上升。在第一輸入電壓VIN1下降時第二端子電壓VT2沒有下降。控制信號S1至S4係藉由控制電路28產生。
第一輸入電壓VIN1的脈衝可具有少於15ns的持續時間,可替代地具有少於10ns的持續時間或是潛在地少於5ns的持續時間。
第一控制信號S1控制第一開關23。第一放電開關25係藉由第二控制信號S2控制。第二放電開關26係藉由第三控制信號S3控制。第四控制信號S4控制第一接地開關27。第二控制信號S2與第三控制信號S3可相等並且可以被一個控制信號代替。
在介於第一個時間點t1與接在第一個時間點t1之後的第二個時間點t2之間,第二和第三控制信號S2、S3設定第一和第二放電開關25、26為 傳導狀態。因此,第一和第二端子電壓VT1、VT2被設定為零,這意味著第一和第二端子電壓VT1、VT2得到接地電位GND。在第二個時間點t2,第一和第二放電開關25、26係藉由第二和第三控制信號S2、S3設定在非傳導狀態。這兩個開關在量測期間MP保持在非傳導狀態。
在介於第一個時間點t1與第三個時間點t3之間,第一控制信號S1設定第一開關23在非傳導狀態。第三個時間點t3在第二個時間點t2之後。在第三個時間點t3時,第一開關23係藉由第一控制信號S1設定在傳電狀態。藉由此改變,峰值偵測器電路10係設置在一狀態,該狀態組構成偵測第一輸入電壓VIN1的峰值。在第三個時間點t3之後的第四個時間點t4時,第一輸入電壓VIN1開始上升,導致第一端子電壓VT1的上升。上升在第五個時間點t5結束。
在第四個時間點t4之前,第二整流元件20的陽極與陰極具有近乎相等的電位,即接地電位GND。施加在第二整流元件20的陰極之第一輸入電壓VIN1的上升會在第二整流元件20內產生空乏區。因此,電荷載子透過第一開關23(在傳導狀態下)從第二整流元件20流向第二電容器21的第一電極。因此,第二端子電壓VT2可如圖2B中所示上升。
在第五個時間點t5之後的第六個時間點t6,第一開關23係藉由第一控制信號S1設定為非傳導狀態。因此,避免了來自第二電容器21的電荷於第二整流元件20之方向上的任何流動。在第六個時間點t6之後的第七個時間點t7,第四控制信號S4將第一接地開關27設定在傳導狀態。直到第七個時間點t7前,第一接地開關27係在非傳導狀態。第一輸入電壓VIN1在第八個時間點t8與第九個時間點t9之間下降。第一端子電壓VT1在第七個時間點t7之後 顯示小下降。第一偵測器電壓VD1可以是第一和第二端子電壓VT1、VT2的函數。第一偵測器電壓VD1係可藉由評估電路來產生,評估電路未顯示於圖2A中(實例係顯示於圖6與7中)。第一偵測器電壓VD1係可為第一和第二端子電壓VT1、VT2的總和。第一偵測器電壓VD1現在具有第一輸入電壓VIN1之峰值的值。因此,在第九個時間點t9之後,第一偵測器電壓VD1可藉由連接至峰值偵測器電路10的輸出側(即連接至第一和第二端子13、22)的評估電路來評估。
在第十個時間點t10,第四控制信號S4設定第一接地開關27在非傳導狀態。在第十一個時間點t11,第二和第三控制信號S2、S3設定第一和第二放電開關25、26在傳導狀態來提供接地電位GND給第一和第二電容器16、21的第一電極。第一偵測器電壓VD1的評估可在第九個時間點t9與第十一個時間點t11之間執行。
在一個實施例中,第一和第二電容器16、21的電容值係相等的。此外,第一和第二整流元件15、20可由兩個相同的結構來實現。因此,在第九與第十個時間點t9、t10之間之第二端子電壓VT2的值係等於在第八個時間點t8之後的第一端子電壓VT1之下降。因此,藉由加上第一端子電壓VT1與第二端子電壓VT2,第一偵測器電壓VD1以高準確性獲得第一輸入電壓VIN1的峰值VPK。
有利地,峰值偵測器電路10解決了上述典型峰值偵測器的至少一個內在問題。由於峰值偵測器電路10使用差動方式(differential approach)以及積體電路可用的二極體,因此可重新產生誤差的量。然後可以使用它來修正電壓本身,從而達到改進的準確性與線性。作為一種補救措施,如圖2A及2B所示,附接輔助電路29以重新產生誤差量,該誤差量可被後驗(posteriori)以用來校正 第一端子電壓VT1。輔助電路29係被組構作為誤差重新產生輔助電路(error-recreating supplementary circuit)。
為簡單起見,圖2A示出峰值偵測器電路10的後續分析。以相同的方式,分析可以擴展到圖3及4A所示的另一半電路。
注意,由於第一整流元件15的逆向偏壓(由第一輸入電壓VIN1的下降所造成),電荷QF係從第一電容器16中獲取,從而產生誤差ER(公式1)-圖1中所示之典型峰值偵測器的缺點。可以將電荷QF稱之為電荷損耗(charge loss),這是由於第一整流元件15的逆向恢復效應而引起的,並且主要取決於第一整流元件15的特性以及其所承受到的逆向電壓。
VT1=VPK-QF/CS (公式1)其中,VT1係第一端子電壓的值,VPK係第一輸入電壓VIN的峰值,QF係電荷的值以及CS係第一電容器16的電容值。誤差ER係等於QF/CS。
輔助電路19係用於在第二整流元件20處產生逆向偏壓條件,與在第一整流元件15所看到的相同。這是假設第一和第二電容器16、21預先放電。在實際上,因為在第二整流元件20的逆向恢復效應,所以在第一輸入電壓VIN1的上升邊緣期間,第二電容器21利用電荷QR充電。
VT2=QR/CSE (公式2);其中,VT2係第二端子電壓的值,QR係流向第二電容器21之電荷值以及CSE係第二電容器21的電容值。
兩個整流元件15、20的匹配特性以及他們相同的逆向偏壓條件導致整流元件15、20兩者的逆向恢復電荷相同(公式3)。
QF=QR (公式3)
第一和第二電容器16、21可具有相等的電容值,導致CS=CSE。由於第一和第二電容器16、21匹配,所以在第二電容器21處的第二端子電壓VT2對應於從第一電容器16減去電荷QF而造成的誤差ER。因此,參考圖2B,從公式1、2及3,第一和第二端子電壓VT1、VT2的總和等於峰值電壓VPK並因此等於第一偵測器電壓VD1。
VT1+VT2=VPK=VD1 (公式4)
為了促進上述的操作,用於第一開關23以及第一接地開關27的未重疊之開關控制信號S1、S4係設定成允許第二整流元件20隨著脈衝的上升邊緣而逆向偏壓,但是防止第二電容器21在下降邊緣期間放電(圖2B)。所有開關23、25、26、27均可從低電壓域控制。第一和第二放電開關25、26在下一個脈衝前使第一和第二電容器16、21放電。圖2A的峰值偵測器電路10重新產生誤差ER(顯示可選的差動實行(differential implementation)的一半)。
圖3顯示峰值偵測器電路10的進一步實例,該實例係圖1及2A所示之實例的進一步發展。因此,圖3的電路10係基於圖1所示的傳統峰值偵測器。峰值偵測器電路10包括第二輸入端子30、第三整流元件31、第三電容器32以及第三端子33。第二輸入端子30係透過第三整流元件31耦合至第三電容器32的第一電極。第三電容器32的第一電極係耦合至第三端子33。此外,第三電容器32的第二電極係耦合至參考電位端子18。第三整流元件31可實現為二極體。
更具體地,第三整流元件31的陽極係直接且永久地連接至第二輸入端子30。第三整流元件31的陰極係直接且永久地連接至第三電容器32的第一電極。第三電容器32的第二電極係直接且永久地連接至參考電位端子18。 第三電容器32的第一電極係直接且永久地連接至第三端子33。
第二輸入電壓VIN2係提供給第二輸入端子30。在第三端子33處分接第三端子電壓VT3。第二輸入電壓VIN2的脈衝導致第三端子電壓VT3的脈衝。
特別是,具有相對於參考電位GND為正之峰值的脈衝導致透過第三整流元件31對第三電容器32充電,並因此導致第三端子電壓VT3在峰值偵測之後具有相對於參考電位GND為正的值。
第一和第二輸入電壓VIN1、VIN2形成差動輸入電壓VDI。給定差動輸入電壓VDI,圖1的典型峰值偵測器10係擴展至如圖3所見的差動實行。基於匹配的觀點,第一和第二整流元件15、31表現出相似的電性特性,從而有效地減小來自導通電壓的誤差(以及其影響)。然而,藉由圖3所說明的差動方式不能完全解決逆向恢復效應。這是因為第一和第二輸入電壓VIN1、VIN2由於差動輸入電壓VDI而不同,並因此兩個整流元件15、31表現出略微不同的逆向恢復效應而留下了殘留的非線性誤差。
圖4A顯示峰值偵測器電路10之進一步實例,該實例係上述峰值偵測器電路10的進一步發展。峰值偵測器電路10包括如圖2A所示的第一和第二整流元件15、20,第一和第二電容器16、21及第一和第二端子13、22。此外,圖4A的峰值偵測器電路10也包括如圖2A所示的第一和第二放電開關25、26以及第一接地開關27。此外,峰值偵測器電路10包括如圖3所示的第二輸入端子30、第三整流元件31、第三電容器32以及第三端子33。
除此之外,峰值偵測器電路10包括第三放電開關40,將第三整流元件31與第三電容器32之間的節點耦合至參考電位端子18。更具體地,第 三整流元件的陰極以及第三電容器32的第一電極也因此透過第三放電開關40耦合至參考電位端子18。
此外,峰值偵測器電路10包括第四整流元件41以及第四電容器42。第四整流元件41耦合第二輸入端子30至第四電容器42。另外,峰值偵測器電路10包括第二開關43,將整流元件41耦合至第四電容器42的第一電極。此外,第四整流元件41的陰極係耦合至第二輸入端子30。第四整流元件41的陽極係透過第二開關43耦合至第四電容器42的第一電極。第四電容器42的第一電極係耦合至峰值偵測器電路10的第四端子46。第四電容器42的第二電極係耦合至參考電位端子18。
具體而言,第四整流元件41的陰極係直接且永久地連接至第二輸入端子30。第四電容器42的第一電極係直接且永久地連接至峰值偵測器電路10的第四端子46。第四電容器42的第二電極係直接且永久地連接至參考電位端子18。
峰值偵測器電路10的第四放電開關44將第四電容器42的第一電極耦合至參考電位端子18。第二接地開關45將第四整流元件41與第二開關43之間的節點耦合至參考電位端子18。
峰值偵測器電路10包括進一步的主要電路19’及進一步的輔助電路29’。進一步的主要電路19’包含第三整流元件31、第三電容器32、第三放電開關40及第三端子33。進一步的輔助電路29’包含第四整流元件41、第四電容器42、第二開關43、第四放電開關44、第二接地開關45以及第四端子46。進一步的主要電路19’以及進一步的輔助電路29’兩者的輸入側皆連接至第二輸入端子30。
在第四端子46處,可分接第四端子電壓VT4。第二偵測器電壓VD2可藉由評估電路產生,未顯示於圖4A(實例顯示於圖6及7)。第二偵測器電壓VD2可以是第三和第四端子電壓VT3、VT4的函數。第二偵測器電壓VD2可為第三和第四端子電壓VT3、VT4的總和並可取得第二輸入電壓VIN2的峰值之值。
峰值偵測器電路10被包含於電流測量配置50中。因此,電流測量配置50包括峰值偵測器電路10以及分路電阻器51。分路電阻器51可實現為測量電阻器。分路電阻器51將第一輸入端子11耦合至第二輸入端子30。電流I流過分路電阻器51。因此,差動輸入電壓VDI以及第一和第二輸入電壓VIN1、VIN2係可計算如下:
VDI=VIN1-VIN2=RM‧I其中,VDI係差動輸入電壓的值,VIN1與VIN2係第一和第二輸入電壓的值,RM係分路電阻器51的電阻值以及I係流過分路電阻器51之電流的值。
圖4B顯示圖4A的電流測量配置50之信號的實例。峰值偵測器電路10的上部與下部係如圖4A所示。兩個部分皆偵測相對於參考電位GND為正的脈衝。第一和第二開關23、43兩者皆藉由第一控制信號S1來控制。第一和第二放電開關25、26兩者皆藉由第二控制信號S2來控制。第一和第二接地開關27、45兩者皆藉由第四控制信號S4來控制。第三和第四放電開關44、45兩者也皆藉由第四控制信號S4來控制。
此外,脈衝開始信號SST係產生在第一和第二輸入電壓VIN1、VIN2的脈衝之前。脈衝停止信號SOP係在第一和第二輸入電壓VIN1、VIN2的脈衝期間產生。脈衝停止信號SOP在脈衝期間觸發(trigger)第一和第四控制信號 S1、S4中的變化。
可應用以下假設:兩個具有足夠高的電壓值以打開第一和第三整流元件15、31的兩個輸入電壓VIN1、VIN2;輸入電壓VIN1、VIN2的電壓位準在脈衝之前與之後係相等的;以及可應用差動方法。典型峰值偵測器的限制(尤其是因為導通電壓及逆向恢復效應)係藉由差動方法來解決,以輔助電路29、29’為輔助,來產生一定量的逆向恢復效應誤差以用於信號校正。
峰值偵測器電路10可適合於積體電路實行以及高電壓環境來捕捉短脈衝。回應於捕捉短脈衝之挑戰的策略係從脈衝本身轉移至脈衝之間的時間,從而在工作週期(duty-cycle)低的情況下放寬了捕捉脈衝的動態條件(dynamic requirement)(例如,打開高電壓開關)。峰值偵測器電路10係可製造在一個半導體本體上。峰值偵測器電路10可集成在半導體本體的表面上。
為了捕捉短高電壓脈衝的振幅,使用峰值偵測器電路10無疑是一種優勢,因為它無需進行位準轉移控制(level-shifted control)即可操作開關。事實上,所有控制皆從低電壓域來完成。它不使用需要操作在高電壓之高寬帶放大器的反饋輔助解決方案。
如圖4A所示之峰值偵測器電路10的實例是使用積體電路肖特基二極體作為整流元件15、20、31、41。它藉由測量傳遞到負載(雷射,例如垂直腔面射型雷射(vertical-cavity surface emitting laser;VCSEL))的實際脈衝電流來監控在光達系統(簡稱為LIDAR系統)中用於(眼睛)安全的傳遞能量。第一至第四整流元件15、20、31、41可製造為肖特基二極體,特別為集成式肖特基二極體或是積體電路肖特基二極體。峰值偵測器電路10的半導體主體包含第一至第四整流元件15、20、31、41。因此,集成式肖特基二極體或是積體電路肖特基二極 體是指製造在這個半導體主體上的肖特基二極體。肖特基二極體本身不會遭受逆向恢復效應的影響。然而,以集成技術實行的肖特基二極體具有寄生(parasitic)pn-接面二極體,進而具有逆向恢復效應。積體電路肖特基二極體具有寄生pn-接面二極體。
脈衝係藉由脈衝開始信號SST以及脈衝停止信號SOP而可控制的;在電流I之脈衝的上升及下降邊緣之間有低電壓控制信號來防止第一至第四電容器16、21、32、42放電;藉由pn-接面二極體或是肖特基二極體,使第一至第四整流元件15、20、31、41之間實現足夠的匹配;峰值VPK與VPKN係足夠來克服肖特基二極體導通電壓。
分路電阻器51產生與正被測量的電流I成比例的差動輸入電壓VDI。分路電阻器51兩端之電壓降VDI的峰值係儲存在第一和第三電容器16、32中。
在這個實行中,除了二極體15、20、31、41及電容器之外,唯一需要高電壓的組件係接地開關27、45。它們可被實行作為DMOS電晶體,但與其他組件一樣可在低電壓域控制,因此省去了電壓隨動器(voltage follower)的閘極至源極電壓。
在電流I的脈衝之後,公式5所給定的關係係有效的。
VPK-VPKN=(VT1-VT3)+(VT2-VT4) (公式5)換言之,分路電阻器51兩端的峰值電壓降等於第一至第四電容器16、21、32、42兩端之差動電壓的總和。
圖5顯示上述實施例其中之一所示的峰值偵測器電路10之特性的實例。尤其是,圖5示出了傳統與所提出的峰值偵測器的示例(即,圖3與圖 4A)之間的比較。誤差EA係顯示為電流I的函數。有四條線標記為EA1至EA4。在如圖4A所示峰值偵測器電路10的實例中,EA1代表標準(typical)值,而EA2代表最壞的角落(worst corner)。在如圖3所示之經典峰值偵測器電路10的實例中,EA3代表標準值,而EA4代表最壞的角落。誤差EA隨著電流I的增加而減少。在經典峰值偵測器(圖3)與改進的峰值偵測器(圖4A)之間進行誤差EA的比較。圖5中的結果顯示誤差EA與線性方面有明顯的改進。
誤差EA是指絕對電流測量。誤差EA係作為相對誤差而給定。圖3之電路10的誤差EA3及EA4係決定如下:
Figure 109141142-A0202-12-0020-1
其中,第一和第三端子電壓VT1、VT3係從第九個時間點t9與第十個時間點t10之間得到。圖4A之電路10的誤差EA1及EA2係決定如下:
Figure 109141142-A0202-12-0020-2
其中,第一至第四端子電壓VT1至VT4係從第九個時間點t9與第十個時間點t10之間得到。差動輸入電壓VDI=I‧RM是指在第五與第七個時間點t5-t7之間的電流脈衝期間橫跨分路電阻器51(顯示於圖4A但沒顯示於圖3;但相同的設置適用於圖3)兩端的電壓降。
在圖2A及4A中,輔助電路29、29’被組構成具有產生誤差的功能,以補償經典峰值偵測器的限制(誤差、線性),而與所使用的整流元件15無關。在圖2B或是4B中隨附的控制信號是為進行信號評估而組構的,如公式5所示。
圖6顯示峰值偵測器電路10之細節的實例,該實例係上述實例 的進一步發展。峰值偵測器電路10包含第一偵測器輸出53。峰值偵測器電路10包括在輸入側連接至第一和第二端子13、22以及在輸出側連接至第一偵測器輸出53的評估電路52。在這個實例中,評估電路52係實現為一加法電路(adding circuit)55。
加法電路55包括操作放大器56及第一至第三加法器電阻器(adder resistor)57至59。操作放大器56的輸出係耦合至第一偵測器輸出53。第一端子13係透過第一加法器電阻器57耦合至操作放大器56的第一輸入。第二端子22係透過第二加法器電阻器58耦合至操作放大器56的第一輸入。操作放大器56的第一輸入係透過第三加法器電阻器59耦合至操作放大器56的輸出。加法電路55的第一和第二緩衝器(buffer)60、61係可配置在第一和第二端子13、22與第一和第二加法器電阻器57、58之間。第一和第二緩衝器60、61藉由操作放大器來實現。操作放大器56的第二輸入係耦合至參考電位端子18。操作放大器56的第一輸入可實現為反向輸入,而操作放大器56的第二輸入可實現為非反向輸入。
加法電路55包括第一和第二輸入端子。從主要電路19的第一端子13分接的第一端子電壓VT1係提供給加法電路55的第一輸入。從輔助電路29的第二端子22分接的第二端子電壓VT2係提供給加法電路55的第二輸入。
第一偵測器電壓VD1係在第一偵測器輸出53處分接。第一至第三加法器電阻器57至59的電阻值可為相等。加法電路55產生第一偵測器電壓VD1作為第一端子電壓VT1與第二端子電壓VT2之總和的函數。更具體地,第一偵測器電壓VD1可為第一端子電壓VT1與第二端子電壓VT2的總和或是第一端子電壓VT1和第二端子電壓VT2的反向總和。第一偵測器電壓VD1的量 係等於第一輸入電壓VD1的峰值VPK。因此,在圖6的實例中,第一偵測器電壓VD1可被計算出:
VD1=-(VT1+VT2)=-VPK
在一個實施例中(未顯示),峰值偵測器電路10包括反向電路(inverting circuit),將操作放大器56的輸出耦合至第一偵測器輸出53。在這個情況下:VD1=VT1+VT2=VPK
在一個實施例中(未顯示),電流測量配置50可包含類比至數位轉換器(analog-to-digital converter)82,該類比至數位轉換器82的輸入側係耦合至峰值偵測器電路10的輸出側。因此,類比至數位轉換器82係耦合至第一偵測器輸出53。
在一個實施例中(未顯示),藉由類似於圖6中所示的評估電路52從第三和第四端子信號VT3、VT4中產生第二偵測器電壓VD2。
圖7顯示具有峰值偵測器電路10之電流測量配置50的實例,該實例係上述實例的進一步發展。電流測量配置50可被包含於光達系統(簡稱LIDAR系統)中。這樣的LIDAR系統之實例係描繪在圖8中。評估電路52的輸入側係連接至第一至第四端子13、22、33、46。峰值偵測器電路10包括第一和第二偵測器輸出53、54,該第一和第二偵測器輸出53、54係可稱之為例如正輸出和負輸出。評估電路52包括第一和第二差動放大器(differential amplifier)63、64,將第一至第四端子13、22、33、46耦合至第一和第二偵測器輸出53、54。第一差動放大器63具有連接至第一端子13的第一輸入65及連接至第三端子33的第二輸入66。第二差動放大器64具有連接至第二端子22的第一輸入67及連接至第四端子46的第二輸入68。第一和第二差動放大器63、64的第一輸入65、 67可被實現為非反向輸入。第一和第二差動放大器63、64的第二輸入66、68可被實行為反向輸入。
第一和第二差動放大器63、64兩者皆具有差動輸出。第一差動放大器63的第一輸出69係連接至第一偵測器輸出53,而第一差動放大器63的第二輸出70係連接至第二偵測器輸出54。除此之外,第二差動放大器64的第一輸出71係連接至第二偵測器輸出54,而第一差動放大器63的第二輸出72係連接至第一偵測器輸出53。第一和第二差動放大器63、64的第一輸出69、71可被實現為非反向輸出。第一和第二差動放大器63、64的第二輸出70、72可被實行為反向輸出。
第一和第二差動放大器63、64兩者皆被實現為轉導放大器。差動放大器63、64兩者可具有相同特性,亦即相同的放大因子gm。兩個放大器電阻器73、74係連接至第一和第二差動放大器63、64。
評估電路52包括共模端子77及第一和第二電阻器78、79。共模端子77係透過第一電阻器78耦合至第一偵測器輸出53以及透過第二電阻器79耦合至第二偵測器輸出54。共模端子77係連接至類比至數位轉換器82的共模端子。在共模端子77處提供共模電壓VCM。
主要電路19、19’及輔助電路29、29’係可實現例如圖4A與4B所示。電流測量配置50的類比至數位轉換器82可選擇地耦合至第一和第二偵測器輸出53、54。
光源80係耦合至電流測量配置50。光源80係串聯連接至分路電阻器51。流過分路電阻器51之電流I也流過光源80。光源80可被實現為垂直腔面射型雷射(簡稱VCSEL)或是發光二極體(簡稱LED)。驅動器81係耦合至光 源80。例如,驅動器81係透過分路電阻器51及光源80耦合至參考電位端子18。
可選擇地,控制電路28係可連接至類比至數位轉換器82以及連接至驅動器81(藉由未顯示的連接線)。控制電路28可提供驅動器控制信號SD至驅動器81。由於控制電路28觸發電流I的脈衝,所以其可在適當的時間點產生第一至第四控制信號S1至S4。控制電路28可以是例如藉由數個邏輯閘(logic gate)、狀態機(state machine)、微處理器(microprocessor)、微控制器(microcontroller)或是電腦實現的數位電路。
驅動器81提供電流I給光源80。第二偵測器電壓VD2係產生在第二偵測器輸出54處。偵測器輸出信號SDO(其具有電壓形式)係提供在第一和第二偵測器輸出53、54之間。偵測器輸出信號SDO代表電流I中的峰值。特別是藉由組合求和函數(summing function)和減法函數(subtraction function),藉由評估電路52從第一至第四端子電壓VT1至VT4中產生偵測器輸出信號SDO。可以高精度測量峰值。類比至數位轉換器82可從偵測器輸出信號SDO中產生出數位化的偵測器輸出信號SDD。偵測器輸出信號SDO可遵照以下公式:
SDO=VD1-VD2=VPK-VPKN;
SDO=f(VT1+VT2-VT3-VT4)。偵測器輸出信號SDO係第一至第四端子電壓VT1至VT4的函數。偵測器輸出信號SDO獲取差動輸入電壓VDI的峰值之值並從而獲取電流I的峰值之值。
實現公式5之功能性的其中一個可能的實行方式是使用兩個級63、64,它們的轉導係與放大器電阻器73、74有關。然後將電流混合並饋送到第一和第二電阻器78、79(與放大器電阻器73、74匹配)。來自峰值偵測器電路 10的高電壓輸出係間接變成低電壓。端子電壓VT1至VT4可為高電壓輸出。這邊間接地是指端子電壓VT1至VT4被轉換為電流(藉由實現為轉導放大器的差動放大器63、64)然後轉換回電壓,其形式為偵測器輸出信號SDO(藉由第一和第二電阻器78、79)。此電壓的共模係藉由共模電壓VCM來設定。偵測器輸出信號SDO係實現為差動電壓,其中SDO=VD1-VD2。因為轉導級63、64是在脈衝之間的時間操作,所以大大地放寬了它們的動態條件並且可以達到。
在可替換的實施例中(未顯示),評估電路52被實現為不同於圖6與7。例如,還可想到組合儲存在第一和第二電容器16、21或是第一至第四電容器16、21、32、42中的電荷來產生第一偵測器電壓VD1及/或偵測器輸出信號SDO的方式,然後以此方式消除誤差。
圖8顯示光達系統83的實例。LIDAR系統83包括(但不僅是)電流測量配置50、光源80以及驅動器81。電流測量配置50、光源80與驅動器81及其連接方式的實例係顯示在圖7。此外,LIDAR系統83包括傳輸光學元件(transmitting optics)84。光源80經由傳輸光學元件84發射光。
除此之外,LIDAR系統83包括具有接收光學元件87、光偵測器(photodetector)88及類比電路89的接收裝置86。光偵測器88可包含例如累崩式光二極體(avalanche photodiode)或是累崩式光二極體的陣列。類比電路89係耦合至光偵測器88的輸出側。類比電路89可包括放大器(像是轉換阻抗放大器(transimpedance amplifier))、電子信號偵測器(electrical signal detector)及類比至數位轉換器的其中一者。
此外,LIDAR系統83包括例如圖2A及4A所示的控制電路28。控制電路28係耦合至驅動器81。控制電路28根據例如數位化偵測器輸出信號 SDD控制驅動器81。因此,根據電流I之先前峰值來控制驅動器81。控制電路28係耦合至類比電路89。控制電路28可耦合至光偵測器88。藉由光源80透過傳輸光學元件84發射的光係被物體85反射。反射的光係透過接收光學元件87藉由光偵測器88偵測,並且藉由光偵測器88轉換成電子信號SE。資料信號(data signal)SDT係藉由類比電路89從電子信號SE產生,並且提供給控制電路28。可以使用控制電路28用於例如藉由類比電路89產生之資料信號SDT的資料評估與資料儲存。LIDAR系統83可包含進一步的子系統,像是例如至少一進一步的光源、進一步的電流測量系統及進一步的驅動器。
在一個替代的實施例中(未顯示),在數位領域中的任務像是定時與控制LIDAR系統83的電路部位10、81、82、88、89、資料儲存、資料評估及提供介面給高層系統都是藉由不同電路來執行。例如,控制驅動器81的控制電路28係可為峰值偵測器電路10或是電流測量配置50的一部分。LIDAR系統83包括進一步的控制電路。進一步的控制電路係可實現為例如微處理器、微控制器或是電腦。進一步的控制電路係耦合至類比電路89以及耦合至控制電路28。進一步的控制電路係可耦合至光偵測器88。
如上所述,圖1至8中顯示的實施例表示改進之峰值偵測器電路以及用於評估第一輸入電壓之峰值的方法的示例實施例;因此,它們不構成所有根據改進之感測器配置的所有實施例之完整列表。例如,實際的峰值偵測器電路及用於評估第一輸入電壓之峰值的方法可在電路部分、結構及形狀方面與所示實施例有所不同。
10:峰值偵測器電路、電路部位
11:第一輸入端子
13:第一端子
15:第一整流元件
16:第一電容器
18:參考電位端子
19:主要電路
20:第二整流元件
21:第二電容器
22:第二端子
23:第一開關
25:第一放電開關、開關
26:第二放電開關、開關
27:第一接地開關、開關、接地開關
28:控制電路
29:輔助電路
GND:參考電位
QF,QR:電荷
S1-S4:控制信號
VIN1:第一輸入電壓
VT1:第一端子電壓
VT2:第二端子電壓

Claims (14)

  1. 一種峰值偵測器電路,包括:
    第一輸入端子(11),用於提供第一輸入電壓(VIN1),
    第一整流元件(15),具有陽極連接至該第一輸入端子(11),
    第一電容器(16),具有第一電極連接至該第一整流元件(15)之陰極,
    第一端子(13),耦合至該第一電容器(16)之該第一電極,
    第二整流元件(20),具有陰極連接至該第一輸入端子(11),
    第二電容器(21),
    第一開關(23),將該第二整流元件(20)之陽極耦合至該第二電容器(21)之第一電極,以及
    第二端子(22),耦合至該第二電容器(21)之該第一電極。
  2. 如請求項1所述的峰值偵測器電路,其中,該峰值偵測器電路(10)進一步包括將該第一電容器(16)的該第一電極耦合至參考電位端子(18)的第一放電開關(25)。
  3. 如請求項1所述的峰值偵測器電路,其中,該峰值偵測器電路(10)進一步包括將該第二電容器(21)的該第一電極耦合至參考電位端子(18)的第二放電開關(26)。
  4. 如請求項1所述的峰值偵測器電路,其中,該峰值偵測器電路(10)進一步包括將該第二整流元件(20)的該陽極耦合至參考電位端子(18)的第一接地開關(27)。
  5. 如請求項1所述的峰值偵測器電路,其中,該第一整流元件和該第二整流元件(15、20)係實現為包括二極體、肖特基二極體、接面二極體以及連接成二極體組構的雙極性電晶體之群組中的其中一者。
  6. 如請求項1所述的峰值偵測器電路,其中,該峰值偵測器電路(10)進一步包括具有加法電路(55)的評估電路(52),包含:
    第一輸入,耦合至該第一端子(13),
    第二輸入,耦合至該第二端子(22),以及
    第一偵測器輸出(53),用來提供第一偵測器電壓(VD1),該第一偵測器輸出(53)為在該第一端子(13)處分接之第一端子電壓(VT1)及在該第二端子(22)處分接之第二端子電壓(VT2)的總和的函數。
  7. 如請求項1所述的峰值偵測器電路,其中,該峰值偵測器電路(10)進一步包括:
    第二輸入端子(30),
    第三整流元件(31),具有陽極連接至該第二輸入端子(30),
    第三電容器(32),具有第一電極連接至該第三整流元件(31)之陰極,
    第三端子(33),耦合至該第三電容器(32)之該第一電極,
    第四整流元件(41),具有陰極連接至該第二輸入端子(30),
    第四電容器(42),
    第二開關(43),將該第四整流元件(41)之陽極耦合至該第四電容器(42)之第一電極,以及
    第四端子(46),耦合至該第四電容器(42)之該第一電極。
  8. 如請求項7所述的峰值偵測器電路,其中,該峰值偵測器電路(10)進一步包括評估電路(52),包括:
    第一差動放大器(63),在該輸入側耦合至該第一端子和該第三端子(13、33)以及在該輸出側耦合至該峰值偵測器電路(10)之第一偵測器輸出和第二偵測器輸出(53、54),以及
    第二差動放大器(64),在該輸入側耦合至該第二端子和該第四端子(22、46)以及在該輸出側耦合至該峰值偵測器電路(10)之該第一偵測器輸出和該第二偵測器輸出(53、54)。
  9. 如請求項8所述的峰值偵測器電路,其中,該第一差動放大器和該第二差動放大器(63、64)係實現為轉導放大器。
  10. 如請求項8所述的峰值偵測器電路,其中,該評估電路(52)包括第一電阻器和第二電阻器(78、79)與共模端子(77),以及其中,該共模端子(77)係透過該第一電阻器(78)耦合至該第一偵測器輸出(53)以及透過該第二電阻器(79)耦合至該第二偵測器輸出(54)。
  11. 一種電流量測配置,包括:
    如請求項7所述的該峰值偵測器電路(10),以及
    分路電阻器(51),將該峰值偵測器電路(10)的該第一輸入端子(11)耦合至該峰值偵測器電路(10)的該第二輸入端子(30)並且組構成使得電流(I)流過該分路電阻器(51)。
  12. 一種光達系統,包括:
    如請求項11所述的該電流測量配置(50),
    光源(80),
    驅動器(81),用來提供電流(I),其中,該電流(I)驅動該光源(80)並流過該分路電阻器(51),以及
    接收配置(86)。
  13. 一種用於評估第一輸入電壓之峰值的方法,包括:
    透過第一輸入端子(11)提供該第一輸入電壓(VIN1)至第一整流元件(15)的陽極,其中,第一電容器(16)的第一電極係連接至該第一整流元件(15)的陰極,
    在第一端子(13)提供第一端子電壓(VT1),該第一端子(13)係耦合至該第一電容器(16)的該第一電極,
    透過該第一輸入端子(11)提供該第一輸入電壓(VIN1)至第二整流元件(20)的陰極,其中,第一開關(23)將該第二整流元件(20)的陽極耦合至第二電容器(21)的第一電極,以及
    在第二端子(22)提供第二端子電壓(VT2),該第二端子(22)係耦合至該第二電容器(21)的該第一電極。
  14. 如請求項13所述的方法,進一步包括步驟:其中,該峰值偵測器電路(10)進一步包括具有加法電路(55)的評估電路(52),包含:
    提供該第一端子電壓(VT1)至加法電路(55)的第一輸入;
    提供該第二端子電壓(VT2)至該加法電路(55)的第二輸入;
    -形成該第一端子電壓(VT1)與該第二端子電壓(VT2)的總和以及提供偵測器電壓(VD1)成為該第一端子電壓(VT1)與該第二端子電壓之該總和的函數。
TW109141142A 2019-11-28 2020-11-24 峰值偵測器電路及用於評估第一輸入電壓之峰值的方法 TW202139600A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19212174.7A EP3829061B1 (en) 2019-11-28 2019-11-28 Peak-detector circuit and method for evaluating a peak of a first input voltage
EP19212174.7 2019-11-28

Publications (1)

Publication Number Publication Date
TW202139600A true TW202139600A (zh) 2021-10-16

Family

ID=68731870

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109141142A TW202139600A (zh) 2019-11-28 2020-11-24 峰值偵測器電路及用於評估第一輸入電壓之峰值的方法

Country Status (5)

Country Link
US (1) US11984897B2 (zh)
EP (1) EP3829061B1 (zh)
CN (1) CN114762252A (zh)
TW (1) TW202139600A (zh)
WO (1) WO2021104879A1 (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9613634D0 (en) * 1996-06-28 1996-08-28 Philips Electronics Nv Peak detector
US8031452B2 (en) 2008-07-10 2011-10-04 Siemens Industry, Inc. Single-supply single-ended high voltage peak detector
CN107968654B (zh) * 2017-12-29 2023-11-24 浙江九州量子信息技术股份有限公司 一种采用补偿网络的窄脉冲峰值保持电路

Also Published As

Publication number Publication date
EP3829061A1 (en) 2021-06-02
US11984897B2 (en) 2024-05-14
CN114762252A (zh) 2022-07-15
EP3829061B1 (en) 2024-01-10
US20230353133A1 (en) 2023-11-02
WO2021104879A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
US10436638B2 (en) Light receiver having geiger-mode avalanche photodiodes and method for reading out
US6177665B1 (en) High-speed logarithmic photo-detector
US9195253B2 (en) Signal transmission circuit
JP5088334B2 (ja) 光受信回路
US9562808B2 (en) Light receiving circuit and light coupling device
JP6271372B2 (ja) 光受信回路および光結合装置
KR102065198B1 (ko) 펄스형 전자기 방사 검출 디바이스
CN1601929A (zh) 光空间通信用接收电路
TW202139600A (zh) 峰值偵測器電路及用於評估第一輸入電壓之峰值的方法
US9837969B2 (en) Transimpedance circuit
CN108204859B (zh) 光电检测电路和光电检测装置
JP5231118B2 (ja) 受光アンプ回路
JP6757166B2 (ja) 補償回路及び補償回路の製造方法
US20220094309A1 (en) Signal detection circuit
US6956195B2 (en) Photoelectric current and voltage converting circuit
US6480038B1 (en) Bipolar comparator
JP4820138B2 (ja) 光電変換回路
JP4092243B2 (ja) 光増幅回路
JP4807368B2 (ja) 光電流・電圧変換回路
JP2005217468A (ja) 光電流・電圧変換回路
CN110987197B (zh) 信号处理装置及方法
JP7051945B2 (ja) 補償回路及び補償回路の製造方法
JP2022134704A (ja) 積分回路及び照度センサ
JP2013098471A (ja) 光結合型絶縁回路
KR20240046721A (ko) 신호 처리 회로