TW202135371A - 模擬電池構築方法及模擬電池構築裝置 - Google Patents

模擬電池構築方法及模擬電池構築裝置 Download PDF

Info

Publication number
TW202135371A
TW202135371A TW109145674A TW109145674A TW202135371A TW 202135371 A TW202135371 A TW 202135371A TW 109145674 A TW109145674 A TW 109145674A TW 109145674 A TW109145674 A TW 109145674A TW 202135371 A TW202135371 A TW 202135371A
Authority
TW
Taiwan
Prior art keywords
secondary battery
battery
aforementioned
value
model
Prior art date
Application number
TW109145674A
Other languages
English (en)
Other versions
TWI738597B (zh
Inventor
宗像一郎
庄司秀樹
Original Assignee
日商東洋體系股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東洋體系股份有限公司 filed Critical 日商東洋體系股份有限公司
Application granted granted Critical
Publication of TWI738597B publication Critical patent/TWI738597B/zh
Publication of TW202135371A publication Critical patent/TW202135371A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本發明的課題在於提供謀求在根據模擬電池的二次電池特性的種種條件下提高再現精度的裝置等。 解決手段為在各種不同的劣化度D(n2),決定各種不同溫度T(n1)之二次電池模型的參數P(n0,n1,n2)。根據二次電池(220)的複變阻抗Z的測定結果,驗證二次電池模型的參數P(n0,n1,n2)之值。二次電池模型,藉由分別表示IIR系統及FIR系統的傳達函數表現二次電池(220)的內電阻之阻抗。進而,計算對因應於藉由模擬電池(20)模擬的虛擬二次電池的識別碼id(m)、溫度T(m1)及劣化度D(m2)之二次電池模型輸入電流指令值Icmd(t)時之電壓指令值Vcmd(t),因應於此的電壓V(t)藉由模擬電池(20)對指定機器(200)或其負荷施加。

Description

模擬電池構築方法及模擬電池構築裝置
本發明係關於模擬鋰離子電池等二次電池的性能之技術。
二次電池的內部電阻多段連接電阻R和電容C的並聯電路以構成等效電路,討論了電流-電壓的行為波形的變化。但是,說明電壓的數幾秒以上的過渡響應波形時,作為時間常數要素之電容容量值只能使用數百F到數千F之值。這樣的數值,是電池的AC特性的評估方法亦即AC阻抗與其等價電路模型無法對應的數值,不能說是再現了電池的性狀。
二次電池的特性項目包括內電阻。例如,於鋰離子二次電池(以下稱為LIB二次電池),因為電池內部之電極反應、SEI反應、離子的擴散反應等複雜的化學反應糾纏發生,所以電池電壓的行為也不能適用把內電阻單純視為直流電阻的歐姆定律。
作為強化電池的內電阻的方法,從前已有根據頻率響應解析法(FRA:Frequency Response Analysis)之AC阻抗解析法為眾所周知,確立了將種種內部反應適用於等價電路的模型,分解為多個時間常數要素而解析的方法。電池的秒級的行為以瓦爾堡(Warburg)電阻的擴散現象佔有支配性影響,如何導入此瓦爾堡電阻作為動作模型,決定了模型的性能。進行AC阻抗測定需要如頻率響應分析儀(FRA)那樣的專用裝置。 [先前技術文獻] [專利文獻]
[專利文獻1] 日本特許5924617號公報
[發明所欲解決之課題]
但是,實用時二次電池與負荷連接,反覆進行充電及放電,於該場合為了獲知二次電池的狀態而作為基礎資訊僅測定電壓、電流及溫度。於這樣的狀況下,電池的輸出電壓受到內電阻影響,此外內電阻自身也因溫度條件或者隨著電池的劣化度而改變,必須要有精度佳地再現實際動作狀態的電池特性的手段。
在此,本發明的目的在於提供謀求在根據模擬電池的二次電池特性的種種條件下提高再現精度的裝置等。 [供解決課題之手段]
相關於本發明之模擬電池構築裝置,具備:認識二次電池的複變阻抗的測定結果之第1認識要素,根據藉由前述第1認識要素認識的前述二次電池的複變阻抗的測定結果,驗證藉由分別表示IIR系統及FIR系統的傳達函數來表現前述二次電池的內電阻的阻抗之二次電池模型的參數之值之第1計算要素,認識電流指令值的時間序列之第2認識要素,藉由把前述第2認識要素所認識的前述電流指令值的時間序列輸入至前述二次電池模型,計算作為前述二次電池模型的輸出之電壓的時間序列之第2計算要素,以及以藉由前述第2計算要素計算的電壓的時間序列被施加於指定機器的方式,控制被連接於該指定機器的模擬電池的動作之模擬電池控制要素。
於本發明之模擬電池構築裝置,最好是前述第1認識要素,認識前述二次電池之各種各樣不同的劣化狀態之複變阻抗的測定結果;前述第1計算要素,根據藉由前述第1認識要素認識的前述二次電池之前述各種各樣不同的劣化狀態之複變阻抗的測定結果,特定二次電池模型的參數之值對前述二次電池的劣化狀態之依存性;前述第2認識要素,除了前述電流指令值的時間序列以外還認識前述模擬電池的劣化狀態的時間序列;前述第2計算要素,對於藉由前述第1計算要素被驗證的前述參數之值,且該參數之值對前述二次電池的劣化狀態的依存性被驗證的前述二次電池模型,計算藉由前述第2認識要素認識的前述電流指令值的時間序列以及前述模擬電池的劣化狀態的時間序列被輸入時之模型輸出電壓。
於本發明之模擬電池構築裝置,最好是前述第1認識要素,分別於第1指定時間點以及該第1指定時間點之後的前述二次電池的複變阻抗的測定時間點亦即第2指定時間點,分別認識作為對前述二次電池輸入脈衝電流時由該二次電池輸出的電壓的變化態樣的測定結果之第1實測輸出電壓以及第2實測輸出電壓,且根據前述第1實測輸出電壓及前述第2實測輸出電壓之對比,認識以前述第1指定時間點之前述二次電池為基準的前述第2指定時間點之前述二次電池的劣化狀態。
於本發明之模擬電池構築裝置,最好是前述第1認識要素,根據前述二次電池與作為電源搭載的指定機器之相互通訊,藉由被搭載於前述指定機器的脈衝電流發生器所發生的脈衝電流被輸入前述二次電池時,各個作為由該二次電池輸出的電壓的變化態樣的測定結果之第1實測輸出電壓以及第2實測輸出電壓,認識藉由被搭載於前述指定機器的感測器測定的前述二次電池的電壓響應特性。
於本發明之模擬電池構築裝置,最好是前述第1認識要素,認識前述二次電池之各種各樣不同的溫度之複變阻抗的測定結果;前述第1計算要素,根據藉由前述第1認識要素認識的前述二次電池之前述各種各樣不同的溫度之複變阻抗的測定結果,特定二次電池模型的參數之值之溫度依存性;前述第2認識要素,除了前述電流指令值的時間序列以外還認識前述模擬電池或者前述指定機器的溫度的測定結果;前述第2計算要素,對於藉由前述第1計算要素被驗證的前述參數之值,且該參數之值的溫度依存性被驗證的前述二次電池模型,計算藉由前述第2認識要素認識的前述電流指令值的時間序列以及前述模擬電池或前述指定機器的溫度的測定結果被輸入時之模型輸出電壓。
於本發明之模擬電池構築裝置,最好是前述第1認識要素,根據前述二次電池與作為電源搭載的指定機器之相互通訊,認識藉由被搭載於前述指定機器的測定機器依照交流阻抗法測定的前述二次電池的複變阻抗。
(模擬電池構築裝置的構成)
作為圖1所示的本發明之一實施型態之模擬電池構築裝置100,係由資料庫10,模擬電池20及指定機器200之各個與可透過網路來通訊的一個或複數個伺服器所構成。模擬電池構築裝置100,控制由模擬電池20對指定機器200施加的電壓。資料庫10,亦可為模擬電池構築裝置100的構成要素。
模擬電池構築裝置100,具備:第1認識要素111、第2認識要素112、第1計算要素121、第2計算要素122、與模擬電池控制要素140。第1認識要素111、第2認識要素112、第1計算要素121、第2計算要素122及模擬電池控制要素140分別由處理器(演算處理裝置)、記憶體(記憶裝置)及I/O電路等構成。
於記憶體或者與此不同個之記憶裝置,除了表示對於脈衝電流之二次電池220的電壓響應特性之測定結果等種種資料以外,還記憶保持著程式(軟體)。例如,供識別二次電池220或者被搭載此之指定機器200的種類(由規格或者性能諸元所特定)之用的複數識別碼之各個,以及與複數二次電池模型之各個被賦予對應關係而記憶保持於記憶體。處理器由記憶體讀取必要的程式及資料,根據該資料,藉由執行依照該程式之演算處理,執行被分派給構成模擬電池構築裝置100的各要素111、112、121、122及140的後述的演算處理或任務。
如圖2所示,模擬電池20,具有D/A轉換器21、增幅器22。D/A轉換器21,在被輸入由二次電池模型輸出的電壓指令值Vcmd(t)時,將此進行D/A變換。增幅器22,將因應於由D/A轉換器21之輸出的電壓V(t),施加至指定機器200或者構成此之負荷。「(t)」意味著時刻t之值或者時間序列。
相當於二次電池模型的計算器(第2計算要素122),具備計算器1221、輸出器1222、加算器1224。計算器1221,被輸入電流指令值Icmd(t)時,算定來自模擬電池20的虛擬內電阻的輸出電壓。電流指令值Icmd(t),亦可由指定機器200賦予。定義計算器1221的傳達函數H的參數之值,根據由模擬電池20模擬的虛擬二次電池的劣化度D(n2),藉由模型參數調整要素1220來調節。輸出器1222,輸出模擬電池20的虛擬的開放電壓OCV(t)。加算器1224,加算計算器1221及輸出器1222之分別的輸出。
模擬電池20,亦可由被連接指定機器200的商用電源等來構成。模擬電池20,亦可替代二次電池200而被搭載於指定機器200。模擬電池20,亦可具備第2計算要素122。在此場合,藉由構成指定機器200的控制裝置210構成第2計算要素122亦可。
指定機器200,具備:輸入界面202、輸出界面204、控制裝置210、二次電池220與感測器群230。指定機器200,包含個人電腦、行動電話(智慧型手機)、家電製品或電動自行車等移動體等、以二次電池220為電源的各種機器。
控制裝置210,由處理器(演算處理裝置)、記憶體(記憶裝置)及I/O電路等構成。於該記憶體或者與此不同個之記憶裝置,記憶保持著二次電池220的電壓響應特性之測定結果等種種資料。控制裝置210,因應於來自二次電池220的供給電力而動作,於通電狀態控制指定機器200的動作。於指定機器200的動作,包含構成該指定機器200的致動器(電動式致動器等)的動作。構成控制裝置210的處理器由記憶體讀取必要的程式及資料,根據該資料,執行依照該程式被分派的演算處理。
二次電池220,例如為鋰離子電池,亦可為鎳鎘電池等其他的二次電池。對指定機器200由模擬電池20供給電力時,亦可由該指定機器200移除二次電池220。感測器群230,除了二次電池220的電壓響應特性及溫度以外,還測定指定機器200的控制所必要的參數之值。感測器群230,例如藉由輸出分別因應於二次電池220的電壓、電流及溫度的訊號之電壓感測器、電流感測器及溫度感測器來構成。
模擬電池構築裝置100,亦可被搭載於指定機器200。在此場合,軟體伺服器(省略圖示),亦可藉由對構成指定機器200所具備的控制裝置210之演算處理裝置送訊電池用軟體,而對該演算處理裝置賦予作為模擬電池構築裝置100之機能。
(模擬電池構築方法) 說明藉由前述構成的模擬電池構築裝置100執行的模擬電池構築方法。
以藉由識別碼id(n0)識別種類的各種各樣的種類之二次電池220為對象,在各種各樣不同的劣化度D(n2),決定各種不同溫度T(n1)之二次電池模型的參數P(n0,n1,n2)。
具體而言,首先,於模擬電池構築裝置100,第1指數n1及第2指數n2分別被設定為「0」(圖3/STEP102)。第1指數n1,是表示二次電池220的溫度T的高低的指數。第2指數n2,是表示二次電池220的劣化度D的評估次數或評估期間的順序的指數。
二次電池220的溫度T被控制於溫度T(n1)(圖3/STEP104)。二次電池220之溫度調節時,除了被配置於二次電池220附近的加熱器(電熱器等)及冷卻器(冷卻風扇等)以外,使用被配置於二次電池220附近的或者被安裝於二次電池220的外殼的溫度感測器。
藉由第1認識要素111,認識二次電池220的複變阻抗Z(n0,n1,n2)的測定結果(圖3/STEP106)。所謂各要素「認識」資訊,意味著接收資訊,由資料庫10等資訊源檢索或者讀取資訊,根據其他資訊算定或推定資訊等,實行準備必要的資訊等各種演算處理等。二次電池220的複變阻抗Z(n0,n1,n2),藉由交流阻抗法測定,該測定結果與供識別二次電池220的種類之識別碼賦予關聯而記錄在資料庫10。
根據交流阻抗法,如圖5所示,組合使用頻率響應解析裝置(FRA)212及恆電位電流儀(PGS)232之組合。構成FRA212的振盪器輸出任意頻率的正弦波訊號,因應於該正弦波訊號的二次電池220的電流訊號I(t)及電壓訊號V(t)由PGS232被輸入至FRA212。接著,於FRA212,電流訊號I(t)及電壓訊號V(t)藉由離散傅立葉頻率變換而變換至頻率空間的資料,測定頻率f=(ω/2π)之複變阻抗Z(n0,n1,n2)(ω)。
例如於二次電池220之出貨之前等,測定未被搭載於指定機器200的狀態之二次電池的複變阻抗Z(n0,n1,n2)。此外,亦可測定被搭載於指定機器200的狀態之二次電池的複變阻抗Z(n0,n1,n2)。在此場合,藉由控制裝置210構成FRA212,感測器群230亦可藉由PGS構成。例如,指定機器200為了二次電池220的充電而被連接於商用電源等外部電源,藉由從該外部電源供給的電力輸出正弦波訊號。
於圖6,表示二次電池220的複變阻抗Z(n0,n1,n2)的實測結果的奈奎斯特圖之一例,與該圖之近似曲線一起顯示。橫軸為複變阻抗Z的實部ReZ,縱軸為複變阻抗Z的虛部-ImZ。於-ImZ>0的區域,ReZ越大為低頻的複變阻抗Z。-ImZ=0之ReZ的值,相當於二次電池220的電解液中的移動電阻。-ImZ>0的區域之約略半圓形狀的部分的曲率半徑,相當於二次電池220的電荷移動電阻。該曲率半徑,由二次電池220的溫度T變得越高就越小的傾向。-ImZ>0的區域之低頻區域之約45°立起的直線狀部分,反映二次電池220的華堡阻抗(Warburg impedance)的影響。
(二次電池模型的確立) 於模擬電池構築裝置100,藉由第1計算要素121,根據由第1認識要素111認識的二次電池220的複變阻抗Z的測定結果,驗證二次電池模型的參數P(n0,n1,n2)之值(圖3/STEP108)。參數P(n0,n1,n2),定義計算器1221的傳達函數H。
二次電池模型,是表示電流I(t)被輸入二次電池220時由該二次電池220輸出的電壓V(t)之模型。使用二次電池220的開放電壓OCV及內電阻的傳達函數H(t)由關係式(01)定義。
Figure 02_image001
此處,OCV(t)表示伴隨著電流I(t)的充電及/或放電,開放電壓隨之增減。
二次電池的內電阻的等價電路模型的傳達函數H(z)由關係式(02)定義。
Figure 02_image003
「H0 (z)」、「Hi (z)」、「HW (z)」及「HL (z)」,由表示二次電池的內電阻的特性的參數來定義。
圖7A顯示二次電池220的內電阻的等價電路之一例。在此例,內電阻的等價電路,是由相當於電解液中的移動電阻之電阻R0 、相當於電荷移動電阻的電阻Ri 以及由電容Ci 所構成的第i個RC並聯電路(i=1,2,‥,X)、相當於華堡阻抗的電阻W0 、以及線圈L的串聯電路所定義的。串聯連接的RC並聯電路的數目,在圖7A所示的實施例為「3」,亦可比3還小,亦可比3還大。電阻W0 ,至少在某一個RC並聯電路,與電阻R串聯連接亦可。電容C置換為CPE(Constant Phase Element)亦可。如圖7B所示,華堡阻抗W與至少一個RC並聯電路(在圖5B之例為第1個RC並聯電路)之電阻R串聯連接亦可。 電阻R0 的傳達函數H0 (z)由關係式(03)定義。
Figure 02_image005
第i個RC並聯電路的傳達函數Hi (z)作為IIR (Infinite Impulse Response)系統(無限脈衝響應系統)的傳達函數由關係式(03)來定義。圖8A顯示表示第i個RC並聯電路的傳達函數Hi (z)之方塊圖。
Figure 02_image007
相當於華堡阻抗的電阻W0 的傳達函數HW (z)作為FIR(Finite Impulse Response)系統(有限脈衝響應系統)的傳達函數由關係式(04)來定義。圖8B顯示表示相當於華堡阻抗W0 的傳達函數HW (z)之方塊圖。
Figure 02_image009
線圈L的傳達函數HL (z)由關係式(05)定義。
Figure 02_image011
由在圖6以實線標示的奈奎斯特圖所表示的二次電池的複變阻抗Z之近似曲線,在依照關係式(02)定義二次電池的內電阻的等價電路模型的傳達函數H(z)的假設下求出。藉此,求出參數P(n0,n1,n2)= {R0 ,ai ,b0 ,bi ,hk ,L0 ,T}之值(參照關係式(03)~(05))。藉由開放電壓OCV(n0,n1,n2)之測定值驗證由二次電池模型之輸出器1222所輸出的開放電壓OCV(t)之值(參照關係式(01))。接著,由該參數之值二次電池模型確立各種種類的二次電池220。
判定第1指數n1是否為特定數N1以上(圖3/STEP110)。該判定結果為否定的場合(圖3/STEP110‥NO),第1指數n1的值僅增加「1」(圖3/STEP112),而且二次電池220的溫度調節以後的處理被反覆進行(圖3/STEP104→106→108→110)。
(劣化度判定) 該判定結果為肯定的場合(圖3/STEP110‥YES),藉由第2認識要素112,認識因應於二次電池220的脈衝電流I(t)之電壓響應特性V(n0,n2)(t)(~V(n0,n2)(z))的測定結果(圖3/STEP114)。
進行該測定時,脈衝電流I(t)(~I(z))對二次電池220輸入。例如,如圖9A所示的脈衝電流I(t)對二次電池220輸入。藉由脈衝電流發生器被驅動,該脈衝電流發生器發生的脈衝電流I(t)對二次電池220輸入。二次電池220被搭載於指定機器200的場合,亦可以是脈衝電流發生器被搭載於該指定機器200,藉由來自外部電源或被搭載於指定機器200的輔助電源的供給電力,驅動指定機器供被搭載於該指定機器200之脈衝電流發生。
接著,根據電壓感測器的輸出訊號,藉由控制裝置210測定二次電池220的電壓響應特性V(n0,n2)(t)。二次電池220被搭載於指定機器200的場合,亦可根據構成被搭載於該指定機器200的感測器群230的電壓感測器的輸出訊號,藉由控制裝置210測定二次電池220的電壓響應特性V(n0,n2)(t)。藉此,例如,測定如圖9B以虛線表示那樣變化的二次電池220的電壓響應特性V(n0,n2)(t)。於圖9(B),第2指數n2為0的場合之二次電池220的電壓響應特性V(n0,0)(t)的測定結果以實線表示。
接著,藉由第2計算要素122,根據二次電池220的電壓響應特性V(n0,n2)(t)及V(n0,0)(t)之對比結果,評估由識別碼id(n0)識別種類之該二次電池220的劣化度D(n0,n2)(圖3/STEP116)。例如,計算分別表示二次電池220的電壓響應特性V(n0,n2)(t)及V(n0,0)(t)的曲線之類似度x。接著,依照以類似度x為主變數的減少函數f,計算二次電池220的劣化度D(n0,n2)=f(x)。
判定第2指數n2是否為特定數N2以上(圖3/STEP118)。該判定結果為否定的場合(圖3/STEP118‥NO),第1指數n1之值被重設為「0」,而且第2指數n2之值僅增加「1」(圖3/STEP120)。而且二次電池220的溫度調節以後的處理被反覆進行(圖3/STEP104→106→108→110)。
(模擬電池構築) 藉由第2認識要素112,認識供識別由模擬電池20模擬的虛擬二次電池的種類之識別碼id(m0)(圖4/STEP140)。例如,藉由第2認識要素112,根據與指定機器200的通訊,認識供識別預訂對該指定機器200適用的二次電池的種類之識別碼id(m0)亦可。此外,藉由第2認識要素112,根據與指定機器200的通訊,認識通過該指定機器200的輸入界面200設定的虛擬的二次電池的種類之識別碼id(m0)亦可。
藉由第2認識要素112,認識由模擬電池20模擬的虛擬二次電池的溫度T(m1)(圖4/STEP142)。例如,藉由第2認識要素112,根據與指定機器200的通訊,認識由構成該指定機器200的感測器群230的溫度感測器所測定的指定機器200的溫度作為虛擬的二次電池的溫度T(m1)亦可。此外,藉由第2認識要素112,根據與指定機器200的通訊,認識通過該指定機器200的輸入界面200設定的溫度作為虛擬的二次電池的溫度T(m1)亦可。
藉由第2認識要素112,認識由模擬電池20模擬的虛擬二次電池的劣化度D(m2)(圖4/STEP144)。例如,藉由第2認識要素112,根據與指定機器200的通訊,把通過該指定機器200的輸入界面200設定的劣化度認識為虛擬的二次電池的劣化度D(m2)亦可。
藉由第2計算要素122,根據識別由模擬電池20模擬的虛擬二次電池的種類之識別碼id(m0)、溫度T(m1)以及劣化度D(m2)之根據第2認識要素112的認識結果,由被登記於資料庫10的多數二次電池模型之中,選定由參數P(m0,m1,m2)所特定的一個二次電池模型(圖4/STEP146)。這相當於定義如圖2所示的計算器1221的傳達函數H的參數P(m0,m1,m2)之值,根據由模擬電池20模擬的虛擬二次電池的劣化度D(n2),藉由模型參數調整要素1220來調節。
進而,藉由第2認識要素112認識電流指令值Icmd(t)(圖4/STEP148)。例如,藉由第2認識要素112,根據與指定機器200的通訊,因應於由該指定機器200的感測器群230所測定的指定機器200的動作狀況把由控制裝置210設定的送往負荷的電流目標值認識作為電流指令值Icmd(t)亦可。此外,藉由第2認識要素112,根據與指定機器200的通訊,把通過該指定機器200的輸入界面200設定的電流目標值認識為電流指令值Icmd(t)亦可。藉此,例如,認識如圖10實線所示那樣隨時間變化的電流指令值Icmd(t)。
藉由第2計算要素122,對該選定的二次電池模型,輸入電流指令值Icmd(t),作為該二次電池模型的輸出,計算電壓指令值Vcmd(t)(圖4/STEP150)。藉此,例如,計算如圖10以細線所示那樣隨變化的電壓指令值Vcmd(t)作為二次電池模型的輸出。
接著,藉由模擬電池控制要素140,根據電壓指令值Vcmd(t),在模擬電池20藉由增幅器22放大增益的電壓V(t)對指定機器200或者構成指定機器200的指定負荷施加而控制(圖4/STEP152)。藉此,例如,圖10以粗線表示那樣變化的的電壓V(t)被施加於指定機器200。
(本發明之其他實施形態) 在前述實施型態,因應於由識別碼id(n0)識別種類的二次電池220的劣化度D(n2)的不同,二次電池模型的參數P(n0,n1,n2)之值被個別地決定(參照圖3/STEP108、STEP114、116),作為其他實施型態,不考慮二次電池220的劣化度D(n2)的不同,而決定二次電池模型的參數P(n0,n1)之值亦可。
在前述實施型態,因應於由識別碼id(n0)識別種類的二次電池220的溫度T(n1)的不同,二次電池模型的參數P(n0,n1,n2)之值被個別地決定(參照圖3/STEP104、STEP114、116),作為其他實施型態,不考慮二次電池220的溫度T(n1)的不同,而決定二次電池模型的參數P(n0,n2)之值亦可。 [發明之效果]
根據相關於本發明的模擬電池構築裝置100及藉此執行的模擬電池構築方法,以藉由識別碼id(n0)識別種類的二次電池220為對象,在各種各樣不同的劣化度D(n2),決定各種不同溫度T(n1)之二次電池模型的參數P(n0,n1,n2)。根據二次電池220的複變阻抗Z的測定結果,驗證二次電池模型的參數P(n0,n1,n2)之值(參照圖3/STEP104→106→108、圖5~圖7、圖8A及圖8B)。二次電池模型,藉由分別表示IIR系統及FIR系統的傳達函數表現二次電池220的內電阻之阻抗(參照關係式(03)、(04)、圖5~圖7、圖8A及圖8B)。
進而,根據由模擬電池20模擬的虛擬二次電池的識別碼id(m0)、溫度T(m1)以及劣化度D(m2),選定具有參數P(m,m1,m2)的二次電池模型(參照圖2、圖4/STEP140→142→144→146)。接著,計算電流指令值Icmd(t)被輸入該二次電池模型時的輸出亦即電壓指令值Vcmd(t),因應於此的電壓V(t)藉由模擬電池20對指定機器200或其負荷施加(參照圖2、圖4/STEP148→150→152、圖10)。藉此,謀求在根據模擬電池20的二次電池220的特性的種種條件下提高再現精度。
10:資料庫 20:模擬電池 22:增幅器 100:模擬電池構築裝置 111:第1認識要素 112:第2認識要素 121:第1計算要素 122:第2計算要素 140:模擬電池控制要素 200:指定機器 202:輸入界面 204:輸出界面 210:控制裝置 220:二次電池 230:感測器群
[圖1]係關於本發明之一實施型態之模擬電池構築裝置的構成之說明圖。 [圖2]係關於模擬電池的構成之一例之說明圖。 [圖3]係顯示二次電池的模擬電池構築方法的準備程序之流程圖。 [圖4]係顯示二次電池的模擬電池構築方法的程序之流程圖。 [圖5]係關於二次電池的複變阻抗的測定系統之說明圖。 [圖6]係關於二次電池的奈奎斯特圖之說明圖。 [圖7A]係二次電池的內電阻的等價電路之第1例示說明圖。 [圖7B]係二次電池的內電阻的等價電路之第2例示說明圖。 [圖8A]係表示IIR系統的傳達函數之圖。 [圖8B]係表示FIR系統的傳達函數之圖。 [圖9A]係關於脈衝電流之說明圖。 [圖9B]係關於二次電池及二次電池模型的電壓響應特性之說明圖。 [圖10]係關於由電流指令值計算電壓指令值的結果之說明圖。
10:資料庫
20:模擬電池
100:模擬電池構築裝置
111:第1認識要素
112:第2認識要素
121:第1計算要素
122:第2計算要素
140:模擬電池控制要素
200:指定機器
202:輸入界面
204:輸出界面
210:控制裝置
220:二次電池
230:感測器群

Claims (10)

  1. 一種模擬電池構築裝置,具備: 認識二次電池的複變阻抗的測定結果之第1認識要素, 根據藉由前述第1認識要素認識的前述二次電池的複變阻抗的測定結果,驗證藉由分別表示IIR系統及FIR系統的傳達函數來表現前述二次電池的內電阻的阻抗之二次電池模型的參數之值之第1計算要素, 認識電流指令值的時間序列之第2認識要素, 藉由把前述第2認識要素所認識的前述電流指令值的時間序列輸入至前述二次電池模型,計算作為前述二次電池模型的輸出之電壓的時間序列之第2計算要素,以及 以藉由前述第2計算要素計算的電壓的時間序列被施加於指定機器的方式,控制被連接於該指定機器的模擬電池的動作之模擬電池控制要素。
  2. 如請求項1之模擬電池構築裝置,其中 前述第1認識要素,認識前述二次電池之各種各樣不同的劣化狀態之複變阻抗的測定結果; 前述第1計算要素,根據藉由前述第1認識要素認識的前述二次電池之前述各種各樣不同的劣化狀態之複變阻抗的測定結果,特定二次電池模型的參數之值對前述二次電池的劣化狀態之依存性; 前述第2認識要素,除了前述電流指令值的時間序列以外還認識前述模擬電池的劣化狀態的時間序列; 前述第2計算要素,對於藉由前述第1計算要素被驗證的前述參數之值,且該參數之值對前述二次電池的劣化狀態的依存性被驗證的前述二次電池模型,計算藉由前述第2認識要素認識的前述電流指令值的時間序列以及前述模擬電池的劣化狀態的時間序列被輸入時之模型輸出電壓。
  3. 如請求項2之模擬電池構築裝置,其中 前述第1認識要素,分別於第1指定時間點以及該第1指定時間點之後的前述二次電池的複變阻抗的測定時間點亦即第2指定時間點,分別認識作為對前述二次電池輸入脈衝電流時由該二次電池輸出的電壓的變化態樣的測定結果之第1實測輸出電壓以及第2實測輸出電壓,且根據前述第1實測輸出電壓及前述第2實測輸出電壓之對比,認識以前述第1指定時間點之前述二次電池為基準的前述第2指定時間點之前述二次電池的劣化狀態。
  4. 如請求項3之模擬電池構築裝置,其中 前述第1認識要素,根據前述二次電池與作為電源搭載的指定機器之相互通訊,藉由被搭載於前述指定機器的脈衝電流發生器所發生的脈衝電流被輸入前述二次電池時,各個作為由該二次電池輸出的電壓的變化態樣的測定結果之第1實測輸出電壓以及第2實測輸出電壓,認識藉由被搭載於前述指定機器的感測器測定的前述二次電池的電壓響應特性。
  5. 如請求項1之模擬電池構築裝置,其中 前述第1認識要素,認識前述二次電池之各種各樣不同的溫度之複變阻抗的測定結果; 前述第1計算要素,根據藉由前述第1認識要素認識的前述二次電池之前述各種各樣不同的溫度之複變阻抗的測定結果,特定二次電池模型的參數之值之溫度依存性; 前述第2認識要素,除了前述電流指令值的時間序列以外還認識前述模擬電池或者前述指定機器的溫度的測定結果; 前述第2計算要素,對於藉由前述第1計算要素被驗證的前述參數之值,且該參數之值的溫度依存性被驗證的前述二次電池模型,計算藉由前述第2認識要素認識的前述電流指令值的時間序列以及前述模擬電池或前述指定機器的溫度的測定結果被輸入時之模型輸出電壓。
  6. 如請求項1之模擬電池構築裝置,其中 前述第1認識要素,根據前述二次電池與作為電源搭載的指定機器之相互通訊,認識藉由被搭載於前述指定機器的測定機器依照交流阻抗法測定的前述二次電池的複變阻抗。
  7. 一種模擬電池構築方法,具備: 認識二次電池的複變阻抗的測定結果之第1認識步驟, 根據於前述第1認識步驟認識的前述二次電池的複變阻抗的測定結果,驗證藉由分別表示IIR系統及FIR系統的傳達函數來表現前述二次電池的內電阻的阻抗之二次電池模型的參數之值之第1計算步驟, 認識電流指令值的時間序列之第2認識步驟, 藉由把在前述第2認識步驟所認識的前述電流指令值的時間序列輸入至前述二次電池模型,計算作為前述二次電池模型的輸出之電壓的時間序列之第2計算步驟,以及 以在前述第2計算步驟計算的電壓的時間序列被施加於指定機器的方式,控制被連接於該指定機器的模擬電池的動作之模擬電池控制步驟。
  8. 如請求項7之模擬電池構築方法,其中 於前述第1認識步驟,認識前述二次電池之各種各樣不同的劣化狀態之複變阻抗的測定結果; 於前述第1計算步驟,根據在前述第1認識步驟認識的前述二次電池之前述各種各樣不同的劣化狀態之複變阻抗的測定結果,特定二次電池模型的參數之值對前述二次電池的劣化狀態之依存性; 於前述第2認識步驟,除了前述電流指令值的時間序列以外還認識前述模擬電池的劣化狀態的時間序列; 於前述第2計算步驟,對於在前述第1計算步驟被驗證的前述參數之值,且該參數之值對前述二次電池的劣化狀態的依存性被驗證的前述二次電池模型,計算在前述第2認識步驟認識的前述電流指令值的時間序列以及前述模擬電池的劣化狀態的時間序列被輸入時之模型輸出電壓。
  9. 如請求項8之模擬電池構築方法,其中 於前述第1認識步驟,分別於第1指定時間點以及該第1指定時間點之後的前述二次電池的複變阻抗的測定時間點亦即第2指定時間點,分別認識作為對前述二次電池輸入脈衝電流時由該二次電池輸出的電壓的變化態樣的測定結果之第1實測輸出電壓以及第2實測輸出電壓,且根據前述第1實測輸出電壓及前述第2實測輸出電壓之對比,認識以前述第1指定時間點之前述二次電池為基準的前述第2指定時間點之前述二次電池的劣化狀態。
  10. 如請求項7之模擬電池構築方法,其中 於前述第1認識步驟,認識前述二次電池之各種各樣不同的溫度之複變阻抗的測定結果; 於前述第1計算步驟,根據在前述第1認識步驟認識的前述二次電池之前述各種各樣不同的溫度之複變阻抗的測定結果,特定二次電池模型的參數之值之溫度依存性; 於前述第2認識步驟,除了前述電流指令值的時間序列以外還認識前述模擬電池或者前述指定機器的溫度的測定結果; 於前述第2計算步驟,對於在前述第1計算步驟被驗證的前述參數之值,且該參數之值的溫度依存性被驗證的前述二次電池模型,計算在前述第2認識步驟認識的前述電流指令值的時間序列以及前述模擬電池或前述指定機器的溫度的測定結果被輸入時之模型輸出電壓。
TW109145674A 2019-12-27 2020-12-23 模擬電池構築方法及模擬電池構築裝置 TWI738597B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019238569A JP6842213B1 (ja) 2019-12-27 2019-12-27 模擬電池構築方法および模擬電池構築装置
JP2019-238569 2019-12-27

Publications (2)

Publication Number Publication Date
TWI738597B TWI738597B (zh) 2021-09-01
TW202135371A true TW202135371A (zh) 2021-09-16

Family

ID=74860805

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109145674A TWI738597B (zh) 2019-12-27 2020-12-23 模擬電池構築方法及模擬電池構築裝置

Country Status (8)

Country Link
US (1) US20220317193A1 (zh)
EP (1) EP3896776A4 (zh)
JP (1) JP6842213B1 (zh)
KR (1) KR102646875B1 (zh)
CN (1) CN113383338B (zh)
CA (1) CA3128075C (zh)
TW (1) TWI738597B (zh)
WO (1) WO2021131958A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6944208B2 (ja) * 2020-01-20 2021-10-06 東洋システム株式会社 充電器
JP6997473B2 (ja) * 2020-04-13 2022-02-04 東洋システム株式会社 二次電池検査方法および二次電池検査装置
JP2022178627A (ja) * 2021-05-20 2022-12-02 株式会社Gsユアサ 蓄電素子モデルの生成方法、蓄電素子モデルの生成装置及びプログラム
CN113777435B (zh) * 2021-10-08 2024-01-16 华帝股份有限公司 一种用于燃气灶的模拟用户检测方法
KR102424916B1 (ko) * 2021-10-14 2022-07-22 모나일렉트릭 주식회사 배터리 진단 방법 및 그 장치

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370344A (en) * 1976-12-03 1978-06-22 Japan Storage Battery Co Ltd Device for observing state of storage battery
JPS5924617B2 (ja) 1980-04-25 1984-06-11 古河電気工業株式会社 水中ケ−ブルの布設方法
WO2005015252A1 (ja) * 2003-06-27 2005-02-17 The Furukawa Electric Co., Ltd. 蓄電池の劣化判定方法、二次電池の内部インピーダンス測定方法、二次電池の内部インピーダンス測定装置、二次電池劣化判定装置及び電源システム
JP4360621B2 (ja) * 2004-02-09 2009-11-11 古河電気工業株式会社 二次電池の内部インピーダンス測定方法、二次電池の内部インピーダンス測定装置、二次電池劣化判定装置及び電源システム
JP5423953B2 (ja) * 2009-02-17 2014-02-19 横河電機株式会社 電池模擬装置
AT10763U3 (de) * 2009-05-12 2010-08-15 Avl List Gmbh Verfahren und prüfstand zum prüfen von hybrid-antriebssystemen oder teilkomponenten davon
JP2011122917A (ja) * 2009-12-10 2011-06-23 Yokogawa Electric Corp 電池特性評価装置
JP5549634B2 (ja) * 2011-04-04 2014-07-16 トヨタ自動車株式会社 二次電池の劣化判定方法とその装置
JP5278508B2 (ja) * 2011-07-25 2013-09-04 横河電機株式会社 電池劣化判定装置および方法
JP6035028B2 (ja) * 2012-02-03 2016-11-30 横河電機株式会社 蓄電池特性導出装置
JP6081584B2 (ja) * 2012-06-13 2017-02-15 エルジー・ケム・リミテッド 混合正極材を含む二次電池の電圧推定装置及び方法
US10222426B2 (en) * 2013-06-14 2019-03-05 Hrl Laboratories, Llc Double-pulse technique for on-line diagnostics of electrochemical systems
US9880061B2 (en) * 2013-06-14 2018-01-30 Hrl Laboratories, Llc Methods and apparatus for sensing the internal temperature of an electrochemical device
JP5946436B2 (ja) * 2013-10-21 2016-07-06 カルソニックカンセイ株式会社 バッテリのパラメータ推定装置及びパラメータ推定方法
GB2532726A (en) * 2014-11-24 2016-06-01 Thunot Andre Cell internal impedance diagnostic system
JP6626356B2 (ja) * 2015-03-18 2019-12-25 積水化学工業株式会社 二次電池劣化検出システム、二次電池劣化検出方法
KR20180006264A (ko) * 2016-07-07 2018-01-17 주식회사 포스코아이씨티 배터리 모의 장치 및 배터리 모의 방법
US10317473B2 (en) * 2016-07-27 2019-06-11 GM Global Technology Operations LLC Electrochemical device power estimator and methods of making and using the same
CN107037363A (zh) * 2016-10-28 2017-08-11 四川普力科技有限公司 一种基于状态滤波的电池交流阻抗谱测量方法
JP6958392B2 (ja) * 2018-01-30 2021-11-02 トヨタ自動車株式会社 二次電池システムおよび二次電池の劣化状態推定方法
US11085971B2 (en) * 2018-03-28 2021-08-10 Toyo System Co., Ltd. Degradation state determination device and degradation state determination method

Also Published As

Publication number Publication date
TWI738597B (zh) 2021-09-01
EP3896776A1 (en) 2021-10-20
EP3896776A4 (en) 2022-09-28
KR20210120059A (ko) 2021-10-06
US20220317193A1 (en) 2022-10-06
JP6842213B1 (ja) 2021-03-17
CN113383338A (zh) 2021-09-10
WO2021131958A1 (ja) 2021-07-01
KR102646875B1 (ko) 2024-03-12
CA3128075C (en) 2023-10-03
JP2021108246A (ja) 2021-07-29
CA3128075A1 (en) 2021-07-01
CN113383338B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
TWI738597B (zh) 模擬電池構築方法及模擬電池構築裝置
JP6944208B2 (ja) 充電器
JP7090949B1 (ja) 電池状態判定方法および電池状態判定装置
TWI759027B (zh) 電池性能評鑑方法及電池性能評鑑裝置
CN116449219A (zh) 一种改进vffrls的锂电池模型参数辨识方法
TWI826949B (zh) 電池性能評估裝置及電池性能評估方法
CN113933718B (zh) 一种退役电池容量分选方法、装置、设备及存储介质
TW202134678A (zh) 電池性能評估裝置、電子機器、充電器及電池性能評估方法
JP7297339B2 (ja) 電池状態判定方法および電池状態判定装置