TW202133291A - 半導體故障解析裝置及半導體故障解析方法 - Google Patents

半導體故障解析裝置及半導體故障解析方法 Download PDF

Info

Publication number
TW202133291A
TW202133291A TW110101465A TW110101465A TW202133291A TW 202133291 A TW202133291 A TW 202133291A TW 110101465 A TW110101465 A TW 110101465A TW 110101465 A TW110101465 A TW 110101465A TW 202133291 A TW202133291 A TW 202133291A
Authority
TW
Taiwan
Prior art keywords
light
analysis
optical system
semiconductor device
unit
Prior art date
Application number
TW110101465A
Other languages
English (en)
Inventor
活洲政敬
鈴木信介
Original Assignee
日商濱松赫德尼古斯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商濱松赫德尼古斯股份有限公司 filed Critical 日商濱松赫德尼古斯股份有限公司
Publication of TW202133291A publication Critical patent/TW202133291A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/265Contactless testing
    • G01R31/2656Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • G01R31/311Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67282Marking devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/01Subjecting similar articles in turn to test, e.g. "go/no-go" tests in mass production; Testing objects at points as they pass through a testing station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2894Aspects of quality control [QC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/303Contactless testing of integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Laser Beam Processing (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本發明之半導體故障解析裝置之控制部輸出對準命令,該對準命令係於使夾盤移動至第1光檢測部可檢測目標之位置後,以目標為基準,使第2光學系統之光軸對準第1光學系統之光軸;且輸出解析命令,該解析命令係於維持第1光學系統之光軸與第2光學系統之光軸之位置關係之狀態下,對半導體器件施加刺激信號,且由第1光檢測部或第2光檢測部之至少一者,接收根據刺激信號發出之來自半導體器件之光。

Description

半導體故障解析裝置及半導體故障解析方法
本發明係關於一種半導體故障解析裝置及半導體故障解析方法。
半導體器件之細微化正在進展。於半導體器件細微化時,期望用於製造半導體器件之曝光技術或圖案化技術之提高。又,明瞭藉由該等技術製造之半導體器件是否正常動作之技術較重要。進而,於不正常動作之情形時,明瞭產生不良之原因之技術亦重要。
專利文獻1、2揭示檢查半導體器件之裝置。該等檢查裝置對賦予有電性信號之半導體器件照射光。照射至半導體器件之光成為與半導體器件之狀態相應之反射光。且,該等檢查裝置利用反射光,獲得關於半導體器件之動作狀態之資訊。專利文獻1之檢查裝置獲得關於以特定之頻率動作之半導體器件之部位的資訊。專利文獻2之檢查裝置獲得關於半導體器件之故障部位所產生之熱源之資訊。 [先前技術文獻] [專利文獻]
專利文獻1:日本專利特開2014-92514號公報 專利文獻2:國際公開第2016/056110號
[發明所欲解決之問題]
於半導體故障解析裝置之技術領域,期望良好地檢測半導體器件之故障部位之技術。因此,本發明提供一種良好地檢測半導體器件之故障部位之半導體故障解析裝置及半導體故障解析方法。 [解決問題之技術手段]
本發明之一形態之半導體故障解析裝置具備:第1解析部,其由第1光檢測部經由第1光學系統接收半導體器件發出之光,第1光學系統藉由第1驅動部而相對於半導體器件相對移動;第2解析部,其由第2光檢測部經由第2光學系統接收半導體器件發出之光,第2光學系統藉由第2驅動部而相對於半導體器件相對移動;器件配置部,其配置於第1解析部與第2解析部之間,保持半導體器件,且具有設置有用於第1光學系統之光軸與第2光學系統之光軸之位置對準之目標的夾盤,夾盤相對於第1解析部及第2解析部相對移動;刺激信號施加部,其對半導體器件施加刺激信號;及控制部,其對第1解析部、第2解析部、器件配置部及刺激信號施加部輸出命令。目標可藉由第1解析部自目標之一側檢測,且可藉由第2解析部自目標之另一側檢測。控制部將對準命令輸出至第2解析部及器件配置部,該對準命令係於使夾盤移動至第1光檢測部可檢測目標之位置之後,以目標為基準,使第2光學系統之光軸對準第1光學系統之光軸,且將解析命令輸出至第1解析部、第2解析部、刺激信號施加部及器件配置部,該解析命令係於維持第1光學系統之光軸與第2光學系統之光軸之位置關係之狀態下,對半導體器件施加刺激信號,且由第1光檢測部或第2光檢測部之至少一者,接收根據刺激信號發出之來自半導體器件之光。
該半導體故障解析裝置於維持第1光學系統之光軸與第2光學系統之光軸之位置關係之狀態下,對半導體器件施加刺激信號,且由第1光檢測部或第2光檢測部之至少一者,接收根據刺激信號發出之來自半導體器件之光。因此,因接收來自半導體器件之光之第1光學系統與第2光學系統為光軸一致之狀態,故可良好地檢測半導體器件之故障部位。
一形態之半導體故障解析裝置之對準命令亦可使第1光檢測部取得來自一側之目標之第1圖像,使第2光檢測部取得來自另一側之目標之第2圖像,並以基於第1圖像及第2圖像使第2光學系統之光軸對準第1光學系統之光軸之方式使第2光學系統移動。
一形態之半導體故障解析裝置之解析命令亦可於以半導體器件與第1光學系統之光軸及第2光學系統之光軸重疊之方式藉由器件配置部包含之第3驅動部使夾盤移動之後,進行半導體器件之解析。
一形態之半導體故障解析裝置之目標亦可設置於夾盤中與保持半導體器件之器件保持部不同之場所。
一形態之半導體故障解析裝置之第1光檢測部亦可取得自一側觀察目標之第1圖像。第2光檢測部亦可取得自另一側觀察目標之第2圖像。
一形態之半導體故障解析裝置之目標亦可包含透過第1光檢測部及第2光檢測部可檢測之光之光透過部。
本發明之其他形態之半導體故障解析裝置具備:第1解析部,其經由具有第1光掃描部之第1光學系統對半導體器件照射由第1光源產生之光;第2解析部,其經由具有第2光掃描部之第2光學系統對半導體器件照射由第2光源產生之光;器件配置部,其配置於第1解析部與第2解析部之間,保持半導體器件,且具有設置有用於第1光學系統之光掃描區域之中心與第2光學系統之光掃描區域之中心之位置對準之目標的夾盤,夾盤相對於第1解析部及第2解析部相對移動;電性信號取得部,其接收半導體器件輸出之電性信號;及控制部,其對第1解析部、第2解析部、器件配置部及電性信號取得部輸出命令。目標可藉由第1解析部自目標之一側檢測,且可藉由第2解析部自目標之另一側檢測。控制部將對準命令輸出至第2解析部及器件配置部,該對準命令係於使夾盤移動至第1解析部可檢測目標之位置之後,以目標為基準,使第2光學系統之光掃描區域之中心對準第1光學系統之光掃描區域之中心,且將解析命令輸出至第1解析部、第2解析部、電性信號取得部及器件配置部,該解析命令係於維持第1光學系統之光掃描區域之中心與第2光學系統之光掃描區域之中心之位置關係之狀態下,自第1解析部及第2解析部之至少一者對半導體器件照射光,藉由電性信號取得部接收來自半導體器件之電性信號。
本發明之其他形態之半導體故障解析裝置之第1解析部亦可為第1解析部包含接收來自半導體器件之一側之光之第1光檢測部,第2解析部包含接收來自半導體器件之另一側之光之第2光檢測部,對準命令使第1光檢測部取得來自一側之目標之第1圖像,使第2光檢測部取得來自另一側之目標之第2圖像,基於第1圖像及第2圖像使第2光學系統之光軸對準第1光學系統之光軸,藉此使第1光學系統之掃描區域之中心與第2光學系統之掃描區域之中心對準。
本發明之其他形態之半導體故障解析裝置之解析命令亦可於以半導體器件與第1光學系統之光掃描區域及第2光學系統之光掃描區域重疊之方式藉由器件配置部包含之第3驅動部使夾盤移動之後,進行半導體器件之解析。
本發明之其他形態之半導體故障解析裝置之目標亦可設置於夾盤中與保持半導體器件之器件保持部不同之場所。
本發明之其他形態之半導體故障解析裝置之第1解析部亦可包含接收來自半導體器件之一側之光之第1光檢測部,第2解析部包含接收來自半導體器件之另一側之光之第2光檢測部,第1光檢測部取得自一側觀察目標之第1圖像,第2光檢測部取得自另一側觀察目標之第2圖像。
本發明之其他形態之半導體故障解析裝置之第1解析部亦可包含接收來自半導體器件之一側之光之第1光檢測部,第2解析部包含接收來自半導體器件之另一側之光之第2光檢測部,目標包含透過第1光檢測部及第2光檢測部可檢測之光之光透過部。
本發明之進而其他形態之半導體故障解析裝置具備:第1解析部,其經由具有第1光掃描部之第1光學系統對半導體器件照射由第1光源產生之光,第1光檢測部接收根據第1光源之光產生之來自半導體器件之第1應答光;第2解析部,其經由具有第2光掃描部之第2光學系統對半導體器件照射由第2光源產生之光,第2光檢測部接收根據第2光源之光產生之來自半導體器件之第2應答光;器件配置部,其配置於第1解析部與第2解析部之間,保持半導體器件,且具有設置有用於第1光學系統之光掃描區域之中心與第2光學系統之光掃描區域之中心之位置對準之目標的夾盤,夾盤相對於第1解析部及第2解析部相對移動;刺激信號施加部,其對半導體器件施加刺激信號;及控制部,其對第1解析部、第2解析部、器件配置部及刺激信號施加部輸出命令。目標可藉由第1解析部自目標之一側檢測,且可藉由第2解析部自目標之另一側檢測。控制部將對準命令輸出至第2解析部及器件配置部,該對準命令係於使夾盤移動至第1光檢測部可檢測目標之位置之後,以目標為基準,使第2光學系統之光掃描區域之中心對準第1光學系統之光掃描區域之中心,且將解析命令輸出至第1解析部、第2解析部、刺激信號施加部及器件配置部,該解析命令係於維持第1光學系統之光掃描區域之中心與第2光學系統之光掃描區域之中心之位置關係,且將刺激信號施加於半導體器件之狀態下,自第1解析部及第2解析部之至少一者對半導體器件照射光,且由第1光檢測部及第2光檢測部之至少一者,接收來自半導體器件之第1應答光及第2應答光之至少一者。
本發明之進而其他形態之半導體故障解析裝置之對準命令亦可使第1光檢測部取得來自一側之目標之第1圖像,使第2光檢測部取得來自另一側之目標之第2圖像,基於第1圖像及第2圖像使第2光學系統之光軸對準第1光學系統之光軸,藉此使第1光學系統之掃描區域之中心與第2光學系統之掃描區域之中心對準。
本發明之進而其他形態之半導體故障解析裝置之解析命令亦可於以半導體器件與第1光學系統之光掃描區域及第2光學系統之光掃描區域重疊之方式藉由器件配置部包含之第3驅動部使夾盤移動之後,進行半導體器件之解析。
本發明之進而其他形態之半導體故障解析裝置之目標亦可設置於夾盤中與保持半導體器件之器件保持部不同之場所。
本發明之進而其他形態之半導體故障解析裝置之第1光檢測部亦可取得自一側觀察目標之第1圖像。第2光檢測部亦可取得自另一側觀察目標之第2圖像。
本發明之進而其他形態之半導體故障解析裝置之目標亦可包含透過第1光檢測部及第2光檢測部可檢測之光之光透過部。
本發明之進而其他形態係使用半導體故障解析裝置解析半導體器件之半導體故障解析方法。半導體故障解析裝置具備:第1解析部,其由第1光檢測部經由第1光學系統接收半導體器件發出之光,第1光學系統藉由第1驅動部而相對於半導體器件相對移動;第2解析部,其由第2光檢測部經由第2光學系統接收半導體器件發出之光,第2光學系統藉由第2驅動部而相對於半導體器件相對移動;器件配置部,其配置於第1解析部與第2解析部之間,保持半導體器件,且具有設置有用於第1光學系統之光軸與第2光學系統之光軸之位置對準之目標的夾盤,夾盤相對於第1解析部及第2解析部相對移動;刺激信號施加部,其對半導體器件施加刺激信號;及控制部,其對第1解析部、第2解析部、器件配置部及刺激信號施加部輸出命令。目標可藉由第1光檢測部自目標之一側檢測,且可藉由第2光檢測部自目標之另一側檢測。半導體故障解析方法具有以下步驟:對準步驟,其於使夾盤移動至第1光檢測部可檢測目標之位置之後,以目標為基準,使第2光學系統之光軸對準第1光學系統之光軸;及解析步驟,其於維持第1光學系統之光軸與第2光學系統之光軸之位置關係之狀態下,對半導體器件施加刺激信號,且由第1光檢測部或第2光檢測部之至少一者,接收根據刺激信號發出之來自半導體器件之光。
本發明之進而其他形態之半導體故障解析方法亦可於解析步驟之後,進而具有將藉由第1解析部及第2解析部獲得之顯示半導體器件之故障部位之記號,附加於半導體器件之標記步驟。
本發明之進而其他形態係使用半導體故障解析裝置解析半導體器件之半導體故障解析方法。半導體故障解析裝置具備:第1解析部,其經由具有第1光掃描部之第1光學系統對半導體器件照射由第1光源產生之光;第2解析部,其經由具有第2光掃描部之第2光學系統對半導體器件照射由第2光源產生之光;器件配置部,其配置於第1解析部與第2解析部之間,保持半導體器件,且具有設置有用於第1光學系統之光掃描區域之中心與第2光學系統之光掃描區域之中心之位置對準之目標的夾盤,夾盤相對於第1解析部及第2解析部相對移動;電性信號取得部,其接收半導體器件輸出之電性信號;及控制部,其對第1解析部、第2解析部、器件配置部及電性信號取得部輸出命令。目標可藉由第1解析部自目標之一側檢測,且可藉由第2解析部自目標之另一側檢測。半導體故障解析方法具有以下步驟:對準步驟,其於使夾盤移動至第1解析部可檢測目標之位置之後,以目標為基準,使第2光學系統之光掃描區域之中心對準第1光學系統之光掃描區域之中心;及解析步驟,其於維持第1光學系統之光掃描區域之中心與第2光學系統之光掃描區域之中心之位置關係之狀態下,自第1解析部及第2解析部之至少一者對半導體器件照射光,藉由電性信號取得部接收來自半導體器件之電性信號。
本發明之進而其他形態之半導體故障解析方法亦可於解析步驟之後,進而具有將藉由第1解析部及第2解析部獲得之顯示半導體器件之故障部位之記號,附加於半導體器件之標記步驟。
本發明之進而其他形態係使用半導體故障解析裝置解析半導體器件之半導體故障解析方法。半導體故障解析裝置具備:第1解析部,其經由具有第1光掃描部之第1光學系統對半導體器件照射由第1光源產生之光,第1光檢測部接收根據第1光源之光產生之來自半導體器件之第1應答光;第2解析部,其經由具有第2光掃描部之第2光學系統對半導體器件照射由第2光源產生之光,第2光檢測部接收根據第2光源之光產生之來自半導體器件之第2應答光;器件配置部,其配置於第1解析部與第2解析部之間,保持半導體器件,且具有設置有用於第1光學系統之光掃描區域之中心與第2光學系統之光掃描區域之中心之位置對準之目標的夾盤,夾盤相對於第1解析部及第2解析部相對移動;刺激信號施加部,其對半導體器件施加刺激信號;及控制部,其對第1解析部、第2解析部、器件配置部及刺激信號施加部輸出命令。目標可藉由第1光檢測部自目標之一側檢測,且可藉由第2光檢測部自目標之另一側檢測。半導體故障解析方法具有以下步驟:對準步驟,其於使夾盤移動至第1光檢測部可檢測目標之位置之後,以目標為基準,使第2光學系統之光掃描區域之中心對準第1光學系統之光掃描區域之中心;及解析步驟,其於維持第1光學系統之光掃描區域之中心與第2光學系統之光掃描區域之中心之位置關係,且將刺激信號施加於半導體器件之狀態下,自第1解析部及第2解析部之至少一者對半導體器件照射光,且由第1光檢測部及第2光檢測部之至少一者,接收來自半導體器件之第1應答光及第2應答光之至少一者。
本發明之進而其他形態之半導體故障解析方法亦可於解析步驟之後,進而具有將藉由第1解析部及第2解析部獲得之顯示半導體器件之故障部位之記號,附加於半導體器件之標記步驟。 [發明之效果]
根據本發明,提供一種良好地檢測半導體器件之故障部位之半導體故障解析裝置及半導體故障解析方法。
然而,作為解析半導體器件之技術,有於特定出故障部位之情形時,藉由雷射光之照射對故障部位之周圍之數處附加記號之技術。於故障解析之後步驟,可基於記號而容易掌握故障部位。因此,此種技術極為有效。
日本專利特開2016-148550號公報揭示半導體器件之解析裝置。專利文獻1揭示之解析裝置具有解析半導體器件之故障部位之構成、與對故障部位之周圍附加記號之構成。解析裝置首先進行檢測故障部位之構成與附加記號之構成之位置對準。接著,解析裝置一面使檢測故障部位之構成相對於半導體器件移動,一面解析故障部位。於檢測故障部位之構成特定出故障部位之位置時,解析裝置使附加記號之構成移動至故障部位之位置。
於故障解析之後步驟,基於記號特定故障部位之位置。因此,期望記號準確顯示故障部位之位置。另一方面,使裝置之構成要件移動之XY平台之類移動機構即使為高精度者,亦於移動指令值顯示之位置與實際之位置產生些許誤差。即使為些許誤差,亦有記號顯示之故障部位之位置相對於實際之故障部位之位置偏移之可能性。即,實際之故障部位之位置與記號顯示之故障部位之位置之偏移依存於移動機構之精度。
本發明之目的在於提供一種可減少故障部位之位置與記號顯示之故障部位之位置之偏移的半導體故障解析裝置及半導體故障解析方法。
本發明之一形態之半導體故障解析裝置具備:解析部,其由第1光檢測部自半導體器件經由第1光學系統接收第1光,第1光學系統藉由第1驅動部而相對於半導體器件相對移動;標記部,其由第2光檢測部自半導體器件經由第2光學系統接收第2光,且經由第2光學系統對半導體器件照射雷射光,第2光學系統藉由第2驅動部而相對於半導體器件相對移動;器件配置部,其配置於解析部與標記部之間,保持半導體器件,且具有設置有用於第1光學系統之光軸與第2光學系統之光軸之位置對準之目標的夾盤,夾盤藉由第3驅動部而相對於解析部及標記部相對移動;及控制部,其對解析部、標記部及器件配置部輸出命令。目標可藉由第1光檢測部自目標之一側檢測,且可藉由第2光檢測部自目標之另一側檢測。控制部將對準命令輸出至標記部及器件配置部,該對準命令係於使夾盤移動至第1光檢測部可檢測目標之位置之後,以目標為基準,使第2光學系統之光軸對準第1光學系統之光軸,且將標記命令輸出至標記部及器件配置部,該標記命令係於維持第1光學系統之光軸與第2光學系統之光軸之位置關係之狀態下,對設定於半導體器件之標記位置照射雷射光。
本發明之其他形態係使用半導體故障解析裝置解析半導體器件之半導體故障解析方法。半導體故障解析裝置具備:解析部,其由第1光檢測部自半導體器件經由第1光學系統接收第1光,第1光學系統藉由第1驅動部而相對於半導體器件相對移動;標記部,其由第2光檢測部自半導體器件經由第2光學系統接收第2光,且經由第2光學系統對半導體器件照射雷射光,第2光學系統藉由第2驅動部而相對於半導體器件相對移動;器件配置部,其配置於解析部與標記部之間,保持半導體器件,且具有設置有用於第1光學系統之光軸與第2光學系統之光軸之位置對準之目標的夾盤,夾盤藉由第3驅動部而相對於解析部及標記部相對移動;及控制部,其對解析部、標記部及器件配置部輸出命令。目標可藉由第1光檢測部自目標之一側檢測,且可藉由第2光檢測部自目標之另一側檢測。半導體故障解析方法具有以下步驟:對準步驟,其於使夾盤移動至第1光檢測部可檢測目標之位置之後,以目標為基準,使第2光學系統之光軸對準第1光學系統之光軸;及標記步驟,其於維持第1光學系統之光軸與第2光學系統之光軸之位置關係之狀態下,對設定於半導體器件之標記位置照射雷射光。
於半導體故障解析裝置及半導體故障解析方法中,首先,基於設置於夾盤之目標,使標記部具有之第2光學系統之光軸對準解析部具有之第1光學系統之光軸。之後,於維持第1光學系統之光軸與第2光學系統之光軸之位置關係之狀態下,對設定於半導體器件之標記位置照射雷射光。即,於使第1光學系統之光軸與第2光學系統之光軸對準之後,第1光學系統及第2光學系統之一者不相對於另一者相對移動。因此,不產生有可能因移動產生之移動指令值顯示之位置與實際之位置之偏移。其結果,可相對於解析部顯示之故障部位之位置,減少記號顯示之故障部位之位置之偏移。
於一形態之半導體故障解析裝置中,控制部亦可於輸出對準命令之前,將藉由解析部解析半導體器件之故障部位之解析命令輸出至解析部。同樣地,其他形態之半導體故障解析方法亦可於對準步驟之前,進而具有藉由解析部解析半導體器件之故障部位之解析步驟。根據該構成,可附加精度較佳地顯示故障部位之位置之記號。
於一形態之半導體故障解析裝置中,對準命令亦可於藉由第3驅動部使夾盤移動至標記位置之後,對半導體器件照射雷射光。同樣地,於其他形態之半導體故障解析方法中,標記步驟亦可於藉由第3驅動部使夾盤移動至標記位置之後,對半導體器件照射雷射光。根據該構成,可於使第2光學系統之光軸對準第1光學系統之光軸之後,除第1光學系統及第2光學系統之相對位置以外亦維持絕對位置,而對半導體器件之期望位置照射雷射光。其結果,可進而減少藉由標記部附註之記號顯示之故障部位之位置之偏移。
於一形態之半導體故障解析裝置中,對準命令亦可使第1光檢測部取得來自一側之目標之第1圖像,使第2光檢測部取得來自另一側之目標之第2圖像,並以基於第1圖像及第2圖像使第2光學系統之光軸對準第1光學系統之光軸之方式使第2光學系統移動。同樣地,於其他形態之半導體故障解析方法中,對準步驟亦可使第1光檢測部取得來自一側之目標之第1圖像,使第2光檢測部取得來自另一側之目標之第2圖像,並以基於第1圖像及第2圖像使第2光學系統之光軸對準第1光學系統之光軸之方式使第2驅動部移動。根據該構成,可確實地進行使第2光學系統之光軸對準第1光學系統之光軸之動作。
於一形態之半導體故障解析裝置中,目標亦可設置於夾盤中與保持半導體器件之器件保持部不同之場所。根據該構成,不論半導體器件之種類,都可使第2光學系統之光軸對準第1光學系統之光軸。
於一形態之半導體故障解析裝置中,第1光檢測部亦可取得自一側觀察目標之第1圖像。第2光檢測部亦可取得自另一側觀察目標之第2圖像。即使藉由該構成,亦可確實地進行使第2光學系統之光軸對準第1光學系統之光軸之動作。
於一形態之半導體故障解析裝置中,目標亦可包含透過第1光檢測部及第2光檢測部可檢測之光之光透過部。即使藉由該構成,亦可確實地進行使第2光學系統之光軸對準第1光學系統之光軸之動作。
根據本發明,提供一種可減少故障部位之位置與記號顯示之位置之偏移之半導體故障解析裝置及半導體故障解析方法。
以下,一面參照隨附圖式一面詳細說明用於實施本發明之形態。於圖式之說明中對相同之要件附加相同之符號,省略重複之說明。
如圖1所示,本實施形態之半導體故障解析裝置解析被檢查器件(DUT:Device Under Test(待測器件))即半導體器件D。於以下之說明中,將本實施形態之半導體故障解析裝置簡稱為「解析裝置1」。又,半導體器件D之解析列舉例如半導體器件D包含之故障部位之位置之特定。另,半導體器件D之解析不限定於故障部位之位置之特定。半導體器件D之解析包含關於半導體器件D之其他解析及檢查等。以下,說明本實施形態之解析裝置1作為特定半導體器件D包含之故障部位之位置者。
再者,解析裝置1特定故障部位之位置,且對故障部位之周圍附加顯示故障部位之印記(記號)。將附加該印記之動作稱為「標記」。記號係用於於故障解析之後步驟中,容易掌握解析裝置1特定出之故障部位者。
作為半導體器件D,列舉電晶體等具有PN接合之積體電路(IC:Integrated Circuit)、或大規模積體電路(LSI:Large Scale Integration)即邏輯器件、記憶體器件、類比器件、進而組合其等之混合信號器件、或大電流用/高壓用MOS(Metal Oxide Semiconductor:金屬氧化半導體)電晶體、雙極電晶體、IGBT(Insulated Gate Bipolar Transistor:絕緣閘雙極電晶體)等電力用半導體器件(功率器件)等。半導體器件D具有包含基板及金屬層之積層構造。作為半導體器件D之基板,使用例如矽基板。
解析裝置1包含解析部10、標記部20、器件配置部30、及計算機40。解析部10特定半導體器件D之故障部位。標記部20附加顯示故障部位之位置之記號。於器件配置部30,配置半導體器件D。解析裝置1亦可為例如具有雷射標記功能之倒立型之發射顯微鏡。
<解析部> 解析部10具有測試單元11、光源12(第1光源)、觀察用光學系統13(第1光學系統)、XYZ平台14(第1驅動部)、及二維相機15(第1光檢測部)。
測試單元11經由電纜電性連接於半導體器件D。測試單元11係對半導體器件D施加刺激信號之刺激信號施加部。測試單元11藉由未圖示之電源動作。測試單元11對半導體器件D重複施加特定之測試圖案等刺激信號。測試單元11輸出之刺激信號可為調變電流信號,亦可為CW(continuous wave:連續波)電流信號。
測試單元11經由電纜電性連接於計算機40。測試單元11將自計算機40指定之刺激信號施加於半導體器件D。測試單元11未必電性連接於計算機40。測試單元11於未電性連接於計算機40之情形時,以單體決定測試圖案等刺激信號。另,亦可使用電源或脈衝發生器等作為測試單元11。
光源12對半導體器件D輸出光。光源12可為例如LED(Light Emitting Diode:發光二極體)或SLD(Super Luminescent Diode:超冷光二極體)。再者,光源12亦可為燈光源等非相干光源或雷射光源等相干光源。自光源12輸出之光透過半導體器件D之基板。例如,於半導體器件D之基板為矽之情形時,自光源12輸出之光之波長較佳為1064 nm以上。將自光源12輸出之光提供至觀察用光學系統13。
觀察用光學系統13將自光源12輸出之光輸出至半導體器件D。例如,光源12於標記處理中,對半導體器件D之背面D1側照射光。觀察用光學系統13具有對物透鏡13a及光束分離器13b。對物透鏡13a將光聚光於觀察區域。
觀察用光學系統13將於半導體器件D中反射之光引導至二維相機15。具體而言,自觀察用光學系統13照射之光透過半導體器件D之基板SiE(參照圖2(c))。接著,透過基板SiE之光由金屬層ME(參照圖2(c))反射。接著,於金屬層ME反射之光再次透過基板SiE。然後,透過基板SiE之光經由觀察用光學系統13之對物透鏡13a及光束分離器13b輸入至二維相機15。又,觀察用光學系統13將藉由刺激信號之施加而由半導體器件D產生之發光引導至二維相機15。具體而言,有半導體器件D之金屬層ME起因於刺激信號之施加而發出發射光等光之情形。金屬層ME發出之光於透過基板SiE之後,經由觀察用光學系統13之對物透鏡13a及光束分離器13b輸入至二維相機15。
觀察用光學系統13載置於XYZ平台14。Z軸方向係對物透鏡13a之光軸方向。XYZ平台14可沿Z軸方向移動。進而,XYZ平台14亦可沿與Z軸方向正交之X軸方向及Y軸方向移動。XYZ平台14被稍後敘述之計算機40之控制部41b控制。藉由XYZ平台14之位置決定觀察區域。觀察用光學系統13將與照射之光相應之來自半導體器件D之反射光作為來自半導體器件D之光引導至二維相機15。
二維相機15接收來自半導體器件D之光(第1光)。二維相機15輸出基於接收到之光之圖像資料。本說明書所言之來自半導體器件D之光可為根據照明光於半導體器件D中反射之反射光。又,本說明書所言之來自半導體器件D之光亦可為根據刺激信號產生之發射光。例如,二維相機15於標記處理中,自半導體器件D之基板SiE側拍攝半導體器件D。換言之,二維相機15於標記處理中,自半導體器件D之背面D1側拍攝半導體器件D。
二維相機15接收半導體器件D中反射之光。且,二維相機15基於接收到之光,將用於製作圖案圖像之圖像資料輸出至計算機40。可根據圖案圖像,掌握標記位置。又,二維相機15接收根據刺激信號產生之發射光。二維相機15基於接收到之光,將用於產生發光圖像之圖像資料輸出至計算機40。根據發光圖像,可特定半導體器件D之發光部位。藉由特定發光部位,而可特定半導體器件D之故障部位。
作為二維相機15,可使用可檢測透過半導體器件D之基板SiE之波長之光之攝像裝置。作為二維相機15,可採用搭載有CCD(Charge Coupled Device:電荷耦合器件)影像感測器或CMOS(Complementary Metal Oxide Semiconductor:互補型金屬氧化半導體)影像感測器之相機。作為二維相機15,可採用InGaAs(銦鎵砷)相機或MCT(Mercury Cadmium Telluride:汞鎘碲)相機等。另,於發光計測時,不需要來自光源12之照明光。即,於發光計測時,無需使光源12動作。
<標記部> 接著,對標記部20進行說明。標記部20附加顯示故障部位之記號。標記部20具有雷射光源21、雷射標記用光學系統22(第2光學系統)、XYZ平台23(第2驅動部)、探測相機24(第2光檢測部)、及照明光源25。
標記部20對解析部10中特定出之故障部位之周圍,附加記號。如圖2(a)及圖2(b)所示,於故障部位fp之周圍設定標記部位mp。於圖2(a)及圖2(b),圖示4個標記部位mp。於雷射標記完成之狀態下,如圖2(c)所示,形成貫通半導體器件D之金屬層ME之貫通孔。藉由貫通孔到達金屬層ME與基板SiE之邊界面ss,雷射標記進行至基板SiE之與金屬層ME相接之面露出之程度。即,本說明書所言之「記號」可意為形成於金屬層ME之貫通孔。又,本說明書所言之「記號」亦可意為自貫通孔露出之基板SiE。
標記部20如圖3所示,將藉由雷射光源21輸出之雷射光經由雷射標記用光學系統22照射至半導體器件D之標記部位mp。標記部20自半導體器件D之金屬層ME側對標記部位mp照射雷射光。以下,對標記部20之細節進行說明。
如圖1所示,雷射光源21輸出照射至半導體器件D之雷射光。雷射光於金屬層ME形成貫通孔。若自計算機40輸入開始輸出命令,則雷射光源21開始雷射光之輸出。雷射光源21可採用例如固體雷射光源及半導體雷射光源等。自雷射光源21輸出之光之波長為250 nm以上且2000 nm以下。
雷射標記用光學系統22對半導體器件D之標記部位mp照射雷射光。具體而言,雷射標記用光學系統22將雷射光自半導體器件D之金屬層ME側照射至半導體器件D。換言之,雷射標記用光學系統22將雷射光自半導體器件D之表面D2側照射至半導體器件D。雷射標記用光學系統22具有對物透鏡22a及切換部22b。切換部22b切換雷射光源21及探測相機24之光路。對物透鏡22a將雷射光聚光於標記部位mp。對物透鏡22a將來自半導體器件D之表面之光導向探測相機24。
雷射標記用光學系統22載置於XYZ平台23。XYZ平台23之Z軸方向係對物透鏡22a之光軸方向。XYZ平台23自計算機40接收控制命令。XYZ平台23根據控制命令,使雷射標記用光學系統22沿Z軸方向移動。又,XYZ平台23根據控制命令,使雷射標記用光學系統22沿與Z軸方向正交之X軸方向及Y軸方向移動。另,雷射標記用光學系統22亦可具有代替XYZ平台23之光掃描部,將雷射光聚光於半導體器件D之表面D2上之標記部位mp。作為光掃描部,可使用例如電流計鏡或MEMS(Micro Electro Mechanical System:微機電系統)鏡等光掃描元件。又,雷射標記用光學系統22亦可具備快門。根據該構成,藉由快門,利用來自控制部41b之控制來通過或遮擋來自雷射光源21之雷射光。其結果,可控制雷射光之輸出。
探測相機24自半導體器件D之表面D2側,拍攝半導體器件D之金屬層ME。探測相機24將拍攝到之攝像圖像輸出至計算機40。使用者藉由確認攝像圖像,而可掌握自半導體器件D之表面D2側觀察到之雷射標記之狀況。照明光源25於由探測相機24拍攝時,對半導體器件D照射照明光。
<器件配置部> 器件配置部30保持半導體器件D。進而,器件配置部30變更半導體器件D相對於觀察用光學系統13之位置。同樣地,器件配置部30變更半導體器件D相對於雷射標記用光學系統22之位置。器件配置部30具有樣品平台31、晶圓夾盤32、及XY驅動部33(第3驅動部)。
因此,解析裝置1之觀察用光學系統13、雷射標記用光學系統22、及器件配置部30之各者具有驅動機構。即,解析裝置1具有3個自由度。根據具有3個自由度之構成,例如於固定觀察用光學系統13之狀態下,可使雷射標記用光學系統22及器件配置部30移動。進而,於固定觀察用光學系統13及雷射標記用光學系統22之狀態下,亦可使器件配置部30移動。「固定」意指不變更位置。例如,「固定觀察用光學系統13及雷射標記用光學系統22之狀態」意指維持雷射標記用光學系統22相對於觀察用光學系統13之相對位置之狀態。
於樣品平台31,可滑動地載置晶圓夾盤32。晶圓夾盤32具有保持半導體器件D之器件保持部32a。器件保持部32a包含設置於晶圓夾盤32之貫通孔、與物理堵塞貫通孔之玻璃板。
晶圓夾盤32具有對準目標50。對準目標50(參照圖4)為玻璃板。於玻璃板之一面,設置有以基準點bp為中心放射狀延伸之圖案。該圖案例如為金屬膜。作為一例,圖案藉由鋁之薄膜製作。因此,圖案構成不透明部50b。玻璃板將透過半導體器件D之基板SiE之波長之光透過。其結果,玻璃板亦透過自照明光源25及光源12輸出之光。因此,未設置有圖案之區域構成光透過部50a。晶圓夾盤32具有供配置對準目標50之目標孔32b。對準目標50以封閉目標孔32b之方式配置。根據該配置,探測相機24及二維相機15可取得設置於玻璃板之一面之圖案之影像。
對準目標50設置於晶圓夾盤32。即,於晶圓夾盤32中,設置器件保持部32a之位置與設置對準目標50之位置不同。於藉由XY驅動部33變更晶圓夾盤32之位置之情形時,同時變更半導體器件D之位置及對準目標50之位置。即,對準目標50相對於安裝於晶圓夾盤32之半導體器件D之位置不變。
XY驅動部33根據來自計算機40之控制命令,使晶圓夾盤32沿X軸方向或Y軸方向移動。其結果,可不觀察用光學系統13移動,而變更觀察區域。同樣地,可不使雷射標記用光學系統22移動,而變更雷射光之照射位置。
另,器件配置部30之具體構成不限定於上述之構成。器件配置部30可採用奏效保持半導體器件D之功能、與使半導體器件D向X軸方向及Y軸方向之至少一者移動之功能之構成。例如,亦可具有替代樣品平台31及XY驅動部33而使晶圓夾盤32向X軸方向及Y軸方向之至少一者移動之XY平台。
<計算機> 計算機40係個人電腦等電腦。計算機40物理上構成為具備RAM(Random Access Memory:隨機存取記憶體)、ROM(Read Only Memory:唯讀記憶體)等記憶體、CPU(Central Processing Unit:中央處理單元)等處理器(運算電路)、通信介面、硬碟等儲存部。作為計算機40,列舉例如個人電腦、雲端伺服器、智慧型器件(智慧型手機、平板終端等)等。計算機40藉由以電腦系統之CPU執行儲存於記憶體之程式而發揮功能。計算機40具有條件設定部41a、控制部41b、及圖像處理部41c作為功能性構成要件。
<條件設定部> 條件設定部41a基於顯示自輸入部41e輸入之故障部位fp之資訊,設定標記部位mp。於特定出之故障部位fp之周圍,設定數處標記部位mp。數處為例如4處。條件設定部41a於例如輸入有顯示故障部位fp之資訊之情形時,將故障部位fp設為中心,於故障部位fp之周圍之4處,自動設定標記部位mp。具體而言,條件設定部41a於例如俯視下,以將故障部位fp設為中心之十字狀設定標記部位mp(參照圖2(a)及圖2(b))。另,標記部位mp亦可藉由輸入部41e受理來自觀察過顯示部41d所顯示之解析圖像之使用者的顯示標記部位mp之資訊之輸入而設定。於此情形時,條件設定部41a不自動設定標記部位mp。條件設定部41a基於自輸入部41e輸入之顯示標記部位mp之資訊,設定標記部位mp。條件設定部41a產生參考圖像。參考圖像係對解析圖像附加有顯示故障部位fp之記號、與顯示標記部位mp之記號者。條件設定部41a將參考圖像保存於計算機40之記憶體。
<控制部> 控制部41b以故障部位之觀察區域落於二維相機15之視野之方式,控制解析部10之XYZ平台14。控制部41b以雷射標記用光學系統22之光軸與觀察用光學系統13之光軸一致之方式,控制標記部20之XYZ平台23。控制部41b以雷射標記用光學系統22之光軸與標記部位mp重疊之方式,控制器件配置部30之XY驅動部33。
控制部41b亦控制雷射光源21。控制部41b於藉由圖像處理部41c判斷為顯現記號影像之情形時,對雷射光源21輸出停止輸出信號。雷射光源21於輸入有停止輸出信號之情形時,停止雷射光之輸出。因此,雷射光源21於藉由控制部41b輸入開始輸出信號至輸入停止輸出信號之期間持續輸出雷射光。藉由以上,控制部41b以進行雷射標記直至藉由雷射標記形成之記號影像顯現於圖案圖像為止之方式,控制雷射光源21。又,因設定有雷射光之貫通閾值,故控制部41b以進行雷射標記直至雷射光貫通金屬層ME為止之方式,控制雷射光源21。
<圖像處理部> 計算機40經由電纜電性連接於二維相機15。計算機40利用自二維相機15輸入之圖像資料,製作圖案圖像及發光圖像。此處,僅以上述發光圖像,難以特定半導體器件D之圖案之發光位置。因此,計算機40產生使基於來自半導體器件D之反射光之圖案圖像與基於來自半導體器件D之發光之發光圖像重疊之重疊圖像作為解析圖像。
圖像處理部41c製作標記圖像。標記圖像重疊有包含記號影像之圖案圖像與發光圖像。將製作之標記圖像保存於計算機40之記憶體。又,圖像處理部41c將標記圖像顯示於顯示部41d。藉由標記圖像,使用者可於後步驟中,準確地掌握與故障部位之位置相對之標記位置。又,圖像處理部41c取得標記資訊。標記資訊係掌握與故障部位之位置相對之標記位置所需之資訊。作為標記資訊,列舉例如標記位置至故障部位之位置之距離、及以故障部位之位置為基準之標記位置之方位等。取得之標記資訊可顯示為列表。又,標記資訊可附加於標記圖像顯示。又,標記資訊亦可以紙質介質輸出。
計算機40將解析圖像輸出至顯示部41d。顯示部41d係用於對使用者顯示解析圖像等之顯示器等顯示裝置。使用者可自顯示於顯示部41d之解析圖像確認故障部位之位置。又,使用者使用輸入部41e輸入顯示故障部位之資訊。輸入部41e係受理來自使用者之輸入之鍵盤及滑鼠等輸入裝置。輸入部41e將顯示故障部位之資訊輸出至計算機40。另,計算機40、顯示部41d、及輸入部41e亦可為平板終端。
另,圖像處理部41c亦可使停止雷射光之照射之控制命令輸出至控制部41b。停止雷射光之照射之控制命令利用圖案圖像所顯現之記號影像產生。具體而言,圖像處理部41c與雷射光源21輸出之雷射光之雷射標記並行,依序產生圖案圖像。藉由雷射標記,於標記部位mp之金屬層ME形成孔。於金屬層ME之孔較淺時,標記位置之反射光之強度變化較小且光學反射影像之變化亦較小。換言之,於藉由雷射標記形成之孔僅形成於金屬層ME而未到達基板SiE時,標記位置之反射光之強度變化較小。因此,光學反射影像之變化亦較小。其結果,雷射標記之影響未顯現於圖案圖像。另一方面,若金屬層ME之孔變深,則背面D1側之光之折射率、透過率、及反射率之至少任一者之變化變大。具體而言,若孔變深至到達金屬層ME與基板SiE之邊界面ss之程度,則背面D1側之光之折射率、透過率、及反射率之至少任一者之變化變大。起因於該等變化,標記位置之反射光之強度變化變大。其結果,於圖案圖像顯現顯示標記部位之記號影像。
圖像處理部41c例如比較上述參考圖像、與圖案圖像。根據比較之結果,於圖像之差異大於預定之規定值之情形時,圖像處理部41c判斷為顯現記號影像。藉由預先設定規定值,而可決定判斷為顯現記號影像之時序。
另,圖像處理部41c亦可根據來自使用者之輸入內容,判斷是否顯現記號影像。又,圖像處理部41c於判斷為顯現記號影像之情形時,比較參考圖像與圖案圖像。且,於圖案圖像之記號形成部位與參考圖像之標記部位mp偏移之情形時,圖像處理部41c可判斷為產生記號之位置偏移。於此情形時,亦可以於正確之標記部位mp形成記號之方式再次進行雷射標記。
接著,使用圖5~圖8對解析裝置1之標記處理進行說明。圖5係顯示解析裝置1之標記處理之主要步驟之流程圖。
<解析步驟S10> 首先,特定半導體器件D之故障部位(S10)。控制部41b將用於步驟S10之解析命令輸出至解析部10。具體而言,如圖6(a)所示,以於觀察用光學系統13之視野捕獲欲觀察之區域之方式,XYZ平台14控制X軸方向及Y軸方向使觀察用光學系統13移動。接著,以對物透鏡13a之焦點位置與欲觀察之區域對準之方式,控制XYZ平台14之Z軸方向,使觀察用光學系統13移動。接著,光源12對半導體器件D照射光。然後,二維相機15接收來自半導體器件D之反射光。二維相機15基於反射光產生光學反射影像。然後,二維相機15將光學反射影像輸出至計算機40。於輸出光學反射影像之後,光源12停止向半導體器件D照射光。接著,測試單元11對半導體器件D施加刺激信號。然後,二維相機15接收起因於刺激信號之光。二維相機15基於起因於刺激信號之光產生發光影像。然後,二維相機15將發光影像輸出至計算機40。圖像處理部41c產生重疊有光學反射圖像與發光圖像之解析圖像。接著,利用解析圖像,特定故障部位fp。
如上所述,於進行解析步驟之期間,觀察用光學系統13相對於半導體器件D之位置關係於觀察用光學系統13之視野包含有觀察區域。且,於進行解析步驟之期間,維持觀察用光學系統13相對於半導體器件D之位置關係。另一方面,於進行解析步驟之期間,雷射標記用光學系統22相對於半導體器件D之位置並無特別限制。例如,雷射標記用光學系統22之光軸可相對於觀察用光學系統13之光軸一致,亦可不一致。通常,只要不進行光軸之位置對準,則雷射標記用光學系統22之光軸相對於觀察用光學系統13之光軸不一致。於本實施形態之解析方法中,雖亦可於上述解析步驟之前,實施光軸之位置對準,但並非必須。於本實施形態之解析方法中,於解析步驟完成之後實施光軸之位置對準。
<對準步驟S20> 接著,進行觀察用光學系統13與雷射標記用光學系統22之位置對準(S20)。控制部41b將用於步驟S20之對準命令輸出至標記部20及器件配置部30。於以下之說明,例示於即將實施對準步驟之前,觀察用光學系統13之光軸與半導體器件D之故障部位交叉之狀態。首先,如圖6(b)所示,以於觀察用光學系統13之視野捕獲對準目標50之方式,XY驅動部33控制X軸方向及Y軸方向使晶圓夾盤32移動(S21)。亦將該移動稱為「半導體器件D之退避」。此時,控制部41b記憶半導體器件D(晶圓夾盤32)之移動量。
接著,如圖7(a)所示,以於雷射標記用光學系統22之視野捕獲對準目標50之方式,XYZ平台23控制X軸方向及Y軸方向使雷射標記用光學系統22移動(S22)。接著,照明光源25向對準目標50輸出照明光。照明光透過對準目標50之光透過部50a,入射至觀察用光學系統13。入射之照明光被二維相機15捕獲。二維相機15將透過影像輸出至計算機40。又,照明光由對準目標50之不透明部50b反射。反射之光再次入射至雷射標記用光學系統22。然後,入射之反射光被探測相機24捕獲。探測相機24將反射影像輸出至計算機40。圖像處理部41c使用透過影像及反射影像,算出雷射標記用光學系統22之光軸相對於觀察用光學系統13之光軸之偏移。重複進行雷射標記用光學系統22之移動、與偏移量之確認,直至該偏移落於容許範圍為止。於判定為偏移落於容許範圍時,光軸之位置對準完成。
於光軸之位置對準完成之後,如圖7(b)所示,以於觀察用光學系統13之視野捕獲半導體器件D之故障部位之方式,XY驅動部33控制X軸方向及Y軸方向使晶圓夾盤32移動(S23)。此時,控制部41b可基於半導體器件D退避時記憶之移動量,控制XY驅動部33。又,亦可使用自二維相機15及探測相機24輸出之圖像資料,控制雷射標記用光學系統22與半導體器件D之相對位置。於此情形時,移動之對象亦僅為半導體器件D。且,亦將該步驟之半導體器件D之移動稱為「半導體器件D之復位」。即,因光軸之位置對準完成之後,半導體器件D立即退避,故於觀察用光學系統13及雷射標記用光學系統22之視野不存在半導體器件D。因此,於光軸之位置對準完成之後,使半導體器件D落於觀察用光學系統13及雷射標記用光學系統22之視野。更詳細而言,使半導體器件D之故障部位與觀察用光學系統13之光軸及雷射標記用光學系統22之光軸一致。即,於位置對準完成之後移動者係半導體器件D。換言之,於位置對準完成之後,不使觀察用光學系統13與雷射標記用光學系統22移動。其結果,觀察用光學系統13與雷射標記用光學系統22之相對位置關係維持位置對準之結果。
<標記步驟S30> 如圖8所示,執行對標記部位mp之雷射標記(S30)。控制部41b將用於步驟S30之標記命令輸出至標記部20及器件配置部30。具體而言,雷射光源21輸出雷射光。對所有設定之標記部位mp執行雷射標記。另,於雷射光對各個標記部位mp之輸出動作中,圖像處理部41c亦可判定於圖案圖像上是否顯現記號影像。於判定為圖案圖像上未顯現記號影像之情形時,再次執行雷射光之照射。與該雷射光之照射動作並行,圖像處理部41c產生圖案圖像。
以下,對本實施形態之解析裝置1之作用效果進行說明。
於解析裝置1及半導體故障解析方法中,首先,基於設置於晶圓夾盤32之對準目標50,使標記部20具有之雷射標記用光學系統22之光軸對準解析部10具有之觀察用光學系統13之光軸。之後,於維持觀察用光學系統13之光軸與雷射標記用光學系統22之光軸之位置關係之狀態下,對設定於半導體器件D之標記位置照射雷射光。即,於使觀察用光學系統13之光軸與雷射標記用光學系統22之光軸對準之後,觀察用光學系統13及雷射標記用光學系統22之一者不相對於另一者相對移動。因此,不產生可因移動產生之移動指令值顯示之位置與實際之位置之偏移。其結果,可減少藉由標記部20附加之記號顯示之位置相對於解析部10顯示之故障部位之位置之偏移。
控制部41b於輸出對準命令之前,將藉由解析部10解析半導體器件D之故障部位之解析命令輸出至解析部10。根據該構成,可附加精度較佳地顯示故障部位之位置之記號。
標記命令亦可於藉由XY驅動部33使晶圓夾盤32移動至標記位置之後,對半導體器件D照射雷射光。根據該構成,可於使雷射標記用光學系統22之光軸對準觀察用光學系統13之光軸之後,除觀察用光學系統13及雷射標記用光學系統22之相對位置以外亦維持絕對位置,而對半導體器件D之期望位置照射雷射光。其結果,可進而減少藉由標記部20附加之記號顯示之位置之偏移。
對準命令使二維相機15取得來自一側之對準目標50之第1圖像,使探測相機24取得來自另一側之對準目標50之第2圖像,並以基於第1圖像及第2圖像使雷射標記用光學系統22之光軸對準觀察用光學系統13之光軸之方式使第2驅動部移動。根據該構成,可確實地進行使雷射標記用光學系統22之光軸對準觀察用光學系統13之光軸之動作。
對準目標50設置於晶圓夾盤32中與保持半導體器件D之器件保持部32a不同之場所。根據該構成,不論半導體器件D之種類,都可使雷射標記用光學系統22之光軸對準觀察用光學系統13之光軸。
二維相機15取得自一側觀察對準目標50之第1圖像。探測相機24取得自另一側觀察目標之第2圖像。即使藉由該構成,亦可確實地進行使雷射標記用光學系統22之光軸對準觀察用光學系統13之光軸之動作。
對準目標50包含透過二維相機15及探測相機24可檢測之光之光透過部50a。即使藉由該構成,亦可確實地進行使雷射標記用光學系統22之光軸對準觀察用光學系統13之光軸之動作。
總之,第1半導體故障解析裝置具備:解析部,其由第1光檢測部自半導體器件經由第1光學系統接收第1光,上述第1光學系統藉由第1驅動部而相對於上述半導體器件相對移動;標記部,其由第2光檢測部自上述半導體器件經由第2光學系統接收第2光,且經由上述第2光學系統對上述半導體器件照射雷射光,上述第2光學系統藉由第2驅動部而相對於上述半導體器件相對移動;器件配置部,其配置於上述解析部與上述標記部之間,保持上述半導體器件,且具有設置有用於上述第1光學系統之光軸與上述第2光學系統之光軸之位置對準之目標的夾盤,上述夾盤藉由第3驅動部而相對於上述解析部及上述標記部相對移動;及控制部,其對上述解析部、上述標記部及上述器件配置部輸出命令;且上述目標可藉由上述第1光檢測部自上述目標之一側檢測,並可藉由上述第2光檢測部自上述目標之另一側檢測;上述控制部將對準命令輸出至上述標記部及上述器件配置部,該對準命令係於使上述夾盤移動至上述第1光檢測部可檢測上述目標之位置之後,以上述目標為基準,使上述第2光學系統之光軸對準上述第1光學系統之光軸,且將標記命令輸出至上述標記部及上述器件配置部,該標記命令係於維持上述第1光學系統之光軸與上述第2光學系統之光軸之位置關係之狀態下,對設定於上述半導體器件之標記位置照射上述雷射光。
第2半導體故障解析裝置係第1半導體故障解析裝置之上述控制部於輸出上述對準命令之前,將藉由上述解析部解析上述半導體器件之故障部位之解析命令輸出至上述解析部。
第3半導體故障解析裝置係第1或第2半導體故障解析裝置之上述標記命令於藉由上述第3驅動部使上述夾盤移動至上述標記位置之後,對上述半導體器件照射上述雷射光。
第1~第3之任一者之半導體故障解析裝置之上述對準命令使上述第1光檢測部取得來自一側之上述目標之第1圖像,使上述第2光檢測部取得來自另一側之上述目標之第2圖像,並以基於上述第1圖像及上述第2圖像使上述第2光學系統之光軸對準上述第1光學系統之光軸之方式使上述第2光學系統移動。
第4半導體故障解析裝置係第1~第3之任一者之半導體故障解析裝置之上述目標設置於上述夾盤中與保持上述半導體器件之器件保持部不同之場所。
第5半導體故障解析裝置係第1~第4之任一者之半導體故障解析裝置之上述第1光檢測部取得自一側觀察上述目標之第1圖像,上述第2光檢測部取得自另一側觀察上述目標之第2圖像。
第6半導體故障解析裝置係第1~第5之任一者之半導體故障解析裝置之上述目標包含透過上述第1光檢測部及上述第2光檢測部可檢測之光之光透過部。
第1半導體故障解析方法使用半導體故障解析裝置解析半導體器件,且上述半導體故障解析裝置具備:解析部,其由第1光檢測部自上述半導體器件經由第1光學系統接收第1光,上述第1光學系統藉由第1驅動部而相對於上述半導體器件相對移動;標記部,其由第2光檢測部自上述半導體器件經由第2光學系統接收第2光,且經由上述第2光學系統對上述半導體器件照射雷射光,上述第2光學系統藉由第2驅動部而相對於上述半導體器件相對移動;器件配置部,其配置於上述解析部與上述標記部之間,保持上述半導體器件,且具有設置有用於上述第1光學系統之光軸與上述第2光學系統之光軸之位置對準之目標的夾盤,上述夾盤藉由第3驅動部而相對於上述解析部及上述標記部相對移動;及控制部,其對上述解析部、上述標記部及上述器件配置部輸出命令;且上述目標可藉由上述第1光檢測部自上述目標之一側檢測,並可藉由上述第2光檢測部自上述目標之另一側檢測;且該方法具有以下步驟:對準步驟,其於使上述夾盤移動至上述第1光檢測部可檢測上述目標之位置之後,以上述目標為基準,使上述第2光學系統之光軸對準上述第1光學系統之光軸;及標記步驟,其於維持上述第1光學系統之光軸與上述第2光學系統之光軸之位置關係之狀態下,對設定於上述半導體器件之標記位置照射上述雷射光。
第2半導體故障解析方法係第1半導體故障解析方法於上述對準步驟之前,進而具有藉由上述解析部解析上述半導體器件之故障部位之解析步驟。
如技術方案8或9之半導體故障解析方法,其中第3半導體故障解析方法係第1或第2半導體故障解析方法之上述標記步驟於藉由上述第3驅動部使上述夾盤移動至上述標記位置之後,對上述半導體器件照射上述雷射光。
第4半導體故障解析方法係第1~第3半導體故障解析方法之上述對準步驟使上述第1光檢測部取得來自一側之上述目標之第1圖像,使上述第2光檢測部取得來自另一側之上述目標之第2圖像,並以基於上述第1圖像及上述第2圖像使上述第2光學系統之光軸對準上述第1光學系統之光軸之方式使上述第2驅動部移動。
以上,雖對本發明之實施形態進行說明,但本發明並非限定於上述實施形態。
例如,已說明進行雷射標記直至雷射光貫通金屬層ME,基板SiE之與金屬層ME相接之面露出之程度為止。然而,不限定於該態樣。雷射標記形成之孔之深度只要為記號影像顯現於圖案圖像之程度即可。具體而言,例如於貫通金屬層ME且基板SiE之與金屬層ME相接之面露出之後亦可進而進行雷射標記。例如於金屬層ME之厚度為10 μm,基板SiE之厚度為500 μm之情形時,可自基板SiE之與金屬層ME相接之面進而加深1 μm左右,藉由雷射標記形成孔。又,雷射標記未必以貫通金屬層ME之方式進行。例如於金屬層ME之厚度為10 μm,基板SiE之厚度為500 μm之情形時,藉由雷射標記形成孔之部位之金屬層ME之厚度可為50 nm左右。即,孔亦可不到達基板SiE之與金屬層ME相接之面。
已說明於進行雷射標記之期間進行圖案圖像之產生。然而,不限定於該態樣。例如,於停止雷射光之輸出時,亦可產生圖案圖像。於此情形時,亦可以特定之間隔交替進行雷射光之輸出及雷射光之停止即圖案圖像之產生。
於自雷射光源21輸出之雷射光之波長為1000奈米以上之情形時,觀察用光學系統13亦可具有僅遮擋1000奈米以上之波長之雷射光之光學濾光器。因此,即使於自雷射光源21輸出之雷射光透過半導體器件D之基板SiE之情形時,雷射光亦於觀察用光學系統13中被遮擋。其結果,可抑制光檢測器被雷射光破壞。
自雷射光源21輸出之雷射光之波長亦可未達1000奈米。於此情形時,例如半導體器件D藉由矽基板等基板構成之情形時,雷射光被基板吸收。其結果,可不具備光學濾光器等,抑制二維相機15等光檢測器被雷射光破壞。
對半導體器件D施加刺激信號之構成要件不限定於測試單元11。作為對半導體器件D施加刺激信號之構成要件即刺激信號施加部,可採用對半導體器件D施加電壓或電流之裝置。且,亦可使用該等裝置,對半導體器件D施加刺激信號。
<第2實施形態之半導體故障解析裝置> 如圖9所示,第2實施形態之半導體故障解析裝置(以下,稱為「解析裝置1A」)包含第1解析部10A、第2解析部20A、器件配置部30、計算機40、及刺激信號施加部60。
第1解析部10A具有第1光源12A、第1觀察用光學系統13A(第1光學系統)、XYZ平台14(第1驅動部)、及第1相機15A(第1光檢測部)。第1光源12A具有與第1實施形態之光源12同樣之構成。第1觀察用光學系統13A具有與第1實施形態之觀察用光學系統13同樣之構成。第1相機15A具有與第1實施形態之二維相機15同樣之構成。
第2解析部20A具有雷射光源21、第2觀察用光學系統22A(第2光學系統)、XYZ平台23(第2驅動部)、第2相機24A(第2光檢測部)、及第2光源25A。第2觀察用光學系統22A具有與第1實施形態之雷射標記用光學系統22同樣之構成。第2相機24A具有與第1實施形態之探測相機24同樣之構成。第2光源25A具有與第1實施形態之照明光源25同樣之構成。
另,第1解析部10A或第2解析部20A之任一者亦可具有附加顯示故障部位之記號之功能。即,第1解析部10A或第2解析部20A之任一者亦可具有第1實施形態之標記部20具有之標記用之雷射光源。亦可使用第2解析部20A之雷射光源21作為標記用之雷射光源。
<第2實施形態之半導體故障解析方法> 接著,對解析裝置1A之解析處理進行說明。圖10係顯示使用解析裝置1A之解析處理之主要步驟之流程圖。
<對準步驟S100A> 首先,進行第1觀察用光學系統13A與第2觀察用光學系統22A之位置對準(S100A)。控制部41b將用於步驟S100A之對準命令輸出至第2解析部20A及器件配置部30。以於第1觀察用光學系統13A之視野捕獲對準目標50之方式,XY驅動部33使晶圓夾盤32移動(S101)。控制部41b記憶半導體器件D(晶圓夾盤32)之移動量。
接著,使第1觀察用光學系統13A之光軸與第2觀察用光學系統22A之光軸對準(S102)。首先,以於第2觀察用光學系統22A之視野捕獲對準目標50之方式,XYZ平台23使第2觀察用光學系統22A移動。接著,第2光源25A向對準目標50輸出照明光。照明光透過對準目標50之光透過部50a。第1觀察用光學系統13A之第1相機15A獲得透過對準目標50之光透過部50a之光形成之透過影像。第1相機15A將透過影像輸出至計算機40。第2相機24A獲得由對準目標50之不透明部50b反射之反射光形成之反射影像。且,第2相機24A將反射影像輸出至計算機40。圖像處理部41c使用透過影像及反射影像,算出第2觀察用光學系統22A之光軸相對於第1觀察用光學系統13A之光軸之偏移。重複進行第2觀察用光學系統22A之移動與偏移量之確認,直至該偏移落於容許範圍為止。於判定為偏移落於容許範圍時,光軸之位置對準完成。另,作為用於使偏移落於容許範圍之動作,可於固定第1觀察用光學系統13A之位置之狀態下使第2觀察用光學系統22A移動。又,可於固定第2觀察用光學系統22A之位置之狀態下使第1觀察用光學系統13A移動。進而,亦可使第1觀察用光學系統13A及第2觀察用光學系統22A之兩者移動。
於光軸之位置對準完成之後,以於第1觀察用光學系統13A及第2觀察用光學系統22A之視野捕獲半導體器件D之方式,XY驅動部33使晶圓夾盤32移動(S103)。此時,控制部41b可基於半導體器件D退避時記憶之移動量,控制XY驅動部33。又,亦可使用自第1相機15A及第2相機24A輸出之圖像資料,控制第1觀察用光學系統13A及第2觀察用光學系統22A與半導體器件D之相對位置。於此情形時,移動之對象亦僅為半導體器件D。因光軸之位置對準完成之後,半導體器件D立即退避,故於第1觀察用光學系統13A及第2觀察用光學系統22A之視野不存在半導體器件D。因此,於光軸之位置對準完成之後,使半導體器件D落於第1觀察用光學系統13A及第2觀察用光學系統22A之視野。更詳細而言,於第1觀察用光學系統13A之光軸及第2觀察用光學系統22A之光軸,配置半導體器件D。即,於位置對準完成之後移動者係半導體器件D。換言之,於位置對準完成之後,不使第1觀察用光學系統13A及第2觀察用光學系統22A移動。其結果,第1觀察用光學系統13A及第2觀察用光學系統22A之相對位置關係維持位置對準之結果。
<解析步驟S110A> 接著,特定半導體器件D之故障部位(S110A)。於解析步驟S110A,實施所謂發光解析。於進行發光解析之情形時,第1相機15A及第2相機24A採用可檢測透過半導體器件D之基板SiE之波長之光之攝像裝置。例如,可採用搭載有CCD(Charge Coupled Device)影像感測器或CMOS(Complementary Metal Oxide Semiconductor)影像感測器之相機。又,亦可採用InGaAs相機或MCT相機等。
首先,計算機40停止來自第1光源12A及第2光源25A之照明光之照射。接著,計算機40使刺激信號自刺激信號施加部60輸出至半導體器件D。於半導體器件D之金屬層ME包含故障部位之情形時,於該故障部位中發出發射光。金屬層ME發出之光經由基板SiE之一面入射至第1觀察用光學系統13A。其結果,第1相機15A將與入射之光相應之圖像輸出至計算機40。同樣地,金屬層ME發出之光經由基板SiE之另一面入射至第2觀察用光學系統22A。其結果,第2相機24A將與入射之光相應之圖像輸出至計算機40。計算機40藉由自該等圖像資料特定發光位置,而特定故障部位。
第1相機15A及第2相機24A之攝像動作可取得第1態樣與第2態樣。攝像動作意指可於接收到光之輸入之情形時輸出圖像資料之動作。因此,「進行攝像動作」意為設為光可到達相機之狀態,且設為接收到光之相機可輸出圖像資料之狀態。
作為第1態樣亦可按時間並行進行第1相機15A之攝像動作、與第2相機24A之攝像動作。即,亦可於實施第1相機15A之攝像動作時,實施第2相機24A之攝像動作。更詳細而言,計算機40設為於第1觀察用光學系統13A中光可到達第1相機15A之狀態且設為接收到光之第1相機15A可輸出圖像資料之狀態。進而,計算機40設為於第2觀察用光學系統22A中光可到達第2相機24A之狀態且設為接收到光之第2相機24A可輸出圖像資料之狀態。
第1態樣中,於自半導體器件D之一面及另一面之兩者輸出光之情形時,自第1相機15A及第2相機24A之兩者輸出圖像資料。然而,於產生發射光之情形時,該發射光未必自半導體器件D之一面及另一面之兩者輸出。例如,可能有於配線層中遮擋一者之發射光之情形。即,有時自半導體器件D之一面輸出光,自另一面不輸出光。第1態樣係第1相機15A及第2相機24A之兩者可輸出圖像資料之狀態。然而,因僅對第1相機15A入射光,故僅第1相機15A輸出圖像資料。相反,有時自半導體器件D之另一面輸出光,自一面不輸出光。於此情形時,僅第2相機24A輸出圖像資料。
又,作為第2態樣,亦可交替進行第1相機15A之攝像動作、與第2相機24A之攝像動作。即,於第1期間進行第1相機15A之攝像動作。於不與第1期間重疊之第2期間進行第2相機24A之攝像動作。
更詳細而言,於第1期間,計算機40設為於第1觀察用光學系統13A中光可到達第1相機15A之狀態且設為接收到光之第1相機15A可輸出圖像資料之狀態。進而,計算機40設為於第2觀察用光學系統22A中光不到達第2相機24A之狀態、及/或、設為接收到光之第2相機24A不輸出圖像資料之狀態。於第2期間,計算機40設為於第1觀察用光學系統13A中光不到達第1相機15A之狀態、及/或、設為接收到光之第1相機15A不輸出圖像資料之狀態。進而,計算機40設為於第2觀察用光學系統22A中光可到達第2相機24A之狀態且設為接收到光之第2相機24A可輸出圖像資料之狀態。
<標記步驟S120A> 執行對標記部位mp之雷射標記(S120A)。控制部41b將用於步驟S120A之標記命令輸出至第2解析部20A及器件配置部30。具體而言,雷射光源21輸出雷射光。對所有設定之標記部位mp執行雷射標記。另,於雷射光對各個標記部位mp之輸出動作中,圖像處理部41c亦可判定於圖案圖像上是否顯現記號影像。於判定為於圖案圖像上未顯現記號影像之情形時,再次執行雷射光之照射。與該雷射光之照射動作並行,圖像處理部41c產生圖像圖像。
解析裝置1A具備:第1解析部10A,其由第1相機15A經由第1觀察用光學系統13A接收半導體器件D發出之光,第1觀察用光學系統13A藉由第1驅動部而相對於半導體器件D相對移動;第2解析部20A,其由第2相機24A經由第2觀察用光學系統22A接收半導體器件D發出之光,第2觀察用光學系統22A藉由第2驅動部而相對於半導體器件D相對移動;器件配置部30,其配置於第1解析部10A與第2解析部20A之間,保持半導體器件D,且具有設置有用於第1觀察用光學系統13A之光軸與第2觀察用光學系統22A之光軸之位置對準之對準目標50的晶圓夾盤32,晶圓夾盤32相對於第1解析部10A及第2解析部20A相對移動;刺激信號施加部60,其對半導體器件D施加刺激信號;及控制部41b,其對第1解析部10A、第2解析部20A、器件配置部30、及刺激信號施加部60輸出命令。對準目標50可藉由第1解析部10A自對準目標50之一側檢測,且可藉由第2解析部20A自對準目標50之另一側檢測。控制部41b將對準命令輸出至第2解析部20A及器件配置部30,該對準命令係於使晶圓夾盤32移動至第1相機15A可檢測對準目標50之位置後,以對準目標50為基準,使第2觀察用光學系統22A之光軸對準第1觀察用光學系統13A之光軸。進而,控制部41b將解析命令輸出至第1解析部10A、第2解析部20A、刺激信號施加部60、及器件配置部30,該解析命令係於維持第1觀察用光學系統13A之光軸與第2觀察用光學系統22A之光軸之位置關係之狀態下,對半導體器件D施加刺激信號,且由第1相機15A或第2相機24A之至少一者,接收根據刺激信號發出之來自半導體器件D之光。
使用解析裝置1A解析半導體器件D之半導體故障解析方法具有:對準步驟(S100A),其於使晶圓夾盤32移動至第1相機15A可檢測對準目標50之位置後,以對準目標50為基準,使第2觀察用光學系統22A之光軸對準第1觀察用光學系統13A之光軸;及解析步驟(S120A),其於維持第1觀察用光學系統13A之光軸與第2觀察用光學系統22A之光軸之位置關係之狀態下,對半導體器件D施加刺激信號,且由第1相機15A或第2相機24A之至少一者,接收根據刺激信號發出之來自半導體器件D之光。
解析裝置1A及半導體故障解析方法係於維持第1觀察用光學系統13A之光軸與第2觀察用光學系統22A之光軸之位置關係之狀態下,對半導體器件D施加刺激信號,且由第1相機15A或第2相機24A之至少一者,接收根據刺激信號發出之來自半導體器件D之光。因此,因接收來自半導體器件D之光之第1觀察用光學系統13A與第2觀察用光學系統22A為光軸一致之狀態,故可良好地檢測半導體器件D之故障部位。
<變化例> 另,於解析步驟,亦可實施與上述發光解析不同之解析。例如,於解析步驟,亦可實施發熱解析。於此情形時,刺激信號施加部60賦予相對較低頻率之調變電流作為刺激信號。例如,於在半導體器件D之內部包含有短路部位之情形時,起因於調變電流而短路部位發熱。其結果,於半導體器件D產生熱源。起因於調變電流而發熱之熱源之溫度根據調變電流之頻率而週期性變化。溫度之變化對熱源之周圍即照射光及反射光通過之構件之折射率帶來變化。因該折射率之變化對反射光之強度帶來變化,故其結果,反射光之強度相對於照射光之強度之程度即反射率變化。利用起因於該熱源之溫度變化之反射率之變化作為對刺激信號之應答。其結果,可特定半導體器件D包含之故障部位之一例即短路部位。
<變化例之半導體故障解析裝置> 如圖11所示,變化例之半導體故障解析裝置(以下,稱為「解析裝置1S」)包含第1解析部10S、第2解析部20S、器件配置部30、計算機40、及刺激信號施加部60。第1解析部10S具有第1紅外相機15S而替代第1相機15A。又,第2解析部20S具有第2紅外相機24S而替代第2相機24A。
第1紅外相機15S係將與可見光不同之波長設為檢測對象之光檢測部。第1紅外相機15S將例如熱線即波長2 μm~10 μm之光設為檢測對象。作為第1紅外相機15S,可使用InSb(銻化銦)相機等。根據第1紅外相機15S,可取得顯示半導體器件D之輻射率之分佈之圖像。第1紅外相機15S藉由拍攝來自半導體器件D之熱線,而輸出圖像資料。可使用與圖像資料相應之紅外線之資訊,特定半導體器件D之發熱部位。可藉由特定發熱部位,而特定半導體器件D之故障部位。另,第2紅外相機24S亦為與第1紅外相機15S同樣之構成。
計算機40之圖像處理部41c基於上述圖像資料產生紅外圖像。又,圖像處理部41c基於檢測信號產生圖案影像。且,圖像處理部41c產生使紅外圖像重疊於圖案影像之重疊圖像作為解析圖像。
另,於將熱線設為檢測對象之情形時,與獲得可見光影像之情形不同,不需要照明光。因此,解析裝置1S亦可省略第1光源12A及第2光源25A。於省略第1光源12A之情形時,第1觀察用光學系統13A可省略光束分離器13b。同樣地,於省略第2光源25A之情形時,第2觀察用光學系統22A可省略光束分離器即切換部22b。
<變化例之半導體故障解析方法> 接著,對解析裝置1S之解析處理進行說明。圖12係顯示使用解析裝置1S之解析處理之主要步驟之流程圖。
<對準步驟S100S> 變化例之對準步驟S100S與第2實施形態之對準步驟S100A同樣。
<解析步驟S110S> 接著,特定半導體器件D之故障部位(S110S)。首先,藉由第1紅外相機15S計測來自半導體器件D之熱線,於圖像處理部41c中產生紅外圖像。設為藉由刺激信號施加部60施加有測試圖案等刺激信號之狀態。第1紅外相機15S取得包含半導體器件D之發熱之第1圖像資料。第1紅外相機15S將於特定之曝光時間連續拍攝之複數張圖像資料作為第1圖像資料發送至計算機40。圖像處理部41c將該複數張圖像資料相加。藉由相加處理,產生第1圖像資料。第1圖像資料包含半導體器件D之發熱與形成半導體器件D之元件之形狀之資訊。接著,停止由刺激信號施加部60施加刺激信號。第1紅外相機15S取得僅包含形成半導體器件D之元件之形狀之資訊的圖像資料。 第1紅外相機15S將於特定之曝光時間連續拍攝之複數張圖像資料輸出至計算機40。圖像處理部41c將該複數張圖像資料相加。藉由相加處理,產生第2圖像資料。第2圖像資料僅包含形成半導體器件D之元件之形狀之資訊。且,圖像處理部41c獲得第1圖像資料與第2圖像資料之差量。其結果,產生僅包含半導體器件D之發熱之紅外圖像。圖像處理部41c輸出使紅外圖像重疊於第2圖像資料之重疊圖像或第1圖像資料作為解析圖像。又,圖像處理部41c輸出第2圖像資料作為圖案影像。
又,於第2解析部20S中,亦進行與上述第1解析部10S之發熱解析動作同樣之處理。亦可並行進行第1解析部10S之發熱解析動作與第2解析部20S之發熱解析動作。又,該等動作亦可交替進行。
<標記步驟S120S> 變化例之標記步驟120S與第2實施形態之標記步驟S120A同樣。
變化例之解析裝置1S及半導體故障解析方法亦進行於第1觀察用光學系統13S之光軸與第2觀察用光學系統22S之光軸一致之狀態下檢測故障部位之處理。可良好地檢測半導體器件D之故障部位。
<第3實施形態之半導體故障解析裝置> 如圖13所示,第3實施形態之半導體故障解析裝置(以下,稱為「解析裝置1B」)包含第1解析部10B、第2解析部20B、器件配置部30、計算機40、刺激信號施加部60、及電性信號取得部61。解析裝置1B自第1解析部10B及第2解析部20B輸出光。第1解析部10B輸出之光照射至半導體器件D之基板SiE之一面。第2解析部20B輸出之光照射至半導體器件D之基板SiE之另一面。解析裝置1B利用藉由光之照射產生之電性信號解析半導體器件D之故障部位。被照射光之半導體器件D有接收刺激信號之情形,亦有不接收刺激信號之情形。
第1解析部10B具有第1光源12B、第1觀察用光學系統13B(第1光學系統)、XYZ平台14(第1驅動部)、及第1相機15B(第1光檢測部)。第1光源12B產生照射至半導體器件D之光。根據解析之方法決定第1光源12B之細節。
例如,於對半導體器件D照射如雷射光之相干光之解析中,作為第1光源12B,可採用固體雷射光源或半導體雷射光源等。於取得OBIRCH(Optical Beam Induced Resistance Change:光束感應電阻變化)圖像或SDL(Soft Defect Localization:軟缺陷定位)圖像之解析中,第1光源12B輸出半導體器件D不產生電荷(載流子)之波長帶之雷射光。例如,於藉由矽構成之半導體器件D之解析中,第1光源12B輸出大於1200 nm之波長帶之雷射光。第1光源12B較佳為輸出1300 nm左右之波長帶之雷射光。又,於取得OBIC(Optical Beam Induced Current:光束感應電流)圖像或LADA(Laser Assisted Device Alteration:雷射輔助器件變更)圖像之解析中,第1光源12B輸出半導體器件D產生電荷(載流子)之波長帶之光。於取得OBIC圖像或LADA圖像之解析中,第1光源12B輸出1200 nm以下之波長帶之光。例如,第1光源12B輸出1064 nm左右之波長帶之雷射光。
另,於對半導體器件D照射非相干光之解析中,作為第1光源12B,可採用SLD(Super Luminescent Diode)、ASE(Amplified Spontaneous Emission:放大自發射)、及LED(Light Emitting Diode)等。
自第1光源12B輸出之光經由偏光保存單模光耦合器(未圖示)、及探測光用之偏光保存單模光纖引導至第1觀察用光學系統13B。第1觀察用光學系統13B具有對物透鏡13a、光束分離器13b、及第1光掃描部13s。第1光掃描部13s掃描半導體器件D之背面上之照射點。第1光掃描部13s藉由例如電流計鏡或MEMS鏡等光掃描元件構成。對物透鏡13a將藉由第1光掃描部13s引導之光聚光於照射點。第1光掃描部13s藉由計算機40之控制部41b控制。
第1相機15B檢測與雷射光相應之半導體器件D之反射光。第1相機15B將檢測信號輸出至計算機40。第1相機15B係例如光電二極體、雪崩光電二極體、光電倍增管、或面形影像感測器等。
第2解析部20B具有第2光源21B、第2觀察用光學系統22B(第2光學系統)、及第2相機24B(第2光檢測部)。第2光源21B具有與第1光源12B同樣之構成。第2觀察用光學系統22B具有對物透鏡22a、切換部22b(光束分離器)、及第2光掃描部22s。第2光掃描部22s具有與第1光掃描部13s同樣之構成。第2相機24B具有與第1實施形態之探測相機24同樣之構成。
電性信號取得部61電性連接於半導體器件D。電性信號取得部61檢測根據雷射光由半導體器件D產生之電性信號。電性信號取得部61將與檢測出之電性信號相應之電性信號特性值輸出至計算機40。
計算機40之圖像處理部41c基於電性信號特性值輸出電性信號圖像。電性信號圖像係將電性信號特性值與第1光掃描部13s及第2光掃描部22s之雷射光之掃描位置建立關聯並圖像化者。又,圖像處理部41c基於檢測信號輸出光學反射影像。且,圖像處理部41c將電性信號圖像重疊於光學反射影像。其結果,圖像處理部41c輸出於光學反射影像重疊電性信號圖像之重疊圖像作為解析圖像。
電性信號圖像係例如光電電流圖像即OBIC圖像、電性量變化圖像即OBIRCH圖像、正誤資訊圖像即SDL圖像、及LADA圖像等。
OBIC圖像基於藉由雷射照射產生之光電電流。OBIC圖像係將光電電流之電流值或電流變化值圖像化為電性信號特性值者。
OBIRCH圖像基於於半導體器件D照射雷射光之位置處產生之電阻值。對被照射雷射光之半導體器件D施加一定之電流。電阻值之變化可作為電壓值或電壓之變化獲得。OBIRCH圖像係將顯示電壓值或電壓之變化之電性信號特性值圖像化者。另,於獲得OBIRCH圖像時,亦可對被照射雷射光之半導體器件D,施加一定之電壓。於此情形時,半導體器件D之照射位置之電阻值之變化可作為電流值之變化獲得。OBIRCH圖像係將顯示電流值之變化之電性信號特性值圖像化者。
SDL圖像係將錯誤作動狀態相關之資訊(例如PASS(成功)/FAIL(失敗)信號)圖像化者。對施加有測試圖案等刺激信號之半導體器件D照射雷射光。該雷射光具有不激發載流子之波長。藉由刺激信號之施加與雷射光之照射,可檢測錯誤作動狀態。且,取得錯誤作動相關之資訊作為亮度值。SDL圖像係基於該亮度值之圖像。
LADA圖像亦為將錯誤作動狀態相關之資訊(例如PASS(成功)/FAIL(失敗)信號)圖像化者。然而,於獲得LADA圖像之解析中,於將具有如激發載流子之波長之雷射光照射至半導體器件D之點與獲得SDL圖像之解析不同。藉由刺激信號之施加與雷射光之照射而取得錯誤作動相關之資訊作為亮度值之點、與基於該亮度值產生圖像資料之點係與SDL圖像同樣。
另,第1解析部10B或第2解析部20B之任一者亦可具有附加顯示故障部位之記號之功能。即,第1解析部10B或第2解析部20B之任一者亦可具有第1實施形態之標記部20具有之標記用之雷射光源。
<第3實施形態之半導體故障解析方法> 接著,對解析裝置1B之解析處理進行說明。圖14係顯示使用解析裝置1B之解析處理之主要步驟之流程圖。
<對準步驟S100B> 首先,進行第1觀察用光學系統13B與第2觀察用光學系統22B之位置對準(S100B)。此處所言之位置對準意指藉由使第1觀察用光學系統13B之光軸與第2觀察用光學系統22B之光軸對準,而消除關於第1觀察用光學系統13B之第1光掃描區域之中心、與關於第2觀察用光學系統22B之第2光掃描區域之中心之偏移。控制部41b將用於步驟S100B之對準命令輸出至第2解析部20B及器件配置部30。以於第1觀察用光學系統13B之視野捕獲對準目標50之方式,XY驅動部33使晶圓夾盤32移動(S101)。控制部41b記憶半導體器件D之移動量。移動量亦可設為晶圓夾盤32者。
接著,使第1觀察用光學系統13B之第1光掃描區域與第2觀察用光學系統22B之第2光掃描區域對準(S102B)。此係指藉由使第1觀察用光學系統13B之光軸與第2觀察用光學系統22B之光軸對準,而使關於第1觀察用光學系統13B之第1光掃描區域之中心、與關於第2觀察用光學系統22B之第2光掃描區域之中心對準。首先,以於第2觀察用光學系統22B之視野捕獲對準目標50之方式,XYZ平台23使第2觀察用光學系統22B移動。接著,第2光源25B向對準目標50輸出照明光。照明光透過對準目標50之光透過部50a。第1觀察用光學系統13B之第1相機15B獲得透過對準目標50之光透過部50a之光形成之透過影像。第1相機15B將透過影像輸出至計算機40。第2相機24B獲得由對準目標50之不透明部50b反射之反射光形成之反射影像。且,第2相機24B將反射影像輸出至計算機40。圖像處理部41c使用透過影像及反射影像,算出第2觀察用光學系統22B之光軸相對於第1觀察用光學系統13B之光軸之偏移。重複進行第2觀察用光學系統22B之移動、與偏移量之確認,直至該偏移落於容許範圍為止。於判定為偏移落於容許範圍時,光軸之位置對準完成。藉此,可使關於第1觀察用光學系統13B之第1光掃描區域之中心、與關於第2觀察用光學系統22B之第2光掃描區域之中心對準。另,作為用於使偏移落於容許範圍之動作,可於固定第1觀察用光學系統13B之位置之狀態下使第2觀察用光學系統22B移動。又,可於固定第2觀察用光學系統22B之位置之狀態下使第1觀察用光學系統13B移動。進而,亦可使第1觀察用光學系統13B及第2觀察用光學系統22B之兩者移動。
於光掃描區域之位置對準完成之後,以於第1觀察用光學系統13B及第2觀察用光學系統22B之視野捕獲半導體器件D之方式,XY驅動部33控制X軸方向及Y軸方向使晶圓夾盤32移動(S103)。此時,控制部41b可基於半導體器件D退避時記憶之移動量,控制XY驅動部33。又,亦可使用自第1相機15B及第2相機24B輸出之圖像資料,控制第1觀察用光學系統13B及第2觀察用光學系統22B與半導體器件D之相對位置。於此情形時,移動之對象亦僅為半導體器件D。因掃描區域之位置對準完成之後,半導體器件D立即退避,故於第1觀察用光學系統13B及第2觀察用光學系統22B之視野不存在半導體器件D。因此,於掃描區域之位置對準完成之後,使半導體器件D落於第1觀察用光學系統13B及第2觀察用光學系統22B之視野。更詳細而言,於第1觀察用光學系統13B之第1光掃描區域及第2觀察用光學系統22B之第2光掃描區域,配置半導體器件D。即,位置對準完成之後移動者為半導體器件D。換言之,於位置對準完成之後,不使第1觀察用光學系統13B及第2觀察用光學系統22B移動。其結果,第1觀察用光學系統13B之第1光掃描區域及第2觀察用光學系統22B之第2光掃描區域之相對位置關係維持位置對準之結果。
<解析步驟S110B> 接著,特定半導體器件D之故障部位(S110B)。於解析步驟S110B,進行利用光照射之信號解析。第1觀察用光學系統13B將第1雷射光照射至半導體器件D之一面。又,第2觀察用光學系統22B將第2雷射光照射至半導體器件D之另一面。第1雷射光及第2雷射光之照射亦可按時間並行。即,照射第1雷射光之期間可具有與照射第2雷射光之期間重疊之部分。又,照射第1雷射光之期間亦可不與照射第2雷射光之期間重疊。即,亦可於停止第1雷射光之照射之後,開始第2雷射光之照射。於解析步驟S110B,可根據第1雷射光及第2雷射光之特性、及接收雷射光之照射之半導體器件D之狀態,獲得若干電性信號圖像。電性信號圖像係例如光電電流圖像即OBIC圖像、電性量變化圖像即OBIRCH圖像、正誤資訊圖像即SDL圖像、及LADA圖像等。
作為第1解析,將第1雷射光及第2雷射光照射至半導體器件D。於第1解析中,刺激信號施加部60不對半導體器件D賦予刺激信號。接收到雷射光之半導體器件D有時產生光電電流。電性信號取得部61輸出光電電流之電流值或電流變化值作為電性信號特性值。基於由第1解析獲得之電性信號特性值之電性信號圖像係OBIC圖像。
作為第2解析,將第1雷射光及第2雷射光照射至半導體器件D。於第2解析中,刺激信號施加部60對半導體器件D賦予刺激信號即一定之電流。另,刺激信號亦可為一定之電壓。若對接收到刺激信號之半導體器件D照射雷射光,則半導體器件D之照射位置之電阻值變化。電性信號取得部61輸出與電阻值之變化相應之電壓值或電壓之變化值作為電性信號特性值。基於由第2解析獲得之電性信號特性值之電性信號圖像係OBIRCH圖像。
作為第3解析,將第1雷射光及第2雷射光照射至半導體器件D。於第3解析中,作為第1雷射光及第2雷射光,採用不激發載流子之波長之雷射。進而,於第3解析中,刺激信號施加部60賦予測試圖案等刺激信號。若對接收到刺激信號之半導體器件D照射不激發載流子之波長之雷射光,則可檢測半導體器件D之錯誤動作狀態。電性信號取得部61輸出錯誤作動狀態相關之資訊(例如PASS(成功)/FAIL(失敗)信號)作為電性信號特性值。將由第3解析獲得之電性信號特性值轉換為亮度值獲得之圖像係SDL圖像。
作為第4解析,將第1雷射光及第2雷射光照射至半導體器件D。於第4解析中,作為第1雷射光及第2雷射光,採用激發載流子之波長之雷射。進而,於第4解析中,刺激信號施加部60賦予測試圖案等刺激信號。若對接收到刺激信號之半導體器件D照射激發載流子之波長之雷射光,則可檢測半導體器件D之錯誤動作狀態。電性信號取得部61輸出錯誤作動狀態相關之資訊(例如PASS(成功)/FAIL(失敗)信號)作為電性信號特性值。將由第4解析獲得之電性信號特性值轉換為亮度值獲得之圖像係LADA圖像。
<標記步驟S120B> 第3實施形態之標記步驟S120B與第2實施形態之標記步驟S120A同樣。於藉由第2觀察用光學系統22B進行標記之情形時,第2觀察用光學系統22B亦可具備標記用之雷射光源、XYZ平台及照明光源。
解析裝置1B具備:第1解析部10B,其經由具有第1光掃描部13s之第1觀察用光學系統13B對半導體器件D照射由第1光源12B產生之光;第2解析部20B,其經由具有第2光掃描部22s之第2觀察用光學系統22B對半導體器件D照射由第2光源21B產生之光;器件配置部30,其配置於第1解析部10B與第2解析部20B之間,保持半導體器件D,且具有設置有用於第1觀察用光學系統13B之光掃描區域與第2觀察用光學系統22B之光掃描區域之位置對準之對準目標50的晶圓夾盤32,晶圓夾盤32相對於第1解析部10B及第2解析部20B相對移動;電性信號取得部61,其接收半導體器件D輸出之電性信號;及控制部41b,其對第1解析部10B、第2解析部20B、器件配置部30及電性信號取得部61輸出命令。對準目標50可藉由第1解析部10B自對準目標50之一側檢測,且可藉由第2解析部20B自對準目標50之另一側檢測。控制部41b將對準命令輸出至第2解析部20B及器件配置部30,該對準命令係於使晶圓夾盤32移動至第1解析部10B可檢測對準目標50之位置之後,以對準目標50為基準,使第2觀察用光學系統22B之光掃描區域對準第1觀察用光學系統13B之光掃描區域。進而,控制部41b將解析命令輸出至第1解析部10B、第2解析部20B、電性信號取得部61及器件配置部30,該解析命令係於維持第1觀察用光學系統13B之光掃描區域與第2觀察用光學系統22B之光掃描區域之位置關係之狀態下,自第1解析部10B及第2解析部20B之至少一者對半導體器件D照射光,藉由電性信號取得部61接收來自半導體器件D之電性信號。
解析使用解析裝置1B之半導體器件D之半導體故障解析方法具有:對準步驟(S100B),其於使晶圓夾盤32移動至第1解析部10B可檢測對準目標50之位置之後,以對準目標50為基準,使第2觀察用光學系統22B之光掃描區域對準第1觀察用光學系統13B之光掃描區域;及解析步驟(S110B),其於維持第1觀察用光學系統13B之光掃描區域與第2觀察用光學系統22B之光掃描區域之位置關係之狀態下,自第1解析部10B及第2解析部20B之至少一者對半導體器件D照射光,藉由電性信號取得部61接收來自半導體器件D之電性信號。
解析裝置1B於維持第1觀察用光學系統13B之光掃描區域與第2觀察用光學系統22B之光掃描區域之位置關係之狀態下,對半導體器件D照射光。因此,因第1觀察用光學系統13B與第2觀察用光學系統22B為光掃描區域一致之狀態,故可良好地檢測半導體器件D之故障部位。
<第4實施形態之半導體故障解析裝置> 第4實施形態之半導體故障解析裝置藉由稱為EOP(Electro-Optical Probing:電光探測)或EOFM(Electro-Optical Frequency Mapping:電光頻率映射)之光探測技術特定故障部位。又,亦可利用EOFM,進行光學探測熱反射率影像映射(optical probed thermo-reflectance image mapping:OPTIM)。光探測技術特定以目標頻率動作之電路之位置。於光探測技術,將自光源出射之光照射至積體電路。由積體電路反射之光藉由光感測器檢測。從自光感測器輸出之檢測信號擷取具有目標頻率之信號成分。擷取之信號成分之振幅能量作為時間之經過顯示。又,擷取之信號成分之振幅能量作為二維之映射顯示。
即,光探測技術基於來自驅動中之半導體器件D之光之強度調變,解析半導體器件D之故障。因此,半導體故障解析裝置將具有特定之調變頻率之電性信號施加於半導體器件D。此情形之調變頻率大多高於特定熱源位置之解析所使用之刺激信號之頻率。例如,半導體故障解析裝置賦予與半導體器件D之驅動信號同等之頻率之驅動電流作為刺激信號。
如圖15所示,第4實施形態之半導體故障解析裝置(以下,稱為「解析裝置1C」)包含第1解析部10C、第2解析部20C、器件配置部30、計算機40、及刺激信號施加部60。即,第4實施形態之解析裝置1C不具備第3實施形態之解析裝置1B具有之電性信號取得部61。
第1解析部10C具有第1光源12C、第1觀察用光學系統13C(第1光學系統)、XYZ平台14(第1驅動部)、及第1相機15C(第1光檢測部)。第1光源12C與第2實施形態之第1光源12B同樣。第1觀察用光學系統13C與第2實施形態之第1觀察用光學系統13B同樣。第1相機15C與第2實施形態之第1相機15B同樣。
第2解析部20C具有第2光源21C、第2觀察用光學系統22C(第2光學系統)、及第2相機24C(第2光檢測部)。第2光源21C與第2實施形態之第2光源21B同樣。第2觀察用光學系統22C與第2實施形態之第2觀察用光學系統22B同樣。第2相機24C與第2實施形態之第2相機24B同樣。
另,第1解析部10C或第2解析部20C之任一者可具有附加顯示故障部位之記號之功能。即,第1解析部10C或第2解析部20C之任一者亦可具有第1實施形態之標記部20具有之標記用之雷射光源。
<第4實施形態之半導體故障解析> 接著,對解析裝置1C之解析處理進行說明。圖16係顯示使用解析裝置1C之解析處理之主要步驟之流程圖。
<對準步驟S100C> 第4實施形態之對準步驟S100C與第3實施形態之對準步驟S100B同樣。因此,使第4實施形態之對準步驟S100C具有之光掃描區域對準之步驟(S102C)與第3實施形態之步驟S102B同樣。
<解析步驟S110C> 接著,特定半導體器件D之故障部位(S110C)。第1解析部10C藉由第1光掃描部13s對半導體器件D照射來自第1光源12C之光。第1光源12C輸出之光係例如530 nm以上之波長帶之光。另,第1光源12C輸出之光較佳為1064 nm以上之波長帶之光。光由半導體器件D之表面反射。反射之光入射至第1解析部10C。入射之光藉由第1相機15C檢測。第1相機15C將基於反射光之資訊輸出至計算機40。計算機40之圖像處理部41c利用第1相機15C輸出之資訊產生光學反射影像。另,於該動作,刺激信號施加部60不輸出刺激信號。
接著,刺激信號施加部60對半導體器件D輸出測試圖案等刺激信號。第1解析部10C對接收到刺激信號之半導體器件D照射來自第1光源12C之光。於該動作,對使用者選擇之照射位置照射來自第1光源12C之光。使用者可一面觀察顯示於顯示部41d之光學反射影像,一面使用輸入部41e將照射位置輸入至計算機40。第1相機15C檢測來自接收刺激信號之半導體器件D之反射光。且,第1相機15C對計算機40輸出基於反射光之資訊。
接收刺激信號之半導體器件D係構成半導體器件D之元件進行動作。來自元件進行動作之半導體器件D之反射光伴隨動作被元件調變。
計算機40之圖像處理部41c利用第1相機15C輸出之檢測信號,產生信號波形。圖像處理部41c於顯示部41d顯示該信號波形。且,一面基於上述光學反射影像改變照射位置,一面取得檢測信號且產生信號波形。若利用產生之信號波形,則可特定故障部位。
另,圖像處理部41c亦可產生電性光學頻率映射圖像(EOFM圖像)。EOFM圖像係將檢測信號與測試圖案等刺激信號之相位差資訊與照射位置建立關聯並圖像化者。於此情形時,可從自檢測信號擷取之交流成分求出相位差資訊。又,可藉由將與交流成分同時擷取之直流成分與照射位置建立關聯並圖像化而獲得光學反射影像。且,可使用於光學反射影像重疊EOFM圖像之重疊圖像作為解析圖像。
又,於第2解析部20C中,亦進行與上述第1解析部10C之解析動作同樣之處理。可並行進行第1解析部10C之解析動作與第2解析部20C之解析動作。又,亦可交替進行該等動作。
<標記步驟S120C> 第4實施形態之標記步驟S120C與第2實施形態之標記步驟S120A同樣。於藉由第2觀察用光學系統22C進行標記之情形時,第2觀察用光學系統22B亦可具備標記用之雷射光源、XYZ平台及照明光源。
解析裝置1C具備:第1解析部10C,其經由具有第1光掃描部13s之第1觀察用光學系統13C對半導體器件D照射由第1光源12C產生之光,第1相機15C接收根據第1光源12C之光產生之來自半導體器件D之第1應答光;第2解析部20C,其經由具有第2光掃描部22s之第2觀察用光學系統22C對半導體器件D照射由第2光源21C產生之光,第2相機24C接收根據第2光源21C之光產生之來自半導體器件D之第2應答光;器件配置部30,其配置於第1解析部10C與第2解析部20C之間,保持半導體器件D,且具有設置有用於第1觀察用光學系統13C之光掃描區域與第2觀察用光學系統22C之光掃描區域之位置對準之對準目標50的晶圓夾盤32,晶圓夾盤32相對於第1解析部10C及第2解析部20C相對移動;刺激信號施加部60,其對半導體器件D施加刺激信號;及控制部41b,其對第1解析部10C、第2解析部20C、器件配置部30及刺激信號施加部60輸出命令。對準目標50可藉由第1解析部10C自對準目標50之一側檢測,且可藉由第2解析部20C自對準目標50之另一側檢測。控制部41b將對準命令輸出至第2解析部20C及器件配置部30,該對準命令係於使晶圓夾盤32移動至第1相機15C可檢測對準目標50之位置之後,以對準目標50為基準,使第2觀察用光學系統22C之光掃描區域對準第1觀察用光學系統13C之光掃描區域。進而,控制部41b將解析命令輸出至第1解析部10C、第2解析部20C、刺激信號施加部60及器件配置部30,該解析命令係於維持第1觀察用光學系統13C之光掃描區域與第2觀察用光學系統22C之光掃描區域之位置關係,且將刺激信號施加於半導體器件D之狀態下,自第1解析部10C及第2解析部20C之至少一者對半導體器件D照射光,且由第1相機15C及第2相機24C之至少一者,接收來自半導體器件D之第1應答光及第2應答光之至少一者。
使用解析裝置1C解析半導體器件之半導體故障解析方法具有:對準步驟(S100C),其於使晶圓夾盤32移動至第1相機15C可檢測對準目標50之位置之後,以對準目標50為基準,使第2觀察用光學系統22C之光掃描區域對準第1觀察用光學系統13C之光掃描區域;及解析步驟(S110C),其於維持第1觀察用光學系統13C之光掃描區域與第2觀察用光學系統22C之光掃描區域之位置關係,且將刺激信號施加於半導體器件D之狀態下,自第1解析部10C及第2解析部20C之至少一者對半導體器件D照射光,且由第1相機15C及第2相機24C之至少一者,接收來自半導體器件D之第1應答光及第2應答光之至少一者。
解析裝置1C於維持第1觀察用光學系統13C之光掃描區域與第2觀察用光學系統22C之光掃描區域之位置關係之狀態下,對半導體器件D照射光。因此,因第1觀察用光學系統13C與第2觀察用光學系統22C為光掃描區域一致之狀態,故可良好地檢測半導體器件D之故障部位。
1:解析裝置(半導體故障解析裝置) 1A:解析裝置(半導體故障解析裝置) 1B:解析裝置(半導體故障解析裝置) 1C:解析裝置(半導體故障解析裝置) 1S:解析裝置(半導體故障解析裝置) 10:解析部 10A:第1解析部 10B:第1解析部 10C:第1解析部 10S:第1解析部 11:測試單元 12:光源 12A:第1光源 12B:第1光源 12C:第1光源 13:觀察用光學系統(第1光學系統) 13A:第1觀察用光學系統(第1光學系統) 13a:對物透鏡 13B:第1觀察用光學系統(第1光學系統) 13b:光束分離器 13C:第1觀察用光學系統(第1光學系統) 13S:第1觀察用光學系統 13s:第1光掃描部 14:XYZ平台(第1驅動部) 15:二維相機(第1光檢測部) 15A:第1相機(第1光檢測部) 15B:第1相機(第1光檢測部) 15C:第1相機(第1光檢測部) 15S:第1紅外相機 20:標記部 20A:第2解析部 20B:第2解析部 20C:第2解析部 20S:第2解析部 21:雷射光源 21B:第2光源 21C:第2光源 22:雷射標記用光學系統(第2光學系統) 22A:第2觀察用光學系統(第2光學系統) 22a:對物透鏡 22B:第2觀察用光學系統(第2光學系統) 22b:切換部 22C:第2觀察用光學系統(第2光學系統) 22S:第2觀察用光學系統 22s:第2光掃描部 23:XYZ平台(第2驅動部) 24:探測相機(第2光檢測部) 24A:第2相機(第2光檢測部) 24B:第2相機(第2光檢測部) 24C:第2相機(第2光檢測部) 24S:第2紅外相機 25:照明光源 25A:第2光源 30:器件配置部 31:樣品平台 32:晶圓夾盤 32a:器件保持部 32b:目標孔 33:XY驅動部(第3驅動部) 40:計算機 41a:條件設定部 41b:控制部 41c:圖像處理部 41d:顯示部 41e:輸入部 50:對準目標 50a:光透過部 50b:不透明部 60:刺激信號施加部 61:電性信號取得部 bp:基準點 D:半導體器件 D1:背面 D2:表面 fp:故障部位 ME:金屬層 mp:標記部位 S10:步驟 S20:步驟 S21:步驟 S22:步驟 S23:步驟 S30:步驟 S100A:步驟 S100B:步驟 S100C:步驟 S100S:步驟 S101:步驟 S102:步驟 S102B:步驟 S102C:步驟 S103:步驟 S110A:步驟 S110B:步驟 S110C:步驟 S110S:步驟 S120A:步驟 S120B:步驟 S120C:步驟 S120S:步驟 SiE:基板 ss:邊界面
圖1係實施形態之半導體故障解析裝置之構成圖。 圖2係用於說明對半導體器件之雷射標記圖像之圖。圖2(a)係顯示經雷射標記之半導體器件之背面之圖。圖2(b)係顯示經雷射標記之半導體器件之表面之圖。圖2(c)係沿圖2(b)之II(c)-II(c)之剖視圖。 圖3係用於說明圖1之解析裝置之標記控制之圖。 圖4係俯視顯示目標之圖。 圖5係顯示使用圖1之解析裝置之半導體故障解析方法之主要步驟之流程圖。 圖6(a)係顯示解析步驟之圖。圖6(b)係顯示構成對準步驟之一步驟之圖。 圖7(a)係顯示緊接圖6(b)之構成對準步驟之一步驟之圖。圖7(b)係顯示緊接圖7(a)之構成對準步驟之一步驟之圖。 圖8係顯示緊接圖7(b)之構成對準步驟之一步驟之圖。 圖9係第2實施形態之半導體故障解析裝置之構成圖。 圖10係顯示使用圖9之解析裝置之半導體故障解析方法之主要步驟之流程圖。 圖11係變化例之半導體故障解析裝置之構成圖。 圖12係顯示使用圖11之解析裝置之半導體故障解析方法之主要步驟之流程圖。 圖13係第3實施形態之半導體故障解析裝置之構成圖。 圖14係顯示使用圖13之解析裝置之半導體故障解析方法之主要步驟之流程圖。 圖15係第3實施形態之半導體故障解析裝置之構成圖。 圖16係顯示使用圖15之解析裝置之半導體故障解析方法之主要步驟之流程圖。
1A:解析裝置(半導體故障解析裝置)
10A:第1解析部
12A:第1光源
13A:第1觀察用光學系統
13a:對物透鏡
13b:光束分離器
14:XYZ平台(第1驅動部)
15A:第1相機(第1光檢測部)
20A:第2解析部
21:雷射光源
22A:第2觀察用光學系統
22a:對物透鏡
22b:切換部
23:XYZ平台(第2驅動部)
24A:第2相機
25A:第2光源
30:器件配置部
31:樣品平台
32:晶圓夾盤
32a:器件保持部
32b:目標孔
33:XY驅動部(第3驅動部)
40:計算機
41a:條件設定部
41b:控制部
41c:圖像處理部
41d:顯示部
41e:輸入部
50:對準目標
60:刺激信號施加部
D:半導體器件

Claims (24)

  1. 一種半導體故障解析裝置,其包含: 第1解析部,其由第1光檢測部經由第1光學系統接收半導體器件發出之光,上述第1光學系統藉由第1驅動部而相對於上述半導體器件相對移動; 第2解析部,其由第2光檢測部經由第2光學系統接收上述半導體器件發出之光,上述第2光學系統藉由第2驅動部而相對於上述半導體器件相對移動; 器件配置部,其配置於上述第1解析部與上述第2解析部之間,保持上述半導體器件,且具有設置有用於上述第1光學系統之光軸與上述第2光學系統之光軸之位置對準之目標的夾盤,上述夾盤相對於上述第1解析部及上述第2解析部相對移動; 刺激信號施加部,其對上述半導體器件施加刺激信號;及 控制部,其對上述第1解析部、上述第2解析部、上述器件配置部、及上述刺激信號施加部輸出命令;且 上述目標可藉由上述第1解析部自上述目標之一側檢測,並可藉由上述第2解析部自上述目標之另一側檢測; 上述控制部係 將對準命令輸出至上述第2解析部及上述器件配置部,該對準命令係於使上述夾盤移動至上述第1光檢測部可檢測上述目標之位置後,以上述目標為基準,使上述第2光學系統之光軸對準上述第1光學系統之光軸;且 將解析命令輸出至上述第1解析部、上述第2解析部、上述刺激信號施加部、及上述器件配置部,該解析命令係於維持上述第1光學系統之光軸與上述第2光學系統之光軸之位置關係之狀態下,對上述半導體器件施加上述刺激信號,且由上述第1光檢測部或上述第2光檢測部之至少一者,接收根據上述刺激信號發出之來自上述半導體器件之光。
  2. 如請求項1之半導體故障解析裝置,其中上述對準命令係使上述第1光檢測部取得來自一側之上述目標之第1圖像,使上述第2光檢測部取得來自另一側之上述目標之第2圖像,且以基於上述第1圖像及上述第2圖像使上述第2光學系統之光軸對準上述第1光學系統之光軸之方式,使上述第2光學系統移動。
  3. 如請求項1或2之半導體故障解析裝置,其中上述解析命令係於以上述半導體器件與上述第1光學系統之光軸及上述第2光學系統之光軸重疊之方式,藉由上述器件配置部包含之第3驅動部使上述夾盤移動後,進行上述半導體器件之解析。
  4. 如請求項1至3中任一項之半導體故障解析裝置,其中上述目標係設置於上述夾盤中,與保持上述半導體器件之器件保持部不同之場所。
  5. 如請求項1至4中任一項之半導體故障解析裝置,其中上述第1光檢測部取得自一側觀察上述目標之第1圖像, 上述第2光檢測部取得自另一側觀察上述目標之第2圖像。
  6. 如請求項1至5中任一項之半導體故障解析裝置,其中上述目標包含透過上述第1光檢測部及上述第2光檢測部可檢測之光之光透過部。
  7. 一種半導體故障解析裝置,其包含: 第1解析部,其經由具有第1光掃描部之第1光學系統,對半導體器件照射由第1光源產生之光; 第2解析部,其經由具有第2光掃描部之第2光學系統,對上述半導體器件照射由第2光源產生之光; 器件配置部,其配置於上述第1解析部與上述第2解析部之間,保持上述半導體器件,且具有設置有用於上述第1光學系統之光掃描區域之中心與上述第2光學系統之光掃描區域之中心之位置對準之目標的夾盤,上述夾盤相對於上述第1解析部及上述第2解析部相對移動; 電性信號取得部,其接收上述半導體器件輸出之電性信號;及 控制部,其對上述第1解析部、上述第2解析部、上述器件配置部、及上述電性信號取得部輸出命令;且 上述目標可藉由上述第1解析部自上述目標之一側檢測,並可藉由上述第2解析部自上述目標之另一側檢測; 上述控制部係 將對準命令輸出至上述第2解析部及上述器件配置部,該對準命令係於使上述夾盤移動至上述第1解析部可檢測上述目標之位置後,以上述目標為基準,使上述第2光學系統之光掃描區域之中心對準上述第1光學系統之光掃描區域之中心;且 將解析命令輸出至上述第1解析部、上述第2解析部、上述電性信號取得部、及上述器件配置部,該解析命令係於維持上述第1光學系統之光掃描區域之中心與上述第2光學系統之光掃描區域之中心之位置關係之狀態下,自上述第1解析部及上述第2解析部之至少一者對上述半導體器件照射光,藉由上述電性信號取得部接收來自上述半導體器件之電性信號。
  8. 如請求項7之半導體故障解析裝置,其中上述第1解析部包含接收來自上述半導體器件之一側之光之第1光檢測部, 上述第2解析部包含接收來自上述半導體器件之另一側之光之第2光檢測部, 上述對準命令係使上述第1光檢測部取得來自一側之上述目標之第1圖像,並使上述第2光檢測部取得來自另一側之上述目標之第2圖像,基於上述第1圖像及上述第2圖像,使上述第2光學系統之光軸對準上述第1光學系統之光軸,藉此使上述第1光學系統之掃描區域之中心與上述第2光學系統之掃描區域之中心對準。
  9. 如請求項7或8之半導體故障解析裝置,其中上述解析命令係於以上述半導體器件與上述第1光學系統之光掃描區域及上述第2光學系統之光掃描區域重疊之方式,藉由上述器件配置部包含之第3驅動部使上述夾盤移動後,進行上述半導體器件之解析。
  10. 如請求項7至9中任一項之半導體故障解析裝置,其中上述目標係設置於上述夾盤中,與保持上述半導體器件之器件保持部不同之場所。
  11. 如請求項8至10中任一項之半導體故障解析裝置,其中上述第1解析部包含接收來自上述半導體器件之一側之光之第1光檢測部, 上述第2解析部包含接收來自上述半導體器件之另一側之光之第2光檢測部, 上述第1光檢測部取得自一側觀察上述目標之第1圖像, 上述第2光檢測部取得自另一側觀察上述目標之第2圖像。
  12. 如請求項8至11中任一項之半導體故障解析裝置,其中上述第1解析部包含接收來自上述半導體器件之一側之光之第1光檢測部, 上述第2解析部包含接收來自上述半導體器件之另一側之光之第2光檢測部, 上述目標包含透過上述第1光檢測部及上述第2光檢測部可檢測之光之光透過部。
  13. 一種半導體故障解析裝置,其包含: 第1解析部,其經由具有第1光掃描部之第1光學系統對半導體器件照射由第1光源產生之光,第1光檢測部接收根據上述第1光源之光產生之來自上述半導體器件之第1應答光; 第2解析部,其經由具有第2光掃描部之第2光學系統對上述半導體器件照射由第2光源產生之光,第2光檢測部接收根據上述第2光源之光產生之來自上述半導體器件之第2應答光; 器件配置部,其配置於上述第1解析部與上述第2解析部之間,保持上述半導體器件,且具有設置有用於上述第1光學系統之光掃描區域之中心與上述第2光學系統之光掃描區域之中心之位置對準之目標的夾盤,上述夾盤相對於上述第1解析部及上述第2解析部相對移動; 刺激信號施加部,其對上述半導體器件施加刺激信號;及 控制部,其對上述第1解析部、上述第2解析部、上述器件配置部、及上述刺激信號施加部輸出命令;且 上述目標可藉由上述第1解析部自上述目標之一側檢測,並可藉由上述第2解析部自上述目標之另一側檢測; 上述控制部係 將對準命令輸出至上述第2解析部及上述器件配置部,該對準命令係於使上述夾盤移動至上述第1光檢測部可檢測上述目標之位置後,以上述目標為基準,使上述第2光學系統之光掃描區域之中心對準上述第1光學系統之光掃描區域之中心;且 將解析命令輸出至上述第1解析部、上述第2解析部、上述刺激信號施加部、及上述器件配置部,該解析命令係於維持上述第1光學系統之光掃描區域之中心與上述第2光學系統之光掃描區域之中心之位置關係,且將上述刺激信號施加至上述半導體器件之狀態下,自上述第1解析部及上述第2解析部之至少一者對上述半導體器件照射光,且由上述第1光檢測部及上述第2光檢測部之至少一者,接收來自上述半導體器件之上述第1應答光及上述第2應答光之至少一者。
  14. 如請求項13之半導體故障解析裝置,其中上述對準命令係使上述第1光檢測部取得來自一側之上述目標之第1圖像,並使上述第2光檢測部取得來自另一側之上述目標之第2圖像,基於上述第1圖像及上述第2圖像,使上述第2光學系統之光軸對準上述第1光學系統之光軸,藉此使上述第1光學系統之掃描區域之中心與上述第2光學系統之掃描區域之中心對準。
  15. 如請求項12或13之半導體故障解析裝置,其中上述解析命令係於以上述半導體器件與上述第1光學系統之光掃描區域及上述第2光學系統之光掃描區域重疊之方式,藉由上述器件配置部包含之第3驅動部使上述夾盤移動後,進行上述半導體器件之解析。
  16. 如請求項12至14中任一項之半導體故障解析裝置,其中上述目標係設置於上述夾盤中,與保持上述半導體器件之器件保持部不同之場所。
  17. 如請求項12至15中任一項之半導體故障解析裝置,其中上述第1光檢測部取得自一側觀察上述目標之第1圖像, 上述第2光檢測部取得自另一側觀察上述目標之第2圖像。
  18. 如請求項12至16中任一項之半導體故障解析裝置,其中上述目標係包含透過上述第1光檢測部及上述第2光檢測部可檢測之光之光透過部。
  19. 一種半導體故障解析方法,其係使用半導體故障解析裝置解析半導體器件者;且 上述半導體故障解析裝置包含: 第1解析部,其由第1光檢測部經由第1光學系統接收半導體器件發出之光,上述第1光學系統藉由第1驅動部而相對於上述半導體器件相對移動; 第2解析部,其由第2光檢測部經由第2光學系統接收上述半導體器件發出之光,上述第2光學系統藉由第2驅動部而相對於上述半導體器件相對移動; 器件配置部,其配置於上述第1解析部與上述第2解析部之間,保持上述半導體器件,且具有設置有用於上述第1光學系統之光軸與上述第2光學系統之光軸之位置對準之目標的夾盤,上述夾盤相對於上述第1解析部及上述第2解析部相對移動; 刺激信號施加部,其對上述半導體器件施加刺激信號;及 控制部,其對上述第1解析部、上述第2解析部、上述器件配置部、及上述刺激信號施加部輸出命令;且 上述目標可藉由上述第1光檢測部自上述目標之一側檢測,且可藉由上述第2光檢測部自上述目標之另一側檢測;且該方法包含以下步驟: 對準步驟,其於使上述夾盤移動至上述第1光檢測部可檢測上述目標之位置後,以上述目標為基準,使上述第2光學系統之光軸對準上述第1光學系統之光軸;及 解析步驟,其於維持上述第1光學系統之光軸與上述第2光學系統之光軸之位置關係之狀態下,對上述半導體器件施加刺激信號,且由上述第1光檢測部或上述第2光檢測部之至少一者,接收根據上述刺激信號發出之來自上述半導體器件之光。
  20. 如請求項19之半導體故障解析方法,其中於上述解析步驟之後,進而具有將藉由上述第1解析部及上述第2解析部獲得之顯示上述半導體器件之故障部位之記號,附加於上述半導體器件之標記步驟。
  21. 一種半導體故障解析方法,其係使用半導體故障解析裝置解析半導體器件者,且 上述半導體故障解析裝置包含: 第1解析部,其經由具有第1光掃描部之第1光學系統,對半導體器件照射由第1光源產生之光; 第2解析部,其經由具有第2光掃描部之第2光學系統,對上述半導體器件照射由第2光源產生之光; 器件配置部,其配置於上述第1解析部與上述第2解析部之間,保持上述半導體器件,且具有設置有用於上述第1光學系統之光掃描區域之中心與上述第2光學系統之光掃描區域之中心之位置對準之目標的夾盤,上述夾盤相對於上述第1解析部及上述第2解析部相對移動; 電性信號取得部,其接收上述半導體器件輸出之電性信號;及 控制部,其對上述第1解析部、上述第2解析部、上述器件配置部、及上述電性信號取得部輸出命令;且 上述目標可藉由上述第1解析部自上述目標之一側檢測,並可藉由上述第2解析部自上述目標之另一側檢測;且該方法包含以下步驟: 對準步驟,其於使上述夾盤移動至上述第1解析部可檢測上述目標之位置後,以上述目標為基準,使上述第2光學系統之光掃描區域之中心對準上述第1光學系統之光掃描區域之中心;及 解析步驟,其於維持上述第1光學系統之光掃描區域之中心與上述第2光學系統之光掃描區域之中心之位置關係之狀態下,自上述第1解析部及上述第2解析部之至少一者對上述半導體器件照射光,藉由上述電性信號取得部接收來自上述半導體器件之電性信號。
  22. 如請求項21之半導體故障解析方法,其中於上述解析步驟之後,進而具有將藉由上述第1解析部及上述第2解析部獲得之顯示上述半導體器件之故障部位之記號,附加於上述半導體器件之標記步驟。
  23. 一種半導體故障解析方法,其係使用半導體故障解析裝置解析半導體器件者;且 上述半導體故障解析裝置包含: 第1解析部,其經由具有第1光掃描部之第1光學系統對半導體器件照射由第1光源產生之光,第1光檢測部接收根據上述第1光源之光產生之來自上述半導體器件之第1應答光; 第2解析部,其經由具有第2光掃描部之第2光學系統對上述半導體器件照射由第2光源產生之光,第2光檢測部接收根據上述第2光源之光產生之來自上述半導體器件之第2應答光; 器件配置部,其配置於上述第1解析部與上述第2解析部之間,保持上述半導體器件,且具有設置有用於上述第1光學系統之光掃描區域之中心與上述第2光學系統之光掃描區域之中心之位置對準之目標的夾盤,上述夾盤相對於上述第1解析部及上述第2解析部相對移動; 刺激信號施加部,其對上述半導體器件施加刺激信號;及 控制部,其對上述第1解析部、上述第2解析部、上述器件配置部、及上述刺激信號施加部輸出命令;且 上述目標可藉由上述第1光檢測部自上述目標之一側檢測,並可藉由上述第2光檢測部自上述目標之另一側檢測;且該方法包含以下步驟: 對準步驟,其於使上述夾盤移動至上述第1光檢測部可檢測上述目標之位置後,以上述目標為基準,使上述第2光學系統之光掃描區域之中心對準上述第1光學系統之光掃描區域之中心;及 解析步驟,其於維持上述第1光學系統之光掃描區域之中心與上述第2光學系統之光掃描區域之中心之位置關係,且將上述刺激信號施加至上述半導體器件之狀態下,自上述第1解析部及上述第2解析部之至少一者對上述半導體器件照射光,且由上述第1光檢測部及上述第2光檢測部之至少一者,接收來自上述半導體器件之上述第1應答光及上述第2應答光之至少一者。
  24. 如請求項23之半導體故障解析方法,其中於上述解析步驟之後,進而具有將藉由上述第1解析部及上述第2解析部獲得之顯示上述半導體器件之故障部位之記號,附加於上述半導體器件之標記步驟。
TW110101465A 2020-02-18 2021-01-14 半導體故障解析裝置及半導體故障解析方法 TW202133291A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-025354 2020-02-18
JP2020025354 2020-02-18

Publications (1)

Publication Number Publication Date
TW202133291A true TW202133291A (zh) 2021-09-01

Family

ID=77390589

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110101465A TW202133291A (zh) 2020-02-18 2021-01-14 半導體故障解析裝置及半導體故障解析方法

Country Status (7)

Country Link
US (2) US20230072615A1 (zh)
EP (2) EP4102547A4 (zh)
JP (1) JP6984075B1 (zh)
KR (2) KR20220143014A (zh)
CN (2) CN115136288A (zh)
TW (1) TW202133291A (zh)
WO (2) WO2021166345A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115841969B (zh) * 2022-12-12 2023-09-08 江苏宜兴德融科技有限公司 一种半导体器件激光钝化设备及钝化方法
CN116259554B (zh) * 2023-05-15 2023-10-17 拓荆键科(海宁)半导体设备有限公司 一种晶圆键合装置、控制方法及存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098103A (ja) * 1995-06-19 1997-01-10 Nikon Corp 投影露光装置及び投影露光方法
JP2002168798A (ja) * 2000-11-30 2002-06-14 Toshiba Corp 不良解析装置
KR100445974B1 (ko) * 2001-12-01 2004-08-25 주식회사 이오테크닉스 칩 스케일 마커의 마킹 위치 보정 방법 및 그 장치
JP2004146428A (ja) * 2002-10-22 2004-05-20 Renesas Technology Corp 故障解析方法
JP5060821B2 (ja) * 2007-04-10 2012-10-31 ラピスセミコンダクタ株式会社 基板検査装置及び基板検査方法
JP5432551B2 (ja) * 2009-03-13 2014-03-05 株式会社テクノホロン プローブ方法及びプローブ装置
KR101008319B1 (ko) * 2010-07-05 2011-01-13 (주)앤앤아이테크 반도체 칩 검사장치
JP6166032B2 (ja) * 2012-11-06 2017-07-19 浜松ホトニクス株式会社 半導体デバイス検査装置及び半導体デバイス検査方法
JP6218959B2 (ja) * 2014-10-09 2017-10-25 浜松ホトニクス株式会社 解析装置及び解析方法
JP5996687B2 (ja) * 2015-02-10 2016-09-21 浜松ホトニクス株式会社 検査装置及び検査方法

Also Published As

Publication number Publication date
KR20220143014A (ko) 2022-10-24
EP4102547A4 (en) 2024-03-20
EP4102548A1 (en) 2022-12-14
CN115136288A (zh) 2022-09-30
TW202145394A (zh) 2021-12-01
JP2022031283A (ja) 2022-02-18
US20230072615A1 (en) 2023-03-09
WO2021166496A1 (ja) 2021-08-26
EP4102547A1 (en) 2022-12-14
US20230061399A1 (en) 2023-03-02
EP4102548A4 (en) 2024-04-17
KR20220143015A (ko) 2022-10-24
JP6984075B1 (ja) 2021-12-17
CN115136289A (zh) 2022-09-30
WO2021166345A1 (ja) 2021-08-26
JPWO2021166496A1 (zh) 2021-08-26

Similar Documents

Publication Publication Date Title
TWI721583B (zh) 檢查裝置及檢查方法
TWI802125B (zh) 檢查方法、檢查裝置、及標記形成方法
TW202133291A (zh) 半導體故障解析裝置及半導體故障解析方法
JP7186934B1 (ja) 半導体故障解析装置及び半導体故障解析方法
WO2023002688A1 (ja) 半導体故障解析装置及び半導体故障解析方法
JP7558138B2 (ja) 半導体故障解析装置及び半導体故障解析方法
JP6151832B2 (ja) 検査装置及び検査方法