TW202132454A - 固體電解電容器 - Google Patents

固體電解電容器 Download PDF

Info

Publication number
TW202132454A
TW202132454A TW110102375A TW110102375A TW202132454A TW 202132454 A TW202132454 A TW 202132454A TW 110102375 A TW110102375 A TW 110102375A TW 110102375 A TW110102375 A TW 110102375A TW 202132454 A TW202132454 A TW 202132454A
Authority
TW
Taiwan
Prior art keywords
acid
solid electrolytic
electrolyte layer
electrolytic capacitor
solid
Prior art date
Application number
TW110102375A
Other languages
English (en)
Inventor
佐藤健太
中村一平
坂倉正郎
Original Assignee
日商日本貴彌功股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=76992458&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW202132454(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日商日本貴彌功股份有限公司 filed Critical 日商日本貴彌功股份有限公司
Publication of TW202132454A publication Critical patent/TW202132454A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Abstract

本發明提供一種混合型的固體電解電容器,其抑制製品特性的惡化,同時即便混入氯離子亦抑制腐蝕反應。固體電解電容器包括:使陽極箔與陰極箔相向而成的電容器元件、以及形成於所述電容器元件內的電解質層。電解質層具有包含摻雜劑及共軛系高分子的固體電解質層、以及填充於形成有固體電解質層的所述電容器元件內的空隙部的電解液。電解質層以相對於能夠有助於摻雜劑的摻雜反應的官能基1 mol而莫耳比為6以下的比例包含陽離子成分,電解液包含環丁碸系溶劑。

Description

固體電解電容器
本發明是有關於一種併用固體電解質與電解液的混合型(hybrid type)的固體電解電容器。
利用鉭或鋁等閥作用金屬的電解電容器藉由將作為陽極側相向電極的閥作用金屬形成為燒結體或者蝕刻箔等形狀來將電介質擴大化,而獲得小型且大容量。特別是利用固體電解質來覆蓋電介質氧化皮膜的固體電解電容器除了為小型、大容量、低等效串聯電阻外,亦具有容易晶片化、適於表面安裝等特質,對於電子設備的小型化、高功能化、低成本化而言不可或缺。
作為固體電解質,已知有二氧化錳及7,7,8,8-四氰基醌二甲烷(7,7,8,8-tetracyanoquinodimethane,TCNQ)錯合物。近年來,由與電介質氧化皮膜的密接性優異的聚(3,4-伸乙基二氧噻吩)(poly(3,4-ethylenedioxythiophene),PEDOT)等、具有π共軛雙鍵的單體所衍生的導電性高分子作為固體電解質迅速普及。導電性高分子中,於化學氧化聚合或電解氧化聚合時,將有機磺酸等聚陰離子用作摻雜劑,表現出高導電性。
但是,與使電容器元件中含浸電解液、不具有固體電解質層的液體型的電解電容器相比,固體電解電容器對電介質氧化皮膜的缺陷部的修復作用不足。因此,所謂的混合型的固體電解電容器受到矚目,其於使陽極箔與陰極箔相向的電容器元件中形成固體電解質層,並且於電容器元件的空隙含浸電解液(例如參照專利文獻1)。 [現有技術文獻] [專利文獻]
[專利文獻1]日本專利特開2006-114540號公報
[發明所欲解決之課題] 混合型的固體電解電容器中有時會混入氯離子等鹵素離子。氯離子具有電介質氧化皮膜的溶解作用。因此,若鹵素離子產生的溶解作用超出電解液對電介質氧化皮膜的缺陷部修復作用,則電介質氧化皮膜會腐蝕劣化。雖然採取盡可能降低電極箔或隔板(separator)、封口體等材料特有的氯離子含量或防止製造步驟中混入氯離子等對策,但難以使固體電解電容器中的氯離子量為零。
發明者等人獲得如下見解:若提高電解液的水分率,則抑制由氯離子引起的電介質氧化皮膜的溶解作用。另外,獲得如下見解:若使用γ-丁內酯作為溶劑,則抑制由氯離子引起的電介質氧化皮膜的溶解作用。進而,獲得如下見解:若增加電解質的溶質量,則抑制電介質氧化皮膜的溶解作用。
但是,若於固體電解電容器中提高水分率,則有固體電解質層的劣化容易進行、電極箔與固體電解質層的密接性惡化而使等效串聯電阻(equivalent series resistance,ESR)上升之虞。另外於溶劑使用乙二醇的情況下,藉由導電性高分子的高階結構的變化及聚合物鏈的晶體結構再配向,導電性高分子的導電度提升,但γ-丁內酯無法獲得此種效果。因此,若使用γ-丁內酯作為溶劑,則相較於使用乙二醇的情況,靜電電容的特性劣化變得顯著。
另外,發明者等人獲得如下見解:電解質中,特別是若增加陽離子成分,則於對固體電解電容器施加熱應力後,ESR會急劇上升。因此,發明者等人提出減少陽離子成分的量,但另一方面,若減少陽離子成分的量,則容易產生由氯離子引起的電介質氧化皮膜的溶解作用。另外,若降低溶質量,則於低溫環境下電解液容易凝固,靜電電容的特性劣化變得顯著。
如上所述,考量熱應力負荷後的ESR以及高溫環境下及低溫環境下的靜電電容,同時即便混入氯離子亦能夠抑制腐蝕反應的固體電解電容器一直未提出。
本發明是為解決所述課題而提出者,其目的在於提供一種抑制製品特性的惡化,同時即便混入氯離子亦抑制腐蝕反應的混合型的固體電解電容器。 [解決課題之手段]
本發明者等人進行了努力研究,結果獲得如下見解:若以相對於能夠有助於摻雜劑的摻雜反應的官能基1 mol而莫耳比為6以下的比例含有陽離子成分,則抑制施加熱應力後的ESR上升。進而獲得如下見解:由於溶質的量變少,因此變得容易因氯離子而腐蝕,但藉由使用環丁碸系作為溶劑,而消除溶質的量變少帶來的弊病,能夠抑制由氯離子引起的腐蝕,另外低溫環境下的靜電電容亦良好。
本發明是基於該見解而成者,本發明的固體電解電容器的特徵在於包括:使陽極箔與陰極箔相向而成的電容器元件、以及形成於所述電容器元件內的電解質層,且所述電解質層包括固體電解質層及電解液,所述固體電解質層包含摻雜劑以及共軛系高分子,所述電解液填充於形成有所述固體電解質層的所述電容器元件內的空隙部,且所述電解質層以相對於能夠有助於所述摻雜劑的摻雜反應的官能基1 mol而莫耳比為6以下的比例包含陽離子成分,所述電解液包含環丁碸系溶劑。
所述電解質層可包含主鏈的碳數為4以上的脂肪族羧酸作為陰離子成分。該情況下,所述陽離子成分可以相對於能夠有助於摻雜劑的摻雜反應的官能基1 mol而莫耳比為3.5以下的比例包含。
所述脂肪族羧酸可為壬二酸。該情況下,所述陽離子成分可以相對於能夠有助於摻雜劑的摻雜反應的官能基1 mol而莫耳比為1.4以下的比例包含。
所述陰離子成分可與所述陽離子成分等莫耳量地包含。
所述電解液可包含環丁碸系以及乙二醇,且所述環丁碸系相對於所述環丁碸系與所述乙二醇的合計量的混合比可為25 wt%以上。
所述環丁碸系可為選自環丁碸、3-甲基環丁碸、2,4-二甲基環丁碸中的至少一種。
所述固體電解質層可包含山梨糖醇。 [發明的效果]
根據本發明,於併用固體電解質與電解液的固體電解電容器中,能夠使抑制製品特性的惡化與抑制由氯離子引起的腐蝕反應並存。
以下,對本發明的實施形態的固體電解電容器進行說明。再者,本發明並不限定於以下所說明的實施形態。
(整體結構) 固體電解電容器是藉由靜電電容來進行電荷的蓄電及放電的被動元件,被分類為併用固體電解質層與電解液的所謂的混合型。以下,將混合型的固體電解電容器簡稱為固體電解電容器。
固體電解電容器的電容器元件包括陽極箔、陰極箔、隔板及電解質層。陽極箔與陰極箔介隔隔板相向。於陽極箔的表面形成有電介質氧化皮膜。陰極箔亦根據需要供形成電介質氧化皮膜。電解質層具有固體電解質層及電解液。固體電解質層介於陽極箔與陰極箔之間,與電介質氧化皮膜密接。電解液填充於由陽極箔、陰極箔、隔板及固體電解質層構成的電容器元件的空隙部。
該固體電解電容器的製造方法的一例的概況如下。首先,作為第一步驟,將表面形成有電介質氧化皮膜的陽極箔與陰極箔介隔隔板捲繞,形成電容器元件,對該電容器元件實施修復化學轉化。繼而,作為第二步驟,於電容器元件形成固體電解質層。於該步驟中,例如使包含導電性聚合物的粒子或粉末及溶劑的分散體或溶液含浸於電容器元件中。其後,作為第三步驟,將該電容器元件浸漬於電解液中。而且,作為第四步驟,藉由封口體將插入了電容器元件的外裝殼體的開口端部密封後,進行老化,形成固體電解電容器。
(電極箔) 陽極箔及陰極箔是將閥作用金屬作為材料的長條的箔體。閥作用金屬為鋁、鉭、鈮、氧化鈮、鈦、鉿、鋯、鋅、鎢、鉍及銻等。關於純度,陽極箔理想為99.9%以上,陰極箔理想為99%左右以上,亦可包含矽、鐵、銅、鎂、鋅等雜質。
陽極箔作為將閥作用金屬的粉體燒結而成的燒結體、或對經延伸的箔實施蝕刻處理而成的蝕刻箔,表面被擴面化。擴面結構包括隧道狀的凹坑(pit)、海綿狀的凹坑、或密集的粉體間的空隙。典型而言,擴面結構是藉由於鹽酸等存在鹵素離子的酸性水溶液中施加直流或交流的直流蝕刻或交流蝕刻而形成,或者藉由於芯部蒸鍍或燒結金屬粒子等而形成。關於陰極箔,亦可藉由蒸鍍、燒結或蝕刻而具有擴面結構。
電介質氧化皮膜典型而言為於陽極箔的表層形成的氧化皮膜,若陽極箔為鋁製則是使多孔質結構區域氧化而成的氧化鋁。該電介質氧化皮膜是藉由於己二酸、硼酸或磷酸等的水溶液中進行電壓施加的化學轉化處理而形成。另外,亦可根據需要於陰極箔的表層藉由化學轉化處理而形成薄的電介質氧化皮膜(1 V~10 V左右)。進而,電介質氧化皮膜亦可使用藉由蒸鍍法而形成包含金屬氮化物、金屬碳化物、金屬碳氮化物的層者,或者表面含有碳者來製作。
(隔板) 隔板可列舉:牛皮紙(kraft)、馬尼拉麻(Manila hemp)、茅草(esparto)、大麻(hemp)、嫘縈(rayon)等纖維素及該些的混合紙;聚對苯二甲酸乙二酯、聚對苯二甲酸丁二酯、聚萘二甲酸乙二酯、該些的衍生物等聚酯系樹脂;聚四氟乙烯系樹脂;聚偏二氟乙烯系樹脂;維尼綸(vinylon)系樹脂;脂肪族聚醯胺、半芳香族聚醯胺、全芳香族聚醯胺等聚醯胺系樹脂;聚醯亞胺系樹脂;聚乙烯樹脂;聚丙烯樹脂;三甲基戊烯樹脂;聚苯硫醚樹脂;丙烯酸樹脂;聚乙烯醇樹脂等,能夠將該些樹脂單獨或混合使用。
(電解質層) 電解質層具有固體電解質層及電解液。固體電解質層包含共軛系高分子及摻雜劑。於該固體電解質層與電解液中,於任一者或兩者中含有陽離子成分。電解液中於溶劑中至少添加有陰離子成分。
共軛系高分子或摻雜的共軛系高分子亦稱為導電性高分子。固體電解質層的共軛系高分子藉由對具有π共軛雙鍵的單體或其衍生物進行化學氧化聚合或電解氧化聚合而獲得。藉由向共軛系高分子中添加少量容易接受電子的受體(acceptor)、或者容易給予電子的施體(donor),而表現出導電性。若於共軛系高分子中加入受體或施體,則於受體的情況下,自共軛系高分子中抽出π電子而產生負的荷電載體(電洞、hole);於施體的情況下,被供給電子而產生負的荷電載體,表現出導電性。
作為共軛系高分子,能夠無特別限定地使用公知者。例如可列舉:聚吡咯、聚噻吩、聚呋喃、聚苯胺、聚乙炔、聚伸苯、聚伸苯伸乙烯(polyphenylene vinylene)、多並苯(polyacene)、聚噻吩伸乙烯等。該些共軛系高分子可單獨使用,亦可組合兩種以上,進而亦可為兩種以上單體的共聚物。
於所述共軛系高分子中,較佳為噻吩或其衍生物聚合而成的共軛系高分子,較佳為3,4-伸乙基二氧噻吩(即2,3-二氫噻吩並[3,4-b][1,4]二噁英)、3-烷基噻吩、3-烷氧基噻吩、3-烷基-4-烷氧基噻吩、3,4-烷基噻吩、3,4-烷氧基噻吩或該些的衍生物聚合而成的共軛系高分子。作為噻吩衍生物,較佳為選自於3位及4位具有取代基的噻吩中的化合物,噻吩環的3位及4位的取代基可與3位及4位的碳一同形成環。烷基或烷氧基的碳數適合為1~16,尤其是特佳為被稱為EDOT的3,4-伸乙基二氧噻吩的聚合物,即被稱為PEDOT的聚(3,4-伸乙基二氧噻吩)。另外,亦可為於3,4-伸乙基二氧噻吩上加成有烷基的烷基化伸乙基二氧噻吩,例如可列舉:甲基化伸乙基二氧噻吩(即2-甲基-2,3-二氫-噻吩並[3,4-b][1,4]二噁英)、乙基化伸乙基二氧噻吩(即2-乙基-2,3-二氫-噻吩並[3,4-b][1,4]二噁英)等。
摻雜劑能夠無特別限定地使用公知者。例如可列舉:硼酸、硝酸、磷酸等無機酸;乙酸、草酸、檸檬酸、抗壞血酸、酒石酸、方酸(squaric acid)、玫棕酸(rhodizonic acid)、克酮酸(croconic acid)、水楊酸、對甲苯磺酸、1,2-二羥基-3,5-苯二磺酸、甲磺酸、三氟甲磺酸、硼合二水楊酸(borodisalicylic acid)、雙草酸硼酸酯、磺醯基醯亞胺酸、十二烷基苯磺酸、丙基萘磺酸、丁基萘磺酸等有機酸。另外,作為聚陰離子,可列舉:聚乙烯磺酸、聚苯乙烯磺酸、聚烯丙基磺酸、聚丙烯酸磺酸、聚甲基丙烯酸磺酸、聚(2-丙烯醯胺-2-甲基丙磺酸)、聚異戊二烯磺酸、聚丙烯酸、聚甲基丙烯酸、聚馬來酸等。
該些摻雜劑可單獨使用,亦可將兩種以上組合使用。另外,該些摻雜劑可為單獨單體的聚合物,亦可為兩種以上的單體的共聚物。另外,摻雜劑亦可使用高分子或單量體。
作為該固體電解質層的形成方法,並無特別限定,例如,亦能夠使包含導電性高分子的粒子或粉末的分散液含浸於電容器元件中,使導電性高分子附著於電介質氧化皮膜,形成固體電解質層。為了促進向電容器元件的含浸,亦可根據需要而實施減壓處理或加壓處理。含浸步驟可重覆多次。導電性高分子的分散液的溶劑根據需要藉由乾燥而蒸騰除去。根據需要亦可進行加熱乾燥或減壓乾燥。
分散液例如藉由以下方式而獲得:添加單體、釋放出摻雜劑的酸或其鹼金屬鹽、及氧化劑,並攪拌至化學氧化聚合結束,接著,藉由超濾、陽離子交換及陰離子交換等精製方法除去氧化劑及殘留單體。作為氧化劑,能夠使用對甲苯磺酸鐵(III)、萘磺酸鐵(III)、蒽醌磺酸鐵(III)等三價的鐵鹽,或者過氧二硫酸、過氧二硫酸銨、過氧二硫酸鈉等過氧二硫酸鹽等,可使用單獨的化合物,亦可使用兩種以上的化合物。聚合溫度並無嚴格限制,一般為10℃~60℃的範圍。聚合時間一般為10分鐘~30小時的範圍。
另外,分散液例如藉由以下方式而獲得:添加單體及釋放出摻雜劑的酸或其鹼金屬鹽,一邊攪拌一邊進行電解氧化聚合,接著,藉由超濾、陽離子交換及陰離子交換等精製方法除去殘留單體。電解氧化聚合藉由恆電位法、恆電流法、電位掃描法中的任一種方法進行。於採用恆電位法的情況下,較佳為相對於飽和甘汞電極(saturated calomel electrode)而為1.0 V~1.5 V的電位;於採用恆電流法的情況下,較佳為1 μA/cm2 ~10000 μA/cm2 的電流值;於採用電位掃描法的情況下,較佳為在相對於飽和甘汞電極而為0 V~1.5 V的範圍內以5 mV/秒~200 mV/秒的速度進行掃描。聚合溫度並無嚴格限制,一般為10℃~60℃的範圍。聚合時間一般為10分鐘~30小時的範圍。
此處,固體電解質層中較佳為預先含有聚乙二醇或山梨糖醇。特別是,固體電解質層中較佳為預先含有山梨糖醇。聚乙二醇或山梨糖醇例如能夠藉由預先添加至用於形成固體電解質層的分散液中,而使其含有於固體電解質層中。如後所述,若於電解液中選擇包含環丁碸或環狀碸結構的環丁碸系作為溶劑,並使固體電解質層含有聚乙二醇或山梨糖醇,則於-55℃的低溫環境下長時間放置後的靜電電容的降低得到抑制。特別是若添加山梨糖醇,則於低溫環境下長時間放置後的靜電電容的降低得到大幅抑制。
雖不限於此,但藉由環丁碸系與聚乙二醇或山梨糖醇的組合,於低溫環境下長時間放置後的靜電電容的降低得到抑制的原因認為如下。即,山梨糖醇起到抑制低溫環境下的靜電電容降低的效果。但是,若電解液的溶劑為例如乙二醇等具有OH基的質子性溶劑,則山梨糖醇與該質子性溶劑發生氫鍵,無法發揮抑制低溫環境下的靜電電容降低的效果。另一方面,環丁碸系是並無OH基的非質子性溶劑。因此,山梨糖醇不與環丁碸系溶劑相互作用,從而發揮抑制低溫環境下的靜電電容降低的效果。
另外,藉由使固體電解質層中含有聚乙二醇或山梨糖醇,於低溫環境下長時間放置後的靜電電容的降低得到抑制的原因認為如下。即,於電解液因低溫環境下而凝固的情況下,於凝固的電解液內,難以表現出聚乙二醇或山梨糖醇的添加效果。另一方面,即便於低溫環境下電解液凝固,固體電解質層內的聚乙二醇或山梨糖醇亦表現出添加效果。因此,固體電解質層內的聚乙二醇或山梨糖醇起到抑制低溫環境下的靜電電容降低的效果。
其中,電解液中不僅包含環丁碸系溶劑而且亦包含例如乙二醇等其他種類的溶劑,亦能夠獲得同樣的效果,只要包含環丁碸系溶劑,則電解液中亦可包含其他種類的溶劑。另外,該些效果不受山梨糖醇的添加量限制,亦可藉由固體電解質層與電解液的濃度梯度,使山梨糖醇的一部分溶出至電解液側。
固體電解質層中含有的陽離子成分例如可列舉:氫氧化鈉、氫氧化鉀、氫氧化鈣、氨等無機鹼;或如乙胺、二乙胺、甲基乙胺、三乙胺般的脂肪族胺;如苯胺、苄胺、吡咯、咪唑、吡啶般的芳香族胺或該些的衍生物;N-甲基-吡咯啶酮、N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、六甲基磷醯三胺、N-乙烯基吡咯啶酮、N-乙烯基甲醯胺、N-乙烯基乙醯胺等含氮化合物;甲氧化鈉、乙氧化鈉等烷氧化鈉;烷氧化鉀、烷氧化鈣等金屬烷氧化物;二甲基亞碸等有機鹼。該些陽離子成分可單獨使用,亦可併用兩種以上。
電解液中含有的陽離子成分典型而言可藉由有機酸的鹽、無機酸的鹽、或者有機酸與無機酸的複合化合物的鹽而添加至電解液中,於電解液中可等量添加陽離子成分與陰離子成分。陽離子成分可單獨或組合兩種以上的鹽而添加至電解液中。其中,可僅將作為陰離子成分的酸添加至溶劑中,或者將作為陰離子成分的酸及作為陽離子成分的鹼分別添加至溶劑中。
作為有機酸、無機酸以及有機酸與無機酸的複合化合物的至少一種的鹽,例如可列舉銨鹽、四級銨鹽、四級化脒鹽、胺鹽、鈉鹽、鉀鹽等。作為四級銨鹽的四級銨離子,可列舉四甲基銨、三乙基甲基銨、四乙基銨等。作為四級化脒鹽,可列舉乙基二甲基咪唑鎓、四甲基咪唑鎓等。作為胺鹽,可列舉一級胺、二級胺、三級胺的鹽。作為一級胺,可列舉甲胺、乙胺、丙胺等,作為二級胺,可列舉二甲胺、二乙胺、乙基甲胺、二丁胺等,作為三級胺,可列舉三甲胺、三乙胺、三丁胺、乙基二甲胺、乙基二異丙胺等。
陽離子成分以陽離子成分相對於可摻雜的官能基1 mol的莫耳比為6以下的方式添加至電解質層中。若為該範圍,則於熱應力負荷後亦將固體電解電容器的ESR抑制得低。所謂熱應力負荷,是指回流步驟時、或高溫環境下的固體電解電容器的使用時等對固體電解電容器施加熱應力的狀況整體。
可摻雜的官能基是指能夠有助於摻雜劑的摻雜反應的官能基。無需能夠有助於摻雜劑的摻雜反應的官能基全部參與共軛系高分子的摻雜反應,例如,可摻雜能夠有助於摻雜反應的一部分官能基,其餘部分不摻雜。另外,亦可將能夠有助於摻雜劑的摻雜反應的官能基全部摻雜。即,所謂可摻雜的官能基,是摻雜劑所具有的官能基中,可有助於摻雜反應的官能基,而非參與摻雜反應的官能基。該可摻雜的官能基並無特別限定,可列舉無機酸或磺酸基、羧基、羥基等。
電解質層中所含的陽離子成分是指無論源自電解液抑或源自固體電解質層,電解質層中所含的陽離子成分的總量。具體而言,於使固體電解質層中含有陽離子成分,電解液中不含有陽離子成分的情況下,電解質層中所含的陽離子成分是指源自固體電解質層的陽離子成分,且相對於可摻雜的官能基1 mol來規定源自固體電解質層的陽離子成分的總量。另外,於使固體電解質層中不含有陽離子成分,而使電解液中含有陽離子成分的情況下,電解質層中所含的陽離子成分是指源自電解液的陽離子成分,且電解液中的陽離子成分是相對於可摻雜的官能基1 mol來進行規定。進而,於使固體電解質層及電解液兩者中含有陽離子成分的情況下,電解質層中所含的陽離子成分是指,相對於能夠有助於摻雜劑的摻雜反應的官能基1 mol來規定源自固體電解質層的陽離子成分及源自液體的陽離子成分的總量。另外,電解質層中不含陽離子成分,陽離子成分亦可為零。
雖並不限定於此,但之所以若將陽離子成分相對於可摻雜的官能基1 mol的莫耳比設為6以下則將ESR抑制得低,推測是基於以下的理由。即,陽離子成分將摻雜劑中和,使導電性高分子自雙極子(bipolaron)轉換為極子(polaron),提高導電性高分子的導電性,降低固體電解電容器的ESR。另外,熱應力會產生第一現象及第二現象,第一現像是藉由促進陽離子成分對摻雜劑的中和作用,而使導電性高分子自雙極子轉換為極子的現象,第二現像是藉由促進陽離子成分對摻雜劑的作用,而容易引起摻雜劑的脫摻雜反應的現象。並且,推測第一現象與第二現象的平衡與陽離子成分相對於可摻雜的官能基1 mol的莫耳比有關。
結果可認為,若陽離子相對於可摻雜的官能基1 mol的莫耳比超過3.5且為6以下,則由熱應力負荷引起的第二現象相對而言受到抑制,從而殘留由熱應力負荷引起的第一現象的影響,使導電性高分子自雙極子轉換為極子。另一方面,若該莫耳比超過6,則第二現象佔據大的優勢,結果,熱應力負荷後的ESR變大。
特別是於電解質層中,較佳為將陽離子相對於可摻雜的官能基1 mol的莫耳比設為3.5以下。若該莫耳比超過2.8且為3.5以下,則由熱應力負荷引起的第一現象的影響變大,與超過3.5且為6以下的範圍相比,於熱應力負荷後將固體電解電容器的ESR的上升抑制得低,結果,於熱應力負荷後亦能夠將固體電解電容器的ESR維持得更低。
進而,陽離子相對於可摻雜的官能基1 mol的莫耳比較佳為2.8以下。若該莫耳比超過1.4且為2.8以下,則由熱應力負荷引起的第一現象較第二現象更有優勢地發揮作用,將熱應力負荷後的ESR抑制為與熱應力負荷前的ESR相比同等或更低。
另外,較佳為將陽離子相對於可摻雜的官能基1 mol的莫耳比設為1.4以下。若該莫耳比為1.4以下,則由熱應力負荷引起的第一現象較第二現象更有優勢地發揮作用,於熱應力負荷前後固體電解電容器的ESR沒有變化,結果,於熱應力負荷後亦能夠將固體電解電容器的ESR維持得更低。
陰離子成分可與陽離子成分等莫耳量地含有,亦可與陽離子成分相比而過少地含有陰離子成分,亦可與陽離子成分相比而過剩地含有陰離子成分。即,電解質層中的酸成分與鹼成分的莫耳比可任意。若相對於可摻雜的官能基1 mol來規定電解質層中所含的陽離子成分,則無論為陰離子成分與陽離子成分等量、陽離子成分過剩或陰離子成分過剩的哪一者,於熱應力負荷後均將固體電解電容器的ESR抑制得低。
作為成為陰離子成分的有機酸,可列舉:乙二酸、琥珀酸、戊二酸、庚二酸、辛二酸、癸二酸、鄰苯二甲酸、間苯二甲酸、對苯二甲酸、馬來酸、己二酸、苯甲酸、水楊酸、甲苯酸(toluic acid)、庚酸(enanthic acid)、丙二酸、1,6-癸烷二羧酸、1,7-辛烷二羧酸、壬二酸、間苯二酚酸、2,4,6-三羥基苯甲酸(phloroglucinic acid)、沒食子酸、龍膽酸(gentisic acid)、原兒茶酸(protocatechuic acid)、兒茶酚甲酸(pyrocatechuic acid)、偏苯三甲酸、均苯四甲酸、十二烷二酸、11-乙烯基-8-十八碳烯二酸等羧酸、酚類、磺酸。另外,作為無機酸,可列舉:硼酸、磷酸、亞磷酸、次磷酸、碳酸、矽酸等。作為有機酸與無機酸的複合化合物,可列舉:硼合二水楊酸、硼合二草酸、硼合二甘醇酸、硼合二丙二酸、硼合二琥珀酸、硼合二己二酸、硼合二壬二酸、硼合二苯甲酸、硼合二馬來酸、硼合二乳酸、硼合二蘋果酸、硼合二酒石酸、硼合二檸檬酸、硼合二鄰苯二甲酸、硼合二(2-羥基)異丁酸、硼合二間苯二酚酸、硼合二甲基水楊酸、硼合二萘甲酸、硼合二苦杏仁酸及硼合二(3-羥基)丙酸等。
作為陰離子成分,較佳為主鏈的碳數為4以上的脂肪族羧酸。藉由使用主鏈的碳數為4以上的脂肪族羧酸作為陰離子成分,即便陰離子成分相對於電解液100 g而言的分量為17 mmol以下,亦能夠抑制電介質氧化皮膜的腐蝕劣化。換言之,即便以相對於能夠有助於摻雜劑的摻雜反應的官能基1 mol的莫耳比為3.5以下的比例含有陽離子成分,亦能夠抑制電介質氧化皮膜的腐蝕劣化。另外,相對於能夠有助於摻雜劑的摻雜反應的官能基1 mol,陽離子成分的莫耳比為3.5以下,因此熱應力負荷後的ESR的上升得到大幅抑制。
再者,作為主鏈的碳數為4以上的脂肪族羧酸,可列舉己二酸、壬二酸、1,6-癸烷二羧酸、1,7-辛烷二羧酸及11-乙烯基-8-十八碳烯二酸。
作為陰離子成分,更佳為壬二酸。藉由使用壬二酸作為陰離子成分,即便相對於電解液100 g而言的陰離子成分的量為8 mmol以下,亦能夠抑制電介質氧化皮膜的腐蝕劣化。換言之,即便以相對於能夠有助於摻雜劑的摻雜反應的官能基1 mol的莫耳比為1.4以下的比例含有陽離子成分,亦能夠抑制電介質氧化皮膜的腐蝕劣化,從而與熱應力負荷後的ESR的上升抑制並存。
添加陰離子成分及陽離子成分的溶劑為環丁碸。環丁碸的固體電解質層與陽極箔的親和性比乙二醇等低,認為溶劑中所含的氯離子與陽極箔的接觸頻率相對降低。因此,若使用環丁碸作為溶劑,則電介質氧化皮膜的腐蝕劣化得到抑制。另外,環丁碸的熔點較乙二醇及γ-丁內酯更高,預料包含環丁碸的電解液一般而言容易凝固,但於併用固體電解質與電解液的固體電解電容器中,即便於-55℃以上且5℃以下的低溫環境下,靜電電容的劣化亦少。
溶劑不限於環丁碸,只要為包含環狀碸結構的環丁碸系即可。環丁碸系包括環丁碸及環丁碸的衍生物。環丁碸的衍生物例如可列舉於構成環狀的碳原子上鍵結的一個以上的氫原子經烷基取代者,可列舉3-甲基環丁碸、2,4-二甲基環丁碸等。
另外,電解液的溶劑亦可為環丁碸系與其他溶劑的混合。作為其他溶劑,並無特別限定,較佳為多元醇。相較於以γ-丁內酯為溶劑的電解液,以多元醇為溶劑的電解液的耐氯離子性能低,但不會如γ-丁內酯般經時的靜電電容的劣化(ΔCap)變得明顯。作為多元醇,可列舉山梨糖醇、乙二醇、二乙二醇、三乙二醇、聚氧乙二醇、甘油、聚氧乙烯甘油、木糖醇、赤藻糖、甘露醇、二季戊四醇、季戊四醇、或該些的兩種以上的組合。作為多元醇,較佳為乙二醇。藉由乙二醇而引起導電性高分子的高級結構的變化,初期的ESR特性良好,進而高溫特性亦變得良好。
於使用環丁碸系與乙二醇的混合作為溶劑的情況下,環丁碸系相對於環丁碸系與乙二醇的合計量的混合比的下限值較佳為15 wt%,進而佳為25 wt%。環丁碸系相對於環丁碸系與乙二醇的合計量的混合比的上限值較佳為75 wt%以下。若為15 wt%以上,則能夠抑制電介質氧化皮膜的腐蝕劣化,另外亦能夠改善-55℃等低溫環境下的靜電電容的降低。若為25 wt%以上,則能夠更良好地抑制電介質氧化皮膜的腐蝕劣化,另外亦能夠進一步改善-55℃等低溫環境下的靜電電容的降低。若為75 wt%以下,則亦能夠大大抑制於高溫環境下施加負荷時的靜電電容的降低。
再者,亦可於電解液中添加其他添加劑。作為其他添加劑,可列舉硼酸與多糖類(甘露糖醇、山梨糖醇等)的錯合化合物、硼酸與多元醇的錯合化合物、硼酸酯、硝基化合物(鄰硝基苯甲酸、間硝基苯甲酸、對硝基苯甲酸、鄰硝基苯酚、間硝基苯酚、對硝基苯酚、對硝基苄醇等)、磷酸酯等。該些可單獨使用,亦可組合使用兩種以上。
另外,電解液的水分率較佳為0.01 wt%以上且5 wt%以下。若水分率未滿0.01 wt%,則電介質氧化皮膜的修復性惡化,有洩露電流變大之虞。另外,若水分率超過5 wt%,則回流時水發生氣化,有電解電容器膨脹之虞。再者,電解液的水分包含電解液中有意含有的水分、及根據製造環境或製造方法而無意含有的水分此兩者。
(作用效果) 如上所述,該固體電解電容器包括:使陽極箔與陰極箔相向而成的電容器元件、以及形成於電容器元件內的電解質層。電解質層具有包含摻雜劑及共軛系高分子的固體電解質層、以及填充於形成有固體電解質層的電容器元件內的空隙部的電解液。而且,電解質層以相對於能夠有助於摻雜劑的摻雜反應的官能基1 mol而莫耳比為6以下的比例包含陽離子成分。進而,電解液包含環丁碸系溶劑。藉此,抑制賦予了熱應力後的ESR上升,消除溶質變少帶來的弊端,亦能夠抑制由氯離子引起的腐蝕。
電解質層可包含具有碳數為4以上的直鏈結構的脂肪族羧酸,且陽離子成分可以相對於能夠有助於摻雜劑的摻雜反應的官能基1 mol而莫耳比為3.5以下的比例含有。藉此,能夠抑制熱應力後的ESR上升及抑制於高溫環境下施加負荷時的靜電電容的下降等,即抑制製品特性的劣化,同時進一步抑制由氯離子引起的腐蝕。
電解質層可包含壬二酸,且陽離子成分可以相對於能夠有助於摻雜劑的摻雜反應的官能基1 mol而莫耳比為1.4以下的比例含有。藉此,能夠抑制熱應力後的ESR上升及抑制於高溫環境下施加負荷時的靜電電容的下降等,即抑制製品特性的劣化,同時進一步抑制由氯離子引起的腐蝕。
另外,電解液與環丁碸系一起包含乙二醇,環丁碸系相對於環丁碸系與乙二醇的合計量的混合比可為25 wt%以上。藉此,能夠進一步抑制由氯離子引起的腐蝕。
另外,電解液可包含環丁碸系溶劑,且固體電解質層可包含山梨糖醇。藉此,低溫環境下的靜電電容的降低得到抑制。 [實施例]
以下,基於實施例進一步對本發明的固體電解電容器進行詳細說明。再者,本發明並不限定於下述實施例。
改變電解液中的溶劑的種類及電解質層內的陰離子成分與陽離子成分的量,製作比較例1至比較例13以及實施例1至實施例9的固體電解電容器。各固體電解電容器的共同點如下。
即,陽極箔為鋁箔,藉由蝕刻處理而擴面化,藉由化學轉化處理而形成電介質氧化皮膜。陰極箔設為平面箔,即未進行蝕刻處理的鋁箔。於該些陽極箔與陰極箔的各個上連接引線,介隔馬尼拉系隔板而使陽極箔與陰極箔相向地捲繞。電容器元件藉由於磷酸二氫銨水溶液中浸漬10分鐘而進行修復化學轉化。
接著,準備摻雜有聚苯乙烯磺酸(polystyrene sulfonic acid,PSS)的聚伸乙基二氧噻吩(PEDOT)的分散液,浸漬電容器元件,並提起電容器元件,於150℃下乾燥30分鐘。反覆進行多次浸漬及乾燥。藉此,於電容器元件上形成固體電解質層。接著製備電解液,將形成有固體電解質層的電容器元件浸漬於電解液中。將該電容器元件插入至有底筒狀的外裝殼體,於開口端部安裝封口橡膠,藉由緊固加工進行密封。
各固體電解電容器藉由電壓施加而進行老化處理。所製作的各固體電解電容器的額定耐電壓為35 WV,額定電容為47 μF,尺寸為直徑6.1 mm及高度6.3 mm。
於比較例1至比較例11以及實施例1至實施例9的固體電解電容器中所製備的電解液如下表1所示。 (表1)
Figure 02_image001
於上表1中,溶劑的組成比表示相對於溶劑總量的重量比例。如上表1所示,各固體電解電容器中電解液的溶劑組成及組成比不同。另外,各固體電解電容器中陽離子成分的量及陰離子成分的量不同,因此電解質層中所含的陽離子成分相對於可摻雜的官能基1 mol的莫耳比不同。表1中,EG表示乙二醇,TMS表示環丁碸,GBL表示γ-丁內酯,AzA表示壬二酸,TEA表示三乙胺,NH3表示氨。
如表1所示,於實施例1至實施例9以及比較例1至比較例8及比較例11的固體電解電容器中,電解質層中所含的陽離子成分相對於可摻雜的官能基1 mol的莫耳比為6以下。另一方面,比較例9及比較例10的固體電解電容器中,電解質層中所含的陽離子成分相對於可摻雜的官能基1 mol的莫耳比超過6。
另外,比較例1至比較例9的固體電解電容器中,電解液中僅使用乙二醇作為溶劑。另一方面,實施例1至實施例8的固體電解電容器中,電解液中除了含有乙二醇以外亦含有環丁碸作為溶劑。比較例11的固體電解電容器中,電解液中僅使用γ-丁內酯作為溶劑。另一方面,實施例9的固體電解電容器中,電解液中除了含有γ-丁內酯以外亦含有環丁碸作為溶劑。
陰離子成分於比較例1至比較例11以及實施例1至實施例9的固體電解電容器中共通,使用壬二酸。另外,陽離子成分於比較例1至比較例10以及實施例1至實施例8的固體電解電容器中共通,使用三乙胺。實施例9及比較例11的陽離子成分使用氨。
對各固體電解電容器,測定熱應力負荷前後的ESR、靜電電容變化率、及電介質氧化皮膜有無腐蝕劣化。首先,於常溫即20℃下對各固體電解電容器測定熱應力負荷前的ESR。其後,對各固體電解電容器,於150℃下放置60小時,進而於常溫下放置後,測定藉由該回流步驟進行熱應力負荷後的ESR。ESR是於100 kHz下測定。
另外,對各固體電解電容器,於150℃的溫度環境下持續施加35 V的直流電壓800小時。於電壓施加前後,以120 Hz測量靜電電容。而且,計算電壓施加後的靜電電容相對於電壓施加前的靜電電容的變化率。
另外,針對各固體電解電容器,準備添加了50 ppm的氯離子的固體電解電容器及未特意添加氯離子的固體電解電容器。對於未特意添加氯離子的固體電解電容器及添加有50 ppm的氯離子的固體電解電容器,於150℃下施加35 V,以最大1000小時內的各經過時間測定ESR。而且,於相對於未特意添加氯離子的固體電解電容器的ESR,添加了50 ppm的氯離子的固體電解電容器的ESR達到10倍以上的情況下,視為電介質氧化皮膜發生了腐蝕。於1000小時的期間內ESR未達到10倍的情況下,視為電介質氧化皮膜無腐蝕。再者,ESR是於100 kHz下測定。
將各固體電解電容器的熱應力負荷前的ESR、熱應力負荷後的ESR、靜電電容變化率、及電介質氧化皮膜有無腐蝕劣化示於下表2中。 (表2)
Figure 02_image002
若將比較例1至比較例8進行對比,則均使陽離子成分相對於可摻雜的官能基1 mol的莫耳比為6以下,因此熱應力負荷後的ESR的上升得到抑制。然而,比較例1至比較例8的固體電解電容器中,陽離子成分相對於可摻雜的官能基1 mol的莫耳比未滿3.5,因溶質不足而導致電介質氧化皮膜腐蝕劣化。再者,如將比較例1至比較例3進行對比而可知般,即便使陰離子成分過剩,提高陰離子成分與陽離子成分的合計量,亦無法抑制電介質氧化皮膜的腐蝕劣化。
相反,比較例9的固體電解電容器中,陽離子成分相對於可摻雜的官能基1 mol的莫耳比超過6,因此藉由溶質充分而電介質氧化皮膜未腐蝕劣化。然而,熱應力負荷後的ESR急劇上升。
另外,比較例10的固體電解電容器於溶劑中含有環丁碸,另外陽離子成分相對於可摻雜的官能基1 mol的莫耳比超過6,因此亦未見電介質氧化皮膜的腐蝕。然而,比較例10的固體電解電容器中陽離子成分相對於可摻雜的官能基1 mol的莫耳比超過6,因此熱應力負荷後的ESR急劇上升。
另外,比較例11的固體電解電容器的溶劑僅為γ-丁內酯,因此未見電介質氧化皮膜的腐蝕,但靜電電容變化率與實施例9相比亦惡化至超過1.6倍。
另一方面,如表2所示,實施例1至實施例9的固體電解電容器使陽離子成分相對於可摻雜的官能基1 mol的莫耳比為6以下,因此熱應力負荷後的ESR的上升得到抑制。進而,溶劑中包含環丁碸,因此如實施例1至實施例6的固體電解電容器般,即便使陽離子成分相對於可摻雜的官能基1 mol的莫耳比未滿3.5,即,陽離子成分相對於可摻雜的官能基1 mol的莫耳比為任何值,電介質氧化皮膜亦未腐蝕劣化。
另外,實施例1至實施例8的固體電解電容器的靜電電容變化率亦良好。其中,實施例9的固體電解電容器於溶劑中包含γ-丁內酯,因此與實施例1至實施例8相比,靜電電容變化率差。
藉此確認到,於固體電解電容器中,藉由將溶劑設為環丁碸,無論將陽離子成分相對於可摻雜的官能基1 mol的莫耳比設為6以下的任何值,均能夠抑制熱應力負荷後的ESR這一製品特性的劣化,同時亦抑制電介質氧化皮膜的腐蝕劣化。進而,確認到,藉由將與環丁碸混合的溶劑設為乙二醇,亦能夠抑制靜電電容變化率這一製品特性的劣化。
接著,製作改變了電解液中的乙二醇與環丁碸的比率的實施例10至實施例14以及比較例12的固體電解電容器。除了電解液的組成以外,實施例10至實施例14以及比較例12的固體電解電容器藉由與實施例1至實施例9相同的製法及相同的條件來製作。
將實施例10至實施例14以及比較例12的固體電解電容器的電解液的組成示於下表3中。 (表3)
Figure 02_image003
如上表3所示,實施例10至實施例14以及比較例12的電解液使用氨作為陽離子成分。比較例12的電解液僅使用乙二醇作為溶劑,實施例14的電解液僅使用環丁碸作為溶劑,實施例10至實施例13的電解液使用乙二醇與環丁碸的混合作為溶劑。實施例10至實施例13的電解液中乙二醇與環丁碸的組成比不同。
對實施例10至實施例14以及比較例12的固體電解電容器的低溫特性進行試驗。即,將各固體電解電容器於-55℃的環境下放置40小時。於低溫環境下的放置前後測定靜電電容,計算低溫環境下的放置前後的靜電電容的變化率。另外,以比較例12的靜電電容變化率為基準,計算相對於比較例12而言的實施例10至實施例14的固體電解電容器的靜電電容變化率的改善率。將其結果示於下表4中。
(表4)
Figure 02_image004
如表4所示,與比較例12的固體電解電容器相比,實施例10至實施例14的固體電解電容器確認到低溫環境下的靜電電容的變化得到抑制。另外,確認到溶劑中的環丁碸的混合比率越高,低溫環境下的靜電電容的變化越得到改善。
藉此,於固體電解電容器中,藉由使陽離子成分相對於可摻雜的官能基1 mol的莫耳比為6以下,且包含環丁碸作為溶劑,亦能夠抑制低溫環境下的靜電電容的變化。
此處,製作實施例31至實施例33以及比較例13的固體電解電容器,進一步觀察低溫環境下的靜電電容的變化。將實施例31至實施例33以及比較例13的固體電解電容器的固體電解質層中所含的添加物與電解液的組成的組合示於下表5中。 (表5)
Figure 02_image005
如上表5所示,於實施例32的固體電解電容器中,電解液中包含環丁碸作為溶劑,固體電解質層中添加有山梨糖醇。與此相對,實施例31的電解液中包含環丁碸作為溶劑,但固體電解質層中未添加山梨糖醇等添加物。實施例33的電解液中包含環丁碸作為溶劑,但固體電解質層中添加有聚乙二醇來代替山梨糖醇。另外,於比較例13的固體電解電容器中,電解液中不含環丁碸,溶劑僅為乙二醇,但於固體電解質層中添加有山梨糖醇。即,固體電解質層中包含山梨糖醇,且包含環丁碸作為電解液的溶劑的僅為實施例32的固體電解電容器。
山梨糖醇及聚乙二醇是藉由添加至將固體電解質層形成於電容器元件時的分散液中,而含有於固體電解質層中。具體而言,相對於摻雜有聚苯乙烯磺酸(PSS)的聚乙烯二氧噻吩(PEDOT)的分散液,以8 wt%的比例添加山梨糖醇或聚乙二醇,使電容器元件浸漬於該分散液中。另外,對於實施例31至實施例33以及比較例13的電解液,添加壬二酸銨作為溶質,相對於電解液100 g而言的陰離子成分量及陽離子成分量均為4 mmol。而且,實施例31至實施例33以及比較例13的電解液中,陽離子成分相對於可摻雜的官能基1 mol的莫耳比為0.7。
對該些實施例31至實施例33以及比較例13的固體電解電容器的低溫特性進行試驗。將各固體電解電容器於-55℃的環境下放置436小時,於低溫環境下的放置前後測定靜電電容。而且,計算低溫環境下的放置前後的靜電電容的變化率。將其結果示於下表6中。
(表6)
Figure 02_image006
如表6所示,與比較例13的固體電解電容器相比,實施例31至實施例33的固體電解電容器中低溫環境下的靜電電容的變化得到抑制。另外,包含環丁碸作為電解液的溶劑,且於固體電解質層內包含山梨糖醇或聚乙二醇的實施例32及實施例33中,相較於實施例31,低溫環境下的靜電電容的變化得到抑制。
於實施例31至實施例33的固體電解電容器中,使用環丁碸作為電解液的溶劑,且使固體電解質層中含有山梨糖醇的實施例32的固體電解電容器中,低溫環境下的靜電電容的變化得到出色的抑制。如此,確認到於固體電解電容器中,藉由使用環丁碸作為電解液的溶劑,且使固體電解質層中含有山梨糖醇或聚乙二醇,低溫環境下的靜電電容的變化得到更進一步抑制。進而,確認到若使固體電解質層中含有山梨糖醇,則出色地抑制低溫環境下的靜電電容的變化。
進而,將實施例10至實施例14以及比較例12的固體電解電容器的熱應力負荷前的ESR、熱應力負荷後的ESR、靜電電容變化率及電介質氧化皮膜有無腐蝕劣化示於下表7中。再者,各測定方法及測定條件與實施例1至實施例9以及比較例1至比較例11的固體電解電容器相同。
(表7)
Figure 02_image007
如上表7所示,確認到若使用環丁碸作為溶劑,則能夠抑制製品特性的惡化,同時抑制電介質氧化皮膜的腐蝕。確認到若環丁碸的混合比率相對於溶劑總量為15 wt%以上,則能夠進一步抑制電介質氧化皮膜的腐蝕。另外,若環丁碸的混合比率相對於溶劑總量為25 wt%以上,則能夠進一步抑制電介質氧化皮膜的腐蝕,於1000小時的期間內未確認到腐蝕劣化。另外,確認到若環丁碸的混合比率相對於溶劑總量為75 wt%以下,則能夠進一步抑制靜電電容變化率。
進而,對於實施例11的固體電解電容器,改變陰離子成分的種類及陽離子成分相對於可摻雜的官能基1 mol的莫耳比,製作實施例15至實施例30的固體電解電容器。
實施例11以及實施例15至實施例30的固體電解電容器於各固體電解電容器的電解液中添加了鄰苯二甲酸、水楊酸、琥珀酸、戊二酸、己二酸、壬二酸、十二烷二酸、1,6-癸烷二羧酸、1,7-辛烷二酸、11-乙烯基-8-十八碳烯二酸作為陰離子成分。鄰苯二甲酸及水楊酸為芳香族羧酸。琥珀酸、戊二酸、己二酸、壬二酸、十二烷二酸、1,6-癸烷二羧酸、1,7-辛烷二羧酸及11-乙烯基-8-十八碳烯二酸為脂肪族羧酸。
再者,關於主鏈的碳數,己二酸為4、壬二酸為7、十二烷二酸為10、1,6-癸烷二羧酸為10、1,7-辛烷二羧酸為8、11-乙烯基-8-十八碳烯二酸為16。
而且,測定實施例11及實施例15至實施例30的固體電解電容器的熱應力負荷前的ESR、熱應力負荷後的ESR、靜電電容變化率、及電介質氧化皮膜有無腐蝕劣化。各測定方法及測定條件與實施例1至實施例9以及比較例1至比較例11的固體電解電容器相同。
將實施例15至實施例22的電解電容器的電解液組成示於下表8中。 (表8)
Figure 02_image008
如上表8所示,實施例15至實施例22的固體電解電容器中,添加有各種陰離子成分,同時使用環丁碸作為溶劑,另外陽離子成分相對於可摻雜的官能基1 mol的莫耳比為3.5以上且6以下。
將該實施例15至實施例22的固體電解電容器的各種測定結果示於下表9中。 (表9)
Figure 02_image009
如上表9所示,根據實施例15至實施例22的固體電解電容器的結果,確認到若與陰離子成分的種類無關,使用環丁碸作為溶劑,且陽離子成分相對於可摻雜的官能基1 mol的莫耳比為3.5以上且6以下,則能夠抑制製品特性的惡化,同時抑制電介質氧化皮膜的腐蝕。
接著,將實施例11以及實施例23至實施例30的電解電容器的電解液組成示於下表10中。 (表10)
Figure 02_image010
如上表10所示,實施例11以及實施例23至實施例30的固體電解電容器中,添加有各種陰離子成分,同時使用環丁碸作為溶劑,另外陽離子成分相對於可摻雜的官能基1 mol的莫耳比為1.4以上且6以下。
將該實施例11以及實施例23至實施例30的固體電解電容器的各種測定結果示於下表11中。 (表11)
Figure 02_image011
如上表11所示,確認到若使用主鏈的碳數為4以上的脂肪族羧酸作為陰離子成分,且使用環丁碸作為溶劑,則即便陽離子成分相對於可摻雜的官能基1 mol的莫耳比為3.5以下,亦能夠抑制製品特性的惡化,同時抑制電介質氧化皮膜的腐蝕。關於陽離子成分相對於可摻雜的官能基1 mol的莫耳比,實施例11以及實施例23至實施例30比實施例15至實施例22小,因此確認到熱應力負荷後的ESR的上升得到進一步抑制。
再者,實施例23的固體電解電容器即便經過1500小時亦未確認到電介質氧化皮膜的腐蝕。即,若溶劑中包含環丁碸系,且陰離子成分為壬二酸,則即便陽離子成分相對於可摻雜的官能基1 mol的莫耳比小,電介質氧化皮膜的腐蝕亦得到抑制。
以下,下表12中按照陽離子成分相對於可摻雜的官能基1 mol的莫耳比來示出熱應力負荷後的ESR。 (表12)
Figure 02_image012
如上表12所示,於參考例1至參考例8的固體電解電容器中,僅使用乙二醇作為溶劑。陰離子成分為壬二酸,於參考例1至參考例8的全部中為等量。陽離子成分為三乙胺,於參考例1至參考例8中添加量不同。此外,參考例1至參考例8藉由與實施例1至實施例9以及比較例1至比較例11的固體電解電容器相同的製法及相同的條件來製作,藉由相同的測定方法及相同的條件測定熱應力負荷後的ESR。
如比較上表12的參考例7及參考例8而可知般,若陽離子成分相對於可摻雜的官能基1 mol的莫耳比超過3.5且為6以下,則與該莫耳比超過6的情況相比,熱應力負荷後的ESR被抑制在一半以下。
如比較上表12的參考例7及參考例6而可知般,若陽離子成分相對於可摻雜的官能基1 mol的莫耳比超過2.8且為3.5以下,則與該莫耳比超過3.5且為6以下的情況相比,熱應力負荷後的ESR飛躍性地降低。
如比較上表12的參考例6及參考例5而可知般,若陽離子成分相對於可摻雜的官能基1 mol的莫耳比超過1.4且為2.8以下,則與該莫耳比超過2.8且為3.5以下的情況相比,熱應力負荷後的ESR飛躍性地降低。
如將參考例1至參考例4與上表12的參考例5加以比較而可知般,若陽離子成分相對於可摻雜的官能基1 mol的莫耳比為1.4以下,則與該莫耳比超過1.4且為2.8以下的情況相比,熱應力負荷後的ESR飛躍性地降低。

Claims (9)

  1. 一種固體電解電容器,其特徵在於,包括: 電容器元件,是使陽極箔與陰極箔相向而成;以及 電解質層,形成於所述電容器元件內,且 所述電解質層包括: 固體電解質層,包含摻雜劑及共軛系高分子;以及 電解液,填充於形成有所述固體電解質層的所述電容器元件內的空隙部,且 相對於能夠有助於所述摻雜劑的摻雜反應的官能基1 mol,所述電解質層以莫耳比為6以下的比例包含陽離子成分, 所述電解液包含環丁碸系溶劑。
  2. 如請求項1所述的固體電解電容器,其中 所述電解質層包含主鏈的碳數為4以上的脂肪族羧酸作為陰離子成分。
  3. 如請求項2所述的固體電解電容器,其中 相對於能夠有助於摻雜劑的摻雜反應的官能基1 mol,以莫耳比為3.5以下的比例包含所述陽離子成分。
  4. 如請求項1所述的固體電解電容器,其中 所述脂肪族羧酸為壬二酸。
  5. 如請求項4所述的固體電解電容器,其中 相對於能夠有助於摻雜劑的摻雜反應的官能基1 mol,以莫耳比為1.4以下的比例包含所述陽離子成分。
  6. 如請求項2至請求項5中任一項所述的固體電解電容器,其中 包含相等莫耳量的所述陰離子成分與所述陽離子成分。
  7. 如請求項1至請求項6中任一項所述的固體電解電容器,其中 所述電解液包含環丁碸系以及乙二醇,且 所述環丁碸系相對於所述環丁碸系與所述乙二醇的合計量的混合比為25 wt%以上。
  8. 如請求項1至請求項7中任一項所述的固體電解電容器,其中 所述環丁碸系為選自環丁碸、3-甲基環丁碸、2,4-二甲基環丁碸中的至少一種。
  9. 如請求項1至請求項8中任一項所述的固體電解電容器,其中 所述固體電解質層包含山梨糖醇。
TW110102375A 2020-01-22 2021-01-21 固體電解電容器 TW202132454A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-008763 2020-01-22
JP2020008763 2020-01-22

Publications (1)

Publication Number Publication Date
TW202132454A true TW202132454A (zh) 2021-09-01

Family

ID=76992458

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110102375A TW202132454A (zh) 2020-01-22 2021-01-21 固體電解電容器

Country Status (7)

Country Link
US (1) US20230335342A1 (zh)
EP (1) EP4095873A4 (zh)
JP (2) JP7226593B2 (zh)
KR (1) KR20220121837A (zh)
CN (1) CN114902361A (zh)
TW (1) TW202132454A (zh)
WO (1) WO2021149739A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023027059A1 (zh) * 2021-08-26 2023-03-02
JP2023032518A (ja) * 2021-08-27 2023-03-09 サン電子工業株式会社 固体電解コンデンサ及び固体電解コンデンサの製造方法
WO2023054502A1 (ja) * 2021-09-30 2023-04-06 日本ケミコン株式会社 固体電解コンデンサ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779277B2 (ja) * 2001-09-27 2011-09-28 日本ケミコン株式会社 固体電解コンデンサ及びその製造方法
JP4019968B2 (ja) * 2003-02-19 2007-12-12 松下電器産業株式会社 固体電解コンデンサ及びその製造方法
JP5052746B2 (ja) 2004-10-12 2012-10-17 パナソニック株式会社 電解コンデンサ
JP4916416B2 (ja) * 2007-10-30 2012-04-11 サン電子工業株式会社 電解コンデンサの製造方法及び電解コンデンサ
JP2013074212A (ja) * 2011-09-28 2013-04-22 Nippon Chemicon Corp 固体電解コンデンサ用分散液の製造方法及び固体電解コンデンサ用分散液、この分散液を用いた固体電解コンデンサの製造方法及び固体電解コンデンサ
US9105401B2 (en) * 2011-12-02 2015-08-11 Avx Corporation Wet electrolytic capacitor containing a gelled working electrolyte
CN107610936B (zh) * 2012-07-31 2019-07-09 日本贵弥功株式会社 固体电解电容器及其制造方法
JP2014123685A (ja) * 2012-12-21 2014-07-03 Nippon Chemicon Corp 電解コンデンサ及びその製造方法
US9978527B2 (en) * 2014-10-03 2018-05-22 Rubycon Corporation Solid Electrolytic capacitor and manufacturing method thereof
JP6740579B2 (ja) * 2015-08-12 2020-08-19 日本ケミコン株式会社 固体電解コンデンサおよび固体電解コンデンサの製造方法
WO2017090241A1 (ja) * 2015-11-27 2017-06-01 パナソニックIpマネジメント株式会社 電解コンデンサおよびその製造方法
JP6893311B2 (ja) * 2016-10-31 2021-06-23 パナソニックIpマネジメント株式会社 電解コンデンサ
JP7245990B2 (ja) * 2018-03-30 2023-03-27 パナソニックIpマネジメント株式会社 電解コンデンサの製造方法
CN112106157B (zh) * 2018-07-18 2022-06-07 日本贵弥功株式会社 固体电解电容器
US11657982B2 (en) * 2018-09-21 2023-05-23 Nippon Chemi-Con Corporation Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2023022305A (ja) 2023-02-14
KR20220121837A (ko) 2022-09-01
CN114902361A (zh) 2022-08-12
JP7226593B2 (ja) 2023-02-21
US20230335342A1 (en) 2023-10-19
WO2021149739A1 (ja) 2021-07-29
JPWO2021149739A1 (zh) 2021-07-29
EP4095873A4 (en) 2024-02-28
EP4095873A1 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
JP6935438B2 (ja) 固体電解コンデンサ及びその製造方法
US9972445B2 (en) Electrolytic capacitor and method of manufacturing the same
TWI825130B (zh) 固體電解電容器
JP7226593B2 (ja) 固体電解コンデンサ
JP2023176004A (ja) 固体電解コンデンサ
JP2020057816A (ja) 電解コンデンサ及びその製造方法
TWI838403B (zh) 固體電解電容器
WO2023171618A1 (ja) 固体電解コンデンサ用電解液、及び固体電解コンデンサ
JP2021170656A (ja) 電解コンデンサ及びその製造方法