TW202118115A - μLED DISPLAY PANEL WITH A BLACK MATRIX ANTI-DISPERSION LAYER AND THE MANUFACTURING METHOD - Google Patents

μLED DISPLAY PANEL WITH A BLACK MATRIX ANTI-DISPERSION LAYER AND THE MANUFACTURING METHOD Download PDF

Info

Publication number
TW202118115A
TW202118115A TW108137077A TW108137077A TW202118115A TW 202118115 A TW202118115 A TW 202118115A TW 108137077 A TW108137077 A TW 108137077A TW 108137077 A TW108137077 A TW 108137077A TW 202118115 A TW202118115 A TW 202118115A
Authority
TW
Taiwan
Prior art keywords
micro
black matrix
light
emitting diode
layer
Prior art date
Application number
TW108137077A
Other languages
Chinese (zh)
Inventor
許銘案
林佳慧
林文福
Original Assignee
恆煦電子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恆煦電子材料股份有限公司 filed Critical 恆煦電子材料股份有限公司
Priority to TW108137077A priority Critical patent/TW202118115A/en
Publication of TW202118115A publication Critical patent/TW202118115A/en

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

A micro light-emitting-diode display panel with a black matrix anti-dispersion layer and a manufacturing method thereof, comprising: a substrate; an electrode layer having a plurality of electrodes formed on the substrate, defining a plurality of pixels; a plurality of micro-lights a diode, which is adhered to the electrode; and a black matrix anti-dispersion layer formed by a black negative photoresist formed between the gaps of the micro-light emitting diodes, the black matrix anti-dispersion layer forming a plurality of pixels space to define the pixels.

Description

具黑矩陣防散色層的微發光二極體顯示面板及其製作方法 Micro-luminescence diode display panel with black matrix anti-scattering layer and manufacturing method thereof

本發明係關於一種微發光二極體技術,特別關於一種具黑矩陣防散色層的微發光二極體顯示面板及其製作方法。 The present invention relates to a micro-light-emitting diode technology, in particular to a micro-light-emitting diode display panel with a black matrix anti-scattering layer and a manufacturing method thereof.

微發光二極體顯示器(Micro Light Emitting Diode Display,μLED)是一種將微發光二極體作為顯示器的光發射元件的新世代顯示器。此技術係將LED薄膜化、微小化、陣列化至單一LED尺寸僅在1~10μm等級,再將μLED批量式移轉至電路基板上,進行表面黏著後,與電路基板上的電極與電晶體、上電極、保護層等等共同構成微發光二極體顯示器所需的μLED面板。 Micro Light Emitting Diode Display (μLED) is a new generation display that uses micro light emitting diodes as the light emitting element of the display. This technology is to thin, miniaturize, and array the LEDs to a single LED size of only 1~10μm, and then transfer the μLEDs to the circuit board in batches, and after surface adhesion, the electrodes and transistors on the circuit board , The upper electrode, the protective layer, etc., together constitute the μLED panel required by the micro-light-emitting diode display.

μLED具有自發光、低功耗、響應時間快、高亮度、超高對比、廣色域、廣視角、超輕薄、使用壽命長與適應各種工作溫度的諸多優異特性,μLED的技術規格相較於LCD與OLED具有壓倒性的優勢。 μLED has many excellent characteristics such as self-luminescence, low power consumption, fast response time, high brightness, ultra-high contrast, wide color gamut, wide viewing angle, ultra-light and thin, long service life and adapting to various operating temperatures. The technical specifications of μLED are compared with LCD and OLED have overwhelming advantages.

然而,μLED於晶粒巨量移轉並貼合至含電極的基板10之後,在個別晶粒發光過程中會有側向光與散色的問題,這兩個狀況均可能會導致像素不清晰、對比度降低等問題。如第1A、1B圖所示者,其分別為習 知技術μLED於晶粒巨量移轉後的上視與沿A-A剖面線的剖面示意圖。可以發現,μLED晶粒30-n-1,於電極20-n-1的控制下(其餘的電極20-n-2、20-n-3、20-n-4、20-n-5、20-n-6等上方皆有一個μLED晶粒)進行發光,發出的光部份朝上方而構成光90-1,部份則構成側向漏光90-2而反射至旁邊的μLED晶粒30-n-2的位置,進而形成對旁邊μLED晶粒30-n-2所產生的光源的干擾,進而影響其表現。反之,μLED晶粒30-n-1也會受到其旁邊的μLED晶粒30-n-2的側向光與反射光的影響。這樣的側向光的問題,會存在於所有μLED晶粒30-n-1、30-n-2、30-n-3、30-n-4、30-n-5、30-n-6上。 However, after the micro LEDs are massively transferred and attached to the electrode-containing substrate 10, there will be lateral light and dispersion problems during the light emission of individual dies. Both of these conditions may cause unclear pixels. , Contrast reduction and other issues. As shown in Figures 1A and 1B, they are Xi The top view and the cross-sectional schematic diagram along the A-A section line of the known technology μLED after the massive transfer of the die. It can be found that the μLED die 30-n-1 is under the control of the electrode 20-n-1 (the remaining electrodes 20-n-2, 20-n-3, 20-n-4, 20-n-5, There is a μLED die above 20-n-6, etc.) to emit light, part of the emitted light is upward to form light 90-1, and part of it forms lateral leakage light 90-2 and is reflected to the nearby μLED die 30 The position of -n-2, in turn, interferes with the light source generated by the μLED die 30-n-2 next to it, thereby affecting its performance. Conversely, the μLED die 30-n-1 will also be affected by the side light and reflected light of the μLED die 30-n-2 next to it. This kind of side light problem will exist in all μLED dies 30-n-1, 30-n-2, 30-n-3, 30-n-4, 30-n-5, 30-n-6 on.

因此,如何適當地防止μLED在發射光的時候,降低其側向光與散色光,藉以提高μLED的清晰度與對比度,成為μLED技術發展的一個重要研發方向。 Therefore, how to properly prevent the μLED from reducing its lateral light and astigmatic light when emitting light, so as to improve the clarity and contrast of the μLED, has become an important research and development direction for the development of μLED technology.

為達上述目的,本發明提供一種具黑矩陣防散色層的微發光二極體顯示面板及其製作方法,運用曝光顯影製程來製作μLED之間的黑矩陣層,藉以準確地製作出能填於μLED之間空隙的黑矩陣層,進而解決μLED的因漏光、反射而造成像素不清晰、對比度降低等技術問題,進而達到像素清晰度與對比度等特殊技術功效。 In order to achieve the above objective, the present invention provides a micro-light-emitting diode display panel with a black matrix anti-scattering layer and a manufacturing method thereof. The black matrix layer between the μLEDs is fabricated by the exposure and development process, so as to accurately fabricate the black matrix layer between the μLEDs. The black matrix layer in the gap between the μLEDs solves the technical problems of the μLEDs, such as unclear pixels and reduced contrast due to light leakage and reflection, and achieves special technical effects such as pixel definition and contrast.

本發明的目的在提供一種具黑矩陣防散色層的微發光二極體顯示面板,包含:一種具黑矩陣防散色層的微發光二極體顯示面板及其製作方法,其包含:一基板;一電極層,具有複數個電極,形成於該基板上,定義複數個像素;複數個微發光二極體,個別黏著於該電極上;及一黑矩陣 防散色層,以黑色負型光阻形成於該些微發光二極體之間的間隔。 The object of the present invention is to provide a micro-light-emitting diode display panel with a black matrix anti-scattering layer, including: a micro-light-emitting diode display panel with a black matrix anti-scattering layer and a manufacturing method thereof, including: 1. A substrate; an electrode layer with a plurality of electrodes formed on the substrate to define a plurality of pixels; a plurality of micro-light emitting diodes, which are individually adhered to the electrodes; and a black matrix The anti-scattering layer is formed with a black negative photoresist in the space between the light-emitting diodes.

本發明又提供一種具黑矩陣防散色層的微發光二極體顯示面板的製作方法,包含:於完成巨量轉移之一微發光二極體基板上形成一負型光阻層;以一光罩對該負型光阻層進行曝光,曝光部位為該微發光二極體基板中複數個微發光二極體之間的間隔處;移除未被曝光的該負型光阻層,被曝光的該負型光阻層構成一黑矩陣結構;固化該黑矩陣結構。 The present invention also provides a method for manufacturing a micro-light-emitting diode display panel with a black matrix anti-scattering layer, which includes: forming a negative photoresist layer on a micro-light-emitting diode substrate that completes the massive transfer; The photomask exposes the negative photoresist layer, and the exposed position is the interval between a plurality of micro light emitting diodes in the micro light emitting diode substrate; the unexposed negative photoresist layer is removed, and the negative photoresist layer is removed. The exposed negative photoresist layer constitutes a black matrix structure; the black matrix structure is cured.

本發明又提供一種具黑矩陣防散色層的微發光二極體顯示面板的製作方法,包含:於一基板上形成一負型光阻層;以一光罩對該負型光阻層進行曝光,曝光部位為定義複數個微發光二極體之間的間隔處;移除未被曝光的該負型光阻層,被曝光的該負型光阻層構成一黑矩陣結構,並構成複數個像素空間,該些像素空間的尺寸略大於該微發光二極體的尺寸;固化該黑矩陣結構;於該些像素空間中製作該電極層;及將微發光二極體巨量轉移至該些像素空間中。 The present invention also provides a method for manufacturing a micro-light-emitting diode display panel with a black matrix anti-scattering layer, which includes: forming a negative photoresist layer on a substrate; and applying a mask to the negative photoresist layer Exposure, the exposed position is defined as the interval between a plurality of micro-light emitting diodes; the unexposed negative photoresist layer is removed, and the exposed negative photoresist layer forms a black matrix structure and forms a plurality of Pixel spaces, the size of the pixel spaces is slightly larger than the size of the micro light-emitting diode; curing the black matrix structure; fabricating the electrode layer in the pixel spaces; and transferring the micro light-emitting diode to the In some pixel space.

本發明尚提供一種具黑矩陣防散色層的微發光二極體顯示面板的製作方法,包含:於具有以製作好對應於多個像素的電極層之一基板上形成一負型光阻層;以一光罩對該負型光阻層進行曝光,曝光部位為定義複數個微發光二極體之間的間隔處;移除未被曝光的該負型光阻層,被曝光的該負型光阻層構成一黑矩陣結構,並構成複數個像素空間,該些像素空間的尺寸略大於該微發光二極體的尺寸;固化該黑矩陣結構;及,將微發光二極體巨量轉移至該些像素空間中。 The present invention also provides a method for manufacturing a micro-light-emitting diode display panel with a black matrix anti-scattering layer, including: forming a negative photoresist layer on a substrate having electrode layers corresponding to a plurality of pixels. ; Expose the negative photoresist layer with a photomask, and the exposure position is defined as the interval between a plurality of micro-light emitting diodes; remove the negative photoresist layer that is not exposed, and the negative photoresist that is exposed The photoresist layer forms a black matrix structure and forms a plurality of pixel spaces, the size of the pixel spaces is slightly larger than the size of the micro-light-emitting diode; the black matrix structure is cured; and the micro-light-emitting diode is massively Transfer to these pixel spaces.

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下(實施方 式)。 In order to make the above and other objects, features, and advantages of the present invention more obvious and understandable, a few preferred embodiments are listed below in conjunction with the accompanying drawings, which are described in detail as follows (implementation method) formula).

10‧‧‧基板 10‧‧‧Substrate

20-n-2、20-n-3、20-n-4、20-n-5、20-n-6‧‧‧電極 20-n-2, 20-n-3, 20-n-4, 20-n-5, 20-n-6‧‧‧ electrode

30-n-1、30-n-2、30-n-3、30-n-4、30-n-5、30-n-6‧‧‧μLED晶粒 30-n-1, 30-n-2, 30-n-3, 30-n-4, 30-n-5, 30-n-6‧‧‧μLED die

40-1、40-2、50-1、50-2‧‧‧負型光阻層 40-1, 40-2, 50-1, 50-2‧‧‧Negative photoresist layer

40-n-1、40-n-2、40-n-3、40-n-4、40-n-5、40-n-6‧‧‧負型光阻層 40-n-1, 40-n-2, 40-n-3, 40-n-4, 40-n-5, 40-n-6‧‧‧Negative photoresist layer

50-1’、50-2’‧‧‧負型光阻層 50-1’、50-2’‧‧‧Negative photoresist layer

50-n-1、50-n-2、50-n-3、50-n-4、50-n-5、50-n-6‧‧‧負型光阻層 50-n-1, 50-n-2, 50-n-3, 50-n-4, 50-n-5, 50-n-6‧‧‧Negative photoresist layer

60-n-1、60-n-2、60-n-3、60-n-4、60-n-5、60-n-6‧‧‧像素空間 60-n-1, 60-n-2, 60-n-3, 60-n-4, 60-n-5, 60-n-6‧‧‧Pixel space

90-1‧‧‧光 90-1‧‧‧Light

90-2‧‧‧側向漏光 90-2‧‧‧Side light leakage

第1A、1B圖,習知技術μLED於晶粒巨量移轉後的上視與沿A-A剖面線的剖面示意圖。 Figures 1A and 1B are the top view and the cross-sectional schematic diagram along the A-A section line of the conventional μLED after the massive transfer of the die.

第2A-2E圖,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法的一實施例之流程圖與各製作階段的剖面示意圖、上視圖。 Figures 2A-2E are a flowchart of an embodiment of a method for manufacturing a micro-light-emitting diode display panel with a black matrix anti-scattering layer of the present invention, and a schematic cross-sectional view and top view of each manufacturing stage.

第3A-3F圖,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法的又一實施例之流程圖與各製作階段的剖面示意圖、上視圖。 Figures 3A-3F are flowcharts of another embodiment of the method for fabricating a micro-light emitting diode display panel with a black matrix anti-scattering layer of the present invention, as well as cross-sectional schematic diagrams and top views of each fabrication stage.

第4A-4F圖,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法的又一實施例之流程圖與各製作階段的剖面示意圖。 Figures 4A-4F are flowcharts and schematic cross-sectional views of another embodiment of a method for manufacturing a micro-light emitting diode display panel with a black matrix anti-scattering layer according to the present invention.

第5A-5G圖,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法的又一實施例之流程圖與各製作階段的剖面示意圖。 Figures 5A-5G are flowcharts and schematic cross-sectional views of another embodiment of a method for manufacturing a micro-light emitting diode display panel with a black matrix anti-scattering layer of the present invention.

第6A-6F圖,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法的又一實施例之流程圖與各製作階段的剖面示意圖。 FIGS. 6A-6F are flowcharts of yet another embodiment of the method for fabricating a micro-light emitting diode display panel with a black matrix anti-scattering layer of the present invention and a schematic cross-sectional view of each fabrication stage.

第7A-7G圖,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法的又一實施例之流程圖與各製作階段的剖面示意圖。 Figures 7A-7G are flowcharts and schematic cross-sectional views of another embodiment of the method for manufacturing a micro-light emitting diode display panel with a black matrix anti-scattering layer of the present invention.

根據本發明的實施例,本發明運用曝光顯影製程來製作μLED之間的黑矩陣層,藉以準確地製作出能填於μLED之間空隙的黑矩陣 層,進而解決μLED的因漏光、反射而造成像素不清晰、對比度降低等技術問題,進而達到像素清晰度與對比度等特殊技術功效。 According to the embodiment of the present invention, the present invention uses the exposure and development process to fabricate the black matrix layer between the μLEDs, so as to accurately fabricate the black matrix that can fill the gaps between the μLEDs. Layer, and then solve the technical problems of μLEDs such as unclear pixels and reduced contrast due to light leakage and reflection, and then achieve special technical effects such as pixel sharpness and contrast.

請同時參考第2A-2E圖,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法的一實施例之流程圖與各製作階段的剖面示意圖、上視圖,其中,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法包含: Please refer to FIGS. 2A-2E at the same time, a flow chart of an embodiment of a method for manufacturing a micro-light-emitting diode display panel with a black matrix anti-scattering layer of the present invention, as well as a schematic cross-sectional view and a top view of each manufacturing stage. The manufacturing method of the micro light emitting diode display panel with the black matrix anti-scattering layer of the present invention includes:

步驟S101:於完成巨量轉移之微發光二極體基板上形成一負型光阻層,該負型光阻層之厚度相當於該些微發光二極體之高度;微發光二極體之高度即包括微發光二極體的厚度以及電極的厚度。如第2B、2C圖(沿A-A剖面線的剖面示意圖)所示,完成巨量轉移之微發光二極體基板10上有μLED晶粒30-n-1、30-n-2、30-n-3、30-n-4、30-n-5、30-n-6(如第1B圖),而其下方的電極層,則有複數個電極20-n-1、20-n-2、20-n-3、20-n-4、20-n-5、20-n-6(其以電極對的方式製作),形成於基板10上,這些電極定義了像素的位置。而完成巨量轉移之微發光二極體基板10上的電極與微發光二極體,已經完成了彼此的黏著,形成了電連接。在此步驟中,由於光阻層後續會製作為永久材料層,因此,選用負型光阻來製作,可選用噴塗或者旋轉塗佈等不同的方法來形成。第2C圖係為理想的圖形,其與實際的圖形會依據不同的塗佈方法而有所差異;可以看出,由於微發光二極體突起於基板10上,所以,會形成μLED晶粒30-n-1、30-n-2、30-n-3、30-n-4、30-n-5、30-n-6之間的間隙被填滿負型光阻層40-1,且μLED晶粒30-n-1、30-n-2、30-n-3、30-n-4、30-n-5、30-n-6上方也覆蓋有負型光阻層40-2(待移除的部分)。此外,由於負型光阻層將製作為黑矩陣結構,因此,可選用摻雜黑色顏料的負型光阻材料。 Step S101: forming a negative photoresist layer on the micro-light-emitting diode substrate that has completed the mass transfer. The thickness of the negative-type photoresist layer is equivalent to the height of the micro-light-emitting diodes; the height of the micro-light-emitting diodes That includes the thickness of the micro light-emitting diode and the thickness of the electrode. As shown in Figures 2B and 2C (a schematic cross-sectional view along the section line AA), there are μLED dies 30-n-1, 30-n-2, 30-n on the micro-light-emitting diode substrate 10 that has completed the massive transfer. -3, 30-n-4, 30-n-5, 30-n-6 (as shown in Figure 1B), and the electrode layer below it has multiple electrodes 20-n-1, 20-n-2 , 20-n-3, 20-n-4, 20-n-5, 20-n-6 (which are made in the form of electrode pairs) are formed on the substrate 10, and these electrodes define the position of the pixel. The electrodes on the micro-light-emitting diode substrate 10 that has completed the massive transfer and the micro-light-emitting diode have completed the adhesion to each other, forming an electrical connection. In this step, since the photoresist layer will be subsequently produced as a permanent material layer, a negative photoresist is used for production, and different methods such as spraying or spin coating can be used to form it. Figure 2C is an ideal pattern, which differs from the actual pattern according to different coating methods; it can be seen that because the micro-light-emitting diode protrudes on the substrate 10, a μLED die 30 is formed. -The gaps between n-1, 30-n-2, 30-n-3, 30-n-4, 30-n-5, and 30-n-6 are filled with the negative photoresist layer 40-1, And the μLED die 30-n-1, 30-n-2, 30-n-3, 30-n-4, 30-n-5, 30-n-6 is also covered with a negative photoresist layer 40- 2 (Part to be removed). In addition, since the negative photoresist layer will be made into a black matrix structure, a negative photoresist material doped with black pigments can be selected.

步驟S102:以一光罩對該負型光阻層進行曝光,曝光部位為該微發光二極體基板中複數個微發光二極體之間的間隔處。此步驟並未繪出。由於填於μLED晶粒30-n-1、30-n-2、30-n-3、30-n-4、30-n-5、30-n-6之間的間隙的負型光阻層40-1為所想要保留的永久材料部分,因此,必須對其以對應的光罩進行曝光。 Step S102: Expose the negative photoresist layer with a photomask, and the exposure position is the interval between the plurality of micro-light-emitting diodes in the micro-light-emitting diode substrate. This step is not drawn. Because of the negative photoresist that fills the gaps between the μLED dies 30-n-1, 30-n-2, 30-n-3, 30-n-4, 30-n-5, and 30-n-6 The layer 40-1 is the part of the permanent material that you want to retain, so it must be exposed with a corresponding photomask.

步驟S103:移除未被曝光的該負型光阻層,被曝光的該負型光阻層構成一黑矩陣結構;一般稱此步驟為顯影步驟,由於所選用的光阻材料為負型光阻,因此,未被曝光的部分,將可被顯影劑清除掉,如第2D圖所示,而僅留下來被曝光的負型光阻層40-1。而被曝光的部分會留下來成為本發明所預留下來的黑矩陣結構。 Step S103: Remove the unexposed negative photoresist layer, and the exposed negative photoresist layer constitutes a black matrix structure; this step is generally called a development step, because the selected photoresist material is a negative photoresist Therefore, the unexposed part can be removed by the developer, as shown in Figure 2D, and only the exposed negative photoresist layer 40-1 remains. The exposed part will remain as the black matrix structure reserved by the present invention.

步驟S104:固化該黑矩陣結構;例如,透過熱固化或光固化的方式來進一步讓負型光阻層40-1所構成的黑矩陣結構固化為永久材料層,如第2E圖所示。 Step S104: curing the black matrix structure; for example, the black matrix structure formed by the negative photoresist layer 40-1 is further cured into a permanent material layer through thermal curing or light curing, as shown in FIG. 2E.

本發明中之光阻使用負光阻,但較佳地,本發明的光阻層係使用高解析度負型光阻劑。光阻層的材料主要由高分子樹脂(Resin)、感光起始劑(Photo initiator)、單體(Monomer)、溶劑(Solvent),以及添加劑(Additives)所組成。 The photoresist in the present invention uses a negative photoresist, but preferably, the photoresist layer of the present invention uses a high-resolution negative photoresist. The material of the photoresist layer is mainly composed of polymer resin (Resin), photo initiator (Photo initiator), monomer (Monomer), solvent (Solvent), and additives (Additives).

其中在光阻層的材料中,高分子樹脂(Resin)的功能在於附著性、顯影性、顏料分散性、流動性、耐熱性、耐化性、解析能力;感光起始劑(Photo initiator)的功能在於感光特性、解析能力;單體(Monomer)的功能在於附著性、顯影性、解析能力;溶劑(Solvent)的功能在於黏度與塗布性質;添加劑(Additives)的功能則在於塗布性、流平性及起泡性。 Among the materials of the photoresist layer, the function of polymer resin (Resin) lies in adhesion, developability, pigment dispersibility, fluidity, heat resistance, chemical resistance, and analytical ability; The function lies in the photosensitive characteristics and resolution; the function of the monomer is adhesion, developability, and resolution; the function of the solvent is viscosity and coating properties; the function of the additives is the coating and leveling Sex and foaming.

高分子樹脂(Resin)可以為含羧酸基(COOH)的聚合物或共聚物,如壓克力(Acrylic)樹脂、壓克力-環氧(Epoxy)樹脂、壓克力_美耐皿(Melamine)樹脂、壓克力-苯乙烯(Styrene)樹脂、苯酚-酚醛(PhenolicAldehyde)樹脂等樹脂,或以上樹脂的任意混合,但不以此為限。樹脂在光阻中的重量百分比範圍可以是0.1%至99%。 The polymer resin (Resin) can be a polymer or copolymer containing carboxylic acid group (COOH), such as acrylic resin, acrylic-epoxy resin, acrylic_melamine ( Melamine resin, acrylic-styrene (Styrene) resin, phenol-phenol (Phenolic Aldehyde) resin and other resins, or any combination of the above resins, but not limited to this. The weight percentage of the resin in the photoresist can range from 0.1% to 99%.

單體可分非水溶性及水溶性單體,其中,非水溶性單體(water-insolubleMonomer)可以為戊赤藻糖醇三丙烯酸酯、三甲基醚丙烷三丙烯酸酯、三甲基醚丙烷三甲基丙烯酸酯、三,二-乙醇異氰酸酯三丙烯酸酯,二,三甲醇丙烷四丙烯酸酯、二異戊四醇五丙烯酸酯、五丙烯酸酯、四乙酸異戊四醇;六乙酸二己四醇、六乙酸二異戊四醇,或為多官能基單體、樹狀/多叢族丙烯酸酯寡體、多叢蔟聚醚丙烯酸酯、氨甲酸乙酯。水溶性單體(water-soluble monomer)則可為Ethoxylated(聚氧乙烯)(簡稱EO)base和Propoxylated(聚氧丙烯)(簡稱PO)的單體(monomer);例如為:二-(二-氧乙烯氧乙烯)乙烯基丙烯酸酉旨、十五聚氧乙烯三甲醇丙烷三丙烯酸酯、三十氧乙烯二,二-雙對酚甲烷二丙烯酸酯、三十個氧乙烯二,二-雙對酚甲烷二甲基丙烯酸酉旨、二十氧乙烯三甲醇丙烷三丙烯酸酯、十五氧乙烯三甲醇丙烷三丙烯酸酯、甲基氧五百五十個氧乙烯單甲基丙烯酸酯、二百氧乙烯二丙烯酸酯、四百氧乙烯二丙烯酸酉旨、四百氧乙烯二甲基丙烯酸酯、六百氧乙烯二丙烯酸酯、六百氧乙烯二甲基丙烯酸酯、聚氧丙烯單甲基丙烯酸酯。當然亦可添加兩種以上單體(monomer)混合成共單體(co-monomer)。單體或共單體在光阻中的重量百分比範圍可以是0.1%至99%。 Monomers can be divided into water-insoluble monomers and water-soluble monomers. Among them, water-insoluble monomers can be penerythritol triacrylate, trimethyl ether propane triacrylate, and trimethyl ether propane. Trimethacrylate, tris, diethanol isocyanate triacrylate, di, trimethanol propane tetraacrylate, diisopentaerythritol pentaacrylate, pentaacrylate, isopentaerythritol tetraacetate; dihexanetetraacetate Alcohol, diisopentaerythritol hexaacetate, or multifunctional monomer, dendrimer/multiplex acrylate oligomer, polyether acrylate, urethane. Water-soluble monomers can be monomers of Ethoxylated (polyoxyethylene) (EO for short) base and Propoxylated (polyoxypropylene) (PO for short); for example: two-(two-) Oxyethylene oxyethylene) vinyl acrylic acid unitary, pentadecoxyethylene trimethanol propane triacrylate, triacontanoxyethylene di, two-bis-p-phenol methane diacrylate, thirty oxyethylene di, two-pair Phenol methane dimethacrylic acid unitary, eicosoxyethylene trimethanol propane triacrylate, pentaoxyethylene trimethanol propane triacrylate, methyloxy 550 oxyethylene monomethacrylate, two hundred oxygen Ethylene diacrylate, four hundred oxyethylene diacrylate unitary, four hundred oxyethylene dimethacrylate, six hundred oxyethylene diacrylate, six hundred oxyethylene dimethacrylate, polyoxypropylene monomethacrylate . Of course, two or more monomers can also be added and mixed to form a co-monomer. The weight percentage of monomer or comonomer in the photoresist can range from 0.1% to 99%.

光起始劑(Photo initiator),可以選自苯乙酮系化合物 (acetophenone)、二苯甲酮(Benzophenone)系化合物或二咪唑系化合物(bis_imidazole)、苯偶姻系化合物(Benzoin),苯偶酰系化合物(Benzil)、α-氨基酮系化合物(α-amino ketone)、酰基膦氧化物系化合物(Acyl phosphine oxide)或苯甲酰甲酸酯系化合物以上光起始劑任意的混合,但不以此為限。光起始劑在光阻中的重量百分比範圍可以是至0.1至10%。 Photo initiator, which can be selected from acetophenone compounds (acetophenone), benzophenone (Benzophenone)-based compound or diimidazole-based compound (bis_imidazole), benzoin-based compound (Benzoin), benzil-based compound (Benzil), α-amino ketone-based compound (α-amino ketone) ketone), acyl phosphine oxide (Acyl phosphine oxide), or benzoyl formate-based compound can be optionally mixed with the above photoinitiators, but not limited to this. The weight percentage of the photoinitiator in the photoresist can range from 0.1 to 10%.

溶劑(Solvent)可以為乙二醇丙醚(ethylene glycol monopropylether)、二甘醇二甲醚(di-ethylene glycol dimethyl ether)、四氫呋喃、乙二醇甲醚(ethylene glycol monomethyl ether)、乙二醇乙醚(ethyleneglycol monoethyl ether)、二甘醇一甲醚(di-ethylene glycol mono-methylether)、二甘醇一乙醚(di-ethylene glycol mono-ethyl ether)、二甘醇一丁醚(di-ethylene glycol mono-butyl ether)、丙二醇甲醚醋酸酯(propylene glycol mono-methyl ether acetate)、丙二醇乙醚醋酸酯(propylene glycol mono-ethyl ether acetate)、丙二醇丙醚醋酸酯(propylene glycol mono-propyl ether acetate)、3-乙氧基丙酸乙酯(ethyl3_ethoxy propionate)等,或以上溶劑任意的混合,但不限於此。溶劑在光阻中的重量百分比範圍可以是0.1%至99%。 Solvent can be ethylene glycol monopropylether, di-ethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol ethyl ether (ethyleneglycol monoethyl ether), di-ethylene glycol mono-methylether, di-ethylene glycol mono-ethyl ether, di-ethylene glycol mono-butyl ether -butyl ether), propylene glycol mono-methyl ether acetate, propylene glycol mono-ethyl ether acetate, propylene glycol mono-propyl ether acetate, 3 -Ethoxy propionate (ethyl3_ethoxy propionate), etc., or any combination of the above solvents, but not limited to this. The weight percentage of the solvent in the photoresist can range from 0.1% to 99%.

添加劑一般為顏料分散劑,此為含有顏料的光阻所必需加入的成份,一般為非離子型介面活性劑,舉例如:Solsperse39000,Solsperse21000,此分散劑在光阻中的重量百分比範圍可以是至0.1至5%。 Additives are generally pigment dispersants, which are necessary ingredients for photoresists containing pigments. They are generally non-ionic interfacial active agents, such as Solsperse 39000 and Solsperse 21000. The weight percentage of this dispersant in the photoresist can range from up to 0.1 to 5%.

在本發明的步驟S102、S103時進行曝光、顯影時,更包含:(1)基板洗淨(Substrate Clean);(2)塗布(Coating);(3)軟烤(pre-baking);(4)曝光(exposure);(5)顯影(Developing)等加工步驟。 When performing exposure and development in steps S102 and S103 of the present invention, it further includes: (1) Substrate Clean; (2) Coating; (3) Pre-baking; (4) ) Exposure; (5) Processing steps such as developing.

接著,請參考第3A-3F圖,本發明的具黑矩陣防散色層的微 發光二極體顯示面板的製作方法的另一實施例之流程圖與各製作階段的剖面示意圖、上視圖,其中,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法包含: Next, please refer to Figures 3A-3F, the microstructure of the present invention with a black matrix anti-scattering layer A flow chart of another embodiment of a method for manufacturing a light-emitting diode display panel and a schematic cross-sectional view and top view of each manufacturing stage, in which the micro-light-emitting diode display panel with a black matrix anti-scattering layer of the present invention is manufactured Methods include:

步驟S111:於完成巨量轉移之微發光二極體基板上形成一負型光阻層,該負型光阻層之厚度小於該些微發光二極體之高度;且該負型光阻層的厚度小於5um且大於1um;此負型光阻層的厚度即為本發明之黑矩陣防散色層的厚度。如第3B、3C圖(沿A-A剖面線的剖面示意圖)所示,完成巨量轉移之微發光二極體基板10上有μLED晶粒30-n-1、30-n-2、30-n-3、30-n-4、30-n-5、30-n-6(如第1B圖),而其下方的電極層,則有複數個電極20-n-1、20-n-2、20-n-3、20-n-4、20-n-5、20-n-6(其以電極對的方式製作),形成於基板10上,這些電極定義了像素的位置。而完成巨量轉移之微發光二極體基板10上的電極與微發光二極體,已經完成了彼此的黏著,形成了電連接。在此步驟中,由於光阻層後續會製作為永久材料層,因此,選用負型光阻來製作,可選用噴塗或者旋轉塗佈等不同的方法來形成;由於此實施例係製作厚度小於微發光二極體之高度者(包括微發光二極體的厚度以及電極的厚度),因此,以噴塗法為佳。第3C圖係為理想的圖形,其與實際的圖形會依據不同的塗佈方法而有所差異;可以看出,由於微發光二極體突起於基板10上,所以,會形成μLED晶粒30-n-1、30-n-2、30-n-3、30-n-4、30-n-5、30-n-6之間的間隙被填滿負型光阻層50-1,且μLED晶粒30-n-1、30-n-2、30-n-3、30-n-4、30-n-5、30-n-6上方也覆蓋有負型光阻層50-2(待移除的部分)。此外,由於負型光阻層將製作為黑矩陣結構,因此,可選用摻雜黑色顏料的負型光阻材料。 Step S111: forming a negative photoresist layer on the micro-light-emitting diode substrate that has completed the mass transfer, the thickness of the negative photoresist layer is less than the height of the micro-light-emitting diodes; and the thickness of the negative photoresist layer The thickness is less than 5um and greater than 1um; the thickness of the negative photoresist layer is the thickness of the black matrix anti-scattering layer of the present invention. As shown in Figures 3B and 3C (a schematic cross-sectional view along the AA section line), there are μLED dies 30-n-1, 30-n-2, 30-n on the micro-light-emitting diode substrate 10 that has completed the massive transfer. -3, 30-n-4, 30-n-5, 30-n-6 (as shown in Figure 1B), and the electrode layer below it has multiple electrodes 20-n-1, 20-n-2 , 20-n-3, 20-n-4, 20-n-5, 20-n-6 (which are made in the form of electrode pairs) are formed on the substrate 10, and these electrodes define the position of the pixel. The electrodes on the micro-light-emitting diode substrate 10 that has completed the massive transfer and the micro-light-emitting diode have completed the adhesion to each other, forming an electrical connection. In this step, since the photoresist layer will be subsequently produced as a permanent material layer, a negative photoresist is used for production, and different methods such as spraying or spin coating can be used to form it; since this embodiment is produced with a thickness less than micro The height of the light-emitting diode (including the thickness of the micro-light-emitting diode and the thickness of the electrode), therefore, spraying is preferred. Figure 3C is an ideal pattern, which differs from the actual pattern according to different coating methods; it can be seen that because the micro-light-emitting diode protrudes on the substrate 10, a μLED die 30 is formed. The gaps between -n-1, 30-n-2, 30-n-3, 30-n-4, 30-n-5, and 30-n-6 are filled with the negative photoresist layer 50-1, And the μLED die 30-n-1, 30-n-2, 30-n-3, 30-n-4, 30-n-5, 30-n-6 is also covered with a negative photoresist layer 50- 2 (Part to be removed). In addition, since the negative photoresist layer will be made into a black matrix structure, a negative photoresist material doped with black pigments can be selected.

步驟S112:以一光罩對該負型光阻層進行曝光,曝光部位為 該微發光二極體基板中複數個微發光二極體之間的間隔處。此步驟並未繪出。由於填於μLED晶粒30-n-1、30-n-2、30-n-3、30-n-4、30-n-5、30-n-6之間的間隙的負型光阻層50-1為所想要保留的永久材料部分,因此,必須對其以對應的光罩進行曝光。 Step S112: Expose the negative photoresist layer with a mask, and the exposed position is The space between a plurality of micro-light-emitting diodes in the micro-light-emitting diode substrate. This step is not drawn. Because of the negative photoresist that fills the gaps between the μLED dies 30-n-1, 30-n-2, 30-n-3, 30-n-4, 30-n-5, and 30-n-6 The layer 50-1 is the part of the permanent material that you want to retain, so it must be exposed with a corresponding photomask.

步驟S113:粗糙化該負型光阻層;由於本實施例係以黑色薄膜光阻的概念來實現抗側邊漏光與反射的狀況,因此,讓負型光阻層50-1進行粗糙化為負型光阻層50-1’後,負型光阻層50-1’即可讓反射的光散色掉,即可實現抗側邊漏光與反射的功能,如第3D圖所示。而負型光阻層50-2’同時被粗糙化,將會被移除。而此粗糙化的製程,也可以在步驟S114之後。 Step S113: Roughen the negative photoresist layer; since this embodiment uses the concept of black film photoresist to achieve the anti-side light leakage and reflection, the negative photoresist layer 50-1 is roughened to After the negative photoresist layer 50-1', the negative photoresist layer 50-1' can disperse the reflected light, which can realize the function of preventing side light leakage and reflection, as shown in Fig. 3D. The negative photoresist layer 50-2' is roughened at the same time and will be removed. The roughening process can also be after step S114.

步驟S114:移除未被曝光的該負型光阻層,被曝光的該負型光阻層構成一黑矩陣結構;一般稱此步驟為顯影步驟,由於所選用的光阻材料為負型光阻,因此,未被曝光的部分,將可被顯影劑清除掉,如第3E圖所示,而僅留下來被曝光的負型光阻層50-1’。而被曝光的部分會留下來成為本發明所預留下來的黑矩陣結構。 Step S114: Remove the unexposed negative photoresist layer, and the exposed negative photoresist layer constitutes a black matrix structure; this step is generally called a development step, because the selected photoresist material is a negative photoresist Therefore, the unexposed part can be removed by the developer, as shown in Figure 3E, and only the exposed negative photoresist layer 50-1' is left. The exposed part will remain as the black matrix structure reserved by the present invention.

步驟S115:固化該黑矩陣結構;例如,透過熱固化或光固化的方式來進一步讓負型光阻層40-1所構成的黑矩陣結構固化為永久材料層,其即構成了本發明的黑矩陣防散色層,如第3F圖所示。 Step S115: curing the black matrix structure; for example, the black matrix structure formed by the negative photoresist layer 40-1 is further cured into a permanent material layer through thermal curing or light curing, which constitutes the black matrix of the present invention. Matrix anti-scattering layer, as shown in Figure 3F.

以上的兩個不同實施例,係為後製的方式來形成本發明的黑矩陣防散色層。以下,將簡述數個實施例來說明前製的方式來形成本發明的黑矩陣防散色層。 The above two different embodiments are post-production methods to form the black matrix anti-dispersion layer of the present invention. Hereinafter, a few embodiments will be briefly described to illustrate the previous method to form the black matrix anti-scattering layer of the present invention.

接著,請參考第4A-4F圖,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法的又一實施例之流程圖與各製作階段的剖 面示意圖,其中,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法包含: Next, please refer to Figures 4A-4F, a flowchart of another embodiment of a method for manufacturing a micro-light emitting diode display panel with a black matrix anti-scattering layer of the present invention and a cross-section of each manufacturing stage A schematic diagram, in which the method for manufacturing the micro-light emitting diode display panel with the black matrix anti-scattering layer of the present invention includes:

步驟S131:於一基板上形成一負型光阻層,該負型光阻層之厚度相當於一微發光二極體與一電極層相加之高度;如第4B圖所示;形成的方法有很多種,如旋轉塗佈法或噴塗法等。 Step S131: forming a negative photoresist layer on a substrate, the thickness of the negative photoresist layer is equivalent to the height of a micro light emitting diode and an electrode layer; as shown in Figure 4B; method of formation There are many kinds, such as spin coating method or spraying method.

步驟S132:以一光罩對該負型光阻層進行曝光,曝光部位為定義微發光二極體之間的間隔處;亦即,這些曝光的位置,即為第4C圖所示之負型光阻層40-n-1、40-n-2、40-n-3、40-n-4、40-n-5、40-n-6等位置,這些位置就是後續的像素空間的位置。 Step S132: Expose the negative type photoresist layer with a photomask, and the exposure positions are defined as the intervals between the micro light emitting diodes; that is, these exposed positions are the negative type as shown in Figure 4C. The photoresist layer 40-n-1, 40-n-2, 40-n-3, 40-n-4, 40-n-5, 40-n-6 and other positions, these positions are the positions of the subsequent pixel space .

步驟S133:移除未被曝光的該負型光阻層,被曝光的該負型光阻層構成一黑矩陣結構,並構成複數個像素空間,該些像素空間的尺寸略大於該微發光二極體的尺寸;一般稱此步驟為顯影步驟,由於所選用的光阻材料為負型光阻,因此,未被曝光的部分,將可被顯影劑清除掉,如第4D圖所示,而僅留下來被曝光的負型光阻層40-1。而被曝光的負型光阻層40-1會留下來成為本發明所欲留下來的黑矩陣結構。此步驟即可產生像素空間60-n-1、60-n-2、60-n-3、60-n-4、60-n-5、60-n-6等,此像素空間的寬度,大於微發光二極體的寬度至多20um範圍內;或者,此像素空間的寬度,大於微發光二極體的寬度至少10um,至多20um範圍內。 Step S133: Remove the unexposed negative photoresist layer, the exposed negative photoresist layer constitutes a black matrix structure, and constitutes a plurality of pixel spaces, the size of the pixel spaces is slightly larger than the light emitting diode The size of the polar body; this step is generally called the development step. Since the photoresist material selected is a negative photoresist, the unexposed part can be removed by the developer, as shown in Figure 4D, and Only the exposed negative photoresist layer 40-1 is left. The exposed negative photoresist layer 40-1 will remain as the black matrix structure intended by the present invention. This step can generate pixel space 60-n-1, 60-n-2, 60-n-3, 60-n-4, 60-n-5, 60-n-6, etc. The width of this pixel space, It is greater than the width of the micro-light-emitting diode within a range of at most 20um; or, the width of the pixel space is greater than the width of the micro-light-emitting diode by at least 10um and at most 20um.

步驟S134:固化該黑矩陣結構;例如,透過熱固化或光固化的方式來進一步讓負型光阻層40-1所構成的黑矩陣結構固化為永久材料層,結果如第4D圖所示。 Step S134: curing the black matrix structure; for example, the black matrix structure formed by the negative photoresist layer 40-1 is further cured into a permanent material layer through thermal curing or light curing, and the result is shown in FIG. 4D.

步驟S135:於該些像素空間中製作該電極層;如第4E圖所 示,製作出電極20-n-1、20-n-2、20-n-3、20-n-4、20-n-5、20-n-6。由於像素空間60-n-1、60-n-2、60-n-3、60-n-4、60-n-5、60-n-6已經定義好了,所以,可以透過金屬沉積、光阻塗佈、曝光、顯影等製程,在像素空間中製作出所需要的電極。 Step S135: Fabricate the electrode layer in the pixel spaces; as shown in Fig. 4E As shown, electrodes 20-n-1, 20-n-2, 20-n-3, 20-n-4, 20-n-5, and 20-n-6 were produced. Since the pixel space 60-n-1, 60-n-2, 60-n-3, 60-n-4, 60-n-5, 60-n-6 has been defined, it can be through metal deposition, Photoresist coating, exposure, development and other processes can produce the required electrodes in the pixel space.

步驟S136:將微發光二極體巨量轉移至該些像素空間中;完成後即如第4F圖所示。由於像素空間60-n-1、60-n-2、60-n-3、60-n-4、60-n-5、60-n-6已經定義好了,所以,可以透過金屬沉積、光阻塗佈、曝光、顯影等製程,在像素空間的電極上將微發光二極體進行巨量轉移後,完成整個製作的流程,如第4F圖所示。 Step S136: Transfer a huge amount of micro light emitting diodes to these pixel spaces; after completion, it is as shown in FIG. 4F. Since the pixel space 60-n-1, 60-n-2, 60-n-3, 60-n-4, 60-n-5, 60-n-6 has been defined, it can be through metal deposition, After the photoresist coating, exposure, development and other processes, the micro light-emitting diode is transferred to the electrode in the pixel space by a large amount, the entire production process is completed, as shown in Figure 4F.

接著,請參考第5A-5G圖,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法的另一實施例之流程圖與各製作階段的剖面示意圖,其中,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法包含: Next, please refer to Figures 5A-5G, a flowchart of another embodiment of a method for manufacturing a micro-light emitting diode display panel with a black matrix anti-scattering layer of the present invention and a schematic cross-sectional view of each manufacturing stage. The invented method for manufacturing a micro-light-emitting diode display panel with a black matrix anti-scattering layer includes:

步驟S141:於一基板上形成一負型光阻層,該負型光阻層之厚度薄於一微發光二極體與一電極層相加之高度;該負型光阻層50的厚度小於5um且大於1um;此負型光阻層的厚度即為本發明之黑矩陣防散色層的厚度。如第4B圖所示;形成的方法有很多種,如旋轉塗佈法或噴塗法等。 Step S141: forming a negative photoresist layer on a substrate. The thickness of the negative photoresist layer is thinner than the height of the combined height of a micro light emitting diode and an electrode layer; the thickness of the negative photoresist layer 50 is less than 5um and greater than 1um; the thickness of the negative photoresist layer is the thickness of the black matrix anti-scattering layer of the present invention. As shown in Figure 4B; there are many methods of formation, such as spin coating or spraying.

步驟S142:以一光罩對該負型光阻層進行曝光,曝光部位為定義微發光二極體之間的間隔處;亦即,這些曝光的位置,即為第4C圖所示之負型光阻層50-n-1、50-n-2、50-n-3、50-n-4、50-n-5、50-n-6等位置,這些位置就是後續的像素空間的位置。 Step S142: Expose the negative type photoresist layer with a photomask, and the exposure positions are defined as the intervals between the micro light emitting diodes; that is, the positions of these exposures are the negative type as shown in Figure 4C. Photoresist layer 50-n-1, 50-n-2, 50-n-3, 50-n-4, 50-n-5, 50-n-6 and other positions, these positions are the positions of subsequent pixel spaces .

步驟S143:移除未被曝光的該負型光阻層,被曝光的該負型 光阻層構成一黑矩陣結構,並構成複數個像素空間,該些像素空間的尺寸略大於該微發光二極體的尺寸;一般稱此步驟為顯影步驟,由於所選用的光阻材料為負型光阻,因此,未被曝光的部分,將可被顯影劑清除掉,如第4D圖所示,而僅留下來被曝光的負型光阻層50-1。而被曝光的負型光阻層40-1會留下來成為本發明所欲留下來的黑矩陣結構。此步驟即可產生像素空間60-n-1、60-n-2、60-n-3、60-n-4、60-n-5、60-n-6等,此像素空間的寬度,大於微發光二極體的寬度至多20um範圍內;或者,此像素空間的寬度,大於微發光二極體的寬度至少10um,至多20um範圍內。 Step S143: Remove the unexposed negative photoresist layer and the exposed negative photoresist layer The photoresist layer constitutes a black matrix structure and constitutes a plurality of pixel spaces. The size of the pixel spaces is slightly larger than the size of the micro light-emitting diode; this step is generally called the development step, because the selected photoresist material is negative Therefore, the unexposed part can be removed by the developer, as shown in Fig. 4D, and only the exposed negative photoresist layer 50-1 is left. The exposed negative photoresist layer 40-1 will remain as the black matrix structure intended by the present invention. This step can generate pixel space 60-n-1, 60-n-2, 60-n-3, 60-n-4, 60-n-5, 60-n-6, etc. The width of this pixel space, It is greater than the width of the micro-light-emitting diode within a range of at most 20 um; or, the width of the pixel space is greater than the width of the micro-light-emitting diode within a range of at least 10 um and at most 20 um.

步驟S144:固化該黑矩陣結構;例如,透過熱固化或光固化的方式來進一步讓負型光阻層50-1所構成的黑矩陣結構固化為永久材料層,結果如第5D圖所示。 Step S144: curing the black matrix structure; for example, further curing the black matrix structure formed by the negative photoresist layer 50-1 into a permanent material layer through thermal curing or light curing, and the result is shown in FIG. 5D.

步驟S145:粗糙化該負型光阻層;由於本實施例係以黑色薄膜光阻的概念來實現抗側邊漏光與反射的狀況,因此,讓負型光阻層50-1進行粗糙化為負型光阻層50-1’後,負型光阻層50-1’即構成了本發明的黑矩陣防散色層,其可讓反射的光散色掉,即可實現抗側邊漏光與反射的功能,如第5E圖所示。此粗糙化的製程,也可以在步驟S143之後。 Step S145: Roughen the negative photoresist layer; since this embodiment uses the concept of black film photoresist to achieve the anti-side light leakage and reflection, the negative photoresist layer 50-1 is roughened to After the negative photoresist layer 50-1', the negative photoresist layer 50-1' constitutes the black matrix anti-dispersion layer of the present invention, which can disperse the reflected light and realize the anti-side light leakage And the function of reflection, as shown in Figure 5E. The roughening process may also be after step S143.

步驟S146:於該些像素空間中製作該電極層;如第5F圖所示,製作出電極20-n-1、20-n-2、20-n-3、20-n-4、20-n-5、20-n-6。由於像素空間60-n-1、60-n-2、60-n-3、60-n-4、60-n-5、60-n-6已經定義好了,所以,可以透過金屬沉積、光阻塗佈、曝光、顯影等製程,在像素空間中製作出所需要的電極。 Step S146: Fabricate the electrode layer in the pixel spaces; as shown in Figure 5F, fabricate electrodes 20-n-1, 20-n-2, 20-n-3, 20-n-4, 20- n-5, 20-n-6. Since the pixel space 60-n-1, 60-n-2, 60-n-3, 60-n-4, 60-n-5, 60-n-6 has been defined, it can be through metal deposition, Photoresist coating, exposure, development and other processes can produce the required electrodes in the pixel space.

步驟S147:將微發光二極體巨量轉移至該些像素空間中;完 成後即如第5G圖所示。由於像素空間60-n-1、60-n-2、60-n-3、60-n-4、60-n-5、60-n-6已經定義好了,所以,可以透過金屬沉積、光阻塗佈、曝光、顯影等製程,在像素空間的電極上將微發光二極體進行巨量轉移後,完成整個製作的流程,如第5G圖所示。 Step S147: Transfer a huge amount of micro light emitting diodes to these pixel spaces; end After completion, it will be as shown in Figure 5G. Since the pixel space 60-n-1, 60-n-2, 60-n-3, 60-n-4, 60-n-5, 60-n-6 has been defined, it can be through metal deposition, After the photoresist coating, exposure, development and other processes, the micro light-emitting diode is transferred to the electrode in the pixel space by a large amount, the entire production process is completed, as shown in Figure 5G.

接著,請參考第6A-6F圖,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法的另一實施例之流程圖與各製作階段的剖面示意圖、上視圖,其中,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法包含: Next, please refer to Figures 6A-6F, the flow chart of another embodiment of the method for fabricating a micro-light emitting diode display panel with a black matrix anti-scattering layer of the present invention and the cross-sectional schematic diagrams and top views of each fabrication stage. Wherein, the manufacturing method of the micro light emitting diode display panel with the black matrix anti-scattering layer of the present invention includes:

步驟S151:於具有以製作好對應於多個像素的電極層之一基板上形成一負型光阻層,該負型光阻層之厚度相當於一微發光二極體與電極層相加之高度;製作好的電極20-n-1、20-n-2、20-n-3、20-n-4、20-n-5、20-n-6如第6B、6C圖所示;形成的方法有很多種,如旋轉塗佈法或噴塗法等。 Step S151: A negative photoresist layer is formed on a substrate having electrode layers corresponding to a plurality of pixels. The thickness of the negative photoresist layer is equivalent to the sum of a micro light emitting diode and the electrode layer. Height: The fabricated electrodes 20-n-1, 20-n-2, 20-n-3, 20-n-4, 20-n-5, 20-n-6 are shown in Figures 6B and 6C; There are many methods of formation, such as spin coating or spraying.

步驟S152:以一光罩對該負型光阻層進行曝光,曝光部位為定義微發光二極體之間的間隔處;亦即,這些曝光的位置,即為第6D圖所示之負型光阻層40-n-1、40-n-2、40-n-3、40-n-4、40-n-5、40-n-6等位置,這些位置就是後續的像素空間的位置。 Step S152: Expose the negative photoresist layer with a photomask, and the exposure positions are defined as the intervals between the micro-light emitting diodes; that is, these exposed positions are the negative type as shown in Fig. 6D The photoresist layer 40-n-1, 40-n-2, 40-n-3, 40-n-4, 40-n-5, 40-n-6 and other positions, these positions are the positions of the subsequent pixel space .

步驟S153:移除未被曝光的該負型光阻層,被曝光的該負型光阻層構成一黑矩陣結構,並構成複數個像素空間,該些像素空間的尺寸略大於該微發光二極體的尺寸;一般稱此步驟為顯影步驟,由於所選用的光阻材料為負型光阻,因此,未被曝光的部分,將可被顯影劑清除掉,如第6E圖 所示,而僅留下來被曝光的負型光阻層40-1。而被曝光的負型光阻層40-1會留下來成為本發明所欲留下來的黑矩陣結構。此像素空間即為電極20-n-1、20-n-2、20-n-3、20-n-4、20-n-5、20-n-6上方的空間,而像素空間的寬度,大於微發光二極體的寬度至多20um範圍內;或者,此像素空間的寬度,大於微發光二極體的寬度至少10um,至多20um範圍內。 Step S153: The unexposed negative photoresist layer is removed, and the exposed negative photoresist layer forms a black matrix structure and forms a plurality of pixel spaces, and the size of the pixel spaces is slightly larger than that of the light emitting diode. The size of the pole body; this step is generally called the development step. Since the photoresist material selected is a negative photoresist, the unexposed part can be removed by the developer, as shown in Figure 6E As shown, only the exposed negative photoresist layer 40-1 is left. The exposed negative photoresist layer 40-1 will remain as the black matrix structure intended by the present invention. This pixel space is the space above the electrodes 20-n-1, 20-n-2, 20-n-3, 20-n-4, 20-n-5, 20-n-6, and the width of the pixel space , Is greater than the width of the micro-light-emitting diode within a range of at most 20um; or, the width of the pixel space is greater than the width of the micro-light-emitting diode within a range of at least 10um and at most 20um.

步驟S154:固化該黑矩陣結構;例如,透過熱固化或光固化的方式來進一步讓負型光阻層40-1所構成的黑矩陣結構固化為永久材料層,結果如第6E圖所示。 Step S154: curing the black matrix structure; for example, the black matrix structure formed by the negative photoresist layer 40-1 is further cured into a permanent material layer through thermal curing or light curing, and the result is shown in FIG. 6E.

步驟S155:將微發光二極體巨量轉移至該些像素空間中;如第6F圖所示,由於像素空間60-n-1、60-n-2、60-n-3、60-n-4、60-n-5、60-n-6已經定義好了,所以,可透過巨量轉移技術,在像素空間中將微發光二極體製作於電極上。 Step S155: Transfer a huge amount of micro light emitting diodes to these pixel spaces; as shown in Figure 6F, due to the pixel spaces 60-n-1, 60-n-2, 60-n-3, 60-n -4, 60-n-5, and 60-n-6 have been defined, so, through the mass transfer technology, micro-light-emitting diodes can be fabricated on the electrodes in the pixel space.

接著,請參考第7A-7G圖,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法的另一實施例之流程圖與各製作階段的剖面示意圖,其中,本發明的具黑矩陣防散色層的微發光二極體顯示面板的製作方法包含: Next, please refer to Figures 7A-7G, the flow chart of another embodiment of the method for fabricating a micro-light emitting diode display panel with a black matrix anti-scattering layer of the present invention and a schematic cross-sectional view of each fabrication stage. The invented method for manufacturing a micro-light-emitting diode display panel with a black matrix anti-scattering layer includes:

步驟S161:於具有以製作好對應於多個像素的電極層之一基板上形成一負型光阻層,該負型光阻層之厚度薄於一微發光二極體與電極層相加之高度;製作好的電極20-n-1、20-n-2、20-n-3、20-n-4、20-n-5、20-n-6如第7B、7C圖所示;該負型光阻層50的厚度小於5um且大於1um;此負型光阻層50的厚度即為本發明之黑矩陣防散色層的厚度。負型光阻層50形成的方法有很多種,如旋轉塗佈法或噴塗法等。 Step S161: A negative photoresist layer is formed on a substrate having electrode layers corresponding to a plurality of pixels. The thickness of the negative photoresist layer is thinner than that of a micro light emitting diode and the electrode layer. Height; The fabricated electrodes 20-n-1, 20-n-2, 20-n-3, 20-n-4, 20-n-5, 20-n-6 are shown in Figures 7B and 7C; The thickness of the negative photoresist layer 50 is less than 5um and greater than 1um; the thickness of the negative photoresist layer 50 is the thickness of the black matrix anti-scattering layer of the present invention. There are many methods for forming the negative photoresist layer 50, such as a spin coating method or a spraying method.

步驟S162:以一光罩對該負型光阻層進行曝光,曝光部位為定義微發光二極體之間的間隔處;亦即,這些曝光的位置,即為第7D圖所示之負型光阻層50-n-1、50-n-2、50-n-3、50-n-4、50-n-5、50-n-6等位置,這些位置就是後續的像素空間的位置。 Step S162: Expose the negative type photoresist layer with a photomask, and the exposure positions are defined as the intervals between the micro-light emitting diodes; that is, these exposed positions are the negative type as shown in Fig. 7D Photoresist layer 50-n-1, 50-n-2, 50-n-3, 50-n-4, 50-n-5, 50-n-6 and other positions, these positions are the positions of subsequent pixel spaces .

步驟S163:移除未被曝光的該負型光阻層,被曝光的該負型光阻層構成一黑矩陣結構,並構成複數個像素空間,該些像素空間的尺寸略大於該微發光二極體的尺寸;一般稱此步驟為顯影步驟,由於所選用的光阻材料為負型光阻,因此,未被曝光的部分,將可被顯影劑清除掉,如第7E圖所示,而僅留下來被曝光的負型光阻層50-1。而被曝光的負型光阻層50-1會留下來成為本發明所欲留下來的黑矩陣結構。此步驟即可產生像素空間,而像素空間的寬度,大於微發光二極體的寬度至多20um範圍內;或者,此像素空間的寬度,大於微發光二極體的寬度至少10um,至多20um範圍內。 Step S163: The unexposed negative photoresist layer is removed, and the exposed negative photoresist layer forms a black matrix structure and forms a plurality of pixel spaces, and the size of the pixel spaces is slightly larger than that of the light emitting diode. The size of the polar body; this step is generally called the development step. Because the photoresist material selected is a negative photoresist, the unexposed part can be removed by the developer, as shown in Figure 7E, and Only the exposed negative photoresist layer 50-1 is left. The exposed negative photoresist layer 50-1 will remain as the black matrix structure intended by the present invention. This step can generate a pixel space, and the width of the pixel space is greater than the width of the micro-light-emitting diode within a range of at most 20um; or, the width of the pixel space is greater than the width of the micro-light-emitting diode at least 10um and at most 20um. .

步驟S164:固化該黑矩陣結構;例如,透過熱固化或光固化的方式來進一步讓負型光阻層50-1所構成的黑矩陣結構固化為永久材料層,結果如第7E圖所示。 Step S164: curing the black matrix structure; for example, further curing the black matrix structure formed by the negative photoresist layer 50-1 into a permanent material layer through thermal curing or light curing, and the result is shown in FIG. 7E.

步驟S165:粗糙化該負型光阻層;由於本實施例係以黑色薄膜光阻的概念來實現抗側邊漏光與反射的狀況,因此,讓負型光阻層50-1進行粗糙化為負型光阻層50-1’後,負型光阻層50-1’即構成了本發明的黑矩陣防散色層,其可讓反射的光散色掉,即可實現抗側邊漏光與反射的功能,如第7F圖所示。此粗糙化的製程,也可以在步驟S143之後。 Step S165: Roughen the negative photoresist layer; since this embodiment uses the concept of black film photoresist to achieve the anti-side light leakage and reflection, the negative photoresist layer 50-1 is roughened to After the negative photoresist layer 50-1', the negative photoresist layer 50-1' constitutes the black matrix anti-dispersion layer of the present invention, which can disperse the reflected light and realize the anti-side light leakage And the function of reflection, as shown in Figure 7F. The roughening process may also be after step S143.

步驟S166:將微發光二極體巨量轉移至該些像素空間中;如第7G圖所示,由於像素空間60-n-1、60-n-2、60-n-3、60-n-4、60-n-5、60-n-6已 經定義好了,所以,可透過巨量轉移技術,在像素空間中將微發光二極體製作於電極上。 Step S166: Transfer a huge amount of micro light-emitting diodes to these pixel spaces; as shown in Figure 7G, due to the pixel spaces 60-n-1, 60-n-2, 60-n-3, 60-n -4, 60-n-5, 60-n-6 already It has been defined, so the micro light emitting diode can be fabricated on the electrode in the pixel space through the mass transfer technology.

如前述的多個不同的實施例所示,本發明運用了不同的製程來製作本發明的具黑矩陣防散色層的微發光二極體顯示面板,其包含:一基板;一電極層,具有複數個電極,形成於該基板上,定義複數個像素;複數個微發光二極體,個別黏著於該電極上;及一黑矩陣防散色層,以黑色負型光阻形成於該些微發光二極體之間的間隔,該黑矩陣防散色層構成複數個像素空間,以定義該些像素。本發明的具黑矩陣防散色層的微發光二極體顯示面板,可防止微發光二極體之間的側邊漏光與反射的問題,並可實現提高像素清晰度與對比度等特殊技術功效。 As shown in the foregoing various embodiments, the present invention uses different manufacturing processes to fabricate the micro light emitting diode display panel with the black matrix anti-scattering layer of the present invention, which includes: a substrate; an electrode layer, It has a plurality of electrodes formed on the substrate to define a plurality of pixels; a plurality of micro-light emitting diodes are individually adhered to the electrodes; and a black matrix anti-scattering layer formed on the micro-electrodes with a black negative photoresist The space between the light-emitting diodes, and the black matrix anti-scattering layer constitutes a plurality of pixel spaces to define the pixels. The micro-light-emitting diode display panel with a black matrix anti-scattering layer of the present invention can prevent the problems of light leakage and reflection between the micro-light-emitting diodes, and can achieve special technical effects such as improving pixel definition and contrast. .

雖然本發明的技術內容已經以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神所作些許之更動與潤飾,皆應涵蓋於本發明的範疇內,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the technical content of the present invention has been disclosed in the preferred embodiment as above, it is not intended to limit the present invention. Anyone who is familiar with this technique and makes some changes and modifications without departing from the spirit of the present invention should be covered by the present invention. Therefore, the scope of protection of the present invention shall be subject to the scope of the attached patent application.

10‧‧‧基板 10‧‧‧Substrate

20-n-2、20-n-3、20-n-4、20-n-5、20-n-6‧‧‧電極 20-n-2, 20-n-3, 20-n-4, 20-n-5, 20-n-6‧‧‧ electrode

30-n-1‧‧‧μLED晶粒 30-n-1‧‧‧μLED die

40-1‧‧‧負型光阻層 40-1‧‧‧Negative photoresist layer

Claims (21)

一種具黑矩陣防散色層的微發光二極體顯示面板,包含: A micro-light-emitting diode display panel with a black matrix anti-scattering layer, comprising: 一基板; A substrate; 一電極層,具有複數個電極,形成於該基板上,定義複數個像素; An electrode layer having a plurality of electrodes, formed on the substrate, and defining a plurality of pixels; 複數個微發光二極體,個別黏著於該電極上;及 A plurality of micro-luminescence diodes are individually adhered to the electrode; and 一黑矩陣防散色層,以黑色負型光阻形成於該些微發光二極體之間的間隔,該黑矩陣防散色層構成複數個像素空間,以定義該些像素。 A black matrix anti-dispersion layer is formed with black negative photoresist in the space between the micro light-emitting diodes, and the black matrix anti-dispersion layer forms a plurality of pixel spaces to define the pixels. 如請求項1所述之具黑矩陣防散色層的微發光二極體顯示面板,其中該黑矩陣防散色層的厚度,相較於該電極層與該些微發光二極體層所加起來的厚度相當。 The micro-light-emitting diode display panel with a black matrix anti-scattering layer according to claim 1, wherein the thickness of the black-matrix anti-scattering layer is compared with the addition of the electrode layer and the micro-light-emitting diode layers The thickness is comparable. 如請求項2所述之具黑矩陣防散色層的微發光二極體顯示面板,其中該黑矩陣防散色層上方係粗糙化。 The micro light emitting diode display panel with a black matrix anti-scattering layer as described in claim 2, wherein the upper part of the black matrix anti-scattering layer is roughened. 如請求項1所述之具黑矩陣防散色層的微發光二極體顯示面板,其中該黑矩陣防散色層的厚度,相較於該電極層與該些微發光二極體層所加起來的厚度較薄,且該黑矩陣防散色層的厚度小於5um且大於1um。 The micro-light-emitting diode display panel with a black matrix anti-scattering layer according to claim 1, wherein the thickness of the black-matrix anti-scattering layer is compared with the addition of the electrode layer and the micro-light-emitting diode layers The thickness of the black matrix is relatively thin, and the thickness of the black matrix anti-scattering layer is less than 5um and greater than 1um. 如請求項4所述之具黑矩陣防散色層的微發光二極體顯示面板,其中該黑矩陣防散色層上方係粗糙化。 The micro light emitting diode display panel with a black matrix anti-scattering layer as described in claim 4, wherein the upper part of the black matrix anti-scattering layer is roughened. 如請求項1所述之具黑矩陣防散色層的微發光二極體顯示面板,其中該黑矩陣防散色層所構成的該些像素空間的寬度,大於該微發光二極體的寬度至多20um範圍內。 The micro light emitting diode display panel with a black matrix anti-scattering layer as described in claim 1, wherein the width of the pixel spaces formed by the black matrix anti-scattering layer is greater than the width of the micro light emitting diode Within the range of 20um at most. 如請求項1所述之具黑矩陣防散色層的微發光二極體顯示面板,其中該黑矩陣防散色層所構成的該些像素空間的寬度,大於該微發光二極體的寬 度至少10um,至多20um之範圍內。 The micro light emitting diode display panel with a black matrix anti-scattering layer as described in claim 1, wherein the width of the pixel spaces formed by the black matrix anti-scattering layer is greater than the width of the micro light emitting diode The degree is within the range of at least 10um and at most 20um. 一種具黑矩陣防散色層的微發光二極體顯示面板的製作方法,包含: A manufacturing method of a micro-light-emitting diode display panel with a black matrix anti-scattering layer, comprising: 於完成巨量轉移之一微發光二極體基板上形成一負型光阻層; Forming a negative photoresist layer on a micro-light-emitting diode substrate that has completed mass transfer; 以一光罩對該負型光阻層進行曝光,曝光部位為該微發光二極體基板中複數個微發光二極體之間的間隔處; Expose the negative photoresist layer with a mask, and the exposure position is the interval between a plurality of micro-light-emitting diodes in the micro-light-emitting diode substrate; 移除未被曝光的該負型光阻層,被曝光的該負型光阻層構成一黑矩陣結構;及 Removing the unexposed negative photoresist layer, and the exposed negative photoresist layer forms a black matrix structure; and 固化該黑矩陣結構。 The black matrix structure is cured. 如請求項8所述之具黑矩陣防散色層的微發光二極體顯示面板的製作方法,其中該負型光阻層之厚度相當於該微發光二極體之高度。 The method for manufacturing a micro-light-emitting diode display panel with a black matrix anti-scattering layer as described in claim 8, wherein the thickness of the negative photoresist layer is equivalent to the height of the micro-light-emitting diode. 如請求項8所述之具黑矩陣防散色層的微發光二極體顯示面板的製作方法,其中該負型光阻層之厚度小於該些微發光二極體之高度,該負型光阻層的厚度小於5um且大於1um。 The method for manufacturing a micro-light-emitting diode display panel with a black matrix anti-scattering layer according to claim 8, wherein the thickness of the negative type photoresist layer is less than the height of the micro-light-emitting diodes, and the negative type photoresist The thickness of the layer is less than 5um and greater than 1um. 如請求項10所述之具黑矩陣防散色層的微發光二極體顯示面板的製作方法,於曝光步驟後,更包含: According to claim 10, the method for manufacturing a micro-light-emitting diode display panel with a black matrix anti-scattering layer, after the exposure step, further includes: 粗糙化該負型光阻層。 The negative photoresist layer is roughened. 一種具黑矩陣防散色層的微發光二極體顯示面板的製作方法,包含:於一基板上形成一負型光阻層; A method for manufacturing a micro-light-emitting diode display panel with a black matrix anti-scattering layer includes: forming a negative photoresist layer on a substrate; 以一光罩對該負型光阻層進行曝光,曝光部位為定義複數個微發光二極體之間的間隔處; Expose the negative photoresist layer with a photomask, and the exposure position is a position defining the interval between a plurality of micro-light emitting diodes; 移除未被曝光的該負型光阻層,被曝光的該負型光阻層構成一黑矩陣 結構,並構成複數個像素空間,該些像素空間的尺寸略大於該微發光二極體的尺寸; The unexposed negative photoresist layer is removed, and the exposed negative photoresist layer forms a black matrix Structure, and constitute a plurality of pixel spaces, the size of the pixel spaces is slightly larger than the size of the micro light emitting diode; 固化該黑矩陣結構; Curing the black matrix structure; 於該些像素空間中製作該電極層;及 Fabricating the electrode layer in the pixel spaces; and 將微發光二極體巨量轉移至該些像素空間中。 A huge amount of micro light emitting diodes are transferred to these pixel spaces. 如請求項12所述之具黑矩陣防散色層的微發光二極體顯示面板的製作方法,其中該負型光阻層之厚度相當於該微發光二極體之高度。 According to claim 12, the method for manufacturing a micro-light-emitting diode display panel with a black matrix anti-scattering layer, wherein the thickness of the negative photoresist layer is equivalent to the height of the micro-light-emitting diode. 如請求項12所述之具黑矩陣防散色層的微發光二極體顯示面板的製作方法,其中該負型光阻層之厚度小於該些微發光二極體之高度,且該負型光阻層的厚度小於5um且大於1um。 The method for manufacturing a micro light emitting diode display panel with a black matrix anti-scattering layer according to claim 12, wherein the thickness of the negative photoresist layer is less than the height of the micro light emitting diodes, and the negative light The thickness of the barrier layer is less than 5um and greater than 1um. 如請求項14所述之具黑矩陣防散色層的微發光二極體顯示面板的製作方法,於曝光步驟後,更包含: The method for manufacturing a micro-light-emitting diode display panel with a black matrix anti-scattering layer as described in claim 14, after the exposure step, further includes: 粗糙化該負型光阻層。 The negative photoresist layer is roughened. 如請求項12所述之具黑矩陣防散色層的微發光二極體顯示面板,其中該黑矩陣結構所構成的該些像素空間的寬度,大於該微發光二極體的寬度至多20um範圍內。 The micro-light-emitting diode display panel with a black matrix anti-scattering layer according to claim 12, wherein the width of the pixel spaces formed by the black matrix structure is greater than the width of the micro-light-emitting diode by at most 20um Inside. 一種具黑矩陣防散色層的微發光二極體顯示面板的製作方法,包含: A manufacturing method of a micro-light-emitting diode display panel with a black matrix anti-scattering layer, comprising: 於具有以製作好對應於多個像素的電極層之一基板上形成一負型光阻層; Forming a negative photoresist layer on a substrate having electrode layers corresponding to a plurality of pixels; 以一光罩對該負型光阻層進行曝光,曝光部位為定義複數個微發光二極體之間的間隔處; Expose the negative photoresist layer with a photomask, and the exposure position is a position defining the interval between a plurality of micro-light emitting diodes; 移除未被曝光的該負型光阻層,被曝光的該負型光阻層構成一黑矩陣 結構,並構成複數個像素空間,該些像素空間的尺寸略大於該微發光二極體的尺寸; The unexposed negative photoresist layer is removed, and the exposed negative photoresist layer forms a black matrix Structure, and constitute a plurality of pixel spaces, the size of the pixel spaces is slightly larger than the size of the micro light emitting diode; 固化該黑矩陣結構;及 Curing the black matrix structure; and 將微發光二極體巨量轉移至該些像素空間中。 A huge amount of micro light emitting diodes are transferred to these pixel spaces. 如請求項17所述之具黑矩陣防散色層的微發光二極體顯示面板的製作方法,其中該負型光阻層之厚度相當於該微發光二極體之高度。 The method for manufacturing a micro-light-emitting diode display panel with a black matrix anti-scattering layer according to claim 17, wherein the thickness of the negative photoresist layer is equivalent to the height of the micro-light-emitting diode. 如請求項17所述之具黑矩陣防散色層的微發光二極體顯示面板的製作方法,其中該負型光阻層之厚度小於該些微發光二極體之高度,且該負型光阻層的厚度小於5um且大於1um。 The method for manufacturing a micro light emitting diode display panel with a black matrix anti-scattering layer as claimed in claim 17, wherein the thickness of the negative photoresist layer is less than the height of the micro light emitting diodes, and the negative light The thickness of the barrier layer is less than 5um and greater than 1um. 如請求項19所述之具黑矩陣防散色層的微發光二極體顯示面板的製作方法,於曝光步驟後,更包含: According to claim 19, the method for manufacturing a micro-light-emitting diode display panel with a black matrix anti-scattering layer, after the exposure step, further includes: 粗糙化該負型光阻層。 The negative photoresist layer is roughened. 如請求項17所述之具黑矩陣防散色層的微發光二極體顯示面板,其中該黑矩陣結構所構成的該些像素空間的寬度,大於該微發光二極體的寬度至多20um範圍內。 The micro-light-emitting diode display panel with a black matrix anti-scattering layer according to claim 17, wherein the width of the pixel spaces formed by the black matrix structure is greater than the width of the micro-light-emitting diode by at most 20um Inside.
TW108137077A 2019-10-15 2019-10-15 μLED DISPLAY PANEL WITH A BLACK MATRIX ANTI-DISPERSION LAYER AND THE MANUFACTURING METHOD TW202118115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108137077A TW202118115A (en) 2019-10-15 2019-10-15 μLED DISPLAY PANEL WITH A BLACK MATRIX ANTI-DISPERSION LAYER AND THE MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108137077A TW202118115A (en) 2019-10-15 2019-10-15 μLED DISPLAY PANEL WITH A BLACK MATRIX ANTI-DISPERSION LAYER AND THE MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
TW202118115A true TW202118115A (en) 2021-05-01

Family

ID=77020677

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108137077A TW202118115A (en) 2019-10-15 2019-10-15 μLED DISPLAY PANEL WITH A BLACK MATRIX ANTI-DISPERSION LAYER AND THE MANUFACTURING METHOD

Country Status (1)

Country Link
TW (1) TW202118115A (en)

Similar Documents

Publication Publication Date Title
CN103794630B (en) For the manufacture of the method for display of organic electroluminescence
JP4839525B2 (en) Photosensitive resin composition and color filter for liquid crystal display
KR20080073302A (en) Process for producing organic el, color filter and diaphragm
TW201232178A (en) Photosensitive resin composition, partition wall, color filter, and organic el element
KR102230124B1 (en) Photosensitive resin composition for light extraction, organic light emitting display device and method of manufacturing the same
TW201346443A (en) Photosensitive resin composition for color filters and uses thereof
KR20120124392A (en) Photosensitive composition, partition wall, color filter and organic el element
CN112635509A (en) Micro light-emitting diode display panel with black matrix anti-scattering layer and manufacturing method thereof
TWM600400U (en) μ LED DISPLAY PANEL WITH A BLACK MATRIX ANTI-DISPERSION LAYER
CN209401630U (en) Has the pixel substrate of quantum dot
CN211319630U (en) Pixel substrate with quantum dots
TW202118115A (en) μLED DISPLAY PANEL WITH A BLACK MATRIX ANTI-DISPERSION LAYER AND THE MANUFACTURING METHOD
JP4075277B2 (en) Inorganic particle-containing photosensitive composition and photosensitive film
KR20050045842A (en) Inorganic Particle―Containing Resin Composition, Transfer Film and Plasma Display Panel Production Process
KR100282033B1 (en) Black matrix for display device and manufacturing method
CN210722229U (en) Pixel substrate with quantum dots
TWM593565U (en) Pixel substrate with quantum dots
KR20070008624A (en) Composition containing inorganic powder, transfer film, and method of forming inorganic sinter
TWM593658U (en) Pixel substrate with quantum dots
TW202117411A (en) Pixel substrate with quantum dots and fabrication method thereof comprising a transparent substrate, a black matrix layer, and a plurality of quantum dot adhesive layers
TW202117410A (en) Pixel substrate with quantum dots and manufacturing method thereof wherein the pixel substrate includes a transparent substrate, a black matrix layer and a plurality of quantum dot glue layers
CN112634766B (en) Pixel substrate with quantum dots and manufacturing method thereof
TW202339243A (en) A μled display panel with a light blocking wall
CN111668254A (en) Pixel substrate with quantum dots and manufacturing method thereof
TWM634343U (en) A μLED DISPLAY PANEL WITH A LIGHT BLOCKING WALL