TW202112654A - 半導體奈米粒子複合體 - Google Patents

半導體奈米粒子複合體 Download PDF

Info

Publication number
TW202112654A
TW202112654A TW109118003A TW109118003A TW202112654A TW 202112654 A TW202112654 A TW 202112654A TW 109118003 A TW109118003 A TW 109118003A TW 109118003 A TW109118003 A TW 109118003A TW 202112654 A TW202112654 A TW 202112654A
Authority
TW
Taiwan
Prior art keywords
semiconductor nanoparticle
ligand
group
aliphatic
nanoparticle composite
Prior art date
Application number
TW109118003A
Other languages
English (en)
Inventor
城戶信人
森山喬史
佐佐木洋和
三津家由子
Original Assignee
日商昭榮化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商昭榮化學工業股份有限公司 filed Critical 日商昭榮化學工業股份有限公司
Publication of TW202112654A publication Critical patent/TW202112654A/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

本發明提供一種可分散於極性分散媒、且配位子之脫離溫度高的半導體奈米粒子複合體。關於本發明的一個態樣之半導體奈米粒子複合體,其係於半導體奈米粒子之表面上配位包含脂肪族配位子及極性配位子之2種以上的配位子而成之半導體奈米粒子複合體,前述配位子係由有機基及配位性基構成,前述脂肪族配位子之前述有機基為脂肪族烴基,前述極性配位子係於前述有機基上包含親水性官能基,前述脂肪族配位子與前述極性配位子之質量比(脂肪族配位子/極性配位子)為0.05~1.00,對相對於室溫時之半導體奈米粒子複合體之全部配位子的質量分率(L)而言,熱重分析中於350℃以上、550℃以下的範圍之半導體奈米粒子複合體的質量減少率(XH )之比率({(XH )/L}×100)為10以上、55以下。

Description

半導體奈米粒子複合體
本發明係關於半導體奈米粒子複合體。 本申請案主張基於2019年5月31日申請的日本專利申請案第2019-103247號的優先權,並引用前述日本專利申請案所記載的全部記載內容。
小到可展現出量子侷限效應的半導體奈米粒子具有依粒徑而定的能隙。藉由光激發、電荷注入等手段而形成在半導體奈米粒子內的激子,由於因再結合而放出與能隙相應的能量的光子,因此可藉由適當地選擇半導體奈米粒子的組成和其粒徑來得到在所期望波長下的發光。
在研究初期,半導體奈米粒子係以包含Cd、Pb之元素為中心進行研討,但因Cd、Pb為特定有害物質使用限制等之規範對象物質,故近年來,正進行非Cd系、非Pb系之半導體奈米粒子的研究。
半導體奈米粒子係已被嘗試應用於顯示器用途、生物標誌用途、太陽能電池用途等各式各樣的用途,特別是作為顯示器用途,已開始有將半導體奈米粒子薄膜化而作為波長轉換層之利用。 [先前技術文獻] [專利文獻]
[專利文獻1] 國際公開第2015/156226號 [專利文獻2] 日本特開2013-136498號公報 [非專利文獻]
[非專利文獻1] 神隆著,「於半導體量子點、其合成法與生命科學之應用」,生產與技術,第63卷,第2號,p.58-63,2011年 [非專利文獻2] Fabien Dubois et al, “A Versatile Strategy for Quantum Dot Ligand Exchange” J.AM.CHEM.SOC Vol.129, No.3, p.482-483, 2007 [非專利文獻3] Boon-Kin Pong et al, “Modified Ligand-Exchange for Efficient Solubilization of CdSe/ZnS Quantum Dots in Water: A Procedure Guided by Computational Studies” Langmuir Vol.24, No.10, p.5270-5276, 2008 [非專利文獻4] Samsulida Abd. Rahman et al, “Thiolate-Capped CdSe/ZnS Core-Shell Quantum Dots for the Sensitive Detection of Glucose” Sensors Vol.17, No.7, p.1537, 2017 [非專利文獻5] Whitney Nowak Wenger et al, “Functionalization of Cadmium Selenide Quantum Dots with Poly(ethylene glycol): Ligand Exchange, Surface Coverage, and Dispersion Stability” Langmuir, Vol.33, No.33, pp8239-8245, 2017 [非專利文獻6] Jagdeep Singh et al., “Encapsulation of Zinc Oxide Nanorods and Nanoparticles” Langmuir, vol.25, No.17, pp9947-9953, 2009
[發明欲解決之課題]
一般半導體奈米粒子及半導體奈米粒子複合體被分散於分散媒中,被調製作為分散液,而被應用於各領域。特別是,為了賦予實用性,有需要使之分散於分散媒中。
再者,根據用途,在半導體奈米粒子之薄膜化步驟、或含有半導體奈米粒子之光阻的烘焙步驟、或者半導體奈米粒子之噴墨圖案化後的溶媒去除及樹脂硬化步驟等的製程中,有在氧的存在下將半導體奈米粒子及半導體奈米粒子複合體暴露於200℃左右的高溫的情形。此時,與半導體奈米粒子之鍵結力弱的配位子,在更低溫下變得容易從半導體奈米粒子之表面脫離。若配位子從半導體奈米粒子之表面脫離,則因半導體奈米粒子之表面氧化,變得導致螢光量子效率的降低。
專利文獻1中,有關於可在非極性溶媒中分散的半導體奈米粒子複合體之配位子的脫離之揭示。從350℃升溫至490℃為止時,配位子的脫離在70%以內。然而,專利文獻1記載之半導體奈米粒子複合體雖可分散於非極性溶媒,但無法分散於極性溶媒。使之分散於極性溶媒的情形,必須改變配位於半導體奈米粒子之配位子,使之變成可分散於極性溶媒之半導體奈米粒子複合體。再者,分散於極性溶媒之半導體奈米粒子複合體的配位子需要高的脫離溫度。
在非專利文獻1~非專利文獻5、及專利文獻2中,揭示藉由將配位於半導體奈米粒子表面之配位子與相異之配位子交換,而可變更可分散之分散媒。然而,儘管此等半導體奈米粒子複合體變得可分散於極性溶媒,但有所謂的因配位子交換而原本的半導體奈米粒子複合體的螢光量子效率降低的問題。
因此,本發明係以提供可分散於極性分散媒,且配位子的脫離溫度高的半導體奈米粒子複合體作為目的。 [用以解決課題之手段]
關於本發明的實施形態之半導體奈米粒子複合體係一種半導體奈米粒子複合體, 其係於半導體奈米粒子之表面上配位包含脂肪族配位子及極性配位子之2種以上的配位子而成之半導體奈米粒子複合體, 前述配位子係由有機基及配位性基構成, 前述脂肪族配位子之前述有機基為脂肪族烴基, 前述極性配位子係於前述有機基上包含親水性官能基, 前述脂肪族配位子與前述極性配位子之質量比(脂肪族配位子/極性配位子)為0.05~1.00, 對相對於室溫時之半導體奈米粒子複合體之全部配位子的質量分率(L)而言,熱重分析中於350℃以上、550℃以下的範圍之半導體奈米粒子複合體的質量減少率(XH )之比率({(XH )/L}×100)為10以上、55以下。 又,關於本發明之別的實施形態之半導體奈米粒子複合體係一種半導體奈米粒子複合體, 其係於半導體奈米粒子之表面上配位包含脂肪族配位子及極性配位子之2種以上的配位子而成之半導體奈米粒子複合體, 前述配位子係由有機基及配位性基構成, 前述脂肪族配位子之前述有機基為脂肪族烴基, 前述極性配位子係於前述有機基上包含親水性官能基, 前述脂肪族配位子與前述極性配位子之質量比(脂肪族配位子/極性配位子)為0.05~1.00, 熱重分析中於350℃以上、550℃以下的範圍之半導體奈米粒子複合體的質量減少率(XH )為2%以上、15%以下。 此外,本案中「~」所示之範圍係包含其兩端所示數字之範圍。 又,本案中所謂的「室溫」係表示25℃。 [發明之效果]
根據上述的發明,可提供一種可分散於極性分散媒,配位子之脫離溫度高的半導體奈米粒子複合體。
[用以實施發明的形態]
本發明係關於半導體奈米粒子複合體。 <半導體奈米粒子> 本發明中,所謂的半導體奈米粒子複合體係具有發光特性之半導體的奈米粒子複合體。本發明之半導體奈米粒子複合體係一種粒子,其吸收340nm~480nm的光,發出發光峰值波長(emission peak wavelength)為400nm~750nm的光。
半導體奈米粒子複合體之發光光譜的半高寬(FWHM)較佳為40nm以下,進而更佳為38nm以下。藉由使發光光譜的半高寬落在前述範圍,將半導體奈米粒子複合體應用於顯示器等時,可減低混色。
前述半導體奈米粒子複合體的螢光量子效率(QY)較佳為80%以上,更佳為85%以上。藉由使半導體奈米粒子複合體的螢光量子效率為80%以上,而可更有效率地轉換顏色。本發明中,半導體奈米粒子複合體的螢光量子效率係可使用量子效率測定系統測定。
-半導體奈米粒子- 構成前述半導體奈米粒子複合體之半導體奈米粒子,只要是可滿足如前述之螢光量子效率、及半高寬的發光特性者則無特別限定,可為由1種半導體構成之粒子,亦可為由2種以上之相異的半導體構成之粒子。由2種以上之相異的半導體構成之粒子的情形,亦可以彼等半導體構成內核-外殼結構。 作為半導體的種類,並沒有特別限定,但可列舉InP、GaP、CdSe、CdS、ZnS、ZnSe及ZnS等。特別是,較佳為非Cd系之半導體。於此,只要不損害半導體奈米粒子之特性,半導體奈米粒子亦可包含半導體以外之組成物。
包含2種以上之相異的半導體之粒子的情形,亦可為前述之半導體之混合物。構成內核-外殼結構的情形,亦可為內核-外殼型粒子,其係具有含有III族元素及V族元素之內核、及被覆前述內核之至少一部分之含有II族元素及VI族元素之外殼。於此,前述外殼可具有由相異的組成構成之複數的外殼,亦可具有1個以上之構成外殼之元素比率於外殼中產生變化的梯度型外殼。
作為III族元素,具體而言可列舉In、Al及Ga。 作為V族元素,具體而言可列舉P、N及As。 作為形成內核之組成,並沒有特別限定,但從發光特性的觀點來看,較佳為InP。
作為II族元素,並沒有特別限定,但可列舉例如:Zn及Mg等。 作為VI族元素,可列舉例如:S、Se、Te及O。 作為形成外殼之組成,並沒有特別限定,但從量子侷限效應的觀點來看,較佳為ZnS、ZnSe、ZnSeS、ZnTeS及ZnTeSe等。特別是於半導體奈米粒子之表面上有Zn元素存在的情形,可更發揮本發明之效果。
具有複數的外殼的情形,含有至少1個前述之組成的外殼即可。又,具有構成外殼之元素比率於外殼中產生變化的梯度型外殼的情形,外殼不必一定要為如上組成所述之組成。 於此,本發明中,外殼是否有被覆內核的至少一部分、外殼內部的元素分布係可藉由下述方式進行確認,例如:利用使用透過型電子顯微鏡之能量色散X射線分析法(TEM-EDX),進行組成分析解析。
<半導體奈米粒子的製作方法> 以下揭示關於半導體奈米粒子複合體中所含之半導體奈米粒子的製作方法的例子。 (內核) 將前驅物混合液加熱,藉此可形成半導體奈米粒子的內核,其中該前驅物混合液係於溶媒中混合III族的前驅物、V族的前驅物、及因應需要之添加物而得。 作為溶媒可使用配位性溶媒、非配位性溶媒。作為溶媒之實例,可列舉1-十八烯、十六烷、鯊烷、油胺(oleylamine)、三辛基膦、及氧化三辛基膦(trioctylphosphine oxide)等。 作為III族的前驅物,可列舉包含前述III族元素之醋酸鹽、羧酸鹽、及鹵化物等,但不限定於此等。 作為V族的前驅物,可列舉包含前述V族元素之有機化合物、氣體,但不限定於此等。前驅物為氣體的情形,可於包含前述氣體以外的前驅物混合液中,一邊注入氣體一邊使之反應,藉此形成內核。
半導體奈米粒子,只要不損害本發明的效果,亦可包含1種或其以上之III族、及V族以外的元素,在這種情形下,應在內核形成時添加前述元素的前驅物。 作為添加物,可列舉例如:作為分散劑之羧酸、胺類、硫醇類、膦類、膦氧化物類、次膦酸類、及膦酸類等,但不限定於此等。分散劑亦可兼作為溶媒。 形成半導體奈米粒子的內核後,因應需要可藉由添加鹵化物,提升半導體奈米粒子之發光特性。
在一個實施形態中,將於溶媒中添加In前驅物、及因應需要之分散劑而成之金屬前驅物溶液於真空下混合,暫時於100℃~300℃加熱6小時~24小時後,進一步添加P前驅物,並於200℃~400℃加熱3分鐘~60分鐘後,進行冷卻。進一步添加鹵素前驅物,藉由於25℃~300℃、較佳為於100℃~300℃、更佳為於150℃~280℃進行加熱處理,可得到包含內核粒子之內核粒子分散液。
(外殼) 於所合成之內核粒子分散液中,添加外殼形成前驅物,藉此半導體奈米粒子可得到內核-外殼結構,而提高螢光量子效率(QY)及安定性。 雖然認為構成外殼之元素於內核粒子的表面具有合金、異質結構、或非晶形結構等之結構,但據信也有一部分藉由擴散而移動至內核粒子的內部。
所添加之外殼形成元素主要存在於內核粒子的表面附近,其係具有保護半導體奈米粒子不受外在因素影響的作用。半導體奈米粒子的內核-外殼結構,較佳為外殼被覆內核的至少一部分,進一步較佳為均勻地被覆內核粒子的表面全部。
在一個實施形態中,於前述之內核粒子分散液中添加Zn前驅物與Se前驅物後,於150℃~300℃、較佳為於180℃~250℃加熱,其後添加Zn前驅物與S前驅物後,於200℃~400℃、較佳為於250℃~350℃加熱。藉此可得到內核-外殼型之半導體奈米粒子。 於此,雖然沒有特別限定,但作為Zn前驅物,可使用醋酸鋅、丙酸鋅及肉荳蔻酸鋅等之羧酸鹽、氯化鋅及溴化鋅等之鹵化物、二乙基鋅等之有機鹽等。 作為Se前驅物,可使用硒化三丁基膦、硒化三辛基膦及硒化參(三甲基矽基)膦等之硒化膦類、苯硒酚及硒半胱胺酸等之硒醇類、及硒/十八烯溶液等。 作為S前驅物,可使用硫化三丁基膦、硫化三辛基膦及硫化參(三甲基矽基)膦等之硫化膦類、辛烷硫醇、十二烷硫醇及十八烷硫醇等之硫醇類、及硫/十八烯溶液等。 外殼的前驅物可預先混合,一次或者分成複數次添加,亦可個別一次或者個別分成複數次添加。將外殼前驅物分成複數次添加的情形,亦可於各外殼前驅物添加後,各自改變溫度而加熱。
本發明中,半導體奈米粒子的製作方法沒有特別限定,除了上述所示的方法外,亦可以採用以往所進行之根據熱注射法、均一溶媒法(isocratic method)、逆相微胞法(reverse micelle method)、CVD法等之製作方法、或任意的方法。
<半導體奈米粒子複合體> 本發明中,半導體奈米粒子複合體係於前述半導體奈米粒子之表面上配位配位子而成者。此處所述之配位,係表示配位子於半導體奈米粒子之表面產生化學性影響。於半導體奈米粒子之表面上,亦可以配位鍵或其他的任意鍵結樣式(例如:共價鍵、離子鍵、氫鍵等)鍵結,或者於半導體奈米粒子之表面的至少一部分上具有配位子的情形,亦可不一定要形成鍵結。
(配位子之構成) 本發明中,配位於半導體奈米粒子之配位子包含有機基及配位性基。本發明之半導體奈米粒子複合體中之配位子,係包含有機基為脂肪族烴基之脂肪族配位子、及於有機基中包含親水性官能基之極性配位子。 脂肪族配位子較佳為有1個配位性基、與至少1個以上之脂肪族烴基鍵結者。藉由採用此種結構,半導體奈米粒子複合體可得到更高的螢光量子效率。 此外,脂肪族配位子之配位性基較佳為選自包含胺基、羧基、巰基、膦基、及氧化膦基之群組。藉由採用此種結構,可得到更高的螢光量子效率。
極性配位子於有機基上具有親水性官能基。極性配位子之有機基,作為親水性官能基,較佳為具有羥基、羧基、羰基、巰基、胺基、醚鍵、酯鍵、及矽氧烷鍵中之至少一者。藉由於極性配位子之有機基上具有親水性官能基,而變得可分散於極性分散媒。 特別是,在極性配位子之配位性基為巰基的情形,由於極性配位子可強配位於半導體奈米粒子上,故可得到高螢光量子效率,且提升半導體奈米粒子複合體之耐熱性。
極性配位子之分子量較佳為50以上、600以下,更佳為50以上、450以下。藉由使用分子量為600以下之配位子,變得容易抑制半導體奈米粒子複合體之尺寸以及體積變大,且在將半導體奈米粒子複合體應用於分散液、組成物、硬化膜等時,可提高對此等之半導體奈米粒子複合體的質量分率。另一方面,若分子量為50以上,則充分發揮立體阻礙之效果,可抑制在使半導體奈米粒子複合體分散於分散媒的情形下凝集等的產生。
(配位子比) 前述脂肪族配位子與極性配位子之質量比(脂肪族配位子/極性配位子)較佳為0.05~1.00,更佳為0.10~1.00,尤佳為0.20~0.80。因前述質量比在此範圍,故可使半導體奈米粒子複合體分散於SP值高的分散媒,且可得到耐熱性高的半導體奈米粒子複合體。
(配位子/半導體奈米粒子) 前述配位子與前述半導體奈米粒子的質量比(配位子/半導體奈米粒子)較佳為0.1~0.7。因前述配位子與半導體奈米粒子的質量比在此範圍,故可抑制半導體奈米粒子複合體之尺寸以及體積變大,且在將半導體奈米粒子複合體應用於分散液、組成物、硬化膜等時,可提高對此等之半導體奈米粒子複合體的質量分率。前述配位子與前述半導體奈米粒子的質量比(配位子/半導體奈米粒子)更佳為0.1~0.5。
<半導體奈米粒子複合體之製造方法> 以下揭示關於半導體奈米粒子複合體的製造方法的例子。 對半導體奈米粒子之配位子的配位方法並沒有限制,但可使用利用配位子的配位力之配位子交換法。具體而言,藉由使半導體奈米粒子與作為標的之配位子以液相接觸,可得到作為標的之經於半導體奈米粒子表面上配位配位子而得之半導體奈米粒子複合體,其中該半導體奈米粒子係前述之半導體奈米粒子的製造過程中所使用之有機化合物配位於半導體奈米粒子之表面而成之狀態。此情形,一般假定為使用如後述般之溶媒的液相反應,但在所使用的配位子在反應條件下為液體的情形下,將配位子本身作為溶媒,亦可採取不添加其他的溶媒的反應形式。
又,若使配位子配位之前進行如後述般之純化步驟及再分散步驟,則可容易使所欲之配位子配位。 此外,半導體奈米粒子之合成時使用非配位性溶媒的情形,配位所欲之配位子時,可抑制半導體奈米粒子之表面的缺陷之生成至最小限度,可防止螢光量子效率降低。
在一個實施形態中,將半導體奈米粒子製造後的含有半導體奈米粒子之分散液純化後,使之再分散後,添加包含脂肪族配位子之溶媒,進一步添加包含極性配位子之溶媒,於氮氣環境下,於50℃~200℃,攪拌1分鐘~120分鐘,藉此可得到所欲之半導體奈米粒子複合體。脂肪族配位子與極性配位子亦可同時添加。
(純化) 半導體奈米粒子以及半導體奈米粒子複合體係可如下純化。 在一個實施形態中,藉由添加丙酮等之極性轉換溶媒,可使半導體奈米粒子複合體從分散液析出。可將析出之半導體奈米粒子複合體藉由過濾或離心分離進行回收,另一方面,包含未反應之起始物質及其他雜質之上清液可廢棄或再利用。接著,析出之半導體奈米粒子複合體可以另外的分散媒洗淨,並再分散。此純化製程係可反覆進行,例如:2~4次、或到達所欲之純度為止。 本發明中,半導體奈米粒子複合體的純化方法沒有特別限制,除了上述所示的方法外,可單獨或組合使用例如:凝集、液液萃取、蒸餾、電沈積、粒徑篩析層析法及/或超濾、任意之方法。
<分散液> 本發明中,所謂的半導體奈米粒子複合體分散於分散媒的狀態,係表示:於經將半導體奈米粒子複合體與分散媒混合的情形,半導體奈米粒子複合體不沈澱的狀態或者不會殘留可見混濁(霧濁)的狀態。此外,將半導體奈米粒子複合體分散於分散媒者表示成半導體奈米粒子複合體分散液。
將本發明之半導體奈米粒子複合體分散於分散媒,可形成半導體奈米粒子複合體分散液。半導體奈米粒子複合體較佳為即使分散媒之SP值為9.0以上亦可分散於該分散媒中,而形成分散液。 於此之SP值係希德布朗溶解度參數(Hildebrand solubility parameter),係由韓森溶解度參數(Hansen solubility parameter)算出之值。韓森溶解度參數係使用手冊,例如:“Hansen Solubility Parameters:A User’s Handbook”,第2版,C. M. Hansen (2007),中之值、或由Hanson及Abbot et al.提供之Practice(HSPiP)程序(第2版),而可確定。
藉由使脂肪族配位子與極性配位子的質量比設為前述之比率,變得可分散於SP值為9.0~15.0之分散媒中。特別是,變得可使半導體奈米粒子分散於包含丙酮、丙二醇單甲醚醋酸酯(PGMEA)、丙二醇單甲醚(PGME)、IPA、乙醇、甲醇及此等之群組中任一組合的混合物之中的至少1者中。藉由使之分散於此等之分散媒中,應用於分散於後述之硬化膜、樹脂時,可保持半導體奈米粒子複合體之分散性而直接使用。特別是,就光阻的領域,PGMEA通常使用作為稀釋溶劑,若半導體奈米粒子複合體可分散於PGMEA,則可將半導體奈米粒子複合體廣泛地應用於光阻領域。
再者,本發明中,可選擇單體作為使半導體奈米粒子複合體分散之分散媒。單體並沒有特別限定,但較佳為可廣泛選擇半導體奈米粒子之應用目的之丙烯酸單體。(甲基)丙烯酸單體根據半導體奈米粒子複合體分散液之應用,可選自(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸異戊酯、(甲基)丙烯酸辛酯、(甲基)丙烯酸-2-乙基己酯、(甲基)丙烯酸十二烷酯、(甲基)丙烯酸異癸酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸異莰酯、(甲基)丙烯酸-3,5,5-三甲基環己酯、(甲基)丙烯酸二環戊酯(dicyclopentanyl (metha)acrylate)、(甲基)丙烯酸二環戊烯酯、(甲基)丙烯酸甲氧乙酯、(甲基)丙烯酸乙基卡必醇酯、甲氧基三乙二醇丙烯酸酯、2-乙基己基二甘醇丙烯酸酯、甲氧基聚乙二醇丙烯酸酯、甲氧基二丙二醇丙烯酸酯、(甲基)丙烯酸苯氧基乙酯、2-苯氧基二乙二醇(甲基)丙烯酸酯、2-苯氧基聚乙二醇(甲基)丙烯酸酯(n≒2)、(甲基)丙烯酸四氫糠酯、丙烯酸-2-羥基乙酯、(甲基)丙烯酸-2-羥基丙酯、(甲基)丙烯酸-4-羥基丁酯、(甲基)丙烯酸-2-羥基丁酯、(甲基)丙烯酸二環戊基氧基乙酯、(甲基)丙烯酸異莰基氧基乙酯、(甲基)丙烯酸金剛烷酯、(甲基)丙烯酸二甲基金剛烷酯、(甲基)丙烯酸二環戊烯基氧基乙酯、(甲基)丙烯酸苄酯、ω-羧基-聚己內酯(n≒2)單丙烯酸酯、丙烯酸-2-羥基-3-苯氧基丙酯、(甲基)丙烯酸-2-羥基-3-苯氧基乙酯、(甲基)丙烯酸(2-甲基-2-乙基-1,3-二氧環戊烷-4-基)甲酯、(甲基)丙烯酸(3-乙基氧環丁烷-3-基)甲酯、(甲基)丙烯酸鄰苯基苯酚乙酯(o-phenylphenolethoxy(meth)acrylate)、二甲基胺基(甲基)丙烯酸酯(dimethylamino(meth)acrylate)、二乙基胺基(甲基)丙烯酸酯、2-(甲基)丙烯醯基氧基乙基酞酸、2-(甲基)丙烯醯基氧基乙基六氫酞酸、(甲基)丙烯酸環氧丙酯、2-(甲基)丙烯醯基氧基乙基磷酸、丙烯醯基
Figure 109118003-A0304-12-0020-6
啉、二甲基丙烯醯胺、二甲基胺基丙基丙烯醯胺、異丙基丙烯醯胺、二乙基丙烯醯胺、羥基乙基丙烯醯胺、及N-丙烯醯基氧基乙基六氫鄰苯二甲醯亞胺等之(甲基)丙烯酸單體。此等可單獨使用,亦可混合2種以上使用。 特別是,丙烯酸單體係根據半導體奈米粒子複合體分散液之應用,較佳為選自(甲基)丙烯酸月桂酯、及1,6-己二醇二(甲基)丙烯酸酯之1種或2種以上的混合物。
藉由將半導體奈米粒子複合體設為上述之構成,可使半導體奈米粒子複合體以高質量分率分散於分散媒中。半導體奈米粒子複合體較佳為可分散於前述分散媒及單體中之至少1個中,使半導體奈米粒子的質量分率成為25質量%以上。
(熱重分析) 於圖1中顯示本發明之一個實施形態的半導體奈米粒子複合體之熱分析結果。熱分析係可藉由熱重分析與配位子的鑑定來進行。熱重分析係可使用示差熱重分析(DTA-TG),將半導體奈米粒子複合體於氮氣環境下、以10℃/min加熱至550℃為止後,保持10分鐘,進行降溫的方法來進行。 實線為熱重分析(TG)的結果,虛線(dashed line)為TG的微分(ΔTG)結果。隨著將半導體奈米粒子複合體升溫,觀測到因配位子的脫離所致之質量減少。由於於500℃以上質量減少大致維持一定(每10℃之質量減少率小於0.15%),因此半導體奈米粒子複合體中的配位子至500℃為止幾乎都脫離了,可算出本實施形態之半導體奈米粒子全體中所佔配位子量的比例為32%。再者,本實施形態之半導體奈米粒子複合體的質量減少率(XH )在350℃以上、550℃以下之範圍為6%。此外,若將半導體奈米粒子複合體加熱至700℃為止,則大致上全部的配位子均自半導體奈米粒子脫離。
關於本發明的實施形態之半導體奈米粒子複合體,對相對於室溫時之半導體奈米粒子複合體之全部配位子的質量分率(L)而言,熱重分析中於350℃以上、550℃以下的範圍之半導體奈米粒子複合體的質量減少率(XH )之比率({(XH )/L}×100)為10以上、55以下。此即意味著,室溫下配位於半導體奈米粒子的全部配位子中,質量之比例為10~55的配位子不會在從室溫至350℃為止的低溫度之範圍下脫離,而是在350℃以上、550℃以下的高溫度之範圍下從半導體奈米粒子之表面脫離。藉由在350℃以上、550℃以下的高溫度之範圍下從半導體奈米粒子之表面脫離之配位子的比率為10~55,成為可得到具有高光學特性之半導體奈米粒子複合體之指標。此外,上述的比率({(XH )/L}×100)更佳為10~50。
又,關於本發明之別的實施形態之半導體奈米粒子複合體,半導體奈米粒子複合體在350℃以上、550℃以下之範圍的質量減少率((350℃~550℃之範圍下之半導體奈米粒子複合體的質量減少量)/(室溫下之半導體奈米粒子複合體的質量)×100)為2%以上、15%以下。因質量減少率在此範圍內,故半導體奈米粒子複合體具有高螢光量子效率。
關於本發明之一個實施形態之半導體奈米粒子複合體,其中相對於「將半導體奈米粒子複合體從室溫加熱至700℃時的質量減少率(X)」之「從室溫至350℃之範圍的質量減少率(XL )」的比(XL /X)、與相對於「相對於室溫時之半導體奈米粒子複合體之全部配位子的質量分率(L)」之「相對於室溫時之半導體奈米粒子複合體之極性配位子的質量分率(LP )」的比之關係較佳為(XL /X)<(LP /L)。 如上所述(XL /X)<(LP /L)的關係成立的情形下,意味著即使在350℃以上的高溫度領域,至少一部分的極性配位子不會自半導體奈米粒子脫離而強力地配位。此外,如後述般,與極性配位子相比,脂肪族配位子在更高溫範圍才自半導體奈米粒子之表面脫離。如此強力配位於半導體奈米粒子的配位子,由於以足夠的力量被覆半導體奈米粒子之表面,室溫就不用多說了,即便是在作為應用所使用的溫度範圍亦賦予半導體奈米粒子之表面耐候性,因此關於本發明的實施形態之半導體奈米粒子複合體係顯示高光學活性。 此外,如前所述,若將本發明之半導體奈米粒子複合體加熱至700℃為止,則大致上全部的配位子均自半導體奈米粒子脫離。因此,「將半導體奈米粒子複合體從室溫加熱至700℃時的質量減少率(X)」、與「相對於室溫時之半導體奈米粒子複合體之全部配位子的質量分率(L)」幾乎成為相同值。
再者,從上述的ΔTG之結果,在310℃附近與430℃附近可確認有2個波峰。此等係源自各個配位子的脫離者。若將示差熱測定的各波峰面積所佔的面積超過2%的溫度作為各配位子的脫離溫度,則可算出低溫之配位子的脫離溫度為205℃、高溫之配位子的脫離溫度為394℃。關於脫離的配位子,可使用紅外線吸收光譜,進行配位子之鑑定。
首先,記載半導體奈米粒子複合體中之配位子的種類及質量比率之計算方法,其係使用紅外線吸收光譜而得。使用日本分光公司製FT/IR-4200,對藉由KBr錠劑法製作之半導體奈米粒子複合體丸粒收集紅外線吸收光譜的數據。 圖2(a)係顯示本實施形態之半導體奈米粒子複合體的紅外線吸收光譜者。分別於2900cm-1 、1450cm-1 附近觀察到C-H伸縮(stretching)、C-H彎曲(bending)的吸收波峰,於1550cm-1 附近觀察到C=O伸縮的吸收波峰,於1100cm-1 附近觀察到C-O伸縮的吸收波峰。此外,於2300cm-1 ~2500cm-1 顯示的吸收波峰係由二氧化碳所致者。
圖2(b)、(c)、(d)係顯示被認為存在於本實施形態之半導體奈米粒子複合體中之配位子單體的紅外線吸收光譜者。本實施形態中,1種極性配位子與2種脂肪族配位子係配位於半導體奈米粒子上。本實施形態中,配位子(b)係極性配位子,配位子(c)及配位子(d)係脂肪族配位子。 由於紅外線吸收光譜的吸光度僅與物質的濃度和厚度成比例,故可從波峰面積進行定量分析。
一般而言,若將半導體奈米粒子複合體的紅外線吸收光譜設為SQD (ν)、將第i的脂肪族配位子的紅外線吸收光譜設為Sai (ν)、將第i的極性配位子的紅外線吸收光譜設為Spi (ν),則係如式(1)所示。 SQD (ν)= ΣaiSai (ν) + ΣpiSpi (ν)  式(1) 其中,ν為波數,ai及pi分別為與脂肪族配位子及極性配位子之莫耳分率有關係之常數。
例如:本實施形態之半導體奈米粒子複合體的紅外線吸收光譜,若將(b)的極性配位子之光譜設為S(b) (ν)、將(c)及(d)的脂肪族配位子之光譜分別設為S(c) (ν)、S(d) (ν),則係如式(2)所示。 SQD (ν)= bS(b) (ν) + cS(c) (ν) + dS(d) (ν)  式(2) 其中,ν為波數、b、c及d分別為常數。使用Excel(Microsoft公司製電子試算表軟體)的規劃求解(SOLVER)功能確定常數b、c及d之值,以使實測值與計算值之殘差平方和成最小。圖3係擬合紅外線吸收光譜之實測值與計算值者。點線是實測值,實線是計算值。可知計算值通常表示實測值。
圖4係C-H伸縮的吸收波峰之擬合曲線中所佔的各配位子成分之紅外線吸收光譜之構成。圖4中,與圖3及圖2相同,點線係表示半導體奈米粒子複合體之紅外線吸收光譜實測值,灰色的實線係表示配位子(b)之紅外線吸收光譜的實測值,2根灰色的虛線分別表示配位子(c)及(d)之紅外線吸收光譜實測值。黑的實線為計算值,可知計算值通常表示實測值。由於C-H伸縮的吸收波峰包含半導體奈米粒子複合體中之全部的配位子成分的吸收,故從藉由波形分離所得到之各配位子成分的波峰面積比,可求得配位子之組成。各配位子成分的質量分率,係由前述波峰面積比、與分子內之質子數、及分子量計算。圖4表示藉由後述之例1所得到之半導體奈米粒子複合體的測定結果,就此實例而言,配位子成分的質量分率係配位子(b):配位子(c):配位子(d)=89:8:3,亦即,可算出極性配位子(b)與脂肪族配位子((c)+(d))的質量比為89:11。
使用上述之方法,進行於熱分析中於低溫脫離之配位子之鑑定。 圖5中係顯示熱處理前後的本實施形態之半導體奈米粒子複合體的紅外線吸收光譜。實線為熱處理前之半導體奈米粒子複合體的紅外線吸收光譜,虛線為於氮氣環境下以10℃/min加熱至350℃為止,並冷卻至室溫的半導體奈米粒子複合體的紅外線吸收光譜。 可知在熱處理前之半導體奈米粒子複合體的紅外線吸收光譜中,於1100cm-1 附近觀測到C-O伸縮的尖銳吸收波峰,另一方面,在加熱至350℃為止之半導體奈米粒子複合體中,此波峰強度變得相當弱。在加熱至350℃為止之半導體奈米粒子複合體中,由於可明顯觀測到在2900cm-1 、1450cm-1 附近之C-H伸縮、C-H彎曲的吸收波峰,故可以說以ΔTG確認之於低溫脫離之配位子係屬於極性配位子(b),350℃以上之高溫脫離成分則屬於脂肪族配位子(c)及(d)。此外,如上所述,於2300cm-1 ~2500cm-1 所示之吸收波峰係由二氧化碳所致者。
相對於室溫時之半導體奈米粒子複合體之全部配位子的質量分率(L)之算出方法係如下所述。 於上述的熱重分析中,若將半導體奈米粒子複合體之質量減少量變成大致一定之點設為終點,則到終點為止之質量減少量係表示在室溫時配位於半導體奈米粒子上之全部配位子量。此外,配位子的脫離溫度係依配位於半導體奈米粒子上之配位子的種類而變。因此,為了算出相對於室溫時之半導體奈米粒子複合體之全部配位子的質量分率(L),應使用將加熱溫度設為700℃以上時之熱重分析結果(質量減少量)來判定。
根據以上的熱重分析之測定結果、及紅外線吸收光譜的測定結果可知具有下述特徵,若加熱本案記載之半導體奈米粒子複合體,則脂肪族配位子比極性配位子在更高溫時從半導體奈米粒子之表面脫離。再者,350℃以上時脫離的成分之至少一部分係屬於脂肪族配位子。 作為參考,已有揭示非專利文獻6中所記載之脂肪族配位子(十二烷硫醇)係於250℃~300℃左右從所鍵結之Zn脫離。與文獻相比較,本案記載之半導體奈米粒子複合體中的脂肪族配位子之脫離溫度為較高溫度。 配位子之脫離溫度被認為不僅受到化學結構很大的影響,也受到與存在於半導體奈米粒子表面之Zn的配位形態、配位子之結晶結構形成等與周圍的原子・分子之相互作用很大的影響,於本案記載之半導體奈米粒子上配位之脂肪族配位子,由於如前述般的因子,於半導體奈米粒子表面受到強力的束縛,而顯示高的脫離溫度。發明者們推測,此種於半導體奈米粒子表面受到強力束縛的脂肪族配位子的存在提升了半導體奈米粒子的螢光量子效率。發明者們推測,前述之脂肪族配位子的存在亦有使耐熱性提升之效果。
本發明之半導體奈米粒子複合體係採用以下之構成。 (1)一種半導體奈米粒子複合體,其係於半導體奈米粒子之表面上配位包含脂肪族配位子及極性配位子之2種以上的配位子而成之半導體奈米粒子複合體, 前述配位子係由有機基及配位性基構成, 前述脂肪族配位子之前述有機基為脂肪族烴基, 前述極性配位子係於前述有機基上包含親水性官能基, 前述脂肪族配位子與前述極性配位子之質量比(脂肪族配位子/極性配位子)為0.05~1.00, 對相對於室溫時之半導體奈米粒子複合體之全部配位子的質量分率(L)而言,熱重分析中於350℃以上、550℃以下的範圍之半導體奈米粒子複合體的質量減少率(XH )之比率({(XH )/L}×100)為10以上、55以下。 (2)一種半導體奈米粒子複合體,其係於半導體奈米粒子之表面上配位包含脂肪族配位子及極性配位子之2種以上的配位子而成之半導體奈米粒子複合體, 前述配位子係由有機基及配位性基構成, 前述脂肪族配位子之前述有機基為脂肪族烴基, 前述極性配位子係於前述有機基上包含親水性官能基, 前述脂肪族配位子與前述極性配位子之質量比(脂肪族配位子/極性配位子)為0.05~1.00, 熱重分析中於350℃以上、550℃以下的範圍之半導體奈米粒子複合體的質量減少率(XH )為2%以上、15%以下。 (3)如上述(1)或(2)記載之半導體奈米粒子複合體,其中當將前述半導體奈米粒子複合體加熱時,前述極性配位子比前述脂肪族配位子在更低溫自前述半導體奈米粒子的表面脫離。 (4)如上述(1)至(3)中任一項記載之半導體奈米粒子複合體,其於前述熱重分析中, 相對於將半導體奈米粒子複合體從室溫加熱至700℃時的質量減少率(X)之從室溫至350℃之範圍的質量減少率(XL )的比(XL /X),與 相對於室溫時之半導體奈米粒子複合體之全部配位子的質量分率(L)與相對於室溫時之半導體奈米粒子複合體之極性配位子的質量分率(LP )之比(LP /L)的關係為 (XL /X)<(LP /L)。 (5)如上述(1)至(4)中任一項記載之半導體奈米粒子複合體,其中前述半導體奈米粒子複合體可分散於SP值9.0~15.0的分散媒中。 (6)如上述(5)記載之半導體奈米粒子複合體,其中前述分散媒係選自包含丙酮、PGMEA、PGME、IPA、乙醇、及甲醇之群組中的1種或2種以上之混合分散媒。 (7)如上述(1)至(6)中任一項記載之半導體奈米粒子複合體,其中前述於350℃以上的質量減少的至少一部分係歸因於前述脂肪族配位子的脫離。 (8)如上述(1)至(7)中任一項記載之半導體奈米粒子複合體,其中前述脂肪族配位子係有1個配位性基、與至少1個以上的脂肪族烴基鍵結。 (9)如上述(1)至(8)中任一項記載之半導體奈米粒子複合體,其中前述極性配位子之分子量為50以上、600以下。 (10)如上述(1)至(9)中任一項記載之半導體奈米粒子複合體,其中前述極性配位子之分子量為50以上、450以下。 (11)如上述(1)至(10)中任一項記載之半導體奈米粒子複合體,其中前述脂肪族配位子之配位性基係選自包含胺基、羧基、巰基、膦基、及氧化膦基之群組。 (12)如上述(1)至(11)中任一項記載之半導體奈米粒子複合體,其中前述極性配位子之有機基具有羥基、羧基、羰基、巰基、胺基、醚鍵、酯鍵、及矽氧烷鍵中之至少一者。 (13)如上述(1)至(12)中任一項記載之半導體奈米粒子複合體,其中前述極性配位子之配位性基為巰基。 (14)如上述(1)至(13)中任一項記載之半導體奈米粒子複合體,其中相對於前述半導體奈米粒子之前述配位子的質量比(配位子/半導體奈米粒子)為0.1~0.7。 (15)如上述(1)至(14)中任一項記載之半導體奈米粒子複合體,其中相對於前述半導體奈米粒子之前述配位子的質量比(配位子/半導體奈米粒子)為0.1~0.5。 (16)如上述(5)至(15)中任一項記載之半導體奈米粒子複合體,其可分散於前述分散媒中,使成為前述半導體奈米粒子的質量分率25質量%以上。 (17)如上述(5)至(16)中任一項記載之半導體奈米粒子複合體,其可分散於前述分散媒中,使成為前述半導體奈米粒子的質量分率35質量%以上。 (18)如上述(1)至(17)中任一項記載之半導體奈米粒子複合體,其中前述半導體奈米粒子係於前述半導體奈米粒子之表面含有Zn。 (19)如上述(1)至(18)中任一項記載之半導體奈米粒子複合體,其中前述半導體奈米粒子複合體的螢光量子效率為80%以上。 (20)如上述(1)至(19)中任一項記載之半導體奈米粒子複合體,其中前述半導體奈米粒子複合體之發光光譜的半高寬為40nm以下。 (21)如上述(1)至(20)中任一項記載之半導體奈米粒子複合體,其中前述半導體奈米粒子包含In及P。
(均等論) 由於本說明書中記載之構成及/或方法係作為實例而呈現,可有多種的變形形態,因此應當可理解不應將此等之具體例或實施例視為限定之意。本說明書中記載之特定的流程或方法可表示多種處理方法中的1個。因此,所說明及/或記載的各種行為能夠以所說明及/或記載的順序進行,或者也能夠省略。同樣地,前述的方法之順序可以變更。 本揭示的主題包含本說明書中所揭示的各種方法、系統及構成、以及其他特徵、功能、行為、及/或性質的全部新穎的且非顯而易見的組合及次要的組合、以及它們的全部均等物。 [實施例]
以下,藉由實施例及比較例具體說明本發明,但本發明並非限於此等。
[例1] 首先,根據以下之方法,進行半導體奈米粒子之合成。 (前驅物之製作) <Zn前驅物溶液之調製> 將40mmol的油酸鋅與75mL的十八烯混合,在真空下以110℃加熱1小時,調製[Zn]=0.4M之Zn前驅物。 <Se前驅物(硒化三辛基膦)之調製> 將22mmol的硒粉末與10mL的三辛基膦在氮氣中混合,攪拌至完全溶解為止,得到[Se]=2.2M的硒化三辛基膦。 <S前驅物(硫化三辛基膦)之調製> 將22mmol的硫粉末與10mL的三辛基膦在氮氣中混合,攪拌至完全溶解為止,得到[S]=2.2M的硫化三辛基膦。
(半導體奈米粒子之合成) 將醋酸銦(0.3mmol)與油酸鋅(0.6mmol)添加至油酸(0.9mmol)與1-十二烷硫醇(0.1mmol)與十八烯(10mL)之混合物中,於真空下(<20Pa)加熱至約120℃,使之反應1小時。將於真空下反應而成之混合物置於25℃、氮氣環境下,添加參(三甲基矽基)膦(0.2mmol)後,加熱至約300℃,使之反應10分鐘。將反應液冷卻至25℃,注入辛醯氯(0.45mmol),於約250℃加熱30分鐘後,冷卻至25℃。 其後,加熱至200℃為止,同時添加0.75mL的Zn前驅物溶液、0.3mmol的硒化三辛基膦,使之反應30分鐘,於InP系半導體奈米粒子之表面上形成ZnSe外殼。再者,添加1.5mL的Zn前驅物溶液與0.6mmol的硫化三辛基膦,升溫至250℃,使之反應1小時,形成ZnS外殼。 將如上述合成而得到之半導體奈米粒子的反應溶液添加至丙酮中,充分混合後進行離心分離。離心加速度設為4000G。回收沈澱物,於沈澱物中添加正己烷,製作分散液。重複數次此操作,得到經純化之半導體奈米粒子。
接著,根據以下之方法,進行半導體奈米粒子複合體之合成。 (配位子單體之製作) <PEG-SH之調製> 於燒瓶中收入210g的甲氧基PEG-OH(分子量400)及93g的三乙胺,使之溶解於420mL的THF(四氫呋喃)。將溶液冷卻至0℃,一邊注意不要因反應熱而使反應溶液之溫度超過5℃,一邊在氮氣環境下緩緩滴下51g的甲磺醯氯。其後,將反應溶液升溫至室溫,攪拌2小時。將此溶液以氯仿-水系萃取,回收有機相。將所得到之溶液藉由蒸發作用濃縮,藉由硫酸鎂得到油狀的中間體。將其移至別的1L的燒瓶,於氮氣環境下添加400mL的1.3M的硫脲水溶液。將溶液回流2小時後,添加21g的NaOH,進一步回流1.5小時。將反應溶液冷卻至室溫,添加1M HCl水溶液進行中和直到變成pH=7為止。將所得到之溶液以氯仿-水系萃取,得到作為標的之配位子(PEG-SH,分子量430)。 除了在合成分子量400的PEG-SH之步驟,將PEG-SH甲氧基PEG-OH(分子量400,210g)變成甲氧基PEG-OH(分子量600,315g)以外,以同樣的方法,得到分子量600的PEG-SH。 <N-乙醯基-N-(2-巰基乙基)丙醯胺之調製> 將1.2g(10mmol)的N-(2-sulfanylethyl)acetamide及1.7mL(12mmol)的三乙胺收入100mL的圓底燒瓶中,使之溶解於30mL的無水二氯甲烷。將溶液冷卻至0℃,於氮氣環境下一邊緩緩滴下0.87mL(10mmol)的丙醯氯,一邊注意不要使溶液之溫度變成5℃以上。滴下結束後,將反應溶液升溫至室溫,攪拌2小時。過濾反應溶液,將濾液以氯仿稀釋。依10%HCl水溶液、10%Na2 CO3 水溶液、飽和NaCl水溶液的順序萃取溶液,回收有機相。將有機相藉由蒸發作用濃縮後,以將己烷-醋酸乙酯混合溶媒作為展開溶媒之管柱層析進行純化,得到目標物。
(半導體奈米粒子複合體之製作) 於燒瓶中調製使經純化之半導體奈米粒子以1-十八烯分散使成為質量比10質量%的半導體奈米粒子1-十八烯分散液。將經調製之半導體奈米粒子1-十八烯分散液10.0g收入燒瓶中,添加十二烷硫醇(DDT) 0.2g作為脂肪族配位子,進一步添加PEG-SH 4.0g作為極性配位子,於氮氣環境下於110℃,攪拌60分鐘,冷卻至25℃為止,藉此得到半導體奈米粒子複合體。將包含前述半導體奈米粒子複合體之反應溶液移至離心管,若以4000G離心分離20分鐘,則分離成透明的1-十八烯相與半導體奈米粒子複合體相。去除1-十八烯相,回收殘留的半導體奈米粒子複合體相。
(洗淨步驟) 於所得到之半導體奈米粒子複合體相中添加丙酮5.0mL,製作分散液。於所得到之分散液中添加50mL的正己烷,以4000G離心分離20分鐘。離心分離後,去除透明的上清液,回收沈澱物。重複數次此操作,得到經純化之半導體奈米粒子複合體。 (半導體奈米粒子複合體的發光特性測定) 半導體奈米粒子複合體的發光特性係使用螢光量子效率測定系統(大塚電子製,QE-2100)測定。使所得到之半導體奈米粒子複合體分散於分散媒中,施加450nm的單一光而得到發光光譜。由從此處所得到的發光光譜扣除被再激發而進行螢光發光之相應部分的再激發螢光發光光譜的再激發校正後之發光光譜,來算出螢光量子效率(QY)及半高寬(FWHM)。分散液係使用PGMEA。於PGMEA中無法分散的情形,則將分散液變更成正己烷。
(半導體奈米粒子複合體的熱重分析測定) 於圖1顯示,將前述構成的半導體奈米粒子複合體(例1)以熱重分析(TGA)以10℃/min從25℃加熱至550℃為止的情形之TG曲線及其微分(ΔTG)曲線。測定係使用Bruker公司製TG-DTA2000SA,在200ml/min之氮氣流下進行。 於例1之半導體奈米粒子複合體中,從室溫至350℃之範圍的質量減少率為25%,於350℃以上、550℃以下之範圍的半導體奈米粒子複合體的質量減少率為7%。再者,從ΔTG曲線,在310℃附近與430℃附近可確認有2個波峰。
在本發明中,將熱重分析中將半導體奈米粒子複合體加熱至700℃為止時的全質量減少率視為相對於室溫之半導體奈米粒子複合體之全部配位子的質量分率(L)。 再者,熱重分析中將半導體奈米粒子複合體加熱至700℃為止,將測定後之殘留質量作為半導體奈米粒子之質量。由此數值確認相對於室溫之半導體奈米粒子複合體的半導體奈米粒子的質量分率(Q)。 參考前述相對於室溫之半導體奈米粒子複合體的半導體奈米粒子的質量分率(Q),於半導體奈米粒子複合體中添加PGMEA(SP值9.41),使半導體奈米粒子的質量分率變成5質量%,確認此時之分散狀態。於表2中,將分散者記載為○,將觀察到沈澱、及混濁者記載為×。又,調整添加的PGMEA量,使半導體奈米粒子的質量分率從50質量%至10質量%為止每次改變5質量%,以確認分散狀態。將不再觀察到沈澱、及混濁的質量分率設為半導體奈米粒子的質量分率,並記載於表2中。針對以下之例2~例21亦同樣進行測定,將其結果顯示於表2。
[例2] 於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之十二烷硫醇0.5g,作為極性配位子之PEG-SH 4.0g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
[例3] 於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之十二烷硫醇1.0g,作為極性配位子之N-乙醯基-N-(2-巰基乙基)丙醯胺1.5g,進一步添加油酸0.5g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
[例4] 於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之十二烷硫醇0.5g,作為極性配位子之三乙二醇單甲醚硫醇(TEG-SH)4.0g,進一步添加油酸0.5g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
[例5] 於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之辛烷硫醇0.5g,作為極性配位子之N-乙醯基-N-(2-巰基乙基)丙醯胺4.0g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
[例6] 於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之十二烷硫醇0.5g,作為極性配位子之PEG-SH(分子量600)6.0g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
[例7] 於製作半導體奈米粒子之外殼之步驟,使用作為Zn前驅物溶液之40mmol的辛酸鋅及75mL的十八烯之混合物。再者,於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之十二烷硫醇0.5g,作為極性配位子之N-乙醯基-N-(2-巰基乙基)丙醯胺4.0g,進一步添加羊脂酸(辛酸)0.5g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
[例8] 於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之十二烷硫醇0.5g,作為極性配位子之3-巰基丙酸甲酯(東京化成工業製)4.0g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
[例9] 於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之十二烷硫醇0.2g,作為極性配位子之PEG-SH 8.0g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
[例10] 於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之環戊硫醇0.5g,作為極性配位子之PEG-SH 4.0g,進一步添加油酸0.5g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
圖6係顯示例10之半導體奈米粒子複合體之熱分析結果的圖。實線為TG曲線,虛線為ΔTG曲線。例10中,係使用作為脂肪族配位子之環戊硫醇,作為極性配位子之PEG-SH。於例10的ΔTG曲線,分別在230℃附近可觀測到因環戊硫醇的脫離所致的波峰、與在310℃附近可觀測到因PEG-SH所致之波峰。如此一來,在脂肪族配位子比極性配位子更早脫離的情形,半導體奈米粒子的螢光量子效率變低。
[例11] 於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之戊硫醇0.5g,作為極性配位子之PEG-SH 4.0g,進一步添加油酸0.5g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
[例12] 於製作半導體奈米粒子之外殼之步驟,使用作為Zn前驅物溶液之40mmol的醋酸鋅及75mL的十八烯之混合物。再者,於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之十二烷硫醇0.5g,作為極性配位子之PEG-SH 4.0g,進一步添加醋酸0.5g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
[例13] 於製作半導體奈米粒子複合體之步驟,添加作為脂肪族硫醇配位子之十二烷硫醇2.0g,將極性配位子變更為PEG-SH,進一步添加油酸1.0g。於氮氣環境下於110℃,攪拌60分鐘,冷卻至25℃為止。於前述反應溶液中添加正己烷5.0mL,製作分散液。於所得到之分散液中添加50mL的乙醇,以4000G離心分離20分鐘。離心分離後,去除透明的上清液,回收沈澱物。重複數次此操作,得到經純化之半導體奈米粒子複合體。
[例14] 於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之十二烷硫醇0.5g,作為極性配位子之PEG-SH(分子量750)7.5g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
[例15] 於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之十二烷硫醇0.5g,作為極性配位子之PEG-SH(分子量1000)10.0g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
[例16] 於燒瓶中收入以與例1同樣的方法純化而成之半導體奈米粒子複合體1.0g、異丙醇10mL及PEG-SH 4.0g。將此溶液於氮氣環境下於80℃攪拌180分鐘,冷卻至25℃為止。於反應溶液中添加50mL的正己烷,以4000G離心分離20分鐘。離心分離後,去除透明的上清液,回收沈澱物。於沈澱物中添加5.0mL的丙酮,製作分散液。於所得到之分散液中添加50mL的正己烷,以4000G離心分離20分鐘。離心分離後,去除透明的上清液,回收沈澱物。重複數次此操作,得到經純化之半導體奈米粒子複合體。
圖7係顯示例16之半導體奈米粒子複合體之熱分析結果的圖。實線為TG曲線,虛線為ΔTG曲線。例16的半導體奈米粒子複合體之ΔTG曲線中,於300℃附近可觀察到尖銳的單一波峰。當使用紅外線吸收光譜鑑定因該波峰所致之配位子的種類時,可知該波峰係因極性配位子(PEG-SH)所致。另一方面,當針對於350℃以上、550℃以下之範圍脫離的配位子使用紅外線吸收光譜進行鑑定時,可知於350℃以上、550℃以下之範圍脫離的配位子係脂肪族配位子。若著眼於因熱分析所致之質量減少率,則於350℃以上、550℃以下之範圍的質量減少率為1%。如此一來,於350℃以上、550℃以下之範圍的質量減少率小於2%的情形,半導體奈米粒子複合體的螢光量子效率變低。
[例17] 於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之十二烷硫醇0.5g,作為極性配位子之PEG-SH 2.0g,進一步添加油酸2.0g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
圖8係顯示例17之半導體奈米粒子複合體之熱分析結果的圖。實線為TG曲線,虛線為ΔTG曲線。分別使用作為脂肪族配位子之十二烷硫醇及油酸、作為極性配位子之PEG-SH。於例17的ΔTG曲線,分別在310℃附近可觀察到因極性配位子的脫離所致的波峰、在440℃附近可觀察到因脂肪族配位子的脫離所致的波峰。又,若著眼於因熱分析所致之質量減少率,則於350℃以上、550℃以下之範圍的質量減少率為17%。如此一來,於350℃以上、550℃以下之範圍的質量減少率為15%以上的情形,半導體奈米粒子複合體的螢光量子效率變低。
[例18] 於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之十二烷硫醇0.5g,作為極性配位子之N-乙醯基-N-(2-巰基乙基)丙醯胺2.0g,進一步添加油酸2.0g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
[例19] 於製作半導體奈米粒子複合體之步驟,除了使用作為脂肪族硫醇配位子之十二烷硫醇4.0g,不添加極性配位子以外,以與例1同樣的方法得到半導體奈米粒子複合體。
[例20] 於製作半導體奈米粒子複合體之步驟,除了不添加脂肪族硫醇配位子及極性配位子,添加油酸4.0g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
[例21] 於製作半導體奈米粒子複合體之步驟,除了不添加脂肪族硫醇配位子,使用作為極性配位子之PEG-SH 4.0g以外,以與例1同樣的方法得到半導體奈米粒子複合體。
將所得到之半導體奈米粒子複合體之構成、配位子之構成顯示於表1,將發光特性及熱分析之結果、及對分散媒之分散狀態顯示於表2。就半導體奈米粒子複合體而言,使之分散於PGMEA的情形,較佳為可分散,使半導體奈米粒子的質量分率成為25質量%以上。 此外,表1中所示之簡稱的意義係如下所示。 DDT           :十二烷硫醇 Oct-SH       :辛烷硫醇 OA             :油酸 OctA          :辛酸
[表1]
  配位子種類 極性配位子 分子量 配位子組成
脂肪族 配位子 極性 配位子 極性 配位子 脂肪族 配位子 脂肪族配位子/ 極性配位子
例1 DDT OA PEG-SH 430 95 5 0.05
例2 DDT OA PEG-SH 430 81 19 0.23
例3 DDT OA N-乙醯基-N-(2-巰基乙基) 丙醯胺 175 50 50 1.00
例4 DDT OA TEG-SH (三乙二醇單甲基硫醇) 180 71 29 0.41
例5 Oct-SH OA N-乙醯基-N-(2-巰基乙基) 丙醯胺 175 80 20 0.25
例6 DDT OA PEG-SH 600 87 13 0.15
例7 DDT OctA N-乙醯基-N-(2-巰基乙基) 丙醯胺 175 75 25 0.33
例8 DDT OA MPA-Me3-巰基丙酸甲酯 120 82 18 0.22
例9 DDT OA PEG-SH 430 94 6 0.06
例10 環戊硫醇 OA PEG-SH 430 75 25 0.33
例11 戊硫醇 OA PEG-SH 430 75 25 0.33
例12 DDT 醋酸 PEG-SH 430 79 21 0.27
例13 DDT OA PEG-SH 430 40 60 1.50
例14 DDT OA PEG-SH 750 89 11 0.12
例15 DDT OA PEG-SH 1000 92 8 0.09
例16 DDT OA PEG-SH 430 97 3 0.02
例17 DDT OA PEG-SH 430 51 49 0.90
例18 DDT OA N-乙醯基-N-(2-巰基乙基) 丙醯胺 175 46 47 1.02
例19 DDT - - - 0 100 -
例20 - OA - - 0 100 -
例21 - - PEG-SH 400 100 0 0
[表2]
  發光特性 室溫時 熱分析 對PGMEA之 分散性
螢光量子 效率 (%) 半高寬 (nm) 全部配位子的 質量分率(L) (%) 半導體奈米粒子的 質量分率(Q) (%) L/Q 於室溫~700℃之 質量減少率(X) (%) 於室溫~350℃之 質量減少率(XL ) (%) 於350℃~550℃之 質量減少率(XH ) (%) 低溫 脫離 XH /L XL /X LP /L 分散 狀態 半導體奈米 粒子質量 分率 (質量%)
例1 88 36 32 68 0.47 32 25 7 極性 21.9 78.1 95 35
例2 92 37 30 70 0.43 30 22 8 極性 26.7 73.3 81 35
例3 87 37 25 75 0.33 25 12 13 極性 52.0 48.0 50 35
例4 90 36 24 76 0.32 24 13 11 極性 45.0 55.0 71 35
例5 83 36 29 71 0.41 29 22 7 極性 24.1 75.9 80 35
例6 85 38 37 63 0.59 37 23 14 極性 37.8 62.2 87 25
例7 90 36 28 72 0.39 28 16 12 極性 42.9 57.1 75 35
例8 88 37 25 75 0.33 25 18 7 極性 28.3 71.7 82 35
例9 85 36 33 67 0.49 33 29 4 極性 12.1 87.9 94 35
例10 56 43 30 70 0.43 30 19 11 脂肪族 36.7 63.3 75 30
例11 65 44 29 71 0.41 29 19 10 脂肪族 34.5 65.5 75 30
例12 62 45 32 68 0.47 32 28 4 脂肪族 12.5 87.5 79 30
例13 84 36 25 75 0.33 25 11 14 極性 56.0 44.0 40 × -
例14 82 37 66 34 1.94 66 62 4 極性 6.1 93.9 89 20
例15 83 38 73 27 2.70 73 70 3 極性 4.1 95.9 92 15
例16 73 37 35 65 0.54 35 34 1 極性 2.9 97.1 97 25
例17 82 37 28 72 0.39 28 11 17 極性 60.7 39.3 51 15
例18 81 38 26 74 0.35 26 10 16 極性 61.5 38.5 46 15
例19 79 36 25 75 0.43 25 11 14 脂肪族 56.0 44.0 0 × -
例20 64 37 27 73 0.43 27 3 24 脂肪族 88.9 11.1 0 × -
例21 74 37 35 65 0.54 35 34 1 極性 2.9 97.1 100 20
無。
圖1係顯示關於本發明的實施形態之半導體奈米粒子複合體的熱重分析之結果的圖。 圖2係顯示關於本發明的實施形態之半導體奈米粒子複合體與配位子單體的紅外線吸收光譜的圖。 圖3係擬合關於本發明的實施形態之半導體奈米粒子複合體的紅外線吸收光譜之實測值與計算值而成之圖。 圖4係顯示針對關於本發明的實施形態之半導體奈米粒子複合體之C-H伸縮的吸收波峰,擬合曲線中所佔的各配位子成分之紅外線吸收光譜之構成的圖。 圖5係顯示關於本發明的實施形態之半導體奈米粒子複合體在熱處理前後之紅外線吸收光譜的圖。 圖6係顯示例10之半導體奈米粒子複合體之熱重分析結果的圖。 圖7係顯示例16之半導體奈米粒子複合體之熱重分析結果的圖。 圖8係顯示例17之半導體奈米粒子複合體之熱重分析結果的圖。
無。

Claims (18)

  1. 一種半導體奈米粒子複合體,其係於半導體奈米粒子之表面上配位包含脂肪族配位子及極性配位子之2種以上的配位子而成之半導體奈米粒子複合體,該配位子係由有機基及配位性基構成,該脂肪族配位子之該有機基為脂肪族烴基,該極性配位子係於該有機基上包含親水性官能基,該脂肪族配位子與該極性配位子之質量比(脂肪族配位子/極性配位子)為0.05~1.00,對相對於室溫時之半導體奈米粒子複合體之全部配位子的質量分率(L)而言,熱重分析中於350℃以上、550℃以下的範圍之半導體奈米粒子複合體的質量減少率(XH )之比率({(XH )/L}×100)為10以上、55以下。
  2. 一種半導體奈米粒子複合體,其係於半導體奈米粒子之表面上配位包含脂肪族配位子及極性配位子之2種以上的配位子而成之半導體奈米粒子複合體,該配位子係由有機基及配位性基構成,該脂肪族配位子之該有機基為脂肪族烴基,該極性配位子係於該有機基上包含親水性官能基,該脂肪族配位子與該極性配位子之質量比(脂肪族配位子/極性配位子)為0.05~1.00,熱重分析中於350℃以上、550℃以下的範圍之半導體奈米粒子複合體的質量減少率(XH )為2%以上、15%以下。
  3. 如請求項1或2之半導體奈米粒子複合體,其中當將該半導體奈米粒子複合體加熱時,該極性配位子比該脂肪族配位子在更低溫自該半導體奈米粒子的表面脫離。
  4. 如請求項1至3中任一項之半導體奈米粒子複合體,其於該熱重分析中,相對於將半導體奈米粒子複合體從室溫加熱至700℃時的質量減少率(X)之從室溫至350℃之範圍的質量減少率(XL )之比(XL /X)、與相對於室溫時之半導體奈米粒子複合體之全部配位子的質量分率(L)與相對於室溫時之半導體奈米粒子複合體之極性配位子的質量分率(LP )之比(LP /L)的關係為(XL /X)<(LP /L)。
  5. 如請求項1至4中任一項之半導體奈米粒子複合體,其中該半導體奈米粒子複合體可分散於SP值9.0~15.0的分散媒中。
  6. 如請求項5之半導體奈米粒子複合體,其中該分散媒係選自包含丙酮、丙二醇單甲醚醋酸酯(PGMEA)、丙二醇單甲醚(PGME)、異丙醇(IPA)、乙醇、及甲醇之群組中的1種或2種以上之混合分散媒。
  7. 如請求項1至6中任一項之半導體奈米粒子複合體,其中該於350℃以上的質量減少的至少一部分係歸因於該脂肪族配位子的脫離。
  8. 如請求項1至7中任一項之半導體奈米粒子複合體,其中該脂肪族配位子係有1個配位性基、與至少1個以上的脂肪族烴基鍵結。
  9. 如請求項1至8中任一項之半導體奈米粒子複合體,其中該極性配位子之分子量為50以上、600以下。
  10. 如請求項1至9中任一項之半導體奈米粒子複合體,其中該脂肪族配位子之配位性基係選自包含胺基、羧基、巰基、膦基、及氧化膦基之群組。
  11. 如請求項1至10中任一項之半導體奈米粒子複合體,其中該極性配位子之有機基具有羥基、羧基、羰基、巰基、胺基、醚鍵、酯鍵、及矽氧烷鍵中之至少一者。
  12. 如請求項1至11中任一項之半導體奈米粒子複合體,其中該極性配位子之配位性基為巰基。
  13. 如請求項1至12中任一項之半導體奈米粒子複合體,其中相對於該半導體奈米粒子之該配位子的質量比(配位子/半導體奈米粒子)為0.1~0.7。
  14. 如請求項5至13中任一項之半導體奈米粒子複合體,其可分散於該分散媒中,使成為該半導體奈米粒子的質量分率25質量%以上。
  15. 如請求項1至14中任一項之半導體奈米粒子複合體,其中該半導體奈米粒子於該半導體奈米粒子之表面含有Zn。
  16. 如請求項1至15中任一項之半導體奈米粒子複合體,其中該半導體奈米粒子複合體的螢光量子效率為80%以上。
  17. 如請求項1至16中任一項之半導體奈米粒子複合體,其中該半導體奈米粒子複合體之發光光譜的半高寬為40nm以下。
  18. 如請求項1至17中任一項之半導體奈米粒子複合體,其中該半導體奈米粒子包含In及P。
TW109118003A 2019-05-31 2020-05-29 半導體奈米粒子複合體 TW202112654A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019103247 2019-05-31
JP2019-103247 2019-05-31

Publications (1)

Publication Number Publication Date
TW202112654A true TW202112654A (zh) 2021-04-01

Family

ID=73553216

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109118003A TW202112654A (zh) 2019-05-31 2020-05-29 半導體奈米粒子複合體

Country Status (6)

Country Link
US (1) US20220325174A1 (zh)
JP (1) JPWO2020241875A1 (zh)
KR (1) KR20220015400A (zh)
CN (1) CN113892195A (zh)
TW (1) TW202112654A (zh)
WO (1) WO2020241875A1 (zh)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5881045B2 (ja) 2011-10-11 2016-03-09 国立研究開発法人産業技術総合研究所 量子ドット含有チタン化合物及びその製造方法、並びに該量子ドット含有チタン化合物を用いた光電変換素子
WO2015156226A1 (ja) 2014-04-08 2015-10-15 Nsマテリアルズ株式会社 量子ドット及びその製造方法、並びに、前記量子ドットを用いた成形体、シート部材、波長変換部材、発光装置
TWI690631B (zh) * 2014-08-11 2020-04-11 德商漢高股份有限及兩合公司 反應性膠狀奈米晶體及奈米晶體合成物
JP6448782B2 (ja) * 2015-05-28 2019-01-09 富士フイルム株式会社 量子ドット含有組成物、波長変換部材、バックライトユニット、および液晶表示装置
WO2017038487A1 (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 半導体ナノ粒子、分散液、フィルムおよび半導体ナノ粒子の製造方法
WO2017086362A1 (ja) * 2015-11-20 2017-05-26 Jsr株式会社 ナノ粒子集合体及びその製造方法、ナノ粒子集合体組成物、波長変換層、並びにリガンド
JP7062600B2 (ja) * 2016-05-19 2022-05-06 ナノシス・インク. 高輝度ナノ構造体のためのコア/シェル量子ドット形態の改良法
US11421151B2 (en) * 2016-11-25 2022-08-23 Samsung Electronics Co., Ltd. Light emitting device and display device including quantum dot
US10768485B2 (en) * 2017-07-05 2020-09-08 Nanoco Technologies Ltd. Quantum dot architectures for color filter applications
KR20190043085A (ko) * 2017-10-17 2019-04-25 엘지디스플레이 주식회사 발광체, 이를 포함하는 발광 필름, 발광다이오드 및 발광장치

Also Published As

Publication number Publication date
CN113892195A (zh) 2022-01-04
WO2020241875A1 (ja) 2020-12-03
KR20220015400A (ko) 2022-02-08
JPWO2020241875A1 (zh) 2020-12-03
US20220325174A1 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
CN108350353B (zh) 感光性图案形成用材料
KR101916288B1 (ko) 표면 변형된 나노입자
JP2020204756A (ja) 半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜
TW202112654A (zh) 半導體奈米粒子複合體
CN114127229B (zh) 半导体纳米粒子复合体、半导体纳米粒子复合体分散液、半导体纳米粒子复合体组合物和半导体纳米粒子复合体固化膜
WO2020241874A1 (ja) 半導体ナノ粒子複合体組成物、希釈組成物、半導体ナノ粒子複合体硬化膜、半導体ナノ粒子複合体パターニング膜、表示素子、および半導体ナノ粒子複合体分散液
WO2020241872A1 (ja) 半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜
TW202112652A (zh) 半導體奈米粒子複合體、半導體奈米粒子複合體組成物、半導體奈米粒子複合體硬化膜、半導體奈米粒子複合體分散液、半導體奈米粒子複合體組成物之製造方法及半導體奈米粒子複合體硬化膜之製造方法
JP7476893B2 (ja) 半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物、半導体ナノ粒子複合体硬化膜および半導体ナノ粒子複合体の精製方法
WO2020250663A1 (ja) 半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物および半導体ナノ粒子複合体硬化膜
TWI839526B (zh) 半導體奈米粒子複合體組成物、稀釋組成物、半導體奈米粒子複合體硬化膜、半導體奈米粒子複合體圖案化膜及顯示元件
TWI833967B (zh) 半導體奈米粒子複合體、半導體奈米粒子複合體分散液、半導體奈米粒子複合體組成物及半導體奈米粒子複合體硬化膜
WO2021124934A1 (ja) 半導体ナノ粒子集合体、半導体ナノ粒子集合体分散液、半導体ナノ粒子集合体組成物及び半導体ナノ粒子集合体硬化膜
WO2021124935A1 (ja) 半導体ナノ粒子集合体、半導体ナノ粒子集合体分散液、半導体ナノ粒子集合体組成物及び半導体ナノ粒子集合体硬化膜
JP2024072840A (ja) 半導体ナノ粒子複合体、半導体ナノ粒子複合体分散液、半導体ナノ粒子複合体組成物、半導体ナノ粒子複合体硬化膜および半導体ナノ粒子複合体の精製方法
TW202411401A (zh) 半導體奈米粒子複合體、半導體奈米粒子複合體分散液、半導體奈米粒子複合體組成物及半導體奈米粒子複合體硬化膜