TW202036214A - 顯示裝置及其工作方法 - Google Patents

顯示裝置及其工作方法 Download PDF

Info

Publication number
TW202036214A
TW202036214A TW109108053A TW109108053A TW202036214A TW 202036214 A TW202036214 A TW 202036214A TW 109108053 A TW109108053 A TW 109108053A TW 109108053 A TW109108053 A TW 109108053A TW 202036214 A TW202036214 A TW 202036214A
Authority
TW
Taiwan
Prior art keywords
area
addition
abbreviation
display device
layer
Prior art date
Application number
TW109108053A
Other languages
English (en)
Inventor
山崎舜平
楠本直人
吉住健輔
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW202036214A publication Critical patent/TW202036214A/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1652Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1641Details related to the display arrangement, including those related to the mounting of the display in the housing the display being formed by a plurality of foldable display components
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1635Details related to the integration of battery packs and other power supplies such as fuel cells or integrated AC adapter
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1675Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
    • G06F1/1677Miscellaneous details related to the relative movement between the different enclosures or enclosure parts for detecting open or closed state or particular intermediate positions assumed by movable parts of the enclosure, e.g. detection of display lid position with respect to main body in a laptop, detection of opening of the cover of battery compartment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1675Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
    • G06F1/1681Details related solely to hinges
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1694Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being a single or a set of motion sensors for pointer control or gesture input obtained by sensing movements of the portable computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • G06F1/3215Monitoring of peripheral devices
    • G06F1/3218Monitoring of peripheral devices of display devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3265Power saving in display device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04886Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures by partitioning the display area of the touch-screen or the surface of the digitising tablet into independently controllable areas, e.g. virtual keyboards or menus
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1637Sensing arrangement for detection of housing movement or orientation, e.g. for controlling scrolling or cursor movement on the display of an handheld computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/048Indexing scheme relating to G06F3/048
    • G06F2203/04803Split screen, i.e. subdividing the display area or the window area into separate subareas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

本發明的一個實施方式提供一種可攜性高的折疊式顯示裝置。該顯示裝置包括具有撓性的顯示面板且能夠被折疊成較小。該顯示裝置具有三折機構,可以形成顯示裝置的第一面以彼此相對的方式被折疊的區域以及與第一面相反的第二面以彼此相對的方式被折疊的區域。因此,即使是縱橫比較大的顯示面板,也可以藉由在短軸方向上設置折線來將其折疊成較小,由此可以提高可攜性。

Description

顯示裝置及其工作方法
本發明係關於一種物體、方法或製造方法。另外,本發明係關於一種製程(process)、機器(machine)、產品(manufacture)或組成物(composition of matter)。尤其是,本發明的一個實施方式係關於一種半導體裝置、發光裝置、顯示裝置、電子裝置、照明設備、它們的驅動方法或它們的製造方法。尤其是,本發明的一個實施方式係關於一種其顯示面具有撓性的顯示裝置、該顯示裝置的工作方法或製造方法。
注意,在本說明書等中,半導體裝置是指能夠藉由利用半導體特性而工作的所有裝置。電晶體、半導體電路、運算裝置及記憶體裝置等都是半導體裝置的一個實施方式。另外,發光裝置、顯示裝置、照明設備及電子裝置有時包括半導體裝置。
行動電話機、智慧手機、平板型電腦、膝上型電腦等電子裝置是根據其功能、實用性及可攜性以適當的尺寸製造的。另一方面,多個電子裝置的攜帶不方便。因此,被期待能夠綜合多個電子裝置的功能的形態。例如,專利文獻1公開了三折式發光面板。藉由使用該發光面板,可以綜合多個電子裝置的功能並製造尺寸可變的電子裝置。
[專利文獻1]日本專利申請公開第2015-130320號公報
本發明的一個實施方式的目的之一是提供一種可攜性高的折疊式顯示裝置。另外,本發明的一個實施方式的目的之一是提供一種顯示可見度高 的折疊式顯示裝置。另外,本發明的一個實施方式的目的之一是提供一種具有低功耗功能的折疊式顯示裝置。另外,本發明的一個實施方式的目的之一是提供一種容易握持的折疊式顯示裝置。另外,本發明的一個實施方式的目的之一是提供一種新穎的顯示裝置。另外,本發明的一個實施方式的目的之一是提供一種新穎的顯示裝置的工作方法。
注意,這些目的的記載不妨礙其他目的的存在。本發明的一個實施方式並不需要實現所有上述目的。另外,上述以外的目的從說明書等的記載看來顯而易見,且可以從說明書等的記載中衍生上述以外的目的。
本發明的一個實施方式係關於一種可攜性高的三折式顯示裝置。
本發明的一個實施方式是一種顯示裝置,包括具有撓性的顯示面板,顯示面板包括第一區域、第二區域及第三區域,在被展開為平坦時,第一區域、第二區域及第三區域互相平行而形成面,第二區域設置在第一區域與第三區域之間,顯示裝置具有以跨著第一區域和第二區域的方式形成以顯示面一側為凸狀的第一曲面的功能、以及以跨著第二區域和第三區域的方式形成以顯示面一側為凹狀的第二曲面的功能,在被折疊時,第一曲面的曲率半徑R1大於第二曲面的曲率半徑R2。
本發明的另一個實施方式是一種顯示裝置,包括具有撓性的顯示面板,顯示面板包括第一區域、第二區域及第三區域,在被展開為平坦時,第一區域、第二區域及第三區域互相平行而形成面,第二區域設置在第一區域與第三區域之間,顯示裝置具有以跨著第一區域和第二區域的方式依次形成以顯示面一側為凸狀的第一曲面、平面及以顯示面一側為凸狀的第三曲面的功能、以跨著第二區域和第三區域的方式形成以顯示面一側為凹狀的第二曲面,在被折疊時,第一曲面的曲率半徑R1大於第二曲面的曲率半徑R2,第三曲面的曲率半徑R3大於曲率半徑R2,曲率半徑R1大致與曲率半徑R3相等。
在上述兩個方式中,可以具有如下結構:顯示裝置還包括第一外殼、第二外殼、第三外殼、第一鉸鏈及第二鉸鏈,第一區域的至少一部分被固定於第一外殼,第二區域的至少一部分被固定於第二外殼,第三區域的至 少一部分被固定於第三外殼,第一外殼與第二外殼之間設置有第一鉸鏈,第二外殼與第三外殼之間設置有第二鉸鏈,第一鉸鏈具有形成第一曲面的功能,第二鉸鏈具有形成第二曲面的功能,在被展開為平坦時,整體重心在第一外殼或第三外殼內。
第一外殼內或第三外殼內也可以設置有電池。
第三外殼內也可以設置有無線充電用的受電線圈。
顯示面板較佳為包括發光器件。
本發明的另一個實施方式是一種顯示裝置的工作方法,其中在被折疊時只有一部分的區域顯示影像。另外,在將顯示面板展開為平坦時,也可以進行根據顯示面板的傾斜度使影像的方向變化的工作。
藉由使用本發明的一個實施方式,可以提供一種可攜性高的折疊式顯示裝置。另外,可以提供一種顯示可見度高的折疊式顯示裝置。另外,可以提供一種具有低功耗功能的折疊式顯示裝置。另外,可以提供一種容易握持的折疊式顯示裝置。另外,可以提供一種新穎的顯示裝置。另外,可以提供一種新穎的顯示裝置的工作方法。
注意,這些效果的記載不妨礙其他效果的存在。本發明的一個實施方式並不需要實現所有上述效果。另外,上述以外的效果從說明書、圖式及申請專利範圍等的記載看來顯而易見,且可以從說明書、圖式及申請專利範圍等的記載中衍生上述以外的效果。
100A:顯示裝置
100B:顯示裝置
100C:顯示裝置
100D:顯示裝置
100E:顯示裝置
101:顯示面板
101a:區域
101b:區域
101c:區域
102a:外殼
102b:外殼
102c:外殼
103a:鉸鏈
103b:鉸鏈
103c:鉸鏈
104a:曲面
104b:曲面
105:平面
105a:曲面
105b:曲面
106:握柄部
107:受電線圈
108:受電電路
109:充電器
111:柱狀體
113a:單元
113b:單元
114:柱狀體
115:柱狀體
116a:齒輪
116b:齒輪
117:電池
118:保護電路
119:控制電路
120:感測器
121:比較器
122:電晶體
123:電容器
125:天線
126:天線
130:影像
131:鍵盤
132:圖示
135a:輸入輸出單元
135b:輸入輸出單元
136a:相機
136b:相機
137:感測器
138:顯示面板
139:顯示面板
140:太陽能電池
141:薄膜太陽能電池
145:外部介面
146:收發單元
147:揚聲器
148:相機
149:麥克風
150:觸控筆
200:顯示裝置
210:顯示裝置
300:像素
301:像素
400:像素電路
400EL:像素電路
400LC:像素電路
401:電路
401EL:電路
401LC:電路
501:像素電路
502:像素部
504:驅動電路部
504a:閘極驅動器
504b:源極驅動器
506:保護電路
507:端子部
550:電晶體
552:電晶體
554:電晶體
560:電容器
562:電容器
570:液晶器件
572:發光器件
600:電視機
601:控制部
602:記憶部
603:通訊控制部
604:影像處理電路
605:解碼器電路
606:影像信號接收部
607:時序控制器
608:源極驅動器
609:閘極驅動器
620:顯示面板
621:像素
630:系統匯流排
700:顯示面板
700A:顯示面板
702:像素部
704:源極驅動電路部
706:閘極驅動電路部
708:FPC端子部
710:佈線
716:FPC
717:IC
730:絕緣層
732:密封層
736:彩色層
738:遮光層
740:支撐基板
741:保護層
741a:絕緣層
741b:絕緣層
741c:絕緣層
742:黏合層
743:樹脂層
744:絕緣層
745:支撐基板
746:絕緣層
747:黏合層
749:保護層
750:電晶體
752:電晶體
760:佈線
761:導電層
770:絕緣層
772:導電層
780:異方性導電膜
782:發光器件
786:EL層
788:導電層
790:電容器
1101:電極
1102:電極
1103:EL層
1109:電荷產生層
1111:電洞注入層
1112:電洞傳輸層
1113:發光層
1114:電子傳輸層
1115:電子注入層
1120:發光區域
1123:發光單元
在圖式中:
圖1A和圖1B是說明顯示裝置的圖。
圖2A至圖2C是說明顯示裝置的圖。
圖3A和圖3B是說明顯示裝置的圖。
圖4A至圖4C是說明鉸鏈的圖。
圖5A至圖5C是說明鉸鏈的圖。
圖6A至圖6C是說明鉸鏈的圖。
圖7A至圖7C是說明鉸鏈的圖。
圖8A至圖8D是說明顯示裝置的圖。
圖9A和圖9B是說明顯示裝置的工作的圖。
圖10是說明顯示裝置的工作的流程圖。
圖11A是保護電路的電路圖。圖11B是說明保護電路的連接方式的方塊圖。
圖12A是說明顯示裝置的圖。圖12B是說明顯示裝置的無線充電的圖。
圖13A至圖13C是說明顯示裝置的工作的圖。
圖14A至圖14C是說明顯示裝置的工作的圖。
圖15A至圖15C是說明顯示裝置的工作的圖。
圖16A和圖16B是說明顯示裝置的應用例子的圖。
圖17A至圖17D是說明顯示裝置的應用例子的圖。
圖18A和圖18B是說明顯示裝置的應用例子的圖。
圖19是說明電視機的一個例子的方塊圖。
圖20是說明顯示面板的結構例子的圖。
圖21是顯示面板的結構例子的圖。
圖22是顯示面板的結構例子的圖。
圖23A是顯示面板的方塊圖。圖23B和圖23C是像素的電路圖。
圖24A、圖24C及圖24D是像素的電路圖。圖24B是說明像素的工作的時序圖。
圖25A至圖25E是說明像素的結構例子的圖。
圖26A是說明IGZO的結晶結構的分類的圖。圖26B是說明石英玻璃的XRD光譜的圖。圖26C是說明結晶性IGZO的XRD光譜的圖。圖26D是說明結晶性IGZO的奈米束電子繞射圖案的圖。
圖27A至圖27D是發光器件的剖面圖。
圖28A至圖28C是說明發光器件的發光模型的概念圖。圖28D是說明發光器件的隨著時間經過的正規化亮度的圖。
圖29A至圖29D是說明電子傳輸層中的有機金屬錯合物的濃度的圖。
使用圖式對實施方式進行詳細說明。注意,本發明不侷限於下面說明,所屬技術領域的通常知識者可以很容易地理解一個事實就是其方式及詳細內容在不脫離本發明的精神及其範圍的情況下可以被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定在以下所示的實施方式所記載的內容中。注意,在下面所說明的發明的結構中,在不同的圖式中共同使用相同的元件符號來表示相同的部分或具有相同功能的部分,而省略其重複說明。注意,有時在不同的圖式中適當地省略或改變相同組件的陰影。
另外,即使在電路圖上為一個要素,如果在功能上沒有問題,該要素也可以使用多個要素構成。例如,有時被用作開關的多個電晶體可以串聯或並聯連接。此外,有時對電容器進行分割並將其配置在多個位置上。
此外,有時一個導電體具有佈線、電極及端子等多個功能,在本說明書中,有時對同一要素使用多個名稱。另外,即使在電路圖上示出要素之間直接連接的情況,有時實際上該要素之間藉由一個或多個導電體連接,本說明書中這種結構也包括在直接連接的範疇內。
實施方式1
在本實施方式中,參照圖式說明本發明的一個實施方式的顯示裝置。注意,在本說明書中,顯示裝置是指具有顯示功能的所有裝置。也就是說,具有顯示部的電子裝置包括在顯示裝置中。例如,行動電話機、智慧手機、智慧手錶、平板型電腦、電視機等具有顯示部的電子裝置包括在顯示裝置中。
本發明的一個實施方式是包括具有撓性的顯示面板且能夠被折疊成較小的顯示裝置。該顯示裝置具有三折機構,可以形成顯示裝置的第一面以彼此相對的方式被折疊的區域以及與第一面相反的第二面以彼此相對的方式被折疊的區域。因此,即使例如是16:9、18:9、21:9等的縱橫比較大的顯示面板,也可以藉由在短軸方向上設置折線來將其折疊成較小,由此可以提高可攜性。另外,藉由將在被折疊成較小時看不到的顯示區域設定為非顯示,可以大幅地降低功耗。
〈顯示裝置〉
圖1A示出將本發明的一個實施方式的顯示裝置100A折疊成最小尺寸的狀態。顯示裝置100A能夠如圖2A至圖2C所示那樣變形。在初始狀態為折疊狀態(參照圖2A)的情況下,可以經過變形狀態(參照圖2B),然後處於被展開為平坦的狀態(參照圖2C)。在按相反順序變形時,可以進行折疊。注意,顯示裝置100A的變形既可以手動進行,又可以使用電動力或彈簧等機械動力。
顯示裝置100A包括具有撓性的顯示面板101、外殼102a、外殼102b、外殼102c、鉸鏈103a及鉸鏈103b。注意,在本實施方式中,為了簡化起見,將顯示面板101分為區域101a、區域101b及區域101c的三個區域(參照圖2C)。區域101a、區域101b及區域101c是在將顯示面板101展開為平坦時與水平方向(顯示面板101的表面延伸的方向)平行而形成面的區域,且是以設置有鉸鏈的位置或其附近為邊界的區域。注意,在實際上,對區域101a至101c的每一個及它們之間的邊界沒有結構上的差異。作為顯示面板101,可以使用無縫拼接且具有撓性的一個顯示面板。
圖1B相當於圖1A所示的A1-A2的剖面。外殼102a藉由鉸鏈103a與外殼102b連接。外殼102b藉由鉸鏈103b與外殼102c連接。
顯示面板101設置在外殼102a至102c的第一面一側。區域101a的至少一部分可以被固定於外殼102a。區域101b的至少一部分可以被固定於外殼102b。區域101c的至少一部分可以被固定於外殼102c。
在將顯示面板101的被固定於外殼的表面稱為非顯示面且將與顯示面板101的被固定於外殼的表面相反的表面稱為顯示面的情況下,如圖1A和圖1B所示,在被折疊時,區域101a和區域101b的非顯示面彼此相對,以跨著區域101a和區域101b的方式形成有以顯示面為凸狀的曲面104a。曲面104a是由區域101a的一部分及區域101b的一部分形成的區域。此外,區域101b和區域101c的顯示面彼此相對,以跨著區域101b和區域101c的方式形成有以顯示面為凹狀的曲面104b。曲面104b是由區域101b的一部分及區域101c的一部分的形成的區域。
將作為標準的上述曲面的表面(顯示面)與曲率中心之間的距離定義為曲率半徑,將顯示面板101折疊成最小尺寸時的曲面104a的曲率半徑定義為R1,將曲面104b的曲率半徑定義為R2。此時,較佳為滿足R1>R2。
R1為將顯示面向外彎曲時的曲率半徑,即便在適當的範圍內將外殼102a、102a的厚度形成得薄,R1也較大,所以施加到顯示面板101的構成曲面104a的部分的應力很小。另一方面,R2為將顯示面向內彎曲時的曲率半徑,無論外殼102b、102c的厚度如何,R2也較小,所以顯示面板101的構成曲面104b的部分的應力容易變大。
因此,當R2與R1相等或R2大於R1時,可以減輕施加到曲面104b部的應力,而可以提高可靠性。另一方面,在R2變大的情況下,被折疊時的整體厚度增高,導致可攜性下降。
在本發明的一個實施方式中,使用對彎曲應力的耐性高的顯示面板,可以在維持可靠性的同時實現R1>R2。藉由將在通道形成區域中包含金屬氧化物(氧化物半導體)的電晶體(以下,稱為OS電晶體)用於像素電路,能夠實現對彎曲應力的耐性高的顯示面板。
金屬氧化物可以利用濺射法等成膜法且以溫度較低的製程形成。由此,對電晶體等器件及保護膜等周邊構件施加的殘留應力較少,對後面被施加的彎曲應力具有高耐性。
另一方面,作為具有與OS電晶體同樣的電特性的電晶體,可以舉出在通道形成區域中包含矽(低溫多晶矽、單晶矽等)的電晶體(以下,稱為Si電晶體)。在低溫多晶矽電晶體的製程中,使用矽膜的雷射晶化製程。在雷射晶化製程中,矽膜的溫度在短時間內上升到高溫(至少上升到矽的熔點),然後快速冷卻。因此,對矽膜及周邊構件施加的殘留應力較多,在後面還被施加彎曲應力時電特性等劣化,導致可靠性下降。
因此,在本發明的一個實施方式的顯示裝置中,容易滿足R1>R2,可以在維持可靠性的同時折疊成較小。注意,因為彎曲耐性根據曲率半徑、彎曲次數等而不同,所以也可以根據狀況將Si電晶體用於像素電路。
作為用於OS電晶體的半導體材料,可以使用能隙為2eV以上,較佳為2.5eV以上,更佳為3eV以上的金屬氧化物。典型的有含有銦的氧化物半導體等,例如,可以使用後面提到的CAAC-OS或CAC-OS等。CAAC-OS中構成晶體的原子穩定,適用於重視可靠性的電晶體等。CAC-OS呈現高移動率特性,適用於進行高速驅動的電晶體等。
由於OS電晶體的半導體層具有大能隙,所以可以呈現極低的關態電流(off-state current)特性,僅為幾yA/μm(每通道寬度1μm的電流值)。與Si電晶體不同,OS電晶體不會發生碰撞電離、突崩潰、短通道效應等,因此能夠形成高可靠性的電路。此外,Si電晶體所引起的起因於結晶性的不均勻的電特性偏差不容易產生在OS電晶體中。
作為OS電晶體中的半導體層,例如可以採用包含銦、鋅及M(鋁、鈦、鎵、鍺、釔、鋯、鑭、鈰、錫、釹或鉿等金屬)的以“In-M-Zn類氧化物”表示的膜。此外,作為OS電晶體中的半導體層,除了上述In-M-Zn氧化物之外還可以使用In氧化物、In-Ga氧化物、In-Zn氧化物。注意,藉由使用銦比率高的組成的半導體層,可以提高OS電晶體的通態電流(on-state current)或場效移動率等。In-M-Zn類氧化物例如可以利用濺射法、ALD(Atomic layer deposition)法或MOCVD(Metal organic chemical vapor deposition)法等形成。
當利用濺射法形成In-M-Zn氧化物膜時,較佳為用來形成In-M-Zn類氧化物膜的濺射靶材的金屬元素的原子數比滿足In
Figure 109108053-A0202-12-0008-83
M及Zn
Figure 109108053-A0202-12-0008-84
M。這種濺射靶材的金屬元素的原子數比較佳為In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:3、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8、In:M:Zn=10:1:3等。此外,當構成半導體層的氧化物半導體為In-Zn氧化物時,較佳為用來形成In-Zn氧化物膜的濺射靶材的金屬元素的原子個數比滿足In
Figure 109108053-A0202-12-0008-85
Zn。這種 濺射靶材的金屬元素的原子數比較佳為In:M:Zn=1:1、In:Zn=2:1、In:Zn=5:3、In:Zn=10:1、In:Zn=10:3等。
作為半導體層,可以使用載子濃度低的氧化物半導體。例如,作為半導體層可以使用載子濃度為1×1017/cm3以下,較佳為1×1015/cm3以下,更佳為1×1013/cm3以下,進一步較佳為1×1011/cm3以下,更進一步較佳為小於1×1010/cm3,且為1×10-9/cm3以上的氧化物半導體。將這樣的氧化物半導體稱為高純度本質或實質上高純度本質的氧化物半導體。該氧化物半導體的缺陷能階密度低,因此可以說是具有穩定的特性的氧化物半導體。
注意,本發明不侷限於上述記載,可以根據所需的電晶體的半導體特性及電特性(場效移動率、臨界電壓等)來使用具有適當的組成的材料。另外,較佳為適當地設定半導體層的載子濃度、雜質濃度、缺陷密度、金屬元素與氧的原子數比、原子間距離、密度等,以得到所需的電晶體的半導體特性。
注意,在圖式中被抽象化地示出鉸鏈103a、103b,對其形態沒有限制。後面將對鉸鏈103a、103b的具體例子進行說明,可以使用橡膠等彈性體、連結的柱狀體或齒輪等。注意,在圖1A和圖1B中,將外殼和鉸鏈表示為不同組件,但是它們之間的邊界不明確,有時外殼和鉸鏈被形成為一體。此外,顯示面板101有時不與鉸鏈接觸。
〈顯示裝置的變形例子1〉
本發明的一個實施方式可以具有圖3A所示的結構。圖3A所示的顯示裝置100B具有將顯示裝置100A中的鉸鏈103a調換為鉸鏈103c的結構。
顯示裝置100B所包括的鉸鏈103c具有在被折疊時以跨著區域101a和區域101b的方式依次形成以顯示面為凸狀的曲面105a、平面105、以顯示面為凸狀的曲面105b的功能。注意,曲面105a由區域101a的一部分形成,平面105由區域101a的一部分及區域101b的一部分形成,曲面105b由區域101c的一部分形成。
如圖3B的剖面圖所示,將被折疊成最小尺寸時的曲面105a的曲率半徑定義為R3,將曲面105b的曲率半徑定義為R4時,較佳為滿足R3>R2且R4>R2。在滿足R3>R2且R4>R2時,可以與顯示裝置100A同樣地將整體厚度減薄。另外,較佳為R3與R4相等或R3大致與R4相等。在R3與R4相等時,可以對稱性高地進行折疊,由此可以提高鉸鏈機構的可靠性。在R3與R4大不相同的情況下,在折疊或展開時,形成曲面105a的區域和形成曲面105b的區域中的一個與其中另一個相比容易被彎曲,有時導致可靠性下降。
在折疊圖3A和圖3B所示的顯示裝置100B時,由鉸鏈103c形成平面105。由此,彎曲部中的平面比例變多,而可以提高影像的可見度。
〈鉸鏈〉
圖4A至圖4C是說明可用於圖1A所示的顯示裝置100A的鉸鏈103a的一個例子的圖。
鉸鏈103a包括以短軸方向的剖面為梯形或准梯形的多個柱狀體111。各柱狀體111的底面(相當於梯形的下底)連續地連接。此外,鉸鏈103a的一個端部的柱狀體111的底面與外殼102a的第一面連續地連接。此外,鉸鏈103a的另一個端部的柱狀體111的底面與外殼102b的第一面連續地連接。注意,各柱狀體111的頂面(相當於梯形的上底)的形狀在不干涉到其他柱狀體及外殼的範圍內任意設定。
如圖4A所示,藉由以相鄰的柱狀體111的側面(相當於梯形的腳部)互相接觸的方式進行變形,可以使顯示裝置成為折疊狀態。此時,多個柱狀體111的底面以具有規定角度的方式連接,作為整體形成有剖面為准圓 弧狀的區域。因此,具有撓性的顯示面板可以在與該區域重疊的部分形成曲面。
當在圖4A的狀態下進行變形工作(展開工作)時,如圖4B所示,各柱狀體111的側面向離開方向移動,上述准圓弧的曲率半徑變大。此時,顯示面板中的曲面部分的曲率半徑也變大。
當在圖4B的狀態下進行變形工作時,如圖4C所示,外殼102a的第一面、各柱狀體111的底面及外殼102b的第一面平坦地連接。此時,顯示面板中的曲面部分變化為平坦,作為整體成為展開為平坦的狀態。藉由以與上述順序相反的順序進行變形工作,可以進行折疊。
在上述說明中,柱狀體111的剖面為梯形,但是也可以為三角形。此外,對各柱狀體與外殼的連接結構沒有限制。此外,也可以設置停止構件,以防止向與所希望的方向相反的方向彎曲。另外,也可以設置間隔物,以在被折疊時維持外殼間的間隙。此外,外殼或鉸鏈的形狀也可以適當地改變為適於顯示面板的設置的形狀。這些結構還可以用於下面所說明的鉸鏈103c。
圖5A至圖5C是說明可用於圖3A所示的顯示裝置100B的鉸鏈103c的一個例子的圖。
鉸鏈103c包括具有與鉸鏈103a大致相同的組件的單元113a、113b。注意,單元113a、113b中的柱狀體的數量也可以與鉸鏈103a不同。此外,在單元113a與單元113b之間包括底面為平坦且側面與底面垂直的柱狀體114。柱狀體114的頂面形狀在不干涉到其他柱狀體及外殼的範圍內任意設定。
如圖5A所示,藉由以單元113a所包括的柱狀體的側面以及柱狀體114及113b所包括的柱狀體的側面彼此接觸的方式進行變形,可以使顯示裝置成為折疊狀態。此時,單元113a所具有的柱狀體的底面以具有規定角度的方式連接,剖面為准圓弧狀的區域被形成。單元113b也是同樣的。因此,具有撓性的顯示面板可以在與該區域重疊的部分形成曲面、平面及曲面。
單元113a所包括的柱狀體的底面和柱狀體114及單元113b所包括的柱狀體的底面連續地連接。此外,單元113a的一個端部的柱狀體的底面與外殼102a的第一面連續地連接。此外,單元113b的一個端部的柱狀體的底面與外殼102b的第一面連續地連接。
當在圖5A的狀態下進行變形工作(展開工作)時,如圖5B所示,單元113a、113b中的各柱狀體的側面向離開方向移動,上述准圓弧的曲率半徑變大。此時,顯示面板中的曲面部分的曲率半徑也變大。
當在圖5B的狀態下進行變形工作時,如圖5C所示,外殼102a的第一面、單元113a所包括的柱狀體的底面、柱狀體114的底面、單元113b所包括的柱狀體的底面及外殼102b的第一面平坦地連接。此時,顯示面板中的曲面部分變化為平坦,作為整體成為展開為平坦的狀態。藉由以與上述順序相反的順序進行變形工作,可以進行折疊。
圖6A至圖6C是說明可用於圖1A所示的顯示裝置100A或圖3A所示的顯示裝置100B的鉸鏈103b的一個例子的圖。
鉸鏈103b包括以短軸方向的剖面為矩形的多個柱狀體115。各柱狀體115的底面連續地連接。此外,鉸鏈103b的一個端部的柱狀體115的底面與外殼102a的第一面連續地連接。此外,鉸鏈103b的另一個端部的柱狀體115的底面與外殼102c的第一面連續地連接。注意,各柱狀體115的頂面形狀在不干涉到其他柱狀體及外殼的範圍內任意設定。
如圖6A所示,藉由向相鄰的柱狀體115的各側面彼此離開的方向進行變形,可以使顯示裝置成為折疊狀態。此時,多個柱狀體115的底面以具有規定角度的方式連接,作為整體形成有剖面為准圓弧狀的區域。因此,具有撓性的顯示面板可以在與該區域重疊的部分形成曲面。
當在圖6A的狀態下進行變形工作(展開工作)時,如圖6B所示,各柱狀體115的側面向靠近方向移動,上述准圓弧的曲率半徑變大。此時,顯示面板中的曲面部分的曲率半徑也變大。
當在圖6B的狀態下進行變形工作時,如圖6C所示,外殼102b的第一面、各柱狀體115的底面及外殼102c的第一面平坦地連接。此時,顯示面板中的曲面部分變化為平坦,作為整體成為展開為平坦的狀態。藉由以與上述順序相反的順序進行變形工作,可以進行折疊。
注意,因為柱狀體115的剖面為矩形,所以在展開為平坦時柱狀體115的側面互相接觸。因此,鉸鏈103b對顯示面板不發生反向彎曲,所以可以不需要設置停止構件。另外,也可以設置間隔物,以在被折疊時維持外殼間的間隙。此外,外殼或鉸鏈的形狀也可以適當地改變為適於顯示面板的設置的形狀。
圖7A至圖7C是說明鉸鏈103b的另一個例子的圖。
鉸鏈103b包括齒輪116a和齒輪116b。齒輪116a被固定於外殼102a。齒輪116b被固定於外殼102b。齒輪116a的中心軸較佳為與外殼102a的第一面重疊。此外,齒輪116b的中心軸較佳為與外殼102b的第一面重疊。
如圖7A所示,在折疊狀態下齒輪116a及齒輪116b齒合在固定位置。此時,兩個齒輪的中心軸在外殼的第一面上,外殼間(顯示面板的相對的顯示面間)產生間隙。因此,在具有撓性的顯示面板上可以形成以該間隙的大致1/2為曲率半徑的曲面。
當在圖7A的狀態下進行變形工作(展開工作)時,外殼102b及外殼102c以與齒輪116a及齒輪116b的齒合聯動的方式以鉸鏈103b為支點展開地移動(參照圖7B)。此時,顯示面板中的曲面部分的曲率半徑也變大。
當在圖7B的狀態下進行變形工作時,如圖7C所示,外殼102b的第一面及外殼102c的第一面平坦地連接。此時,顯示面板中的曲面部分變化為平坦,作為整體成為展開為平坦的狀態。藉由以與上述順序相反的順序進行變形工作,可以進行折疊。
另外,也可以設置保持齒輪116a及齒輪116b的齒合的機構。此外, 在被展開為平坦時外殼102c的側面與外殼102c的側面接觸。因此,鉸鏈103b對顯示面板不發生反向彎曲,所以可以不需要設置停止構件。另外,也可以設置間隔物,以在被折疊時維持外殼間的間隙。另外,也可以在齒輪116a及齒輪116b中設置用來維持間隙的機構。此外,外殼或鉸鏈的形狀也可以適當地改變為適於顯示面板的設置的形狀。
〈顯示裝置的變形例子2〉
圖8A是說明作為顯示裝置100A的變形例子的顯示裝置100C的圖。顯示裝置100C與顯示裝置100A的不同之處是外殼102c的形狀。
顯示裝置100C所包括的外殼102c的厚度大於外殼102a及外殼102b的厚度。如圖8B所示,藉由將外殼102c形成得厚,可以將其尺寸較大的電池117設置在外殼102c內,由此可以長時間進行顯示裝置的工作。另外,藉由將重量較大的電池117設置在外殼102c內,可以在圖8A及圖8B各自的狀態下使顯示裝置100C的重心位於外殼102c的內部。因為外殼102c較厚且在外殼102c的內部有重心,所以可以提高被展開為平坦時的顯示裝置的可攜性。
另外,顯示裝置100C具有無論利手如何容易操作的結構。在圖9A中,用左手握持顯示裝置100C的外殼102c一側,用右手觸摸螢幕進行操作。在圖9B中,用右手握持顯示裝置100C的外殼102c一側,用左手觸摸螢幕進行操作。在上述任何情況下都能夠向使用者容易看到的方向顯示影像。
在該工作中,使用顯示裝置100C所包括的感測器120(加速度感測器、陀螺儀感測器等)檢測出顯示裝置100C的傾斜度,根據其傾斜度決定顯示影像的方向。此外,感測器120可以根據傾斜度的變化檢測出顯示裝置100C的搖動。搖動因人而異,所以藉由使人工智慧(AI)學習搖動資訊,可以判斷使用者。另外,可以藉由利用該功能進行個人識別。另外,感測器120也可以設置在本實施方式所示的其他顯示裝置中。
圖10是利用感測器120的顯示影像的方向的確定工作及個人識別的流程圖。
經過S1及S2的路徑示出利用感測器檢測出傾斜度的結果確定影像的顯示方向的工作。注意,傾斜度有多個方向,傾斜度A、傾斜度B及傾斜度C包括多個方向的傾斜度的條件。這裡,將傾斜度A設定為包括圖9A所示的顯示裝置100C的傾斜度的範圍,將傾斜度C設定為包括圖9B所示的顯示裝置100C的傾斜度的範圍,將傾斜度B設定為包括顯示裝置100C的長軸方向被轉移到上下方向時的傾斜度的範圍。注意,傾斜度B具有上下反轉的兩種情況,因此也可以在實際上對四個傾斜度的範圍進行判斷。
在被判斷為傾斜度A時,進行A顯示。A顯示是指向圖9A所示的方向顯示影像的模式。在被判斷為傾斜度C時,進行C顯示。C顯示是指向圖9B所示的方向顯示影像的模式。在被判斷為傾斜度B時,進行B顯示。B顯示例如是指將圖9A所示的顯示裝置100C的影像反轉為大約90度而進行顯示的模式。如此,可以利用感測器120將影像方向改變為容易看到的方向來進行顯示。
經過S1、S3及S4的路徑示出儲存感測器120檢測出的搖動資料來登錄該資料及個人的工作。在此所登錄的資料用於個人識別。注意,該資料可以每次利用顯示裝置進行更新。
經過S1、S5及S6的路徑示出即時地對照上述資料與從感測器120輸出的與搖動有關的資料來識別個人的工作。作為對照,可以使用利用與搖動有關的個人的存儲資料進行深度學習的人工智慧(AI)。可以在將個人資訊儲存在上述資料庫之後進行該工作。如此,可以利用感測器120進行個人識別。
只要識別個人,則可以判斷個人頻繁利用的顯示裝置100C的方向等,由此可以預先設定預設的顯示方向。在使用感測器120單體判斷顯示裝置100C的角度的情況下,有時感測器120過敏地檢測出顯示裝置100C的稍微搖動等。在該情況下,由於影像頻繁反轉等的原因而有時直到能夠正常地看到影像為止需要較長時間。此外,有可能浪費電力。藉由設定預設的顯示方向,可以縮短看到所需要的時間並降低功耗。
例如,在某個人頻繁如圖9A所示那樣握持顯示裝置100C的情況下, 可以將A顯示設定為預設的顯示方向。與此相反,在某個人頻繁如圖9B所示那樣握持顯示裝置100C的情況下,可以將C顯示設定為預設的顯示方向。另外,也可以僅進行使用感測器120的工作而不利用該功能。
圖8C和圖8D是說明將電池設置在外殼102a內的顯示裝置100D的圖。顯示裝置100D在外殼102a的端部包括容易握持的握柄部106,可以將電池117設置在握柄部106內。顯示裝置100D的重心位於設置有重量大的電池117的握柄部106,所以可以提高可攜性。此外,如圖8D所示,在被展開為平坦時,握柄部被用作腳部,在桌子上也可以具有穩定的形態。另外,因為顯示面具有傾斜,所以可以提高可見度。
此外,如圖8B和圖8D所示,較佳為在電池117中設置保護電路118。雖然作為電池117較佳為使用電容較大的鋰離子電池,但是有時因電池內部的異常(微短路等)而發生起火事故。
如圖11A所示,保護電路118可以包括比較器121、電晶體122及電容器123。比較器121對電池117的電壓(Vbat)與例如為正常值的下限的參考電位(Vref)進行比較,在Vbat低於Vref時使從輸出端子(OUT)輸出的邏輯值反轉。Vref被寫入到與電晶體122、電容器123及比較器121的一個輸入端子連接的節點N並可以保持在節點N中。
由於可以使用電晶體122和電容器123保持寫入在節點N中的電位,所以可以將電晶體122和電容器123組合的電路稱為記憶體電路或DOSRAM(Dynamic Oxide Semiconductor Random Access Memory:動態氧化物半導體隨機存取記憶體)。DOSRAM能夠由一個電晶體和一個電容器構成,因此可以實現記憶體的高密度化。此外,藉由使用OS電晶體,可以延長資料的保持期間。
根據隨著電池117的充放電的電壓變化按規定期間改寫Vref。在保護電路118中,作為電晶體122較佳為使用OS電晶體。OS電晶體的關態電流較低,可以在實質上沒有變動的狀態下長時間保持寫入在節點N中的電位。
另外,在作為電晶體122使用OS電晶體的情況下,有時將包括上述記 憶體電路的保護電路118稱為BTOS(Battery operating system:電池作業系統、或者Battery oxide semiconductor:電池氧化物半導體)。
如圖11B所示,電池117與保護電路118電連接,保護電路118的輸出與控制電路119連接。保護電路118在檢測出電池117的急劇的電壓下降等時,使輸出到控制電路119的信號的邏輯值反轉。此時,控制電路119對電池117進行控制以遮斷充放電,由此確保使用者的安全。
如圖8B和圖8D所示,較佳為在外殼102a內設置天線125及天線126。天線125是第四代移動通訊系統(4G)的通訊用天線,天線126是第五代移動通訊系統(5G)的通訊用天線。5G通訊比4G通訊快10至20倍。
注意,圖8B和圖8D示出設置天線125及天線126的兩者的結構,但是不侷限於此。例如,也可以採用在外殼102a內僅設置天線125的結構或僅設置天線126的結構。此外,圖8B和圖8D示出一個天線125及一個天線126的結構但是不侷限於此。例如,也可以採用設置多個天線125的結構或設置多個天線126的結構。
藉由將天線125及天線126都設置在外殼102a中,容易進行良好的通訊。在很多情況下,使用者利用在被折疊時也容易看到顯示的使用方法(設置方法、握持方法等),將外殼102a向電波進行的方向(上側、外側)移動的機會較多,由此容易接收電波。
注意,圖8A和圖8B示出以外殼102c的厚度大於其他外殼的厚度的方式將電池等設置在外殼102c內的例子,但是也可以如圖12A的顯示裝置100E所示那樣地將外殼102a的厚度大於其他外殼的厚度。此時,藉由適當地折疊對應向外彎曲的鉸鏈103a,可以在桌子等上平衡地設置該外殼。
此外,由於能夠以鉸鏈103a為邊界將顯示面的平面部分為兩個部分,所以在顯示多個影像的情況等下,可以將適當的影像分配於各平面部,而可以提高可見度。此外,藉由使一個平面部處於非顯示,可以進行低功耗化工作。
如圖12B所示,顯示裝置100C的外殼102c中還設置有受電線圈107及受電電路108等。藉由使受電線圈107和充電器109所包括的送電線圈重疊,可以進行無線充電。
在向充電器109所包括的送電線圈流過電流時發生磁通,因電磁感應而在受電線圈107中產生電流。該電流在受電電路108中被整流而用於與受電電路108連接的電池的充電。
在顯示裝置100C中,有重心的外殼102c可以設置在充電器109上並與其接觸。因此,如圖12B所示,在不被折疊的狀態下也可以將該外殼平衡地放在充電器109上。此外,在充電時也可以可見度高地使用。注意,受電線圈107可以設置在外殼102a、102b及102c中的一個以上。
〈顯示工作例子1〉
圖13A至圖13C是說明本發明的一個實施方式的在顯示裝置100A至100E之間共同使用的工作例子的圖。注意,圖13A至圖13C代表性地示出使用顯示裝置100A的情況。圖13A示出:在折疊狀態下,區域101a的平面部為顯示狀態且曲面104a為非顯示狀態時的工作。此時,如圖13B中的B1-B2的剖面圖所示,被折疊且看不到的區域(具有曲面104b的區域101b及區域101c)也較佳為處於非顯示狀態。
另外,如圖13C所示,在區域101a的平面部處於非顯示狀態時,曲面104a也可以處於顯示狀態。與上述結構同樣,被折疊且看不到的區域也較佳為處於非顯示狀態。如此,在折疊狀態下,藉由使只有一部分的區域處於顯示狀態,能夠進行低功耗化工作。
〈顯示工作例子2〉
圖14A至圖14C示出將本發明的一個實施方式的顯示裝置100A至100D的顯示部分為三個面時的一個例子。
在圖14A的例子中,外殼102c與外殼102b形成的角度為鈍角,外殼102b與外殼102a形成的角度為銳角,在桌子上平衡地設置顯示裝置。藉由將外殼102a用作腳部,可以如膝上型電腦那樣地使用該顯示裝置。例如, 在區域101c上顯示鍵盤131,在曲面104b上顯示圖示132,在區域101b上顯示應用軟體的影像130,可以藉由觸摸螢幕來進行操作。
此時,如圖14B所示,藉由採用在區域101a上也顯示與區域101b相同的影像130的模式,相反一側的人也可以可見度高地看到相同的影像。此外,如圖14C所示,藉由使區域101a處於非顯示狀態,能夠以低功耗化模式進行工作。
〈顯示工作例子3〉
圖15A至圖15C示出將本發明的一個實施方式的顯示裝置100A至100E的顯示部分為兩個面時的一個例子。
在圖15A中,外殼102a與外殼102b形成的角度大約為60°以上且小於180°(例如,大約為90°等),外殼102b與外殼102c形成的角度大約為180°,在桌子上平衡地設置顯示裝置。藉由將區域101b及區域101c用作連續的平面來實現大螢幕化,並且將外殼102a用作腳部來使顯示面(區域101b及區域101c)傾斜,可以提高可見度。
此時,如圖15B所示,藉由使區域101a處於非顯示狀態,能夠以低功耗化模式進行工作。
在圖15C中,外殼102c與外殼102b形成的角度大約為90°以上且小於180°(例如,大約為135°等),外殼102b與外殼102a形成的角度大約為180°,在桌子上平衡地設置顯示裝置。藉由將外殼102a及外殼102b平行地設置在平面如桌子等上,能夠容易進行使用觸控筆150等的輸入。此外,藉由使區域101c傾斜,可以提高可見度。
〈應用例子1〉
圖16A和圖16B示出將本實施方式所示的顯示裝置應用於智慧手機等資訊終端的例子。注意,對與上述顯示裝置相同的組件附上同一符號。顯示裝置200包括聲音的輸入輸出單元135a、135b、相機136a、136b、感測器137及感測器120。
在聲音的輸入輸出單元135a、135b中的一個被用作麥克風時,另一個能夠被用作揚聲器。因此,當利用電話功能等時,無論向哪個方向握持都可以毫無問題地進行會話。藉由使用檢測出傾斜的感測器120可以調換麥克風功能與揚聲器功能。另外,相機136a、136b也是同樣的,藉由感測器120可以使它們中的一個優先地工作。
輸入輸出單元135a、135b既可以包括被用作麥克風的設備及被用作揚聲器的設備的兩者,又可以包括具有兩者功能的一個設備。
此外,也可以藉由將輸入輸出單元135a、135b的兩者用作麥克風而錄音立體音響。另外,也可以藉由將輸入輸出單元135a、135b的兩者用作揚聲器而再現立體音響。
另外,也可以藉由使相機136a、136b的兩者工作而拍攝三維影像。感測器137是光感測器,可以以根據周圍的照度容易看到的方式調整顯示亮度。
此外,如圖16B所示,也可以在與顯示裝置200的設置有顯示面板101的前面相反一側的後面設置有顯示面板138。顯示面板138可以顯示與顯示面板101相同的影像,並且可以用作顯示簡單的資訊、繪畫、圖案、照片等的子顯示器或照明等。作為顯示面板138,既可以使用採用發光器件或液晶器件的顯示面板,又可以使用低功耗的電子紙等。作為顯示面板138也可以使用以硬質基板為支撐體的顯示面板。
注意,如圖17A所示,顯示面板138也可以分別設置在外殼102a至102c上。另外,如圖17B所示,也可以在顯示裝置200的後面上設置具有撓性的顯示面板139。此時,由於可以使顯示面板139彎曲,因此與設置於前面的顯示面板101同樣,能夠以跨著外殼102a至102c的方式設置顯示面板139。
此外,如圖17C所示,也可以在顯示裝置200的後面設置太陽能電池140。太陽能電池140所產生的電力可以充電到顯示裝置200內的電池,並且可以將電力經過外部介面145供應到外部。
注意,圖17C示出具有硬質支撐體的太陽能電池的例子。作為該太陽能電池,例如可以使用將結晶矽用作光電轉換層的矽太陽能電池或者具有太陽能電池與鈣鈦礦型太陽能電池的串聯結構的太陽能電池等。
另外,如圖17D所示,也可以使用將撓性基板用作支撐體的太陽能電池。作為該太陽能電池,例如可以使用非晶矽太陽能電池、CIGS(Cu-In-Ga-Se)型太陽能電池、有機太陽能電池或鈣鈦礦型太陽能電池等的薄膜太陽能電池141等。與顯示面板139同樣,能夠以跨著外殼102a至102c的方式設置將撓性基板用作支撐體的太陽能電池。
〈應用例子2〉
圖18A和圖18B示出將本發明的一個實施方式的顯示裝置100A至100D的顯示部根據用途區別使用時的一個例子。
圖18A和圖18B是將本實施方式所示的顯示裝置應用於餐飲館等的訂購終端的例子。注意,對與上述顯示裝置相同的組件附上同一符號。顯示裝置210包括收發單元146、揚聲器147、相機148及麥克風149等。注意,除了本發明的一個實施方式的功能之外,顯示裝置210還可以具有一般平板型電腦的功能。
如圖18A所示,顯示裝置210通常可以處於折疊狀態,而可以利用叫服務員的功能及內部對講機功能。當被展開時顯示功能表,可以進行點菜。訂購內容可以藉由收發單元146進行發送。另外,可以顯示訂購總額或以相機148拍攝的條碼進行支付。
圖19是示出將本實施方式所示的顯示裝置應用於電視機的例子的方塊圖。
圖19的方塊圖示出在獨立的方塊中根據其功能進行分類的組件,但是,實際的組件難以根據功能被清楚地劃分,一個組件有時具有多個功能。
電視機600包括控制部601、記憶部602、通訊控制部603、影像處理 電路604、解碼器電路605、影像信號接收部606、時序控制器607、源極驅動器608、閘極驅動器609、顯示面板620等。
顯示面板620相當於實施方式1所示的顯示面板101,其他組件可以設置在外殼102a至外殼102c中的任何外殼。注意,幾個組件如源極驅動器608、閘極驅動器609等也可以為顯示面板101的組件。
控制部601例如可以被用作中央處理器(CPU:Central Processing Unit)。例如控制部601具有藉由系統匯流排630控制記憶部602、通訊控制部603、影像處理電路604、解碼器電路605及影像信號接收部606等的元件的功能。
在控制部601與各元件之間藉由系統匯流排630傳輸信號。此外,控制部601具有對從藉由系統匯流排630連接的各元件輸入的信號進行處理的功能、生成向各元件輸出的信號的功能等,由此可以總體控制連接於系統匯流排630的各元件。
記憶部602被用作控制部601及影像處理電路604能夠訪問的暫存器、快取記憶體、主記憶體、二次記憶體等。
作為能夠用作二次記憶體的記憶體裝置例如可以使用應用可重寫的非揮發性記憶元件的記憶體。例如,可以使用快閃記憶體、MRAM(Magnetoresistive Random Access Memory:磁阻式隨機存取記憶體)、PRAM(Phase change RAM:相變隨機存取記憶體)、ReRAM(Resistive RAM:電阻隨機存取記憶體)、FeRAM(Ferroelectric RAM:鐵電隨機存取記憶體)等。
作為能夠被用作暫存器、快取記憶體、主記憶體等暫時記憶體的記憶體裝置,也可以使用DRAM(Dynamic RAM:動態隨機存取記憶體)、SRAM(Static Random Access Memory:靜態隨機存取記憶體)等非揮發性記憶體。
例如,設置在主記憶體中的RAM,例如可以使用DRAM,虛擬地分配並使用作為控制部601的工作空間的記憶體空間。儲存在記憶部602中的作 業系統、應用程式、程式模組、程式資料等在執行時被載入於RAM中。被載入於RAM中的這些資料、程式或程式模組被控制部601直接訪問並操作。
另一方面,可以在ROM中容納不需要改寫的BIOS(Basic Input/Output System:基本輸入/輸出系統)或韌體等。作為ROM,可以使用遮罩式ROM、OTPROM(One Time Programmable Read Only Memory:一次可程式唯讀記憶體)、EPROM(Erasable Programmable Read Only Memory:可擦除可程式唯讀記憶體)等。作為EPROM,可以舉出藉由紫外線照射可以消除存儲資料的UV-EPROM(Ultra-Violet Erasable Programmable Read Only Memory:紫外線-可擦除可程式唯讀記憶體)、EEPROM(Electrically Erasable Programmable Read Only Memory:電子式可抹除可程式唯讀記憶體)以及快閃記憶體等。
此外,可以採用除了記憶部602以外還能夠連接可拆卸記憶體裝置的結構。例如,較佳為包括被用作存放裝置(storage device)的硬式磁碟機(Hard Disk Drive:HDD)或固體狀態驅動機(Solid State Drive:SSD)等儲存媒體驅動器、與快閃記憶體、藍光光碟、DVD等記錄介質連接的端子。由此,可以記錄影像。
通訊控制部603具有控制藉由電腦網路進行的通訊的功能。就是說,IoT(Internet of Things:物聯網)的技術被應用於電視機600。
例如,通訊控制部603根據來自控制部601的指令控制用來連接到電腦網路的控制信號,而向電腦網路發出該信號。由此,可以連接於World Wide Web(WWW:環球網)的基礎的網際網路、內聯網、外聯網、PAN(Personal Area Network:個人網)、LAN(Local Area Network:區域網路)、CAN(Campus Area Network:校園網)、MAN(Metropolitan Area Network:都會區網路)、WAN(Wide Area Network:廣域網路)、GAN(Global Area Network:全球網)等電腦網路,來進行通訊。
通訊控制部603具有使用Wi-Fi(註冊商標)、Bluetooth(註冊商標)、ZigBee(註冊商標)等通訊標準與電腦網路或其他電子裝置進行通訊的功能。
通訊控制部603也可以具有以無線方式通訊的功能。例如可以設置天線及高頻電路(RF電路),進行RF信號的發送和接收。高頻電路是用來將各國法制所規定的頻帶的電磁信號與電信號彼此變換且使用該電磁信號以無線方式與其他通訊設備進行通訊的電路。作為實用性的頻帶,一般使用幾十kHz至幾十GHz的頻帶。連接於天線的高頻電路具有對應於多個頻帶的高頻電路部,該高頻電路部可以具有放大器、混頻器、濾波器、DSP、RF收發器等。
影像信號接收部606例如包括天線、解調變電路及A-D轉換電路(類比-數位轉換電路)等。解調變電路具有解調從天線輸入的信號的功能。此外,A-D轉換電路具有將被解調的類比信號轉換為數位信號的功能。將由影像信號接收部606處理的信號發送到解碼器電路605。
解碼器電路605具有如下功能:對從影像信號接收部606輸入的數位信號所包括的影像資料根據被發送的廣播規格進行解碼,生成發送到影像處理電路的信號。例如,作為8K廣播的廣播規格,有H.265 | MPEG-H High Efficiency Video Coding(高效率視頻編碼)(簡稱:HEVC)等。
作為影像信號接收部606所包括的天線能夠接收的廣播電波,可以舉出地面廣播或從衛星發送的電波等。此外,作為天線能夠接收的廣播電波,有類比廣播、數位廣播等,還有影像及聲音的廣播或只有聲音的廣播等。例如,可以接收以UHF頻帶(大約300MHz至3GHz)或VHF頻帶(30MHz至300MHz)中的指定的頻帶發送的廣播電波。例如,藉由使用在多個頻帶中接收的多個資料,可以提高傳輸率,從而可以獲得更多的資訊。由此,可以將具有超過全高清的解析度的影像顯示在顯示面板620上。例如,可以顯示具有4K2K、8K4K、16K8K或更高的解析度的影像。
另外,影像信號接收部606及解碼器電路605也可以具有如下結構:利用藉由電腦網路的資料傳送技術發送的廣播資料而生成發送到影像處理電路604的信號。此時,在接收的信號為數位信號的情況下,影像信號接收部606也可以不包括解調變電路及A-D轉換電路等。
影像處理電路604具有根據從解碼器電路605輸入的影像信號生成輸入到時序控制器607的影像信號的功能。
時序控制器607具有如下功能:基於被影像處理電路604處理的影像信號等中的同步信號生成對閘極驅動器609及源極驅動器608輸出的信號(時脈信號、啟動脈衝信號等信號),並將其輸出。此外,時序控制器607具有除了上述信號以外生成輸出到源極驅動器608的視訊信號的功能。
顯示面板620包括多個像素621。各像素621利用從閘極驅動器609及源極驅動器608供應的信號驅動。這裡示出像素數為7680×4320的具有對應於8K4K規格的解析度的顯示面板的例子。此外,顯示面板620的解析度不侷限於此,也可以為對應於全高清(像素數為1920×1080)或4K2K(像素數為3840×2160)等的規格的解析度。
作為圖19所示的控制部601或影像處理電路604的結構,例如可以採用包括處理器的結構。例如,控制部601可以使用被用作CPU的處理器。此外,作為影像處理電路604例如可以使用DSP(Digital Signal Processor:數位信號處理器)、GPU(Graphics Processing Unit:圖形處理器)等其他處理器。此外,控制部601或影像處理電路604也可以具有由FPGA(Field Programmable Gate Array:現場可程式邏輯閘陣列)或FPAA(Field Programmable Analog Array:現場可程式類比陣列)等PLD(Programmable Logic Device:可程式邏輯器件)實現這種處理器的結構。
處理器藉由解釋且執行來自各種程式的指令,進行各種資料處理或程式控制。有可能由處理器執行的程式可以被儲存在處理器中的記憶體區域,也可以被儲存在另外設置的記憶體裝置中。
也可以將控制部601、記憶部602、通訊控制部603、影像處理電路604、解碼器電路605、影像信號接收部606及時序控制器607的各個具有的功能中的兩個以上的功能集中於一個IC晶片上,構成系統LSI。例如,也可以採用包括處理器、解碼器電路、調諧器電路、A-D轉換電路、DRAM及SRAM等的系統LSI。
此外,也可以將在通道形成區域中使用氧化物半導體而實現了極小的關態電流的電晶體用於控制部601或其他組件所包括的IC等。由於該電晶體的關態電流極小,所以藉由將該電晶體用作保持流入被用作記憶體的電容器的電荷(資料)的開關,可以確保較長的資料保持期間。藉由將該特性用於控制部601等暫存器或快取記憶體,可以僅在必要時使控制部601工作,而在其他情況下使之前的處理資訊儲存在該記憶體中,從而可以實現常閉運算(normally off computing)。由此,可以實現電視機600的低功耗化。
注意,圖19所示的電視機600的結構是一個例子,並不需要包括所有組件。電視機600包括在圖19所示的組件中需要的組件即可。此外,電視機600也可以包括圖19所示的組件以外的組件。
例如,電視機600也可以具有對圖19所示的結構追加外部介面、聲音輸出部、觸控面板單元、感測單元、照相單元等的結構。例如,作為外部介面,有USB(Universal Serial Bus:通用序列匯流排)端子、LAN(Local Area Network:區域網路)連接用端子、電源接收用端子、聲音輸出用端子、聲音輸入用端子、影像輸出用端子、影像輸入用端子等外部連接端子、使用紅外線、可見光、紫外線等的光通訊用收發機、設置在外殼中的物理按鈕等。此外,例如作為聲音輸入輸出部,有音響控制器、麥克風、揚聲器等。
下面,對影像處理電路604進行更詳細的說明。
影像處理電路604較佳為具有根據從解碼器電路605輸入的影像信號執行影像處理的功能。
作為影像處理,例如可以舉出雜訊去除處理、灰階轉換處理、色調校正處理、亮度校正處理等。作為色調校正處理或亮度校正處理,例如有伽瑪校正等。
此外,影像處理電路604較佳為具有執行如下處理的功能:隨著解析度的上變頻(up-conversion)的像素間補充處理;以及隨著圖框頻率的上 變頻的圖框間補充等的處理。
例如,在雜訊去除處理中,去除各種雜訊諸如產生在文字等的輪廓附近的蚊狀雜訊、產生在高速的動態影像中的塊狀雜訊、產生閃爍的隨機雜訊、解析度的上變頻所引起的點狀雜訊等。
灰階轉換處理是指將影像的灰階轉換為對應於顯示面板620的輸出特性的灰階的處理。例如,在使灰階數增大時,藉由對以較小的灰階數輸入的影像補充且分配對應於各像素的灰階值,可以進行使直方圖平滑化的處理。此外,擴大動態範圍的高動態範圍(HDR)處理也包括在灰階變化處理中。
像素間補充處理在使解析度上變頻時補充本來不存在的資料。例如,參照目標像素附近的像素藉由補充資料以顯示該像素的中間顏色。
色調校正處理是指校正影像的色調的處理。此外,亮度校正處理是指校正影像的亮度(亮度對比)的處理。例如,檢測設置有電視機600的空間的照明的種類、亮度或顏色純度等,根據這種資訊將顯示在顯示面板620的影像的亮度或色調校正為最適合的亮度或色調。或者,也可以具有對照所顯示的影像和預先儲存的影像一覽表中的各種場景的影像,而將顯示的影像校正為適合於最接近的場景的影像的亮度或色調的功能。
在圖框間補充處理中,當增大顯示的影像的圖框頻率時,生成本來不存在的圖框(補充圖框)的影像。例如,利用某兩個影像的差異生成插入在兩個影像之間的補充圖框的影像。或者,也可以在兩個影像之間生成多個補充圖框的影像。例如,當從解碼器電路605輸入的影像信號的圖框頻率為60Hz時,藉由生成多個補充圖框,可以將輸入到時序控制器607的影像信號的圖框頻率增大為兩倍的120Hz、四倍的240Hz或八倍的480Hz等。
本實施方式所示的結構例子及對應於這些例子的圖式等的至少一部分可以與其他結構例子或圖式等適當地組合而實施。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當 地組合而實施。
實施方式2
在本實施方式中,說明可用於本發明的一個實施方式的顯示裝置的顯示面板的結構例子。
〈結構例子〉
圖20示出顯示面板700的俯視圖。顯示面板700是使用具有撓性的支撐基板745的能夠被用作撓性顯示器的顯示面板。另外,顯示面板700包括設置在具有撓性的支撐基板745上的像素部702。另外,在支撐基板745上設置有源極驅動電路部704、一對閘極驅動電路部706、佈線710等。此外,像素部702設置有多個顯示器件。
另外,支撐基板745的一部分中設置有與FPC716(FPC:Flexible printed circuit,軟性印刷電路)連接的FPC端子部708。利用FPC716藉由FPC端子部708及佈線710分別對像素部702、源極驅動電路部704及閘極驅動電路部706提供各種信號等。
一對閘極驅動電路部706夾著像素部702設置在兩側。注意,閘極驅動電路部706及源極驅動電路部704也可以採用分別另行形成在半導體基板等上且被封裝的IC晶片的方式。該IC晶片可以藉由COF(Chip On Film:薄膜覆晶封裝)技術等安裝於支撐基板745上。
較佳為將OS電晶體用作像素部702、源極驅動電路部704及閘極驅動電路部706所包括的電晶體。
可以將發光器件等用於設置在像素部702中的顯示器件。作為發光器件,可以舉出LED(Light Emitting Diode:發光二極體)、OLED(Organic LED:有機發光二極體)、QLED(Quantum-dot LED:量子點發光二極體)、半導體雷射等的自發光性發光器件。另外,作為顯示器件也可以使用透射型液晶器件、反射型液晶器件、半透射型液晶器件等液晶器件。此外,可以使用快門方式或光干涉方式的MEMS(Micro Electro Mechanical Systems:微機電系統)器件或採用微囊方式、電泳方式、電潤濕方式或電子粉流體(註冊商標)方式等的顯示器件等。
另外,圖20示出支撐基板745的設置有FPC端子部708的部分具有突出形狀的例子。支撐基板745的包括FPC端子部708的一部分可以沿著圖20中的區域P1折到背面。藉由將支撐基板745的一部分折到背面,可以在FPC716與像素部702的背面重疊配置的狀態下將顯示面板700安裝到電子裝置等,由此可以實現電子裝置等的節省化及小型化。
另外,與顯示面板700連接的FPC716安裝有IC717。IC717例如具有源極驅動電路的功能。此時,顯示面板700中的源極驅動電路部704可以採用至少包括保護電路、緩衝器電路、解多工器電路等中的一種的結構。
〈剖面結構例子〉
下面,參照圖21及圖22對將有機EL用作顯示器件的結構進行說明。圖21及圖22是圖20所示的顯示面板700的沿著點劃線S-T的剖面示意圖。
首先,說明圖21及圖22所示的顯示面板的相同部分。
圖21及圖22示出包括像素部702、閘極驅動電路部706以及FPC端子部708的剖面。像素部702包括電晶體750以及電容器790。閘極驅動電路部706包括電晶體752。
電晶體750及電晶體752是將氧化物半導體用於形成通道的半導體層的電晶體。另外,本發明不侷限於此,也可以將矽(非晶矽、多晶矽或單晶矽)、使用有機半導體的電晶體用於半導體層。
在本實施方式中使用的電晶體包括高度純化且氧空位的形成被抑制的氧化物半導體膜。該電晶體可以具有極低的關態電流。因此,使用了這樣的電晶體的像素可以延長影像信號等電信號的保持時間,可以延長影像信號等的寫入間隔。因此,可以降低更新工作的頻率,由此可以降低功耗。
另外,在本實施方式中使用的電晶體能夠得到較高的場效移動率,因 此能夠進行高速驅動。例如,藉由將這種能夠進行高速驅動的電晶體用於顯示面板,可以在同一基板上形成像素部的切換電晶體及用於驅動電路部的驅動電晶體。就是說,可以採用不使用由矽晶圓等形成的驅動電路的結構,由此可以減少顯示裝置的構件數。此外,藉由在像素部中也使用能夠進行高速驅動的電晶體,可以提供高品質的影像。
電容器790包括藉由對與電晶體750所包括的第一閘極電極相同的膜進行加工形成的下部電極以及藉由對與半導體層相同的金屬氧化物膜進行加工形成的上部電極。上部電極與電晶體750的源極區域及汲極區域同樣地被低電阻化。此外,在下部電極與上部電極之間設置有用作電晶體750的第一閘極絕緣層的絕緣膜的一部分。也就是說,電容器790具有在一對電極間夾有用作電介質膜的絕緣膜的疊層結構。此外,上部電極連接於藉由對與電晶體750的源極電極及汲極電極相同的膜進行加工形成的佈線。
此外,電晶體750、電晶體752及電容器790上設置有被用作平坦化膜的絕緣層770。
像素部702所包括的電晶體750與閘極驅動電路部706所包括的電晶體752也可以使用不同結構的電晶體。例如,可以採用其中一方使用頂閘極型電晶體而另一方使用底閘極型電晶體的結構。另外,上述源極驅動電路部704也與閘極驅動電路部706同樣。
FPC端子部708包括其一部分用作連接電極的佈線760、異方性導電膜780及FPC716。佈線760藉由異方性導電膜780與FPC716的端子電連接。在此,佈線760由與電晶體750等的源極電極及汲極電極相同的導電膜形成。
接下來,說明圖21所示的顯示面板700。
圖21所示的顯示面板700包括支撐基板745以及支撐基板740。作為支撐基板745及支撐基板740,例如可以使用玻璃基板或塑膠基板等具有撓性的基板。
電晶體750、電晶體752、電容器790等設置在絕緣層744上。支撐基板745與絕緣層744藉由黏合層742貼合在一起。
另外,顯示面板700包括發光器件782、彩色層736、遮光層738等。
發光器件782包括導電層772、EL層786及導電層788。導電層772與電晶體750所包括的源極電極或汲極電極電連接。導電層772設置在絕緣層770上並被用作像素電極。此外,以覆蓋導電層772的端部的方式設置有絕緣層730,並且絕緣層730及導電層772上層疊地設置有EL層786及導電層788。
作為導電層772可以使用對可見光具有反射性的材料。例如,可以使用包含鋁、銀等的材料。此外,作為導電層788可以使用對可見光具有透光性的材料。例如,較佳為使用包含銦、鋅、錫等的氧化物材料。因此,發光器件782是向與被形成面的相反一側(支撐基板740一側)發射光的頂部發射型發光器件。
EL層786包括有機化合物或量子點等無機化合物。EL層786包括在電流流過時呈現藍色光的發光材料。
作為發光材料,可以使用螢光材料、磷光材料、熱活化延遲螢光(Thermally Activated Delayed Fluorescence:TADF)材料、無機化合物(量子點材料等)等。作為能夠用於量子點的材料,可以舉出膠狀量子點材料、合金型量子點材料、核殼(Core Shell)型量子點材料、核型量子點材料等。
遮光層738和彩色層736設置在絕緣層746的一個面上。彩色層736設置在重疊於發光器件782的位置上。遮光層738設置在像素部702中的不重疊於發光器件782的區域中。此外,遮光層738還可以與閘極驅動電路部706等重疊地設置。
支撐基板740由黏合層747貼合於絕緣層746的另一個面上。此外,支撐基板740和支撐基板745由密封層732彼此貼合。
在此,作為發光器件782所包括的EL層786使用發射白色光的發光材料。發光器件782所發射的白色光被彩色層736著色而被發射到外部。EL層786跨著呈現不同顏色的像素地設置。藉由在像素部以矩陣狀配置設置有使紅色(R)、綠色(G)和藍色(B)中的任一個透過的彩色層736的像素,顯示面板700可以進行全彩色顯示。
此外,作為導電層788也可以使用具有半透過性及半反射性的導電膜。此時,可以在導電層772和導電層788之間實現微小共振器(微腔)結構來增強並發射特定波長的光。此時,也可以藉由在導電層772和導電層788之間配置用來調整光學距離的光學調整層並使不同顏色的像素中的該光學調整層的厚度不同,提高各像素所發射的光的色純度。
另外,在每個像素中將EL層786形成為島狀或在每個像素列中將EL層786形成為條狀時,亦即,藉由分別塗佈形成EL層786時,也可以不設置彩色層736或上述光學調整層。
在此,作為絕緣層744及絕緣層746,較佳為使用被用作透濕性低的障壁膜的無機絕緣膜。藉由在這樣絕緣層744和絕緣層746之間夾有發光器件782、電晶體750等來抑制它們的劣化,從而可以實現可靠性高的顯示面板。
在圖22所示的顯示面板700A中,圖21所示的黏合層742和絕緣層744之間設置有樹脂層743。此外,包括保護層749代替支撐基板740。
樹脂層743是包含聚醯亞胺樹脂、丙烯酸樹脂等的有機樹脂的層。絕緣層744包含氧化矽、氧氮化矽、氮化矽等的無機絕緣膜。樹脂層743與支撐基板745藉由黏合層742貼合在一起。樹脂層743較佳為比支撐基板745薄。
保護層749與密封層732貼合在一起。保護層749可以使用玻璃基板、樹脂薄膜等。此外,保護層749也可以使用偏光板(含圓偏光板)、散射板等光學構件、觸控感測器面板等輸入裝置或上述兩個以上的疊層結構。
此外,發光器件782所包括的EL層786在絕緣層730及導電層772上以島狀設置。藉由以各子像素中的EL層786的發光色都不同的方式分開形成EL層786,可以在不使用彩色層736的情況下實現彩色顯示。
此外,覆蓋發光器件782設置有保護層741。保護層741可以防止水等雜質擴散到發光器件782中。保護層741具有從導電層788一側依次層疊有絕緣層741a、絕緣層741b及絕緣層741c的疊層結構。此時,作為絕緣層741a及絕緣層741c較佳為使用對水等雜質具有高阻擋性的無機絕緣膜,而作為絕緣層741b較佳為使用被用作平坦化膜的有機絕緣膜。此外,保護層741較佳為以延伸到閘極驅動電路部706的方式設置。
另外,較佳為在密封層732的內側將覆蓋電晶體750及電晶體752等的有機絕緣膜形成為島狀。換言之,該有機絕緣膜的端部較佳為位於密封層732的內側或重疊於密封層732的端部的區域中。圖22示出絕緣層770、絕緣層730及絕緣層741b被加工為島狀的例子。例如,重疊有密封層732的部分中彼此接觸地設置有絕緣層741c和絕緣層741a。如此,藉由不使覆蓋電晶體750及電晶體752的有機絕緣膜的表面露出到密封層732的外側,可以適當地防止水或氫從外部經過該有機絕緣膜擴散到電晶體750及電晶體752。由此,電晶體的電特性的變動受到抑制,從而可以實現可靠性極高的顯示裝置。
此外,在圖22中,可以折疊的區域P1中包括不設置有支撐基板745、黏合層742以及絕緣層744等無機絕緣膜的部分。此外,在區域P1中,包括有機材料的絕緣層770覆蓋佈線760以防止佈線760露出。藉由儘可能不在可以折疊的區域P1中設置無機絕緣膜而僅層疊含有金屬或合金的導電層、含有有機材料的層,可以防止在使其彎曲時產生裂縫。此外,藉由不在區域P1中設置支撐基板745,可以使顯示面板700A的一部分以極小的曲率半徑彎曲。
另外,在圖22中,保護層741上設置有導電層761。導電層761也可以被用作佈線或電極。
此外,在與顯示面板700A重疊地設置有觸控感測器的情況下,導電層761可以被用作防止驅動像素時的電雜訊傳送到該觸控感測器的靜電遮蔽膜。此時,導電層761被供應指定的恆定電位,即可。
或者,導電層761例如可以被用作觸控感測器的電極。由此,可以使顯示面板700A用作觸控面板。例如,導電層761可以被用作靜電電容方式的觸控感測器的電極或佈線。此時,導電層761可以被用作連接有檢測電路的佈線或電極或者被輸入感測器信號的佈線或電極。如此,藉由在發光器件782上形成觸控感測器,可以縮減構件點數來縮減電子裝置等的製造成本。
導電層761較佳為設置在不重疊於發光器件782的部分。例如,導電層761可以設置在重疊於絕緣層730的位置上。由此,不需要作為導電層761使用導電性較低的透明導電膜,而可以使用導電性高的金屬或合金等,從而可以提高感測器的靈敏度。
注意,作為可以使用導電層761構成的觸控感測器的方式,不侷限於靜電電容式,可以利用電阻膜式、表面聲波式、紅外線式、光學式、壓敏式等各種方式。此外,可以組合使用上述方式中的兩個以上。
〈組件〉
下面,說明可用於顯示裝置的電晶體等的組件。
[電晶體]
電晶體包括被用作閘極電極的導電層、半導體層、被用作源極電極的導電層、被用作汲極電極的導電層以及被用作閘極絕緣層的絕緣層。
注意,對本發明的一個實施方式的顯示裝置所包括的電晶體的結構沒有特別的限制。例如,可以採用平面型電晶體、交錯型電晶體或反交錯型電晶體。此外,還可以採用頂閘極型或底閘極型的電晶體結構。或者,也可以在通道的上下設置有閘極電極。
對用於電晶體的半導體材料的結晶性也沒有特別的限制,可以使用非 晶半導體或結晶半導體(微晶半導體、多晶半導體、單晶半導體或其一部分具有結晶區域的半導體)。當使用結晶半導體時可以抑制電晶體的特性劣化,所以是較佳的。
〈導電層〉
作為可用於電晶體的閘極、源極及汲極和構成顯示裝置的各種佈線及電極等導電層的材料,可以舉出鋁、鈦、鉻、鎳、銅、釔、鋯、鉬、銀、鉭或鎢等金屬或者以上述金屬為主要成分的合金等。另外,可以以單層或疊層結構使用包含這些材料的膜。例如,有包含矽的鋁膜的單層結構、在鈦膜上層疊鋁膜的兩層結構、在鎢膜上層疊鋁膜的兩層結構、在銅-鎂-鋁合金膜上層疊銅膜的兩層結構、在鈦膜上層疊銅膜的兩層結構、在鎢膜上層疊銅膜的兩層結構、依次層疊鈦膜或氮化鈦膜、鋁膜或銅膜和鈦膜或氮化鈦膜的三層結構、依次層疊鉬膜或氮化鉬膜、鋁膜或銅膜和鉬膜或氮化鉬膜的三層結構等。另外,可以使用氧化銦、氧化錫或氧化鋅等氧化物。另外,藉由使用包含錳的銅,可以提高蝕刻時的形狀的控制性,所以是較佳的。
〈絕緣層〉
作為可用於各絕緣層的絕緣材料,例如可以使用丙烯酸樹脂、環氧樹脂等樹脂、具有矽氧烷鍵的樹脂、無機絕緣材料諸如氧化矽、氧氮化矽、氮氧化矽、氮化矽或氧化鋁等。
另外,發光器件較佳為設置於一對透水性低的絕緣膜之間。由此,能夠抑制水等雜質侵入發光器件,從而能夠抑制裝置的可靠性下降。
作為透水性低的絕緣膜,可以舉出氮化矽膜、氮氧化矽膜等含有氮及矽的膜以及氮化鋁膜等含有氮及鋁的膜等。另外,也可以使用氧化矽膜、氧氮化矽膜以及氧化鋁膜等。
例如,將透水性低的絕緣膜的水蒸氣透過量設定為1×10-5[g/(m2.day)]以下,較佳為1×10-6[g/(m2.day)]以下,更佳為1×10-7[g/(m2.day)]以下,進一步較佳為1×10-8[g/(m2.day)]以下。
以上是組件的說明。
本實施方式所示的結構例子及對應於這些例子的圖式等的至少一部分可以與其他結構例子或圖式等適當地組合而實施。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
實施方式3
在本實施方式中參照圖23A、圖23B及圖23C對顯示裝置的結構例子進行說明。
圖23A所示的顯示裝置包括像素部502、驅動電路部504、保護電路506及端子部507。注意,也可以採用不設置保護電路506的結構。
像素部502包括配置為X行Y列(X、Y為分別獨立的2以上的自然數)的多個像素電路501,該多個像素電路501驅動多個顯示器件。
驅動電路部504包括對閘極線GL_1至GL_X輸出掃描信號的閘極驅動器504a、對資料線DL_1至DL_Y供應資料信號的源極驅動器504b等的驅動電路。閘極驅動器504a採用至少包括移位暫存器的結構即可。此外,源極驅動器504b例如由多個類比開關等構成。此外,也可以由移位暫存器等構成源極驅動器504b。
端子部507是指設置有用來從外部的電路對顯示裝置輸入電源、控制信號及影像信號等的端子的部分。
保護電路506是在自身所連接的佈線被供應一定的範圍之外的電位時使該佈線與其他佈線之間處於導通狀態的電路。圖23A所示的保護電路506例如與閘極驅動器504a和像素電路501之間的佈線的閘極線GL、或者與源極驅動器504b和像素電路501之間的佈線的資料線DL等的各種佈線連接。
此外,既可以採用閘極驅動器504a及源極驅動器504b各自設置在與像素部502相同的基板上的結構,又可以採用形成有閘極驅動電路或源極驅動電路的基板(例如,使用單晶半導體膜或多晶半導體膜形成的驅動電路板)以COF、TCP(Tape Carrier Package:捲帶式封裝)或COG(Chip On Glass,晶粒玻璃接合)等安裝於基板的結構。
此外,圖23A所示的多個像素電路501例如可以具有圖23B、圖23C所示的結構。
圖23B所示的像素電路501包括液晶器件570、電晶體550及電容器560。此外,與像素電路501連接有資料線DL_n、閘極線GL_m及電位供應線VL等。
根據像素電路501的規格適當地設定液晶器件570的一對電極中的一個電極的電位。根據被寫入的資料設定液晶器件570的配向狀態。此外,也可以對多個像素電路501的每一個所具有的液晶器件570的一對電極中的一個電極供應共用電位。此外,也可以對各行的像素電路501的每一個所具有的液晶器件570的一對電極中的一個電極供應不同的電位。
此外,圖23C所示的像素電路501包括電晶體552、554、電容器562以及發光器件572。此外,與像素電路501連接有資料線DL_n、閘極線GL_m、電位供應線VL_a及電位供應線VL_b等。
此外,電位供應線VL_a和電位供應線VL_b中的一個被施加高電源電位VDD,電位供應線VL_a和電位供應線VL_b中的另一個被施加低電源電位VSS。根據電晶體554的閘極被施加的電位,流過發光器件572中的電流被控制,從而來自發光器件572的發光亮度被控制。
本實施方式所示的結構例子及對應於這些例子的圖式等的至少一部分可以與其他結構例子或圖式等適當地組合而實施。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
實施方式4
下面對備有用來校正像素所顯示的灰階的記憶體的像素電路以及具有該像素電路的顯示裝置進行說明。
〈電路結構〉
圖24A示出像素電路400的電路圖。像素電路400包括電晶體M1、電晶體M2、電容器C1及電路401。此外,像素電路400連接有佈線S1、佈線S2、佈線G1及佈線G2。
電晶體M1的閘極與佈線G1連接,源極和汲極中的一個與佈線S1連接,源極和汲極中的另一個與電容器C1的一個電極連接。電晶體M2的閘極與佈線G2連接,源極和汲極中的一個與佈線S2連接,源極和汲極中的另一個與電容器C1的另一個電極及電路401連接。
電路401至少包括一個顯示器件。顯示器件可以使用各種各樣的器件,典型地有有機EL器件或LED器件等發光器件、液晶器件或MEMS(Micro Electro Mechanical Systems)器件等。
將連接電晶體M1與電容器C1的節點記作節點N1,將連接電晶體M2與電路401的節點記作節點N2。
像素電路400藉由使電晶體M1變為關閉狀態可以保持節點N1的電位。此外,藉由使電晶體M2變為關閉狀態可以保持節點N2的電位。此外,藉由在電晶體M2處於關閉狀態的狀態下藉由電晶體M1對節點N1寫入規定的電位,由於藉由電容器C1的電容耦合,可以使節點N2的電位對應節點N1的電位變化而發生改變。
在此,作為電晶體M1、電晶體M2中的一者或兩者可以使用實施方式1中例示出的使用氧化物半導體的電晶體。由於該電晶體具有極小的關態電流,因此可以長時間地保持節點N1及節點N2的電位。此外,當各節點的電位保持期間較短時(明確而言,圖框頻率為30Hz以上時等)也可以採用 使用了矽等半導體的電晶體。
〈驅動方法例〉
接著,參照圖24B對像素電路400的工作方法的一個例子進行說明。圖24B是像素電路400的工作的時序圖。注意,這裡為了便於說明,不考慮佈線電阻等各種電阻、電晶體或佈線等的寄生電容及電晶體的臨界電壓等的影響。
在圖24B所示的工作中,將1個圖框期間分為期間T1和期間T2。期間T1是對節點N2寫入電位的期間,期間T2是對節點N1寫入電位的期間。
在期間T1,對佈線G1和佈線G2的兩者供應使電晶體變為導通狀態的電位。此外,對佈線S1提供為恆定電位的電位Vref,對佈線S2提供第一資料電位Vw
節點N1藉由電晶體M1從佈線S1被供應電位Vref。此外,節點N2藉由電晶體M2從佈線S2被供應第一資料電位Vw。因此,電容器C1變為保持電位差Vw-Vref的狀態。
接著,在期間T2,佈線G1被供應使電晶體M1變為導通狀態的電位,佈線G2被供應使電晶體M2變為關閉狀態的電位,佈線S1被供應第二資料電位Vdata。此外,可以對佈線S2提供預定的恆電位或使成為浮動狀態。
節點N1藉由電晶體M1從佈線S1被供應第二資料電位Vdata。此時,由於藉由電容器C1的電容耦合,對應第二資料電位Vdata節點N2的電位發生變化,其變化量為電位dV。也就是說,電路401被輸入將第一資料電位Vw和電位dV加在一起的電位。注意,雖然圖24B示出電位dV為正值,但是其也可以為負值。也就是說,第二資料電位Vdata也可以比電位Vref低。
這裡,電位dV基本由電容器C1的電容值及電路401的電容值決定。當電容器C1的電容值充分大於電路401的電容值時,電位dV成為接近第二資料電位Vdata的電位。
如上所述,由於像素電路400可以組合兩種資料信號生成供應給包括顯示器件的電路401的電位,所以可以在像素電路400內進行灰階校正。
此外,像素電路400可以生成超過可對佈線S1及佈線S2供應的最大電位的電位。例如,在使用發光器件的情況下,可以進行高動態範圍(HDR)顯示等。此外,在使用液晶器件的情況下,可以實現過驅動等。
〈應用例子〉
[使用液晶器件的例子]
圖24C所示的像素電路400LC包括電路401LC。電路401LC包括液晶器件LC及電容器C2。
液晶器件LC的一個電極與節點N2及電容器C2的一個電極連接,另一個電極與被供應電位Vcom2的佈線連接。電容器C2的另一個電極與被供應電位Vcom1的佈線連接。
電容器C2被用作儲存電容器。此外,當不需要時可以省略電容器C2。
由於像素電路400LC可以對液晶器件LC提供高電壓,所以例如可以藉由過驅動實現高速顯示,可以採用驅動電壓高的液晶材料等。此外,藉由對佈線S1或佈線S2提供校正信號,可以根據使用溫度或液晶器件LC的劣化狀態等進行灰階校正。
[使用發光器件的例子]
圖24D所示的像素電路400EL包括電路401EL。電路401EL包括發光器件EL、電晶體M3及電容器C2。
電晶體M3的閘極與節點N2及電容器C2的一個電極連接,源極和汲極中的一個與被供應電位VH的佈線連接,源極和汲極中的另一個與發光器件EL的一個電極連接。電容器C2的另一個電極與被供應電位Vcom的佈線連接。發光器件EL的另一個電極與被供應電位VL的佈線連接。
電晶體M3具有控制對發光器件EL供應的電流的功能。電容器C2被用 作儲存電容器。不需要時也可以省略電容器C2。
此外,雖然這裡示出發光器件EL的陽極一側與電晶體M3連接的結構,但是也可以採用陰極一側與電晶體M3連接的結構。此時,可以適當地改變電位VH與電位VL的值。
像素電路400EL可以藉由對電晶體M3的閘極施加高電位使大電流流過發光器件EL,所以可以實現HDR顯示等。此外,藉由對佈線S1或佈線S2提供校正信號可以對電晶體M3及發光器件EL的電特性偏差進行校正。
此外,不侷限於圖24C及圖24D所示的電路,也可以採用另外附加電晶體或電容器等的結構。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
實施方式5
下面,說明本發明的一個實施方式的顯示面板的像素的結構例子。
參照圖25A至圖25E說明像素300的結構例子。
像素300包括多個像素301。多個像素301各自被用作子像素。因為由呈現互不相同的顏色的多個像素301構成一個像素300,所以顯示部可以進行全彩色顯示。
圖25A及圖25B所示的像素300包括三個子像素。圖25A所示的像素300所包括的像素301所呈現的顏色組合是紅色(R)、綠色(G)以及藍色(B)。圖25B所示的像素300所包括的像素301所呈現的顏色組合是青色(C)、洋紅色(M)、黃色(Y)。
圖25C至圖25E所示的像素300包括四個子像素。圖25C所示的像素300所包括的像素301所呈現的顏色組合是紅色(R)、綠色(G)、藍色(B) 以及白色(W)。藉由使用呈現白色的子像素,可以提高顯示部的亮度。圖25D所示的像素300所包括的像素301所呈現的顏色組合是紅色(R)、綠色(G)、藍色(B)以及黃色(Y)。圖25E所示的像素300所包括的像素301所呈現的顏色組合是青色(C)、洋紅色(M)、黃色(Y)以及白色(W)。
增加用作一個像素的子像素的數量,適當地組合呈現紅色、綠色、藍色、青色、洋紅色及黃色等顏色的子像素,由此可以提高半色調的再現性。因此,可以提高顯示品質。
本發明的一個實施方式的顯示裝置可以再現各種規格的色域。例如,可以再現如下規格的色域:在電視廣播中使用的PAL(Phase Alternating Line:逐行倒相)規格及NTSC(National Television System Committee:美國國家電視標準委員會)規格;在用於個人電腦、數位相機、印表機等電子裝置的顯示裝置中廣泛使用的sRGB(standard RGB:標準RGB)規格及Adobe RGB規格;在HDTV(High Definition Television,也被稱為高清)中使用的ITU-R BT.709(International Telecommunication Union Radiocommunication Sector Broadcasting Service(Television)709:國際電信聯盟無線電通信部門廣播服務(電視)709)規格;在數位電影放映中使用的DCI-P3(Digital Cinema Initiatives P3:數位電影宣導聯盟P3)規格;以及在UHDTV(Ultra High Definition Television,也被稱為超高清)中使用的ITU-R BT.2020(REC.2020(Recommendation 2020:建議2020))規格等。
當將像素300配置為1920×1080的矩陣狀時,可以實現能夠以所謂全高清(也稱為“2K解析度”、“2K1K”或“2K”等)的解析度進行全彩色顯示的顯示裝置。另外,例如,當將像素300配置為3840×2160的矩陣狀時,可以實現能夠以所謂超高清(也稱為“4K解析度”、“4K2K”或“4K”等)的解析度進行全彩色顯示的顯示裝置。另外,例如,當將像素300配置為7680×4320的矩陣狀時,可以實現能夠以所謂超高清(也稱為“8K解析度”、“8K4K”或“8K”等)的解析度進行全彩色顯示的顯示裝置。藉由增加像素300,還可以實現能夠以16K或32K的解析度進行全彩色顯示的顯示裝置。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
實施方式6
在本實施方式中,對可用於其他實施方式中已說明的OS電晶體的金屬氧化物的CAC-OS(Cloud-Aligned Composite Oxide Semiconductor)及CAAC-OS(c-axis Aligned Crystalline Oxide Semiconductor)進行說明。
〈金屬氧化物的構成〉
CAC-OS或CAC-metal oxide在材料中的一部分中具有導電性的功能,在材料中的另一部分中具有絕緣性的功能,在材料整體中具有作為半導體的功能。注意,在將CAC-OS或CAC-metal oxide用於電晶體的活性層時,導電性的功能是使被用作載子的電子(或電洞)流過的功能,絕緣性的功能是不使用作載子的電子流過的功能。藉由使導電性的功能與絕緣性的功能互補作用,可以將開關功能(開啟/關閉的功能)授予到CAC-OS或CAC-metal oxide。在CAC-OS或CAC-metal oxide中,藉由使兩者功能分離,可以最大地提高其功能。
另外,CAC-OS或CAC-metal oxide包括導電性區域及絕緣性區域。導電性區域具有上述導電性的功能,絕緣性區域具有上述絕緣性的功能。另外,在材料中,導電性區域與絕緣性區域有時以奈米粒子級分離。另外,導電性區域與絕緣性區域有時在材料中不均勻地分佈。另外,導電性區域有時以周圍模糊而雲狀連接的方式被觀察。
此外,在CAC-OS或CAC-metal oxide中,導電性區域與絕緣性區域有時以0.5nm以上且10nm以下,較佳為0.5nm以上且3nm以下的大小在材料中分佈。
另外,CAC-OS或CAC-metal oxide由具有不同的能帶間隙的成分而構成。例如,CAC-OS或CAC-metal oxide由具有起因於及絕緣性區域的寬隙的成分和具有起因於導電性區域的窄隙的成分而構成。當該構成時,在使載子流過的情況下,載子主要在具有窄隙的成分中流過。另外,具有窄隙 的成分與具有寬隙的成分互補作用,與具有窄隙的成分聯動地載子在具有寬隙的成分流過。由此,當將上述CAC-OS或CAC-metal oxide用於電晶體的形成通道區域的情況下,在電晶體通態時可以得到高電流驅動力,亦即大通態電流及高場效移動率。
也就是說,CAC-OS或CAC-metal oxide也可以稱為基質複合材料(matrix composite)或金屬基質複合材料(metal matrix composite)。
〈金屬氧化物的結構〉
氧化物半導體可以分為單晶氧化物半導體與其之外的非單晶氧化物半導體。作為非單晶氧化物半導體,可以舉出CAAC-OS、多晶氧化物半導體、nc-OS(nanocrystalline oxide semiconductor)、a-like OS(amorphous-like oxide semiconductor)及非晶氧化物半導體等。
另外,在關注到晶體結構的情況下,氧化物半導體有時屬於與上述不同的分類。在此,參照圖26A對氧化物半導體中的晶體結構的分類進行說明。圖26A是對氧化物半導體,典型的是IGZO(包含In、Ga及Zn的金屬氧化物)的晶體結構的分類進行說明的圖。
如圖26A所示,IGZO大致分為Amorphous(無定形)、Crystalline(結晶性)及Crystal(結晶)。另外,在Amorphous中包含completely amorphous。另外,在Crystalline中包含CAAC(c-axis aligned crystalline)、nc(nanocrystalline)及CAC(Cloud-Aligned Composite)。注意,在Crystalline的分類中不包含single crystal、poly crystal及completely amorphous。另外,在Crystal中包含single crystal及poly crystal。
圖26A所示的粗框內的結構是Amorphous(無定形)與Crystal(結晶)間的中間態並屬於新境界區域(New crystalline phase)的結構。該結構在Amorphous與Crystal間的境界區域。也可以說,該結構具有與在能量上不穩定的Amorphous(無定形)及Crystal(結晶)完全不同的結構。
另外,對膜或基板中的晶體結構可以使用X射線繞射(XRD:X-Ray Diffraction)影像進行評價。在此,圖26B及圖26C示出石英玻璃及具有分類為Crystalline的晶體結構的IGZO(也稱為Crystalline IGZO)的XRD光譜。圖26B示出石英玻璃的XRD光譜,圖26C示出結晶性IGZO的XRD光譜。注意,圖26C所示的結晶性IGZO的組成為In:Ga:Zn=4:2:3[原子個數比]附近。另外,圖26C所示的結晶性IGZO的膜厚為500nm。
如圖26B中的箭頭所示,石英玻璃的XRD光譜中的峰的形狀大致是左右對稱。另一方面,如圖26C中的箭頭所示,結晶性IGZO的XRD光譜中的峰的形狀是左右不對稱。XRD光譜的峰的形狀是左右不對稱明示結晶的存在。換言之,除非XRD光譜的峰的形狀是左右不對稱,才稱為Amorphous。另外,在圖26C中,在2θ=31°或其附近表示結晶相(IGZO crystal phase)。XRD光譜的峰的形狀為左右不對稱的緣故可以估計起因於該結晶相(微結晶)。
明確而言,在圖26C所示的結晶性IGZO的XRD光譜中,於2θ=34°或其附近具有峰。另外,微晶於2θ=31°或其附近具有峰。在使用X射線繞射影像對氧化物半導體膜進行評價的情況下,如圖26C所示,比2θ=34°或其附近的峰低角度一側的光譜寬度大。從此可知,氧化物半導體膜包括於2θ=31°或其附近具有峰的微晶。
另外,膜的晶體結構可以使用藉由奈米束電子繞射法(NBED:Nano Beam Electron Diffraction)觀察的繞射圖案而進行評價。圖26D示出將基板溫度設定為室溫而形成的IGZO的繞射圖案。注意,藉由使用In:Ga:Zn=1:1:1[原子個數比]的氧化物靶材,利用濺射法形成圖26D所示的IGZO膜。另外,在奈米束電子繞射法中,在將束徑設定為1nm的情況下進行電子繞射。
如圖26D所示,在以室溫進行形成的IGZO膜的繞射圖案中,觀察到不是暈狀的圖案而是斑點狀的圖案。由此可以估計為以室溫進行形成的IGZO膜處於不是晶體狀態也不是非晶狀態的中間態,由此不會判斷為處於非晶狀態。
CAAC-OS具有c軸配向性,多個奈米晶在a-b面方向上連接,其晶體結 構具有畸變。注意,畸變是指在連接多個奈米晶的區域中的整齊晶格排列的區域與整齊其他晶格排列的區域之間晶格排列的方向變化的區域。
奈米晶雖然基本上是六角形,但不侷限於正六角形而有時是非正六角形狀。另外,在畸變中,有時包括五角形及七角形等晶格排列。注意,在CAAC-OS中,即使在畸變附近也確認不到明確的晶界(grain boundary)。也就是說可知,晶格排列的畸變抑制形成晶界。這是因為CAAC-OS藉由具有如下特性可以容許畸變:a-b面方向上的氧原子的排列不細緻,因為金屬元素被取代而原子間的鍵長變化等。
注意,確認到的明確的晶界(grain boundary)的晶體結構被稱為所謂的多晶(polycrystal)。晶界是再結合中心,因此載子被俘獲而引起電晶體的通態電流的降低或場效移動率的降低的可能性高。由此,確認不到明確的晶界的CAAC-OS是對電晶體的半導體層具有較佳的晶體結構的結晶性氧化物之一。注意,在構成CAAC-OS時,較佳為採用具有Zn的結構。例如,In-Zn氧化物及In-Ga-Zn氧化物可以比In氧化物抑制晶界的產生,所以是較佳的。
另外,CAAC-OS傾向於具有層疊包含銦及氧的層(下面稱為In層)與包含元素M、鋅及氧的層(下面稱為(M,Zn)層)的層狀的晶體結構(也稱為層狀結構)。注意,銦與元素M可以互相調換,在(M,Zn)層中的元素M被銦取代時,可以表示為(In,M,Zn)層。另外,在In層中的銦被元素M取代時,可以表示為(In,M)層。
CAAC-OS是結晶性高的氧化物半導體。另一方面,由於在CAAC-OS中確認不到明確的晶界,因此不容易發生起因於晶界的電子移動率的降低。此外,由於氧化物半導體的結晶性有時因雜質的混入及缺陷的生成等而降低,因此CAAC-OS也可以說是雜質及缺陷(氧空位等)少的氧化物半導體。由此,包括CAAC-OS的氧化物半導體的物理性質穩定。由此,包括CAAC-OS的氧化物半導體具有高耐熱性及高可靠性。此外,CAAC-OS對製程中的高溫度(所謂熱積存;thermal budget)也很穩定。由此,藉由在OS電晶體中使用CAAC-OS,可以擴大製程的彈性。
nc-OS在微小區域(例如,1nm以上且10nm以下的區域,尤其是1nm以上且3nm以下的區域)中的原子排列具有週期性。另外,nc-OS在不同的奈米晶間的結晶定向沒有規則性。由此,在膜整體中沒有配向性。所以根據分析方法,nc-OS有時與a-like OS及非晶氧化物半導體沒有區別。
a-like OS是具有nc-OS與非晶氧化物半導體間的結構的氧化物半導體。a-like OS包括空洞或低密度區域。也就是說,與nc-OS及CAAC-OS相比,a-like OS的結晶性低。
氧化物半導體採用多種結構,並且各有不同的特性。本發明的一個實施方式的氧化物半導體也可以包括非晶氧化物半導體、多晶氧化物半導體、a-like OS、nc-OS及CAAC-OS中的兩種以上。
〈具有氧化物半導體的電晶體〉
接著,說明將上述氧化物半導體用於電晶體的情況。
藉由將上述氧化物半導體用於電晶體,可以實現場效移動率高的電晶體。另外,可以實現可靠性高的電晶體。
另外,較佳為將載子濃度低的氧化物半導體用於電晶體。在要降低氧化物半導體膜的載子濃度的情況下,可以降低氧化物半導體膜中的雜質濃度以降低缺陷態密度。在本說明書等中,將雜質濃度低且缺陷態密度低的狀態稱為高純度本質或實質上高純度本質。
此外,高純度本質或實質上高純度本質的氧化物半導體膜具有較低的缺陷態密度,因此有時具有較低的陷阱態密度。
此外,被氧化物半導體的陷阱能階俘獲的電荷到消失需要較長的時間,有時像固定電荷那樣動作。因此,在陷阱態密度高的氧化物半導體中形成有通道形成區域的電晶體的電特性有時不穩定。
因此,為了使電晶體的電特性穩定,減少氧化物半導體中的雜質濃度是有效的。為了減少氧化物半導體中的雜質濃度,較佳為還減少附近膜中 的雜質濃度。作為雜質有氫、氮、鹼金屬、鹼土金屬、鐵、鎳、矽等。
〈雜質〉
在此,說明氧化物半導體中的各雜質的影響。
在氧化物半導體包含第14族元素之一的矽或碳時,在氧化物半導體中形成缺陷能階。因此,將氧化物半導體中或氧化物半導體的介面附近的矽或碳的濃度(藉由二次離子質譜分析法(SIMS:Secondary Ion Mass Spectrometry)測得的濃度)設定為2×1018atoms/cm3以下,較佳為2×1017atoms/cm3以下。
另外,當氧化物半導體包含鹼金屬或鹼土金屬時,有時形成缺陷能階而形成載子。因此,使用包含鹼金屬或鹼土金屬的氧化物半導體的電晶體容易具有常開啟特性。由此,較佳為減少氧化物半導體中的鹼金屬或鹼土金屬的濃度。明確而言,使藉由SIMS測得的氧化物半導體中的鹼金屬或鹼土金屬的濃度為1×1018atoms/cm3以下,較佳為2×1016atoms/cm3以下。
當氧化物半導體包含氮時,容易產生作為載子的電子,使載子濃度增高,而n型化。其結果是,在將包含氮的氧化物半導體用於半導體的電晶體容易具有常開啟特性。因此,較佳為儘可能地減少該氧化物半導體中的氮,例如,利用SIMS測得的氧化物半導體中的氮濃度低於5×1019atoms/cm3,較佳為5×1018atoms/cm3以下,更佳為1×1018atoms/cm3以下,進一步較佳為5×1017atoms/cm3以下。
包含在氧化物半導體中的氫與鍵合於金屬原子的氧起反應生成水,因此有時形成氧空位。當氫進入該氧空位時,有時產生作為載子的電子。另外,有時由於氫的一部分與鍵合於金屬原子的氧鍵合,產生作為載子的電子。因此,使用包含氫的氧化物半導體的電晶體容易具有常開啟特性。由此,較佳為儘可能減少氧化物半導體中的氫。明確而言,在氧化物半導體中,將利用SIMS測得的氫濃度設定為低於1×1020atoms/cm3,較佳為低於1×1019atoms/cm3,更佳為低於5×1018atoms/cm3,進一步較佳為低於1×1018atoms/cm3
藉由將雜質被充分降低的氧化物半導體用於電晶體的通道形成區域,可以使電晶體具有穩定的電特性。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
實施方式7
在本實施方式中,說明可用於本發明的一個實施方式的顯示裝置的發光器件及發光器件的發光模型。
圖27A至圖27D是說明發光器件的結構的剖面圖。注意,圖27A是單結構的發光器件的剖面圖,圖27B至圖27D是串聯結構的發光器件的剖面圖。
〈單結構的發光器件〉
首先,說明圖27A所示的單結構的發光器件。
圖27A所示的發光器件在第一電極1101與第二電極1102之間包括EL層1103。另外,EL層1103包括電洞注入層1111、電洞傳輸層1112、發光層1113、電子傳輸層1114及電子注入層1115。
下面,說明可用於本發明的一個實施方式的發光器件的材料。
〈第一電極及第二電極〉
第一電極1101具有陽極和陰極中的一個的功能。另外,第二電極1102具有陽極和陰極中的一個的功能。在本實施方式中,以第一電極1101為陽極且以第二電極1102為陰極來進行說明。在本實施方式中,第一電極1101對可見光具有反射性,第二電極1102對可見光具有透過性。注意,本發明的一個實施方式不侷限於此,第二電極1102也可以對可見光具有反射性並對可見光具有透過性。例如,在製造具有微腔結構的發光器件時,可以適當地使用對可見光具有反射性的電極以及對可見光具有反射性及透過性的兩者的電極。
作為第一電極1101及第二電極1102,可以適當地使用金屬、合金、導電化合物以及它們的混合物等。明確而言,可以舉出In-Sn氧化物(也稱為ITO)、In-Si-Sn氧化物(也稱為ITSO)、In-Zn氧化物、In-W-Zn氧化物。除了上述以外,還可以舉出鋁(Al)、鈦(Ti)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鎵(Ga)、鋅(Zn)、銦(In)、錫(Sn)、鉬(Mo)、鉭(Ta)、鎢(W)、鈀(Pd)、金(Au)、鉑(Pt)、銀(Ag)、釔(Y)、釹(Nd)等金屬以及適當地組合它們的合金。除了上述以外,也可以使用屬於元素週期表中第1族或第2族的元素(例如,鋰(Li)、銫(Cs)、鈣(Ca)、鍶(Sr))、銪(Eu)、鐿(Yb)等稀土金屬、適當地組合它們的合金以及石墨烯等。
注意,第一電極1101及第二電極1102可以利用濺射法或真空蒸鍍法來形成。
〈電洞注入層〉
電洞注入層1111較佳為包含第一有機化合物和第二有機化合物。第一有機化合物是對第二有機化合物呈現電子接受性的材料。另外,第二有機化合物是最高佔據分子軌域能階(HOMO能階)為-5.7eV以上且-5.4eV以下的具有較深的HOMO能階的材料。藉由使第二有機化合物具有較深的HOMO能階,將電洞容易注入到電洞傳輸層1112。
第一有機化合物可以使用具有拉電子基團(尤其是氟基那樣的鹵基或氰基)的有機化合物等,可以從這樣的材料中適當地選擇對上述第二有機化合物呈現電子接受性的材料。作為這種有機化合物,可以舉出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(簡稱:F4-TCNQ)、氯醌、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮雜聯伸三苯(簡稱:HAT-CN)、1,3,4,5,7,8-六氟四氰(hexafluorotetracyano)-萘醌二甲烷(naphthoquinodimethane)(簡稱:F6-TCNNQ)、2-(7-二氰基亞甲基-1,3,4,5,6,8,9,10-八氟-7H-芘-2-亞基)丙二腈等。尤其是,拉電子基團鍵合於具有多個雜原子的稠合芳香環的化合物諸如HAT-CN等熱穩定,所以是較佳的。另外,包括拉電子基團(尤其是如氟基等鹵基、氰基)的[3]軸烯衍生物的電子接收性非常高所以特別較佳的,明確而言,可以舉出:α,α’,α’’-1,2,3-環丙烷 三亞基三[4-氰-2,3,5,6-四氟苯乙腈]、α,α’,α’’-1,2,3-環丙烷三亞基三[2,6-二氯-3,5-二氟-4-(三氟甲基)苯乙腈]、α,α’,α’’-1,2,3-環丙烷三亞基三[2,3,4,5,6-五氟苯乙腈]等。
第二有機化合物較佳為具有電洞傳輸性的有機化合物,較佳為具有咔唑骨架、二苯并呋喃骨架、二苯并噻吩骨架及蒽骨架中的至少一個。尤其是,可以為具有包括二苯并呋喃環或二苯并噻吩環的取代基的芳香胺、包括萘環的芳香單胺、或者9-茀基藉由伸芳基鍵合於胺的氮的芳香單胺。
注意,當第二有機化合物是包括N,N-雙(4-聯苯)胺基的材料時,可以製造壽命良好的發光器件,所以是較佳的。
〈電洞傳輸層〉
電洞傳輸層1112較佳為具有兩層以上的疊層結構。例如,較佳的是,電洞傳輸層1112包括第一層及第一層上的第二層,第一層包含第三有機化合物,第二層包含第四有機化合物。
第三有機化合物及第四有機化合物較佳為各自為具有電洞傳輸性的有機化合物。第三有機化合物及第四有機化合物可以使用與能夠用作上述第二有機化合物的有機化合物同樣的材料。
作為第二有機化合物的HOMO能階和第三有機化合物的HOMO能階,較佳為以第三有機化合物的HOMO能階更深且其差為0.2eV以下的方式選擇各個材料。更佳的是,第二有機化合物和第三有機化合物為相同材料。
另外,作為第三有機化合物的HOMO能階和第四有機化合物的HOMO能階,較佳為第四有機化合物的HOMO能階更深。再者,較佳為以其差為0.2eV以下的方式選擇各自的材料。藉由使第二有機化合物至第四有機化合物的HOMO能階具有上述關係,可以使電洞順利地注入到各層中,由此可以防止驅動電壓上升及發光層中電洞過少的狀態。
另外,第二有機化合物至第四有機化合物較佳為分別具有電洞傳輸性骨架。作為該電洞傳輸性骨架,較佳為使用不會使上述有機化合物的HOMO 能階過淺的咔唑骨架、二苯并呋喃骨架、二苯并噻吩骨架及蒽骨架。另外,當相鄰層的材料(例如第二有機化合物和第三有機化合物或第三有機化合物和第四有機化合物)中共用上述電洞傳輸性骨架時,可以順利地進行電洞注入,所以是較佳的。作為上述電洞傳輸性骨架尤其較佳為使用二苯并呋喃骨架。
另外,藉由使相鄰層包含的材料(例如第二有機化合物和第三有機化合物或第三有機化合物和第四有機化合物)為相同材料可以順利地進行電洞的注入,因此是較佳的。尤其較佳為第二有機化合物和第三有機化合物為相同材料。
〈發光層〉
發光層1113較佳為包含第五有機化合物及第六有機化合物。第五有機化合物為包含發光中心材料的材料(也稱為發光材料或客體材料),第六有機化合物為用來分散第五有機化合物的主體材料。注意,第六有機化合物也可以由一種或多種有機化合物(例如,主體材料及輔助材料的兩種有機化合物)構成。作為一種或多種有機化合物,可以使用在本實施方式中說明的電洞傳輸性材料和電子傳輸性材料中的一者或兩者。此外,作為一種或多種有機化合物,也可以使用雙極性材料。
發光層1113可以具有單層結構或兩層以上的疊層結構。注意,在發光層1113具有兩層以上的疊層結構時,發光材料也可以包含在多個層中。
第五有機化合物為發光材料,作為該發光材料的發光顏色,可以使用藍色、紫色、藍紫色、綠色、黃綠色、黃色、橙色、紅色等。在本發明的一個實施方式中,當發光層1113包含螢光發光材料時,發光顏色尤其較佳為藍色。
注意,對可用於發光層1113的發光材料沒有特別的限制,可以使用將單重激發能量轉換為可見光區域或近紅外光區域的光的發光材料(螢光發光材料)或將三重激發能量轉換為可見光區域或近紅外光區域的光的發光材料(磷光發光材料或熱活化延遲螢光(Thermally activated delayed fluorescence:TADF)材料)。
〈螢光發光材料〉
作為將單重激發能量轉換成發光的發光材料,可以舉出螢光發光材料,例如可以舉出芘衍生物、蒽衍生物、聯伸三苯衍生物、茀衍生物、咔唑衍生物、二苯并噻吩衍生物、二苯并呋喃衍生物、二苯并喹
Figure 109108053-A0202-12-0053-86
啉衍生物、喹
Figure 109108053-A0202-12-0053-87
啉衍生物、吡啶衍生物、嘧啶衍生物、菲衍生物、萘衍生物等。尤其是芘衍生物的發光量子產率高,所以是較佳的。作為芘衍生物的具體例子,可以舉出N,N’-雙(3-甲基苯基)-N,N’-雙[3-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6mMemFLPAPrn)、N,N’-二苯基-N,N’-雙[4-(9-苯基-9H-茀-9-基)苯基]芘-1,6-二胺(簡稱:1,6FLPAPrn)、N,N’-雙(二苯并呋喃-2-基)-N,N’-二苯基芘-1,6-二胺(簡稱:1,6FrAPrn)、N,N’-雙(二苯并噻吩-2-基)-N,N’-二苯基芘-1,6-二胺(簡稱:1,6ThAPrn)、N,N’-(芘-1,6-二基)雙[(N-苯基苯并[b]萘并[1,2-d]呋喃)-6-胺](簡稱:1,6BnfAPrn)、N,N’-(芘-1,6-二基)雙[(N-苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](簡稱:1,6BnfAPrn-02)、N,N’-(芘-1,6-二基)雙[(6,N-二苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](簡稱:1,6BnfAPrn-03)等。
除了上述以外,可以使用5,6-雙[4-(10-苯基-9-蒽基)苯基]-2,2’-聯吡啶(簡稱:PAP2BPy)、5,6-雙[4’-(10-苯基-9-蒽基)聯苯-4-基]-2,2’-聯吡啶(簡稱:PAPP2BPy)、N,N’-雙[4-(9H-咔唑-9-基)苯基]-N,N’-二苯基二苯乙烯-4,4’-二胺(簡稱:YGA2S)、4-(9H-咔唑-9-基)-4’-(10-苯基-9-蒽基)三苯胺(簡稱:YGAPA)、4-(9H-咔唑-9-基)-4’-(9,10-二苯基-2-蒽基)三苯胺(簡稱:2YGAPPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:PCAPA)、4-(10-苯基-9-蒽基)-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPA)、4-[4-(10-苯基-9-蒽基)苯基]-4’-(9-苯基-9H-咔唑-3-基)三苯胺(簡稱:PCBAPBA)、苝、2,5,8,11-四(三級丁基)苝(簡稱:TBP)、N,N’’-(2-三級丁基蒽-9,10-二基二-4,1-伸苯基)雙[N,N’,N’-三苯基-1,4-苯二胺](簡稱:DPABPA)、N,9-二苯基-N-[4-(9,10-二苯基-2-蒽基)苯基]-9H-咔唑-3-胺(簡稱:2PCAPPA)、N-[4-(9,10-二苯基-2-蒽基)苯基]-N,N’,N’-三苯基-1,4-苯二胺(簡稱:2DPAPPA)等。
作為將三重激發能量轉換為發光的發光材料,例如可以舉出磷光發光材料或呈現熱活化延遲螢光的TADF材料。關於TADF材料的詳細內容,將在後面說明。
〈磷光發光材料〉
作為磷光發光材料,例如可以舉出具有4H-三唑骨架、1H-三唑骨架、咪唑骨架、嘧啶骨架、吡嗪骨架、吡啶骨架的有機金屬錯合物(尤其是銥錯合物)、以具有拉電子基團的苯基吡啶衍生物為配體的有機金屬錯合物(尤其是銥錯合物)、鉑錯合物、稀土金屬錯合物等。
作為呈現藍色或綠色且其發射光譜的峰值波長為450nm以上且570nm以下的磷光發光材料,可以舉出如下材料。
例如,可以舉出三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κN2]苯基-κC}銥(III)(簡稱:[Ir(mpptz-dmp)3])、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑)銥(III)(簡稱:[Ir(Mptz)3])、三[4-(3-聯苯)-5-異丙基-3-苯基-4H-1,2,4-三唑]銥(III)(簡稱:[Ir(iPrptz-3b)3])、三[3-(5-聯苯)-5-異丙基-4-苯基-4H-1,2,4-三唑]銥(III)(簡稱:[Ir(iPr5btz)3])等具有4H-三唑骨架的有機金屬錯合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑]銥(III)(簡稱:[Ir(Mptz1-mp)3])、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑)銥(III)(簡稱:[Ir(Prptz1-Me)3])等具有1H-三唑骨架的有機金屬錯合物;fac-三[1-(2,6-二異丙基苯基)-2-苯基-1H-咪唑]銥(III)(簡稱:[Ir(iPrpmi)3])、三[3-(2,6-二甲基苯基)-7-甲基咪唑并[1,2-f]菲啶根(phenanthridinato)]銥(III)(簡稱:[Ir(dmpimpt-Me)3])等具有咪唑骨架的有機金屬錯合物;以及雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’]銥(III)四(1-吡唑基)硼酸鹽(簡稱:FIr6)、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’]銥(III)吡啶甲酸鹽(簡稱:FIrpic)、雙{2-[3’,5’-雙(三氟甲基)苯基]吡啶根-N,C2’}銥(III)吡啶甲酸鹽(簡稱:[Ir(CF3ppy)2(pic)])、雙[2-(4’,6’-二氟苯基)吡啶根-N,C2’]銥(III)乙醯丙酮(簡稱:FIr(acac))等以具有拉電子基團的苯基吡啶衍生物為配體的有機金屬錯合物等。
作為呈現綠色或黃色且其發射光譜的峰值波長為495nm以上且590nm以下的磷光發光材料,可以舉出如下材料。
例如,可以舉出三(4-甲基-6-苯基嘧啶)銥(III)(簡稱:[Ir(mppm)3])、三(4-三級丁基-6-苯基嘧啶)銥(III)(簡稱:[Ir(tBuppm)3])、(乙醯丙酮根)雙(6-甲基-4-苯基嘧啶)銥(III)(簡稱:[Ir(mppm)2(acac)])、(乙醯丙酮根)雙(6-三級丁基-4-苯基嘧啶)銥(III)(簡稱:[Ir(tBuppm)2(acac)])、(乙醯丙酮根)雙[6-(2-降莰基)-4-苯基嘧啶]銥(III)(簡稱:[Ir(nbppm)2(acac)])、(乙醯丙酮根)雙[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶]銥(III)(簡稱:[Ir(mpmppm)2(acac)])、(乙醯丙酮根)雙{4,6-二甲基-2-[6-(2,6-二甲基苯基)-4-嘧啶基-κN3〕苯基-κC}銥(III)(簡稱:[Ir(dmppm-dmp)2(acac)])、(乙醯丙酮根)雙(4,6-二苯基嘧啶)銥(III)(簡稱:[Ir(dppm)2(acac)])等具有嘧啶骨架的有機金屬銥錯合物;(乙醯丙酮根)雙(3,5-二甲基-2-苯基吡嗪)銥(III)(簡稱:[Ir(mppr-Me)2(acac)])、(乙醯丙酮根)雙(5-異丙基-3-甲基-2-苯基吡嗪)銥(III)(簡稱:[Ir(mppr-iPr)2(acac)])等具有吡嗪骨架的有機金屬銥錯合物;三(2-苯基吡啶根-N,C2’)銥(III)(簡稱:[Ir(ppy)3])、雙(2-苯基吡啶根-N,C2’)銥(III)乙醯丙酮(簡稱:[Ir(ppy)2(acac)])、雙(苯并[h]喹啉)銥(III)乙醯丙酮(簡稱:[Ir(bzq)2(acac)])、三(苯并[h]喹啉)銥(III)(簡稱:[Ir(bzq)3])、三(2-苯基喹啉-N,C2' )銥(III)(簡稱:[Ir(pq)3])、雙(2-苯基喹啉-N,C2’)銥(III)乙醯丙酮(簡稱:[Ir(pq)2(acac)])、[2-(4-苯基-2-吡啶基-κN)苯基-κC]雙[2-(2-吡啶基-κN)苯基-κC]銥(III)(簡稱:[Ir(ppy)2(4dppy)])、雙[2-(2-吡啶基-κN)苯基-κC][2-(4-甲基-5-苯基-2-吡啶基-κN)苯基-κC]等具有吡啶骨架的有機金屬銥錯合物;雙(2,4-二苯基-1,3-
Figure 109108053-A0202-12-0055-88
唑-N,C2’)銥(III)乙醯丙酮(簡稱:[Ir(dpo)2(acac)])、雙{2-[4’-(全氟苯基)苯基]吡啶-N,C2’}銥(III)乙醯丙酮(簡稱:[Ir(p-PF-ph)2(acac)])、雙(2-苯基苯并噻唑-N,C2’)銥(III)乙醯丙酮(簡稱:[Ir(bt)2(acac)])等有機金屬錯合物、三(乙醯丙酮根)(單啡啉)鋱(III)(簡稱:[Tb(acac)3(Phen)])等稀土金屬錯合物。
作為呈現黃色或紅色且其發射光譜的峰值波長為570nm以上且750nm 以下的磷光發光材料,可以舉出如下材料。
例如,可以舉出(二異丁醯甲烷根)雙[4,6-雙(3-甲基苯基)嘧啶根]銥(III)(簡稱:[Ir(5mdppm)2(dibm)])、雙[4,6-雙(3-甲基苯基)嘧啶根](二新戊醯甲烷)銥(III)(簡稱:[Ir(5mdppm)2(dpm)])、雙[4,6-二(萘-1-基)嘧啶根](二新戊醯甲烷)銥(III)(簡稱:[Ir(dlnpm)2(dpm)])、三(4-三級丁基-6-苯基嘧啶根)銥(III)(簡稱:[Ir(tBuppm)3])等具有嘧啶骨架的有機金屬錯合物;(乙醯丙酮)雙(2,3,5-三苯基吡嗪)銥(III)(簡稱:[Ir(tppr)2(acac)])、雙(2,3,5-三苯基吡嗪)(二新戊醯甲烷)銥(III)(簡稱:[Ir(tppr)2(dpm)])、雙{4,6-二甲基-2-[3-(3,5-二甲基苯基)-5-苯基-2-吡嗪基-κN]苯基-κC}(2,6-二甲基-3,5-庚二酮-κ2O,O’)銥(III)(簡稱:[Ir(dmdppr-P)2(dibm)])、雙{4,6-二甲基-2-[5-(4-氰-2,6-二甲基苯基)-3-(3,5-二甲基苯基)-2-吡嗪基-κN]苯基-κC}(2,2,6,6-四甲基-3,5-庚二酮-κ2O,O’)銥(III)(簡稱:[Ir(dmdppr-dmCP)2(dpm)])、(乙醯丙酮)雙[2-甲基-3-苯基喹
Figure 109108053-A0202-12-0056-89
啉合(quinoxalinato)-N,C2’]銥(III)(簡稱:[Ir(mpq)2(acac)])、(乙醯丙酮)雙(2,3-二苯基喹
Figure 109108053-A0202-12-0056-90
啉合-N,C2’)銥(III)(簡稱:[Ir(dpq)2(acac)])、(乙醯丙酮)雙[2,3-雙(4-氟苯基)喹
Figure 109108053-A0202-12-0056-91
啉合]銥(III)(簡稱:[Ir(Fdpq)2(acac)])、雙{4,6-二甲基-2-[5-(5-氰基-2-甲基苯基)-3-(3,5-二甲基苯基)-2-吡嗪基-κN]苯基-κC}(2,2,6,6-四甲基-3,5-庚二酮-κ2O,O’)銥(III)(簡稱:[Ir(dmdppr-m5CP)2(dpm)])等具有吡嗪骨架的有機金屬錯合物;三(1-苯基異喹啉-N,C2’)銥(III)(簡稱:[Ir(piq)3])、雙(1-苯基異喹啉-N,C2’)銥(III)乙醯丙酮(簡稱:[Ir(piq)2(acac)])、雙[4,6-二甲基-2-(2-喹啉-κN)苯基-κC](2,4-戊二酮根-κ2O,O’)銥(III)等具有吡啶骨架的有機金屬錯合物;2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉鉑(II)(簡稱:[PtOEP])等鉑錯合物;以及三(1,3-二苯基-1,3-丙二酮(propanedionato))(單啡啉)銪(III)(簡稱:[Eu(DBM)3(Phen)])、三[1-(2-噻吩甲醯基)-3,3,3-三氟丙酮](單啡啉)銪(III)(簡稱:[Eu(TTA)3(Phen)])等稀土金屬錯合物。
作為用於發光層的有機化合物(主體材料、輔助材料等),可以選擇一種或多種其能隙比發光材料大的材料而使用。
作為與螢光發光材料組合而使用的有機化合物(主體材料),較佳為使用其單重激發態的能階大且其三重激發態的能階小的有機化合物。
雖然一部分與上述具體例子重複,但是,從與發光材料(螢光發光材料、磷光發光材料)的較佳為組合的觀點來看,以下示出有機化合物的具體例子。
作為可以與螢光發光材料組合而使用的有機化合物(主體材料),可以舉出蒽衍生物、稠四苯衍生物、菲衍生物、芘衍生物、
Figure 109108053-A0202-12-0057-92
(chrysene)衍生物、二苯并[g,p]
Figure 109108053-A0202-12-0057-93
衍生物等稠合多環芳香化合物。
作為與螢光發光材料組合而使用的有機化合物(主體材料)的具體例子,可以舉出9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:PCzPA)、3,6-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:DPCzPA)、3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPN)、9,10-二苯基蒽(簡稱:DPAnth)、N,N-二苯基-9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(簡稱:CzA1PA)、4-(10-苯基-9-蒽基)三苯胺(簡稱:DPhPA)、YGAPA、PCAPA、N,9-二苯基-N-{4-[4-(10-苯基-9-蒽基)苯基]苯基}-9H-咔唑-3-胺(簡稱:PCAPBA)、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(簡稱:2PCAPA)、6,12-二甲氧基-5,11-二苯基
Figure 109108053-A0202-12-0057-94
、N,N,N’,N’,N’’,N’’,N''',N'''-八苯基二苯并[g,p]
Figure 109108053-A0202-12-0057-95
-2,7,10,15-四胺(簡稱:DBC1)、9-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(簡稱:CzPA)、7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(簡稱:cgDBCzPA)、6-[3-(9,10-二苯基-2-蒽基)苯基]-苯并[b]萘并[1,2-d]呋喃(簡稱:2mBnfPPA)、9-苯基-10-{4-(9-苯基-9H-茀-9-基)-聯苯-4’-基}-蒽(簡稱:FLPPA)、9,10-雙(3,5-二苯基苯基)蒽(簡稱:DPPA)、9,10-二(2-萘基)蒽(簡稱:DNA)、2-三級丁基-9,10-二(2-萘基)蒽(簡稱:t-BuDNA)、9,9’-聯蒽(簡稱:BANT)、9,9’-(二苯乙烯-3,3’-二基)二菲(簡稱:DPNS)、9,9’-(二苯乙烯-4,4’-二基)二菲(簡稱:DPNS2)、1,3,5-三(1-芘)苯(簡稱:TPB3)、5,12-二苯基稠四苯、5,12-雙(聯苯-2-基)稠四苯等。
作為與磷光發光材料組合而使用的有機化合物(主體材料),選擇其三重激發能量大於發光材料的三重激發能量(基態和三重激發態的能量差)的有機化合物即可。
當為了形成激態錯合物,組合而使用多個有機化合物(例如,第一主體材料及第二主體材料(或輔助材料)等)與發光材料時,較佳為與磷光發光材料(尤其是有機金屬錯合物)混合而使用這些多個有機化合物。
藉由採用這樣的結構,可以高效地得到利用從激態錯合物到發光材料的能量轉移的ExTET(Exciplex-Triplet Energy Transfer:激態錯合物-三重態能量轉移)的發光。作為多個有機化合物的組合,較佳為使用容易形成激態錯合物的組合,特別較佳為組合容易接收電洞的化合物(電洞傳輸性材料)與容易接收電子的化合物(電子傳輸性材料)。藉由以形成發射與發光材料的最低能量一側的吸收帶的波長重疊的光的激態錯合物的方式選擇混合材料,可以使能量轉移變得順利,從而高效地得到發光。作為電洞傳輸性材料及電子傳輸性材料的具體例子,可以使用本實施方式所示的材料。由於該結構能夠同時實現發光器件的高效率、低電壓及長壽命。
關於形成激態錯合物的材料的組合,具有電洞傳輸性的材料的HOMO能階較佳為具有電子傳輸性的材料的HOMO能階以上的值。電洞傳輸性材料的LUMO能階(最低空分子軌域)較佳為電子傳輸性材料的LUMO能階以上的值。注意,材料的LUMO能階及HOMO能階可以從藉由循環伏安(CV)測量測得的材料的電化學特性(還原電位及氧化電位)求出。
注意,激態錯合物的形成例如可以藉由如下方法確認:對具有電洞傳輸性的材料的發射光譜、具有電子傳輸性的材料的發射光譜及混合這些材料而成的混合膜的發射光譜進行比較,當觀察到混合膜的發射光譜比各材料的發射光譜向長波長一側漂移(或者在長波長一側具有新的峰值)的現象時說明形成有激態錯合物。或者,對具有電洞傳輸性的材料的瞬態光致發光(PL)、具有電子傳輸性的材料的瞬態PL及混合這些材料而成的混合膜的瞬態PL進行比較,當觀察到混合膜的瞬態PL壽命與各材料的瞬態PL壽命相比具有長壽命成分或者延遲成分的比率變大等瞬態回應不同時說明形成有激態錯合物。此外,可以將上述瞬態PL稱為瞬態電致發光(EL)。 換言之,與對具有電洞傳輸性的材料的瞬態EL、具有電子傳輸性的材料的瞬態EL及這些材料的混合膜的瞬態EL進行比較,觀察瞬態回應的不同,可以確認激態錯合物的形成。
作為可以與磷光發光材料組合而使用的有機化合物,可以舉出芳香胺(具有芳香胺骨架的化合物)、咔唑衍生物(具有咔唑骨架的化合物)、二苯并噻吩衍生物(噻吩衍生物)、二苯并呋喃衍生物(呋喃衍生物)、鋅類金屬錯合物或鋁類金屬錯合物、
Figure 109108053-A0202-12-0059-96
二唑衍生物、三唑衍生物、苯并咪唑衍生物、喹
Figure 109108053-A0202-12-0059-97
啉衍生物、二苯并喹
Figure 109108053-A0202-12-0059-98
啉衍生物、嘧啶衍生物、三嗪衍生物、吡啶衍生物、聯吡啶衍生物、啡啉衍生物等。
作為電洞傳輸性高的有機化合物的芳香胺、咔唑衍生物、二苯并噻吩衍生物、二苯并呋喃衍生物的具體例子,可以舉出如下材料。
作為咔唑衍生物,可以舉出聯咔唑衍生物(例如,3,3’-聯咔唑衍生物)、具有咔唑基的芳香胺等。
作為聯咔唑衍生物(例如,3,3’-聯咔唑衍生物),明確而言,可以舉出3,3’-雙(9-苯基-9H-咔唑)(簡稱:PCCP)、9,9’-雙(1,1’-聯苯-4-基)-3,3’-聯-9H-咔唑、9,9’-雙(1,1’-聯苯-3-基)-3,3’-聯-9H-咔唑、9-(1,1’-聯苯-3-基)-9’-(1,1’-聯苯-4-基)-9H,9’H-3,3’-聯咔唑(簡稱:mBPCCBP)、9-(2-萘基)-9’-苯基-9H,9’H-3,3’-聯咔唑(簡稱:βNCCP)等。
此外,作為具有咔唑基的芳香胺,明確而言,可以舉出PCBA1BP、N-(4-聯苯)-N-(9,9-二甲基-9H-茀-2-基)-9-苯基-9H-咔唑-3-胺(簡稱:PCBiF)、PCBBiF、PCBBi1BP、PCBANB、PCBNBB、4-苯基二苯基-(9-苯基-9H-咔唑-3-基)胺(簡稱:PCA1BP)、N,N’-雙(9-苯基咔唑-3-基)-N,N’-二苯基苯-1,3-二胺(簡稱:PCA2B)、N,N’,N’’-三苯基-N,N’,N’’-三(9-苯基咔唑-3-基)苯-1,3,5-三胺(簡稱:PCA3B)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]茀-2-胺(簡稱:PCBAF)、PCBASF、3-[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzPCA1)、3,6-雙[N-(9-苯基咔唑-3-基)-N-苯基胺基]-9-苯基咔唑(簡 稱:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)胺基]-9-苯基咔唑(簡稱:PCzPCN1)、3-[N-(4-二苯基胺基苯基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzDPA1)、3,6-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]-9-苯基咔唑(簡稱:PCzDPA2)、3,6-雙[N-(4-二苯基胺基苯基)-N-(1-萘基)胺基]-9-苯基咔唑(簡稱:PCzTPN2)、2-[N-(9-苯基咔唑-3-基)-N-苯基胺基]螺-9,9’-聯茀(簡稱:PCASF)、N-[4-(9H-咔唑-9-基)苯基]-N-(4-苯基)苯基苯胺(簡稱:YGA1BP)、N,N’-雙[4-(咔唑-9-基)苯基]-N,N’-二苯基-9,9-二甲基茀-2,7-二胺(簡稱:YGA2F)、4,4’,4’’-三(咔唑-9-基)三苯胺(簡稱:TCTA)等。
作為咔唑衍生物,除了上述以外,還可以舉出3-[4-(9-菲基)-苯基]-9-苯基-9H-咔唑(簡稱:PCPPn)、PCPN、1,3-雙(N-咔唑基)苯(簡稱:mCP)、4,4’-二(N-咔唑基)聯苯(簡稱:CBP)、3,6-雙(3,5-二苯基苯基)-9-苯基咔唑(簡稱:CzTP)、1,3,5-三[4-(N-咔唑基)苯基]苯(簡稱:TCPB)、CzPA等。
作為噻吩衍生物(具有噻吩骨架的化合物)及呋喃衍生物(具有呋喃骨架的化合物),明確而言,可以舉出4,4’,4’’-(苯-1,3,5-三基)三(二苯并噻吩)(簡稱:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-茀-9-基)苯基]二苯并噻吩(簡稱:DBTFLP-III)、4-[4-(9-苯基-9H-茀-9-基)苯基]-6-苯基二苯并噻吩(簡稱:DBTFLP-IV)等具有噻吩骨架的化合物、以及4-{3-[3-(9-苯基-9H-茀-9-基)苯基]苯基}二苯并呋喃(簡稱:mmDBFFLBi-II)等。
作為上述芳香胺,明確而言,可以舉出4,4’-雙[N-(1-萘基)-N-苯基胺基]聯苯(簡稱:NPB或α-NPD)、N,N’-雙(3-甲基苯基)-N,N’-二苯基-[1,1’-聯苯]-4,4’-二胺(簡稱:TPD)、4,4’-雙[N-(螺-9,9’-聯茀-2-基)-N-苯基胺基]聯苯(簡稱:BSPB)、BPAFLP、mBPAFLP、N-(9,9-二甲基-9H-茀-2-基)-N-{9,9-二甲基-2-[N’-苯基-N’-(9,9-二甲基-9H-茀-2-基)胺基]-9H-茀-7-基}苯基胺(簡稱:DFLADFL)、N-(9,9-二甲基-2-二苯基胺基-9H-茀-7-基)二苯基胺(簡稱:DPNF)、2-[N-(4-二苯基胺基苯基)-N-苯基胺基]螺-9,9’-聯茀(簡稱:DPASF)、2,7-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]-螺-9,9’-聯茀(簡稱:DPA2SF)、 4,4’,4’’-三[N-(1-萘基)-N-苯基胺基]三苯胺(簡稱:1’-TNATA)、4,4’,4’’-三(N,N-二苯基胺基)三苯基胺(簡稱:TDATA)、4,4’,4’’-三[N-(3-甲基苯基)-N-苯基胺基]三苯基胺(簡稱:MTDATA)、N,N’-二(對甲苯基)-N,N’-二苯基-對苯二胺(簡稱:DTDPPA)、4,4’-雙[N-(4-二苯基胺基苯基)-N-苯基胺基]聯苯(簡稱:DPAB)、4,4’-雙(N-4-[N’-(3-甲基苯基)-N’-苯基胺基]苯基}-N-苯基胺基)聯苯(簡稱:DNTPD)、1,3,5-三[N-(4-二苯基胺基苯基)-N-苯基胺基]苯(簡稱:DPA3B)等。
作為電洞傳輸性高的有機化合物,還可以使用高分子化合物,諸如聚(N-乙烯基咔唑)(簡稱:PVK)、聚(4-乙烯基三苯胺)(簡稱:PVTPA)、聚[N-(4-{N’-[4-(4-二苯基胺基)苯基]苯基-N’-苯基胺基}苯基)甲基丙烯醯胺](簡稱:PTPDMA)、聚[N,N’-雙(4-丁基苯基)-N,N’-雙(苯基)聯苯胺](簡稱:Poly-TPD)等。
作為電子傳輸性高的有機化合物的鋅類金屬錯合物、鋁類金屬錯合物的具體例子,可以舉出:三(8-羥基喹啉)鋁(III)(簡稱:Alq)、三(4-甲基-8-羥基喹啉)鋁(III)(簡稱:Almq3)、雙(10-羥基苯并[h]喹啉)鈹(II)(簡稱:BeBq2)、雙(2-甲基-8-羥基喹啉)(4-苯基苯酚)鋁(III)(簡稱:BAlq)、雙(8-羥基喹啉)鋅(II)(簡稱:Znq)等具有喹啉骨架或苯并喹啉骨架的金屬錯合物等。
除此之外,還可以使用如雙[2-(2-苯并
Figure 109108053-A0202-12-0061-99
唑基)苯酚]鋅(II)(簡稱:ZnPBO)、雙[2-(2-苯并噻唑基)苯酚]鋅(II)(簡稱:ZnBTZ)等具有
Figure 109108053-A0202-12-0061-100
唑基類配體、噻唑類配體的金屬錯合物等。
此外,作為電子傳輸性高的有機化合物的
Figure 109108053-A0202-12-0061-101
二唑衍生物、三唑衍生物、苯并咪唑衍生物、喹
Figure 109108053-A0202-12-0061-102
啉衍生物、二苯并喹
Figure 109108053-A0202-12-0061-103
啉衍生物、啡啉衍生物的具體例子,可以舉出2-(4-聯苯基)-5-(4-三級丁基苯基)-1,3,4-
Figure 109108053-A0202-12-0061-104
二唑(簡稱:PBD)、1,3-雙[5-(對三級丁基苯基)-1,3,4-
Figure 109108053-A0202-12-0061-105
二唑-2-基]苯(簡稱:OXD-7)、9-[4-(5-苯基-1,3,4-
Figure 109108053-A0202-12-0061-106
二唑-2-基)苯基]-9H-咔唑(簡稱:CO11)、3-(4-聯苯基)-4-苯基-5-(4-三級丁基苯基)-1,2,4-三唑(簡稱:TAZ)、3-(4-三級丁基苯基)-4-(4-乙基苯基)-5-(4-聯苯基)-1,2,4- 三唑(簡稱:p-EtTAZ)、2,2’,2’’-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(簡稱:TPBI)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1H-苯并咪唑(簡稱:mDBTBIm-II)、4,4’-雙(5-甲基苯并
Figure 109108053-A0202-12-0062-107
唑-2-基)二苯乙烯(簡稱:BzOs)、紅啡啉(簡稱:Bphen)、浴銅靈(簡稱:BCP)、2,9-雙(萘-2-基)-4,7-二苯基-1,10-啡啉(簡稱:NBphen)、2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹
Figure 109108053-A0202-12-0062-109
啉(簡稱:2mDBTPDBq-II)、2-[3’-(二苯并噻吩-4-基)聯苯-3-基]二苯并[f,h]喹
Figure 109108053-A0202-12-0062-110
啉(簡稱:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)聯苯-3-基]二苯并[f,h]喹
Figure 109108053-A0202-12-0062-112
啉(簡稱:2mCzBPDBq)、2-[4-(3,6-二苯基-9H-咔唑-9-基)苯基]二苯并[f,h]喹
Figure 109108053-A0202-12-0062-113
啉(簡稱:2CzPDBq-III)、7-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹
Figure 109108053-A0202-12-0062-114
啉(簡稱:7mDBTPDBq-II)及6-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹
Figure 109108053-A0202-12-0062-115
啉(簡稱:6mDBTPDBq-II)等。
作為電子傳輸性高的有機化合物的具有二嗪骨架的雜環化合物、具有三嗪骨架的雜環化合物、具有吡啶骨架的雜環化合物的具體例子,可以舉出4,6-雙[3-(菲-9-基)苯基]嘧啶(簡稱:4,6mPnP2Pm)、4,6-雙[3-(4-二苯并噻吩基)苯基]嘧啶(簡稱:4,6mDBTP2Pm-II)、4,6-雙[3-(9H-咔唑-9-基)苯基]嘧啶(簡稱:4,6mCzP2Pm)、2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(簡稱:PCCzPTzn)、9-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9’-苯基-2,3’-聯-9H-咔唑(簡稱:mPCCzPTzn-02)、3,5-雙[3-(9H-咔唑-9-基)苯基]吡啶(簡稱:35DCzPPy)、1,3,5-三[3-(3-吡啶)苯基]苯(簡稱:TmPyPB)等。
此外,作為電子傳輸性高的有機化合物,還可以使用聚(2,5-吡啶二基)(簡稱:PPy)、聚[(9,9-二己基茀-2,7-二基)-共-(吡啶-3,5-二基)](簡稱:PF-Py)、聚[(9,9-二辛基茀-2,7-二基)-共-(2,2’-聯吡啶-6,6’-二基)](簡稱:PF-BPy)等高分子化合物。
〈TADF材料〉
TADF材料是指S1能階(單重激發態的能階)和T1能階(三重激發態的能階)之差較小且具有藉由反系間竄越將三重激發能轉換為單重激發能的功能的材料。因此,能夠藉由微小的熱能量將三重激發能上轉換 (up-convert)為單重激發能(反系間竄越)並能夠高效地產生單重激發態。此外,可以將三重激發能轉換為發光。另外,可以高效地獲得熱活化延遲螢光的條件為如下:S1能階與T1能階的能量差為0eV以上且0.2eV以下,較佳為0eV以上且0.1eV以下。TADF材料所呈現的延遲螢光是指其光譜與一般的螢光同樣但其壽命非常長的發光。其壽命為10-6秒以上,較佳為10-3秒以上。
以兩種材料形成激發態的激態錯合物(Exciplex)因S1能階和T1能階之差極小而具有將三重激發能轉換為單重激發能的TADF材料的功能。
注意,作為T1能階的指標,可以使用在低溫(例如,77K至10K)下觀察到的磷光光譜。關於TADF材料,較佳的是,當以藉由在螢光光譜的短波長側的尾處引切線得到的外推線的波長能量為S1能階並以藉由在磷光光譜的短波長側的尾處引切線得到的外推線的波長能量為T1能階時,S1與T1之差為0.3eV以下,更佳為0.2eV以下。
作為TADF材料,例如可以舉出富勒烯或其衍生物、普羅黃素等吖啶衍生物、伊紅等。另外,可以舉出包含鎂(Mg)、鋅(Zn)、鎘(Cd)、錫(Sn)、鉑(Pt)、銦(In)或鈀(Pd)等的含金屬卟啉。作為含金屬卟啉,例如,也可以舉出原卟啉-氟化錫錯合物(簡稱:SnF2(Proto IX))、中卟啉-氟化錫錯合物(簡稱:SnF2(Meso IX))、血卟啉-氟化錫錯合物(簡稱:SnF2(Hemato IX))、糞卟啉四甲酯-氟化錫錯合物(簡稱:SnF2(Copro III-4Me))、八乙基卟啉-氟化錫錯合物(簡稱:SnF2(OEP))、初卟啉-氟化錫錯合物(簡稱:SnF2(Etio I))以及八乙基卟啉-氯化鉑錯合物(簡稱:PtCl2OEP)等。
除此之外,可以使用2-(聯苯基-4-基)-4,6-雙(12-苯基吲哚[2,3-a]咔唑-11-基)-1,3,5-三嗪(簡稱:PIC-TRZ)、PCCzPTzn、2-[4-(10H-啡
Figure 109108053-A0202-12-0063-116
-10-基)苯基]-4,6-二苯基-1,3,5-三嗪(簡稱:PXZ-TRZ)、3-[4-(5-苯基-5,10-二氫啡
Figure 109108053-A0202-12-0063-117
-10-基)苯基]-4,5-二苯基-1,2,4-三唑(簡稱:PPZ-3TPT)、3-(9,9-二甲基-9H-吖啶-10-基)-9H-氧雜蒽-9-酮(簡稱:ACRXTN)、雙[4-(9,9-二甲基-9,10-二氫吖啶)苯基]碸(簡稱:DMAC-DPS)、10-苯基-10H,10’H-螺[吖啶-9,9’-蒽]-10’-酮(簡稱: ACRSA)、4-(9’-苯基-3,3’-聯-9H-咔唑-9-基)苯并呋喃并[3,2-d]嘧啶(簡稱:4PCCzBfpm)、4-[4-(9’-苯基-3,3’-聯-9H-咔唑-9-基)苯基]苯并呋喃并[3,2-d]嘧啶(簡稱:4PCCzPBfpm)、9-[3-(4,6-二苯基-1,3,5-三嗪-2-基)苯基]-9’-苯基-2,3’-聯-9H-咔唑(簡稱:mPCCzPTzn-02)等具有富π電子芳雜環及缺π電子芳雜環的雜環化合物。
該雜環化合物具有富π電子型芳雜環和缺π電子型芳雜環,電子傳輸性和電洞傳輸性都高,所以是較佳的。尤其是,在具有缺π電子雜芳環的骨架中,吡啶骨架、二嗪骨架(嘧啶骨架、吡嗪骨架、嗒
Figure 109108053-A0202-12-0064-118
骨架)及三嗪骨架穩定且可靠性良好,所以是較佳的。尤其是,苯并呋喃并嘧啶骨架、苯并噻吩并嘧啶骨架、苯并呋喃并吡嗪骨架、苯并噻吩并吡嗪骨架的電子接收性高且可靠性良好,所以是較佳的。
另外,在具有富π電子型芳雜環的骨架中,吖啶骨架、啡
Figure 109108053-A0202-12-0064-119
骨架、啡噻
Figure 109108053-A0202-12-0064-120
骨架、呋喃骨架、噻吩骨架及吡咯骨架穩定且可靠性良好,所以較佳為具有上述骨架中的至少一個。另外,作為呋喃骨架較佳為使用二苯并呋喃骨架,作為噻吩骨架較佳為使用二苯并噻吩骨架。作為吡咯骨架,特別較佳為使用吲哚骨架、咔唑骨架、吲哚咔唑骨架、聯咔唑骨架、3-(9-苯基-9H-咔唑-3-基)-9H-咔唑骨架。
在富π電子型芳雜環和缺π電子型芳雜環直接鍵合的材料中,富π電子芳雜環的電子供給性和缺π電子型芳雜環的電子接收性都高而S1能階與T1能階之間的能量差變小,可以高效地獲得熱活化延遲螢光,所以是特別較佳的。另外,也可以使用鍵合有氰基等拉電子基團的芳環代替缺π電子型芳雜環。此外,作為富π電子骨架,可以使用芳香胺骨架、吩嗪骨架等。此外,作為缺π電子骨架,可以使用氧雜蒽骨架、二氧化噻噸(thioxanthene dioxide)骨架、
Figure 109108053-A0202-12-0064-121
二唑骨架、三唑骨架、咪唑骨架、蒽醌骨架、苯基硼烷或boranthrene等含硼骨架、苯甲腈或氰苯等具有腈基或氰基的芳香環或雜芳環、二苯甲酮等羰骨架、氧化膦骨架、碸骨架等。
如此,可以使用缺π電子骨架及富π電子骨架中的至少一個代替缺π電子雜芳環及富π電子雜芳環中的至少一個。
另外,在使用TADF材料的情況下,可以組合其他有機化合物使用。尤其是,可以與上述主體材料、電洞傳輸性材料、電子傳輸性材料組合。在使用TADF材料時,主體材料的S1能階較佳為高於TADF材料的S1能階。此外,主體材料的T1能階較佳為比TADF材料的T1能階高。
另外,也可以使用TADF材料作為主體材料且使用螢光發光材料作為客體材料。當使用TADF材料作為主體材料時,由TADF材料生成的三重激發能經反系間竄越轉換為單重激發能並進一步能量轉移到發光材料,由此可以提高發光器件的發光效率。此時,TADF材料被用作能量施體,發光材料被用作能量受體。由此,作為主體材料使用TADF材料在作為客體材料使用螢光發光材料時很有效。此外,此時,為了得到高發光效率,TADF材料的S1能階較佳為比螢光發光材料的S1能階高。此外,TADF材料的T1能階較佳為比螢光發光材料的S1能階高。因此,TADF材料的T1能階較佳為比螢光發光材料的T1能階高。
此外,較佳為使用呈現與螢光發光材料的最低能量一側的吸收帶的波長重疊的發光的TADF材料。由此,激發能順利地從TADF材料轉移到螢光發光材料,可以高效地得到發光,所以是較佳的。
為了高效地從三重激發能藉由反系間竄越生成單重激發能,較佳為在TADF材料中產生載子再結合。此外,較佳的是在TADF材料中生成的三重激發能不轉移到螢光發光材料。為此,螢光發光材料較佳為在螢光發光材料所具有的發光體(成為發光的原因的骨架)的周圍具有保護基。作為該保護基,較佳為不具有π鍵的取代基,較佳為飽和烴,明確而言,可以舉出碳原子數為3以上且10以下的烷基、取代或未取代的碳原子數為3以上且10以下的環烷基、碳原子數為3以上且10以下的三烷基矽基,更佳為具有多個保護基。不具有π鍵的取代基由於幾乎沒有傳輸載子的功能,所以對載子傳輸或載子再結合幾乎沒有影響,可以使TADF材料與螢光發光材料的發光體彼此遠離。在此,發光體是指在螢光發光材料中成為發光的原因的原子團(骨架)。發光體較佳為具有π鍵的骨架,較佳為包含芳香環,並較佳為具有稠合芳香環或稠合雜芳環。作為稠合芳香環或稠合雜芳環,可以舉出菲骨架、二苯乙烯骨架、吖啶酮骨架、啡
Figure 109108053-A0202-12-0065-122
骨架、啡噻
Figure 109108053-A0202-12-0065-123
骨架等。尤其是,具有萘骨架、蒽骨架、茀骨架、
Figure 109108053-A0202-12-0065-124
骨架、聯伸三苯骨架、稠四苯骨架、 芘骨架、苝骨架、香豆素骨架、喹吖啶酮骨架、萘并雙苯并呋喃骨架的螢光發光材料具有高螢光量子產率,所以是較佳的。
注意,也可以將上述TADF材料用作發光層的主體材料。
〈電子傳輸層〉
電子傳輸層1114與發光層1113接觸地設置。電子傳輸層1114較佳為具有電子傳輸性且包括HOMO能階為-6.0eV以上的第七有機化合物。第七有機化合物較佳為具有蒽骨架。電子傳輸層1114也可以除了第七有機化合物之外還包含第八有機化合物。第八有機化合物較佳為包含鹼金屬或鹼土金屬的有機錯合物。就是說,作為電子傳輸層1114的結構,可以舉出僅由第七有機化合物形成的結構、由多個有機化合物亦即第七有機化合物和第八有機化合物形成的結構等。
另外,更佳的是上述第七有機化合物包含蒽骨架和雜環骨架。作為該雜環骨架較佳為含氮五員環骨架。作為含氮五員環骨架,尤其較佳為如吡唑環、咪唑環、
Figure 109108053-A0202-12-0066-125
唑環或噻唑環那樣地環中含有兩個雜原子。
作為其他的可以用作第七有機化合物的具有電子傳輸性的材料,可以使用能夠用於上述主體材料的具有電子傳輸性的材料或能夠用於上述螢光發光材料的主體材料的材料。
另外,作為上述鹼金屬或鹼土金屬的有機錯合物,較佳為使用鋰的有機錯合物,尤其較佳為使用8-羥基喹啉-鋰(簡稱:Liq)。
另外,較佳為構成電子傳輸層1114的材料在電場強度[V/cm]的平方根為600時的電子移動率為1×10-7cm2/Vs以上且5×10-5cm2/Vs以下。
另外,較佳為構成電子傳輸層1114的材料在電場強度[V/cm]的平方根為600時的電子移動率低於第六有機化合物或構成發光層1113的材料在電場強度[V/cm]的平方根為600時的電子移動率。藉由降低電子傳輸層中的電子的傳輸性可以控制向發光層的電子的注入量,由此可以防止發光層變成電子過多的狀態。
〈電子注入層〉
電子注入層1115是提高從第二電極1102注入電子的效率的層。第二電極1102的材料的功函數的值與用於電子注入層1115的材料的LUMO能階的值之差較佳為小(0.5eV以內)。
因此,作為電子注入層1115,可以使用鋰、銫、氟化鋰(LiF)、氟化銫(CsF)、氟化鈣(CaF2)、8-(羥基喹啉)鋰(簡稱:Liq)、2-(2-吡啶基)苯酚鋰(簡稱:LiPP)、2-(2-吡啶基)-3-羥基吡啶(pyridinolato)鋰(簡稱:LiPPy)、4-苯基-2-(2-吡啶基)苯酚鋰(簡稱:LiPPP)、鋰氧化物(LiOx)、碳酸銫等鹼金屬、鹼土金屬或者它們的化合物。此外,可以使用氟化鉺(ErF3)等稀土金屬化合物。另外,也可以將電子鹽用於電子注入層。作為該電子鹽,例如可以舉出對鈣和鋁的混合氧化物以高濃度添加電子的材料等。此外,也可以使用上述構成電子傳輸層的材料。
此外,也可以將包含電子傳輸性材料和施體性材料(電子給予性材料)的複合材料用於電子注入層1115。這種複合材料因為藉由電子施體在有機化合物中產生電子而具有優異的電子注入性和電子傳輸性。在此情況下,有機化合物較佳為在傳輸所產生的電子方面性能優異的材料,明確而言,例如,可以使用上述電子傳輸性材料(金屬錯合物、雜芳族化合物等)。作為電子施體,只要是對有機化合物呈現電子供給性的材料即可。明確而言,較佳為使用鹼金屬、鹼土金屬和稀土金屬,可以舉出鋰、銫、鎂、鈣、鉺、鏡等。另外,較佳為使用鹼金屬氧化物或鹼土金屬氧化物,可以舉出鋰氧化物、鈣氧化物、鋇氧化物等。此外,還可以使用氧化鎂等路易士鹼。另外,也可以使用四硫富瓦烯(簡稱:TTF)等有機化合物。
另外,當製造本發明的一個實施方式的發光器件時,可以利用蒸鍍法等真空製程或旋塗法、噴墨法等溶液製程。作為蒸鍍法,可以利用濺射法、離子鍍法、離子束蒸鍍法、分子束蒸鍍法、真空蒸鍍法等物理蒸鍍法(PVD法)或化學氣相沉積法(CVD法)等。尤其是,可以利用蒸鍍法(真空蒸鍍法)、塗佈法(浸塗法、染料塗佈法、棒式塗佈法、旋塗法、噴塗法等)、印刷法(噴墨法、網版印刷(孔版印刷)法、平板印刷(平版印刷)法、柔版印刷(凸版印刷)法、照相凹版印刷法、微接觸印刷法等)等方法形 成包括在EL層中的功能層(電洞注入層、電洞傳輸層、發光層、電子傳輸層、電子注入層)。
構成發光器件的各功能層的材料不侷限於上述材料。例如,作為功能層的材料,可以使用高分子化合物(低聚物、樹枝狀聚合物、聚合物等)、中分子化合物(介於低分子與高分子之間的化合物:分子量為400至4000)、無機化合物(量子點材料等)等。作為量子點材料,可以使用膠狀量子點材料、合金型量子點材料、核殼(Core Shell)型量子點材料、核型量子點材料等。
本發明的一個實施方式的發光器件還可以包括上述層以外的功能層。作為功能層,例如可以使用載子障壁層、激子障壁層等各種層。
〈發光器件的發光模型〉
接著,參照圖28A至圖28C說明本發明的一個實施方式的發光器件的發光模型。
圖28A至圖28C是說明發光器件的發光模型的示意圖。注意,在圖28A至圖28C中,將發光器件中的發光區域表示為發光區域1120。
圖28A是示出發光層1113處於電子過多狀態的發光區域1120的發光模型。圖28B和圖28C是示出本發明的一個實施方式的發光器件中的發光區域1120的發光模型。
如圖28A所示,在發光層1113處於電子過多狀態時,發光區域1120形成在發光層1113的局部區域中。換言之,發光區域1120的寬度窄。因此,在發光層1113的局部區域中,電子與電洞集中地進行再結合,所以劣化被促進。另外,在不能夠進行再結合的電子經過發光層1113時,有時壽命或發光效率下降。
另一方面,如圖28B和圖28C所示,在本發明的一個實施方式的發光器件中,藉由降低電子傳輸層1114的電子傳輸性,可以擴大發光層1113中的發光區域1120的寬度。藉由擴大發光區域1120的寬度,可以分散發 光層1113中的電子與電洞的再結合區域。因此,可以提供壽命長且發光效率高的發光器件。
另外,在本發明一個實施方式的發光器件中,藉由電流密度恆定的條件下的驅動測試來得到的亮度的劣化曲線有時具有極大值。換言之,本發明的一個實施方式的發光器件有時示出隨著時間推移而其亮度上升的舉動。該舉動可以使驅動初期的急劇劣化(所謂的初始劣化)相抵消。由此,可以提供初始劣化小且具有非常長的驅動壽命的發光器件。
注意,在取具有極大值的劣化曲線的微分時,存在有其值為0的部分。因此,可以將存在劣化曲線的微分為0的部分的發光器件換稱為本發明的一個實施方式的發光器件。
這裡,參照圖28D說明本發明的一個實施方式的發光器件及比較發光器件的隨著時間推移的正規化亮度。
在圖28D中,粗實線是本發明的一個實施方式的發光器件的正規化亮度的劣化曲線,粗虛線是比較發光器件的正規化亮度的劣化曲線。
如圖28D所示,本發明的一個實施方式的發光器件與比較發光器件的正規化亮度的劣化曲線的傾斜度互不相同。明確而言,本發明的一個實施方式的發光器件的劣化曲線的傾斜度θ2小於比較發光器件的劣化曲線的傾斜度θ1。
如圖28D所示,在本發明的一個實施方式的發光器件中,藉由電流密度恆定的條件下的驅動測試來得到的亮度的劣化曲線有時示出具有極大值的形狀。也就是說,本發明的一個實施方式的發光器件的劣化曲線有時成為具有隨著時間推移亮度上升部分的形狀。呈現該劣化舉動的發光器件可以利用該亮度上升使其與驅動初期的急劇劣化(亦即,所謂的初始劣化)相抵消,由此可以實現初始劣化小且具有非常長的驅動壽命的發光器件。
在本發明的一個實施方式的發光器件中,如圖28B所示,在驅動初期形成在發光層1113中的發光區域1120有時擴大到電子傳輸層1114一側。
就是說,在本發明的一個實施方式的發光器件中,在驅動初期由於電洞的注入能障小及電子傳輸層1114的電子傳輸性較低,所以發光區域1120(亦即,再結合區域)在靠近電子傳輸層1114一側的狀態下形成。另外,由於電子傳輸層1114中的第七有機化合物的HOMO能階較高,亦即為-6.0eV以上,所以電洞的一部分到達電子傳輸層1114而在電子傳輸層1114中發生再結合,由此形成非發光再結合區域。注意,當第六有機化合物與第七有機化合物的HOMO能階之差為0.2eV以內時也有可能發生該現象。
另外,在本發明的一個實施方式的發光器件中,隨著驅動時間的推移載子的平衡發生變化,如圖28C所示發光區域1120(再結合區域)向電洞傳輸層1112一側移動,其結果位於發光層1113內。
如上述圖28B和圖28C所示,在本發明的一個實施方式的發光器件中,藉由隨著驅動時間的推移將發光區域1120移動到發光層1113內,再結合的載子的能量可以有效地用於發光,由此有可能與驅動初始相比產生亮度上升。該亮度上升與發光器件的驅動初期出現的亮度急劇下降(亦即,所謂的初始劣化)相抵消,由此可以提供初始劣化小驅動壽命長的發光器件。注意,在本說明書等中,有時將上述發光器件稱為Recombination-Site Tailoring Injection結構(ReSTI結構)。
另外,在本發明的一個實施方式的發光器件中,電子傳輸層1114較佳為在厚度方向上具有電子傳輸性材料與鹼金屬或鹼土金屬的有機金屬錯合物不同的部分或者鹼金屬或鹼土金屬的有機金屬錯合物的濃度不同的部分。
關於電子傳輸層1114中的鹼金屬或鹼土金屬的有機金屬錯合物的濃度,可以藉由飛行時間二次離子質譜分析(ToF-SIMS:Time-of-flight secondary ion mass spectrometry)所得到的原子或分子的檢測量估計。
作為電子傳輸層1114中的有機金屬錯合物的含量,第二電極1102一側的含量較佳為少於第一電極1101一側的含量。就是說,較佳為以有機金屬錯合物的濃度從第二電極1102一側向第一電極1101一側上升的方式形 成電子傳輸層1114。就是說,電子傳輸層1114在比電子傳輸性材料的存在量較多的部分靠近發光層1113一側具有電子傳輸性材料的存在量較少的部分。換言之,電子傳輸層1114可以說是在比有機金屬錯合物的存在量較少的部分靠近發光層1113一側具有有機金屬錯合物的存在量較多的部分的結構。
注意,電子傳輸性材料的存在量較多的部分(有機金屬錯合物的存在量較少的部分)的電子移動率在電場強度[V/cm]的平方根為600時較佳為1×10-7cm2/Vs以上且5×10-5cm2/Vs以下。
例如,電子傳輸層1114中的有機金屬錯合物的含量,亦即電子傳輸層1114中的有機金屬錯合物可以具有圖29A至圖29D所示的濃度。注意,圖29A和圖29B示出在電子傳輸層1114內沒有明確的邊界的情況,圖29C和圖29D示出在電子傳輸層1114內有明確的邊界的情況。
當在電子傳輸層1114內沒有明確的邊界時,如圖29A和圖29B所示,電子傳輸性材料和有機金屬錯合物的濃度連續地變化。當在電子傳輸層1114內有明確的邊界時,如圖29C和圖29D所示,電子傳輸性材料和有機金屬錯合物的濃度步階狀地變化。注意,在濃度步階狀地變化時,電子傳輸層1114由多個層構成。例如,圖29C示出電子傳輸層1114具有兩層的疊層結構的情況,圖29D示出電子傳輸層1114具有三層的疊層結構的情況。注意,在圖29C和圖29D中,虛線表示多個層的邊界的區域。
此外,本發明的一個實施方式的發光器件中的載子平衡的變化可認為是由電子傳輸層1114的電子移動率的變化導致的。在本發明的一個實施方式的發光器件中,在電子傳輸層1114內部存在鹼金屬或鹼土金屬的有機金屬錯合物的濃度差異。電子傳輸層1114在該有機金屬錯合物的濃度較低的區域與發光層1113之間具有該有機金屬錯合物的濃度較高的區域。就是說,有機金屬錯合物的濃度較低的區域比有機金屬錯合物的濃度較高的區域靠近第二電極1102一側。
具有上述結構的本發明的一個實施方式的發光器件的壽命非常長。尤其是,在初始亮度為100%時,能夠使直到初始亮度減少到95%的亮度為止 的時間(也稱為LT95)極長。
〈串聯結構的發光器件〉
接著,說明圖27B至圖27D所示的串聯結構的發光器件。
圖27B至圖27D所示的發光器件在第一電極1101與第二電極1102之間包括多個發光單元。如圖27B至圖27D所示,較佳為在兩個發光單元之間設置電荷產生層1109。
如圖27A所示,發光單元1123(1)及發光單元1123(2)各自包括電洞注入層1111、電洞傳輸層1112、發光層1113、電子傳輸層1114及電子注入層1115等。
〈電荷產生層〉
電荷產生層1109具有如下功能:在對第一電極1101及第二電極1102施加電壓時,對發光單元1123(1)及發光單元1123(2)中的一個注入電子並對另一個注入電洞。因此,在圖27B中,當對第一電極1101以高於第二電極1102的電位的方式施加電壓時,從電荷產生層1109對發光單元1123(1)注入電子且對發光單元1123(2)注入電洞。
另外,從光提取效率的觀點來看,電荷產生層1109較佳為使可見光透過(明確地說,電荷產生層1109的可見光的穿透率為40%以上)。另外,即使電荷產生層1109的電導率比第一電極1101或第二電極1102低也能夠發揮功能。
圖27C所示的EL層1103在第一發光單元1123(1)和第二發光單元1123(2)之間包括電荷產生層1109,並且在第二發光單元1123(2)和第三EL層1103(3)之間包括電荷產生層1109。另外,圖27D所示的發光元件具有m個發光單元(m是2以上的自然數)及n個發光單元(n是m以上的自然數),並在各發光單元之間設置有電荷產生層1109。此外,第三發光單元1123(3)、發光單元1123(m)及發光單元1123(n)各自包括圖27A所示的電洞注入層1111、電洞傳輸層1112、發光層1113、電子傳輸層1114及電子注入層1115等。注意,各發光單元可以具有相同或不同的結構。
這裡,對在發光單元1123(m)和發光單元1123(m+1)之間設置的電荷產生層1109中的電子及電洞的行動進行說明。當對第一電極1101和第二電極1102之間施加高於發光器件的臨界電壓的電壓時,在電荷產生層1109中發生電洞及電子,電洞移動到設置在第二電極1102一側的發光單元1123(m+1)並且電子移動到設置在第一電極1101一側的發光單元1123(m)。注入到發光單元1123(m+1)的電洞和從第二電極1102一側被注入的電子再結合,於是包含在發光單元1123(m+1)中的發光材料發光。此外,注入到發光單元1123(m)的電子和從第一電極1101一側被注入的電洞再結合,於是包含在發光單元1123(m)中的發光材料發光。因此,產生在電荷產生層1109中的電洞和電子各自在不同的發光單元中發光。
注意,藉由使其彼此接觸地設置發光單元,在兩個發光單元之間形成有與電荷產生層1109相同的結構時,可以不夾著電荷產生層1109而以彼此接觸的方式設置發光單元。例如,當在發光單元的一個面上形成有電荷產生區域的情況下,可以以與該面接觸的方式設置發光單元。
與單結構的發光器件相比,串聯結構的發光器件的電流效率高,能以更少電流發射相同亮度的光。因此,能夠提高發光器件的壽命長及可靠性。
此外,多個發光單元可以包含相同或不同的發光材料。對各發光單元的發光材料沒有特別的限制。為了提高可靠性,較佳為層疊有多個螢光發光的發光單元。例如,在包含相同的發光材料時,藉由組合藍色的螢光發光單元及藍色的螢光發光單元,可以提供可靠性高的發光器件。另外,也可以層疊有一個以上的螢光發光的發光單元和一個以上的磷光發光的發光單元。例如,藉由組合藍色的螢光發光單元、紅色的磷光發光單元及綠色的發光單元,可以提供能夠發射白色光的發光器件。此外,作為可靠性高的發光單元的組合,可以使藍色、紅色、綠色的發光單元各自為螢光發光的發光單元。
注意,在是上述組合藍色的螢光發光單元及藍色的螢光發光單元的結構的情況下,較佳為與具有能夠將從發光單元發射的藍色的光轉換為其他顏色的功能的器件(例如,量子點器件等)組合使用。
本實施方式的至少一部分可以與本說明書所記載的其他實施方式適當地組合而實施。
101a:區域
101b:區域
101c:區域
102a:外殼
102b:外殼
102c:外殼
103a:鉸鏈
103b:鉸鏈
104a:曲面
104b:曲面
R1:半徑
R2:半徑

Claims (8)

  1. 一種顯示裝置,包括具有撓性的顯示面板,
    其中,該顯示面板包括第一區域、第二區域及第三區域,
    在被展開為平坦時,該第一區域、該第二區域及該第三區域互相平行而形成面,
    該第二區域設置在該第一區域與該第三區域之間,
    該顯示裝置具有:
    以跨著該第一區域和該第二區域的方式形成以顯示面一側為凸狀的第一曲面的功能;以及
    以跨著該第二區域和該第三區域的方式形成以顯示面一側為凹狀的第二曲面的功能,
    並且,在被折疊時,該第一曲面的曲率半徑R1大於該第二曲面的曲率半徑R2。
  2. 一種顯示裝置,包括具有撓性的顯示面板,
    其中,該顯示面板包括第一區域、第二區域及第三區域,
    在被展開為平坦時,該第一區域、該第二區域及該第三區域互相平行而形成面,
    該第二區域設置在該第一區域與該第三區域之間,
    該顯示裝置具有:
    以跨著該第一區域和該第二區域的方式依次形成以顯示面一側為凸狀的第一曲面、平面及以顯示面一側為凸狀的第三曲面的功能;
    以跨著該第二區域和該第三區域的方式形成以顯示面一側為凹狀的第二曲面,
    在被折疊時,該第一曲面的曲率半徑R1大於該第二曲面的曲率半徑R2,
    該第三曲面的曲率半徑R3大於該曲率半徑R2,
    並且,該曲率半徑R1大致與該曲率半徑R3相等。
  3. 根據申請專利範圍第1或2項之顯示裝置,還包括第一外殼、第二外殼、第三外殼、第一鉸鏈及第二鉸鏈,
    其中該第一區域的至少一部分被固定於該第一外殼,
    該第二區域的至少一部分被固定於該第二外殼,
    該第三區域的至少一部分被固定於該第三外殼,
    該第一外殼與該第二外殼之間設置有該第一鉸鏈,
    該第二外殼與該第三外殼之間設置有該第二鉸鏈,
    該第一鉸鏈具有形成該第一曲面的功能,
    該第二鉸鏈具有形成該第二曲面的功能,
    並且在被展開為平坦時,整體重心在該第一外殼或該第三外殼內。
  4. 根據申請專利範圍第3項之顯示裝置,其中該第一外殼內或該第三外殼內設置有電池。
  5. 根據申請專利範圍第3或4項之顯示裝置,其中該第三外殼內設置有無線充電用的受電線圈。
  6. 根據申請專利範圍第1至5中任一項之顯示裝置,其中該顯示面板包括發光器件。
  7. 一種顯示裝置的工作方法,包括申請專利範圍第1至6中任一項之顯示裝置,
    其中,在被折疊時只有一部分的區域顯示影像。
  8. 根據申請專利範圍第7項之顯示裝置的工作方法,其中在將該顯示面板展開為平坦時,根據該顯示面板的傾斜度使影像的方向變化。
TW109108053A 2019-03-26 2020-03-11 顯示裝置及其工作方法 TW202036214A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019058794 2019-03-26
JP2019-058794 2019-03-26
JP2019072577 2019-04-05
JP2019-072577 2019-04-05

Publications (1)

Publication Number Publication Date
TW202036214A true TW202036214A (zh) 2020-10-01

Family

ID=72611155

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109108053A TW202036214A (zh) 2019-03-26 2020-03-11 顯示裝置及其工作方法

Country Status (6)

Country Link
US (1) US20220187871A1 (zh)
JP (1) JPWO2020194107A1 (zh)
KR (1) KR20210143845A (zh)
CN (1) CN113632162A (zh)
TW (1) TW202036214A (zh)
WO (1) WO2020194107A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110839096B (zh) * 2019-08-30 2022-06-28 华为技术有限公司 一种具有折叠屏的设备的触控方法与折叠屏设备
KR20220123677A (ko) * 2020-01-10 2022-09-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 각도 조정 장치, 지지구, 및 표시 장치
KR20210145896A (ko) * 2020-05-25 2021-12-03 삼성디스플레이 주식회사 폴더블 디스플레이 장치, 롤러블 디스플레이 장치, 및 디스플레이 장치
KR20220008983A (ko) * 2020-07-14 2022-01-24 삼성디스플레이 주식회사 표시 장치 및 그것의 제조 방법
KR20220087193A (ko) * 2020-12-17 2022-06-24 엘지디스플레이 주식회사 폴더블 표시 장치
TW202331707A (zh) * 2021-12-17 2023-08-01 日商半導體能源研究所股份有限公司 半導體裝置、顯示裝置、資料處理系統以及半導體裝置的控制系統
CN114241913B (zh) * 2021-12-21 2023-06-16 湖北长江新型显示产业创新中心有限公司 可弯折显示模组及显示装置
KR20230103751A (ko) * 2021-12-31 2023-07-07 엘지디스플레이 주식회사 장치 및 이를 포함하는 운송 장치
WO2024005332A1 (ko) * 2022-06-29 2024-01-04 삼성전자 주식회사 상태 변화를 위한 구동부를 포함하는 폴더블 전자 장치

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141940A (ja) * 2006-11-10 2008-06-19 Sanyo Electric Co Ltd 充電台と携帯電子機器
US8863038B2 (en) * 2008-09-08 2014-10-14 Qualcomm Incorporated Multi-panel electronic device
TWM454039U (zh) * 2012-10-16 2013-05-21 Samya Technology Co Ltd 可提供交流電之行動電源
CN105379420B (zh) 2013-07-12 2018-05-22 株式会社半导体能源研究所 发光装置
KR20200139848A (ko) * 2013-08-30 2020-12-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
KR102288238B1 (ko) * 2013-09-03 2021-08-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치
US9588549B2 (en) * 2014-02-28 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Electronic device
CN106030451B (zh) * 2014-02-28 2021-03-12 株式会社半导体能源研究所 电子设备
KR102384830B1 (ko) * 2014-03-12 2022-04-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 정보 처리 장치
KR102471237B1 (ko) * 2015-01-21 2022-11-28 삼성디스플레이 주식회사 폴더블 표시장치
CN106325371A (zh) * 2015-06-30 2017-01-11 联想(北京)有限公司 电子设备和模式切换方法
JP6510057B2 (ja) * 2015-09-24 2019-05-08 シャープ株式会社 フレキシブルデバイス
JP6918560B2 (ja) * 2016-04-28 2021-08-11 株式会社半導体エネルギー研究所 情報処理装置
US9971382B2 (en) * 2016-07-01 2018-05-15 Intel Corporation Super-elastic hinge for flexible display
KR102562718B1 (ko) * 2016-11-03 2023-08-02 삼성디스플레이 주식회사 표시 장치
US10965796B2 (en) * 2016-12-16 2021-03-30 Lg Electronics Inc. Mobile terminal
US10303218B2 (en) * 2017-02-01 2019-05-28 Apple Inc. Foldable cover and display for an electronic device
US10485115B1 (en) * 2018-06-22 2019-11-19 Motorola Mobility Llc Electronic device with hinge defining an asymmetrical service loop for a flexible display and corresponding systems and methods

Also Published As

Publication number Publication date
US20220187871A1 (en) 2022-06-16
KR20210143845A (ko) 2021-11-29
JPWO2020194107A1 (zh) 2020-10-01
CN113632162A (zh) 2021-11-09
WO2020194107A1 (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
JP7247176B2 (ja) 表示装置、及び電子機器
JP7346517B2 (ja) 発光装置
US11387280B2 (en) Light-emitting device and electronic device
WO2020194107A1 (ja) 表示装置およびその動作方法
US10510806B2 (en) Light-emitting element, light-emitting device, electronic device, and lighting device
JP2022188146A (ja) 発光装置、電子機器および照明装置
JP2016127287A (ja) 発光素子、発光装置、表示装置、及び電子機器
TW201735183A (zh) 半導體裝置及包括半導體裝置的顯示裝置
JP2017152695A (ja) 発光素子、表示装置、電子機器、及び照明装置
JP7308655B2 (ja) 表示装置、及び電子機器
TW202033054A (zh) 發光器件、發光裝置、發光模組、照明裝置、顯示裝置、顯示模組及電子機器
WO2020229917A1 (ja) 表示装置
JP2018032020A (ja) 表示装置、電子機器、および携帯情報端末
JP2018124471A (ja) 表示装置および表示装置の駆動方法
US20220140273A1 (en) Display device, display module, electronic device, and television device
WO2020229920A1 (ja) 半導体装置、および半導体装置の動作方法
WO2020261036A1 (ja) 表示装置
US20220231248A1 (en) Display Device, Display Module, and Electronic Device