TW202034366A - 用於帶電粒子束檢測之檢測結構及用其檢測缺陷的檢測方法 - Google Patents

用於帶電粒子束檢測之檢測結構及用其檢測缺陷的檢測方法 Download PDF

Info

Publication number
TW202034366A
TW202034366A TW108106962A TW108106962A TW202034366A TW 202034366 A TW202034366 A TW 202034366A TW 108106962 A TW108106962 A TW 108106962A TW 108106962 A TW108106962 A TW 108106962A TW 202034366 A TW202034366 A TW 202034366A
Authority
TW
Taiwan
Prior art keywords
gate
charged particle
particle beam
lines
contact plugs
Prior art date
Application number
TW108106962A
Other languages
English (en)
Other versions
TWI696207B (zh
Inventor
顏悅穎
許展豪
呂明政
Original Assignee
力晶積成電子製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶積成電子製造股份有限公司 filed Critical 力晶積成電子製造股份有限公司
Priority to TW108106962A priority Critical patent/TWI696207B/zh
Application granted granted Critical
Publication of TWI696207B publication Critical patent/TWI696207B/zh
Publication of TW202034366A publication Critical patent/TW202034366A/zh

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

用於帶電粒子束檢測之檢測結構,包含一連接線路,沿著X方向延伸, 複數個第一線路和複數個第二線路,沿著Y方向延伸並沿著X方向交替排列在連接線路的一側。各第一線路和各第二線路分別包含一第一端部連接至連接線路以及相對於第一端部的一第二端部。一第一閘極結構,沿著X方向延伸並橫跨過各第一線路和各第二線路的第一端部。一第二閘極結構,沿著X方向延伸並橫跨過各第一線路和各第二線路的第二端部。第一閘極結構控制第一線路與第二線路之間的電連接。第二閘極結構控制第一線路與一接地端之電連接。

Description

用於帶電粒子束檢測之檢測結構及用其檢測缺陷的檢測方法
本發明是關於一種半導體元件的檢測結構及用其檢測缺陷的檢測方法,特別是關於一種用於帶電粒子束(charged particle beam)檢測之檢測結構及用其檢測半導體元件之電性缺陷的檢測方法。
帶電粒子束檢測(charged particle beam inspection)為一種非破壞性的缺陷檢測方法,主要用來檢測可能導致半導體元件報廢的重大電性缺陷,例如線路之間的短路缺陷(open)、斷路缺陷(short)或漏電流缺陷(leakage)。相較於習知必須在後段金屬化製程完成後,進行晶圓可接受度測試(WAT),以固定式探針設備量測電性表現和檢測電性異常,帶電粒子束檢測可以在半導體元件完成部分製程後,線上(inline)檢測已完成的結構之間是否有電性缺陷,毋須以金屬化製程製作電極(electrode pad)即可檢出,能較即時反應線上製程問題,對於分秒必爭的半導體產業而言具有顯著的時效優勢,使得此技術被廣泛應用在高階半導體元件的製造中。
帶電粒子束檢測方法通常是以微小聚焦的帶電粒子束(電子束或離子束)對樣品表面進行掃描,使電子(或離子)與樣品表面產生非彈性碰撞,激發出一些低能量的二次電子,並以接近樣品表面且施加有電壓的偵測器吸收這些被激發出來的二次電子訊號成像。樣品的表面電位會影響二次電子的產率,電位越高時,二次電子產率越小,偵測器測得的訊號強度越弱,成像後會呈現較暗區,一般稱為暗電壓對比(dark voltage contrast, DVC)。反之,樣品表面電位越低時,二次電子產率越高,偵測器測得的訊號強度越強,成像後會呈現較亮區,一般稱為亮電壓對比(bright voltage contrast, BVC)。根據上述特性,可獲得一對應於樣品表面電位相對差異的灰階影像,並藉由分析該灰階影像,判斷樣品內是否存在電性缺陷。
習知的帶電粒子束檢測方法,需針對短路、斷路或漏電等不同種類的電性缺陷設計不同的檢測結構,例如以交錯的梳狀(comb)結構來測試短路缺陷,以連續彎曲的蛇狀(serpentine)結構來測試斷路缺陷,不僅占用較多晶圓面積,也增加了檢測和分析時間。因此,本領域仍需一種改良的檢測結構及用其檢測缺陷的檢測方法,以改善上述習知技術的不足。
本發明目的在於提供一種用於帶電粒子束檢測之檢測結構及用其檢測缺陷的檢測方法,其包含可藉由帶電粒子束掃描來控制開/關(on/off)的閘極通道區,使檢測結構可應用在檢測不同類型的電性缺陷,改善了上述習知技術的不足。
本發明一方面提供一種用於帶電粒子束檢測之檢測結構,包含一基底,一線路圖案位於該基底中。該線路圖案包含一連接線路,沿著一X方向延伸;以及複數個第一線路和複數個第二線路,沿著一Y方向延伸並沿著該X方向交替排列在該連接線路的一側。各該第一線路和各該第二線路分別包含一第一端部連接至該連接線路以及相對於該第一端部的一第二端部,該X方向與該Y方向互相垂直。一第一閘極結構,位於該基底上,沿著該X方向延伸並橫跨過各該第一線路和各該第二線路的該第一端部。一第二閘極結構,位於該基底上,沿著該X方向延伸並橫跨過各該第一線路和各該第二線路的該第二端部。
在一些實施例中,該些第一線路、該些第二線路和該連接線路為一體成型構成。各該第一線路的該第二端部電連接至一接地端,各該第二線路的該第二端部為電性浮置。
在一些實施例中,各該第一線路和各該第二線路被該第一閘極結構覆蓋的區域分別包含一第一通道區,各該第一線路和各該第二線路被該第二閘極結構覆蓋的區域分別包含一第二通道區。
在一些實施例中,當該些第一通道區和該些第二通道區均為關閉時,該第一閘極結構和該第二閘極結構之間的該些第一線路和該些第二線路均為電性浮置且互相電性隔離。
在一些實施例中,當該些第一通道區為關閉且該些第二通道區為導通時,該第一閘極結構和該第二閘極結構之間的該些第一線路為電性接地,該些第二線路為電性浮置且與該些第一線路電性隔離。
在一些實施例中,當該些第一通道區和該些第二通道區均為導通時,該第一閘極結構和該第二閘極結構之間的該些第一線路和該些第二線路互相電性連接且電性接地。
本發明另一方面提供一種帶電粒子束檢測方法,包含以下步驟。首先,提供一檢測結構,包含一線路圖案、一第一閘極結構以及一第二閘極結構。該線路圖案包含複數個第一線路和複數個第二線路,沿著一Y方向延伸並沿著一X方向交替排列並連接在一連接線路的一側。該第一閘極結構以及該第二閘極結構沿著該X方向延伸並沿著該Y方向平行排列,分別橫跨過該些第一線路和該些第二線路的相對兩端部,該第一閘極結構控制該些第一線路、該些第二線路和該連接線路之間的電連接,該第二閘極結構控制該些第一線路與一接地端之電連接。該檢測結構還包含一層間介電層,覆蓋該線路圖案、該第一閘極結構和該第二閘極結構,其中該層間介電層一上表面顯露出與該些第一線路電連接的複數個第一線路接觸插塞、與該些第二線路電連接的複數個第二線路接觸插塞、與該第一閘極結構電連接的第一閘極接觸插塞以及與該第二閘極結構電連接的第二閘極接觸插塞。接著,以一帶電粒子束掃描該層間介電層之該上表面的一掃描區域,取得該些第一線路接觸插塞和該些第二線路接觸插塞之一電壓對比影像。然後,分析該電壓對比影像,判斷該檢測結構之一電性缺陷。
在一些實施例中,該掃描區域包含該些第一線路接觸插塞和該些第二線路接觸插塞,但不包含該第一閘極接觸插塞和該第二閘極接觸插塞。
在一些實施例中,該掃描區域包含該些第一線路接觸插塞、該些第二線路接觸插塞以及該第二閘極接觸插塞,但不包含該第一閘極接觸插塞。
在一些實施例中,該掃描區域包含該些第一線路接觸插塞、該些第二線路接觸插塞、該第二閘極接觸插塞以及該第二閘極接觸插塞。
本發明之一特徵在於,藉由控制帶電粒子束是否掃描到第一閘極接觸插塞來控制第一通道區的導通(on)或關閉(off),以及是否掃描到第二閘極接觸插塞來控制第二通道區的導通(on)或關閉(off),可便於在線上檢測時切換檢測結構的電連接型態,使檢測結構可應用在檢測短路、斷路或漏電等不同類型的電性缺陷,相較於習知需針對不同類型的電性缺陷設計不同的檢測結構,可節省檢測結構佔據的晶圓面積並縮短檢測時間。
為使熟習本發明所屬技術領域之一般技藝者能更進一步瞭解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的影像感測器及其製作方法及所欲達成的功效。為了方便表示而能夠輕易了解,圖式並未以成品之實際尺寸或比例繪示,因此圖式中元件之尺寸或比例僅用以示意而並非欲以限制本發明的範圍。
本發明提供的檢測結構與基底上其他半導體元件以相同製程製作,可以是製作在基底之切割道區域的測試鍵結構,用來監控製程變異、評估製程餘裕度或檢測半導體元件中可能的缺陷。下文以利用平面式(planar)金屬氧化物半導體場效電晶體(metal-oxide-semiconductor field-effect transistor, MOSFET)製程製作的檢測結構為例進行說明,應理解也可通過其他半導體製程來製作本發明的檢測結構,例如鰭式場效電晶體( Fin field-effect transistor, FinFET)製程。
第1圖至第5圖為根據本發明一實施例之檢測結構10的示意圖,其中第1圖和第2圖為頂視圖,第3圖至第5圖分別為沿著第2圖中A-A’切線、B-B’切線和C-C’切線的剖面示意圖。
請參考第1圖,檢測結構10包含一基底100,一絕緣結構102形成在基底100中,並在基底中100定義出線路圖案110。基底100例如是一矽基底、一矽覆絕緣基底、一三五族半導體基底等,但不限於此。線路圖案110具有一梳狀(comb-shaped)的頂視形狀,包含一沿著X方向延伸的連接線路112(或稱為梳基部),以及複數個第一線路116和複數個第二線路118,各沿著Y方向延伸並沿著X方向交替排列並連接在連接線路112的同一側,彼此由絕緣結構102區隔開。X方向與Y方向互相垂直。各第一線路116包含連接至連接線路112的第一端部116a以及相對於第一端部116a、遠離連接線路112的第二端部116b。相同的,各第二線路118包含連接至連接線路112的第一端部118a以及相對於第一端部118a、遠離連接線路112的第二端部118b。根據本發明一實施例,第二端部116b的長度大於第二端部118b,以用來連接至一接地端。第一線路116、第二線路118和連接線路112是利用絕緣結構102定義在基底100中,三者為一體成型構成。可以用習知的淺溝絕緣(STI)結構製程來形成絕緣結構102,在此不再贅述。
第一線路116的第二端部116b是用來使檢測結構10接地 (grounding),其接地機制可藉由將第二端部116b電連接至一接地端(GND),或電連接至電位大致上不會受到帶電粒子束掃描影響的半導體結構(未繪示)或基底100來實現。所述電位大致上不會受到帶電粒子束掃描影響的半導體結構可以是由絕緣結構102定義在基底100中、與線路圖案110一體成型的一匯集處(grounding pool),其具有較高的電容量來承受較多由於帶電粒子束掃描而產生的電荷,因此穩定了掃描區域的電位變化。也可藉由延伸第二端部116b的長度至一足夠長度獲得如同連接至匯集處的電容效果。相對的,第二線路118的第二端部118b為電性浮置(floating)。需特別說明的是,本發明並不限制第一線路116的第二端部116b的長度需大於第二線路118的第二端部118b的長度,只要第二端部116b可實現接地機制即可。在其他實施例中,第二端部116b和118b可以是齊平。
第一線路116和第二線路118可具有相同的線寬,並且沿著X方向等距排列。第一線路116和第二線路118的線寬和間距可根據不同檢測目的來調整。例如,當檢測結構10是用來作為常規檢測時,第一線路116和第二線路118可具有最小線寬和最小間距,模擬基底上其他半導體元件可允許設計的最緊密的圖案。當檢測結構10是用來評估製程餘裕度時,可同時製作多組不同線寬及間距組合的檢測結構10,藉由分別對該些檢測結構10進行掃描,評估該製程可實現的最小線寬和間距。
請繼續參考第1圖。檢測結構10還包含互相平行的第一閘極結構122以及第二閘極結構124設置在基底100上,各沿著X方向延伸,分別橫跨過該些第一線路116和該些第二線路118的第一端部116a、118a和第二端部116b、118b。各第一線路116和各第二線路118被第一閘極結構122覆蓋的區域為第一通道區122a(標示於第4圖和第5圖)。各第一線路116和各第二線路118被第二閘極結構134覆蓋的區域為第二通道區124a(標示於第4圖和第5圖)。本發明之一特徵在於,藉由第一閘極結構122控制第一通道區122a的導通(on)或關閉(off)來控制第一線路116和第二線路118位於第一閘極結構122和第二閘極結構124之間的部分的電連接(通過連接線路112)或電性隔離,以及藉由第二閘極結構124控制第二通道區122a的導通或關閉來控制第一線路116的接地(通過第二端部116b)或浮置,使檢測結構10可應用來檢測不同類型的電性缺陷。第一閘極結構122以及第二閘極結構124可以是習知的多晶矽閘極或是金屬閘極,詳細製程在此不再贅述。
請參考第2圖至第5圖。根據本發明一實施例,檢測結構10還可包含一層間介電層130,位於基底100上並且覆蓋住線路圖案110、第一閘極結構122和第二閘極結構124。複數個第一線路接觸插塞136和複數個第二線路接觸插塞138位於層間介電層130中,分別沿著Y方向排列在第一閘極結構122和第二閘極結構124之間的第一線路116和第二線路118上,並分別與第一線路116和第二線路118電連接,且頂部自層間介電層130的上表面131顯露出來。至少一第一閘極接觸插塞132設於第一閘極結構122上,與第一閘極結構122電連接,頂部自層間介電層130的上表面131顯露出來。至少一第二閘極接觸插塞134設於第二閘極結構124上,與第二閘極結構124電連接,頂部自層間介電層130的上表面131顯露出來。值得注意的是,如第2圖所示,在沿著Y方向的投影上,第一閘極接觸插塞132和第二閘極接觸插塞134均位在線路圖案110之外的同一側,且第一閘極接觸插塞132相較於第二閘極接觸插塞134更遠離線路圖案110。需注意,第2圖以及第6圖、第10圖、第11圖、第14圖、第15圖和第18圖中同時繪示出線路圖案110、第一閘極結構122、第二閘極結構124、第一線路接觸插塞136、第二線路接觸插塞138、第一閘極接觸插塞132和第二閘極接觸插塞134是為了便於理解該些元件的配置和方位,在帶電粒子束檢測的過程中,線路圖案110、第一閘極結構122、第二閘極結構124實際上是被層間介電層130覆蓋住,並不會被帶電粒子束直接掃描到。
請參考第3圖至第5圖,根據本發明一實施例,第一線路116、第二線路118和連接線路112的表面可包含一摻雜區119。可在形成第一閘極結構122和第二閘極結構124後,對基底100進行一離子植入製程,例如源極/汲極離子植入製程,以將導電摻雜植入未被第一閘極結構122和第二閘極結構124覆蓋的第一線路116、第二線路118和連接線路112的表面,形成摻雜區119。第一通道區122a和第二通道區124a兩側的摻雜區119為源極/汲極區。在其他採取應變矽(strained silicon)技術的實施例中,摻雜區119可以是通過磊晶成長(epitaxial growth)形成的磊晶矽層,例如SiP或SiGe。摻雜區119的表面還可包含一金屬矽化物層(未繪示),提供給第一線路接觸插塞136和第二線路接觸插塞138一較佳的接觸面。另外,基底100可包含一井區(未繪示),包圍住各摻雜區119,以提供基底100與摻雜區119之間較佳的絕緣。
本發明另一特徵在於,由於第一閘極結構122和第二閘極結構124為電性浮置,進行帶電粒子束檢測,例如以一預定能量的電子束掃描到第一閘極接觸插塞132及/或第二閘極接觸插塞134時,因此會造成第一閘極接觸插塞132及/或第二閘極接觸插塞134表面累積正電荷而產生電位,即等於對第一閘極結構122及/或第二閘極結構124施加一閘極電壓,其電壓值足以使第一通道區122a及/或第二通道區124a導通(on)。藉此,可方便地於線上檢測時,利用電子束是否掃描到第一閘極接觸插塞132及/或第二閘極接觸插塞134來控制第一閘極結構122和第二閘極結構124之間的第一線路116、第二線路118之間的電連接以及第一線路116與接地端之間的電連接。根據本發明一實施例,當檢測結構10是用在電子束(e-beam)檢測,第一通道區122a和第二通道區124a較佳為可通過對第一閘極結構122和第二閘極結構124施加正閘極電壓而導通的N型通道區,摻雜區119較佳為形成在P型基底100(或P型井區)的N+摻雜區。
下文將說明使用檢測結構10進行缺陷檢測的一些實施例。如前所述,在沿著Y方向的投影上,第一閘極接觸插塞132和第二閘極接觸插塞134均位於線路圖案110之外的同一側,且第一閘極接觸插塞132相較於第二閘極接觸插塞134更遠離線路圖案110。藉此設計,可便於調整帶電粒子束的掃瞄範圍210、220和230是否包含第一閘極接觸插塞132或第二閘極接觸插塞134來控制第一通道區域122a或第二通道區域124a的關閉(off)或導通(on),使檢測結構10可應用在檢測不同類型的電性缺陷。
第6圖至第10圖說明本發明一實施例之帶電粒子束缺陷檢測方法,用來檢測檢測結構10是否存在基底漏電流(substrate leakage)或閘極漏電流(gate leakage)等電性缺陷。第6圖為頂視圖,第7圖和第9圖為沿著Y方向切過第一線路116的剖面示意圖,第8圖為沿著Y方向切過第二線路118的剖面示意圖,第10圖的(a)部分例示未檢出異常的量測結果,第10圖的(b)部分例示檢出異常的量測結果。
請參考第6圖、第7圖、第8圖和第10圖的(a)部分。首先,提供一檢測結構10,檢測結構10的結構如前文第2圖至第5圖所示,在此不再贅述。接著,以一帶電粒子束(例如電子束)以如第6圖左上的掃描軌跡212對該檢測結構10表面(即層間介電層130的上表面131)之一掃描區域210進行掃描,以取得第一線路接觸插塞136和第二線路接觸插塞138之一電壓對比影像。掃描軌跡212是沿著Y方向來回並沿著X方向逐漸推進,依序掃描交替排列的各行第一線路接觸插塞136和第二線路接觸插塞138。掃描區域210包含了第一閘極結構122和第二閘極結構124之間的第一線路接觸插塞136和第二線路接觸插塞138,但不包含第一閘極接觸插塞132和第二閘極接觸插塞134。也就是說,電子束不會造成正電荷累積在第一閘極接觸插塞132和第二閘極接觸插塞134表面,因此第一閘極結構122和第二閘極結構124不會被施予任何電壓,即第一通道區122a和第二通道區124a在掃描期間均為關閉(off)狀態,使第一線路116和第二線路118位於第一閘極結構122和第二閘極結構124之間的部分各自為浮置狀態。第一線路接觸插塞136和第二線路接觸插塞138被電子束掃描後產生的正電荷即累積在各第一線路接觸插塞136和各第二線路接觸插塞138表面,抑制二次電子的產生,使偵測器312測得較弱的二次電子訊號314(為簡化圖示,第7圖和第8圖僅繪示其中一第一線路接觸插塞136或第二線路接觸插塞138被電子束掃瞄後正電荷累積的示意圖)。成像後,會如第10圖(a)部分所示,第一閘極結構122和第二閘極結構124之間的第一線路接觸插塞136和第二線路接觸插塞138都會呈現暗電壓對比(dark voltage contrast, DVC)。
請參考第9圖和第10圖(b)部分。當製程發生異常導致摻雜區119和基底100(或井區)之間有基底漏電流316或通道區124a有閘極漏電流318時,第一線路接觸插塞136和第二線路接觸插塞138被電子束掃描後產生的正電荷會通過基底漏電流316或閘極漏電流318的路徑被導引至基底100或接地端GND,因而不會累積在第一線路接觸插塞136和第二線路接觸插塞138的表面,使二次電子具有較高的產率,偵測器312可測得較強的二次電子訊號314,即呈現亮電壓對比(bright voltage contrast, BVC)。由於基底漏電流316和閘極漏電流318通常是系統性缺陷,當檢測結構10被檢出存在基底漏電流316或閘極漏電流318的缺陷時,其會普遍存在檢測結構10的多數區域,也就是會如第10圖(b)部分所示,第一閘極結構122和第二閘極結構124之間的第一線路接觸插塞136和第二線路接觸插塞138都會呈現亮電壓對比。需注意,當檢測結構10存在基底漏電流316或閘極漏電流318時,會造成檢測結構10無法以下文所述方法來偵測第一線路116、第二線路118、第一線路接觸插塞136和第二線路接觸插塞138之間的短路、斷路或漏電流缺陷。第6圖的檢測方法,除了可用來偵測基底漏電流316或閘極漏電流318等系統性缺陷,還可用來檢測檢測結構10本身的檢測可信度。
第11圖至第14圖說明根據本發明另一實施例之帶電粒子束缺陷檢測方法,用來檢測第一線路116和第二線路118之間是否存在短路或漏電流缺陷,或檢測第一線路116是否存在斷路缺陷。第11圖為頂視圖,第12圖為沿著Y方向切過第一線路116的剖面示意圖,第13圖為沿著Y方向切過第二線路118的剖面示意圖,第14圖的(a)部分例示未檢出異常的量測結果,第14圖(b) 部分和第14A圖例示檢出異常的量測結果。本實施例所述檢測方法與前文第6圖至第10圖所述實施例的不同處在於,如第11圖所示,電子束的掃描區域220涵蓋第一閘極結構122和第二閘極結構124之間的第一線路接觸插塞136和第二線路接觸插塞138,也涵蓋了第二閘極接觸插塞134,但不涵蓋第一閘極接觸插塞132。掃描時,電子束的掃描軌跡212同樣是沿著Y方向來回並沿著X方向推進,先掃描到第二閘極接觸插塞134後,接著再依序掃描交替排列的各行第一線路接觸插塞136和第二線路接觸插塞138。
請參考第12圖和第14圖(a)部分,當電子束掃描到第二閘極接觸插塞134時,會造成第二閘極接觸插塞134表面累積正電荷而產生電位,即等於對第二閘極結構124施加一閘極電壓,其電壓值足以使第一線路116的第二通道區124a導通(on),使電子束掃描第一線路接觸插塞136造成的正電荷可先傳遞至第一線路116然後通過導通電流320的路徑被導引至接地端GND,不會累積在第一線路接觸插塞136表面,使二次電子具有較高的產率,偵測器312可測得較強的二次電子訊號314,成像時會呈現亮電壓對比,如第14圖(a)部分所示。
請參考第13圖左側和第14圖(a)部分。第一閘極接觸插塞132並未被電子束掃描到,其表面不會有正電荷累積,即第一閘極結構122不會被施予閘極電壓,使第二線路118的第一通道區122a在掃描過程中為關閉狀態,使第一閘極結構122和第二閘極結構124之間的第二線路118隔離於連接線路112因此與第一線路116電性隔離。請參考第13圖右側,雖然第二線路118的第二通道區124a也為導通狀態(由於是由第二閘極結構124控制),但第二線路118的第二端部118b為電性浮置(floating),未提供電荷洩漏路徑。因此,第二線路接觸插塞138被電子束掃描而造成的正電荷會累積在表面,抑制二次電子的產率,使偵測器312測得較弱的二次電子訊號314,成像時會呈現暗電壓對比,如第14圖(a)部分所示,並與呈現亮電壓對比的第一線路接觸插塞136交替排列。
請參考第14圖(b)部分,當相鄰的第一線路116和第二線路118之間存在短路或漏電缺陷412,例如由於基底100圖案化製程異常、絕緣結構102絕緣不良、層間介電層130絕緣不良或其他因素造成的短路或漏電缺陷,會使累積在第二線路接觸插塞138表面的正電荷通過該短路或漏電缺陷412而流到第一線路116進而被導引至接地端GND,造成原本應呈現暗電壓對比的第二線路接觸插塞138呈現亮電壓對比。
請參考第14A圖,當第一線路116存在斷路缺陷414,例如由於基底100圖案化製程異常導致的斷線或由於汙染微粒導致第一線路116的傳導路徑中斷或其他因素造成的斷路缺陷,位於斷路區段上的第一線路接觸插塞136被電子束掃描後產生的正電荷無法而被導引至接地端GND,使其由於正電荷的累積而呈現不同於其他正常區域的第一線路接觸插塞136的暗電壓對比。由於缺陷區域的圖案明顯異於其他正常區域的圖案,缺陷可被輕易的偵測出來。可比對設計布局圖案和成像圖案,並根據影像的灰階程度來分析阻值差異,評估可能的缺陷種類和異常原因。
第15圖至第18圖說明根據本發明又另一實施例之帶電粒子束缺陷檢測方法,用來檢測第二線路是否存在斷路缺陷。第15圖為頂視圖,第16圖為沿著Y方向切過第一線路116的剖面示意圖,第17圖為沿著Y方向切過第二線路118的剖面示意圖,第18圖的(a)部分例示未檢出異常的量測結果,第18圖(b)部分例示檢出異常的量測結果。本實施例所述檢測方法與前文第6圖至第10圖所述實施例的不同處在於,如第15圖所示,電子束的掃描區域230涵蓋了第一閘極結構122和第二閘極結構124之間的第一線路接觸插塞136和第二線路接觸插塞138,也涵蓋了第二閘極接觸插塞134和第一閘極接觸插塞132。掃描時,電子束的掃描軌跡212同樣是沿著Y方向來回並沿著X方向推進,先掃描到第一閘極接觸插塞132和第二閘極接觸插塞134後,接著再依序掃描交替排列的各行第一線路接觸插塞136和第二線路接觸插塞138。
請參考第16圖右側和第18圖(a)部分。電子束掃描到第二閘極接觸插塞134時造成的正電荷累積等於對第二閘極結構124施予一閘極電壓,其電壓值足以使第二閘極結構124下方的第二通道區124a導通,使掃描期間累積在第一線路接觸插塞136表面的正電荷可以通過導通電流320路徑被導引至接地端GND而不會累積在第一線路接觸插塞136表面,使二次電子具有較高的產率,偵測器312可測得較強的二次電子訊號314,於成像時呈現亮電壓對比,如第18圖(a)部分所示。
請參考第17圖、第16圖左側和第18圖(a)部分。本實施例中,第一閘極接觸插塞132也會被電子束掃描,產生正電荷累積在第一閘極接觸插塞132表面,等於對第一閘極結構122施予一閘極電壓,其電壓值足以使第一閘極結構122下方的第一通道區122a導通,使掃描期間累積在第二線路接觸插塞138表面的正電荷可以依序通過第二線路118、導通電流321路徑、第一端部118a、連接線路112、導通電流322路徑、第一線路116、導通電流320路徑而被導引到接地端GND,不會累積在第二線路接觸插塞138表面,使第二線路接觸插塞138也呈現亮電壓對比,如第18圖(a)部分所示。
請參考第18圖(b)部分,當第二線路118存在斷路缺陷416,例如由於基底100圖案化製程異常導致的斷線或由於汙染微粒導致第二線路118的傳導路徑中斷或其他因素造成的斷路缺陷,位於斷路區段上的第二線路接觸插塞138被電子束掃描後產生的正電荷無法通過前段所述的路徑被導引至接地端GND,使其由於正電荷的累積而呈現不同於其他正常區域的第二線路接觸插塞138的暗電壓對比。
應特別說明的是,本發明之檢測結構10並不限於用在電子束(e-beam)檢測,也可應用在離子束(FIB)檢測。由於帶電粒子束種類或能量的不同,掃描後產生的累積電荷可以是正電荷或負電荷。第一通道區122a和第二通道區124a的導電型可隨著掃描後產生的電荷為正或負(即產生的閘極電壓為正電壓或負電壓),被設計為N型通道區或P型通道區。
綜合以上,本發明提供的用於帶電粒子束檢測之檢測結構10,主要包含交替排列的複數個第一線路116和複數個第二線路118,以及分別橫跨該些第一線路116和該些第二線路118兩端的第一閘極結構122和第二閘極結構124,以在各第一線路116和各第二線路118兩端分別形成第一通道區122a和第二通道區124a。完成前段製程,製作層間介電層130、第一閘極接觸插塞132、第二閘極接觸插塞134、第一線路接觸插塞136、第二線路接觸插塞138後,可進行一線上(inline)檢測步驟,以離子束(例如電子束)對顯露在層間介電層130上表面的第一線路接觸插塞136和第二線路接觸插塞138進行掃描,獲得第一線路接觸插塞136和第二線路接觸插塞138之一電壓對比影像,並藉由調整帶電粒子束的掃描範圍是否包含第一閘極接觸插塞132和第二閘極接觸插塞134來控制第一通道區122a和第二通道區124a的導通或關閉,進而控制第一線路116與接地端的電連接以及第一線路116和第二線路118之間的電連接。簡短的說,當帶電粒子束的掃描範圍不包含第一閘極接觸插塞132和第二閘極接觸插塞134時,可使第一通道區122a和第二通道區124a於掃描期間均為關閉,使測檢測結構10可用來檢測基底漏電流或閘極漏電流等異常。當帶電粒子束的掃描範圍包含第二閘極接觸插塞134但不包含第一閘極接觸插塞132時,使第二通道區124a在掃描期間為導通而將第一線路116電連接至接地,使第一通道區122a在掃描期間為關閉而使第二線路118電性隔離於第一線路116,使測檢測結構10可用來檢測第一線路116和第二線路118之間的短路或漏電異常。當帶電粒子束的掃描範圍同時包含第一閘極接觸插塞132和第二閘極接觸插塞134時,使第一通道區122a和第二通道區124a在掃描期間均為導通,將第一線路116和第二線路118都電連接至接地,使測檢測結構10可用來檢測第一線路116和第二線路之間是否存在斷路異常。相較於習知需針對短路、斷路或漏電等不同電性缺陷種類設計不同的檢測結構進行檢測,本發明可有效節省檢測結構佔據的晶圓面積以及檢測時間。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
10:檢測結構 100:基底 102:絕緣結構 110:線路圖案 112:連接線路 116:第一線路 116a:第一端部 116b:第二端部 118:第二線路 118a:第一端部 118b:第二端部 119:摻雜區 122:第一閘極結構 122a:第一通道區 124:第二閘極結構 124a:第二通道區 130:層間介電層 131:上表面 132:第一閘極接觸插塞 134:第二閘極接觸插塞 136:第一線路接觸插塞 138:第二線路接觸插塞 210:掃描區域 220:掃描區域 230:掃描區域 212:掃描軌跡 312:偵測器 314:二次電子訊號 316:基底漏電流 318:閘極漏電流 320:導通電流 321:導通電流 322:導通電流 412:短路或漏電缺陷 414:斷路缺陷 416:斷路缺陷 X:方向 Y:方向 A-A':切線 B-B':切線 C-C':切線
第1圖至第5圖為本發明一實施例之用於帶電粒子束檢測之檢測結構的示意圖,其中: 第1圖和第2圖為頂視圖; 第3圖為沿著第2圖中A-A’切線的剖面示意圖; 第4圖為沿著第2圖中B-B’切線的剖面示意圖; 第5圖為沿著第2圖中C-C’切線的剖面示意圖。 第6圖至第10圖為根據本發明一實施例之帶電粒子束缺陷檢測方法,其中: 第6圖為頂視圖,說明帶電粒子束掃描範圍和掃描軌跡; 第7圖為沿著如第4圖所示B-B’切線的剖面示意圖; 第8圖為沿著如第5圖所示C-C’切線的剖面示意圖; 第9圖為沿著如第4圖所示B-B’切線的剖面示意圖; 第10圖中, (a)部分例示未檢出缺陷時的電壓對比影像, (b)部分例示檢出缺陷時的電壓對比影像。 第11圖至第14圖和第14A圖為根據本發明另一實施例之帶電粒子束缺陷檢測方法,其中: 第11圖為頂視圖,說明帶電粒子束掃描範圍和掃描軌跡; 第12圖為沿著如第4圖所示B-B’切線的剖面示意圖; 第13圖為沿著如第5圖所示C-C’切線的剖面示意圖; 第14圖中,(a)部分例示未檢出缺陷時的電壓對比影像, (b)部分例示一種檢出缺陷時的電壓對比影像; 第14A圖例示另一種檢出缺陷時的電壓對比影像。 第15圖至第18圖為根據本發明又另一實施例之帶電粒子束缺陷檢測方法,其中: 第15圖為頂視圖,說明帶電粒子束掃描範圍和掃描軌跡; 第16圖為沿著如第4圖所示B-B’切線的剖面示意圖; 第17圖為沿著如第5圖所示C-C’切線的剖面示意圖; 第18圖中,(a)部分例示未檢出缺陷時的電壓對比影像, (b)部分例示檢出缺陷時的電壓對比影像。
10:檢測結構
100:基底
102:絕緣結構
110:線路圖案
112:連接線路
116:第一線路
116a:第一端部
116b:第二端部
118:第二線路
118a:第一端部
118b:第二端部
122:第一閘極結構
124:第二閘極結構
X:方向
Y:方向

Claims (20)

  1. 一種用於帶電粒子束檢測之檢測結構,包含: 一基底,一線路圖案位於該基底中,該線路圖案包含; 一連接線路,沿著第一方向延伸;以及 複數個第一線路和複數個第二線路,沿著該第一方向交替排列,各該第一線路與各該第二線路分別包含一第一端部與一第二端部,該第一端部均連接至該連接線路,並且各該第一線路與各該第二線路分別自該第一端部沿著一第二方向延伸至該第二端部,其中該第一方向與該第二方向互相垂直; 一第一閘極結構,位於該基底上,沿著該第一方向延伸並橫跨過各該第一線路和各該第二線路的該第一端部;以及 一第二閘極結構,位於該基底上,沿著該第一方向延伸並橫跨過各該第一線路和各該第二線路的該第二端部。
  2. 如請求項1所述之用於帶電粒子束檢測之檢測結構,其中該些第一線路、該些第二線路和該連接線路為一體成型構成。
  3. 如請求項1所述之用於帶電粒子束檢測之檢測結構,其中各該第一線路的該第二端部電連接至一接地端,各該第二線路的該第二端部為電性浮置。
  4. 如請求項1所述之用於帶電粒子束檢測之檢測結構,其中各該第一線路和各該第二線路被該第一閘極結構覆蓋的區域分別包含一第一通道區,各該第一線路和各該第二線路被該第二閘極結構覆蓋的區域分別包含一第二通道區。
  5. 如請求項4所述之用於帶電粒子束檢測之檢測結構,當該些第一通道區和該些第二通道區均為關閉時,該第一閘極結構和該第二閘極結構之間的該些第一線路和該些第二線路均為電性浮置且互相電性隔離。
  6. 如請求項4所述之用於帶電粒子束檢測之檢測結構,當該些第一通道區為關閉且該些第二通道區為導通時,該第一閘極結構和該第二閘極結構之間的該些第一線路為電性接地,該些第二線路為電性浮置且與該些第一線路電性隔離。
  7. 如請求項4所述之用於帶電粒子束檢測之檢測結構,當該些第一通道區和該些第二通道區均為導通時,該第一閘極結構和該第二閘極結構之間的該些第一線路和該些第二線路互相電性連接且電性接地。
  8. 如請求項1所述之用於帶電粒子束檢測之檢測結構,另包含: 一層間介電層,位於該基底上並覆蓋該線路圖案、該第一閘極結構以及該第二閘極結構; 複數個第一線路接觸插塞,設置在各該第一線路上並與各該第一線路電連接; 複數個第二線路接觸插塞,設置在各該第二線路上並與各該第二線路電連接; 一第一閘極接觸插塞,設置在該第一閘極結構上並與該第一閘極結構電連接;以及 一第二閘極接觸插塞,設置在該第二閘極結構上並與該第二閘極結構電連接,其中各該第一線路接觸插塞、各該第二線路接觸插塞、該第一閘極接觸插塞和該第二閘極接觸插塞之一頂面各別自該層間介電層之一上表面顯露出來。
  9. 如請求項8所述之用於帶電粒子束檢測之檢測結構,其中在沿著該第二方向的投影上,該第一閘極接觸插塞和該第二閘極接觸插塞均位在該線路圖案之外的同一側,且該第一閘極接觸插塞相較於該第二閘極接觸插塞更遠離該線路圖案。
  10. 如請求項1所述之用於帶電粒子束檢測之檢測結構,另包含一絕緣結構位於該基底中並隔離開該些第一線路和該些第二線路。
  11. 一種帶電粒子束檢測方法,包含: 提供一檢測結構,包含: 一線路圖案,包含複數個第一線路和複數個第二線路,沿著一第一方向交替排列,各該第一線路和各該第二線路之一端均連接在一連接線路,並沿著一第二方向延伸至另一端; 一第一閘極結構和一第二閘極結構,沿著該第一方向延伸,分別橫跨過該些第一線路和該些第二線路的相對兩端部,該第一閘極結構控制該些第一線路、該些第二線路和該連接線路之間的電連接,該第二閘極結構控制該些第一線路與一接地端之電連接; 一層間介電層,覆蓋該線路圖案、該第一閘極結構和該第二閘極結構,其中該層間介電層一上表面顯露出與該些第一線路電連接的複數個第一線路接觸插塞,與該些第二線路電連接的複數個第二線路接觸插塞,與該第一閘極結構電連接的第一閘極接觸插塞,以及與該第二閘極結構電連接的第二閘極接觸插塞; 以一帶電粒子束掃描該層間介電層之該上表面的一掃描區域,取得該些第一線路接觸插塞和該些第二線路接觸插塞之一電壓對比影像;以及 分析該電壓對比影像,判斷該檢測結構之一電性缺陷。
  12. 如請求項11所述之帶電粒子束檢測方法,其中該帶電粒子束是沿著該第二方向來回並沿著該第一方向推進,對該掃描區域進行掃描。
  13. 如請求項11所述之帶電粒子束檢測方法,其中該帶電粒子束為一電子束。
  14. 如請求項13所述之帶電粒子束檢測方法,其中該掃描區域包含該些第一線路接觸插塞和該些第二線路接觸插塞,但不包含該第一閘極接觸插塞和該第二閘極接觸插塞。
  15. 如請求項14所述之帶電粒子束檢測方法,其中當該檢測結構存在基底漏電流缺陷或閘極漏電流缺陷時,該些第一線路接觸插塞以及該些第二線路接觸插塞均呈現亮電壓對比。
  16. 如請求項13所述之帶電粒子束檢測方法,其中該掃描區域包含該些第一線路接觸插塞、該些第二線路接觸插塞以及該第二閘極接觸插塞,但不包含該第一閘極接觸插塞,且該帶電粒子束先掃描該第二閘極接觸插塞,再掃描該些第一線路接觸插塞和該些第二線路接觸插塞。
  17. 如請求項16所述之帶電粒子束檢測方法,其中: 當該些第一線路與該些第二線路之間不存在短路缺陷時,該些第一線路接觸插塞均呈現亮電壓對比,且該些第二線路接觸插塞均呈現暗電壓對比;以及 當該些第一線路與該些第二線路之間存在短路缺陷時,部分該些第二線路接觸插塞會呈現亮電壓對比。
  18. 如請求項16所述之帶電粒子束檢測方法,當該些第一線路存在斷路缺陷時,部分該第一線路接觸插塞會呈現暗電壓對比。
  19. 如請求項13所述之帶電粒子束檢測方法,其中該掃描區域包含該些第一線路接觸插塞、該些第二線路接觸插塞、該第二閘極接觸插塞以及該第二閘極接觸插塞,且該帶電粒子束先掃描該第一閘極接觸插塞和該第二閘極接觸插塞,再掃描該些第一線路接觸插塞和該些第二線路接觸插塞。
  20. 如請求項19所述之帶電粒子束檢測方法,其中當該些第一線路與該些第二線路不存在斷路缺陷時,該些第一線路接觸插塞與該些第二線路接觸插塞均呈現亮電壓對比,當該些第一線路或者該些第二線路存在斷路缺陷時,部分該第一線路接觸插塞或者該第二線路接觸插塞會呈現暗電壓對比。
TW108106962A 2019-03-04 2019-03-04 用於帶電粒子束檢測之檢測結構及用其檢測缺陷的檢測方法 TWI696207B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108106962A TWI696207B (zh) 2019-03-04 2019-03-04 用於帶電粒子束檢測之檢測結構及用其檢測缺陷的檢測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108106962A TWI696207B (zh) 2019-03-04 2019-03-04 用於帶電粒子束檢測之檢測結構及用其檢測缺陷的檢測方法

Publications (2)

Publication Number Publication Date
TWI696207B TWI696207B (zh) 2020-06-11
TW202034366A true TW202034366A (zh) 2020-09-16

Family

ID=72176361

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108106962A TWI696207B (zh) 2019-03-04 2019-03-04 用於帶電粒子束檢測之檢測結構及用其檢測缺陷的檢測方法

Country Status (1)

Country Link
TW (1) TWI696207B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113593627B (zh) * 2021-07-30 2023-09-29 长江存储科技有限责任公司 检测三维存储器的结构缺陷的方法及三维存储结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003036549A1 (en) * 2001-10-25 2003-05-01 Kla-Tencor Technologies Corporation Apparatus and methods for managing reliability of semiconductor devices
US7474107B2 (en) * 2006-03-22 2009-01-06 International Business Machines Corporation Buried short location determination using voltage contrast inspection
US7456636B2 (en) * 2006-03-29 2008-11-25 International Business Machines Corporation Test structures and method of defect detection using voltage contrast inspection
US20090102501A1 (en) * 2007-10-19 2009-04-23 Guldi Richard L Test structures for e-beam testing of systematic and random defects in integrated circuits
US8193491B2 (en) * 2008-09-29 2012-06-05 Hermes Microvision, Inc. Structure and method for determining a defect in integrated circuit manufacturing process
US8350583B2 (en) * 2009-08-12 2013-01-08 International Business Machines Corporation Probe-able voltage contrast test structures
US10274537B2 (en) * 2015-12-21 2019-04-30 Hermes Microvision Inc. Test device for defect inspection

Also Published As

Publication number Publication date
TWI696207B (zh) 2020-06-11

Similar Documents

Publication Publication Date Title
US9429616B2 (en) Test method and test arrangement
US7679083B2 (en) Semiconductor integrated test structures for electron beam inspection of semiconductor wafers
US7656183B2 (en) Method to extract gate to source/drain and overlap capacitances and test key structure therefor
US9455205B2 (en) Semiconductor devices and processing methods
US20090152595A1 (en) Semiconductor devices and method of testing same
CN102157496B (zh) 接触孔测试装置和有源区接触孔对栅极的漏电流测试方法
US20100270616A1 (en) Semiconductor device and method of manufacturing the same
US20060234401A1 (en) Early detection test for identifying defective semiconductor wafers in a front-end manufacturing line
US5596207A (en) Apparatus and method for detecting defects in insulative layers of MOS active devices
US20020176972A1 (en) Contact chain for testing and its relevantly debugging method
US8093916B2 (en) Method of characterizing a semiconductor device and semiconductor device
TWI696207B (zh) 用於帶電粒子束檢測之檢測結構及用其檢測缺陷的檢測方法
US6150669A (en) Combination test structures for in-situ measurements during fabrication of semiconductor devices
CN100593233C (zh) 利用延迟反转点技术检测充电效应的测试结构与方法
CN115084098B (zh) 一种测试结构及测试方法
US7327155B2 (en) Elastic metal gate MOS transistor for surface mobility measurement in semiconductor materials
CN113257790B (zh) 漏电测试结构及漏电测试方法
CN113161322B (zh) 电性测试结构
CN113496904A (zh) 功率器件套刻偏差电性测量结构及方法
JP5444731B2 (ja) 半導体装置とその検査方法
KR20100062400A (ko) 반도체 웨이퍼의 결함 분석 방법
US9281334B2 (en) Pickup device structure within a device isolation region
JP4087289B2 (ja) 半導体装置およびその検査方法
US20090032813A1 (en) Test Wafer, Manufacturing Method Thereof and Method for Measuring Plasma Damage
JP3654434B2 (ja) 試験用コンタクトチェーンおよびそれに関連するデバッグ方法