TW202028716A - 粒子測定裝置、校正方法以及測定裝置 - Google Patents

粒子測定裝置、校正方法以及測定裝置 Download PDF

Info

Publication number
TW202028716A
TW202028716A TW108135884A TW108135884A TW202028716A TW 202028716 A TW202028716 A TW 202028716A TW 108135884 A TW108135884 A TW 108135884A TW 108135884 A TW108135884 A TW 108135884A TW 202028716 A TW202028716 A TW 202028716A
Authority
TW
Taiwan
Prior art keywords
particle
correction
displacement
light spot
mean square
Prior art date
Application number
TW108135884A
Other languages
English (en)
Other versions
TWI810375B (zh
Inventor
加藤晴久
松浦有祐
中村文子
近藤郁
田渕拓哉
冨田寛
林秀和
Original Assignee
國立研究開發法人産業技術總合研究所
日商理音股份有限公司
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立研究開發法人産業技術總合研究所, 日商理音股份有限公司, 日商鎧俠股份有限公司 filed Critical 國立研究開發法人産業技術總合研究所
Publication of TW202028716A publication Critical patent/TW202028716A/zh
Application granted granted Critical
Publication of TWI810375B publication Critical patent/TWI810375B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1012Calibrating particle analysers; References therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0227Investigating particle size or size distribution by optical means using imaging; using holography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N2015/0687Investigating concentration of particle suspensions in solutions, e.g. non volatile residue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1493Particle size
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Geometry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本發明使用校正用粒子簡單地進行拍攝目標粒子等物件物的測定裝置的校正。圖像分析部(21)取得時間間隔(Δt)內得到的多個拍攝圖像,(a)在校正模式下,根據所述多個拍攝圖像中的校正用粒子的光點的像素單位的位移,確定校正用粒子的光點的均方位移(ΔMS cal ),(b)在測定模式下,根據所述多個拍攝圖像中的目標粒子的光點的像素單位的位移,確定目標粒子的光點的均方位移(ΔMS )。並且,粒徑分析部(c)在分析模式下,根據校正用粒子的光點的均方位移(ΔMS cal )以及校正用粒子的粒徑(dcal ),從目標粒子的光點的均方位移(ΔMS )匯出目標粒子的粒徑(d)。

Description

粒子測定裝置、校正方法以及測定裝置
本發明涉及粒子測定裝置、校正方法和測定裝置。
作為測量分散介質中的粒子的粒徑的方法,有PTA(Particle Tracking Analysis)法,即,向粒子照射鐳射,使用光學系統觀察來自被鐳射照射的粒子的散射光的聚光點(以下稱光點),並利用斯托克斯-愛因斯坦公式,根據各個粒子的布朗運動計算出粒徑。
PTA法中,對用攝像機等以時間間隔Δt拍攝的一系列圖像計算光點的重心,透過將相鄰的幀的光點的重心對應起來,取得粒子布朗運動的軌跡,而後,按照關係式(ΔMS=4DΔt),從上述2維的均方位移ΔMS,得到粒子的自擴散係數D。接着,按照斯托克斯-爱因斯坦公式(D=(kB・T)/(3πηd);kB:玻爾兹曼常數,η:分散介質的黏度,π:圓周率,T:絕對溫度),根據得到的自擴散係數D計算粒徑d。。
某些粒徑測定方法是在有關流場內的粒子的PTA法中,透過從光點的遊動中減掉流場的流速成分,修正光點的遊動,從而可以不受流場影響地測定粒徑(例如參照專利文獻1)。
與此相關,公開有測量所述修正中使用的流速成分的方法(例如參照非專利文獻1),此外,公開有使用該流速測量法的、作為測量流動中的粒子的粒徑的方法FPT(Flow Particle Tracking)法(例如參照非專利文獻2)。
現有技術文獻
專利文獻
[專利文獻1]國際公開公報第2016/159131號
[非專利文獻1]Y Matsuura, A Nakamura, H Kato; Sensors and Actuators B 256 1078-1085
[非專利文獻2]Y Matsuura, A Nakamura, H Kato; Analytical Chemistry 90 4182-4187
如上所述,當透過PTA法等測量粒徑時,需要知道(a)物理單位下的均方位移ΔMS的長度,以及(b)斯托克斯-愛因斯坦公式中的黏度η和溫度T。即,透過拍攝得到拍攝圖像上的均方位移ΔMS為像素單位,因此需要把該像素單位轉換成物理單位的長度。這裡,所謂“像素單位”是指將攝像元件的像素(或者拍攝圖像的像素)的大小作為單位。所謂“物理單位”是指公尺等物理量的單位。
這種分度比例(物理單位和像素單位的對應關係)能預先透過實驗等測定,此外,儘管分散介質的黏度η和溫度T可測定,可是為了進行上述的測定需要各種設備。此外,用顯微鏡觀測的場所的溫度測量很困難。
鑒於上述的問題,本發明的目的在於提供使用例如標準粒子等粒徑已知的校正用的粒子(以下,稱校正用粒子)、進行拍攝目標粒子等物件物的測定裝置的校正的粒子測定裝置、校正方法以及測定裝置。
本發明提供一種粒子測定裝置,用於測定分散介質內的目標粒子的粒徑,其包括:圖像分析部,取得以規定時間間隔得到的多個拍攝圖像,(a)在校正模式下,根據所述多個拍攝圖像中的校正用粒子的光點的像素單位的位移,確定所述校正用粒子的光點的均方位移,(b)在測定模式下,根據所述多個拍攝圖像中的所述目標粒子的光點的像素單位的位移,確定所述目標粒子的光點的均方位移;以及粒徑分析部,(c)在分析模式下,根據所述校正用粒子的光點的均方位移以及所述校正用粒子的粒徑,從所述目標粒子的光點的均方位移匯出所述目標粒子的粒徑。
本發明提供一種校正方法,是用攝像裝置拍攝分散介質內的目標粒子並測定所述目標粒子的粒徑的粒子測定裝置的校正方法,其包括如下步驟:在所述粒子測定裝置中,根據以規定時間間隔得到的多個拍攝圖像中的校正用粒子的光點的像素單位的位移,確定所述校正用粒子的光點的均方位移;根據所述校正用粒子的光點的均方位移和所述校正用粒子的粒徑,在所述粒子測定裝置中,從基於以規定時間間隔得到的多個拍攝圖像中的、所述目標粒子的光點的像素單位的位移而確定的所述目標粒子的光點的均方位移,能夠計算出所述目標粒子的粒徑。
本發明提供一種測定裝置,用攝像裝置拍攝物件物並進行測定,所述測定裝置針對已知黏度的分散介質內的校正用粒子,根據斯托克斯-愛因斯坦公式,匯出物理單位的所述校正用粒子的均方位移,根據由所述攝像裝置以規定時間間隔多次拍攝所述分散介質內的校正用粒子得到的多個拍攝圖像中的、校正用粒子的光點的像素單位的位移,確定像素單位的所述校正用粒子的光點的均方位移,所述測定裝置具有利用所述物理單位的所述校正用粒子的均方位移與像素單位的所述校正用粒子的光點的均方位移的對應關係被校正後的分度。
按照本發明,可提供使用校正用粒子來進行拍攝目標粒子等物件物的測定裝置的校正的、粒子測定裝置、校正方法及測定裝置。
以下,根據附圖說明本發明的實施方式。
實施方式1
圖1是表示本發明實施方式1的粒子測定裝置的結構的圖。實施方式1的粒子測定裝置測定分散介質內的目標粒子的粒徑。如圖1所示,實施方式1的粒子測定裝置具備測定系統1和計算處理裝置2。測定系統1具備光學單元11和攝像裝置12。光學單元11是使分散介質滯留或者流通的光學性透明單元。光學單元11例如為流動池。攝像裝置12用攝像元件(CCD:Charge Coupled Device或者CMOS圖像感測器等)借助透鏡等光學系統光學拍攝目標粒子,且輸出包含以規定解析度2維排列的像素的拍攝圖像的圖像資料。攝像裝置12以快門速度(曝光時間)執行各拍攝圖像的拍攝,並以規定的時間間隔Δt連續生成多個拍攝圖像。另外,各拍攝圖像的曝光時間比時間間隔Δt短。例如,幀率為30fps時,時間間隔Δt設定為約33ms。此外,曝光時間設定為30ms。
計算處理裝置2內置執行規定的程式的電腦,並按照程式執行規定的資料處理。計算處理裝置2透過按照程式執行,作為各種處理部動作。這裡,計算處理裝置2具備圖像分析部21、粒徑分析部22和控制部23。此外,計算處理裝置2具備非易失性的儲存裝置(快閃記憶體器、硬碟等)作為儲存部24。
圖像分析部21控制攝像裝置12,使攝像裝置12執行光學單元11的規定範圍的拍攝,並取得透過所述拍攝得到的拍攝圖像。具體地說,圖像分析部21取得由攝像裝置12以時間間隔Δt得到的多個拍攝圖像。
而且,圖像分析部21在(a)校正模式下,針對黏度和溫度未知的分散介質內的校正用粒子,根據取得的多個拍攝圖像中的粒徑dcal 為已知的校正用粒子的光點的畫面間的像素單位的位移,確定校正用粒子的均方位移ΔMS cal ,在(b)測定模式下,針對與校正模式時相同溫度的相同物質的分散介質內的、粒徑d為未知的目標粒子,根據取得的多個拍攝圖像中的、目標粒子的光點的畫面間的像素單位的位移,確定目標粒子的均方位移ΔMS
即,不必將校正用粒子的光點的均方位移ΔMS cal 以及目標粒子的光點的均方位移ΔMS 的像素單位轉換為物理單位。
圖2是說明從多幀拍攝圖像得到的、粒子的光點的軌跡的圖。如圖2所示,從時刻j、j+1、……、j+4、……、j+N的拍攝圖像101,得到粒子Pi(校正用粒子或目標粒子)的光點的、各畫面間的位移。具體地說,作為從時刻j的拍攝圖像101中的、粒子Pi的光點的位置,至時刻j+1的拍攝圖像101中的、粒子Pi的光點的位置的距離(像素單位),得到從時刻j至時刻j+1的、粒子Pi的光點的位移s(i,j+1),同樣,得到粒子Pi的光點的位移s(i,j+2)、……、s(i,j+N)。而後,求出這種位移的均方作為均方位移(ΔMS cal 或ΔMS )。另外,粒子的光點較大時,作為光點的重心求出粒子的位置。
具體地說,圖像分析部21對各拍攝圖像中的多個粒子的光點進行編號i(i=1、2、……、n),而後,將多個拍攝圖像中的各粒子Pi、……、Pn的位置(像素座標值)與各粒子Pi相關聯後儲存到儲存部24中,這樣,得到規定數量的拍攝圖像中的、各粒子Pi的位置,接著,從儲存部24讀出各粒子Pi的位置,並採用上述的方法計算均方位移(ΔMS cal 或ΔMS )。
另外,由來自同一校正用粒子群的多個光點觀測求出的、均方位移的代表值(平均值,或者中央值),被定義為所述校正用粒子的均方位移ΔMS cal 。此外,本實施方式中,表示上述位移的長度的單位,可以不是物理單位,是像素單位。
在校正模式中,例如用鐳射或者白色光等照射光學單元11內的分散介質的規定區域(攝像裝置12的視角內的區域。以下,稱拍攝區域)。圖像分析部21取得拍攝分散介質中的校正用粒子所得的多個拍攝圖像。在測定模式中,用鐳射或者白色光等照射光學單元11內的分散介質的拍攝區域,圖像分析部21取得拍攝分散介質中的目標粒子所得的多個拍攝圖像。校正模式中採用的鐳射或者白色光等照射光,也可以和測定模式中所採用的照射光不同。
例如,使作為光學單元11的流動池內分散介質在圖1中的y軸方向上流通,並從x軸方向朝分散介質照射鐳射,攝像裝置12從z軸方向透過接收來自粒子的散射光以拍攝粒子。另外,此時的分散介質的流速,例如對應拍攝區域的y軸方向的長度和快門速度等設定。
另外,分散介質中存在流場時(即,分散介質流動時),採用已知的方法(上述的專利文獻的方法或者流體模擬等)預先確定與攝像裝置12的視角對應的、光學單元11內的區域中的分散介質的流速分佈。圖像分析部21在(a)校正模式下,根據分散介質的流速分佈修正校正用粒子的位移,並根據修正後的位移確定校正用粒子的均方位移ΔMS cal ,(b)在測定模式下,根據分散介質的流速分佈修正目標粒子的位移,並根據修正後的位移確定目標粒子的均方位移ΔMS 。另外,校正模式下的分散介質體的流速分佈與測定模式下的分散介質的流速分佈可以相同也可以不同。透過採用流場進行校正,可以增加樣本數,因此精度提高。
所述流速分佈在拍攝區域中可以恆定(即,大小和朝向恆定),也可以在拍攝區域中不恆定。上述的流速分佈在拍攝區域中不恆定的情況下,預先分別確定拍攝圖像的多個位置的流速(大小和朝向)。
圖3是說明基於流速分佈的粒子的位移的修正的圖。如圖3所示,圖像分析部21根據所述流速分佈,確定粒子(校正用粒子或目標粒子)的位置上的流速,而後,在所述流速下確定上述的時間間隔Δt中、分散介質移動的各方向的距離(x方向的距離和y方向的距離),透過從粒子的各方向的位移減掉所確定的各方向的距離,修正時間間隔Δt內的粒子的位移。這樣透過進行基於流速分佈的粒子的位移的修正,把分散介質的流場的影響除去,得到布朗運動的粒子的位移。
粒徑分析部22在(c)分析模式下,根據校正用粒子的均方位移ΔMS cal 和已知的校正用粒子的粒徑dcal (物理單位的名義值或其他方法得到的測定值),從目標粒子的均方位移ΔMS 匯出目標粒子的粒徑d(物理單位),並將匯出的粒徑d儲存到儲存部24中。另外,透過將已知的校正用粒子的粒徑dcal 表示為物理單位的長度,因此這裡匯出的目標粒子的粒徑d也同樣表示為物理單位的長度。
具體地说,根據上述的均方位移ΔMS 與自擴散係數D的關係式以及斯托克斯-爱因斯坦公式,可以將均方位移ΔMS 與粒徑d的積ΔMS ×d表示為(4・kB ・Δt・T)/(3π・η),即,只要溫度T和黏度η恆定,則均方位移ΔMS 與粒徑d的積ΔMS ×d就恆定,因此,目標粒子的粒徑d由下式導出。這裡ΔMS cal 和dcal 在校正模式下為已知,在測定模式下透過測定各目標粒子的ΔMS ,得到各目標粒子的粒徑d。
d=ΔMS cal ×dcalMS
在校正模式中,圖像分析部21將包含校正用粒子的均方位移ΔMS cal 或與所述校正用粒子的均方位移ΔMS cal 對應的值(後述的裝置常數K等)的校正資料儲存在儲存部24中,在分析模式下,粒徑分析部22從儲存部24讀出校正資料,並根據所述校正資料、從目標粒子的均方位移ΔMS 匯出目標粒子的粒徑d。即,校正資料在目標粒子測定前,被預先保存在所述粒子測定裝置中。如果校正用的分散介質與測定用的分散介質是相同的物質,則透過管理溫度,執行1次校正模式即可,隨後,可以在不採用校正模式的情況下,執行任意次測定模式。因此,可以在校正模式後立即執行測定模式,也可以不馬上執行測定模式。
這樣,所述粒子測定裝置在測定模式下確定目標粒子的均方位移ΔMS ,在分析模式下,根據校正用粒子的均方位移ΔMS cal 和校正用粒子的粒徑dcal ,能夠從目標粒子的均方位移ΔMS 匯出目標粒子的粒徑d,因此,生成包含校正用粒子的粒徑dcal 以及校正用粒子的均方位移ΔMS cal 或與校正用粒子的均方位移ΔMS cal 對應的值的校正資料,並將生成的校正資料存放在所述粒子測定裝置(儲存部24)中,由此,進行所述粒子測定裝置的校正。
此外,圖像分析部21在校正模式中,可以計算上述的校正用粒子的均方位移ΔMS cal 與已知的校正用粒子的粒徑的積(ΔMS cal ×dcal )作為裝置常數K,粒徑分析部22在分析模式中,用裝置常數K除以目標粒子的均方位移ΔMS ,根據下式匯出目標粒子的粒徑d。
d=K/ΔMS
這種情況下,在校正模式中,裝置常數K可以作為校正資料儲存在儲存部24中,在分析模式下,由粒徑分析部22從儲存部24讀出裝置常數K,並用裝置常數K除以目標粒子的均方位移ΔMS ,匯出目標粒子的粒徑d。
另外,目標粒子的粒徑d非恆定時,圖像分析部21可以按照目標粒子分別匯出均方位移ΔMS ,粒徑分析部22針對每個目標粒子匯出粒徑d,且把匯出的粒徑d分類在規定的多個粒徑範圍的某一個,並分別對所述規定的多個粒徑範圍內的粒子數進行計數。此時,粒徑分析部22將其計數結果(即,各粒徑範圍內的粒子數)儲存在儲存部24中。
此外,圖像分析部21也可以確定拍攝圖像內的多個位置上的、裝置常數K的二維分佈,並根據所述裝置常數K的二維分佈,匯出拍攝圖像內的目標粒子的位置上的粒徑d。即,在校正模式中,預先確定多個位置上的裝置常數K的二維分佈,在分析模式中,可以根據所述裝置常數K的二維分佈,確定拍攝圖像內的目標粒子的位置上的裝置常數K。此外,圖像分析部21可以將拍攝圖像劃分為多個區域,並確定各個區域劃分中的校正用粒子的均方位移ΔMS cal ,粒徑分析部22根據拍攝圖像內的、包含目標粒子的位置的區域劃分中的、校正用粒子的均方位移ΔMS cal ,匯出目標粒子的粒徑d。這樣,在拍攝區域中,即使攝像裝置12的光學倍率對應位置而不同,也能準確地匯出各位置上的目標粒子的粒徑。
此外,當匯出目標粒子的粒徑d時,也可以使用與拍攝圖像內的目標粒子的位置最接近的位置上的校正用粒子的均方位移ΔMS cal 或者裝置常數K,或者,根據接近拍攝圖像內的目標粒子的位置的、規定數量(多個)的位置上的校正用粒子的均方位移ΔMS cal 或者裝置常數K,使用拍攝圖像內的目標粒子的位置上的均方位移ΔMS cal 或者裝置常數K作為位置的函數。
控制部23根據使用者操作等,將動作模式設定為校正模式、測定模式和分析模式中的任意一個,使各處理部(圖像分析部21和粒徑分析部22)執行各動作模式下的規定動作,此外,將由粒徑分析部22得到的粒徑或者計數結果等向外部裝置輸出。可以從測定模式自動向分析模式切換。
另外,本實施方式中,在校正模式和測定模式下,分散介質的溫度T用已知的方法進行控制,保持在規定值上。
接下來,說明實施方式1的粒子測定裝置的動作。圖4是說明實施方式1的粒子測定裝置的動作的流程圖。
首先,在校正模式下,包含校正用粒子且具有未知的黏度η的分散介質在光學單元11內滯留或流通。而後,若透過使用者操作等指定校正模式,則控制部23使圖像分析部21執行以下的校正模式的動作。
在分散介質中校正用粒子進行布朗運動。圖像分析部21使攝像裝置12以時間間隔Δt規定次數拍攝所述分散介質中的校正用粒子的光點,並從攝像裝置12取得所述次數的拍攝圖像(步驟S1)。
接下來,圖像分析部21確定各拍攝圖像中的校正用粒子的光點的位置,並針對每個校正用粒子的光點,將連續拍攝圖像中的校正用粒子進行關聯,從而確定各校正用粒子的光點的運動軌跡。當分散介質中存在流場時,將其影響去除。另外,連續的拍攝圖像中,一方的拍攝圖像中的位置與另一方的拍攝圖像中的位置之間的距離最短的光點,被確定為同一粒子的光點。而後,圖像分析部21根據該運動軌跡,以像素單位計算時間間隔Δt中的均方位移ΔMS cal ,並將所述均方位移ΔMS cal 和粒徑dcal 這對資料或者上述的裝置常數K作為校正資料,儲存在儲存部24中(步驟S2)。
這樣,在校正模式下,確定包含分散介質及其溫度T等測定條件的狀態的校正資料,由此,進行所述粒子測定裝置的校正。採用流場,可以使校正用粒子的樣本數更多。
之後,為了測定模式,光學單元11內的分散介質,被改變為包含目標粒子的分散介質。這裡,作為分散介質的介質自身,使用和校正模式下使用的分散介質相同的介質。而後,包含所述目標粒子的分散介質在光學單元11內滯留或流通,所述分散介質的溫度被控制在規定的溫度T,當透過使用者操作等指定測定模式時,控制部23使圖像分析部21和粒徑分析部22執行以下的測定模式的動作。
在分散介質中目標粒子進行布朗運動。圖像分析部21使攝像裝置12以時間間隔Δt對所述分散介質中的目標粒子的光點進行規定次數拍攝,並從攝像裝置12取得所述次數的拍攝圖像(步驟S3)。
接下來,圖像分析部21確定各拍攝圖像中的目標粒子的光點的位置,並針對每個目標粒子的光點將連續拍攝圖像中的目標粒子進行關聯,和校正用粒子同樣,確定各目標粒子的光點的運動軌跡。而後,圖像分析部21根據該運動軌跡,對各目標粒子以像素單位計算時間間隔Δt中的均方位移ΔMS (步驟S4)。
這樣,如果確定了各目標粒子的均方位移ΔMS ,則動作模式切換為分析模式,粒徑分析部22從儲存部24讀出上述的校正資料,並根據所述校正資料,如上所述,根據各目標粒子的均方位移ΔMS 計算各目標粒子的粒徑d(步驟S5)。
這樣,在分析模式中,根據校正資料確定目標粒子的粒徑d。另外,在測定模式後,也可以透過使用者操作等指定分析模式。
如上所述,按照上述實施方式1,圖像分析部21取得以時間間隔Δt得到的多個拍攝圖像,(a)在校正模式下,根據所述多個拍攝圖像中的校正用粒子的位移(像素單位),確定校正用粒子的均方位移ΔMS cal ,(b)在測定模式下,根據所述多個拍攝圖像中的各目標粒子的位移(像素單位),確定各目標粒子的均方位移ΔMS 。而後,(c)在分析模式下,根據校正用粒子的均方位移ΔMS cal 以及校正用粒子的粒徑dcal ,由粒徑分析部22從各目標粒子的均方位移ΔMS 匯出各目標粒子的粒徑d。
這樣,可以使用校正用粒子簡單地進行粒子測定裝置的校正。即,只要在校正模式和測定模式下分散介質的黏度η與溫度T相同,則不必將以像素單位得到的位移換算為物理單位,即使分散介質的黏度η未知,也能夠準確測定目標粒子的粒徑。用於流場時,由於目標粒子通過拍攝區域,因此可以依次測定新的目標粒子的粒徑,只要流量已知,就可以測定個數濃度。
實施方式2
按照實施方式1,拍攝圖像內的像素單位的長度與物理單位(SI單位系統中的米單位等)的長度之間的分度校正不是必不可少的,但是,可以使用同樣的校正用粒子進行分度校正。實施方式2中,透過使用具有已知的黏度η的分散介質以及具有已知的粒徑dcal 的校正用粒子,進行用攝像裝置拍攝物件物並進行測定的測定裝置(光學顯微鏡等)的分度校正。
圖5是表示用實施方式2的校正方法校正的測定裝置的一例的圖。圖5所示的測定裝置具備測定系統61和計算處理裝置62。測定系統61具備攝像裝置71。攝像裝置71是和上述的攝像裝置12同樣的裝置。
計算處理裝置62是和計算處理裝置2同樣的裝置。計算處理裝置62包括圖像分析部81、粒徑分析部82和控制部83。此外,計算處理裝置62具備非易失性的儲存裝置(快閃記憶體器、硬碟等)作為儲存部84。
圖像分析部81控制攝像裝置71,使攝像裝置71執行規定範圍的拍攝,並取得透過所述拍攝得到的拍攝圖像。本實施方式中,圖像分析部81取得由攝像裝置71以時間間隔Δt拍攝的多個拍攝圖像。控制部83根據使用者操作等,使各處理部(圖像分析部81)執行物件物的測定等處理。
另外,由此成為實施方式2的校正方法的物件的測定裝置,也可以是使用攝像裝置71觀測物件物的光學顯微鏡等。即使這種光學顯微鏡,也能以分度比例進行從拍攝圖像內的長度(像素數)向物理單位的實際尺寸的轉換。
圖6是說明實施方式2的校正方法的流程圖。
校正時,首先,在攝像裝置71的拍攝範圍內配置光學單元72,包含校正用粒子的、具有已知的黏度的分散介質在光學單元72內滯留或流通。採用流場時,可以使校正用粒子的樣本數更多。在該狀態下,圖像分析部81和實施方式1同樣,取得由攝像裝置71以時間間隔Δt拍攝的分散介質內的校正用粒子得到的多個拍攝圖像(步驟S11),並和實施方式1同樣,根據取得的多個拍攝圖像中的、校正用粒子的光點的位移,由圖像分析部81確定作為測定值的像素單位下的、校正用粒子的光點的均方位移ΔMS cal1 (步驟S12)。
而且,圖像分析部81針對分散介質內的校正用粒子,根據斯托克斯-愛因斯坦公式和上述的均方位移ΔMS cal 與自擴散係數D的關係式,從校正用粒子的已知的粒徑dcal (物理單位)、分散介質的黏度η和溫度T等,匯出作為理論值的、物理單位的校正用粒子的光點的均方位移ΔMS cal2 (步驟S13)。
接下來,圖像分析部81將上述物理單位的校正用粒子的光點的均方位移ΔMS cal2 與上述像素單位的校正用粒子的光點的均方位移ΔMS cal1 的對應關係(這裡為兩者的比,即分度比例)作為校正資料,儲存在測定裝置的儲存部84中(步驟S14)。
隨後,在觀測物件物時,使用所述對應關係(分度比例),將拍攝圖像內的像素單位下的長度(位移、粒徑等)轉換為物理單位的長度。
如上所述,按照上述實施方式2,(a)根據由攝像裝置以時間間隔Δt多次拍攝分散介質內的校正用粒子得到的多個拍攝圖像中的校正用粒子的光點的位移(像素單位),確定像素單位下的校正用粒子的光點的均方位移ΔMS cal1 ,(b)根據基於斯托克斯-愛因斯坦公式計算的、物理單位的校正用粒子的光點的均方位移ΔMS cal2 與像素單位下的校正用粒子的光點的均方位移ΔMS cal1 的對應關係,設定分度比例。因此,所述測定裝置具備根據物理單位的校正用粒子的光點的均方位移ΔMS cal2 與像素單位的校正用粒子的光點的均方位移ΔMS cal1 的對應關係被校正的分度。
這樣,由於根據物理單位的校正用粒子的光點的均方位移ΔMS cal2 與像素單位的校正用粒子的光點的均方位移ΔMS cal1 確定分度,所以可以使用校正用粒子簡單地進行拍攝物件物的測定裝置的分度校正。
另外,對上述的實施方式的各種變更和修正,對本領域技術人員來說是顯而易見的。在不脫離本發明思想的內容和範圍的情況下,且非有意變劣,可以實施各種所述變更和修正。即,所述變更和修正也包含在本發明的申請專利範圍內。
例如,在上述實施方式1中,在校正模式下,可以將均方位移ΔMS cal 或裝置常數K作為拍攝圖像內的位置(即x,y座標值)的函數求出,在測定模式下,可以使用所述函數求出目標粒子的位置上的均方位移ΔMS cal 或裝置常數K。
此外,在上述實施方式2中,考慮攝像裝置12、71的有限長的曝光時間τ,可以用(Δt-τ/3)代替自擴散係數D與均方位移ΔMS cal 的關係式中的時間間隔Δt,匯出物理單位下的校正用粒子的光點的均方位移ΔMS cal2
工業適用性
本發明能應用於例如進行粒徑的測定等的測定裝置及其校正。
1、61:測定系統 2:計算處理裝置 11、7:光學單元 12、71:攝像裝置 21、81:圖像分析部 22、82:粒徑分析部 23、83:控制部 24、84:儲存部 62:計算處理裝置 101:拍攝圖像
圖1是表示本發明實施方式1的粒子測定裝置的結構的一例的圖。 圖2是說明用多幀拍攝圖像得到的粒子的光點的軌跡的圖。 圖3是說明基於流速分佈的粒子的位移的修正的圖。 圖4是說明實施方式1的粒子測定裝置的動作的流程圖。 圖5是表示用實施方式2的校正方法進行校正的測定裝置的一例的圖。 圖6是說明實施方式2的校正方法的流程圖。
1:測定系統
2:計算處理裝置
11:光學單元
12:攝像裝置
21:圖像分析部
22:粒徑分析部
23:控制部
24:儲存部

Claims (8)

  1. 一種粒子測定裝置,用於測定一分散介質內的一目標粒子的粒徑,包括: 一圖像分析部,取得以一規定時間間隔得到的多個拍攝圖像,(a)在一校正模式下,根據所述多個拍攝圖像中的一校正用粒子的光點的像素單位的位移,確定所述校正用粒子的光點的均方位移,(b)在一測定模式下,根據所述多個拍攝圖像中的所述目標粒子的光點的像素單位的位移,確定所述目標粒子的光點的均方位移;以及 一粒徑分析部,(c)在一分析模式下,根據所述校正用粒子的光點的均方位移以及所述校正用粒子的粒徑,從所述目標粒子的光點的均方位移匯出所述目標粒子的粒徑。
  2. 如請求項1所述的粒子測定裝置,其中所述圖像分析部(a)在所述校正模式下,根據所述分散介質的一流速分佈、修正所述校正用粒子的光點的像素單位的位移,且確定所述校正用粒子的光點的均方位移, (b)在所述測定模式下,根據所述分散介質的所述流速分佈、修正所述目標粒子的光點的像素單位的位移,確定所述目標粒子的光點的均方位移。
  3. 如請求項1或2所述的粒子測定裝置,其中所述粒徑分析部把匯出的所述粒徑分類在規定的多個粒徑範圍的任意一個中,並分別對所述規定的多個粒徑範圍中的粒子數進行計數。
  4. 如請求項1所述的粒子測定裝置,其中, 所述圖像分析部取得以所述規定時間間隔得到的所述多個拍攝圖像,(a)在所述校正模式下,根據所述多個拍攝圖像中的所述校正用粒子的光點的像素單位的位移,確定所述校正用粒子的光點的均方位移,並計算所述校正用粒子的光點的均方位移與所述校正用粒子的粒徑的積,作為一裝置常數,(b)在所述測定模式下,根據所述多個拍攝圖像中的所述目標粒子的光點的像素單位的位移,確定所述目標粒子的光點的均方位移, 所述粒徑分析部(c)在所述分析模式下,用所述裝置常數除以所述目標粒子的光點的均方位移,匯出所述目標粒子的粒徑。
  5. 如請求項4所述的粒子測定裝置,其中, 所述圖像分析部分別確定所述多個拍攝圖像內的多個位置上的、所述校正用粒子的光點的均方位移, 所述粒徑分析部根據所述多個拍攝圖像內的多個位置上的、所述裝置常數的二維分佈,匯出所述多個拍攝圖像內的、所述目標粒子的光點的位置上的粒徑。
  6. 一種校正方法,是用一攝像裝置拍攝一分散介質內的一目標粒子並測定所述目標粒子的粒徑的一粒子測定裝置的校正方法,所述校正方法包括如下步驟: 在所述粒子測定裝置中,根據以一規定時間間隔得到的多個拍攝圖像中的一校正用粒子的光點的像素單位的位移,確定所述校正用粒子的光點的均方位移; 根據所述校正用粒子的光點的均方位移和所述校正用粒子的粒徑,在所述粒子測定裝置中,從基於以所述規定時間間隔得到的多個拍攝圖像中的、所述目標粒子的光點的像素單位的位移而確定的所述目標粒子的光點的均方位移,能夠計算出所述目標粒子的粒徑。
  7. 如請求項6所述的校正方法,其中根據所述分散介質的一流速分佈,修正所述校正用粒子的光點的像素單位的位移,確定所述校正用粒子的光點的均方位移。
  8. 一種測定裝置,用一攝像裝置拍攝一物件物並進行測定,其中, 針對已知黏度的一分散介質內的一校正用粒子,根據斯托克斯-愛因斯坦公式,匯出一物理單位的所述校正用粒子的均方位移, 根據由所述攝像裝置以一規定時間間隔多次拍攝所述分散介質內的所述校正用粒子得到的多個拍攝圖像中的、所述校正用粒子的光點的像素單位的位移,確定一像素單位的所述校正用粒子的光點的均方位移, 所述測定裝置具有利用所述物理單位的所述校正用粒子的均方位移與所述像素單位的所述校正用粒子的光點的均方位移的對應關係被校正後的分度。
TW108135884A 2018-10-04 2019-10-03 粒子測定裝置、校正方法以及測定裝置 TWI810375B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018188919A JP7116419B2 (ja) 2018-10-04 2018-10-04 粒子測定装置、較正方法、および測定装置
JP2018-188919 2018-10-04

Publications (2)

Publication Number Publication Date
TW202028716A true TW202028716A (zh) 2020-08-01
TWI810375B TWI810375B (zh) 2023-08-01

Family

ID=70055596

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108135884A TWI810375B (zh) 2018-10-04 2019-10-03 粒子測定裝置、校正方法以及測定裝置

Country Status (6)

Country Link
US (1) US11774340B2 (zh)
EP (1) EP3862742A4 (zh)
JP (1) JP7116419B2 (zh)
CN (1) CN112840199B (zh)
TW (1) TWI810375B (zh)
WO (1) WO2020071306A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022075198A (ja) * 2020-11-06 2022-05-18 住友金属鉱山株式会社 気泡測定装置及び気泡測定方法
IT202000031394A1 (it) * 2020-12-18 2022-06-18 Nuova Ompi Srl Apparato e metodo per ispezionare contenitori cilindrici trasparenti contenenti prodotti gel o viscosi trasparenti o semi trasparenti, in particolare per applicazioni medicali
JPWO2022163230A1 (zh) * 2021-01-26 2022-08-04

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070229823A1 (en) * 2006-03-31 2007-10-04 Intel Corporation Determination of the number concentration and particle size distribution of nanoparticles using dark-field microscopy
JP2008046077A (ja) * 2006-08-21 2008-02-28 Taiheiyo Cement Corp 粒度測定方法
TW200829903A (en) * 2007-01-08 2008-07-16 Yung-Shin Tarng Method of optical particle size full inspection
EP2206021B1 (en) * 2007-10-30 2015-01-28 New York University Tracking and characterizing particles with holographic video microscopy
US9074980B2 (en) * 2011-01-20 2015-07-07 Industry-University Corporation Foundation Hanyang University Method for the toxicity assessments of nano-materials
US10132736B2 (en) 2012-05-24 2018-11-20 Abbvie Inc. Methods for inspection of protein particles in a liquid beneficial agent
CN102692364B (zh) * 2012-06-25 2014-05-28 上海理工大学 采用一种基于模糊图像处理的动态颗粒测量装置的颗粒测量方法
CN103076265B (zh) * 2013-01-11 2016-08-03 战仁军 一种颗粒分布和直径的测量装置
GB2520491A (en) 2013-11-20 2015-05-27 Malvern Instr Ltd Improvements in or relating to calibration of instruments
CN104374676B (zh) * 2014-11-25 2017-02-22 中国科学技术大学 一种基于光学俘获的颗粒粒径检测方法
WO2016159131A1 (ja) 2015-03-30 2016-10-06 国立研究開発法人産業技術総合研究所 粒子径計測方法及びその装置
KR101766838B1 (ko) * 2016-01-26 2017-08-23 윈포시스(주) 입자 분석 장치
WO2017136664A1 (en) * 2016-02-05 2017-08-10 Purdue Research Foundation System and methods of analyzing particles in a fluid
JP6638526B2 (ja) * 2016-04-01 2020-01-29 住友金属鉱山株式会社 粒度分布測定装置及び粒度分布測定方法
US9857283B1 (en) 2016-07-01 2018-01-02 MANTA Instruments, Inc. Method for calibrating investigated volume for light sheet based nanoparticle tracking and counting apparatus
WO2018105605A1 (ja) 2016-12-06 2018-06-14 国立研究開発法人産業技術総合研究所 流速分布計測方法及び粒径計測方法
WO2018190162A1 (ja) 2017-04-14 2018-10-18 リオン株式会社 粒子測定装置および粒子測定方法
JP6549747B2 (ja) 2017-04-14 2019-07-24 リオン株式会社 粒子測定装置および粒子測定方法
WO2019050847A1 (en) * 2017-09-05 2019-03-14 Nongjian Tao RAPID DETECTION OF BACTERIA AND ANTIBIOTIC SENSITIVITY TESTING BY PRECISION MONITORING OF BACTERIAL CELLS
US10533984B2 (en) * 2017-12-05 2020-01-14 International Business Machines Corporation Distinguishing fluids based upon determination and analysis of digital image color space characteristics

Also Published As

Publication number Publication date
TWI810375B (zh) 2023-08-01
CN112840199B (zh) 2024-06-14
JP7116419B2 (ja) 2022-08-10
EP3862742A1 (en) 2021-08-11
WO2020071306A1 (ja) 2020-04-09
CN112840199A (zh) 2021-05-25
EP3862742A4 (en) 2022-07-06
JP2020056743A (ja) 2020-04-09
KR20210066809A (ko) 2021-06-07
US20210348999A1 (en) 2021-11-11
US11774340B2 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
JP6976605B2 (ja) 粒子径計測方法及びその装置
US8648918B2 (en) Method and system for obtaining a point spread function using motion information
TWI674401B (zh) 粒子測量裝置和粒子測量方法
TWI810375B (zh) 粒子測定裝置、校正方法以及測定裝置
JP5273408B2 (ja) 2写真照合に基づく奥行き推定のための4次元多項式モデル
CN102692364B (zh) 采用一种基于模糊图像处理的动态颗粒测量装置的颗粒测量方法
TWI393980B (zh) The method of calculating the depth of field and its method and the method of calculating the blurred state of the image
JP6726687B2 (ja) 粒子分析装置及び粒子分析方法
WO2017094380A1 (ja) 情報処理装置、スペックルイメージングシステム、及び情報処理方法
JP2018036117A (ja) 距離計測装置、撮像制御装置
CN114424044A (zh) 颗粒测量装置和颗粒测量方法
CN111442845A (zh) 基于距离补偿的红外测温方法、装置及计算机存储介质
WO2021199797A1 (ja) 粒子の屈折率計測方法
GB2589012A (en) Particulate observation device and particulate observation method
US9417196B2 (en) X-ray diffraction based crystal centering method using an active pixel array sensor in rolling shutter mode
TWI712817B (zh) 在計量工具中藉由影像分級之直接聚焦
KR102724822B1 (ko) 입자 측정 장치, 교정 방법, 및 측정 장치
Stamatopoulos et al. DIGITAL MODELLING OF CERAMIC SHERDS BY MEANS OF PHOTOGRAMMETRY AND MACROPHOTOGRAPHY: UNCERTAINTY CALCULATIONS AND MEASUREMENT ERRORS.
Vladimir et al. The measuring accuracy study of the light mark coordinates of laser modules
JPH0252204A (ja) 3次元座標計測装置
Santosi et al. Comparative analysis of Full Frame and APS-C camera sensors on 3D digitization results
Moru The effects of camera focus and sensor exposure on accuracy using computer vision
KR20110030239A (ko) 카메라 모듈을 이용한 피사체의 높이 또는 면적 측정 방법
JP6611687B2 (ja) 画像補正装置および画像補正方法
Blessing et al. Time-efficient intrinsic calibration of an automotive lidar sensor using a tabletop setup to reach subpixel precision