TW202027420A - 經封裝的電子裝置、耦合方法及電路系統 - Google Patents

經封裝的電子裝置、耦合方法及電路系統 Download PDF

Info

Publication number
TW202027420A
TW202027420A TW108129181A TW108129181A TW202027420A TW 202027420 A TW202027420 A TW 202027420A TW 108129181 A TW108129181 A TW 108129181A TW 108129181 A TW108129181 A TW 108129181A TW 202027420 A TW202027420 A TW 202027420A
Authority
TW
Taiwan
Prior art keywords
terminal
load
coupled
circuit
transistor
Prior art date
Application number
TW108129181A
Other languages
English (en)
Inventor
麥克J 甘布查
艾利克L 古德
Original Assignee
美商力特福斯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商力特福斯股份有限公司 filed Critical 美商力特福斯股份有限公司
Publication of TW202027420A publication Critical patent/TW202027420A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/78Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
    • H03K17/785Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled controlling field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/689Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver

Abstract

一種閂鎖繼電器包括供電端子、負載端子、第一耦合電路及第二耦合電路、閂鎖電路、第一電晶體及第二電晶體以及耦合至電容器的本地供電節點。在一個實例中,供電端子耦合至供電節點且負載端子耦合至負載。第一電晶體及第二電晶體控制耦合至負載的驅動電晶體的導電性。微控制器控制閂鎖繼電器接通及關斷負載。為啟用負載,微控制器自供電端子經由第一耦合電路汲取電流。在負載被啟用的同時,對電容器進行放電。閂鎖繼電器能夠以再新模式操作,在再新模式操作中電流脈動地經過第一耦合電路,進而使電容器再次自供電端子充電。為禁用負載,微控制器經由第二耦合電路汲取電流。

Description

具低接通電阻與線性操作之光學性隔離閂鎖固態繼電器
本發明大體而言是有關於經封裝的電子裝置,且具體而言是有關於切換繼電器。
閂鎖繼電器常常用於切換應用中以接通及關斷負載。在接通之後,閂鎖繼電器保持被閂鎖於接通狀態且使負載維持接通直至閂鎖繼電器被關斷。一種常見類型的閂鎖繼電器使用電磁鐵來機械地操作開關。該些機械類型的繼電器往往容易受到損壞。舉例而言,因跌落造成的撞擊可能會損壞繼電器的內部機械組件,進而使繼電器無法操作。另一種常見類型的切換繼電器是固態繼電器。傳統的固態繼電器使用矽控整流器(Silicon-Controlled Rectifier,SCR)來接通負載並維持接通狀態。該些傳統的固態繼電器通常要求使用單獨的電源以保持被閂鎖於接通狀態。另外,傳統的固態繼電器往往具有不期望的操作特性。因此需要提供克服該些挑戰的解決方案。
一種閂鎖繼電器包括供電端子、負載端子、第一耦合電路及第二耦合電路、閂鎖電路、第一電晶體及第二電晶體以及耦合至電容器的本地供電節點。所述閂鎖繼電器是具有封裝端子的分立的經封裝的功率半導體裝置。所述供電端子及所述負載端子是所述閂鎖繼電器的封裝端子。所述閂鎖繼電器由外部信令機構(例如微控制器)控制,以接通負載、使所述負載維持於接通狀態且接著關斷負載。所述供電端子耦合至供電節點且所述負載端子耦合至所述負載。所述第一電晶體及所述第二電晶體對耦合至所述負載的驅動電晶體的導電性進行控制。在一個實施例中,所述驅動電晶體位於所述閂鎖繼電器的所述封裝內,且在另一實施例中,所述驅動電晶體位於所述閂鎖繼電器的所述封裝之外。
所述第一耦合電路及所述第二耦合電路涉及到任何電磁能量耦合方法,包括光學耦合、電感性耦合或電容性耦合。在一個實例中,所述第一耦合電路及所述第二耦合電路是利用光學耦合技術的光耦合器電路。所述第一光耦合器包括發光二極體(light emitting diode,LED)以及光伏打堆疊及光電二極體(PhotoVoltaic Stack and Photo Diode,PVSPD)電路。所述PVSPD電路包括光伏打堆疊及光電二極體。所述PVSPD電路的所述光伏打堆疊用於啟用所述閂鎖繼電器的再新模式。所述PVSPD電路的光電二極體用於開啟所述閂鎖繼電器。所述第二光耦合器電路包括LED及光電二極體電路。所述第二光耦合器的所述光電二極體電路用於禁用所述閂鎖繼電器及關斷所述負載。所述第一光耦合器電路及所述第二光耦合器電路確保控制側的接地與負載側的接地隔離。
為啟用所述負載,所述微控制器自所述供電端子經由所述第一光耦合器電路汲取電流。經由所述第一光耦合器電路汲取電流會使所述第一光耦合器電路的LED放射出能量,所述能量由光電二極體檢測到。所述光電二極體被啟用而使得所述閂鎖電路對由所述閂鎖電路輸出的數位邏輯位準進行切換。所述閂鎖電路的輸出繼而對電晶體的導電性進行切換,進而控制所述驅動電晶體開啟。一旦所述驅動電晶體被接通,電流便自負載電源的正端子透過所述負載、透過所述驅動電晶體而流至所述負載的負端子。與使用SCR達成的傳統閂鎖繼電器不同,所述閂鎖繼電器表現出線性操作特性。在一個實例中,所述閂鎖繼電器包括金屬氧化物半導體場效電晶體(metal-oxide-semiconductor field effect transistor,MOSFET)電晶體,相較於SCR,MOSFET表現出更可取的線性操作特性。
根據一個新穎態樣,所述本地供電節點對所述閂鎖繼電器內的電路系統進行供電。此電路系統包括所述第一光耦合器電路及所述第二光耦合器電路、所述閂鎖電路以及所述電晶體。所述本地供電節點由所述電容器進行供電。當所述閂鎖繼電器被閂鎖於接通狀態時,所述本地供電節點對閂鎖繼電器電路系統進行供電以維持所述接通狀態,而不會消耗來自負載側的能量,此乃因當驅動電晶體處於接通狀態時不存在可用的電壓。在負載被啟用的同時,儲存於電容器中的能量被閂鎖繼電器電路系統消耗,所述閂鎖繼電器電路包括使負載維持接通的驅動電晶體的閘極。隨著儲存於電容器中的能量減少,本地供電節點上的電壓開始減小。假如本地供電節點上的電壓減小至低於最低操作電壓位準,則驅動電晶體的閘極將不再得到維持,進而關閉所述驅動電晶體。為避免本地供電節點上的電壓不期望地減小至低於最低操作電壓位準,所述閂鎖繼電器以再新模式操作以對電容器進行再新且使所述本地供電節點上的電壓維持高於最低操作電壓位準。
在所述再新模式中,電流脈動地經過第一光耦合器電路的LED。此使第一光耦合器電路中的PVSPD電路的光伏打堆疊兩端產生電壓。此電壓用於對電容器進行充電。在一個實施例中,所述電容器處於閂鎖繼電器的封裝的外部且所述閂鎖繼電器具有與所述電容器的引線耦合的儲存端子。在另一實施例中,所述電容器處於閂鎖繼電器的封裝的內部且不包括儲存端子。在又一實施例中,所述經封裝的閂鎖繼電器中包括附加的負載供電端子。若負載電源可經由負載供電端子供電,則不需要電容器或再新模式,此乃因負載電源用於使本地供電節點維持高於最低操作電壓位準。
為禁用所述負載,微控制器經由第二光耦合器電路汲取電流。經由第二光耦合器電路汲取電流會使第二光耦合器電路的LED放射出能量,所述能量由光電二極體電路檢測到。所述光電二極體電路被禁用,進而使閂鎖電路被重置且使閂鎖電路的輸出對數位邏輯狀態進行切換。此繼而對電晶體的導電性進行切換,進而將驅動電晶體的閘極拉至接地位準且使驅動電晶體關閉。一旦驅動電晶體被關閉,電流便停止流經負載且負載被關斷。
其他細節及實施例將在以下詳細說明中進行闡述。本發明內容並非旨在對本發明進行界定。本發明由申請專利範圍進行界定。
現將詳細參照本發明的一些實施例,本發明的實例在附圖中示出。
圖1是系統10的圖,系統10包括新穎的光學性隔離閂鎖固態繼電器切換繼電器11。光學性隔離閂鎖固態切換繼電器11亦被稱為「切換繼電器」。系統10包括切換繼電器11、微控制器12、負載13、電壓電源14、負載電源15、微處理器電源16、電阻器17及電阻器18、第一接地19、第二接地20以及電容器21。切換繼電器11包括第一耦合電路22、第二耦合電路23、
Figure 02_image001
閂鎖24(「閂鎖電路」)、調節器電路25、二極體26至二極體28、反相器29、增強模式n通道金屬氧化物半導體場效電晶體(MOSFET)30及增強模式n通道金屬氧化物半導體場效電晶體(MOSFET)31、增強模式p通道MOSFET 32、輸入電壓端子33、設置/再新控制端子34、重置控制端子35、負載供電端子36、負載端子37、接地(或返回)端子38以及儲存端子39。MOSFET 30亦被稱為「驅動電晶體」。在此實例中,電容器處於閂鎖繼電器11外部,調節器電路22是電壓調節器,負載13是火警笛(fire siren),電壓電源14是3.3伏特至5.0伏特的電池,且負載電源15是24伏特的電池。
第一耦合電路22及第二耦合電路23是利用任何耦合方法(包括光學耦合、電感性耦合或電容性耦合)達成的。在圖1所示的實例中,第一耦合電路22及第二耦合電路23是光耦合器。第一光耦合器22包括發光二極體(LED)40以及光伏打堆疊及光電二極體(PVSPD)電路41。第二光耦合器23包括LED 42及光電二極體電路43。參考編號44標識由第一光耦合器22及第二光耦合器23形成的光學隔離屏障。
微控制器12包括供電端子45、控制端子46及控制端子47以及接地端子48。為簡化闡釋,未示出並省略了微控制器的內部電路系統的細節。供電端子45接收對微控制器12進行供電的輸入供電電壓。微控制器12產生設置/再新控制訊號49並將設置/再新控制訊號49輸出至控制端子46上。微控制器12產生重置控制訊號50並將重置控制訊號50輸出至控制端子47上。在一個實例中,微控制器12是Z32F128高階精簡指令集電腦(Reduced Instruction Set Computer,RISC)機器(Advanced RISC Machine,ARM)Cortex M3商用微控制器,所述Z32F128 ARM Cortex M3商用微控制器可自奇格洛公司(Zilog, Inc)購買,該公司地址為美國加利福尼亞州米皮塔市七葉樹大街1590號,郵遞區號為95035(1590 Buckeye Dr, Milpitas, CA 95035)。在操作中,閂鎖繼電器11可操作以切換流經負載13的電流,使得微控制器12選擇性地控制負載接通及關斷。以下參照圖3至圖7闡釋閂鎖繼電器的操作。
電容器21經由耦合至儲存端子39的本地供電節點63對閂鎖繼電器的電路系統進行供電。本地供電節點63耦合至電壓調節器25、二極體26的陰極端子、第一耦合電路22、第一電晶體32的端子及閂鎖電路24。當負載被啟用時,電容器21開始排放電流且本地供電節點63上的電壓位準開始降低。為對電容器21補充電能並確保本地供電節點63上的電壓足以對閂鎖繼電器的電路系統進行供電,微控制器12控制閂鎖繼電器11處於再新模式,由此使電流脈動地經過供電端子33及經過第一耦合電路22。經過第一耦合電路22的電流的此種脈動使電容器21被再充電。儘管電容器21被示出為相對於閂鎖繼電器11處於外部,然而在其他實施例中,電容器21處於閂鎖繼電器11的內部且不提供儲存端子(例如端子39)。
圖2是光學性隔離閂鎖固態繼電器切換繼電器11的詳細電路圖。第一光耦合器22包括LED 40,LED 40藉由放射出能量來控制PVSPD電路41。PVSPD電路41包括光伏打堆疊51、光電二極體52及電阻器53。第二光耦合器23包括LED 42,LED 42藉由放射出能量來控制光電二極體電路43。光電二極體電路43包括光電二極體54及電阻器55。電壓調節器25包括齊納二極體(Zener diode)56、電阻器57及電阻器58、NPN雙極接面電晶體59及空乏模式(depletion-mode)n通道MOSFET 60。
圖3是示出閂鎖繼電器11與負載13及微控制器12的初始連接的電路圖。負載13在開始時是關斷的。沒有明顯的電流流經所述負載。在初始連接之後,電容器21開始自電流62進行充電。電流62具有最低電流位準且不具有足以啟用負載13的電流位準。電流62亦被稱為「涓流電流(trickle current)」或「漏電流(leakage current)」。在圖3所示的實例中,涓流電流62小於100微安培。涓流電流62透過負載13、負載端子37、二極體28、電壓調節器25、儲存端子39而流至電容器21的引線上。涓流電流62對電容器21進行充電。
圖4是示出電容器21如何用於對本地供電節點63進行供電的電路圖。電容器21經由儲存端子39耦合至本地供電節點63且對本地供電節點63進行供電。本地供電節點63繼而對閂鎖繼電器11的電路系統進行供電。本地供電節點63耦合至第一耦合電路22、二極體26的陰極、電壓調節器25、PMOS電晶體32的源極端子及閂鎖電路24。在此實例中,電容器21處於閂鎖繼電器11的外部。電容器21具有耦合至儲存端子39的一個端子及耦合至接地20的另一端子。在另一實例中,導體21處於閂鎖繼電器11的內部及閂鎖繼電器11內且閂鎖電路11未提供有儲存端子。
圖5是示出閂鎖繼電器如何用於對負載13進行啟用的電路圖。微控制器12控制設置/再新控制訊號49自數位邏輯高位準切換至數位邏輯低位準。當設置/再新控制訊號49處於數位邏輯低位準時,第一耦合電路22自供電節點14汲取電流。電流自供電節點14經由供電端子33透過LED 40、經由控制端子34透過電阻器17而流至微控制器12的端子46上。參考編號64表示電流的此種流動。流經LED 40的電流使光電二極體52被啟動且將節點72拉低。此繼而對閂鎖電路24的
Figure 02_image009
輸入進行置位。因應於此,閂鎖電路24在閂鎖電路24的Q輸出端子上輸出數位邏輯高訊號66。反相器29接收數位邏輯高訊號66並對數位邏輯高訊號66進行反相且將數位邏輯低訊號67供應至PMOS電晶體32的閘極上,進而啟用PMOS電晶體32。一旦PMOS電晶體32被啟用,本地供電節點63便對驅動電晶體30的閘極施加偏壓,進而啟用驅動電晶體30。在驅動電晶體30被啟用之後,負載13便被接通且驅動電流65自負載電源15透過負載13、負載端子37、驅動電晶體30而經由端子38流至負載電源15的負端子上。設置/再新控制訊號49被切換至數位邏輯高位準且電流停止流經第一耦合電路22的LED 40。
在負載13被啟用的同時,電容器21開始放電。隨著電容器21的放電,本地供電節點63的電壓降低。由於藉由自本地供電節點63對驅動電晶體30的閘極進行供電而使驅動電晶體30維持於導電狀態,因此電容器21的放電是不期望的。假如電容器21放電至使驅動電晶體30關斷且不再導電的程度,則負載電流65將停止流動且負載13將關斷。如以下針對圖6所闡釋,閂鎖繼電器11被控制處於再新模式,進而自供電端子33而非自負載端子37對電容器21進行再充電。
圖6是示出在再新模式中如何藉由控制閂鎖繼電器11來對電容器21進行再充電的電路圖。為使本地供電節點63維持高於最低電壓以使驅動電晶體30維持於導電狀態且對閂鎖繼電器11的其他電路系統進行供電,微控制器12控制閂鎖繼電器11以再新模式操作。在再新模式中,設置/再新控制訊號49以預定小數量的工作循環(duty cycle)進行脈衝。在此實例中,設置/再新控制訊號49在再新模式中的工作循環是基於包括積體電路洩漏、外部MOSFET洩漏及板洩漏等設計因素而預先確定的。
在再新模式期間,電容器21經由供電端子33自供電節點14進行充電。在再新模式中電容器21並不自負載電源15或自負載端子37進行充電。當設置/再新控制訊號49在再新模式中被控制至數位邏輯高位準時,沒有電流流經耦合電路22的LED 40。LED 40或光伏打堆疊51皆不被啟用。因此,當設置/再新控制訊號49被控制至數位邏輯高位準時,電容器不被充電。
當設置/再新控制訊號49被控制至數位邏輯低位準時,LED 40將電流自供電節點14經由供電端子33汲取至控制端子34上。此使LED 40被啟用且放射出能量,所述能量被光伏打堆疊51吸收,進而啟用光伏打堆疊51。當光伏打堆疊51被啟用時,在光伏打堆疊51的兩端產生電壓+V。光伏打堆疊51兩端的電壓+V經由二極體26及儲存端子39對電容器21進行充電。參考編號68標識來自PVSPD電路41的對電容器21進行充電的電流路徑。因此,在設置/再新控制訊號49的低循環期間電容器21被充電。藉由以再新模式操作而使得電容器保持高於閂鎖繼電器11內的電路系統的最低操作電壓位準,電晶體30保持導電且負載13保持被啟用。
圖7是示出閂鎖繼電器如何將負載13自被啟用狀態切換至被禁用狀態的電路圖。微控制器12控制重置控制訊號50自數位邏輯高位準切換至數位邏輯低位準。當重置控制訊號50處於數位邏輯低位準時,第二耦合電路23自供電節點14汲取電流。電流自供電節點14經由供電端子33透過LED 42、經由控制端子35透過電阻器18而流至微控制器12的端子47上。參考編號69表示電流的此種流動。流經LED 42的電流使光電二極體54被啟動且將節點70拉低。此繼而對閂鎖電路24的
Figure 02_image011
輸入進行置位。因應於此,閂鎖電路24在Q輸出端子上輸出數位邏輯低訊號66且在
Figure 02_image013
輸出端子上輸出數位邏輯高訊號71。反相器29接收數位邏輯低訊號66並對數位邏輯低訊號66進行反相且將數位邏輯高訊號67供應至PMOS電晶體32的閘極上,進而禁用PMOS電晶體32。數位邏輯高訊號71被供應至NMOS電晶體31的閘極上,進而啟用NMOS電晶體31。一旦NMOS電晶體31被啟用,驅動電晶體30的閘極便經由NMOS電晶體31被拉低,進而禁用驅動電晶體30。在驅動電晶體30被禁用之後,負載13便被關斷。重置控制訊號50被切換至數位邏輯高位準且電流停止流經第二耦合電路23的LED 42。
圖8是在閂鎖繼電器11的操作期間沿著系統10的各個節點的電壓及電流的波形圖。在時間T0處,閂鎖繼電器連接至負載13,如圖3中所示。自時間T0至時間T1,電容器21開始藉由涓流電流63充電。隨著電容器21的充電,本地供電節點63上的電壓開始增大。在時間T1處,電容器21被充滿電,如圖4中所示。在此實例中,當電容器21被充滿電時,本地供電節點63處於12.0伏特。熟習此項技術者應理解,本地供電節點63的電壓可端視所選擇的電容器21的操作特性及負載13的負載要求而被配置成其他電壓。
在時間T2處,微控制器12控制閂鎖繼電器11啟用負載13,如圖5中所示。設置/再新控制訊號49自數位邏輯高位準被切換至數位邏輯低位準,此使得負載13開始開啟。自時間T1至時間T4,負載電流65增大。在此實例中,負載電流65達到5微安培,但應理解,負載電流將端視負載而達到不同的電流位準。在時間T2與時間T3之間,本地供電節點63因電容器21的放電而降低。在時間T3與時間T4之間,本地供電節點63因LED 40被啟用而增大,此使本地供電節點63被充電。
在時間T5處,微控制器12控制閂鎖繼電器11以再新模式操作。再新模式自時間T5延長至時間T11。在時間T5與時間T6之間,設置/再新控制訊號49自數位邏輯高位準被切換至數位邏輯低位準且電容器21被充電,進而使本地供電節點63上的電壓增大。在時間T6與時間T7之間,設置/再新控制訊號49自數位邏輯低位準被切換至數位邏輯高位準且電容器21被放電,進而使本地供電節點63上的電壓減小。此種脈動序列重複進行,如時間T8、時間T9及時間T10之間所示。
參考編號73標識在一個示例性實施例中設置/再新控制訊號49為低的時間(TP )與設置/再新控制訊號49為高的時間(TREF )之間的關係。電流ISC 表示當設置/再新控制訊號49為低時可用於自光伏打堆疊51對電容器進行充電的電流。電流IDIS 表示當設置/再新控制訊號49為高且電容器21放電時所消耗的電流。為防止本地供電節點63上的電壓減小至低於閂鎖繼電器11的最低操作電壓,需要具有關係73。
在時間T11處,微控制器12控制閂鎖繼電器11禁用負載13。重置控制訊號50自數位邏輯高位準被切換至數位邏輯低位準,此使得負載13開始關閉。自時間T11至時間T12,負載電流65減小直至負載電流65達到零。在時間T11之後,負載13被禁用並關斷。
圖9是根據一個新穎態樣的方法100的流程圖。
在第一步驟(步驟101)中,將閂鎖繼電器的負載端子耦合至負載。在負載保持於被禁用狀態的同時,負載經由負載端子對電容器進行充電。在圖3中,舉例而言,將閂鎖繼電器11經由負載端子37連接至負載13。負載13關斷且警笛未發出警報。負載13由負載電源13進行供電。閂鎖繼電器11經由供電節點33耦合至電壓電源14。閂鎖繼電器11由微控制器12藉由控制端子34及控制端子35進行控制。電容器21經由儲存端子39對本地供電節點63進行供電。如圖4中所示,隨著閂鎖繼電器的電路系統由本地供電節點63進行供電,電容器21開始放電。
在第二步驟(步驟102)中,將負載自被禁用狀態切換至被啟用狀態,使得電流自負載電源透過負載、透過閂鎖繼電器而流至閂鎖繼電器的另一端子。在負載處於被啟用狀態的同時,電容器對閂鎖繼電器進行供電。在圖5所示的實例中,微控制器12藉由將設置/再新控制訊號49驅動至數位邏輯低位準而控制閂鎖繼電器11啟用負載13。驅動電晶體30被啟用且負載13接通,進而使警笛發出警報。電流自負載電源15透過負載13、負載端子37、電晶體30的源極而經由返回端子38流至負載電源15的負端子。
在第三步驟(步驟103)中,藉由使電流脈動地經過閂鎖繼電器的供電端子而對電容器進行充電。在負載處於被啟用狀態的同時對電容器進行充電。在圖6所示的實例中,微控制器12藉由使設置/再新控制訊號49脈動而控制閂鎖繼電器11以再新模式操作。設置/再新控制訊號49根據預定工作循環進行脈動。使設置/再新控制訊號49脈動會使得電流被LED 40汲取且使得LED 40將能量放射至光伏打堆疊51上。在光伏打堆疊51的兩端會產生電壓V+,電壓V+經由二極體26及儲存端子39對電容器21進行充電。
在第四步驟(步驟104)中,將負載自被啟用狀態切換至被禁用狀態。舉例而言,微控制器12藉由將重置訊號50驅動至數位邏輯低位準而控制閂鎖繼電器11禁用負載13。驅動電晶體30被禁用且負載13關斷而使警笛停止發出警報。
圖10是閂鎖繼電器11的另一配置的電路圖,其中負載電源15直接耦合至負載供電端子36,進而不再需要電容器21或再新模式操作。當負載電源可用時(例如在圖10所示的實例中),負載電源15直接連接至閂鎖繼電器11而不需要電容器(例如圖1所示電容器21)。在圖10所示的配置中,當閂鎖繼電器11被閂鎖於接通狀態時,由於本地供電節點63自負載電源15進行供電,因此閂鎖繼電器11無需以再新模式操作。當閂鎖繼電器11被閂鎖於接通狀態時,電流自負載電源15透過負載供電端子36經由二極體27而流至電壓調節器25上。電壓調節器25繼而對本地供電節點63進行供電。只要負載電源15中儲存有足以使本地供電節點63維持高於最低操作電壓位準的能量,閂鎖繼電器11便將保持被啟用且負載13將保持接通。
圖11是經封裝的閂鎖繼電器200的另一實施例的電路圖,其中驅動電晶體201位於閂鎖繼電器之外。圖11所示經封裝的閂鎖繼電器200具有與圖1所示閂鎖繼電器11實質上相同的結構,不同的是驅動電晶體201位於經封裝的閂鎖繼電器200之外。在此實例中,經封裝的閂鎖繼電器200包括對電晶體201的閘極進行驅動的驅動端子202。圖11所示經封裝的閂鎖繼電器200採用與圖1所示閂鎖繼電器11實質上相同的方式操作,但由於減少了一個設置於封裝內的電晶體,因而經封裝的閂鎖繼電器200更小且製造成本更低。另外,經封裝的閂鎖繼電器200提供以下靈活性:經封裝的閂鎖繼電器200可被配置成對各種各樣的驅動電晶體進行驅動。
儘管以上出於說明目的而闡述了某些特定實施例,然而本專利檔案的教示內容具有普遍適用性且並不對以上所述的特定實施例進行限制。因此,在不背離申請專利範圍中所述的本發明範圍的條件下可對所述的實施例的各個特徵進行各種潤飾、修改及組合。
10:系統 11:光學性隔離閂鎖固態切換繼電器/切換繼電器/閂鎖繼電器/閂鎖電路 12:微控制器 13:負載 14:電壓電源 15:負載電源 16:微處理器電源 17、18、53、55、57、58:電阻器 19:第一接地 20:第二接地/接地 21:電容器 22:第一耦合電路/第一光耦合器/耦合電路 23:第二耦合電路/第二光耦合器 24:
Figure 02_image001
閂鎖/閂鎖電路 25:調節器電路 26、27、28:二極體 29:反相器 30:增強模式n通道金屬氧化物半導體場效電晶體(MOSFET)/MOSFET/驅動電晶體/電晶體 31:增強模式n通道MOSFET/NMOS電晶體 32:增強模式p通道MOSFET/PMOS電晶體 33:輸入電壓端子/供電端子/供電節點 34:設置/再新控制端子 / 控制端子 35:重置控制端子/控制端子 36:負載供電端子 37:負載端子 38:接地端子/返回端子 39:儲存端子/端子 40、42:發光二極體(LED) 41:光伏打堆疊及光電二極體(PVSPD)電路 43:光電二極體電路 44、64、68、69:參考編號 45:供電端子 46、47:控制端子/端子 48:接地端子 49:設置/再新控制訊號 50:重置控制訊號/重置訊號 51:光伏打堆疊 52、54:光電二極體 56:齊納二極體 59:NPN雙極接面電晶體 60:空乏模式n通道MOSFET 62:電流/涓流電流 63:本地供電節點 65:驅動電流/負載電流 66、67:數位邏輯高訊號/數位邏輯低訊號 71:數位邏輯高訊號 70、72:節點 73:參考編號/關係 100:方法 101、102、103、104:步驟 200:經封裝的閂鎖繼電器 201:驅動電晶體/電晶體 202:驅動端子 ISC、IDIS:電流 Q、
Figure 02_image003
:輸出端子
Figure 02_image005
Figure 02_image007
:輸入 T0、T1、T2、T3、T4、T5、T6、T7、T8、T9、T10、T11、T12:時間 TP:低的時間 TREF:高的時間 +V:電壓
附圖示出了本發明的實施例,在附圖中相同的參考編號指代相同的組件。 圖1是系統10的圖,系統10包括新穎的光學性隔離閂鎖固態繼電器切換繼電器11。 圖2是光學性隔離閂鎖固態繼電器切換繼電器11的詳細電路圖。 圖3是示出閂鎖繼電器11與負載13及微控制器12的初始連接的電路圖。 圖4是示出電容器21如何用於對本地供電節點63進行供電的電路圖。 圖5是示出閂鎖繼電器如何用於對負載13進行啟用的電路圖。 圖6是示出在再新模式中如何藉由對閂鎖繼電器11進行控制來對電容器21進行再充電的電路圖。 圖7是示出閂鎖繼電器如何將負載13自被啟用狀態切換至被禁用狀態的電路圖。 圖8是在閂鎖繼電器11的操作期間沿著系統10的各個節點的電壓及電流的波形圖。 圖9是根據一個新穎態樣的方法100的流程圖。 圖10是閂鎖繼電器11的另一配置的電路圖,其中負載電源15直接耦合至負載供電端子36,進而不再需要電容器21或再新模式操作。 圖11是經封裝的閂鎖繼電器200的另一實施例的電路圖,其中驅動電晶體201位於閂鎖繼電器之外。
10:系統
11:光學性隔離閂鎖固態切換繼電器/切換繼電器/閂鎖繼電器/閂鎖電路
12:微控制器
13:負載
14:電壓電源
15:負載電源
16:微處理器電源
17、18:電阻器
19:第一接地
20:第二接地/接地
21:電容器
22:第一耦合電路/第一光耦合器/耦合電路
23:第二耦合電路/第二光耦合器
24:
Figure 108129181-A0304-11-0003-4
閂鎖/閂鎖電路
25:調節器電路
26、27、28:二極體
29:反相器
30:增強模式n通道金屬氧化物半導體場效電晶體(MOSFET)/MOSFET/驅動電晶體/電晶體
31:增強模式n通道MOSFET/NMOS電晶體
32:增強模式p通道MOSFET/PMOS電晶體
33:輸入電壓端子/供電端子/供電節點
34:設置/再新控制端子/控制端子
35:重置控制端子/控制端子
36:負載供電端子
37:負載端子
38:接地端子/返回端子
39:儲存端子/端子
40、42:發光二極體(LED)
41:光伏打堆疊及光電二極體(PVSPD)電路
43:光電二極體電路
44:參考編號
45:供電端子
46、47:控制端子/端子
48:接地端子
49:設置/再新控制訊號
50:重置控制訊號/重置訊號
63:本地供電節點
Q、
Figure 108129181-A0304-11-0004-1
:輸出端子
Figure 108129181-A0304-11-0004-2
Figure 108129181-A0304-11-0004-3
:輸入

Claims (20)

  1. 一種經封裝的電子裝置,包括: 供電端子; 負載端子; 第一耦合電路; 第二耦合電路; 第一電晶體,具有第一端子、第二端子及第三端子; 第二電晶體,具有第一端子、第二端子及第三端子,其中所述第一電晶體的所述第三端子耦合至所述第二電晶體的所述第二端子;以及 閂鎖電路,具有第一端子及第二端子,其中所述閂鎖電路的所述第一端子耦合至所述第一耦合電路,且其中所述閂鎖電路的所述第二端子耦合至所述第二耦合電路,其中所述第一耦合電路能夠操作以將所述閂鎖電路配置成使所述第一電晶體的導電性及所述第二電晶體的導電性被切換,進而使電流流經耦合至所述負載端子的負載,且其中所述第二耦合電路能夠操作以將所述閂鎖電路配置成使所述第一電晶體的所述導電性及所述第二電晶體的所述導電性被切換,進而使電流停止流經所述負載。
  2. 如申請專利範圍第1項所述的經封裝的電子裝置,更包括: 本地供電節點,對所述閂鎖電路、所述第一耦合電路及所述第二耦合電路進行供電,其中所述第一電晶體的所述第二端子耦合至所述本地供電節點,其中所述本地供電節點是由電容器進行供電,且其中所述經封裝的電子裝置能夠以再新模式操作以使得在藉由使電流脈動地經過所述第一耦合電路而啟用所述負載的同時所述電容器被充電。
  3. 如申請專利範圍第1項所述的經封裝的電子裝置,其中所述經封裝的電子裝置不包括任何矽控整流器(SCR)裝置或任何機械繼電器,且其中所述閂鎖電路藉由光學耦合、電感性耦合或電容性耦合而耦合至所述第一耦合電路。
  4. 如申請專利範圍第1項所述的經封裝的電子裝置,更包括: 儲存端子,其中所述經封裝的電子裝置能夠被配置成使得電容器耦合至所述儲存端子; 第一二極體,具有第一端子及第二端子,其中所述第一二極體的所述第一端子耦合至所述第一耦合電路,且其中所述第一二極體的所述第二端子耦合至所述儲存端子; 第二二極體,具有第一端子及第二端子,其中所述第二二極體的所述第一端子耦合至所述負載端子;以及 調節器電路,具有第一端子、第二端子及第三端子,其中所述調節器電路的所述第一端子耦合至所述儲存端子,其中所述調節器電路的所述第一端子耦合至所述第一二極體的所述第二端子,其中所述調節器電路的所述第二端子耦合至所述第二二極體的所述第二端子,且其中所述調節器電路的所述第三端子耦合至所述經封裝的電子裝置的接地端子。
  5. 如申請專利範圍第1項所述的經封裝的電子裝置,更包括: 第三電晶體,具有第一端子、第二端子及第三端子,其中所述第三電晶體的所述第一端子耦合至所述第一電晶體的所述第三端子,其中所述第三電晶體的所述第一端子耦合至所述第二電晶體的所述第二端子,且其中所述第三電晶體的所述第二端子耦合至所述負載端子。
  6. 如申請專利範圍第1項所述的經封裝的電子裝置,其中所述經封裝的電子裝置是經封裝的光學性隔離閂鎖繼電器,且其中所述供電端子及所述負載端子是所述經封裝的光學性隔離閂鎖繼電器的封裝端子。
  7. 如申請專利範圍第1項所述的經封裝的電子裝置,其中所述閂鎖電路亦具有第三端子及第四端子,其中所述閂鎖電路的所述第三端子經由反相器耦合至所述第一電晶體的所述第一端子,且其中所述閂鎖電路的所述第四端子耦合至所述第二電晶體的所述第一端子。
  8. 如申請專利範圍第1項所述的經封裝的電子裝置,其中所述第一光耦合器電路包括: 發光二極體,具有第一端子及第二端子,其中所述發光二極體的所述第一端子耦合至所述供電端子,且其中所述發光二極體的所述第二端子耦合至所述經封裝的電子裝置的控制端子;以及 光伏打堆疊及光電二極體電路。
  9. 如申請專利範圍第1項所述的經封裝的電子裝置,其中所述第二耦合電路包括: 發光二極體,具有第一端子及第二端子,其中所述發光二極體的所述第二端子耦合至所述經封裝的電子裝置的控制端子;以及 光電二極體電路。
  10. 一種方法,包括: (a) 將閂鎖繼電器的負載端子耦合至負載,其中所述負載是由負載電源進行供電,其中所述負載電源經由所述負載端子透過所述負載對電容器進行充電,且其中所述電容器是在所述負載保持處於被禁用狀態的同時經由所述負載端子進行充電; (b) 將所述負載自所述被禁用狀態切換至被啟用狀態,使得電流自所述負載電源透過所述負載、透過所述閂鎖繼電器流至所述閂鎖繼電器的另一端子,其中所述電容器是在所述負載處於所述被啟用狀態的同時對所述閂鎖繼電器進行供電; (c) 藉由使電流脈動地經過所述閂鎖繼電器的供電端子而對所述電容器進行充電,其中所述電容器是在所述負載處於所述被啟用狀態的同時被充電;以及 (d) 將所述負載自所述被啟用狀態切換至所述被禁用狀態。
  11. 如申請專利範圍第10項所述的方法,其中(b)中所述負載的所述切換是因應於第一訊號自第一數位邏輯位準切換至第二數位邏輯位準而進行,其中所述第一訊號存在於所述閂鎖繼電器的第一端子上,其中(d)中所述負載的所述切換是因應於第二訊號自第一數位邏輯位準切換至第二數位邏輯位準而進行,且其中所述第二訊號存在於所述閂鎖繼電器的第二端子上。
  12. 如申請專利範圍第10項所述的方法,其中(b)中的所述切換涉及到第一電晶體自第一導電狀態切換至第二導電狀態以及第二電晶體自第二導電狀態切換至第一導電狀態,且其中(d)中的所述切換涉及到所述第一電晶體自所述第二導電狀態切換至所述第一導電狀態以及所述第二電晶體自所述第一導電狀態切換至所述第二導電狀態。
  13. 如申請專利範圍第10項所述的方法,其中(c)中所述電容器的所述充電涉及到使電流脈動地經過所述閂鎖繼電器的耦合電路,使得電流自所述閂鎖繼電器的所述供電端子透過所述耦合電路的發光二極體而流至所述閂鎖繼電器的控制端子。
  14. 如申請專利範圍第10項所述的方法,其中(c)中所述電容器的所述充電是所述閂鎖繼電器的再新模式,且其中(b)中的所述切換、(c)中的所述充電及(d)中的所述切換是由在所述閂鎖繼電器之外產生的外部信令來控制。
  15. 如申請專利範圍第10項所述的方法,其中所述閂鎖繼電器是光學性隔離閂鎖固態繼電器,且其中所述光學性隔離閂鎖固態繼電器不包括任何矽控整流器(SCR)裝置。
  16. 如申請專利範圍第10項所述的方法,其中(b)中的所述切換、(c)中的充電及(d)中的所述切換不涉及到任何機械繼電器。
  17. 如申請專利範圍第10項所述的方法,其中所述電容器處於所述閂鎖繼電器的外部。
  18. 一種系統,包括: 負載;以及 構件,用於選擇性地啟用及選擇性地禁用流經所述負載的電流,其中所述構件由供電節點供電,其中所述供電節點不耦合至所述負載,其中所述構件亦用於藉由使電流自所述供電節點脈動地流至所述構件上來對電容器進行充電,且其中所述構件不包括任何機械繼電器或矽控整流器(SCR)裝置。
  19. 如申請專利範圍第17項所述的系統,其中所述構件是經封裝的光學性隔離閂鎖繼電器,其中所述經封裝的光學性隔離閂鎖繼電器具有供電端子及負載端子,其中所述供電端子耦合至所述供電節點,且其中所述負載端子耦合至所述負載。
  20. 如申請專利範圍第17項所述的系統,其中當所述負載被啟用時,電流流經耦合至所述負載的電晶體,且其中所述電晶體表現出線性操作特性。
TW108129181A 2018-08-19 2019-08-16 經封裝的電子裝置、耦合方法及電路系統 TW202027420A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/104,920 US10523198B1 (en) 2018-08-19 2018-08-19 Optically isolated latching solid state relay with low on resistance and linear operation
US16/104,920 2018-08-19

Publications (1)

Publication Number Publication Date
TW202027420A true TW202027420A (zh) 2020-07-16

Family

ID=67659325

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108129181A TW202027420A (zh) 2018-08-19 2019-08-16 經封裝的電子裝置、耦合方法及電路系統

Country Status (4)

Country Link
US (2) US10523198B1 (zh)
EP (1) EP3624340A3 (zh)
CN (1) CN110838837A (zh)
TW (1) TW202027420A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7374948B2 (ja) 2021-03-23 2023-11-07 株式会社東芝 半導体リレー装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605161B1 (fr) * 1986-10-08 1991-09-13 Aerospatiale Commutateur electronique a faible chute de tension
US7196436B2 (en) * 2003-04-03 2007-03-27 Goodrich Corporation Solid state relay for switching AC power to a reactive load and method of operating the same
US20060245129A1 (en) 2005-05-02 2006-11-02 Bamburak Peter K Latching solid state relay
US9374076B2 (en) * 2012-03-06 2016-06-21 Mcq Inc. Solid state relay circuit

Also Published As

Publication number Publication date
US10523198B1 (en) 2019-12-31
CN110838837A (zh) 2020-02-25
US20200112309A1 (en) 2020-04-09
EP3624340A2 (en) 2020-03-18
EP3624340A3 (en) 2020-07-22
US10833675B2 (en) 2020-11-10

Similar Documents

Publication Publication Date Title
US10812070B2 (en) Current limiting I/O interface and isolated load switch driver IC
US7554367B2 (en) Driving circuit
JPS62261219A (ja) ソリツドステ−トリレ−
CN107005142A (zh) 多功能端子
KR20110031395A (ko) 전력 제어 시스템 개시 방법 및 회로
TW202027420A (zh) 經封裝的電子裝置、耦合方法及電路系統
US10825618B2 (en) Power switch module
JP7247903B2 (ja) 電気回路及び電源装置
CN111884489B (zh) 电力电路以及驱动电路
CN111884490B (zh) 电力电路以及集成电路
TWM553521U (zh) 雙向回饋接腳
JP3996147B2 (ja) わずかな充電電流を用いたブートストラップキャパシタ充電回路
TWI614991B (zh) 驅動電路、轉換器及驅動方法
CN112117904A (zh) 电源转换器以及用于控制电源转换器的方法和控制器
JP7374948B2 (ja) 半導体リレー装置
JP2021521724A (ja) Pチャンネルmosfetを制御するためのドライバー回路及びそれを含む制御装置
JP7055714B2 (ja) 半導体装置
CN107592108B (zh) 一种控制器ic
TWI634407B (zh) 上電控制電路及控制電路
KR101423462B1 (ko) 저전력 디지털 회로를 구동하는 전원 공급 장치
JP2021035021A (ja) 半導体装置
CN114759628A (zh) 上电保护电路及电子设备
JP2021010258A (ja) ゲートドライバ、スイッチング回路、モータドライバ、dc/dcコンバータのコントローラ
JP2002076869A (ja) 光結合装置及びそれを備えたソリッドステートリレー
JP2008199765A (ja) 起動回路及びスイッチング制御回路