TW202024108A - Gabaa正性別構調節劑的鹽和結晶形式 - Google Patents

Gabaa正性別構調節劑的鹽和結晶形式 Download PDF

Info

Publication number
TW202024108A
TW202024108A TW108131297A TW108131297A TW202024108A TW 202024108 A TW202024108 A TW 202024108A TW 108131297 A TW108131297 A TW 108131297A TW 108131297 A TW108131297 A TW 108131297A TW 202024108 A TW202024108 A TW 202024108A
Authority
TW
Taiwan
Prior art keywords
compound
shows
xrpd
peaks
salt
Prior art date
Application number
TW108131297A
Other languages
English (en)
Other versions
TWI823999B (zh
Inventor
尼爾森 B 奧利維爾
基藍 雷迪
加布裡埃爾 馬丁內斯 博特拉
馬格納斯 隆恩
保羅 A 加斯卡爾
Original Assignee
美商普拉西斯精密醫藥公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商普拉西斯精密醫藥公司 filed Critical 美商普拉西斯精密醫藥公司
Publication of TW202024108A publication Critical patent/TW202024108A/zh
Application granted granted Critical
Publication of TWI823999B publication Critical patent/TWI823999B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J43/00Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • C07J43/003Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton not condensed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Steroid Compounds (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

本發明涉及化合物1的鹽,其結晶形式,其製備方法,其醫藥組合物及其使用方法。

Description

GABAA正性別構調節劑的鹽和結晶形式 【相關申請的交叉引用】
本申請要求於2019年7月19日提交的美國申請號16/517,369和2018年8月31日提交的美國臨時申請號62/725,805的優先權,其二者在此通過引用以其全部內容併入本文。
本公開內容涉及3α-羥基-3β-甲氧基甲基-21-(1'-咪唑基)-5α-孕烷-20-酮的鹽、其結晶形式以及用於製備這種鹽和結晶形式的方法。
3α-羥基-3β-甲氧基甲基-21-(1'-咪唑基)-5α-孕烷-20-酮(化合物1)是合成的神經活性類固醇。其主要分子靶標是γ-胺基丁酸A型(GABAA)受體,其中該合成的神經活性類固醇用作通道功能的正性別構調節劑(PAM)。化合物1的結構式如下。
Figure 108131297-A0202-12-0001-1
已經證明神經活性類固醇GABAA PAM在癲癇、產後抑鬱和重度抑鬱中有臨床功效。
需要可分離的、穩定的化合物1鹽及用於製備其的方法。
本公開內容提供化合物1的鹽和製備這種鹽的方法。在一些實施例中,化合物1的鹽是結晶的。本公開內容還提供包含化合物1的鹽的醫藥組合物。
在一些實施例中,本公開內容提供化合物1的氫溴酸鹽、檸檬酸鹽、蘋果酸鹽、馬來酸鹽、甲磺酸鹽、磷酸鹽、酒石酸鹽、鹽酸鹽、甲苯磺酸鹽、葡糖醛酸鹽、乙磺酸鹽、富馬酸鹽、硫酸鹽、萘-2-磺酸鹽、抗壞血酸鹽、草酸鹽、萘-1,5-二磺酸鹽、丙二酸鹽、胺基水楊酸鹽、苯磺酸鹽、羥乙基磺酸鹽、龍膽酸鹽、1-羥基-2-萘酸鹽(napthoate)、二氯乙酸鹽、環拉酸鹽和乙烷-1,2-二磺酸鹽。
在一些實施例中,本公開內容提供化合物1的氫溴酸鹽、檸檬酸鹽、蘋果酸鹽、馬來酸鹽、甲磺酸鹽、磷酸鹽、酒石酸鹽、鹽酸鹽、甲苯磺酸鹽、葡糖醛酸鹽、乙磺酸鹽、富馬酸鹽、硫酸鹽、萘-2-磺酸鹽、抗壞血酸鹽、草酸鹽、萘-1,5-二磺酸鹽、丙二酸鹽、胺基水楊酸鹽、苯磺酸鹽、羥乙基磺酸鹽、龍膽酸鹽、1-羥基-2-萘酸鹽、二氯乙酸鹽、環拉酸鹽和乙烷-1,2-二磺酸鹽的結晶形式。
在一些實施例中,本公開內容提供化合物1的氫溴酸鹽。在一些實施例中,本公開內容提供化合物1的氫溴酸鹽(“化合物1 HBr”)的結晶形式。在一些實施例中,本公開內容提供化合物1 HBr(形式A)。在一些實施例中,本公開內容提供化合物1 HBr(形式B)。在一些實施例中,本公開內容提供化合物1 HBr(形式C)。在一些實施例中,本公開內容提供化合物1 HBr(形式D)。在一些實施例中,本公開內容提供化合物1 HBr(形式E)。
在一些實施例中,本公開內容提供化合物1的檸檬酸鹽。在一些實施例中,本公開內容提供化合物1的檸檬酸鹽(“化合物1柠檬酸盐”)的結晶形式。在一些實施例中,本公開內容提供化合物1柠檬酸盐(形式A)。在一些實施例中,本公開內容提供化合物1柠檬酸盐(形式B)。在一些實施例中,本公開內容提供化合物1柠檬酸盐(形式C)。
本公開內容還提供治療疾病、紊亂或病症的方法,其包括投予治療有效量的化合物1的鹽。本公開內容提供投予化合物1的鹽的方法。在一些實施例中,口服投予化合物1的鹽。在一些實施例中,疾病、紊亂或病症選自癲癇、產後抑鬱、重度抑鬱、雙相障礙、難治性抑鬱和焦慮。
圖1顯示了化合物1游離鹼(模式(Pattern)A)的x射線粉末繞射(XRPD)圖。
圖2顯示了化合物1 HBr(形式A)的XRPD圖。
圖3顯示了化合物1 HBr(形式A)的差示掃描量熱法(DSC)溫譜圖和熱重分析法(TGA)溫譜圖。
圖4顯示了化合物1 HBr(形式A)的動態蒸汽吸附(DVS)等温线图。
圖5顯示了化合物1 HBr(形式B)的XRPD圖。
圖6顯示了化合物1 HBr(形式B)的差示掃描量熱法(DSC)溫譜圖和熱重分析法(TGA)溫譜圖。
圖7顯示了化合物1 HBr(形式B)的動態蒸汽吸附(DVS)等温线图。
圖8顯示了化合物1 HBr(形式C)的XRPD圖。
圖9顯示了化合物1 HBr(形式C)的差示掃描量熱法(DSC)溫譜圖和熱重分析法(TGA)溫譜圖。
圖10顯示了化合物1 HBr(形式C)的動態蒸汽吸附(DVS)等温线图。
圖11顯示了化合物1 HBr(形式D)的XRPD圖。
圖12顯示了化合物1 HBr(形式D)的差示掃描量熱法(DSC)溫譜圖和熱重分析法(TGA)溫譜圖。
圖13顯示了化合物1 HBr(形式E)的XRPD圖。
圖14顯示了化合物1 HBr(形式E)的差示掃描量熱法(DSC)溫譜圖和熱重分析法(TGA)溫譜圖。
圖15顯示了化合物1檸檬酸鹽(形式A)的XRPD圖。
圖16顯示了化合物1檸檬酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖17顯示了化合物1檸檬酸鹽(形式A)的DVS等溫線圖。
圖18顯示了化合物1檸檬酸鹽(形式B)的XRPD圖。
圖19顯示了化合物1檸檬酸鹽(形式B)的DSC溫譜圖和TGA溫譜圖。
圖20顯示了化合物1檸檬酸鹽(形式B)的DVS等溫線圖。
圖21顯示了化合物1檸檬酸鹽(形式C)的XRPD圖。
圖22顯示了化合物1甲磺酸鹽(形式A)的XRPD圖。
圖23顯示了化合物1甲磺酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖24顯示了化合物1甲磺酸鹽(形式A)的DVS等溫線圖。
圖25A顯示了化合物1甲磺酸鹽(形式B)的XRPD圖。
圖25B顯示了化合物1甲磺酸鹽(形式C)的XRPD圖。
圖26顯示了化合物1甲磺酸鹽(形式D)的XRPD圖。
圖27顯示了化合物1磷酸鹽(形式A)的XRPD圖。
圖28顯示了化合物1磷酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖29顯示了化合物1磷酸鹽(形式A)的DVS等溫線圖。
圖30顯示了化合物1 L(+)-酒石酸鹽(形式A)的XRPD圖。
圖31顯示了化合物1 L(+)-酒石酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖32顯示了化合物1 L(+)-酒石酸鹽(形式A)的DVS等溫線圖。
圖33顯示了化合物1 L(+)-酒石酸鹽(形式B)的XRPD圖。
圖34顯示了化合物1 L(+)-酒石酸鹽(形式B)的DSC溫譜圖和TGA溫譜圖。
圖35顯示了化合物1 L(+)-酒石酸鹽(形式B)的DVS等溫線圖。
圖36顯示了化合物1富马酸盐(形式A)的XRPD圖。
圖37顯示了化合物1富马酸盐(形式A)的DSC溫譜圖和TGA溫譜圖。
圖38顯示了化合物1富马酸盐(形式B)的XRPD圖。
圖39顯示了化合物1富马酸盐(形式B)的DSC溫譜圖和TGA溫譜圖。
圖40顯示了化合物1富马酸盐(形式B)的DVS等溫線圖。
圖41顯示了化合物1富马酸盐(形式C)的XRPD圖。
圖42顯示了化合物1富马酸盐(形式D)的XRPD圖。
圖43顯示了化合物1甲苯磺酸盐(形式A)的XRPD圖。
圖44顯示了化合物1甲苯磺酸盐(形式A)的DSC溫譜圖和TGA溫譜圖。
圖45顯示了化合物1甲苯磺酸盐(形式A)的DVS等溫線圖。
圖46顯示了化合物1甲苯磺酸盐(形式B)的XRPD圖。
圖47顯示了化合物1甲苯磺酸盐(形式C)的XRPD圖。
圖48顯示了化合物1葡糖醛酸盐(形式A)的XRPD圖。
圖49顯示了化合物1葡糖醛酸盐(形式A)的DSC溫譜圖和TGA溫譜圖。
圖50顯示了化合物1葡糖醛酸盐(形式A)的DVS等溫線圖。
圖51顯示了化合物1葡糖醛酸盐(形式B)的XRPD圖。
圖52顯示了化合物1乙磺酸盐(形式A)的XRPD圖。
圖53顯示了化合物1乙磺酸盐(形式A)的DSC溫譜圖和TGA溫譜圖。
圖54顯示了化合物1乙磺酸盐(形式A)的DVS等溫線圖。
圖55顯示了化合物1硫酸盐(形式A)的XRPD圖。
圖56顯示了化合物1硫酸盐(形式A)的DSC溫譜圖和TGA溫譜圖。
圖57顯示了化合物1硫酸盐(形式A)的DVS等溫線圖。
圖58顯示了化合物1抗坏血酸盐(形式A)的XRPD圖。
圖59顯示了化合物1抗坏血酸盐(形式A)的DSC溫譜圖和TGA溫譜圖。
圖60顯示了化合物1抗坏血酸盐(形式A)的DVS等溫線圖。
圖61顯示了化合物1抗坏血酸盐(形式B)的XRPD圖。
圖62顯示了化合物1萘二磺酸鹽(Napadisylate)(形式A)的XRPD圖。
圖63顯示了化合物1萘二磺酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖64顯示了化合物1萘二磺酸鹽(形式A)的DVS等溫線圖。
圖65顯示了化合物1萘二磺酸鹽(形式B)的XRPD圖。
圖66顯示了化合物1丙二酸鹽(形式A)的XRPD圖。
圖67顯示了化合物1丙二酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖68顯示了化合物1苯磺酸鹽(Besylate)(形式A)的XRPD圖。
圖69顯示了化合物1苯磺酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖70顯示了化合物1苯磺酸鹽(形式A)的DVS等溫線圖。
圖71顯示了化合物1苯磺酸鹽(形式B)的XRPD圖。
圖72顯示了化合物1羥乙基磺酸鹽(形式A)的XRPD圖。
圖73顯示了化合物1羥乙基磺酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖74顯示了化合物1羥乙基磺酸鹽(形式A)的DVS等溫線圖。
圖75顯示了化合物1羥乙基磺酸鹽(形式B)的XRPD圖。
圖76顯示了化合物1龍膽酸鹽(形式A)的XRPD圖。
圖77顯示了化合物1龍膽酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖78顯示了化合物1龍膽酸鹽(形式A)的DVS等溫線圖。
圖79顯示了化合物1龍膽酸鹽(形式B)的XRPD圖。
圖80顯示了化合物1龍膽酸鹽(形式C)的XRPD圖。
圖81顯示了化合物1 1-羥基-2-萘酸鹽(形式A)的XRPD圖。
圖82顯示了化合物1 1-羥基-2-萘酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖83顯示了化合物1 1-羥基-2-萘酸鹽(形式A)的DVS等溫線圖。
圖84顯示了化合物1 1-羥基-2-萘酸鹽(形式B)的XRPD圖。
圖85顯示了化合物1 1-羥基-2-萘酸鹽(形式C)的XRPD圖。
圖86顯示了化合物1 1-羥基-2-萘酸鹽(形式D)的XRPD圖。
圖87顯示了化合物1環拉酸鹽(形式A)的XRPD圖。
圖88顯示了化合物1環拉酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖89顯示了化合物1環拉酸鹽(形式A)的DVS等溫線圖。
圖90顯示了化合物1乙烷-1,2-二磺酸鹽(形式A)的XRPD圖。
圖91顯示了化合物1乙烷-1,2-二磺酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖92顯示了化合物1乙烷-1,2-二磺酸鹽(形式A)的DVS等溫線圖。
圖93顯示了化合物1乙烷-1,2-二磺酸鹽(形式B)的XRPD圖。
圖94顯示了化合物1二氯乙酸鹽(形式A)的XRPD圖。
圖95顯示了化合物1二氯乙酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖96顯示了化合物1二氯乙酸鹽(形式A)的DVS等溫線圖。
圖97顯示了化合物1 L-蘋果酸鹽(形式A)的XRPD圖。
圖98顯示了化合物1 L-蘋果酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖99顯示了化合物1 L-蘋果酸鹽(形式A)的DVS等溫線圖。
圖100顯示了化合物1 L-蘋果酸鹽(形式B)的XRPD圖。
圖101顯示了化合物1 L-蘋果酸鹽(形式B)的DSC溫譜圖和TGA溫譜圖。
圖102顯示了化合物1 L-蘋果酸鹽(形式B)的DVS等溫線圖。
圖103顯示了化合物1鹽酸鹽(形式A)的XRPD圖。
圖104顯示了化合物1鹽酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖105顯示了化合物1鹽酸鹽(形式A)的DVS等溫線圖。
圖106顯示了化合物1鹽酸鹽(形式B)的XRPD圖。
圖107顯示了化合物1鹽酸鹽(形式B)的DSC溫譜圖和TGA溫譜圖。
圖108顯示了化合物1鹽酸鹽(形式B)的DVS等溫線圖。
圖109顯示了化合物1鹽酸鹽(形式C)的XRPD圖。
圖110顯示了化合物1鹽酸鹽(形式C)的DSC溫譜圖和TGA溫譜圖。
圖111顯示了化合物1鹽酸鹽(形式C)的DVS等溫線圖。
圖112顯示了化合物1萘磺酸鹽(Napsylate)(形式A)的XRPD圖。
圖113顯示了化合物1萘磺酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖114顯示了化合物1萘磺酸鹽(形式A)的DVS等溫線圖。
圖115顯示了化合物1萘磺酸鹽(形式B)的XRPD圖。
圖116顯示了化合物1草酸鹽(形式A)的XRPD圖。
圖117顯示了化合物1草酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖118顯示了化合物1草酸鹽(形式A)的DVS等溫線圖。
圖119顯示了化合物1草酸鹽(形式B)的XRPD圖。
圖120顯示了化合物1對胺基水楊酸鹽(形式A)的XRPD圖。
圖121顯示了化合物1對胺基水楊酸鹽(形式A)的DSC溫譜圖和TGA溫譜圖。
圖122顯示了化合物1對胺基水楊酸鹽(形式A)的DVS等溫線圖。
圖123顯示了化合物1對胺基水楊酸鹽(形式B)的XRPD圖。
圖124顯示了化合物1馬來酸鹽(形式A)的XRPD圖。
定義
緊接在數值之前的術語“約”是指範圍(例如,該值的±10%)。例如,除非本公開內容的上下文另外指出或與這種解釋不一致,否則“約50”可以指45至55,“約25,000”可以指22,500至27,500,等等。例如,在諸如“約49、約50、約55,...”之類的一系列數值中,“約50”表示的範圍延伸到小於在前面的值與後面的值之間的間隔的一半,例如大於49.5至小於52.5。此外,應根據本文提供的術語“約”的定義來理解短語“小於約”某一值或“大於約”某一值。類似地,術語“約”在一系列數值或值的範圍(例如“約10、20、30”或“約10-30”)之前時,分別涉及該系列中的所有值,或範圍的端點。
遍及本公開內容,引用了不同的專利、專利申請和出版物(包括非專利出版物)。此等專利、專利申請和出版物的公開內容出於所有目的通過引用整體併入本公開內容,以便更全面地描述截至本公開日期業內熟習此項技術者已知的現有技術水平。在所引用的專利、專利申請和出版物與本公開內容之間存在任何不一致的情況下,以本公開內容為准。
為了方便起見,在此收集了說明書、實例和申請專利範圍中使用的某些術語。除非另有定義,否則本公開內容中使用的所有技術和科學術語具有與本公開內容所屬領域熟習此項技術者通常所理解的相同含義。
本文使用的術語“投予(administer,administering,administration)”是指直接地給患者投予化合物1或其醫藥上可接受的鹽,或包含化合物1或其醫藥上可接受的鹽的組合物。
本文使用的術語“非質子溶劑(aprotic solvent,nonprotic solvent,non-protic solvent)”是指在強鹼性反應物存在下不易去質子化的有機溶劑或有機溶劑混合物。非質子溶劑的非限制性實例包括醚類、二甲基甲醯胺(DMF)、二甲基乙醯胺(DMAC)、1,3-二甲基-3,4,5,6-四氫-2(1H)-嘧啶酮(DMPU)、1,3-二甲基-2-咪唑啉酮(DMI)、N-甲基吡咯啶酮(NMP)、甲醯胺、N-甲基乙醯胺、N-甲基甲醯胺、乙腈、二甲基亞碸、丙腈、甲酸乙酯、乙酸甲酯、甲基異丁基酮、六氯丙酮、丙酮、乙基甲基酮、甲基乙基酮(MEK)、乙酸乙酯、乙酸異丙酯、環丁碸、N,N-二甲基丙醯胺、四甲基脲、硝基甲烷、硝基苯、六甲基磷醯胺、二乙氧基甲烷、四氫呋喃、1,3-二氧六環、1,4-二氧六環、呋喃、二乙醚、四氫吡喃、二異丙醚、二丁醚、乙二醇二甲醚、乙二醇二乙醚、二乙二醇二甲醚、二乙二醇二乙醚、三乙二醇二甲醚、苯甲醚、叔丁基甲基醚等。
本文使用的術語“載劑”涵蓋載劑、賦形劑和稀釋劑,意指在將藥劑從身體的一個器官或部分攜帶或運輸到身體的另一器官或部分中涉及的材料、組分或媒劑,例如液體或固體填充劑、稀釋劑、賦形劑、溶劑或包封材料。
除非另外指出,否則本公開內容中使用的術語“紊亂”是指術語疾病、病症或病況,並可與術語疾病、病症或病況互換使用。
術語“有效量”和“治療有效量”在本公開內容中可互換使用,並且是指當投予于患者時能夠執行預期結果的化合物或其鹽、溶劑合物或酯的量。例如,化合物1的鹽的有效量是減輕患者中至少一種抑鬱症狀所需的量。包含“有效量”或“治療有效量”的實際量將根據多種情況而變化,包括但不限於紊亂的嚴重程度、患者的大小和健康狀況以及投予途徑。熟練的醫學從業者可以使用醫學領域中已知的方法容易地確定合適的量。
術語“異構物”是指具有相同化學式但可以具有不同的立體化學式、結構式或原子的特殊排列的化合物。異構物的實例包括立體異構物、非對映異構物、對映異構物、構象異構物、旋轉異構物、幾何異構物和阻轉異構物。
術語“峰”是指在使用標準XRPD收集技術從樣品獲得的XRPD繞射圖(或圖案)中具有基本強度的線。例如,峰是XRPD繞射圖中強度例如至少為XRPD繞射圖中最大峰強度的大約10%的線。
本文使用的短語“醫藥上可接受的”是指這樣的化合物、材料、組合物和/或劑型,其在合理的醫學判斷範圍內適合與人和動物的組織接觸,而沒有過度的毒性、刺激、過敏反應或其他問題或併發症,且具有合理的收益/風險比。
本文使用的術語“質子溶劑”是指能夠用作酸以使任何未反應的強鹼性反應中間體質子化的溶劑或溶劑混合物。質子溶劑的非限制性實例包括水、甲醇、 乙醇、2-硝基乙醇、2-氟乙醇、2,2,2-三氟乙醇、乙二醇、1-丙醇、2-丙醇、2-甲氧基乙醇、1-丁醇、2-丁醇、異丁醇、叔丁醇、2-乙氧基乙醇、二乙二醇、1-、2-或3-戊醇、新戊醇、叔戊醇、二乙二醇單甲醚、二乙二醇單乙醚、環己醇、苯甲醇、苯酚、甘油等。
本文使用的術語“鹽”包括通常用於形成游離鹼的加成鹽的醫藥上可接受的鹽。鹽的性質不是關鍵的,前提是其是醫藥上可接受的。術語“鹽”還包括加成鹽的溶劑合物,例如水合物,以及加成鹽的多晶型物。合適的醫藥上可接受的酸加成鹽可以由無機酸或有機酸製備。在鹽中,質子轉移發生在化合物1游離鹼與有機酸或無機酸之間。但是,在某些情況下,質子轉移是不完全的。在這種情況下,固體(即“共晶體”)中的化合物1和“共形成物(co-former)”分子通過非離子力(例如氫鍵)相互作用。
在酸共形成物在約23℃(即,室溫)是固體並且在化合物1與酸共形成物之間不存在或存在部分質子轉移的情況下,獲得共形成物與化合物1的共晶體。本文使用的術語“鹽”涵蓋化合物1的共晶體形式。
本文使用的術語“基本上類似”是指分析光譜,例如XRPD圖、DSC溫譜圖等,其與參照光譜在峰位置和峰強度方面在很大程度上類似。
本文關於患者使用的術語“治療”是指改善患者紊亂的至少一種症狀。治療可以是治癒、改善或至少部分緩解紊亂。
本文使用的術語“治療效果”是指通過方法和/或組合物提供的期望或有益效果。例如,當用於治療抑鬱的方法減輕患者的抑鬱的至少一種症狀時,該方法提供治療效果。
本文使用的符號“
Figure 108131297-A0202-12-0013-98
”表示“不大於”或“等於或小於”;“<”表示“小於”;“
Figure 108131297-A0202-12-0013-99
”表示“不小於”或“等於或大於”;“>”表示“大於”。此外,當在本文中結合純度或雜質含量使用時,數字不僅包括精確數字,而且包括該數字附近的近似範圍。例如,短語“99.0%的純度”表示約99.0%的純度。
化合物1的鹽
化合物1是與臨床階段神經活性類固醇(別孕烯醇酮、加奈索酮、SAGE-217、alphaxolone)類似具有高效能的神經活性類固醇GABA-A正性別構調節劑(PAM)。化合物1在下消化道中發現的pH下是難溶的,這可能限制化合物1的口服生物利用度。
化合物1的合成描述於美國公開號2004/034002和2009/0118248中;化合物1游離鹼的結晶多晶型物描述於美國公開號2006/0074059中,且包含化合物1的醫藥組合物描述於美國公開號2009/0131383中,在此出於所有目的通過引用將其全部內容併入本文。
本公開內容提供化合物1的鹽和其結晶形式。
化合物1的結晶鹽
在一些實施例中,本公開內容提供化合物1的鹽的結晶形式。多態性可以表徵為化合物在保持相同結構式(即,化合物中的共價鍵在不同結晶形式中是相同的)的同時結晶成不同結晶形式的能力。給定藥品的結晶多晶型物與該藥品的任何其他結晶多晶型物在化學上是相同的,它們包含以相同方式彼此鍵合的相 同原子,但是其結晶形式不同,這會影響一種或多種物理性質,例如穩定性、溶解度、熔點、堆密度、流動性質等,或藥理學性質例如生物利用度等。
在一些實施例中,結晶形式的特徵在於由X射線粉末繞射圖(XRPD)確定的晶格間平面間隔。XRPD繞射圖通常通過繪製峰強度與峰位置(即以度為單位的繞射角2θ)的圖表示。可以根據峰位置及其相對強度來選擇給定XRPD繞射圖的特徵峰,以方便地將該晶體結構與其他晶體結構區分開。相對于最強峰的峰的%強度可以表示為I/Io。使用銅K-α輻射獲得遍及本公開內容描述的XRPD繞射圖。
業內熟習此項技術者認識到,對於相同化合物的給定結晶形式,XRPD峰位置和/或強度的測量值將在誤差界限內變化。°2θ的值允許適當的誤差界限。通常,誤差界限由“±”表示。例如,約“8.716±0.2”的°2θ表示從約8.716+0.2(即,約8.916)到約8.716-0.2(即,約8.516)的範圍。取決於樣品製備技術,應用於儀器的校準技術,人為操作的變化等,業內熟習此項技術者認識到,對於XRPD,適當的誤差界限可以為約±0.7;±0.6;±0.5;±0.4;±0.3;±0.2;±0.1;±0.05;或更小。
實例章節中描述了用於XRPD分析的方法和設備的其他細節。
在一些實施例中,結晶形式由差示掃描量熱法(DSC)表徵。DSC溫譜圖通常通過繪製以瓦特/克(“W/g”)為單位的標準化熱流量與測量的樣品溫度(以攝氏度為單位)的圖表示。DSC溫譜圖通常評估外推起始(onset)和終止(開始(outset))溫度、峰溫度和熔化熱。DSC溫譜圖的峰特徵值通常用作特徵峰,以將該晶體結構與其他晶體結構區分開。
業內熟習此項技術者認識到,對於相同化合物的給定結晶形式,DSC溫譜圖的測量值將在誤差界限內變化。以攝氏度表示的單峰特徵值的值允許適當的 誤差界限。通常,誤差界限由“±”表示。例如,約“53.09±2.0”的單峰特徵值表示從約53.09+2(即約55.09)到約53.09-2(即約51.09)的範圍。取決於樣品製備技術,應用於儀器的校準技術,人為操作的變化等,業內熟習此項技術者認識到,單峰特徵值的適當的誤差界限可以為±2.5;±2.0;±1.5;±1.0;±0.5;或更少。
實例章節中描述了用於DSC溫譜圖分析的方法和設備的其他細節。
氫溴酸鹽
在一些實施例中,本公開內容提供化合物1的氫溴酸鹽(“化合物1 HBr”)。在一些實施例中,本公開內容提供化合物1 HBr的結晶形式。
在一個實施例中,本公開內容提供化合物1 HBr(形式A)。在一些實施例中,化合物1 HBr(形式A)顯示出包含在約7.6、15.2、16.3、19.8和22.9° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 HBr(形式A)顯示出包含在約7.6、15.2、16.3、19.8和22.9° 2θ的三個或更多個峰的XRPD,誤差界限為±0.2。在一些實施例中,化合物1 HBr(形式A)的XRPD進一步包含在約15.5、19.2、20.6、26.1和31.3° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 HBr(形式A)顯示出包含在下表1中示出的峰的XRPD:
Figure 108131297-A0202-12-0015-2
Figure 108131297-A0202-12-0016-3
Figure 108131297-A0202-12-0017-4
一些實施例提供化合物1 HBr(形式A),其中在XRPD圖中的15.2±0.2至16.3±0.2° 2θ的範圍內,形式A僅顯示出三個峰。
在一些實施例中,化合物1 HBr(形式A)顯示出與圖2基本上類似的XRPD。
在一些實施例中,化合物1 HBr(形式A)顯示出包含在約243.1℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5; 或更小(具體地,約±2.0)。在一些實施例中,化合物1 HBr(形式A)顯示出與圖3基本上類似的DSC溫譜圖。
在一些實施例中,化合物1 HBr(形式A)顯示出與圖3基本上類似的TGA溫譜圖。在一些實施例中,化合物1 HBr(形式A)的TGA溫譜圖在25至230℃的溫度範圍內顯示出約0.0至1.9%的重量損失。
在一些實施例中,化合物1 HBr(形式A)顯示出與圖4基本上類似的DVS等溫線圖。在一些實施例中,化合物1 HBr(形式A)在80%相對濕度顯示出約1.1%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1 HBr(形式B)。在一些實施例中,化合物1 HBr(形式B)顯示出包含在約3.6、16.3、17.7、21.4和23.5° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 HBr(形式B)的XRPD進一步包含在約14.4、18.7、24.8、27.3和28.2° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 HBr(形式B)顯示出包含在下表2中示出的峰的XRPD:
Figure 108131297-A0202-12-0018-5
Figure 108131297-A0202-12-0019-6
Figure 108131297-A0202-12-0020-7
在一些實施例中,化合物1 HBr(形式B)顯示出與圖5基本上類似的XRPD。
在一些實施例中,化合物1 HBr(形式B)顯示出包含在約121℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 HBr(形式B)顯示出與圖6基本上類似的DSC溫譜圖。
在一些實施例中,化合物1 HBr(形式B)顯示出與圖6基本上類似的TGA溫譜圖。在一些實施例中,化合物1 HBr(形式B)的TGA溫譜圖在25至120℃的溫度範圍內顯示出約0.0至3.4%的重量損失。
在一些實施例中,化合物1 HBr(形式B)顯示出與圖7基本上類似的DVS等溫線圖。在一些實施例中,化合物1 HBr(形式B)在80%相對濕度顯示出約0.2%(按重量計)的重量水分吸附。
在一些實施例中,通過與下列基本上類似的晶胞參數限定化合物1 HBr(形式B):a=9.3(4)Å;b=10.8(4)Å;c=25.2(11)Å;α=90°;β=90°;γ=90°;空間群P212121;分子/不對稱單元1,其中結晶形式是在約120K。
在一個實施例中,本公開內容提供化合物1 HBr(形式C)。在一些實施例中,化合物1 HBr(形式C)顯示出包含在約6.9、13.8、20.8、21.6和27.7° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 HBr(形式C)的XRPD進一步包含在約8.8、25.6、27.5、36.2和37.3° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 HBr(形式C)顯示出包含在下表3中示出的峰的XRPD:
Figure 108131297-A0202-12-0021-9
Figure 108131297-A0202-12-0022-10
在一些實施例中,化合物1 HBr(形式C)顯示出與圖8基本上類似的XRPD。
在一些實施例中,化合物1 HBr(形式C)顯示出包含在約141℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 HBr(形式C)顯示出與圖9基本上類似的DSC溫譜圖。
在一些實施例中,化合物1 HBr(形式C)顯示出與圖9基本上類似的TGA溫譜圖。在一些實施例中,化合物1 HBr(形式C)的TGA溫譜圖在25至170℃的溫度範圍內顯示出約0.0至4.1%的重量損失。
在一些實施例中,化合物1 HBr(形式C)顯示出與圖10基本上類似的DVS等溫線圖。在一些實施例中,化合物1 HBr(形式C)在80%相對濕度顯示出約0.25%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1 HBr(形式D)。在一些實施例中,化合物1 HBr(形式D)顯示出包含在約14.7、15.2、15.6、16.4和23.1° 2θ的一個 或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 HBr(形式D)的XRPD進一步包含在約18.2、19.9、21.3、22.2和23.4° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 HBr(形式D)顯示出包含在下表4中示出的峰的XRPD:
Figure 108131297-A0202-12-0023-11
Figure 108131297-A0202-12-0024-12
在一些實施例中,化合物1 HBr(形式D)顯示出與圖11基本上類似的XRPD。
在一些實施例中,化合物1 HBr(形式D)顯示出包含在約248℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 HBr(形式D)顯示出與圖12基本上類似的DSC溫譜圖。
在一些實施例中,化合物1 HBr(形式D)顯示出與圖12基本上類似的TGA溫譜圖。在一些實施例中,化合物1 HBr(形式D)的TGA溫譜圖在29至150℃的溫度範圍內顯示出約0.0至1.7%的重量損失。
在一些實施例中,本公開內容提供化合物1 HBr(形式E)。在一些實施例中,化合物1 HBr(形式E)顯示出包含在約7.6、15.2、16.3、22.9和23.2° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 HBr(形式E)顯示出包含在約7.6、15.2、16.3、22.9和23.2° 2θ的三個或更多個峰的XRPD,誤差界限為±0.2。在一些實施例中,化合物1 HBr(形式E)的XRPD進一步包含在約9.6、17.4、22.4、23.6和31.2° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 HBr(形式E)顯示出包含在下表5中示出的峰的XRPD:
Figure 108131297-A0202-12-0025-13
Figure 108131297-A0202-12-0026-14
Figure 108131297-A0202-12-0027-15
一些實施例提供化合物1 HBr(形式E),其中在XRPD圖中的15.2±0.2至16.3±0.2° 2θ的範圍內,形式E僅顯示出兩個峰。
在一些實施例中,化合物1 HBr(形式E)顯示出與圖13基本上類似的XRPD。
在一些實施例中,化合物1 HBr(形式E)顯示出包含在約245℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 HBr(形式E)顯示出與圖14基本上類似的DSC溫譜圖。
在一些實施例中,化合物1 HBr(形式E)顯示出與圖14基本上類似的TGA溫譜圖。在一些實施例中,化合物1 HBr(形式E)的TGA溫譜圖在28至150℃的溫度範圍內顯示出約0.0至0.5%的重量損失。
在一些實施例中,通過與下列基本上類似的晶胞參數限定化合物1 HBr(形式E):a=7.5(10)Å;b=15.0(2)Å;c=23.0(2)Å;α=90°;β=90°;γ=90°;空間群P212121;分子/不對稱單元1,其中結晶形式是在約120K。
在一些實施例中,通過與下列基本上類似的晶胞參數限定化合物1 HBr(形式E):a=23.3(5)Å;b=15.0(3)Å;c=7.5(10)Å;α=90°;β=90°;γ=90°;空間群P212121;分子/不對稱單元1,其中結晶形式是在約298K。
檸檬酸鹽
在一些實施例中,本公開內容提供化合物1的檸檬酸鹽(“化合物1檸檬酸鹽”)。在一些實施例中,本公開內容提供化合物1檸檬酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1檸檬酸鹽(形式A)。在一些實施例中,化合物1檸檬酸鹽(形式A)顯示出包含在約5.7、11.9、17.1、20.1和20.3° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1檸檬酸鹽(形式A)顯示出包含在約5.7、11.9、17.1、20.1和20.3° 2θ的三個或更多個峰的XRPD,誤差界限為±0.2。在一些實施例中,化合物1檸檬酸鹽(形式A)的XRPD進一步包含在約12.7、13.0、13.6、15.3和16.8° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05; 或更小(具體地,約±0.2)。在一些實施例中,化合物1檸檬酸鹽(形式A)顯示出包含在下表6中示出的峰的XRPD:
Figure 108131297-A0202-12-0029-16
Figure 108131297-A0202-12-0030-17
Figure 108131297-A0202-12-0031-18
在一些實施方式中,化合物1檸檬酸鹽(形式A)顯示出在約:5.7±0.2;12.5±0.2和13.0±0.2;或5.7±0.2、12.5±0.2和20.1±0.2;或5.7±0.2;12.5±0.2和20.3±0.2;或5.7±0.2;12.7±0.2和13.0±0.2;或5.7±0.2;12.7±0.2和20.3±0.2;或5.7±0.2、13.0±0.2和20.3±0.2;或5.7±0.2、16.8±0.2和20.1±0.2;或5.7±0.2;20.1±0.2和20.3±0.2;或12.5±0.2、13.0±0.2和20.3±0.2;或12.7±0.2、13.0±0.2和20.3±0.2;或16.8±0.2、20.1±0.2和20.3±0.2° 2θ的峰的XRPD。
在一些實施例中,化合物1檸檬酸鹽(形式A)顯示出與圖15基本上類似的XRPD。
在一些實施例中,化合物1檸檬酸鹽(形式A)顯示出包含在約89.0℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1檸檬酸鹽(形式A)顯示出包含在約89.0±2.0℃的吸熱的DSC溫譜圖。在一些實施例中,化合物1檸檬酸鹽(形式A)顯示出包含在約139.5℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1檸檬酸鹽(形式A)顯示出包含在約139.5±2.0℃的吸熱(例如,強吸熱)的DSC溫譜圖。在一些實施例中,化合物1檸檬酸鹽(形式A)顯示出與圖16基本上類似的DSC溫譜圖。
在一些實施例中,化合物1檸檬酸鹽(形式A)顯示出與圖16基本上類似的TGA溫譜圖。在一些實施例中,化合物1檸檬酸鹽(形式A)的TGA溫譜圖在25至65℃的溫度範圍內顯示出0.0至2.6%的重量損失。
在一些實施例中,化合物1檸檬酸鹽(形式A)顯示出與圖17基本上類似的DVS等溫線圖。在一些實施例中,化合物1檸檬酸鹽(形式A)在80%相對濕度顯示出約3.6%(按重量計)的重量水分吸附。
在一些實施例中,通過與下列基本上類似的晶胞參數限定化合物1檸檬酸鹽(形式A):a=8.9(10)Å;b=12.2(10)Å;c=16.5(10)Å;α=73.7(10)°;β=76.6(10)°;γ=83.2(10)°;空間群P1;分子/不對稱單元1,其中結晶形式是在約120.00K。
在一個實施例中,本公開內容提供化合物1檸檬酸鹽(形式B)。在一些實施例中,化合物1檸檬酸鹽(形式B)顯示出包含在約5.5、5.7、10.9、16.3和20.5° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1檸檬酸鹽(形式B)的XRPD進一步包含在約3.4、11.8、14.6、17.2和21.1° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1檸檬酸鹽(形式B)顯示出包含在下表7中示出的峰的XRPD:
Figure 108131297-A0202-12-0032-19
Figure 108131297-A0202-12-0033-20
在一些實施例中,化合物1檸檬酸鹽(形式B)顯示出與圖18基本上類似的XRPD。
在一些實施例中,化合物1檸檬酸鹽(形式B)顯示出包含在約77.7℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具 體地,約±2.0)。在一些實施例中,化合物1檸檬酸鹽(形式B)顯示出包含在約121.5℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1檸檬酸鹽(形式B)顯示出包含在約136.6℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1檸檬酸鹽(形式B)顯示出與圖19基本上類似的DSC溫譜圖。
在一些實施例中,化合物1檸檬酸鹽(形式B)顯示出與圖19基本上類似的TGA溫譜圖。在一些實施例中,化合物1檸檬酸鹽(形式B)的TGA溫譜圖在25至120℃的溫度範圍內顯示出約0.0至4.5%的重量損失。
在一些實施例中,化合物1檸檬酸鹽(形式B)顯示出與圖20基本上類似的DVS等溫線圖。在一些實施例中,化合物1檸檬酸鹽(形式B)在80%相對濕度顯示出約2.8%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1檸檬酸鹽(形式C)。在一些實施例中,化合物1檸檬酸鹽(形式C)顯示出包含在約15.4、18.7、19.7、20.6和27.1° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1檸檬酸鹽(形式C)的XRPD進一步包含在約13.5、15.5、16.2、17.0和22.1° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1檸檬酸鹽(形式C)顯示出包含在下表8中示出的峰的XRPD:
表8. 化合物1檸檬酸鹽(形式C)的XRPD表
Figure 108131297-A0202-12-0035-21
Figure 108131297-A0202-12-0036-22
在一些實施例中,化合物1檸檬酸鹽(形式C)顯示出與圖21基本上類似的XRPD。
甲磺酸鹽
在一些實施例中,本公開內容提供化合物1的甲磺酸鹽(“化合物1甲磺酸鹽”)。在一些實施例中,本公開內容提供化合物1甲磺酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1甲磺酸鹽(形式A)。在一些實施例中,化合物1甲磺酸鹽(形式A)顯示出包含在約3.6、7.1、14.2、19.1和25.9° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1檸檬酸鹽(形式A)的XRPD進一步包含在約7.7、12.7、17.8、19.4和21.4° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1甲磺酸鹽(形式A)顯示出包含在下表9中示出的峰的XRPD:
Figure 108131297-A0202-12-0037-23
Figure 108131297-A0202-12-0038-24
在一些實施例中,化合物1甲磺酸鹽(形式A)顯示出與圖22基本上類似的XRPD。
在一些實施例中,化合物1甲磺酸鹽(形式A)顯示出包含在約170.9℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1甲磺酸鹽(形式A)顯示出包含在約209.7℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1甲磺酸鹽(形式A)顯示出與圖23基本上類似的DSC溫譜圖。
在一些實施例中,化合物1甲磺酸鹽(形式A)顯示出與圖23基本上類似的TGA溫譜圖。在一些實施例中,化合物1甲磺酸鹽(形式A)的TGA溫譜圖在25至150℃的溫度範圍內顯示出0.0至0.5%的重量損失。
在一些實施例中,化合物1甲磺酸鹽(形式A)顯示出與圖24基本上類似的DVS等溫線圖。在一些實施例中,化合物1甲磺酸鹽(形式A)在80%相對濕度顯示出約3.4%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1甲磺酸鹽(形式B)。在一些實施例中,化合物1甲磺酸鹽(形式B)顯示出包含在約7.1、14.3、15.9、21.4和22.6° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1甲磺酸鹽(形式B)顯示出包含在下表10中示出的峰的XRPD:
Figure 108131297-A0202-12-0039-25
在一些實施例中,化合物1甲磺酸鹽(形式B)顯示出與圖25A基本上類似的XRPD。
在一些實施例中,本公開內容提供化合物1甲磺酸鹽(形式C)。在一些實施例中,化合物1甲磺酸鹽(形式C)顯示出包含在約7.5、15.0、19.4、22.5和30.2° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1甲磺酸鹽(形式C)顯示出包含在下表10B中示出的峰的XRPD:
Figure 108131297-A0202-12-0040-26
在一些實施例中,化合物1甲磺酸鹽(形式C)顯示出與圖25B基本上類似的XRPD。
在一個實施例中,本公開內容提供化合物1甲磺酸鹽(形式D)。在一些實施例中,化合物1甲磺酸鹽(形式D)顯示出包含在約7.4、15.0和22.6° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1甲磺酸鹽(形式D)顯示出包含在下表11中示出的峰的XRPD:
Figure 108131297-A0202-12-0040-27
在一些實施例中,化合物1甲磺酸鹽(形式D)顯示出與圖26基本上類似的XRPD。
磷酸鹽
在一些實施例中,本公開內容提供化合物1的磷酸鹽(“化合物1磷酸鹽”)。在一些實施例中,本公開內容提供化合物1磷酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1磷酸鹽(形式A)。在一些實施例中,化合物1磷酸鹽(形式A)顯示出包含在約3.3、3.6、5.4、9.9和13.1° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1磷酸鹽(形式A)的XRPD進一步包含在約16.1、17.9、20.9、23.7和26.4° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1磷酸鹽(形式A)顯示出包含在下表12中示出的峰的XRPD:
Figure 108131297-A0202-12-0041-28
Figure 108131297-A0202-12-0042-29
在一些實施例中,化合物1磷酸鹽(形式A)顯示出與圖27基本上類似的XRPD。
在一些實施例中,化合物1磷酸鹽(形式A)顯示出包含在約217.6℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1磷酸鹽(形式A)顯示出與圖28基本上類似的DSC溫譜圖。
在一些實施例中,化合物1磷酸鹽(形式A)顯示出與圖28基本上類似的TGA溫譜圖。在一些實施例中,化合物1磷酸鹽(形式A)的TGA溫譜圖在25至204℃的溫度範圍內顯示出0.0至1.7%的重量損失。
在一些實施例中,化合物1磷酸鹽(形式A)顯示出與圖29基本上類似的DVS等溫線圖。在一些實施例中,化合物1磷酸鹽(形式A)在80%相對濕度顯示出約2.1%(按重量計)的重量水分吸附。
酒石酸鹽
在一些實施例中,本公開內容提供化合物1的酒石酸鹽(“化合物1酒石酸鹽”)。在一些實施例中,本公開內容提供化合物1的D(-)-酒石酸鹽(“化合物1 D(-)-酒石酸鹽”)。在一些實施例中,本公開內容提供化合物1的L(+)-酒石酸鹽(“化合物1 L(+)-酒石酸鹽”)。
在一些實施例中,本公開內容提供化合物1酒石酸鹽的結晶形式。在一些實施例中,本公開內容提供化合物1 D(-)-酒石酸鹽的結晶形式。在一些實施例中,本公開內容提供化合物1 L(+)-酒石酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1 L(+)-酒石酸鹽(形式A)。在一些實施例中,化合物1 L(+)-酒石酸鹽顯示出包含在約3.6、4.7、13.9、18.6和22.8° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 L(+)-酒石酸鹽(形式A)的XRPD進一步包含在約14.6、17.8和18.1° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1; 約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 L(+)-酒石酸鹽(形式A)顯示出包含在下表13中示出的峰的XRPD:
Figure 108131297-A0202-12-0044-30
在一些實施例中,化合物1 L(+)-酒石酸鹽(形式A)顯示出與圖30基本上類似的XRPD。
在一些實施例中,化合物1 L(+)-酒石酸鹽(形式A)顯示出包含在約207.6℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 L(+)-酒石酸鹽(形式A)顯示出與圖31基本上類似的DSC溫譜圖。
在一些實施例中,化合物1 L(+)-酒石酸鹽(形式A)顯示出與圖31基本上類似的TGA溫譜圖。在一些實施例中,化合物1 L(+)-酒石酸鹽(形式A)的TGA溫譜圖在25至189℃的溫度範圍內顯示出0.0至1.2%的重量損失。
在一些實施例中,化合物1 L(+)-酒石酸鹽(形式A)顯示出與圖32基本上類似的DVS等溫線圖。在一些實施例中,化合物1 L(+)-酒石酸鹽(形式A)在80%相對濕度顯示出約1.6%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1 L(+)-酒石酸鹽(形式B)。在一些實施例中,化合物1 L(+)-酒石酸鹽(形式B)顯示出包含在約3.6、4.6、12.4、13.9和22.7° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 L(+)-酒石酸鹽(形式B)的XRPD進一步包含在約14.8、18.3和18.5° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 L(+)-酒石酸鹽(形式B)顯示出包含在下表14中示出的峰的XRPD:
Figure 108131297-A0202-12-0045-31
在一些實施例中,化合物1 L(+)-酒石酸鹽(形式B)顯示出與圖33基本上類似的XRPD。
在一些實施例中,化合物1 L(+)-酒石酸鹽(形式B)顯示出包含在約207.3℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 L(+)-酒石酸鹽(形式B)顯示出與圖34基本上類似的DSC溫譜圖。
在一些實施例中,化合物1 L(+)-酒石酸鹽(形式B)顯示出與圖34基本上類似的TGA溫譜圖。在一些實施例中,化合物1 L(+)-酒石酸鹽(形式B)的TGA溫譜圖在25至180℃的溫度範圍內顯示出0.0至0.6%的重量損失。
在一些實施例中,化合物1 L(+)-酒石酸鹽(形式B)顯示出與圖35基本上類似的DVS等溫線圖。在一些實施例中,化合物1 L(+)-酒石酸鹽(形式B)在80%相對濕度顯示出約1.7%(按重量計)的重量水分吸附。
富馬酸鹽
在一些實施例中,本公開內容提供化合物1的富馬酸鹽(“化合物1富馬酸鹽”)。在一些實施例中,本公開內容提供化合物1富馬酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1富馬酸鹽(形式A)。在一些實施例中,化合物1富馬酸鹽(形式A)顯示出包含在約3.5和16.0° 2θ的一個或多個峰的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1富馬酸鹽(形式A)顯示出包含在下表15中示出的峰的XRPD:
Figure 108131297-A0202-12-0047-32
在一些實施例中,化合物1富馬酸鹽(形式A)顯示出與圖36基本上類似的XRPD。
在一些實施例中,化合物1富馬酸鹽(形式A)顯示出包含在約87.0℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1富馬酸鹽(形式A)顯示出與圖37基本上類似的DSC溫譜圖。
在一些實施例中,化合物1富馬酸鹽(形式A)顯示出與圖37基本上類似的TGA溫譜圖。在一些實施例中,化合物1富馬酸鹽(形式A)的TGA溫譜圖在25至75℃的溫度範圍內顯示出0.0至0.9%的重量損失。
在一些實施例中,本公開內容提供化合物1富馬酸鹽(形式B)。在一些實施例中,化合物1富馬酸鹽(形式B)顯示出包含在約3.6、11.0、16.2和17.5° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1富馬酸鹽(形式B)顯示出包含在下表16中示出的峰的XRPD:
Figure 108131297-A0202-12-0047-33
Figure 108131297-A0202-12-0048-34
在一些實施例中,化合物1富馬酸鹽(形式B)顯示出與圖38基本上類似的XRPD。
在一些實施例中,化合物1富馬酸鹽(形式B)顯示出包含在約89.9℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1富馬酸鹽(形式B)顯示出與圖39基本上類似的DSC溫譜圖。
在一些實施例中,化合物1富馬酸鹽(形式B)顯示出與圖39基本上類似的TGA溫譜圖。在一些實施例中,化合物1富馬酸鹽(形式B)的TGA溫譜圖在25至150℃的溫度範圍內顯示出0.0至1.85%的重量損失。
在一些實施例中,化合物1富馬酸鹽(形式B)顯示出與圖40基本上類似的DVS等溫線圖。在一些實施例中,化合物1富馬酸鹽(形式B)在80%相對濕度顯示出約7.2%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1富馬酸鹽(形式C)。在一些實施例中,化合物1富馬酸鹽(形式C)顯示出包含在約14.5、15.4、16.7、17.6和28.8° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約 ±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1富馬酸鹽(形式C)的XRPD進一步包含在約8.4、19.7、20.5、22.9和38.1° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1富馬酸鹽(形式C)顯示出包含在下表17中示出的峰的XRPD:
Figure 108131297-A0202-12-0049-35
Figure 108131297-A0202-12-0050-36
在一些實施例中,化合物1富馬酸鹽(形式C)顯示出與圖41基本上類似的XRPD。
在一個實施例中,本公開內容提供化合物1富馬酸鹽(形式D)。在一些實施例中,化合物1富馬酸鹽(形式D)顯示出包含在約5.2、12.2、15.2、15.5和19.9° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1富馬酸鹽(形式D)的XRPD進一步包含在約10.4、13.6、14.2、21.2和22.3° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1富馬酸鹽(形式D)顯示出包含在下表18中示出的峰的XRPD:
Figure 108131297-A0202-12-0050-37
Figure 108131297-A0202-12-0051-38
在一些實施例中,化合物1富馬酸鹽(形式D)顯示出與圖42基本上類似的XRPD。
甲苯磺酸鹽
在一些實施例中,本公開內容提供化合物1的甲苯磺酸鹽(“化合物1甲苯磺酸鹽”)。在一些實施例中,本公開內容提供化合物1甲苯磺酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1甲苯磺酸鹽(形式A)。在一些實施例中,化合物1甲苯磺酸鹽(形式A)顯示出包含在約3.4、9.8、10.3、12.5和15.3° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1甲苯磺酸鹽(形式A)的XRPD進一步包含在約17.4、17.9、19.6、23.2和26.0° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1甲苯磺酸鹽(形式A)顯示出包含在下表19中示出的峰的XRPD:
Figure 108131297-A0202-12-0052-39
Figure 108131297-A0202-12-0053-40
在一些實施例中,化合物1甲苯磺酸鹽(形式A)顯示出與圖43基本上類似的XRPD。
在一些實施例中,化合物1甲苯磺酸鹽(形式A)顯示出包含在約186.2℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1甲苯磺酸鹽(形式A)顯示出與圖44基本上類似的DSC溫譜圖。
在一些實施例中,化合物1甲苯磺酸鹽(形式A)顯示出與圖44基本上類似的TGA溫譜圖。在一些實施例中,化合物1甲苯磺酸鹽(形式A)的TGA溫譜圖在25至175℃的溫度範圍內顯示出0.0至0.9%的重量損失。
在一些實施例中,化合物1甲苯磺酸鹽(形式A)顯示出與圖45基本上類似的DVS等溫線圖。在一些實施例中,化合物1甲苯磺酸鹽(形式A)在80%相對濕度顯示出約1.5%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1甲苯磺酸鹽(形式B)。在一些實施例中,化合物1甲苯磺酸鹽(形式B)顯示出包含在約10.0、15.2、15.5、17.2和19.4° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1甲苯磺酸鹽(形式B)的XRPD進一步包含在約10.3、16.7、19.1、20.1和20.8° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1甲苯磺酸鹽(形式B)顯示出包含在下表20中示出的峰的XRPD:
Figure 108131297-A0202-12-0054-41
Figure 108131297-A0202-12-0055-42
Figure 108131297-A0202-12-0056-43
在一些實施例中,化合物1甲苯磺酸鹽(形式B)顯示出與圖46基本上類似的XRPD。
在一個實施例中,本公開內容提供化合物1甲苯磺酸鹽(形式C)。在一些實施例中,化合物1甲苯磺酸鹽(形式C)顯示出包含在約7.4、10.2、12.5、18.3和19.7° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1甲苯磺酸鹽(形式C)的XRPD進一步包含在約9.8、14.7、16.6、17.8和23.2° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1甲苯磺酸鹽(形式C)顯示出包含在下表21中示出的峰的XRPD:
Figure 108131297-A0202-12-0056-44
Figure 108131297-A0202-12-0057-45
Figure 108131297-A0202-12-0058-46
在一些實施例中,化合物1甲苯磺酸鹽(形式C)顯示出與圖47基本上類似的XRPD。
葡糖醛酸鹽
在一些實施例中,本公開內容提供化合物1的葡糖醛酸鹽(“化合物1葡糖醛酸鹽”)。在一些實施例中,本公開內容提供化合物1的D-葡糖醛酸鹽(“化合物1 D-葡糖醛酸鹽”)。在一些實施例中,本公開內容提供化合物1的L-葡糖醛酸鹽(“化合物1 L-葡糖醛酸鹽”)。
在一些實施例中,本公開內容提供化合物1葡糖醛酸鹽的結晶形式。在一些實施例中,本公開內容提供化合物1 D-葡糖醛酸鹽的結晶形式。在一些實施例中,本公開內容提供化合物1 L-葡糖醛酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1 D-葡糖醛酸鹽(形式A)。在一些實施例中,化合物1 D-葡糖醛酸鹽(形式A)顯示出包含在約4.3、12.9、16.8、20.2和20.9° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 D-葡糖醛酸鹽(形式A)的XRPD進一步包含在約3.3、14.7、17.3、21.6和24.8° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1 D-葡糖醛酸鹽(形式A)顯示出包含在下表22中示出的峰的XRPD:
Figure 108131297-A0202-12-0059-47
Figure 108131297-A0202-12-0060-48
在一些實施例中,化合物1 D-葡糖醛酸鹽(形式A)顯示出與圖48基本上類似的XRPD。
在一些實施例中,化合物1 D-葡糖醛酸鹽(形式A)顯示出包含在約116.2℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 D-葡糖醛酸鹽(形式A)顯示出包含在約139.3℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 D-葡糖醛酸鹽(形式A)顯示出與圖49基本上類似的DSC溫譜圖。
在一些實施例中,化合物1 D-葡糖醛酸鹽(形式A)顯示出與圖49基本上類似的TGA溫譜圖。在一些實施例中,化合物1 D-葡糖醛酸鹽(形式A)的TGA溫譜圖在25至120℃的溫度範圍內顯示出0.0至3.0%的重量損失。
在一些實施例中,化合物1 D-葡糖醛酸鹽(形式A)顯示出與圖50基本上類似的DVS等溫線圖。在一些實施例中,化合物1 D-葡糖醛酸鹽(形式A)在80%相對濕度顯示出約1.4%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1 D-葡糖醛酸鹽(形式B)。在一些實施例中,化合物1 D-葡糖醛酸鹽(形式B)顯示出包含在約14.7、16.7、17.0、20.0和20.4° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 D-葡糖醛酸鹽(形式B)的XRPD進一步包含在約8.5、15.0、19.5、22.5和24.3° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1 D-葡糖醛酸鹽(形式B)顯示出包含在下表23中示出的峰的XRPD:
Figure 108131297-A0202-12-0061-49
Figure 108131297-A0202-12-0062-50
在一些實施例中,化合物1 D-葡糖醛酸鹽(形式B)顯示出與圖51基本上類似的XRPD。
乙磺酸鹽
在一些實施例中,本公開內容提供化合物1的乙磺酸鹽(“化合物1乙磺酸鹽”)。在一些實施例中,本公開內容提供化合物1乙磺酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1乙磺酸鹽(形式A)。在一些實施例中,化合物1乙磺酸鹽(形式A)顯示出包含在約3.4、3.7、7.6、15.3和23.0° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1乙磺酸鹽(形式A)的XRPD進一步包含在約23.3和30.8° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1乙磺酸鹽(形式A)顯示出包含在下表24中示出的峰的XRPD:
Figure 108131297-A0202-12-0063-51
Figure 108131297-A0202-12-0064-52
在一些實施例中,化合物1乙磺酸鹽(形式A)顯示出與圖52基本上類似的XRPD。
在一些實施例中,化合物1乙磺酸鹽(形式A)顯示出包含在約177.9℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1乙磺酸鹽(形式A)顯示出包含在約207.0℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1乙磺酸鹽(形式A)顯示出與圖53基本上類似的DSC溫譜圖。
在一些實施例中,化合物1乙磺酸鹽(形式A)顯示出與圖53基本上類似的TGA溫譜圖。在一些實施例中,化合物1乙磺酸鹽(形式A)的TGA溫譜圖在25至180℃的溫度範圍內顯示出0.0至2.9%的重量損失。
在一些實施例中,化合物1乙磺酸鹽(形式A)顯示出與圖54基本上類似的DVS等溫線圖。在一些實施例中,化合物1乙磺酸鹽(形式A)在80%相對濕度顯示出約1.4%(按重量計)的重量水分吸附。
硫酸鹽
在一些實施例中,本公開內容提供化合物1的硫酸鹽(“化合物1硫酸鹽”)。在一些實施例中,本公開內容提供化合物1硫酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1硫酸鹽(形式A)。在一些實施例中,化合物1硫酸鹽(形式A)顯示出包含在約3.6、5.2、7.8、8.1和15.1° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1硫酸鹽(形式A)的XRPD進一步包含在約14.7、17.4、18.2、18.4和19.7° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1硫酸鹽(形式A)顯示出包含在下表25中示出的峰的XRPD:
Figure 108131297-A0202-12-0065-53
Figure 108131297-A0202-12-0066-54
在一些實施例中,化合物1硫酸鹽(形式A)顯示出與圖55基本上類似的XRPD。
在一些實施例中,化合物1硫酸鹽(形式A)顯示出包含在約167.1℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1硫酸鹽(形式A)顯示出與圖56基本上類似的DSC溫譜圖。
在一些實施例中,化合物1硫酸鹽(形式A)顯示出與圖56基本上類似的TGA溫譜圖。在一些實施例中,化合物1硫酸鹽(形式A)的TGA溫譜圖在25至120℃的溫度範圍內顯示出0.0至1.0%的重量損失。
在一些實施例中,化合物1硫酸鹽(形式A)顯示出與圖57基本上類似的DVS等溫線圖。在一些實施例中,化合物1硫酸鹽(形式A)在80%相對濕度顯示出約6.2%(按重量計)的重量水分吸附。
抗壞血酸鹽
在一些實施例中,本公開內容提供化合物1的抗壞血酸鹽(“化合物1抗壞血酸鹽”)。在一些實施例中,本公開內容提供化合物1抗壞血酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1抗壞血酸鹽(形式A)。在一些實施例中,化合物1抗壞血酸鹽(形式A)顯示出包含在約3.6、5.6、16.6、19.6和19.8° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1抗壞血酸鹽(形式A)的XRPD進一步包含在約11.5、11.9、21.6、24.1和24.5° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1抗壞血酸鹽(形式A)顯示出包含在下表26中示出的峰的XRPD:
Figure 108131297-A0202-12-0067-55
Figure 108131297-A0202-12-0068-56
在一些實施例中,化合物1抗壞血酸鹽(形式A)顯示出與圖58基本上類似的XRPD。
在一些實施例中,化合物1抗壞血酸鹽(形式A)顯示出包含在約46.3℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1抗壞血酸鹽(形式A)顯示出包含在約124.3℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1抗壞血酸鹽(形式A)顯示出與圖59基本上類似的DSC溫譜圖。
在一些實施例中,化合物1抗壞血酸鹽(形式A)顯示出與圖59基本上類似的TGA溫譜圖。在一些實施例中,化合物1抗壞血酸鹽(形式A)的TGA溫譜圖在25至120℃的溫度範圍內顯示出0.0至5.6%的重量損失。
在一些實施例中,化合物1抗壞血酸鹽(形式A)顯示出與圖60基本上類似的DVS等溫線圖。在一些實施例中,化合物1抗壞血酸鹽(形式A)在80%相對濕度顯示出約5.7%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1抗壞血酸鹽(形式B)。在一些實施例中,化合物1抗壞血酸鹽(形式B)顯示出包含在約5.5、16.6、19.7、20.1和28.3° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1抗壞血酸鹽(形式B)的XRPD進一步包含在約14.7和23.6° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1抗壞血酸鹽(形式B)顯示出包含在下表27中示出的峰的XRPD:
Figure 108131297-A0202-12-0069-57
在一些實施例中,化合物1抗壞血酸鹽(形式B)顯示出與圖61基本上類似的XRPD。
萘二磺酸鹽
在一些實施例中,本公開內容提供化合物1的萘二磺酸鹽(“化合物1萘二磺酸鹽”)。在一些實施例中,本公開內容提供化合物1萘二磺酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1萘二磺酸鹽(形式A)。在一些實施例中,化合物1萘二磺酸鹽(形式A)顯示出包含在約3.3、9.4、14.2、16.4和17.8° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1萘二磺酸鹽(形式A)的XRPD進一步包含在約9.7、17.3、20.3、24.4和26.1° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1萘二磺酸鹽(形式A)顯示出包含在下表28中示出的峰的XRPD:
Figure 108131297-A0202-12-0070-58
Figure 108131297-A0202-12-0071-59
在一些實施例中,化合物1萘二磺酸鹽(形式A)顯示出與圖62基本上類似的XRPD。
在一些實施例中,化合物1萘二磺酸鹽(形式A)顯示出包含在約41.7℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更 小(具體地,約±2.0)。在一些實施例中,化合物1萘二磺酸鹽(形式A)顯示出與圖63基本上類似的DSC溫譜圖。
在一些實施例中,化合物1萘二磺酸鹽(形式A)顯示出與圖63基本上類似的TGA溫譜圖。在一些實施例中,化合物1萘二磺酸鹽(形式A)的TGA溫譜圖在25至120℃的溫度範圍內顯示出0.0至0.7%的重量損失。
在一些實施例中,化合物1萘二磺酸鹽(形式A)顯示出與圖64基本上類似的DVS等溫線圖。在一些實施例中,化合物1萘二磺酸鹽在80%相對濕度顯示出約3.1%(按重量計)的重量水分吸附。
在一些實施例中,本公開內容提供化合物1萘二磺酸鹽(形式B)。在一些實施例中,化合物1萘二磺酸鹽(形式B)顯示出包含在約6.0、14.2、18.1、19.0和20.3° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1萘二磺酸鹽(形式B)的XRPD進一步包含在約12.0、16.9、18.4、19.4和24.1° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1萘二磺酸鹽(形式B)顯示出包含在下表29中示出的峰的XRPD:
Figure 108131297-A0202-12-0072-60
Figure 108131297-A0202-12-0073-61
在一些實施例中,化合物1萘二磺酸鹽(形式B)顯示出與圖65基本上類似的XRPD。
丙二酸盬
在一些實施例中,本公開內容提供化合物1的丙二酸鹽(“化合物1丙二酸鹽”)。在一些實施例中,本公開內容提供化合物1丙二酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1丙二酸鹽(形式A)。在一些實施例中,化合物1丙二酸鹽(形式A)顯示出包含在約15.1、18.0、18.8、23.4和23.8° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1丙二酸鹽(形式A)的XRPD進一步包含在約3.6、13.8、15.6、21.4和27.6° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1丙二酸鹽(形式A)顯示出包含在下表30中示出的峰的XRPD:
Figure 108131297-A0202-12-0074-62
Figure 108131297-A0202-12-0075-63
在一些實施例中,化合物1丙二酸鹽(形式A)顯示出與圖66基本上類似的XRPD。
在一些實施例中,化合物1丙二酸鹽(形式A)顯示出包含在約36.9℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1丙二酸鹽(形式A)顯示出包含在約124.6℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1丙二酸鹽(形式A)顯示出與圖67基本上類似的DSC溫譜圖。
在一些實施例中,化合物1丙二酸鹽(形式A)顯示出與圖67基本上類似的TGA溫譜圖。在一些實施例中,化合物1丙二酸鹽(形式A)的TGA溫譜圖在25至120℃的溫度範圍內顯示出0.0至1.9%的重量損失。
苯磺酸鹽
在一些實施例中,本公開內容提供化合物1的苯磺酸鹽(“化合物1苯磺酸鹽”)。在一些實施例中,本公開內容提供化合物1苯磺酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1苯磺酸鹽(形式A)。在一些實施例中,化合物1苯磺酸鹽(形式A)顯示出包含在約14.7、15.8、22.1、23.2和26.6° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1苯磺酸鹽(形式A)的XRPD進一步包含在約3.7、16.2、17.8、19.5和30.4° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1苯磺酸鹽(形式A)顯示出包含在下表31中示出的峰的XRPD:
Figure 108131297-A0202-12-0076-64
Figure 108131297-A0202-12-0077-65
在一些實施例中,化合物1苯磺酸鹽(形式A)顯示出與圖68基本上類似的XRPD。
在一些實施例中,化合物1苯磺酸鹽(形式A)顯示出包含在約194.2℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1苯磺酸鹽(形式A)顯示出與圖69基本上類似的DSC溫譜圖。
在一些實施例中,化合物1苯磺酸鹽(形式A)顯示出與圖69基本上類似的TGA溫譜圖。在一些實施例中,化合物1苯磺酸鹽(形式A)的TGA溫譜圖在25至120℃的溫度範圍內顯示出0.0至0.3%的重量損失。
在一些實施例中,化合物1苯磺酸鹽(形式A)顯示出與圖70基本上類似的DVS等溫線圖。在一些實施例中,化合物1苯磺酸鹽(形式A)在80%相對濕度顯示出約4.0%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1苯磺酸鹽(形式B)。
在一些實施例中,化合物1苯磺酸鹽(形式B)顯示出包含在約7.3、14.7、22.1、23.2和29.6° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限 為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1苯磺酸鹽(形式B)的XRPD進一步包含在約7.9、16.2、16.4、17.2和30.4° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1苯磺酸鹽(形式B)顯示出包含在下表32中示出的峰的XRPD:
Figure 108131297-A0202-12-0078-66
在一些實施例中,化合物1苯磺酸鹽(形式B)顯示出與圖71基本上類似的XRPD。
羥乙基磺酸鹽
在一些實施例中,本公開內容提供化合物1的羥乙基磺酸鹽(“化合物1羥乙基磺酸鹽”)。在一些實施例中,本公開內容提供化合物1羥乙基磺酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1羥乙基磺酸鹽(形式A)。
在一些實施例中,化合物1羥乙基磺酸鹽(形式A)顯示出包含在約5.6、16.7、16.9、18和20.9° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1羥乙基磺酸鹽(形式A)的XRPD進一步包含在約3.7、15.7、16.2、20.7和25.1° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1羥乙基磺酸鹽(形式A)顯示出包含在下表33中示出的峰的XRPD:
Figure 108131297-A0202-12-0079-67
Figure 108131297-A0202-12-0080-68
在一些實施例中,化合物1羥乙基磺酸鹽(形式A)顯示出與圖72基本上類似的XRPD。
在一些實施例中,化合物1羥乙基磺酸鹽(形式A)顯示出包含在約153.3℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1羥乙基磺酸鹽(形式A)顯示出與圖73基本上類似的DSC溫譜圖。
在一些實施例中,化合物1羥乙基磺酸鹽(形式A)顯示出與圖73基本上類似的TGA溫譜圖。在一些實施例中,化合物1羥乙基磺酸鹽(形式A)的TGA溫譜圖在25至120℃的溫度範圍內顯示出0.0至0.0%的重量損失。
在一些實施例中,化合物1羥乙基磺酸鹽(形式A)顯示出與圖74基本上類似的DVS等溫線圖。在一些實施例中,化合物1羥乙基磺酸鹽(形式A)在80%相對濕度顯示出約4.9%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1羥乙基磺酸鹽(形式B)。在一些實施例中,化合物1羥乙基磺酸鹽(形式B)顯示出包含在約14.5、15.8、17.9、18.1和18.6° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1羥乙基磺酸鹽(形式B)的XRPD進一步包含在約11.4、13.1、14.2、15.0和17.0° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1羥乙基磺酸鹽(形式B)顯示出包含在下表34中示出的峰的XRPD:
Figure 108131297-A0202-12-0082-69
在一些實施例中,化合物1羥乙基磺酸鹽(形式B)顯示出與圖75基本上類似的XRPD。
龍膽酸鹽
在一些實施例中,本公開內容提供化合物1的龍膽酸鹽(“化合物1龍膽酸鹽”)。在一些實施例中,本公開內容提供化合物1龍膽酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1龍膽酸鹽(形式A)。在一些實施例中,化合物1龍膽酸鹽(形式A)顯示出包含在約3.4、3.6、7.0、14.6和21.4° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1龍膽酸鹽(形式A)的XRPD進一步包含在約16.0、18.0、18.5、19.5和21.1° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1龍膽酸鹽(形式A)顯示出包含在下表35中示出的峰的XRPD:
Figure 108131297-A0202-12-0083-70
Figure 108131297-A0202-12-0084-71
在一些實施例中,化合物1龍膽酸鹽(形式A)顯示出與圖76基本上類似的XRPD。
在一些實施例中,化合物1龍膽酸鹽(形式A)顯示出包含在約117.7℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1龍膽酸鹽(形式A)顯示出與圖77基本上類似的DSC溫譜圖。
在一些實施例中,化合物1龍膽酸鹽(形式A)顯示出與圖77基本上類似的TGA溫譜圖。在一些實施例中,化合物1龍膽酸鹽(形式A)的TGA溫譜圖在25至200℃的溫度範圍內顯示出0.0至9.0%的重量損失。
在一些實施例中,化合物1龍膽酸鹽(形式A)顯示出與圖78基本上類似的DVS等溫線圖。在一些實施例中,化合物1龍膽酸鹽(形式A)在80%相對濕度顯示出約3.1%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1龍膽酸鹽(形式B)。在一些實施例中,化合物1龍膽酸鹽(形式B)顯示出包含在約5.5、10.9、16.4、21.9和22.8° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1龍膽酸鹽(形式B)的XRPD進一步包含在約9.2、13.0、17.2、18.7和27.8° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1龍膽酸鹽(形式B)顯示出包含在下表36中示出的峰的XRPD:
Figure 108131297-A0202-12-0085-72
Figure 108131297-A0202-12-0086-73
在一些實施例中,化合物1龍膽酸鹽(形式B)顯示出與圖79基本上類似的XRPD。
在一個實施例中,本公開內容提供化合物1龍膽酸鹽(形式C)。在一些實施例中,化合物1龍膽酸鹽(形式C)顯示出包含在約5.3、15.2、15.9、21.4和26.6° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1龍膽酸鹽(形式C)的XRPD進一步包含在約7.6、10.6、13.8、16.9和19.8° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1龍膽酸鹽(形式C)顯示出包含在下表37中示出的峰的XRPD:
Figure 108131297-A0202-12-0087-74
Figure 108131297-A0202-12-0088-75
在一些實施例中,化合物1龍膽酸鹽(形式C)顯示出與圖80基本上類似的XRPD。
1-羥基-2-萘酸鹽
在一些實施例中,本公開內容提供化合物1的1-羥基-2-萘酸鹽(“化合物1 1-羥基-2-萘酸鹽”)。在一些實施例中,本公開內容提供化合物1 1-羥基-2-萘酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1 1-羥基-2-萘酸鹽(形式A)。在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式A)顯示出包含在約3.2、6.2、13.8、21.2和21.6° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式A)的XRPD進一步包含在約13.4、16.2、19.9、20.2和24.7° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式A)顯示出包含在下表38中示出的峰的XRPD:
Figure 108131297-A0202-12-0089-76
在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式A)顯示出與圖81基本上類似的XRPD。
在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式A)顯示出包含在約57.7℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式A)顯示出包含在約79.1℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式A)顯示出包含在約116.1℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式A)顯示出包含在約164.7℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式A)顯示出與圖82基本上類似的DSC溫譜圖。
在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式A)顯示出與圖82基本上類似的TGA溫譜圖。在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式A)的TGA溫譜圖在25至120℃的溫度範圍內顯示出0.0至3.6%的重量損失。
在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式A)顯示出與圖83基本上類似的DVS等溫線圖。在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式A)在80%相對濕度顯示出約4.6%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1 1-羥基-2-萘酸鹽(形式B)。在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式B)顯示出包含在約8.0、8.6、13.5、13.8和20.6° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。 在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式B)的XRPD進一步包含在約14.4、15.2、16.1、21.4和23.8° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式B)顯示出包含在下表39中示出的峰的XRPD:
Figure 108131297-A0202-12-0091-77
Figure 108131297-A0202-12-0092-78
在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式B)顯示出與圖84基本上類似的XRPD。
在一個實施例中,本公開內容提供化合物1 1-羥基-2-萘酸鹽(形式C)。在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式C)顯示出包含在約8.5、13.7、14.2、17.3和21.4° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式C)的XRPD進一步包含在約7.7、15.4、20.2、20.6和21.1° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式C)顯示出包含在下表40中示出的峰的XRPD:
Figure 108131297-A0202-12-0093-79
Figure 108131297-A0202-12-0094-80
在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式C)顯示出與圖85基本上類似的XRPD。
在一個實施例中,本公開內容提供化合物1 1-羥基-2-萘酸鹽(形式D)。在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式D)顯示出包含在約10.4、12.9、13.5、20.4和20.9° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式D)的XRPD進一步包含在約 6.3、9.1、11.2、13.2和19.9° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式D)顯示出包含在下表41中示出的峰的XRPD:
Figure 108131297-A0202-12-0095-81
在一些實施例中,化合物1 1-羥基-2-萘酸鹽(形式D)顯示出與圖86基本上類似的XRPD。
環拉酸鹽
在一些實施例中,本公開內容提供化合物1的環拉酸鹽(“化合物1環拉酸鹽”)。在一些實施例中,本公開內容提供化合物1環拉酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1環拉酸鹽(形式A)。在一些實施例中,化合物1環拉酸鹽(形式A)顯示出包含在約6.6、7.2、18.5、19.5和21.6° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1環拉酸鹽(形式A)的XRPD進一步包含在約14.3、14.8、17.2、17.6和18.2° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1環拉酸鹽(形式A)顯示出包含在下表42中示出的峰的XRPD:
Figure 108131297-A0202-12-0096-82
Figure 108131297-A0202-12-0097-83
在一些實施例中,化合物1環拉酸鹽(形式A)顯示出與圖87基本上類似的XRPD。
在一些實施例中,化合物1環拉酸鹽(形式A)顯示出包含在約60.1℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1環拉酸鹽(形式A)顯示出包含在約168.5℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1環拉酸鹽(形式A)顯示出與圖88基本上類似的DSC溫譜圖。
在一些實施例中,化合物1環拉酸鹽(形式A)顯示出與圖88基本上類似的TGA溫譜圖。在一些實施例中,化合物1環拉酸鹽(形式A)的TGA溫譜圖在25至180℃的溫度範圍內顯示出0.0至5.1%的重量損失。
在一些實施例中,化合物1環拉酸鹽(形式A)顯示出與圖89基本上類似的DVS等溫線圖。在一些實施例中,化合物1環拉酸鹽(形式A)在80%相對濕度顯示出約7.3%(按重量計)的重量水分吸附。
乙烷-1,2-二磺酸鹽
在一些實施例中,本公開內容提供化合物1的乙烷-1,2-二磺酸鹽(“化合物1乙烷-1,2-二磺酸鹽”)。在一些實施例中,本公開內容提供化合物1乙烷-1,2-二磺酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1乙烷-1,2-二磺酸鹽(形式A)。在一些實施例中,化合物1乙烷-1,2-二磺酸鹽(形式A)顯示出包含在約16.2、16.5、17.5、20.7和21.3° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1乙烷-1,2-二磺酸鹽(形式A)的XRPD進一步包含在約3.7、5.5、13.8、14.7和26.0° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1乙烷-1,2-二磺酸鹽(形式A)顯示出包含在下表43中示出的峰的XRPD:
Figure 108131297-A0202-12-0098-84
Figure 108131297-A0202-12-0099-85
在一些實施例中,化合物1乙烷-1,2-二磺酸鹽(形式A)顯示出與圖90基本上類似的XRPD。
在一些實施例中,化合物1乙烷-1,2-二磺酸鹽(形式A)顯示出包含在約59.0℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1乙烷-1,2-二磺酸鹽(形式A)顯示出包含在約154.8℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1乙烷-1,2-二磺酸鹽(形式A)顯示出與圖91基本上類似的DSC溫譜圖。
在一些實施例中,化合物1乙烷-1,2-二磺酸鹽(形式A)顯示出與圖91基本上類似的TGA溫譜圖。在一些實施例中,化合物1乙烷-1,2-二磺酸鹽(形式A)的TGA溫譜圖在25至120℃的溫度範圍內顯示出0.0至0.7%的重量損失。
在一些實施例中,化合物1乙烷-1,2-二磺酸鹽(形式A)顯示出與圖92基本上類似的DVS等溫線圖。在一些實施例中,化合物1乙烷-1,2-二磺酸鹽(形式A)在80%相對濕度顯示出約12.9%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1乙烷-1,2-二磺酸鹽(形式B)。在一些實施例中,化合物1乙烷-1,2-二磺酸鹽(形式B)顯示出包含在約5.5、16.4、17.4、17.6和20.7° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1乙烷-1,2-二磺酸鹽(形式B)的XRPD進一步包含在約10.9、13.7、14.6、21.2和22.1° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1乙烷-1,2-二磺酸鹽(形式B)顯示出包含在下表44中示出的峰的XRPD:
Figure 108131297-A0202-12-0101-86
Figure 108131297-A0202-12-0102-87
在一些實施例中,化合物1乙烷-1,2-二磺酸鹽(形式B)顯示出與圖93基本上類似的XRPD。
二氯乙酸鹽
在一些實施例中,本公開內容提供化合物1的二氯乙酸鹽(“化合物1二氯乙酸鹽”)。在一些實施例中,本公開內容提供化合物1二氯乙酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1二氯乙酸鹽(形式A)。在一些實施例中,化合物1二氯乙酸鹽(形式A)顯示出包含在約3.4、3.6、16.2、17.1和19.5° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1二氯乙酸鹽(形式A)的XRPD進一步包含在約8.1、11.4、12.8、16.7和20.0° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1二氯乙酸鹽(形式A)顯示出包含在下表45中示出的峰的XRPD:
Figure 108131297-A0202-12-0102-88
Figure 108131297-A0202-12-0103-89
在一些實施例中,化合物1二氯乙酸鹽(形式A)顯示出與圖94基本上類似的XRPD。
在一些實施例中,化合物1二氯乙酸鹽(形式A)顯示出包含在約117.7℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1二氯乙酸鹽(形式A)顯示出與圖95基本上類似的DSC溫譜圖。
在一些實施例中,化合物1二氯乙酸鹽(形式A)顯示出與圖95基本上類似的TGA溫譜圖。在一些實施例中,化合物1二氯乙酸鹽(形式A)的TGA溫譜圖在25至150℃的溫度範圍內顯示出0.0至3.7%的重量損失。
在一些實施例中,化合物1二氯乙酸鹽(形式A)顯示出與圖96基本上類似的DVS等溫線圖。在一些實施例中,化合物1二氯乙酸鹽(形式A)在80%相對濕度顯示出約1.8%(按重量計)的重量水分吸附。
蘋果酸鹽
在一些實施例中,本公開內容提供化合物1的蘋果酸鹽(“化合物1蘋果酸鹽”)。在一些實施例中,本公開內容提供化合物1的D-蘋果酸鹽(“化合物1 D-蘋果酸鹽”)。在一些實施例中,本公開內容提供化合物1的L-蘋果酸鹽(“化合物1 L-蘋果酸鹽”)。
在一些實施例中,本公開內容提供化合物1蘋果酸鹽的結晶形式。在一些實施例中,本公開內容提供化合物1 D-蘋果酸鹽的結晶形式。在一些實施例中,本公開內容提供化合物1 L-蘋果酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1 L-蘋果酸鹽(形式A)。在一些實施例中,化合物1 L-蘋果酸鹽(形式A)顯示出包含在約3.2、12.5、14.4、15.7和18.4° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 L-蘋果酸鹽(形式A)的XRPD進一步包含在約3.6、6.1、13.2、18.9和21.1° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1 L-蘋果酸鹽(形式A)顯示出包含在下表46中示出的峰的XRPD:
Figure 108131297-A0202-12-0105-90
Figure 108131297-A0202-12-0106-91
Figure 108131297-A0202-12-0107-92
在一些實施例中,化合物1 L-蘋果酸鹽(形式A)顯示出與圖97基本上類似的XRPD。
在一些實施例中,化合物1 L-蘋果酸鹽(形式A)顯示出包含在約120.9℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 L-蘋果酸鹽(形式A)顯示出包含在約142.3℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 L-蘋果酸鹽(形式A)顯示出與圖98基本上類似的DSC溫譜圖。
在一些實施例中,化合物1 L-蘋果酸鹽(形式A)顯示出與圖98基本上類似的TGA溫譜圖。在一些實施例中,化合物1 L-蘋果酸鹽(形式A)的TGA溫譜圖在25至105℃的溫度範圍內顯示出0.0至0.7%的重量損失。
在一些實施例中,化合物1 L-蘋果酸鹽(形式A)顯示出與圖99基本上類似的DVS等溫線圖。在一些實施例中,化合物1 L-蘋果酸鹽(形式A)在80%相對濕度顯示出約2.0%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1 L-蘋果酸鹽(形式B)。在一些實施例中,化合物1 L-蘋果酸鹽(形式B)顯示出包含在約5.6、13.4、17.3、20.8和23.2° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1 L-蘋果酸鹽(形式B)的XRPD進一步包含在約3.7、11.2、14.4、14.9和17.8° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1 L-蘋果酸鹽(形式B)顯示出包含在下表47中示出的峰的XRPD:
Figure 108131297-A0202-12-0108-93
Figure 108131297-A0202-12-0109-94
在一些實施例中,化合物1 L-蘋果酸鹽(形式B)顯示出與圖100基本上類似的XRPD。
在一些實施例中,化合物1 L-蘋果酸鹽(形式B)顯示出包含在約108.7℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 L-蘋果酸鹽(形式B)顯示出包含在約143.3℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約 ±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1 L-蘋果酸鹽(形式B)顯示出與圖101基本上類似的DSC溫譜圖。
在一些實施例中,化合物1 L-蘋果酸鹽(形式B)顯示出與圖101基本上類似的TGA溫譜圖。在一些實施例中,化合物1 L-蘋果酸鹽(形式B)的TGA溫譜圖在25至120℃的溫度範圍內顯示出0.0至1.2%的重量損失。
在一些實施例中,化合物1 L-蘋果酸鹽(形式B)顯示出與圖102基本上類似的DVS等溫線圖。在一些實施例中,化合物1 L-蘋果酸鹽(形式B)在80%相對濕度顯示出約3.5%(按重量計)的重量水分吸附。
鹽酸鹽
在一些實施例中,本公開內容提供化合物1的鹽酸鹽(“化合物1鹽酸鹽”)。在一些實施例中,本公開內容提供化合物1鹽酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1鹽酸鹽(形式A)。在一些實施例中,化合物1鹽酸鹽(形式A)顯示出包含在約3.6、5.2、14.2、17.4和17.7° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1鹽酸鹽(形式A)的XRPD進一步包含在約12.8、13.4、14.9、18.9和20.4° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1鹽酸鹽(形式A)顯示出包含在下表48中示出的峰的XRPD:
Figure 108131297-A0202-12-0111-95
在一些實施例中,化合物1鹽酸鹽(形式A)顯示出與圖103基本上類似的XRPD。
在一些實施例中,化合物1鹽酸鹽(形式A)顯示出包含在約220.5℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1鹽酸鹽(形式A)顯示出包含在約232.7℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1鹽酸鹽(形式A)顯示出與圖104基本上類似的DSC溫譜圖。
在一些實施例中,化合物1鹽酸鹽(形式A)顯示出與圖104基本上類似的TGA溫譜圖。在一些實施例中,化合物1鹽酸鹽(形式A)的TGA溫譜圖在25至150℃的溫度範圍內顯示出0.0至1.2%的重量損失。
在一些實施例中,化合物1鹽酸鹽(形式A)顯示出與圖105基本上類似的DVS等溫線圖。在一些實施例中,化合物1鹽酸鹽(形式A)在80%相對濕度顯示出約3.6%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1鹽酸鹽(形式B)。在一些實施例中,化合物1鹽酸鹽(形式B)顯示出包含在約3.3、7.8、15.4、16.6和23.2° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1鹽酸鹽(形式B)的XRPD進一步包含在約15.0、18.8、20.4、23.5和26.5° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1鹽酸鹽(形式B)顯示出包含在下表49中示出的峰的XRPD:
Figure 108131297-A0202-12-0113-96
Figure 108131297-A0202-12-0114-97
在一些實施例中,化合物1鹽酸鹽(形式B)顯示出與圖106基本上類似的XRPD。
在一些實施例中,化合物1鹽酸鹽(形式B)顯示出包含在約87.1℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1鹽酸鹽(形式B)顯示出包含在約207.3℃的強吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1鹽酸鹽(形式B)顯示出與圖107基本上類似的DSC溫譜圖。
在一些實施例中,化合物1鹽酸鹽(形式B)顯示出與圖107基本上類似的TGA溫譜圖。在一些實施例中,化合物1鹽酸鹽(形式B)的TGA溫譜圖在25至120℃的溫度範圍內顯示出0.0至0.7%的重量損失。
在一些實施例中,化合物1鹽酸鹽(形式B)顯示出與圖108基本上類似的DVS等溫線圖。在一些實施例中,化合物1鹽酸鹽(形式B)在80%相對濕度顯示出約2.9%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1鹽酸鹽(形式C)。在一些實施例中,化合物1鹽酸鹽(形式C)顯示出包含在約14.6、16.5、18.0、21.5和21.9° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中, 化合物1鹽酸鹽(形式C)的XRPD進一步包含在約3.6、18.8、19.9、22.1和23.7° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1鹽酸鹽(形式C)顯示出包含在下表50中示出的峰的XRPD:
Figure 108131297-A0202-12-0115-318
Figure 108131297-A0202-12-0116-319
在一些實施例中,化合物1鹽酸鹽(形式C)顯示出與圖109基本上類似的XRPD。
在一些實施例中,化合物1鹽酸鹽(形式C)顯示出包含在約132.9℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1鹽酸鹽(形式C)顯示出與圖110基本上類似的DSC溫譜圖。
在一些實施例中,化合物1鹽酸鹽(形式C)顯示出與圖110基本上類似的TGA溫譜圖。在一些實施例中,化合物1鹽酸鹽(形式C)的TGA溫譜圖在25至120℃的溫度範圍內顯示出0.0至3.8%的重量損失。
在一些實施例中,化合物1鹽酸鹽(形式C)顯示出與圖111基本上類似的DVS等溫線圖。在一些實施例中,化合物1鹽酸鹽(形式C)在80%相對濕度顯示出約0.7%(按重量計)的重量水分吸附。
萘磺酸鹽
在一些實施例中,本公開內容提供化合物1的萘磺酸鹽(“化合物1萘磺酸鹽”)。在一些實施例中,本公開內容提供化合物1萘磺酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1萘磺酸鹽(形式A)。在一些實施例中,化合物1萘磺酸鹽(形式A)顯示出包含在約3.4、9.5、16.6、17.0和17.5° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1萘磺酸鹽(形式A)的XRPD進一步包含在約8.3、8.7、19.8、25.0和25.5° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1萘磺酸鹽(形式A)顯示出包含在下表51中示出的峰的XRPD:
Figure 108131297-A0202-12-0117-320
Figure 108131297-A0202-12-0118-321
在一些實施例中,化合物1萘磺酸鹽(形式A)顯示出與圖112基本上類似的XRPD。
在一些實施例中,化合物1萘磺酸鹽(形式A)顯示出包含在約100.1℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1萘磺酸鹽(形式A)顯示出包含在約202.3℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1萘磺酸鹽顯示出與圖113基本上類似的DSC溫譜圖。
在一些實施例中,化合物1萘磺酸鹽(形式A)顯示出與圖113基本上類似的TGA溫譜圖。在一些實施例中,化合物1萘磺酸鹽的TGA溫譜圖在25至180℃的溫度範圍內顯示出0.0至1.7%的重量損失。
在一些實施例中,化合物1萘磺酸鹽(形式A)顯示出與圖114基本上類似的DVS等溫線圖。在一些實施例中,化合物1萘磺酸鹽(形式A)在80%相對濕度顯示出約3.9%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1萘磺酸鹽(形式B)。在一些實施例中,化合物1萘磺酸鹽(形式B)顯示出包含在約9.1、15.6、16.1、18.2和19.7° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實 施例中,化合物1萘磺酸鹽(形式B)的XRPD進一步包含在約8.6、12.9、17.1、25.8和26.2° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1萘磺酸鹽(形式B)顯示出包含在下表52中示出的峰的XRPD:
Figure 108131297-A0202-12-0119-322
在一些實施例中,化合物1萘磺酸鹽(形式B)顯示出與圖115基本上類似的XRPD。
草酸鹽
在一些實施例中,本公開內容提供化合物1的草酸鹽(“化合物1草酸鹽”)。在一些實施例中,本公開內容提供化合物1草酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1草酸鹽(形式A)。在一些實施例中,化合物1草酸鹽(形式A)顯示出包含在約6.1、18.2、19.1、19.8和24.3° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1草酸鹽(形式A)的XRPD進一步包含在約12.1、13.9、21.1、21.7和24.7° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1草酸鹽(形式A)顯示出包含在下表53中示出的峰的XRPD:
Figure 108131297-A0202-12-0120-323
Figure 108131297-A0202-12-0121-324
在一些實施例中,化合物1草酸鹽(形式A)顯示出與圖116基本上類似的XRPD。
在一些實施例中,化合物1草酸鹽(形式A)顯示出包含在約163.8℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1草酸鹽(形式A)顯示出包含在約198.6℃的吸熱(例如,強吸熱)的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約 ±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1草酸鹽顯示出與圖117基本上類似的DSC溫譜圖。
在一些實施例中,化合物1草酸鹽(形式A)顯示出與圖117基本上類似的TGA溫譜圖。在一些實施例中,化合物1草酸鹽的TGA溫譜圖在25至150℃的溫度範圍內顯示出0.0至0.4%的重量損失。
在一些實施例中,化合物1草酸鹽(形式A)顯示出與圖118基本上類似的DVS等溫線圖。在一些實施例中,化合物1草酸鹽(形式A)在80%相對濕度顯示出約1.4%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1草酸鹽(形式B)。在一些實施例中,化合物1草酸鹽(形式B)顯示出包含在約6.0、6.3、18.2、18.8和20.0° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1草酸鹽(形式B)的XRPD進一步包含在約12.1、12.5、17.8、20.7和23.5° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1草酸鹽(形式B)顯示出包含在下表54中示出的峰的XRPD:
Figure 108131297-A0202-12-0122-325
Figure 108131297-A0202-12-0123-326
在一些實施例中,化合物1草酸鹽(形式B)顯示出與圖119基本上類似的XRPD。
對胺基水楊酸鹽
在一些實施例中,本公開內容提供化合物1的對胺基水楊酸鹽(“化合物1對胺基水楊酸鹽”)。在一些實施例中,本公開內容提供化合物1對胺基水楊酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1對胺基水楊酸鹽(形式A)。在一些實施例中,化合物1對胺基水楊酸鹽(形式A)顯示出包含在約5.4、13.8、15.7、20.7和21.2° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1對胺基水楊酸鹽(形式A)的XRPD進一步包含在約12.5、13.5、15.3、19.2和27.6° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1對胺基水楊酸鹽(形式A)顯示出包含在下表55中示出的峰的XRPD:
Figure 108131297-A0202-12-0124-327
Figure 108131297-A0202-12-0125-328
在一些實施例中,化合物1對胺基水楊酸鹽(形式A)顯示出與圖120基本上類似的XRPD。
在一些實施例中,化合物1對胺基水楊酸鹽(形式A)顯示出包含在約97.1℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1對胺基水楊酸鹽(形式A)顯示出包含在約146.8℃的吸熱的DSC溫譜圖,誤差界限為約±2.5;約±2.0;約±1.5;約±1.0;約±0.5;或更小(具體地,約±2.0)。在一些實施例中,化合物1對胺基水楊酸鹽(形式A)顯示出與圖121基本上類似的DSC溫譜圖。
在一些實施例中,化合物1對胺基水楊酸鹽(形式A)顯示出與圖121基本上類似的TGA溫譜圖。在一些實施例中,化合物1對胺基水楊酸鹽(形式A)的TGA溫譜圖在25至120℃的溫度範圍內顯示出0.0至4.0%的重量損失。
在一些實施例中,化合物1對胺基水楊酸鹽(形式A)顯示出與圖122基本上類似的DVS等溫線圖。在一些實施例中,化合物1對胺基水楊酸鹽(形式A)在80%相對濕度顯示出約4.0%(按重量計)的重量水分吸附。
在一個實施例中,本公開內容提供化合物1對胺基水楊酸鹽(形式B)。在一些實施例中,化合物1對胺基水楊酸鹽(形式B)顯示出包含在約12.3、15.2、17.3、19.9和22.9° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1對胺基水楊酸鹽(形式B)的XRPD進一步包含在約6.3、12.5、14.8、16.4和20.7° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1對胺基水楊酸鹽(形式B)顯示出包含在下表56中示出的峰的XRPD:
Figure 108131297-A0202-12-0127-329
Figure 108131297-A0202-12-0128-330
在一些實施例中,化合物1對胺基水楊酸鹽(形式B)顯示出與圖123基本上類似的XRPD。
馬來酸鹽
在一些實施例中,本公開內容提供化合物1的馬來酸鹽(“化合物1馬來酸鹽”)。在一些實施例中,本公開內容提供化合物1馬來酸鹽的結晶形式。
在一個實施例中,本公開內容提供化合物1馬來酸鹽(形式A)。在一些實施例中,化合物1馬來酸鹽(形式A)顯示出包含在約6.4、9.5、11.2、13.1、15.0和17.6° 2θ的一個或多個峰(具體地,三個或更多個峰)的XRPD,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。在一些實施例中,化合物1馬來酸鹽(形式A)的XRPD進一步包含在約11.2、12.6、14.0、16.7和19.2° 2θ的一個或多個峰,誤差界限為約±0.5;約±0.4;約±0.3;約±0.2;約±0.1;約±0.05;或更小(具體地,約±0.2)。
在一些實施例中,化合物1馬來酸鹽(形式A)顯示出包含在下表57中示出的峰的XRPD:
Figure 108131297-A0202-12-0128-331
Figure 108131297-A0202-12-0129-332
在一些實施例中,化合物1馬來酸鹽(形式A)顯示出與圖124基本上類似的XRPD。
製備化合物1的鹽的方法
可以例如通過在合適的溶劑中混合化合物1游離鹼與酸(例如鹽酸)以提供化合物1鹽(作為在合適的溶劑中的懸浮液)來製備化合物1的鹽(及其結晶形式)。 在一些實施例中,可以通過緩慢蒸發、緩慢冷卻或將抗溶劑添加到化合物1游離鹼與酸的混合物中來製備化合物1鹽。
在一些實施例中,本公開內容提供製備化合物1的鹽的結晶形式的方法。在一些實施例中,化合物1的鹽在合適的溶劑中懸浮足以提供化合物1的鹽的結晶形式的懸浮液的時間。
在一些實施例中,將化合物1的鹽溶解在合適的溶劑中以提供溶液,並且化合物1的鹽的結晶形式從溶液中沈澱出來。在一些其他實施例中,通過加熱化合物1的鹽和合適的溶劑的混合物來溶解化合物1的鹽。在一些其他實施例中,通過冷卻溶液,化合物1的鹽的結晶形式從溶液中沈澱出來。在其他實施例中,通過向溶液中加入抗溶劑(即,降低化合物1的鹽的結晶形式的溶解度的溶劑),從溶液中沈澱出化合物1的鹽的結晶形式。在另一些其他實施例中,通過從溶液中蒸發一部分合適的溶劑,從溶液中沈澱出化合物1的鹽的結晶形式。在某些其他實施例中,合適的溶劑包括水。
在一些實施例中,將化合物1的鹽加熱以提供熔體,並且將熔體冷卻以提供化合物1的鹽的結晶形式。在一些實施例中,將化合物1的鹽在足夠以提供化合物1的鹽的結晶形式的壓力和時間下壓縮(例如5mPa,5分鐘)。在一些實施例中,將化合物1的鹽研磨(例如,使用研缽和研杵或研磨機)以提供化合物1的鹽的結晶形式。在一些其他實施例中,化合物1的鹽在合適的溶劑存在下被研磨以提供化合物1的鹽的結晶形式。在一些實施例中,將化合物1的鹽經受相對濕度和溫度(例如,在45℃ 75%的相對濕度),持續足以提供化合物1的鹽的結晶形式的時間。
在一些實施例中,合適的溶劑包括非質子溶劑。在一些實施例中,非質子溶劑包括選自下列的至少一種溶劑:二甲基甲醯胺(DMF)、二甲基乙醯胺(DMAC)、1,3-二甲基-3,4,5,6-四氫-2(1H)-嘧啶酮(DMPU)、1,3-二甲基-2-咪唑啉酮(DMI)、N-甲基吡咯啶酮(NMP)、甲醯胺、N-甲基乙醯胺、N-甲基甲醯胺、乙腈、二甲基亞碸、丙腈、甲酸乙酯、乙酸甲酯、甲基乙基酮(MEK)、六氯丙酮、丙酮、乙基甲基酮、乙酸乙酯、環丁碸、N,N-二甲基丙醯胺、四甲基脲、硝基甲烷、硝基苯、六甲基磷醯胺、二乙氧基甲烷、四氫呋喃、甲苯、1,3-二氧六環、1,4-二氧六環、呋喃、二乙醚、四氫吡喃、二異丙醚、二丁醚、乙二醇二甲醚、乙二醇二乙醚、二乙二醇二甲醚、二乙二醇二乙醚、三乙二醇二甲醚、苯甲醚、叔丁基甲基醚。在一些實施例中,非質子溶劑是丙酮。在一些實施例中,非質子溶劑是乙酸乙酯。在一些實施例中,非質子溶劑是乙腈。
在一些實施例中,合適的溶劑包括質子溶劑。在一些實施例中,質子溶劑包括選自下列的至少一種溶劑:水、甲醇、乙醇、2-硝基乙醇、2-氟乙醇、2,2,2-三氟乙醇、乙二醇、1-丙醇、2-丙醇、2-甲氧基乙醇、1-丁醇、2-丁醇、異丁醇、叔丁醇、2-乙氧基乙醇、二乙二醇、1-、2-或3-戊醇、新戊醇、叔戊醇、二乙二醇單甲醚、二乙二醇單乙醚、環己醇、苯甲醇、苯酚和甘油。在一些實施例中,質子溶劑包括2-丙醇和水的混合物。
在一些實施例中,合適的溶劑是單一溶劑。在一些實施例中,溶劑是溶劑的混合物。在一些實施例中,合適的溶劑是質子溶劑和非質子溶劑的混合物。
在某些實施例中,在製備後分離化合物1鹽(或鹽的結晶形式)。可以使用方法例如過濾、傾析、離心或其他合適的分離技術來完成鹽(或鹽的結晶形式)的分離。
在某些實施例中,視情況用液體例如抗溶劑、乙腈、甲醇、乙醇、乙酸乙酯、甲基乙基酮、丙酮、四氫呋喃或其組合洗滌分離的鹽(或鹽的結晶形式)。
在某些實施例中,由以上實施例製備的化合物1的鹽是基本上純的。例如,在一些實施例中,化合物1的鹽(例如化合物1鹽酸鹽)的化學純度可包括至少約99.9%、約99.8%、約99.7%、約99.6%、約99.5%、約99.4%、約99.3%、約99.2%、約99.1%、約99.0%、約98%、約97%、約96%或約95%的化合物1的鹽。化學純度可以使用業內熟習此項技術者已知的方法來測定(例如,利用合適溶劑和偵檢210nm波長的柱的HPLC層析)。在一些實施例中,基本純度基於重量百分比測定。在一些實施例中,基本純度基於曲線下面積測定。
在一些實施例中,由以上實施例製備的化合物1的鹽是結晶的。在某些實施例中,由以上實施例製備的化合物1的結晶鹽是基本上純的。例如,在一些實施例中,化合物1的結晶鹽(例如化合物1鹽酸鹽)的多晶型純度可包括至少約99.9%、約99.8%、約99.7%、約99.6%、約99.5%、約99.4%、約99.3%、約99.2%、約99.1%、約99.0%、約98%、約97%、約96%、約95%、約94%、約93%、約92%、約91%、約90%、約85%、約80%、約75%、約70%、約65%、約60%、約55%或約50%的單晶形式(例如,化合物1鹽酸鹽(形式A))。多晶型純度可使用業內熟習此項技術者已知的方法來測定(包括Shah,B.,et al.,Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids, J.Pharm.Sci.2006,95(8),pages 1641-1665中描述的X射線粉末晶體學,等,該文獻的全部內容在此通過引用的方式併入本文)。
在一些實施例中,與化合物1游離鹼起始原料的差向異構純度相比,由以上實施例製備的化合物1的鹽在一個或多個位置差向異構地富集。例如,在一些實施例中,化合物1的鹽可以包含至少約8:1、約9:1、約10:1、約11:1、約12:1、約13:1、約14:1、約15:1或約20:1的化合物1的17-β:17α差向異構物。在一些實施例中,化合物1的鹽可以包含至少約8:1、約9:1、約10:1、約11:1、約12:1、約13:1、約14:1、約15:1或約20:1的3α-羥基:3β-羥基的化合物1。在一些實施例中,本文描述的化合物1的鹽的差向異構純度與化合物1游離鹼起始原料的差向異構純度基本上相同。
醫藥組合物
在一方面,本公開內容提供包含化合物1的鹽的醫藥組合物。在一些實施例中,化合物1的鹽是化合物1氫溴酸鹽、化合物1檸檬酸鹽、化合物1 L-蘋果酸鹽、化合物1甲磺酸鹽、化合物1磷酸鹽、化合物1 L(+)-酒石酸鹽、化合物1鹽酸鹽、化合物1甲苯磺酸鹽、化合物1葡糖醛酸鹽或化合物1乙磺酸鹽。在一些實施例中,化合物1的鹽是化合物1氫溴酸鹽(形式A)。在一些實施例中,化合物1的鹽是化合物1氫溴酸鹽(形式B)。在一些實施例中,化合物1的鹽是化合物1氫溴酸鹽(形式C)。在一些實施例中,化合物1的鹽是化合物1氫溴酸鹽(形式D)。在一些實施例中,化合物1的鹽是化合物1氫溴酸鹽(形式E)。在一些實施例中,化合物1的鹽是化合物1檸檬酸鹽(形式A)。在一些實施例中,化 合物1的鹽是化合物1檸檬酸鹽(形式B)。在一些實施例中,化合物1的鹽是化合物1檸檬酸鹽(形式C)。
組合物可以通過合適的途徑投予,包括但不限於口服、非經腸、直腸、外用和局部。該組合物可以是液體、半液體或固體形式,並且可以使用業內熟習此項技術者已知的方法以適合於每種投予途徑的方式配製。
口服投予的劑型包括例如固體劑型(例如錠劑、膠囊劑、丸劑、顆粒劑等)和液體劑型(例如口服溶液、口服懸浮液、糖漿劑等)。
在一些實施例中,醫藥組合物包含治療有效量的化合物1的鹽或其溶劑合物和醫藥上可接受的賦形劑。
使用方法
在一方面,本發明提供治療有需要的受試者中的疾病或病症的方法,該方法包括向該受試者投予治療有效量的化合物1的鹽。
在一些實施例中,疾病或病症是抑鬱。在一些實施例中,疾病或病症是難治性抑鬱。在一些實施例中,疾病或病症是產後抑鬱。在一些實施例中,疾病或病症是重度抑鬱。在一些實施例中,疾病或病症是雙相障礙。在一些實施例中,疾病或病症是癲癇。在一些實施例中,疾病或病症是焦慮。
實例
通過參考以下實例進一步說明本發明。但是,應注意,此等實例,與上述實施例一樣,是說明性的,不應以任何方式解釋為限制本發明的範圍。
“EtOAc”是指乙酸乙酯。“(m)DSC”是指(調整的)差示掃描量熱法。“ACN”是指乙腈。“AR”是指分析純。“DCM”是指二氯甲烷。“DMF”是指二甲基甲醯胺。“DMSO”是指二甲基亞碸。“DI”是指蒸餾的。“DSC”是指差示掃描量熱法。“DVS”是指動態蒸氣吸附。“e.q.”是指當量。“EtOH”是指乙醇。“FaSSIF”是指禁食狀態模擬的腸液。“FeSSIF”是指進食狀態模擬的腸液。“1H-NMR”是指質子核磁共振。“IPA”是指異丙醇。“IPAC”是指乙酸異丙酯。“IPE”是指二異丙醚。“LC”是指低結晶度。“MEK”是指甲基乙基酮。“MeOH”是指甲醇。“MIBK”是指甲基異丁基酮。“MTBE”是指甲基叔丁基醚。“NMR”是指核磁共振。“PLM”是指偏光顯微鏡。“RH”是指相對濕度。“RRT”是指相對滯留時間。“RT”是指室溫。“RT(min)”是指滯留時間。“SGF”是指模擬的胃液。“TGA”是指熱重分析。“THF”是指四氫呋喃。“UPLC”是指超高效液相層析。“XRPD”是指X射線粉末繞射儀。
在一些情況下,使用以下方法通過離子層析(IC)測定本文所述的化合物1鹽中化合物1:酸的比:將25μL的10.0μg/mL樣品或標準品注入Dionex IonPac AG18柱,流速為1.0mL/min,並通過Thermo ICS-2100電導偵檢器偵檢。ASRS-4mm抑制器設置為38mA,柱溫為30℃。層析洗脫為15mM KOH,總運行時間為20分鐘。
在Rigaku D/Max-2200/PC或Bruker D8 Advance粉末繞射儀上收集X射線粉末繞射圖。用在40kV/40mA下運行的發生器利用銅K-α X射線(λ=1.54179Å) 照射樣品。以3°至40°的連續模式掃描樣品,樣品旋轉速度為15rpm,掃描速率為10°/min。
單晶x射線分析:使用Rigaku XtaLAB Synergy-R(Cu)(Micro-Max007HF Cu模式,CuKα:λ=1.54184Å,Hypix6000HE偵檢器)繞射儀獲得單晶X射線繞射數據。
使用以下SCXRD儀器參數:
Figure 108131297-A0202-12-0136-333
從塊狀結晶樣品中分離出具有良好繞射質量的合適的單晶,並用Paratone-N(油基冷凍保護劑)包裹。將晶體以無規取向安裝在聚酯薄膜環上,並在以下實例中指定的溫度浸入氮氣流中。在Rigaku XtaLAB Synergy R(CuKα輻射,λ=1.54184Å)繞射儀上進行初步檢查和數據收集,並使用CrysAlisPro(Rigaku,V1.171.40.14e,2018)軟體包進行分析。
使用Intrinsic Phasing在ShelXT(Sheldrick,G.M.Acta Cryst.2015,A71,3-8.)結構解析程序中對結構進行求解,並利用ShelXL(Version 2017/1;Sheldrick,G.M. Acta Cryst.2015,C71,3-8)精修包對OLEX2(Dolomanov,O.V.,Bourhis,L.J.,Gildea,R.J,Howard,J.A.K.& Puschmann,H.J.Appl.Cryst.2009,42,339-341)中包含的F2使用全矩陣最小二乘進行精修(refine)。所有非氫原子均經過各向異性精修。與碳原子連接的氫原子的位置使用跨騎模型(riding model)進行幾何計算和精修,但是基於差分傅立葉圖(Difference Fourier Map)自由地精修與氮原子和氧原子連接的氫原子。
在TA Q2000上收集DSC數據。對於每個分析的樣品,將大約1mg的樣品放入帶有針孔的密封鋁盤中,並以10℃/min的速度從25℃加熱到250℃。
在TA Q5000上收集TGA數據。對於每個分析的樣品,將大約4mg的材料放入開放的鉑盤中,並以10℃/min的速度從30℃加熱到300℃或重量%<80%。
使用SMS DVS Advantage 1系統進行動態蒸氣吸附(DVS)。對於每個分析的樣品,將約10mg的材料轉移到DVS儀器中,並使用以下參數記錄在25℃相對於大氣濕度的重量變化:平衡dm/dt:0.01%/min,(持續時間:10min和最多:180分鐘);乾燥設定為0%RH,持續120分鐘;RH(%)測量步長為10%,RH(%)測量步長範圍為0-90-0%。
在Bruker 400MHz磁體上收集1H-NMR。對於每個分析的樣品,將約6mg的材料溶於0.6mL的d6-DMSO中進行分析。如業內熟習此項技術者所知,1H-NMR共振的相對ppm位移和積分值可根據各種樣品因素而變化,包括例如d6-DMSO中的水含量,樣品中的離子濃度等。因此,以下實例中報道的1H-NMR值不應視為各自鹽和多晶形式的特徵。
通過將0.5μL樣品或標準品注入Waters Acquity UPLC Shield RP18柱(0.8mL/min的流速)中經Agilent 1290 UPLC(偵檢波長:210nm)收集UPLC數據。 該柱用移動相A平衡,該移動相A由0.1%H3PO4的水溶液構成。移動相B為乙腈(CAN)。層析洗脫程序如下:再平衡後再等待一分鐘,總運行時間為6分鐘:
Figure 108131297-A0202-12-0138-334
本文所述的結晶鹽通過偏光顯微鏡表徵。在一些實施例中,本文所述的結晶鹽表現出雙折射,這表明結晶度。
實例1:化合物1的氫溴酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的氫溴酸鹽。
化合物1 HBr(形式A):
向乙醇(2.84kg,9%w/w水)中加入化合物1(1.2kg)。加入另外一部分乙醇(0.95kg,9%w/w水),並在攪拌下將所得混合物加熱至內部溫度55-65℃直至獲得溶液。使所得溶液通過10μm過濾器,並冷卻至內部溫度低於30℃。隨著加入包含48%w/w的HBr水溶液(523g)和丙酮(940g)的溶液,維持溫度低於30℃,並攪拌1小時。加入丙酮(8.47kg),將所得漿液冷卻至0-5℃並攪拌1小時。通過過濾收集固體,並用丙酮(1.88kg)洗滌。將所得固體在真空下在50℃乾燥以得到化合物1 HBr鹽(1.17kg,82%產率)。
所得固體是化合物1 HBr(形式A)。通過離子層析測定,化合物1 HBr(形式A)中化合物1:HBr的比為1:1.02。XPRD如圖2所示;DSC和TGA如圖3所示;以及DVS如圖4所示。
化合物1 HBr(形式B):
將1g的化合物1 HBr(形式A)懸浮在20mL的0.603水活度溶液(14.5%水,在丙酮中,v/v)中以產生50mg/mL的懸浮液。將懸浮液以700rpm攪拌並在50℃保持26小時。將懸浮液離心並收集沈澱物。將獲得的濕產物在30℃真空乾燥三天,得到粉末,產率為70.82%。通過離子層析測定,化合物1 HBr(形式B)中化合物1:HBr的比為1:1.01。XPRD如圖5所示;DSC和TGA如圖6所示;以及DVS如圖7所示。
化合物1 HBr(形式C):
將500mg的化合物1 HBr(形式A)溶解在4.5mL的DMSO中以產生澄清溶液,然後將31.5mL的水(抗溶劑)加入到DMSO溶液中。將該溶液在室溫放置7天。之後,分離出沈澱的物質。將獲得的濕產物在30℃真空乾燥三天,得到粉末,產率為66.1%。通過離子層析測定,化合物1 HBr(形式C)中化合物1:HBr的比為1:1.09。XPRD如圖8所示;DSC和TGA如圖9所示;以及DVS如圖10所示。
化合物1 HBr(形式D):
當將形式B加熱到160℃時,通過VT-XRPD觀察到形式D。XRPD如圖11所示;TGA和DSC如圖12所示。
化合物1 HBr(形式E):
在帶有攪拌棒的20mL小瓶中,將化合物1(1.00g,1.0當量)的EtOH(5mL)溶液在60℃攪拌30分鐘。將HBr(48%w/w的水溶液,0.3mL,1.1當量)加入混合物中,並在60℃攪拌1小時。將反應混合物冷卻至25℃,並向反應混合物中加入乙酸乙酯抗溶劑(5mL),並攪拌1小時。將該混合物在冰浴中保持30分鐘, 然後過濾,收集固體,並在真空下在25℃乾燥隔夜以得到化合物1 HBr(876mg,73.7%產率)。XRPD如圖13所示;DSC和TGA如圖14所示。
製備化合物1 HBr的一般過程
進行以下一般過程以製備化合物1 HBr。
一般過程1
在帶有攪拌棒的20mL小瓶中,將化合物1(1.00g,1.0當量)在溶劑中的溶液(15mL,15mL/g化合物1)在60℃攪拌30分鐘。將HBr(48%w/w的水溶液,0.3mL,1.1當量)加入反應中,並在60℃攪拌1小時。將反應冷卻至25℃並攪拌1小時。將該混合物在冰浴中保持30分鐘(將過程1-2保持在25℃),然後過濾,收集固體,並在25℃在真空下乾燥隔夜以得到化合物1 HBr。
一般過程2
在帶有攪拌棒的20mL小瓶中,將化合物1(1.00g,1.0當量)在溶劑中的溶液(3.5mL,3.5mL/g化合物1)在60℃攪拌30分鐘。將HBr(48%w/w的水溶液,0.3mL,1.1當量)在丙酮中的溶液(3.5mL,3.5mL/g化合物1)加入反應中,並在60℃攪拌1小時。將反應冷卻至25℃並攪拌1小時。將該混合物在冰浴中保持30分鐘,然後過濾,收集固體,並在25℃在真空下乾燥隔夜以得到化合物1 HBr。
一般過程3
在帶有攪拌棒的20mL小瓶中,將化合物1(1.00g,1.0當量)在EtOH中的溶液(5mL,5mL/g化合物1)在60℃攪拌30分鐘。將HBr(48%w/w的水溶液,0.3mL,1.1當量)加入混合物中,並在60℃攪拌1小時。將反應混合物冷卻至25℃,然後將抗溶劑(5mL,5mL/g化合物1)加入到反應混合物,並攪拌1小時。 將該混合物在冰浴中保持30分鐘,然後過濾,收集固體,並在25℃在真空下乾燥隔夜以得到化合物1 HBr。
下表總結了根據此等一般過程的化合物1 HBr的製備:
Figure 108131297-A0202-12-0141-335
Figure 108131297-A0202-12-0142-336
化學和物理穩定性測試
對於每種鹽,將約5mg化合物加入具有多孔鋁箔帽的8mL玻璃小瓶中,並在60℃,40℃/75% RH保持1周。為了進行光穩定性測試,將不帶蓋的小瓶中的化合物保存在光穩定性室內,並暴露于120萬勒克斯-小時的總照度,而完全 覆蓋有鋁箔的小瓶中的樣品被視為黑暗對照。記錄通過肉眼觀察的外觀,隨後對殘餘固體進行純度評估和XPRD數據收集。
下表顯示了化合物1 HBr(形式A)、化合物1 HBr(形式B)、化合物1 HBr(形式C)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0143-337
在模擬的胃液和腸液中的溶解性測試
對於每種鹽,一式三份將約4~6mg的化合物1或該鹽添加到2mL小瓶中。然後將1mL生物相關的介質(SGF、FaSSIF或FeSSIF)加入小瓶中。將所有的小瓶放置在熱混合器上,並保持在37℃,同時以700rpm搖動。如果化合物完全溶解在介質中,則添加更多的化合物直至系統成為懸浮液,如果化合物的濃度超過25mg/mL,則不再額外添加物質。在37℃搖動24小時後,從每個系統中分離出300μL懸浮液進行分析。將樣品以12000rpm離心5分鐘,並在通過ACN:H2O(4/1,V/V)稀釋10次後,通過UPLC分析上清液。測量並記錄生物相關介質的最終pH值。下表顯示了生物相關溶液中化合物1 HBr(形式A)、化合物1 HBr(形式B)、化合物1 HBr(形式C)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0144-338
化合物1 HBr形式B的單晶X射線分析
用於SCXRD表徵的化合物1氫溴酸鹽形式B的塊狀單晶通過緩慢蒸發法從MeOH/MEK(1:3,v/v)溶劑混合物中結晶。
通過PLM和XRPD表徵該鹽表明其為化合物1 HBr形式B。
通過CrysAlisPro(Rigaku,V1.171.40.14e,2018)軟體,使用45416反射的設定角在3.488°<θ<75.836°範圍內,檢索並精修(最小二乘精修)晶胞參數和取向矩陣用於數據收集。在120.00 K收集的數據的最小繞射角(θ)為3.506°,最大繞射角(θ)為68.243°。最終完整性為100%。數據的平均I/σ為91.7,獲得的最大分辨率為0.83Å。
下表提供通過本文描述的方法獲得的SCXRD數據。
Figure 108131297-A0202-12-0145-339
化合物1 HBr形式E的單晶X射線分析
用於SCXRD表徵的化合物1氫溴酸鹽形式E的塊狀單晶通過緩慢蒸發法從MeOH/MEK(1:3,v/v)溶劑混合物中結晶。通過PLM和XRPD表徵該鹽表明其為化合物1 HBr形式E。
在120 K的數據收集:通過CrysAlisPro(Rigaku,V1.171.40.14e,2018)軟體,使用10196反射的設定角在3.499°<θ<75.657°範圍內,檢索並精修(最小二乘精修)晶胞參數和取向矩陣用於數據收集。在120.00(10)K收集的數據的最小繞射角(θ)為3.508°,最大繞射角(θ)為66.553°。最終完整性為100%。數據的平均I/σ為19.3,獲得的最大分辨率為0.84Å。
在室溫的數據收集:通過CrysAlisPro(Rigaku,V1.171.40.14e,2018)軟體,使用17551反射的設定角在3.483°<θ<75.825°範圍內,檢索並精修(最小二乘精修)晶胞參數和取向矩陣用於數據收集。在室溫收集的數據的最小繞射角(θ)為3.496°,最大繞射角(θ)為66.597°。最終完整性為100%。數據的平均I/σ為40.0,獲得的最大分辨率為0.84Å。
下表提供通過本文描述的方法獲得的SCXRD數據。
Figure 108131297-A0202-12-0146-340
實例2:化合物1的檸檬酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的檸檬酸鹽。
化合物1檸檬酸鹽(形式A):
向乙醇(2.37kg,9%w/w水)和乙酸異丙酯(2.61kg)的混合物中加入化合物1(1kg)。加入另外一部分乙醇(0.39kg,9%w/w水)和乙酸異丙酯(0.44kg)。在攪拌下將所得混合物加熱至55-65℃直至獲得溶液。使所得溶液通過10μm過濾器。在攪拌下加入檸檬酸一水合物(541g)在乙醇(0.79kg,9%w/w水)與乙酸異丙酯(0.87kg)中的溶液。另外一部分乙醇(0.39kg)和乙酸異丙酯(0.44kg)用於定量檸檬酸向反應器中的轉移。在攪拌的同時將所得混合物冷卻至0-5℃持續1小時,通過過濾收集獲得的固體,利用乙酸異丙酯(1.29kg)洗滌並在真空下在50℃乾燥以得到化合物1檸檬酸鹽(1.174kg,81%產率)。
所得固體是化合物1檸檬酸鹽(形式A)。通過HPLC測定,化合物1檸檬酸鹽(形式A)中化合物1:檸檬酸的比為1:1.02。XPRD如圖15所示;DSC和TGA如圖16所示;以及DVS如圖17所示。
在氘代DMSO中通過1H-NMR分析化合物1檸檬酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6):δ 0.48-0.88(m,7 H)2.03-2.22(m,2 H)2.46-2.86(m,28 H)3.00-3.17(m,3 H)3.19-3.46(m,5 H)4.74-5.35(m,2 H)7.09(s,1 H)7.19(s,1 H)7.86(s,1 H)。
化合物1檸檬酸鹽(形式B):
將500mg的化合物1檸檬酸鹽(形式A)溶解在4.0mL的0.901水活度溶液(65%水,在丙酮中,v/v)中以產生125mg/mL的懸浮液。將懸浮液以300rpm攪拌並在50℃保持3天。將懸浮液離心並收集沈澱物。將濕的粗產物在30℃真空乾燥一天,得到粉末,產率為56.9%。通過離子層析測定,化合物1檸檬酸鹽(形式B)中化合物1:檸檬酸的比為1:1.17。XPRD如圖18所示;DSC和TGA如圖19所示;以及DVS如圖20所示。
在氘代DMSO中通過1H-NMR分析化合物1檸檬酸鹽(形式B),得到下列化學位移:1H NMR(400MHz,DMSO-d 6):δ 0.53-0.79(m,7 H)0.85-1.76(m,24 H)1.99-2.14(m,3 H)2.32-2.35(m,1 H)2.61-2.74(m,6 H)3.00-3.09(m,2 H)4.89-5.13(m,1 H)6.99(s,1 H)7.11(s,1 H)7.74(s,1 H)。
化合物1檸檬酸鹽(形式C):
化合物1檸檬酸鹽形式A的樣品在50℃攪拌為在乙腈中的懸浮液。通過過濾分離所得固體。
製備化合物1檸檬酸鹽的一般過程
進行下列一般過程以製備化合物1檸檬酸鹽。
一般過程A
向配備有攪拌棒的20mL小瓶中加入化合物1(1.00g,1.0當量)和溶劑或共溶劑。將所得混合物加熱至60℃持續30分鐘。在60℃向混合物中加入檸檬酸一水合物(0.54g,1.1當量)在溶劑或共溶劑中的溶液(預加熱至溶解)並攪拌1小時。將反應冷卻至25℃並攪拌隔夜。過濾懸浮液並利用丙酮洗滌濕濾餅。收集固體並在真空下在25℃乾燥隔夜以得到化合物1檸檬酸鹽。
一般過程A-2
向配備有攪拌棒的20mL小瓶中加入化合物1(1.00g,1.0當量)和共溶劑(10mL,10mL/g化合物1)。將所得混合物加熱至60℃持續30分鐘。在60℃向混合物中加入檸檬酸一水合物(0.54g,1.1當量)在共溶劑中的溶液(2mL,2mL/g化合物1)(預加熱至溶解)並攪拌1小時。將反應冷卻至0℃(沒有沈澱)。在真空下乾燥混合物並在60℃加入共溶劑(3mL,3mL/g化合物1)。將反應冷卻至25℃並攪拌隔夜。過濾懸浮液並利用丙酮洗滌濕濾餅。收集固體並在真空下在25℃乾燥隔夜以得到化合物1檸檬酸鹽。
一般過程B
向配備有攪拌棒的20mL小瓶中加入化合物1(1.00g,1.0當量)和EtOH(3.5mL,3.5mL/g化合物1)。將所得混合物加熱至60℃持續30分鐘。在60℃向混合物中加入檸檬酸一水合物(0.54g,1.1當量)在EtOH中的溶液(1.5mL,1.5mL/g化合物1)(預加熱至溶解),並攪拌1小時。將反應冷卻至25℃,並在25℃添加抗溶劑(5mL,5mL/g化合物1)。將反應冷卻至0℃,然後攪拌1小時。將混合物在25℃攪拌隔夜。將反應冷卻至0℃,然後攪拌1小時。過濾懸浮液,並用丙酮洗滌洗滌濕餅。收集固體並在真空下在25℃乾燥隔夜以得到化合物1檸檬酸鹽。
一般過程C
向配備有機械攪拌器(5.5cm槳;100rpm)、溫度計和N2入口的四頸250mL燒瓶中加入化合物1(5.00g,1.0當量)和EtOH/IPAc(1:1,40mL,8mL/g化合物1)。將所得混合物加熱至60℃持續30分鐘。在60℃向混合物中加入檸檬酸一水合物(2.73g,1.1當量)在EtOH/IPAc中的溶液(1:1,10mL,2mL/g化合物1)(預加熱至溶解),並攪拌1小時。將反應冷卻至25℃,然後攪拌1小時。將反 應冷卻至0℃,然後攪拌30分鐘。過濾懸浮液,並用丙酮洗滌濕濾餅。收集固體並在真空下在50℃乾燥隔夜以得到化合物1檸檬酸鹽。
下表總結了根據此等一般過程的化合物1檸檬酸鹽的製備:
Figure 108131297-A0202-12-0150-341
Figure 108131297-A0202-12-0151-342
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1檸檬酸鹽(形式A)、化合物1檸檬酸鹽(形式B)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0151-343
Figure 108131297-A0202-12-0152-344
化合物1檸檬酸鹽(形式A)的ICH穩定性測試:
根據加速穩定性研究的ICH指南,測試了化合物1檸檬酸鹽(形式A)的穩定性。下表顯示了加速穩定性研究的結果。在3個月的時間點,數據顯示化合物1檸檬酸鹽(形式A)的測定、純度和多晶型穩定性得以保持。
Figure 108131297-A0202-12-0152-345
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1檸檬酸鹽(形式A)、化合物1檸檬酸鹽(形式B)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0152-346
Figure 108131297-A0202-12-0153-347
化合物1檸檬酸鹽形式A的單晶X射線結構
用於SCXRD表徵的化合物1檸檬酸鹽形式A的塊狀單晶樣品通過緩慢蒸發法從THF溶劑中結晶。
通過PLM和XRPD表徵該鹽表明其為化合物1檸檬酸鹽形式A。
通過CrysAlisPro(Rigaku,V1.171.40.14e,2018)軟體,使用64393反射的設定角在3.7580°<θ<75.8720°範圍內,檢索並精修(最小二乘精修)晶胞參數和取向矩陣用於數據收集。在120.00 K收集的數據的最小繞射角(θ)為3.785°,最大繞射角(θ)為66.597°。最終完整性為99.3%。數據的平均I/σ為81.3,獲得的最大分辨率為0.84Å。
下表提供通過本文描述的方法獲得的SCXRD數據。
Figure 108131297-A0202-12-0153-348
Figure 108131297-A0202-12-0154-349
實例3:化合物1的甲磺酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的甲磺酸鹽。
化合物1甲磺酸鹽(形式A)
將200mg化合物1在60℃溶於10.0mL EtOAc中,同時在500rpm攪拌並在60℃保持1小時。然後將1.1當量甲磺酸在EtOAc中的溶液(1.027mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持20小時。將該懸浮液離心,收集沈澱物,並用EtOAc洗滌。將獲得的濕產物在35℃真空乾燥22小時,得到234.52mg粉末,產率為94.1%。
所得固體是化合物1甲磺酸鹽(形式A)。通過離子層析測定,化合物1甲磺酸鹽(形式A)中化合物1:甲磺酸的比為1:1.08。XPRD如圖22所示;DSC和TGA如圖23所示;以及DVS如圖24所示。
在氘代DMSO中通過1H-NMR分析化合物1甲磺酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6):δ 0.54-0.81(m,7 H)0.84(t,J=7.44Hz,1 H)1.84-2.17(m,3 H)2.31(s,3 H)2.41-2.59(m,20 H)2.65-2.83(m,1H)3.05(s,2 H)3.22-3.48(m,1 H)3.23-3.51(m,6 H)4.96-5.52(m,1 H)4.96-5.52(m,1 H)7.62(s,1 H)7.55-7.64(m,1 H)7.62-7.77(m,1 H)9.01(s,1 H)。
化合物1甲磺酸鹽(形式B):
將200mg化合物1在60℃溶於10.0mL EtOAc中,同時在500rpm攪拌並在60℃保持1小時。然後將1.1當量甲磺酸在EtOAc中的溶液(1.027mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持20小時。將該懸浮液離心,收集沈澱物,並用EtOAc洗滌。將獲得的濕產物在35℃真空乾燥22小時,得到234.52mg粉末,產率為94.1%。
所得固體是化合物1甲磺酸鹽(形式B)。XPRD如圖25A所示。
化合物1甲磺酸鹽(形式C):
使用溶劑ACN溶劑和甲磺酸製備化合物1甲磺酸鹽(形式C)。對於液體抗衡離子,將50mg化合物1稱重到2mL小瓶中,然後在小瓶中添加743μL溶劑。然後將相應溶劑的1.1當量抗衡離子溶液(257μL,濃度:0.5mol/L)添加到小瓶中。將小瓶置於帶有攪拌棒的熱混合器上,並加熱至50℃。在900rpm攪拌下在50℃保持18小時後,將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在30℃的真空烘箱中乾燥隔夜。
所得固體是化合物1甲磺酸鹽(形式C)。XPRD如圖25B所示。
化合物1甲磺酸鹽(形式D):
將約5mg化合物1甲磺酸鹽(形式A)加入具有多孔鋁箔帽的8mL玻璃小瓶中,並在60℃,40℃/75% RH保持1周。記錄通過肉眼觀察的外觀,隨後對殘餘固體進行純度評估和XPRD數據收集。所得固體是化合物1甲磺酸鹽(形式D)。通過PLM和XRPD表徵乾燥的固體。
XPRD如圖26所示。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1甲磺酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0156-350
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1甲磺酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0157-351
實例4:化合物1的磷酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的磷酸鹽。
將200mg化合物1在60℃溶於10.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量磷酸在丙酮中的溶液(1.027mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持20小時。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在30℃真空乾燥42小時,得到233.51mg粉末,產率為93.3%。
所得固體是化合物1磷酸鹽(形式A)。通過離子層析測定,化合物1磷酸鹽(形式A)中化合物1:磷酸的比為1:0.9。XPRD如圖27所示;DSC和TGA如圖28所示;以及DVS如圖29所示。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1磷酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0158-352
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1磷酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0158-353
Figure 108131297-A0202-12-0159-354
實例5:化合物1的L(+)-酒石酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的L(+)-酒石酸鹽。
化合物1 L(+)-酒石酸鹽(形式A)
將200mg化合物1在60℃溶於10.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量L(+)-酒石酸粉末(77mg,0.5mmol)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持20小時。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在30℃真空乾燥42小時,得到237.95mg粉末,產率為85.9%。
所得固體是化合物1 L(+)-酒石酸鹽(形式A)。通過離子層析測定,化合物1 L(+)-酒石酸鹽(形式A)中化合物1:酒石酸的比為1:1.15。XPRD如圖30所示;DSC和TGA如圖31所示;以及DVS如圖32所示。
在氘代DMSO中通過1H-NMR分析化合物1 L(+)-酒石酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6):δ 0.49-0.84(m,7 H)0.90-1.75(m,21 H)1.94-2.21(m,3 H)2.35-2.58(m,14 H)2.66-2.80(m,1 H)3.10(s,2 H)3.23-3.34(m,3 H)4.24-4.39(m,2 H)4.80-5.19(m,2 H)6.98(s,1 H)7.12(s,1 H)7.67(s,1 H)。
化合物1 L(+)-酒石酸鹽(形式B)
將200mg化合物1在60℃溶於10.0mL EtOAc中,同時在500rpm攪拌並在60℃保持1小時。然後將1.1當量L(+)-酒石酸粉末(77mg,0.5mmol)添加到RX-0001175溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持 20小時。將該懸浮液離心,收集沈澱物,並用EtOAc洗滌。將獲得的濕產物在35℃真空乾燥22小時,得到254.08mg粉末,產率為91.7%。
所得固體是化合物1 L(+)-酒石酸鹽(形式B)。通過離子層析測定,化合物1 L(+)-酒石酸鹽(形式B)中化合物1:酒石酸的比為1:1.19。XPRD如圖33所示;DSC和TGA如圖34所示;以及DVS如圖35所示。
在氘代DMSO中通過1H-NMR分析化合物1 L(+)-酒石酸鹽(形式B),得到下列化學位移:1H NMR(400MHz,DMSO-d 6):δ 0.50-0.82(m,6 H)1.91-2.22(m,2 H)3.03(s,2 H)3.24(s,2 H)3.14-3.53(m,1 H)4.27(s,2 H)4.54-5.21(m,2 H)6.71-7.18(m,2 H)7.59(s,1 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1 L(+)-酒石酸鹽(形式A)、化合物1 L(+)-酒石酸鹽(形式B)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0160-355
Figure 108131297-A0202-12-0161-356
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1 L(+)-酒石酸鹽(形式A)、化合物1 L(+)-酒石酸鹽(形式B)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0161-357
實例6:化合物1的富馬酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的富馬酸鹽。
化合物1富馬酸鹽(形式A)
將200mg化合物1在60℃溶於10.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量富馬酸粉末(60mg,0.51mmol)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持20小時。然後將2倍體積的庚烷添加到丙酮混合物中,得到懸浮液。將該懸浮液離心,收集沈澱物,然後在25℃真空乾燥42小時,得到75.58mg粉末,產率為29.1%。
所得固體是化合物1富馬酸鹽(形式A)。通過離子層析測定,化合物1富馬酸鹽(形式A)中化合物1:富馬酸的比為1:1.37。XPRD如圖36所示,以及DSC和TGA如圖37所示。
在氘代DMSO中通過1H-NMR分析化合物1富馬酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6):δ 0.45-0.80(m,7 H)1.97-2.13(m,3 H)2.47-2.58(m,12 H)2.63-2.78(m,1 H)2.63-2.78(m,1 H)3.04(s,2 H)3.25(s,3 H)4.80-5.14(m,1 H)4.80-5.14(m,1 H)6.63(s,3 H)6.91(s,1 H)7.05(s,1 H)7.52-7.69(m,1 H)。
化合物1富馬酸鹽(形式B)
將200mg化合物1在60℃溶於10.0mL乙酸乙酯中,同時在500rpm攪拌並在60℃保持1小時。然後將1.1當量富馬酸粉末(60mg,0.51mmol)添加到化合物1溶液中。將溶液在60℃保持3小時,然後冷卻至25℃並在25℃保持20小時。在冷卻過程期間,澄清溶液變為懸浮液。然後將該懸浮液離心,收集沈澱物,並在35℃真空乾燥22小時,得到156.78mg粉末,產率為60.4%。
所得固體是化合物1富馬酸鹽(形式B)。通過離子層析測定,化合物1富馬酸鹽(形式B)中化合物1:富馬酸的比為1:1.55。XPRD如圖38所示,DSC和TGA如圖39所示;以及DVS如圖40所示。
1H NMR(400MHz,DMSO-d 6):δ 0.43-0.79(m,8 H)1.88-2.13(m,2 H)3.03(s,2 H)3.10-3.39(m,4 H)4.38-5.21(m,3 H)6.61(s,2 H)6.59-6.64(m,1 H)6.74-7.16(m,2 H)7.56(s,1 H)。
化合物1富馬酸鹽(形式C)
將50mg化合物1和1.1當量的固體形式的富馬酸的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL溶劑ACN。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在900rpm恒定攪拌下在50℃保持18小時後,將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥48小時。
所得固體是化合物1富馬酸鹽(形式C)。通過PLM和XRPD表徵乾燥的固體。
XPRD如圖41所示。
化合物1富馬酸鹽(形式D)
將約5mg化合物1富馬酸鹽(形式A)加入具有多孔鋁箔帽的8mL玻璃小瓶中,並在60℃,40℃/75% RH保持1周。記錄通過肉眼觀察的外觀,隨後對殘餘固體進行純度評估和XPRD數據收集。所得固體是化合物1富馬酸鹽(形式D)。通過PLM和XRPD表徵乾燥的固體。XPRD如圖42所示。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1富馬酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0164-358
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1富馬酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0164-359
實例7:化合物1的甲苯磺酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的甲苯磺酸鹽。
化合物1甲苯磺酸鹽(形式A)
將200mg化合物1在60℃溶於10.0mL ACN中,同時在500rpm攪拌並在60℃保持1小時。然後將1.1當量對甲苯磺酸在ACN中的溶液(1.027mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持20小時。將該懸浮液離心,收集沈澱物,並用ACN洗滌。將獲得的濕產物在35℃真空乾燥22小時,得到141.85粉末,產率為49.2%。
所得固體是化合物1甲苯磺酸鹽(形式A)。通過離子層析測定,化合物1甲苯磺酸鹽(形式A)中化合物1:甲苯磺酸的比為1:1.09。XPRD如圖43所示;DSC和TGA如圖44所示;以及DVS如圖45所示。
在氘代DMSO中通過1H-NMR分析化合物1甲苯磺酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6):δ 0.50-0.79(m,7 H)1.98-2.15(m,3 H)2.28(s,4 H)2.49(s,23 H)2.60-2.76(m,1 H)3.03(s,2 H)3.21-3.34(m,5 H)4.85-5.45(m,2 H)7.10(d,J=7.78Hz,2 H)7.45(s,1 H)7.46-7.73(m,3 H)8.99(s,1 H)。
化合物1甲苯磺酸鹽(形式B)
將50mg化合物1和1.1當量的固體形式的對甲苯磺酸的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL EtOAc溶劑。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在900rpm恒定攪拌下在50℃保持18小時後, 將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥隔夜。
所得固體是化合物1甲苯磺酸鹽(形式B)。XPRD如圖46所示。
化合物1甲苯磺酸鹽(形式C)
將約5mg化合物1甲苯磺酸鹽(形式A)加入具有多孔鋁箔帽的8mL玻璃小瓶中,並在60℃,40℃/75% RH保持1周。記錄通過肉眼觀察的外觀,隨後對殘餘固體進行純度評估和XPRD數據收集。所得固體是化合物1甲苯磺酸鹽(形式C)。通過PLM和XRPD表徵乾燥的固體。
所得固體是化合物1甲苯磺酸鹽(形式C)。XPRD如圖47所示。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1甲苯磺酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0166-360
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1甲苯磺酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0167-361
實例8:化合物1的葡糖醛酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的葡糖醛酸鹽。
化合物1葡糖醛酸鹽(形式A)
將500mg化合物1在60℃溶於16.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量D-葡糖醛酸固體(248.62mg)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持隔夜。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥72小時,得到739.32mg粉末,產率為98.76%。
所得固體是化合物1葡糖醛酸鹽(形式A)。通過離子層析測定,化合物1葡糖醛酸鹽(形式A)中化合物1:葡糖醛酸的比為1:1.09。XPRD如圖48所示;DSC和TGA如圖49所示;以及DVS如圖50所示。
在氘代DMSO中通過1H-NMR分析化合物1葡糖醛酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d6)δ ppm 0.49-0.81(m,7 H)0.83-1.73(m,22 H)1.98-2.13(m,2 H)2.68(br t,J=8.76Hz,1 H)2.90-3.08(m,3 H)3.10-3.20(m,2 H)3.57(d,J=9.76Hz,1 H)3.95-4.14(m,2 H)4.33(d,J=7.75Hz,1 H)4.78-5.11(m,4 H)6.51(br s,1 H)6.88(s,1 H)7.03(s,1 H)7.54(s,1 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1葡糖醛酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0168-362
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1葡糖醛酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0169-363
化合物1葡糖醛酸鹽(形式B)
將50mg化合物1和1.1當量的固體形式的D-葡糖醛酸的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL溶劑EtOAc/ACN。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在900rpm恒定攪拌下在50℃保持18小時後,將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥18小時。
通過PLM和XRPD表徵乾燥的固體(圖51)。
實例9:化合物1的乙磺酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的乙磺酸鹽。
將500mg化合物1在60℃溶於16.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量乙磺酸在丙酮中的溶液(2.565mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持 隔夜。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥72小時,得到546.88mg粉末,產率為84.68%。
所得固體是化合物1乙磺酸鹽(形式A)。通過離子層析測定,化合物1乙磺酸鹽(形式A)中化合物1:乙磺酸的比為1:1.17。XPRD如圖52所示;DSC和TGA如圖53所示;以及DVS如圖54所示。
在氘代DMSO中通過1H-NMR分析化合物1乙磺酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6)δ ppm 0.52-0.81(m,7 H)0.83-1.78(m,25 H)1.99-2.17(m,3 H)2.39(q,J=7.42Hz,2 H)2.69-2.80(m,1 H)3.05(s,2 H)3.43(br s,4 H)5.11-5.46(m,2 H)7.54-7.77(m,2 H)9.02(s,1 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1乙磺酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0170-364
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1乙磺酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0171-365
實例10:化合物1的硫酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的硫酸鹽。
將200mg化合物1在60℃溶於10.0mL ACN中,同時在500rpm攪拌並在60℃保持1小時。然後將1.1當量硫酸在ACN中的溶液(1.027mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持20小時。將該懸浮液離心,收集沈澱物,並用ACN洗滌。將獲得的濕產物在35℃真空乾燥22小時,得到177.38mg粉末,產率為70.9%。
所得固體是化合物1硫酸鹽(形式A)。通過離子層析測定,化合物1硫酸鹽(形式A)中化合物1:硫酸的比為1:1.03。XPRD如圖55所示;DSC和TGA如圖56所示;以及DVS如圖57所示。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1硫酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0172-366
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1硫酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0172-367
實例11:化合物1的抗壞血酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的抗壞血酸鹽。
化合物1抗壞血酸鹽(形式A):
將500mg化合物1在60℃溶於16.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量抗壞血酸粉末(226mg)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持隔夜。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥72小時,得到264.1mg粉末,產率為36.3%。
所得固體是化合物1抗壞血酸鹽(形式A)。通過離子層析測定,化合物1抗壞血酸鹽(形式A)中化合物1:抗壞血酸的比為1:0.98。XPRD如圖58所示;DSC和TGA如圖59所示;以及DVS如圖60所示。
在氘代DMSO中通過1H-NMR分析化合物1抗壞血酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6)δ ppm 0.51-0.81(m,7 H)0.83-1.76(m,22 H)1.98-2.14(m,4 H)2.33(br s,1 H)2.64-2.72(m,1 H)3.04(s,2 H)3.25(s,3 H)3.41-3.45(m,3 H)3.73(br t,J=7.65Hz,1 H)4.71(d,J=1.51Hz,1 H)4.87-5.11(m,3 H)6.98(s,1 H)7.10(s,1 H)7.71(s,1 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1抗壞血酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0173-368
Figure 108131297-A0202-12-0174-369
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1抗壞血酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0174-370
化合物1抗壞血酸鹽(形式B)
將50mg化合物1和1.1當量的固體形式的抗壞血酸的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL ACN溶劑。將小瓶放置在帶有攪拌棒的熱 混合器上,並加熱至50℃。在500rpm恒定攪拌下在50℃保持21小時後,將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥18小時。
通過PLM和XRPD表徵獲得的乾燥的固體。
實例12:化合物1的萘二磺酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的萘二磺酸鹽。
化合物1萘二磺酸鹽(形式A)
將500mg化合物1在60℃溶於16.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量萘-1,5-二磺酸四水合物在丙酮中的溶液(2.565mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持隔夜。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥72小時,得到675.62mg淡粉紅色粉末,產率為69.38%。
所得固體是化合物1萘二磺酸鹽(形式A)。通過離子層析測定,化合物1萘二磺酸鹽(形式A)中化合物1:萘-1,5-二磺酸的比為1:0.7。XPRD如圖62所示;DSC和TGA如圖63所示;以及DVS如圖64所示。
在氘代DMSO中通過1H-NMR分析化合物1萘二磺酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6)δ ppm 0.51-0.81(m,7 H)0.85-1.76(m,21 H)2.00-2.15(m,2 H)2.34(s,1 H)2.64-2.78(m,1 H)3.05(s,2 H)3.25(s,4 H)5.16-5.38(m,2 H)7.37-7.45(m,1 H)7.62(s,1 H)7.68(s,1 H)7.93(d,J=6.88Hz,1 H)8.86(d,J=8.63Hz,1 H)9.01(s,1 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1萘二磺酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0176-371
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1萘二磺酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0176-372
化合物1萘二磺酸鹽(形式B):
將50mg化合物1和1.1當量的固體形式的萘-1,5-二磺酸四水合物的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL溶劑IPA/水(95/5,V/V)。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在500rpm恒定攪拌下在50℃保持21小時後,將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥18小時。
通過PLM和XRPD表徵乾燥的固體(圖65)。
實例13:化合物1的丙二酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的丙二酸鹽。
將500mg化合物1在60℃溶於16.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量丙二酸在丙酮中的溶液(2.565mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持隔夜。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥72小時。
所得固體是化合物1丙二酸鹽(形式A)。通過離子層析測定,化合物1丙二酸鹽(形式A)中化合物1:丙二酸的比為1:1.28。XPRD如圖66所示;以及DSC和TGA如圖67所示。
在氘代DMSO中通過1H-NMR分析化合物1丙二酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6)δ ppm 0.50-0.79(m,7 H)0.84-1.75(m,20 H)1.91(s,1 H)2.00-2.12(m,2 H)2.65-2.73(m,1 H)3.04(s,2 H)3.13(s,3 H)4.92-5.15(m,2 H)7.03-7.20(m,2 H)7.91(s,1 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1丙二酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0178-373
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1丙二酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0178-374
實例14:化合物1的苯磺酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的苯磺酸鹽。
化合物1苯磺酸鹽(形式A)
將500mg化合物1在60℃溶於16.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量苯磺酸在丙酮中的溶液(2.565mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持隔夜。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥72小時,得到654.68mg粉末,產率為92.56%。
所得固體是化合物1苯磺酸鹽(形式A)。通過離子層析測定,化合物1苯磺酸鹽(形式A)中化合物1:苯磺酸的比為1:0.94。XPRD如圖68所示;DSC和TGA如圖69所示;以及DVS如圖70所示。
在氘代DMSO中通過1H-NMR分析化合物1苯磺酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6)δ ppm 0.53-0.80(m,7 H)0.83-1.78(m,21 H)1.99-2.15(m,3 H)2.29-2.36(m,1 H)2.56(br s,1 H)2.66-2.77(m,1 H)3.05(s,2 H)3.25(s,4 H)4.03(br s,1 H)5.15-5.39(m,2 H)7.27-7.36(m,3 H)7.55-7.70(m,4 H)8.97(s,1 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1苯磺酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0179-375
Figure 108131297-A0202-12-0180-376
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1苯磺酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0180-377
化合物1苯磺酸鹽(形式B)
將50mg化合物1和1.1當量的固體形式的苯磺酸的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL ACN溶劑。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在500rpm恒定攪拌下在50℃保持21小時後,將小瓶 冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥18小時。
通過PLM和XRPD表徵獲得的乾燥的固體(圖71)。
實例15:化合物1的羥乙基磺酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的羥乙基磺酸鹽。
化合物1羥乙基磺酸鹽(形式A)
將500mg化合物1在60℃溶於16.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量2-羥基乙磺酸在丙酮中的溶液(2.565mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持隔夜。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥72小時,得到493.12mg粉末,產率為74.64%。
所得固體是化合物1羥乙基磺酸鹽(形式A)。通過離子層析測定,化合物1羥乙基磺酸鹽(形式A)中化合物1:2-羥基乙磺酸的比為1:1.09。XPRD如圖72所示;DSC和TGA如圖73所示;以及DVS如圖74所示。
在氘代DMSO中通過1H-NMR分析化合物1羥乙基磺酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6)δ ppm 0.53-0.81(m,7 H)0.84-1.78(m,22 H)2.01-2.15(m,3 H)2.34(br s,1 H)2.61(t,J=6.82Hz,2 H)2.66-2.78(m,1 H)3.05(s,2 H)3.25(s,3 H)3.63(t,J=6.75Hz,2 H)5.14-5.38(m,2 H)7.58-7.69(m,2 H)8.99(s,1 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1羥乙基磺酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0182-378
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1羥乙基磺酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0182-379
化合物1羥乙基磺酸鹽(形式B)
將50mg化合物1稱入2mL小瓶中,然後向小瓶中加入743μL溶劑IPA/水(95/5,V/V)。然後將1.1當量2-羥基乙磺酸的抗衡離子(257μL,濃度:0.5mol/L)加入小瓶中。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在500rpm恒定攪拌下在50℃保持21小時後,將小瓶冷卻至25℃。在25℃保持1小時後,小瓶顯示澄清溶液。通過真空烘箱在30℃蒸發溶劑。
通過PLM和XRPD表徵獲得的乾燥的固體(圖75)。
實例16:化合物1的龍膽酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的龍膽酸鹽。
化合物1龍膽酸鹽(形式A)
將500mg化合物1在60℃溶於16.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量龍膽酸在丙酮中的溶液(2.565mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持隔夜。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥72小時,得到281.5mg粉末,產率為31.39%。
所得固體是化合物1龍膽酸鹽(形式A)。通過離子層析測定,化合物1龍膽酸鹽(形式A)中化合物1:龍膽酸的比為1:1.03。XPRD如圖76所示;DSC和TGA如圖77所示;以及DVS如圖78所示。
在氘代DMSO中通過1H-NMR分析化合物1龍膽酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d6)δ ppm 0.53-0.80(m,7 H)0.85-1.72(m,20 H)2.00-2.13(m,5 H)2.66-2.74(m,1 H)3.04(s,2 H)4.02(br s,1 H)4.90-5.12 (m,2 H)6.71(d,J=8.76Hz,1 H)6.88(dd,J=8.82,3.06Hz,1 H)7.03(s,1 H)7.13-7.17(m,2 H)7.78-7.86(m,1 H)7.81(s,1 H)9.01(br s,1 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1龍膽酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0184-380
化合物1龍膽酸鹽(形式B)
將50mg化合物1和1.1當量固體形式的龍膽酸的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL EtOAc溶劑。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在900rpm恒定攪拌下在50℃保持18小時後,將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥18小時。
通過PLM和XRPD表徵乾燥的固體(圖79)。
化合物1龍膽酸鹽(形式C)
將50mg化合物1和1.1當量固體形式的龍膽酸的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL IPA/水(95/5,V/V)溶劑。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在900rpm恒定攪拌下在50℃保持18小時後,將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥18小時。
通過PLM和XRPD表徵乾燥的固體(圖80)。
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1龍膽酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0185-381
實例17:化合物1的1-羥基-2-萘酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的1-羥基-2-萘酸鹽。
化合物1 1-羥基-2-萘酸鹽(形式A)
將500mg化合物1在60℃溶於16.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量1-羥基-2-萘酸鹽在丙酮中的溶液(2.565mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持隔夜。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥72小時,得到675.36mg粉末,產率為68.15%。
所得固體是化合物1 1-羥基-2-萘酸鹽(形式A)。通過離子層析測定,化合物1 1-羥基-2-萘酸鹽(形式A)中化合物1:1-羥基-2-萘酸的比為1:1.15。XPRD如圖81所示;DSC和TGA如圖82所示;以及DVS如圖83所示。
在氘代DMSO中通過1H-NMR分析化合物1 1-羥基-2-萘酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6)δ ppm 0.49-0.79(m,7 H)0.82-1.76(m,22 H)1.96-2.16(m,4 H)2.63-2.76(m,1 H)2.95-3.11(m,2 H)4.98-5.22(m,2 H)7.19-7.32(m,3 H)7.46-7.62(m,2 H)7.72-7.86(m,2 H)8.16-8.29(m,2 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1 1-羥基-2-萘酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0186-382
Figure 108131297-A0202-12-0187-383
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1 1-羥基-2-萘酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0187-384
化合物1 1-羥基-2-萘酸鹽(形式B)
將50mg化合物1和1.1當量固體形式的1-羥基-2-萘酸的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL EtOAc溶劑。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在900rpm恒定攪拌下在50℃保持18小時後,將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥18小時。
通過PLM和XRPD表徵乾燥的固體(圖84)。
化合物1 1-羥基-2-萘酸鹽(形式C)
將50mg化合物1和1.1當量固體形式的1-羥基-2-萘酸的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL ACN溶劑。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在900rpm恒定攪拌下在50℃保持18小時後,將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥18小時。
通過PLM和XRPD表徵乾燥的固體(圖85)。
化合物1 1-羥基-2-萘酸鹽(形式D)
將50mg化合物1和1.1當量固體形式的1-羥基-2-萘酸的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL溶劑IPA/水(95/5,V/V)。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在900rpm恒定攪拌下在50℃保持18小時後,將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥18小時。
通過PLM和XRPD表徵乾燥的固體(圖86)。
實例18:化合物1的環拉酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的環拉酸鹽。
將500mg化合物1在60℃溶於16.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量環拉酸在丙酮中的溶液(2.565mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持隔夜。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥72小時,得到715.81mg粉末,產率為74.48%。
所得固體是化合物1環拉酸鹽(形式A)。通過離子層析測定,化合物1環拉酸鹽(形式A)中化合物1:環拉酸的比為1:1.00。XPRD如圖87所示;DSC和TGA如圖88所示;以及DVS如圖89所示。
在氘代DMSO中通過1H-NMR分析化合物1環拉酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6)δ ppm 0.49-0.80(m,7 H)0.84-1.77(m,30 H)1.83-2.14(m,5 H)2.65-2.74(m,1 H)2.90-3.09(m,3 H)3.35-3.60(m,2 H)4.03(br s,1 H)4.87-5.16(m,2 H)6.97-7.18(m,2 H)7.54-7.91(m,3 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1環拉酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0189-385
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1環拉酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0190-386
實例19:化合物1的乙烷-1,2-二磺酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的乙烷-1,2-二磺酸鹽。
化合物1乙烷-1,2-二磺酸鹽(形式A)
將500mg化合物1在60℃溶於16.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量乙烷-1,2-二磺酸在丙酮中的溶液(2.565mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持隔夜。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥72小時,得到704.45mg粉末,產率為71.61%。
所得固體是化合物1乙烷-1,2-二磺酸鹽(形式A)。通過離子層析測定,化合物1乙烷-1,2-二磺酸鹽(形式A)中化合物1:乙烷-1,2-二磺酸的比為1:2.4。XPRD如圖90所示;DSC和TGA如圖91所示;以及DVS如圖92所示。
在氘代DMSO中通過1H-NMR分析化合物1乙烷-1,2-二磺酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6)δ ppm 0.52-0.79(m,7 H)0.82 -1.77(m,22 H)1.97-2.15(m,2 H)2.58-2.78(m,4 H)3.03(s,2 H)3.23(s,4 H)5.13-5.40(m,2 H)7.56-7.71(m,2 H)9.00(s,1 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1乙烷-1,2-二磺酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0191-387
化合物1乙烷-1,2-二磺酸鹽(形式B)
將50mg化合物1和1.1當量固體形式的乙烷-1,2-二磺酸的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL溶劑EtOAc/IPA/水(95/5,V/V)。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在900rpm恒定攪拌下在50℃保持18小時後,將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥18小時。
通過PLM和XRPD表徵乾燥的固體(圖93)。
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1乙烷-1,2-二磺酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0192-388
實例20:化合物1的二氯乙酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的二氯乙酸鹽。
將500mg化合物1在60℃溶於16.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量二氯乙酸在丙酮中的溶液(2.565mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持隔夜。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥72小時,得到559.98mg粉末,產率為83.41%。
所得固體是化合物1二氯乙酸鹽(形式A)。通過離子層析測定,化合物1二氯乙酸鹽(形式A)中化合物1:二氯乙酸的比為1:1.14。XPRD如圖94所示;DSC和TGA如圖95所示;以及DVS如圖96所示。
在氘代DMSO中通過1H-NMR分析化合物1二氯乙酸(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6)δ ppm 0.46-0.79(m,7 H)0.82-1.75(m, 21 H)1.96-2.15(m,2 H)2.62-2.75(m,1 H)3.02(s,2 H)4.98-5.27(m,3 H)6.30(s,1 H)7.31(d,J=12.80Hz,2 H)8.32(s,1 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1二氯乙酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0193-389
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1二氯乙酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0193-390
Figure 108131297-A0202-12-0194-391
實例21:化合物1的L-蘋果酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的L-蘋果酸鹽。
化合物1 L-蘋果酸鹽(形式A)
將200mg化合物1在60℃溶於10.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量L-蘋果酸在丙酮中的溶液(1.027mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持20小時。通過氮氣蒸發溶液以去除有機溶劑。將獲得的濕產物在25℃真空乾燥42小時,得到230.93mg粉末,產率為85.9%。
所得固體是化合物1 L-蘋果酸鹽(形式A)。通過離子層析測定,化合物1 L-蘋果酸鹽(形式A)中化合物1:蘋果酸的比為1:1.35。XPRD如圖97所示;DSC和TGA如圖98所示;以及DVS如圖99所示。
在氘代DMSO中通過1H-NMR分析化合物1 L-蘋果酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6):δ 0.57-0.86(m,4 H)0.70-0.86(m,4 H)0.89-1.79(m,21 H)2.00-2.21(m,3 H)2.33-2.78(m,13 H)3.10(s,2 H)3.31(s,3 H)4.28(dd,J=7.32,5.44Hz,1 H)4.85-5.19(m,2 H)7.00(s,1 H)7.13(s,1 H)7.53-7.84(m,1 H)。
化合物1 L-蘋果酸鹽(形式B)
將10g化合物1在60℃懸浮於350mL丙酮中,同時在200rpm攪拌並在60℃保持0.5小時。然後將1.1當量L-蘋果酸在丙酮中的溶液(50mL,0.5mol/L)添 加到化合物1懸溶液中,並在60℃溫育3小時,然後冷卻至25℃並利用小瓶在25℃開放地保持72小時。將該懸浮液離心,收集沈澱物,並在30℃真空乾燥24小時,得到4.44g粉末,產率為33.86%。
所得固體是化合物1 L-蘋果酸鹽(形式B)。通過離子層析測定,化合物1 L-蘋果酸鹽(形式B)中化合物1:蘋果酸的比為1:1.26。XPRD如圖100所示;DSC和TGA如圖101所示;以及DVS如圖102所示。
在氘代DMSO中通過1H-NMR分析化合物1 L-蘋果酸鹽(形式B),得到下列化學位移:1H NMR(400MHz,DMSO-d 6)δ ppm 0.45-0.79(m,7 H)0.83-1.73(m,20 H)1.98-2.12(m,2 H)2.43(dd,J=15.69,7.40Hz,1 H)2.56-2.72(m,2 H)3.04(s,2 H)4.22(dd,J=7.28,5.52Hz,1 H)4.86-5.10(m,2 H)6.94(s,1 H)7.07(s,1 H)7.65(s,1 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1 L-蘋果酸鹽(形式A)、化合物1 L-蘋果酸鹽(形式B)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0195-392
Figure 108131297-A0202-12-0196-393
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1 L-蘋果酸鹽(形式A)、化合物1 L-蘋果酸鹽(形式B)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0196-394
實例22:化合物1的鹽酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的鹽酸鹽。
化合物1鹽酸鹽(形式A)
將200mg化合物1在60℃溶於10.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量鹽酸在丙酮中的溶液(1.027mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持20小時。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥42小時,得到168.15mg粉末,產率為76.9%。
所得固體是化合物1鹽酸鹽(形式A)。通過離子層析測定,化合物1鹽酸鹽(形式A)中化合物1:鹽酸的比為1:0.94。XPRD如圖103所示;DSC和TGA如圖104所示;以及DVS如圖105所示。
化合物1鹽酸鹽(形式B)
在50℃將500mg鹽酸鹽(形式A)溶於4.0mL乙醇中。過濾溶液,然後將6.25倍體積的庚烷逐滴添加到溶液中,產生懸浮液。將該懸浮液在500rpm保持恒定攪拌,並在50℃保持24小時。然後將懸浮液離心,收集沈澱物,在30℃真空乾燥24小時,得到365mg粉末,產率為73.0%。
所得固體是化合物1鹽酸鹽(形式B)。通過離子層析測定,化合物1鹽酸鹽(形式B)中化合物1:鹽酸的比為1:0.96。XPRD如圖106所示;DSC和TGA如圖107所示;以及DVS如圖108所示。
化合物1鹽酸鹽(形式C)
將300mg鹽酸鹽(形式A)在50℃在700rpm攪拌下懸浮在6.0mL的0.901水活度溶液中,產生澄清溶液。然後添加200mg鹽酸鹽,產生懸浮液。將懸浮 液保持在700rpm恒定攪拌下並在50℃保持1周。然後將懸浮液離心,收集沈澱物,在30℃乾燥24小時,得到400mg粉末,產率為80.0%。
所得固體是化合物1鹽酸鹽(形式C)。通過離子層析測定,化合物1鹽酸鹽(形式C)中化合物1:鹽酸的比為1:0.97。XPRD如圖109所示;DSC和TGA如圖110所示;以及DVS如圖111所示。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1鹽酸鹽(形式A)、化合物1鹽酸鹽(形式B)、化合物1鹽酸鹽(形式C)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0198-395
Figure 108131297-A0202-12-0199-396
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1鹽酸鹽(形式A)、化合物1鹽酸鹽(形式B)、化合物1鹽酸鹽(形式C)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0199-397
實例22:化合物1的萘磺酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的萘磺酸鹽。
化合物1萘磺酸鹽(形式A)
將500mg化合物1在60℃溶於16.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量萘-2-磺酸水合物在丙酮中的溶液(2.565mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持隔夜。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥72小時,得到690.41mg粉末,產率為89.17%。
所得固體是化合物1萘磺酸鹽(形式A)。通過離子層析測定,化合物1萘磺酸鹽(形式A)中化合物1:萘-2-磺酸的比為1:1.04。XPRD如圖112所示;DSC和TGA如圖113所示;以及DVS如圖114所示。
在氘代DMSO中通過1H-NMR分析化合物1萘磺酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6)δ ppm 0.51-0.80(m,8 H)0.82-1.77(m,25 H)2.33(br d,J=1.75Hz,2 H)2.54-2.78(m,3 H)3.05(s,3 H)3.20-3.30(m,6 H)4.04(br s,1 H)5.15-5.36(m,2 H)7.49-7.73(m,5 H)7.83-8.01(m,3 H)8.14(s,1 H)8.94(s,1 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1萘磺酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0200-398
Figure 108131297-A0202-12-0201-399
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1萘磺酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0201-400
化合物1萘磺酸鹽(形式B):
將50mg化合物1和1.1當量固體形式的萘-2-磺酸水合物的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL溶劑EtOAc/ACN。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在500rpm恒定攪拌下在50℃保持21小時後,將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥18小時。
通過PLM和XRPD表徵乾燥的固體(圖115)。
實例23:化合物1的草酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的草酸鹽。
化合物1草酸鹽(形式A)
將500mg化合物1在60℃溶於16.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量草酸在丙酮中的溶液(2.565mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持隔夜。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥72小時,得到595.76mg粉末,產率為96.32%。
所得固體是化合物1草酸鹽(形式A)。通過離子層析測定,化合物1草酸鹽(形式A)中化合物1:草酸的比為1:0.91。XPRD如圖116所示;DSC和TGA如圖117所示;以及DVS如圖118所示。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1草酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0202-401
Figure 108131297-A0202-12-0203-402
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1草酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0203-403
化合物1草酸鹽(形式B):
將50mg化合物1和1.1當量固體形式的草酸的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL EtOAc溶劑。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在500rpm恒定攪拌下在50℃保持21小時後,將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥18小時。
通過PLM和XRPD表徵乾燥的固體(圖119)。
實例24:化合物1的對胺基水楊酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的對胺基水楊酸鹽。
化合物1對胺基水楊酸鹽(形式A)
將500mg化合物1在60℃溶於16.0mL丙酮中,同時在500rpm攪拌並在60℃保持1.5小時。然後將1.1當量4-胺基水楊酸在丙酮中的溶液(2.565mL,0.5mol/L)添加到化合物1溶液中,並在60℃溫育3小時,然後冷卻至25℃並在25℃保持隔夜。將該懸浮液離心,收集沈澱物,並用丙酮洗滌。將獲得的濕產物在25℃真空乾燥72小時,得到583.32mg粉末,產率為83.37%。
所得固體是化合物1對胺基水楊酸鹽(形式A)。通過離子層析測定,化合物1對胺基水楊酸鹽(形式A)中化合物1:4-胺基水楊酸的比為1:1.03。XPRD如圖120所示;DSC和TGA如圖121所示;以及DVS如圖122所示。
在氘代DMSO中通過1H-NMR分析化合物1對胺基水楊酸鹽(形式A),得到下列化學位移:1H NMR(400MHz,DMSO-d 6)δ ppm 0.51-0.80(m,7 H)0.83-1.74(m,22 H)1.97-2.15(m,3 H)2.34(s,1 H)2.68(br t,J=8.69Hz,1 H)2.99-3.09(m,2 H)3.25(s,4 H)4.83-5.10(m,2 H)5.88-6.11(m,3 H)6.76(t,J=8.19Hz,1 H)6.90(s,1 H)7.04(s,1 H)7.42(d,J=8.63Hz,1 H)7.57(s,1 H)。
化學和物理穩定性測試
使用實例1中示出的過程進行化學和物理穩定性測試。下表顯示了化合物1對胺基水楊酸鹽(形式A)和化合物1游離鹼的化學和物理穩定性測試結果:
Figure 108131297-A0202-12-0204-404
Figure 108131297-A0202-12-0205-405
在模擬的胃液和腸液中的溶解性測試
使用實例1中示出的過程進行在模擬的胃液和腸液中的溶解性測試。下表顯示了生物相關溶液中化合物1對胺基水楊酸鹽(形式A)和化合物1游離鹼的溶解性結果(mg/mL):
Figure 108131297-A0202-12-0205-406
化合物1對胺基水楊酸鹽(形式B):
將50mg化合物1和1.1當量固體形式的4-胺基水楊酸的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL溶劑EtOAc/ACN。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在500rpm恒定攪拌下在50℃保持21小時 後,將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥18小時。
通過PLM和XRPD表徵乾燥的固體(圖123)。
實例25:化合物1的馬來酸鹽的製備
可以使用下列例示性方法由化合物1製備化合物1的馬來酸鹽。
化合物1馬來酸鹽(形式A):
將50mg化合物1和1.1當量固體形式的馬來酸的抗衡離子分別稱入2mL小瓶中,然後向小瓶中加入1mL丙酮溶劑。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在900rpm恒定攪拌下在50℃保持18小時後,將小瓶冷卻至25℃。在25℃保持1小時後,通過離心分離懸浮液中的固體,並在真空烘箱中在30℃乾燥隔夜。
通過PLM和XRPD表徵獲得的乾燥的固體(圖124)。
實例26:嘗試製備化合物1的鹽
下列酸在一些條件下形成非結晶鹽:
Figure 108131297-A0202-12-0206-407
Figure 108131297-A0202-12-0207-408
雖然嘗試了多種條件(在下面顯示),但是下表中的酸不提供化合物1的可分離的鹽。
Figure 108131297-A0202-12-0207-409
Figure 108131297-A0202-12-0208-410
實驗條件:對於上表中列出的二十種酸中的每一種,根據以下過程使用四種溶劑(丙酮、EtOAc、ACN和IPA/水(95/5,V/V))來確定是否通過特定的溶劑-酸組合提供了化合物1的可分離的鹽。
將約50mg化合物1和1.1摩爾當量的酸置於2mL的小瓶中。將約1mL溶劑加入小瓶中。將小瓶放置在帶有攪拌棒的熱混合器上,並加熱至50℃。在50℃攪拌(500rpm)21小時後,將小瓶冷卻至25℃並在25℃保持1小時,並監測小瓶中固體的形成。攪拌約一小時後,沒有實驗提供固體。對於每個實驗,在30℃的真空烘箱中蒸發溶劑。在此等條件下,上表中列出的酸均未提供化合物1的可分離的鹽。
實例27. 化合物1的鹽的性質
測定化合物1檸檬酸鹽(形式A);化合物1磷酸鹽(形式A);化合物1酒石酸鹽(形式A);化合物1 HBr(形式A);和化合物1游離鹼(形式A)的堆密度、堆積密度、卡爾指數和豪斯納比(Hausner Ratio)。結果在下表中示出。
Figure 108131297-A0202-12-0209-411
在測試的形式中,化合物1檸檬酸鹽(形式A)的物理性質最適合於製備固體藥物劑型(例如錠劑)和經濟地儲存活性藥物成分(API)(即,因為其堆密度高)。
可壓縮性是API的重要性質,並且通常,與可壓縮性較低的API相比,可壓縮性更高的API更容易被壓縮成錠劑。卡爾指數是衡量粉末可壓縮性的指標,低卡爾指數表明粉末具有良好的可壓縮性,而高卡爾指數表明粉末可壓縮性差。化合物1檸檬酸鹽(形式A)的卡爾指數比其他測試的多晶型物的卡爾指數相比低得多,表明在測試的形式中的可壓縮性最好。
API的流動性在許多製藥操作中至關重要,例如與賦形劑混合,壓片,填充膠囊和擴大生產規模。豪斯納比是衡量粉末的流動性的指標。豪斯納比高表示粉末的流動性差,而豪斯納比低表示流動性好。化合物1檸檬酸鹽(形式A)的豪斯納比與其他測試的多晶型物的豪斯納比相比低得多,表明測試的形式中的流動性最佳。
檸檬酸鹽(形式A)的可製造性:化合物1檸檬酸鹽(形式A)具有優異的可製造性,並且已經以千克規模製備(實例2)。大規模合成利用醫藥上可接受的溶劑,並且不需要用化合物1檸檬酸鹽(形式A)種晶。
檸檬酸鹽(形式A)的穩定性:化合物1檸檬酸鹽(形式A)在高溫和高濕條件下穩定至少3個月(參見實例2),這對於API來說是理想的。
HBr鹽(形式A)的可製造性:化合物1 HBr(形式A)具有極好的可製造性,並且已按千克規模製備(實例1)。大規模合成利用醫藥上可接受的溶劑,並且不需要用化合物1 HBr(形式A)種晶。
通過引用併入
本文引用的所有參考文獻、文章、出版物、專利、專利出版物和專利申請出於所有目的通過引用整體併入本文。但是,本文引用的任何參考文獻、文章、出版物、專利、專利出版物和專利申請均未提及,也不應被視為對它們在世界上任何一個國家構成有效的現有技術或形成公知常識的一部分的承認或任何形式的暗示。
實施例
1. 化合物1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2、17.1±0.2、20.1±0.2和20.3±0.2° 2θ的三個或更多個峰的X射線粉末繞射(XRPD)圖。
2. 實施例1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2和17.1±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
3. 實施例1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2和20.1±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
4. 實施例1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2和20.3±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
5. 實施例1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、17.1±0.2和20.1±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
6. 實施例1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、17.1±0.2和20.3±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
7. 實施例1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、20.1±0.2和20.3±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
8. 實施例1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約11.9±0.2、17.1±0.2和20.1±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
9. 實施例1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約11.9±0.2、17.1±0.2和20.3±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
10. 實施例1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約11.9±0.2、20.1±0.2和20.3±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
11. 實施例1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約17.1±0.2、20.1±0.2和20.3±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
12. 實施例1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2、17.1±0.2、20.1±0.2和20.3±0.2° 2θ的四個或更多個峰的X射線粉末繞射(XRPD)圖。
13. 實施例12的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2、17.1±0.2和20.1±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
14. 實施例12的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2、17.1±0.2和20.3±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
15. 實施例12的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2、20.1±0.2和20.3±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
16. 實施例12的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、17.1±0.2、20.1±0.2和20.3±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
17. 實施例12的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約11.9±0.2、17.1±0.2、20.1±0.2和20.3±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
18. 實施例12的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2、17.1±0.2、20.1±0.2和20.3±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
19. 前述實施例中任一項的檸檬酸鹽的結晶形式A,進一步包含使用銅K-α輻射在約12.7±0.2、13.0±0.2、13.6±0.2、15.3±0.2和16.8±0.2° 2θ的一個或更多個峰,例如兩個或更多個峰,例如三個或更多個峰,例如四個或更多個峰,例如五個峰。
20. 實施例1-18中任一項的檸檬酸鹽的結晶形式A,進一步包含使用銅K-α輻射在約12.7±0.2° 2θ的附加峰。
21. 實施例1-18和20中任一項的檸檬酸鹽的結晶形式A,進一步包含使用銅K-α輻射在約13.0±0.2° 2θ的附加峰。
22. 實施例1-18、20和21中任一項的檸檬酸鹽的結晶形式A,進一步包含使用銅K-α輻射在約13.6±0.2° 2θ的附加峰。
23. 實施例1-18和20-22中任一項的檸檬酸鹽的結晶形式A,進一步包含使用銅K-α輻射在約15.3±0.2° 2θ的附加峰。
24. 實施例1-18和20-23中任一項的檸檬酸鹽的結晶形式A,進一步包含使用銅K-α輻射在約16.8±0.2° 2θ的附加峰。
25. 前述實施例中任一項的檸檬酸鹽的結晶形式A,其中該XRPD圖基本上如圖15中所觀察。
26. 前述實施例中任一項的檸檬酸鹽的結晶形式A,其該形式A在120 K具有與下列基本上類似的晶胞參數:
a=8.9Å
b=12.2Å
c=16.5Å
α=73.7°
β=76.6°
γ=83.2°
空間群P1,
分子/不對稱單元2。
27. 實施例26的檸檬酸鹽的結晶形式A,其中該形式A在120 K具有如下晶胞參數:
a=8.9±0.5Å
b=12.2±0.5Å
c=16.5±0.5Å
α=73.7±2°
β=76.6±2°
γ=83.2±2°
空間群P1,
分子/不對稱單元2。
28. 實施例27的檸檬酸鹽的結晶形式A,其中該形式A在120 K具有如下晶胞參數:
a=8.9±0.3Å
b=12.2±0.3Å
c=16.5±0.3Å
α=73.7±1°
β=76.6±1°
γ=83.2±1°
空間群P1,
分子/不對稱單元2。
29. 實施例28的檸檬酸鹽的結晶形式A,其中該形式A在120 K具有如下晶胞參數:
a=8.9±0.2Å
b=12.2±0.2Å
c=16.5±0.2Å
α=73.7±0.5°
β=76.6±0.5°
γ=83.2±0.5°
空間群P1,
分子/不對稱單元2。
30. 前述實施例中任一項的檸檬酸鹽的結晶形式A,其中該形式A顯示出具有在約89.0±2.0℃或約139.5±2.0℃的峰值的差示掃描量熱法溫譜圖。
31. 前述實施例中任一項的檸檬酸鹽的結晶形式A,其中該形式A顯示出具有在約89.0±2.0℃的峰值的差示掃描量熱法溫譜圖。
32. 前述實施例中任一項的檸檬酸鹽的結晶形式A,其中該形式A顯示出具有在約139.5±2.0℃的峰值的差示掃描量熱法溫譜圖。
33. 一種醫藥組合物,其包含前述實施例中任一項的檸檬酸鹽和醫藥上可接受的載劑。
34. 實施例33的醫藥組合物,其中該組合物是錠劑。
35. 化合物1的氫溴酸鹽。
36. 實施例35的氫溴酸鹽,其中至少約80重量%的該鹽是結晶的。
37. 實施例35的氫溴酸鹽,其中至少約80重量%的該鹽是單晶形式。
38. 實施例35的氫溴酸鹽,其中至少約95重量%的該鹽是結晶的。
39. 實施例35的氫溴酸鹽,其中至少約95重量%的該鹽是單晶形式。
40. 實施例36-39中任一項的氫溴酸鹽,其中該結晶形式是形式A。
41. 實施例40的氫溴酸鹽,其中該形式A顯示出在約7.6±0.2、15.2±0.2、16.3±0.2、19.8±0.2和22.9±0.2° 2θ的三個或更多個峰的X射線粉末繞射圖。
42. 實施例41的氫溴酸鹽,其中該X射線粉末繞射圖進一步包含在約15.5±0.2、19.2±0.2、20.6±0.2、26.1±0.2和31.3±0.2° 2θ的一個或更多個峰。
43. 實施例40的氫溴酸鹽,其中該形式A顯示出與圖2基本上類似的X射線粉末繞射圖。
44. 實施例40-43中任一項的氫溴酸鹽,其中該形式A顯示出具有在約243.1±2.0℃的峰值的差示掃描量熱法溫譜圖。
45. 實施例40-43中任一項的氫溴酸鹽,其中該形式A顯示出與圖3基本上類似的差示掃描量熱法溫譜圖。
46. 實施例40-43中任一項的氫溴酸鹽,其中該形式A顯示出與圖3基本上類似的熱重分析法溫譜圖。
47. 實施例36-39中任一項的氫溴酸鹽,其中該結晶形式是形式E。
48. 實施例47的氫溴酸鹽,其中該形式E顯示出包含在約7.6±0.2、15.2±0.2、16.3±0.2、22.9±0.2和23.2±0.2° 2θ的三個或更多個峰的X射線粉末繞射圖。
49. 實施例48的氫溴酸鹽,其中該X射線粉末繞射圖進一步包含在約9.6±0.2、17.4±0.2、22.4±0.2、23.6±0.2和31.2±0.2° 2θ的一個或更多個峰。
50. 實施例47的氫溴酸鹽,其中該形式E顯示出與圖13基本上類似的X射線粉末繞射圖。
51. 實施例47-50中任一項的氫溴酸鹽,其中該形式E顯示出具有在約245.0±2.0℃的峰值的差示掃描量熱法溫譜圖。
52. 實施例47-50中任一項的氫溴酸鹽,其中該形式E顯示出與圖14基本上類似的差示掃描量熱法溫譜圖。
53. 實施例47-50中任一項的氫溴酸鹽,其中該形式E顯示出與圖14基本上類似的熱重分析法溫譜圖。
54. 化合物1的檸檬酸鹽。
55. 實施例54的檸檬酸鹽,其中至少約80重量%的該鹽是結晶的。
56. 實施例54的檸檬酸鹽,其中至少約80重量%的該鹽是單晶形式。
57. 實施例54的檸檬酸鹽,其中至少約95重量%的該鹽是結晶的。
58. 實施例54的檸檬酸鹽,其中至少約95重量%的該鹽是結晶形式。
59. 實施例55-58中任一項的檸檬酸鹽,其中該結晶形式是形式A。
60. 實施例59的檸檬酸鹽,其中該形式A顯示出包含在約5.7±0.2、11.9±0.2、17.1±0.2、20.1±0.2和20.3±0.2° 2θ的三個或更多個峰的X射線粉末繞射圖。
61. 實施例60的檸檬酸鹽,其中該X射線粉末繞射圖進一步包含在約12.7±0.2、13.0±0.2、13.6±0.2、15.3±0.2和16.8±0.2° 2θ的一個或更多個峰。
62. 實施例59的檸檬酸鹽,其中該形式A顯示出與圖15基本上類似的X射線粉末繞射圖。
63. 實施例59-62中任一項的檸檬酸鹽,其中該形式A顯示出具有在約89.0±2.0℃或在約139.5±2.0℃的峰值的差示掃描量熱法溫譜圖。
64. 實施例59-63中任一項的檸檬酸鹽,其中該形式A顯示出與圖16基本上類似的差示掃描量熱法溫譜圖。
65. 實施例59-63中任一項的檸檬酸鹽,其中該形式A顯示出與圖16基本上類似的熱重分析法溫譜圖。
66. 化合物1的L-蘋果酸鹽。
67. 實施例66的L-蘋果酸鹽,其中至少約80重量%的該鹽是結晶的。
68. 實施例66的L-蘋果酸鹽,其中至少約80重量%的該鹽是單晶形式。
69. 實施例66的L-蘋果酸鹽,其中至少約95重量%的該鹽是結晶的。
70. 實施例66的L-蘋果酸鹽,其中至少約95重量%的該鹽是單晶形式。
71. 實施例67-70中任一項的L-蘋果酸鹽,其中該結晶形式是形式A。
72. 實施例71的L-蘋果酸鹽,其中該形式A顯示出在約3.2±0.2、12.5±0.2、14.4±0.2、15.7±0.2和18.4±0.2° 2θ的三個或更多個峰的X射線粉末繞射圖。
73. 實施例72的L-蘋果酸鹽,其中該X射線粉末繞射圖進一步包含在約3.6±0.2、6.1±0.2、13.2±0.2、18.9±0.2和21.1±0.2° 2θ的一個或更多個峰。
74. 實施例71的L-蘋果酸鹽,其中該形式A顯示出與圖97基本上類似的X射線粉末繞射圖。
75. 實施例71-74中任一項的L-蘋果酸鹽,其中該形式A顯示出具有在約120.9±2.0℃或在約142.3±2.0℃的峰值的差示掃描量熱法溫譜圖。
76. 實施例71-75中任一項的L-蘋果酸鹽,其中該形式A顯示出與圖98基本上類似的差示掃描量熱法溫譜圖。
77. 實施例71-76中任一項的L-蘋果酸鹽,其中該形式A顯示出與圖98基本上類似的熱重分析法溫譜圖。
78. 化合物1的甲磺酸鹽。
79. 實施例78的甲磺酸鹽,其中至少約80重量%的該鹽是結晶的。
80. 實施例78的甲磺酸鹽,其中至少約80重量%的該鹽是單晶形式。
81. 實施例78的甲磺酸鹽,其中至少約95重量%的該鹽是結晶的。
82. 實施例78的甲磺酸鹽,其中至少約95重量%的該鹽是單晶形式。
83. 實施例79-82中任一項的甲磺酸鹽,其中該結晶形式是形式A。
84. 實施例83的甲磺酸鹽,其中該形式A顯示出在約3.6±0.2、7.1±0.2、14.2±0.2、19.1±0.2和25.9±0.2° 2θ的三個或更多個峰的X射線粉末繞射圖。
85. 實施例84的甲磺酸鹽,其中該X射線粉末繞射圖進一步包含在約7.7±0.2、12.7±0.2、17.8±0.2、19.4±0.2和21.4±0.2° 2θ的一個或更多個峰。
86. 實施例83的甲磺酸鹽,其中該形式A顯示出與圖22基本上類似的X射線粉末繞射圖。
87. 實施例83-86中任一項的甲磺酸鹽,其中該形式A顯示出具有在約170.9±2.0℃或在約209.7±2.0℃的峰值的差示掃描量熱法溫譜圖。
88. 實施例83-87中任一項的甲磺酸鹽,其中該形式A顯示出與圖23基本上類似的差示掃描量熱法溫譜圖。
89. 實施例83-88中任一項的甲磺酸鹽,其中該形式A顯示出與圖23基本上類似的熱重分析法溫譜圖。
90. 化合物1的L(+)-酒石酸鹽。
91. 實施例90的L(+)-酒石酸鹽,其中至少約80重量%的該鹽是結晶的。
92. 實施例90的L(+)-酒石酸鹽,其中至少約80重量%的該鹽是單晶形式。
93. 實施例90的L(+)-酒石酸鹽,其中至少約95重量%的該鹽是結晶的。
94. 實施例90的L(+)-酒石酸鹽,其中至少約95重量%的該鹽是單晶形式。
95. 實施例91-94中任一項的L(+)-酒石酸鹽,其中該結晶形式是形式A。
96. 實施例95的L(+)-酒石酸鹽,其中該形式A顯示出包含在約3.6±0.2、4.7±0.2、13.9±0.2、18.6±0.2和22.8±0.2° 2θ的三個或更多個峰的X射線粉末繞射圖。
97. 實施例96的L(+)-酒石酸鹽,其中該X射線粉末繞射圖進一步包含在約14.6±0.2、17.8±0.2和18.1±0.2° 2θ的一個或更多個峰。
98. 實施例95的L(+)-酒石酸鹽,其中該形式A顯示出與圖30基本上類似的X射線粉末繞射圖。
99. 實施例95-98中任一項的L(+)-酒石酸鹽,其中該形式A顯示出具有在約207.6±2.0℃的峰值的差示掃描量熱法溫譜圖。
100. 實施例95-99中任一項的L(+)-酒石酸鹽,其中該形式A顯示出與圖31基本上類似的差示掃描量熱法溫譜圖。
101. 實施例95-100中任一項的L(+)-酒石酸鹽,其中該形式A顯示出與圖31基本上類似的熱重分析法溫譜圖。
102. 實施例91-94中任一項的L(+)-酒石酸鹽,其中該結晶形式是形式B。
103. 實施例102的L(+)-酒石酸鹽,其中該形式B顯示出在約3.6±0.2、4.6±0.2、12.4±0.2、13.9±0.2和22.7±0.2° 2θ的三個或更多個峰的X射線粉末繞射圖。
104. 實施例103的L(+)-酒石酸鹽,其中該X射線粉末繞射圖進一步包含在約14.8±0.2、18.3±0.2和18.5±0.2° 2θ的三個或更多個峰。
105. 實施例103的L(+)-酒石酸鹽,其中該形式B顯示出與圖33基本上類似的X射線粉末繞射圖。
106. 實施例102-105中任一項的L(+)-酒石酸鹽,其中該形式B顯示出具有在約207.3±2.0℃的峰值的差示掃描量熱法溫譜圖。
107. 實施例102-106中任一項的L(+)-酒石酸鹽,其中該形式B顯示出與圖34基本上類似的差示掃描量熱法溫譜圖。
108. 實施例102-107中任一項的L(+)-酒石酸鹽,其中該形式B顯示出與圖34基本上類似的熱重分析法溫譜圖。
109. 化合物1的磷酸鹽。
110. 實施例109的磷酸鹽,其中至少約80重量%的該鹽是結晶的。
111. 實施例109的磷酸鹽,其中至少約80重量%的該鹽是單晶形式。
112. 實施例109的磷酸鹽,其中至少約95重量%的該鹽是結晶的。
113. 實施例109的磷酸鹽,其中至少約95重量%的該鹽是單晶形式。
114. 實施例110-113中任一項的磷酸鹽,其中該結晶形式是形式A。
115. 實施例114的磷酸鹽,其中該形式A顯示出在約3.3±0.2、3.6±0.2、5.4±0.2、9.9±0.2和13.1±0.2° 2θ的三個或更多個峰的X射線粉末繞射圖。
116. 實施例115的磷酸鹽,其中該X射線粉末繞射圖進一步包含在約16.1±0.2、17.9±0.2、20.9±0.2、23.7±0.2和26.4±0.2° 2θ的一個或更多個峰。
117. 實施例114的磷酸鹽,其中該形式A顯示出與圖27基本上類似的X射線粉末繞射圖。
118. 實施例114-117中任一項的磷酸鹽,其中該形式A顯示出具有在約217.6±2.0℃的峰值的差示掃描量熱法溫譜圖。
119. 實施例114-118中任一項的磷酸鹽,其中該形式A顯示出與圖28基本上類似的差示掃描量熱法溫譜圖。
120. 實施例114-119中任一項的磷酸鹽,其中該形式A顯示出與圖28基本上類似的熱重分析法溫譜圖。
121. 一種醫藥組合物,其包含實施例35-120中任一項的鹽和醫藥上可接受的載劑。
122. 實施例121的醫藥組合物,其中該組合物為錠劑。
123. 一種治療抑鬱的方法,其包括向有需要的患者投予治療有效量的實施例1-32和35-120中任一項的鹽或實施例33、34、121和122中任一項的組合物。
124. 實施例123的方法,其中該抑鬱選自重度抑鬱、產後抑鬱和難治性抑鬱。
125. 一種治療選自癲癇、雙相障礙和焦慮的疾病或病狀的方法,其包括向有需要的患者投予有效量的實施例1-32和35-120中任一項的鹽或實施例33、34、121和122中任一項的組合物。

Claims (47)

  1. 化合物1的檸檬酸鹽的結晶形式A。
  2. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、12.5±0.2和13.0±0.2° 2θ的峰的X射線粉末繞射(XRPD)圖。
  3. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、12.5±0.2和20.1±0.2° 2θ的峰的XRPD圖。
  4. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、12.5±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  5. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、12.7±0.2和13.0±0.2° 2θ的峰的XRPD圖。
  6. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、12.7±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  7. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、13.0±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  8. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、16.8±0.2和20.1±0.2° 2θ的峰的XRPD圖。
  9. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、20.1±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  10. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約12.5±0.2、13.0±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  11. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約12.7±0.2、13.0±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  12. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約16.8±0.2、20.1±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  13. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、20.1±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  14. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2、17.1±0.2、20.1±0.2和20.3±0.2° 2θ的三個或更多個峰的XRPD圖。
  15. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2和17.1±0.2° 2θ的峰的XRPD圖。
  16. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2和20.1±0.2° 2θ的峰的XRPD圖。
  17. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  18. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、17.1±0.2和20.1±0.2° 2θ的峰的XRPD圖。
  19. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、17.1±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  20. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、20.1±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  21. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約11.9±0.2、17.1±0.2和20.1±0.2° 2θ的峰的XRPD圖。
  22. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約11.9±0.2、17.1±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  23. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約11.9±0.2、20.1±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  24. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約17.1±0.2、20.1±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  25. 如請求項1的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2、17.1±0.2、20.1±0.2和20.3±0.2° 2θ的四個或更多個峰的XRPD圖。
  26. 如請求項25的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2、17.1±0.2和20.1±0.2° 2θ的峰的XRPD圖。
  27. 如請求項25的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2、17.1±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  28. 如請求項25的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2、20.1±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  29. 如請求項25的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、17.1±0.2、20.1±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  30. 如請求項25的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約11.9±0.2、17.1±0.2、20.1±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  31. 如請求項25的檸檬酸鹽的結晶形式A,其中該形式A顯示出使用銅K-α輻射包含在約5.7±0.2、11.9±0.2、17.1±0.2、20.1±0.2和20.3±0.2° 2θ的峰的XRPD圖。
  32. 如前述請求項中任一項的檸檬酸鹽的結晶形式A,進一步包含使用銅K-α輻射在約12.7±0.2、13.0±0.2、13.6±0.2、15.3±0.2和16.8±0.2° 2θ的三個或更多個峰。
  33. 如請求項1-31中任一項的檸檬酸鹽的結晶形式A,進一步包含使用銅K-α輻射在約12.7±0.2° 2θ的附加峰。
  34. 如請求項1-31和33中任一項的檸檬酸鹽的結晶形式A,進一步包含使用銅K-α輻射在約13.0±0.2° 2θ的附加峰。
  35. 如請求項1-31、33和34中任一項的檸檬酸鹽的結晶形式A,進一步包含使用銅K-α輻射在約13.6±0.2° 2θ的附加峰。
  36. 如請求項1-31和33-35中任一項的檸檬酸鹽的結晶形式A,進一步包含使用銅K-α輻射在約15.3±0.2° 2θ的附加峰。
  37. 如請求項1-31和33-36中任一項的檸檬酸鹽的結晶形式A,進一步包含使用銅K-α輻射在約16.8±0.2° 2θ的附加峰。
  38. 如前述請求項中任一項的檸檬酸鹽的結晶形式A,其中該XRPD圖基本上如圖15中所觀察到的。
  39. 如前述請求項中任一項的檸檬酸鹽的結晶形式A,其該形式A在120 K具有與下列基本上類似的晶胞參數:
    a=8.9Å
    b=12.2Å
    c=16.5Å
    α=73.7°
    β=76.6°
    γ=83.2°
    空間群P1,
    分子/不對稱單元2。
  40. 如請求項39的檸檬酸鹽的結晶形式A,其中該形式A在120 K具有如下晶胞參數:
    a=8.9±0.5Å
    b=12.2±0.5Å
    c=16.5±0.5Å
    α=73.7±2°
    β=76.6±2°
    γ=83.2±2°
    空間群P1,
    分子/不對稱單元2。
  41. 如請求項40的檸檬酸鹽的結晶形式A,其中該形式A在120 K具有如下晶胞參數:
    a=8.9±0.3Å
    b=12.2±0.3Å
    c=16.5±0.3Å
    α=73.7±1°
    β=76.6±1°
    γ=83.2±1°
    空間群P1,
    分子/不對稱單元2。
  42. 如請求項41的檸檬酸鹽的結晶形式A,其中該形式A在120 K具有如下晶胞參數:
    a=8.9±0.2Å
    b=12.2±0.2Å
    c=16.5±0.2Å
    α=73.7±0.5°
    β=76.6±0.5°
    γ=83.2±0.5°
    空間群P1,
    分子/不對稱單元2。
  43. 如前述請求項中任一項的檸檬酸鹽的結晶形式A,其中該形式A顯示出具有在約89.0±2.0℃或約139.5±2.0℃的峰值的差示掃描量熱法溫譜圖。
  44. 如前述請求項中任一項的檸檬酸鹽的結晶形式A,其中該形式A顯示出具有在約89.0±2.0℃的峰值的差示掃描量熱法溫譜圖。
  45. 如前述請求項中任一項的檸檬酸鹽的結晶形式A,其中該形式A顯示出具有在約139.5±2.0℃的峰值的差示掃描量熱法溫譜圖。
  46. 一種醫藥組合物,其包含如前述請求項中任一項的檸檬酸鹽和醫藥上可接受的載劑。
  47. 如請求項46的醫藥組合物,其中該組合物是錠劑。
TW108131297A 2018-08-31 2019-08-30 正性別構調節劑的鹽和結晶形式 TWI823999B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862725805P 2018-08-31 2018-08-31
US62/725,805 2018-08-31
US16/517,369 2019-07-19
US16/517,369 US10562930B1 (en) 2018-08-31 2019-07-19 Salts and crystal forms of GABAA positive allosteric modulator

Publications (2)

Publication Number Publication Date
TW202024108A true TW202024108A (zh) 2020-07-01
TWI823999B TWI823999B (zh) 2023-12-01

Family

ID=69528249

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108131297A TWI823999B (zh) 2018-08-31 2019-08-30 正性別構調節劑的鹽和結晶形式

Country Status (13)

Country Link
US (4) US10562930B1 (zh)
EP (1) EP3710465A1 (zh)
JP (2) JP7199739B2 (zh)
KR (1) KR20210054546A (zh)
CN (1) CN113473991A (zh)
AU (1) AU2019333310A1 (zh)
BR (1) BR112021003727A2 (zh)
CA (1) CA3111193A1 (zh)
IL (1) IL281143A (zh)
MA (1) MA50921A (zh)
MX (1) MX2021002382A (zh)
TW (1) TWI823999B (zh)
WO (1) WO2020047434A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY190408A (en) * 2014-10-16 2022-04-21 Sage Therapeutics Inc Compositions and methods for treating cns disorders
US10562930B1 (en) 2018-08-31 2020-02-18 Praxis Precision Medicines, Inc. Salts and crystal forms of GABAA positive allosteric modulator
WO2020124094A1 (en) * 2018-12-14 2020-06-18 Praxis Precision Medicines, Inc. Methods for the treatment of depression
US20230414636A1 (en) 2020-03-25 2023-12-28 Sage Therapeutics, Inc. Use of gabaa modulators for treatment of respiratory conditions
WO2022006541A1 (en) * 2020-07-02 2022-01-06 Praxis Precision Medicines, Inc. Methods for the treatment of adjustment disorder
WO2022177718A1 (en) 2021-02-18 2022-08-25 Sage Therapeutics, Inc. Use of neuroactive steroid for treatment of sexual dysfunction
WO2022178000A1 (en) * 2021-02-18 2022-08-25 Praxis Precision Medicines, Inc. Hemi-citrate salts of gaba-a positive allosteric modulator and crystalline form thereof
WO2022231309A1 (ko) 2021-04-27 2022-11-03 경북대학교 산학협력단 저분자 콜라겐을 유효성분으로 포함하는 근감소증의 예방 또는 개선용 식품 조성물 및 약학적 조성물
WO2023159035A1 (en) 2022-02-16 2023-08-24 Sage Therapeutics, Inc. Neuroactive steroids for treatment of cns-related disorders
WO2023164386A1 (en) * 2022-02-28 2023-08-31 Sage Therapeutics, Inc. Neuroactive steroids for treatment of gastrointestinal diseases or conditions

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE284895T1 (de) 1995-06-06 2005-01-15 Euro Celtique Sa Neuroaktive steroide der androstan- und pregnanreihe
US6780853B1 (en) 1995-06-06 2004-08-24 Euro-Celtique S.A. Neuroactive steroids of the androstane and pregnane series
WO2000066614A1 (en) 1999-04-29 2000-11-09 Purdue Pharma Ltd. 3α-HYDROXY-3β METHOXYMETHYL-21-HETEROCYCLE SUBSTITUTED STEROIDS WITH ANESTHETIC ACTIVITY
WO2005105822A2 (en) 2004-04-23 2005-11-10 Euro-Celtique S.A. 3-alpha-hydroxy 21-n- heteroaryl-pregnane derivatives for modulation of brain excitability and a process for the production thereof
US20060074059A1 (en) 2004-08-26 2006-04-06 Goliber Philip A Isomorphic crystalline habits of 3alpha-hydroxy-21-(1'-imidazolyl)-3beta-methoxymethyl-5alpha-pregnane-20-one
KR20100095661A (ko) 2005-06-09 2010-08-31 유로-셀띠끄 소시에떼 아노님 신경 자극성 스테로이드의 약학적 조성물 및 그 용도
JOP20200195A1 (ar) 2014-09-08 2017-06-16 Sage Therapeutics Inc سترويدات وتركيبات نشطة عصبياً، واستخداماتها
MY190408A (en) * 2014-10-16 2022-04-21 Sage Therapeutics Inc Compositions and methods for treating cns disorders
JP7312169B2 (ja) 2017-11-10 2023-07-20 マリナス ファーマシューティカルズ インコーポレイテッド 遺伝性てんかん性障害の処置に使用するガナキソロン
US10562930B1 (en) 2018-08-31 2020-02-18 Praxis Precision Medicines, Inc. Salts and crystal forms of GABAA positive allosteric modulator
WO2020124094A1 (en) 2018-12-14 2020-06-18 Praxis Precision Medicines, Inc. Methods for the treatment of depression

Also Published As

Publication number Publication date
MA50921A (fr) 2020-09-23
EP3710465A4 (en) 2020-09-23
KR20210054546A (ko) 2021-05-13
US20220024967A1 (en) 2022-01-27
CN113473991A (zh) 2021-10-01
JP2021504297A (ja) 2021-02-15
US10562930B1 (en) 2020-02-18
MX2021002382A (es) 2021-08-11
EP3710465A1 (en) 2020-09-23
BR112021003727A2 (pt) 2021-05-25
IL281143A (en) 2021-04-29
JP7199739B2 (ja) 2023-01-06
US20240140985A1 (en) 2024-05-02
AU2019333310A1 (en) 2021-04-08
WO2020047434A1 (en) 2020-03-05
CA3111193A1 (en) 2020-03-05
JP2023036708A (ja) 2023-03-14
US20200255471A1 (en) 2020-08-13
US20200071350A1 (en) 2020-03-05
TWI823999B (zh) 2023-12-01
US10927141B2 (en) 2021-02-23

Similar Documents

Publication Publication Date Title
TWI823999B (zh) 正性別構調節劑的鹽和結晶形式
JP6537591B2 (ja) c−Met阻害剤の結晶性フリー塩基またはそれらの結晶性酸性塩、およびそれらの製造方法および用途
JP6816036B2 (ja) ヒストン脱アセチル化阻害剤の結晶形態
AU2017373239A1 (en) Crystalline forms of a bromodomain and extraterminal protein inhibitor drug, processes for preparation thereof, and use thereof
US11434226B2 (en) Salt and polymorph of benzopyrimidinone compound and pharmaceutical composition and use thereof
CN109516975B (zh) 取代嘧啶类pi3k抑制剂的可药用盐及其制备方法
TW202408461A (zh) Gabaa正性別構調節劑的鹽和結晶形式
BR112020006051A2 (pt) formas cristalinas de lenalidomida
TW202035401A (zh) Bet 抑制劑之固體形式
TW201904954A (zh) 一種苯并哌啶類衍生物的鹽、其晶型及鹽、其晶型的製備方法
AU2021251935B2 (en) Bile acid derivative salt, crystal structure thereof, preparation method therefor and use thereof
WO2021147982A1 (en) Amorphous form or crystalline form of 2-indolinolinololylspironone compounds or their salts, solvent complexes
WO2019086008A1 (zh) 一种苯并三氮唑衍生物的晶型及其制备方法和用途