TW202019808A - Manufacturing method of micro fluid actuator - Google Patents

Manufacturing method of micro fluid actuator Download PDF

Info

Publication number
TW202019808A
TW202019808A TW107141973A TW107141973A TW202019808A TW 202019808 A TW202019808 A TW 202019808A TW 107141973 A TW107141973 A TW 107141973A TW 107141973 A TW107141973 A TW 107141973A TW 202019808 A TW202019808 A TW 202019808A
Authority
TW
Taiwan
Prior art keywords
layer
channel
flow channel
substrate
manufacturing
Prior art date
Application number
TW107141973A
Other languages
Chinese (zh)
Other versions
TWI666165B (en
Inventor
莫皓然
余榮侯
張正明
戴賢忠
廖文雄
黃啟峰
韓永隆
李偉銘
Original Assignee
研能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 研能科技股份有限公司 filed Critical 研能科技股份有限公司
Priority to TW107141973A priority Critical patent/TWI666165B/en
Application granted granted Critical
Publication of TWI666165B publication Critical patent/TWI666165B/en
Publication of TW202019808A publication Critical patent/TW202019808A/en

Links

Images

Landscapes

  • Micromachines (AREA)

Abstract

A manufacturing method of a micro fluid actuator is disclosed and comprises following steps of providing a substrate and depositing an oxidized material on the substrate to form a cavity layer, depositing a nitride material on the cavity layer to form a vibration layer, depositing a metal material and a piezoelectric material on the vibration layer to form a piezoelectric actuation layer, etching the substrate to form a plurality of fluid channels, depositing the oxidized material on the substrate to form a mask layer, and etching the substrate to form a plurality of communicating channels, etching the cavity layer to form a fluid storage chamber, providing an orifice layer and etching the orifice layer to form a plurality of openings, forming a channel layer and a plurality of channels on the orifice layer by a Photo Process and a photolithography process, and bonding the orifice layer and the substrate by a thermo-compression bonding process and a flip-chip packaging process, thereby the micro fluid actuator is produced.

Description

微流體致動器之製造方法Manufacturing method of microfluidic actuator

本案關於一種微流體致動器之製造方法,尤指一種使用微機電半導體製程之微流體致動器之製造方法。This case relates to a method of manufacturing a microfluidic actuator, particularly a method of manufacturing a microfluidic actuator using a micro-electromechanical semiconductor manufacturing process.

目前於各領域中無論是醫藥、電腦科技、列印、能源等工業,產品均朝精緻化及微小化方向發展,其中微幫浦、噴霧器、噴墨頭、工業列印裝置等產品所包含之流體輸送結構為其關鍵技術。At present, in all fields of medicine, computer technology, printing, energy and other industries, products are developing towards refinement and miniaturization. Among them, micro pumps, sprayers, inkjet heads, industrial printing devices and other products are included Fluid delivery structure is its key technology.

隨著科技的日新月異,流體輸送結構的應用上亦愈來愈多元化,舉凡工業應用、生醫應用、醫療保健、電子散熱等等,甚至近來熱門的穿戴式裝置皆可見它的踨影,可見傳統的流體輸送結構已漸漸有朝向裝置微小化、流量極大化的趨勢。With the rapid development of technology, the application of fluid delivery structure is becoming more and more diversified. For example, industrial applications, biomedical applications, medical care, electronic heat dissipation, etc., and even the most popular wearable devices can be seen in its shadows. The traditional fluid delivery structure has gradually tended to miniaturize the device and maximize the flow rate.

於現有技術中,雖已有利用微機電製程製出一體成型之微型化流體輸送結構,但因存在著薄膜壓電層位移量過小的缺點,現有的微型化流體輸送結構常有作動流體壓縮比不足的問題,使得傳輸流量過小,是以,如何藉創新微型化結構突破其技術瓶頸,為發展之重要內容。In the prior art, although a micro-electromechanical process has been used to produce an integrally formed miniaturized fluid transport structure, the existing miniaturized fluid transport structure often has an actuating fluid compression ratio due to the shortcoming of the displacement of the thin film piezoelectric layer is too small The problem of insufficiency makes the transmission flow too small. Therefore, how to break through its technical bottleneck with innovative miniaturized structure is an important part of development.

本案之主要目的係提供一種微流體致動器之製造方法,以標準化微機電半導體製程製造,微流體致動器使用半導體薄膜製作,用以傳輸流體。因此,將薄膜腔體的深度控制在非常淺的範圍時,仍可增加微流體致動器作動時之流體壓縮比。The main objective of this case is to provide a method for manufacturing a microfluidic actuator, which is manufactured using a standardized micro-electromechanical semiconductor manufacturing process. The microfluidic actuator is manufactured using a semiconductor thin film to transmit fluid. Therefore, when the depth of the film cavity is controlled in a very shallow range, the fluid compression ratio when the microfluidic actuator is actuated can still be increased.

本案之一廣義實施態樣為一種微流體致動器之製造方法,包含以下步驟:1.提供一基板沉積一腔體層,該基板具有一第一表面及一第二表面,係透過一氧化材料沉積於該基板之該第一表面上,以形成該腔體層;2.該腔體層沉積一振動層,係透過一氮化材料沉積於該腔體層上,以形成該振動層;3.該振動層沉積蝕刻一致動層,係先透過一第一金屬材料沉積於該振動層上,以形成一下電極層,透過一壓電材料沉積於該下電極層上,以形成一壓電致動層,以及再透過一第二金屬材料沉積於該壓電致動層上,以形成一上電極層,最後透過蝕刻定義出該致動層;4.該基板蝕刻複數個流道,係透過蝕刻定義出該基板之一出口流道及一入口流道;5.該基板沉積一遮罩層蝕刻複數個連接流道,係先透過該氧化材料沉積於該基板之該第二表面上以及該出口流道與該入口流道內,以形成該遮罩層,再透過穿孔露出該基板,而該基板經低溫深蝕刻定義出一出流連接流道、複數個第一進流連接流道及一第二進流連接流道;6.該腔體層蝕刻一儲流腔室,係在該腔體層透過蝕刻定義出該儲流腔室,該儲流腔室與該出流連接流道、該複數個第一進流連接流道及該第二進流連接流道相連通;7.提供一孔板層,並蝕刻複數個流道口,該孔板層透過蝕刻定義出一出流道口以及一入流道口;8.該孔板層滾壓乾膜及微影製出一流道層之複數個通道,該孔板層先透過一乾膜材料滾壓於該孔板層上,以形成該流道層,再於該流道層透過微影製程於該流道層中定義出與該出流道口相連通之一出流通道、與該入流道口相連通之一入流通道以及複數個柱狀結構;以及9.覆晶對位及熱壓接合該流道層,該流道層係透過覆晶對位及熱壓接合該流道層於該基板之該第二表面,使該孔板層之該出流道口與該基板之該出口流道相連通,該流道層之該入流通道對應到該基板之該入口流道,以及該孔板層之該入流道口與該基板之該入口流道相連通,以構成該微流體致動器整體結構。A broad implementation aspect of this case is a method of manufacturing a microfluidic actuator, which includes the following steps: 1. Provide a substrate to deposit a cavity layer, the substrate having a first surface and a second surface, through an oxidized material Deposited on the first surface of the substrate to form the cavity layer; 2. the cavity layer is deposited with a vibrating layer, which is deposited on the cavity layer through a nitride material to form the vibrating layer; 3. the vibration The layer-deposition etching active layer is first deposited on the vibration layer through a first metal material to form a lower electrode layer, and deposited on the lower electrode layer through a piezoelectric material to form a piezoelectric actuation layer, And then deposited on the piezoelectric actuation layer through a second metal material to form an upper electrode layer, and finally the actuation layer is defined by etching; 4. The substrate is etched with a plurality of flow channels, which are defined by etching An outlet flow channel and an inlet flow channel of the substrate; 5. The substrate deposits a mask layer to etch a plurality of connecting flow channels, which are first deposited on the second surface of the substrate and the outlet flow channel through the oxide material And the inlet flow channel to form the mask layer, and then expose the substrate through the perforation, and the substrate is etched at a low temperature to define an outflow connection flow channel, a plurality of first inflow connection flow channels, and a second Inflow connection flow channel; 6. The cavity layer is etched a storage chamber, the storage layer is defined by etching in the cavity layer, the storage chamber and the outflow connection flow channel, the plurality of An inflow connection flow channel and the second inflow connection flow channel are connected; 7. Provide an orifice layer and etch a plurality of flow channel openings, the orifice layer defines an outflow channel opening and an inflow channel opening by etching; 8. The orifice layer rolls the dry film and lithography to produce a plurality of channels of the first channel layer. The orifice layer is first rolled on the orifice layer through a dry film material to form the flow channel layer, and then The flow channel layer defines a flow channel communicating with the flow channel opening, a flow channel communicating with the flow channel opening, and a plurality of columnar structures in the flow channel layer through a lithography process; and 9. Crystal alignment and thermocompression bonding the flow channel layer, the flow channel layer is through the flip chip alignment and thermocompression bonding the flow channel layer to the second surface of the substrate, so that the orifice layer of the flow channel opening and The outlet flow channel of the substrate is connected, the inflow channel of the flow channel layer corresponds to the inlet flow channel of the substrate, and the inlet channel opening of the orifice layer communicates with the inlet flow channel of the substrate to form The overall structure of the microfluidic actuator.

體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖示在本質上當作說明之用,而非用以限制本案。Some typical embodiments embodying the features and advantages of this case will be described in detail in the description in the following paragraphs. It should be understood that this case can have various changes in different forms, and it does not deviate from the scope of this case, and the descriptions and illustrations therein are essentially used for explanation, not for limiting this case.

本案之微流體致動器用於輸送流體,請參閱第1圖,於本案實施例中,微流體致動器100包含有:一基板1a、一腔體層1b、一振動層1c、一下電極層1d、一壓電致動層1e、一上電極層1f、一孔板層1h以及一流道層1i,其製造方法如下步驟說明。The microfluidic actuator in this case is used to convey fluid. Please refer to FIG. 1. In the embodiment of this case, the microfluidic actuator 100 includes: a substrate 1a, a cavity layer 1b, a vibrating layer 1c, and a lower electrode layer 1d 1. A piezoelectric actuation layer 1e, an upper electrode layer 1f, an orifice plate layer 1h, and a flow channel layer 1i, the manufacturing method of which is described in the following steps.

請參閱第2圖及第3A圖,如步驟S1所示,提供一基板沉積一腔體層,係透過一氧化材料沉積於基板1a之第一表面11a之上以形成腔體層1b。於本案實施例中,沉積製程可為一物理氣相沉積製程(PVD)、一化學氣相沉積製程(CVD)或兩者之組合,但不以此為限。於本案實施例中,基板1a為一矽基材,氧化材料為一二氧化矽材料,但不以此為限。Please refer to FIGS. 2 and 3A. As shown in step S1, a substrate is provided to deposit a cavity layer, which is deposited on the first surface 11a of the substrate 1a through an oxide material to form the cavity layer 1b. In the embodiment of the present invention, the deposition process may be a physical vapor deposition process (PVD), a chemical vapor deposition process (CVD), or a combination of the two, but it is not limited thereto. In the embodiment of the present invention, the substrate 1a is a silicon substrate, and the oxidized material is a silicon dioxide material, but not limited thereto.

請參閱第2圖及第3A圖,如步驟S2所示,腔體層沉積一振動層,係透過一氮化材料沉積於腔體層1b之上以形成振動層1c。於本案實施例中,氮化材料為一氮化矽材料,但不以此為限。Please refer to FIG. 2 and FIG. 3A. As shown in step S2, the cavity layer deposits a vibration layer, which is deposited on the cavity layer 1b through a nitride material to form the vibration layer 1c. In the embodiment of the present invention, the nitride material is a silicon nitride material, but not limited to this.

請參閱第2圖及第3B圖,如步驟S3所示,振動層沉積蝕刻一致動層,係先透過一第一金屬材料沉積於振動層1c上,以形成下電極層1d,再透過一壓電材料沉積於下電極層1d上,以形成壓電致動層1e,再透過一第二金屬材料沉積於壓電致動層1e上,以形成上電極層1f,復以蝕刻下電極層1d、壓電致動層1e及上電極層1f,以定義出所需求尺寸之一致動層M。於本案實施例中,第一金屬材料為一鉑金屬材料或一鈦金屬材料,但不以此為限。於本案實施例中,第二金屬材料為一金金屬材料或一鋁金屬材料,但不以此為限。值得注意的是,於本案實施例中,蝕刻製程可為一濕式蝕刻製程、一乾式蝕刻製程或兩者之組合,但不以此為限。Please refer to FIG. 2 and FIG. 3B. As shown in step S3, the vibrating layer is deposited and etched as the moving layer, which is first deposited on the vibrating layer 1c through a first metal material to form the lower electrode layer 1d, and then through a pressure Electrical material is deposited on the lower electrode layer 1d to form the piezoelectric actuation layer 1e, and then deposited on the piezoelectric actuation layer 1e through a second metal material to form the upper electrode layer 1f, and then the lower electrode layer 1d is etched , The piezoelectric actuation layer 1e and the upper electrode layer 1f to define the consistent actuation layer M of the required size. In the embodiment of the present invention, the first metal material is a platinum metal material or a titanium metal material, but not limited thereto. In the embodiment of the present invention, the second metal material is a gold metal material or an aluminum metal material, but it is not limited thereto. It is worth noting that in the embodiment of the present invention, the etching process may be a wet etching process, a dry etching process, or a combination of the two, but not limited thereto.

請參閱第2圖及第3C圖,如步驟S4所示,基板蝕刻複數個流道,係透過乾式蝕刻製程於基板1a之第二表面12a蝕刻以形成一出口流道13a以及一入口流道14a,且出口流道13a以及入口流道14a具有相同之蝕刻深度,且蝕刻深度為蝕刻至第一表面11a以及第二表面12a之間而不穿透第一表面11a。Please refer to FIGS. 2 and 3C. As shown in step S4, the substrate is etched with a plurality of flow channels, which are etched on the second surface 12a of the substrate 1a through a dry etching process to form an outlet flow channel 13a and an inlet flow channel 14a And, the outlet flow channel 13a and the inlet flow channel 14a have the same etching depth, and the etching depth is etched between the first surface 11a and the second surface 12a without penetrating the first surface 11a.

請參閱第2圖、及第3D圖至第3F圖,如步驟S5所示,基板沉積一遮罩層蝕刻複數個連接流道,係先透過氧化材料沉積於基板1a之第二表面12a上以及出口流道13a與入口流道14a內以形成遮罩層1g,再透過一精密穿孔製程於出口流道13a內形成一第一流通孔11g、於入口流道14a內形成複數個第二流通孔12g以及一第三流通孔13g。於本案實施例中,第一流通孔11g之孔徑大於第三流通孔13g之孔徑、第三流通孔13g之孔徑大於每一複數個第二流通孔12g之孔徑,但不以此為限。第一流通孔11g、複數個第二流通孔12g以及第三流通孔13g之穿孔深度為至與基板1a接觸為止,使得基板1a得以露出。於本案實施例中,精密穿孔製程為一準分子雷射加工製程,但不以此為限。值得注意的是,由於第一流通孔11g、複數個第二流通孔12g以及第三流通孔13g分別具有一深度,若透過微影製程來成形會有對焦不易的問題,而準分子雷射加工製程無此問題存在。Please refer to FIG. 2 and FIGS. 3D to 3F. As shown in step S5, a mask layer is deposited on the substrate to etch a plurality of connection channels, which are first deposited on the second surface 12a of the substrate 1a through an oxide material and A mask layer 1g is formed in the outlet flow path 13a and the inlet flow path 14a, and then a first circulation hole 11g is formed in the outlet flow path 13a through a precision perforation process, and a plurality of second circulation holes are formed in the inlet flow path 14a 12g and a third circulation hole 13g. In the embodiment of the present invention, the diameter of the first circulation hole 11g is larger than the diameter of the third circulation hole 13g, and the diameter of the third circulation hole 13g is larger than the diameter of each plurality of second circulation holes 12g, but not limited thereto. The penetration depth of the first circulation hole 11g, the plurality of second circulation holes 12g, and the third circulation hole 13g is until it contacts the substrate 1a, so that the substrate 1a is exposed. In the embodiment of the present invention, the precision perforation process is an excimer laser processing process, but it is not limited thereto. It is worth noting that, since the first flow hole 11g, the plurality of second flow holes 12g, and the third flow hole 13g each have a depth, if forming through the lithography process, there will be a problem of difficulty in focusing, and excimer laser processing There is no such problem in the process.

請參閱第2圖、第3F圖及第4圖,承上所述,於本案實施例中,成形第一流通孔11g、複數個第二流通孔12g以及第三流通孔13g後,透過低溫深蝕刻製程蝕刻基板1a對應於第一流通孔11g、複數個第二流通孔12g以及第三流通孔13g的部分,藉以形成基板1a之一出流連接流道15a、複數個第一進流連接流道16a以及一第二進流連接流道17a。出流連接流道15a為沿第一流通孔11g蝕刻至與腔體層1b接觸為止所構成,複數個第一進流連接流道16a為分別沿複數個第二流通孔12g蝕刻至與腔體層1b接觸為止所構成,以及第二進流連接流道17a為沿第三流通孔13g蝕刻至與腔體層1b接觸為止所構成。於本案實施例中,低溫深蝕刻製程為一深反應性離子蝕刻(BOSCH Process),但不以此為限。Please refer to Figure 2, Figure 3F and Figure 4, as mentioned above, in the embodiment of the present invention, after forming the first circulation hole 11g, a plurality of second circulation holes 12g and the third circulation hole 13g, through the low temperature deep The etching process etches the portion of the substrate 1a corresponding to the first flow hole 11g, the plurality of second flow holes 12g, and the third flow hole 13g, thereby forming one of the outflow connection flow channels 15a of the substrate 1a and the plurality of first inflow connection flows The channel 16a and a second inflow connection channel 17a. The outflow connection flow channel 15a is formed by etching along the first flow hole 11g until it contacts the cavity layer 1b, and the plurality of first inflow connection flow channels 16a are respectively etched along the plurality of second flow holes 12g to the cavity layer 1b The structure up to the contact and the second inflow connection flow path 17a are formed along the third flow hole 13g until they are in contact with the cavity layer 1b. In the embodiment of the present invention, the low temperature deep etching process is a deep reactive ion etching (BOSCH Process), but not limited to this.

請參閱第2圖、第3E圖及第6A圖,承上所述,於本案實施例中,遮罩層1g利用準分子雷射加工製程形成第一流通孔11g、複數個第二流通孔12g以及第三流通孔13g時,為了避免穿孔位置或穿孔角度的偏差,於出口流道13a及入口流道14a之側壁特予保留一緩衝距離e。此外,採用深反應性離子蝕刻製程(BOSCH Process)只對於基板1a之矽材料做蝕刻,因此利用準分子雷射加工製程在基板1a上留有一過蝕深度t,有利於基板1a能確實且容易從過蝕深度t去蝕刻形成出流連接流道15a、複數個第一進流連接流道16a以及第二進流連接流道17a。於本案實施例中,出流連接流道15a、複數個第一進流連接流道16a以及第二進流連接流道17a之最小孔徑為5~50微米(μm),並且孔徑大小視流體性質而定。接著,請參閱第3F圖及第6B圖,出流連接流道15a、每一個第一進流連接流道16a以及第二進流連接流道17a具有一穿孔深度d以及一穿孔孔徑s,所形成之連接流道之深寬比d/s可達40,在實施此加工製程中考量適當連接流道之深寬比d/s可避免加工所產生的高溫影響後端壓電材料之極性分布,造成退極化反應。Please refer to FIG. 2, FIG. 3E and FIG. 6A. As mentioned above, in the embodiment of the present invention, the mask layer 1g uses an excimer laser processing process to form a first circulation hole 11g and a plurality of second circulation holes 12g And in the case of the third circulation hole 13g, in order to avoid the deviation of the perforation position or the perforation angle, a buffer distance e is reserved for the side walls of the outlet flow path 13a and the inlet flow path 14a. In addition, the deep reactive ion etching process (BOSCH Process) is only used to etch the silicon material of the substrate 1a, so the excimer laser processing process leaves an overetch depth t on the substrate 1a, which is conducive to the substrate 1a being reliable and easy An outflow connecting flow channel 15a, a plurality of first inflow connecting flow channels 16a, and a second inflow connecting flow channel 17a are formed by etching from the over-etching depth t. In the embodiment of the present invention, the minimum pore diameter of the outflow connecting flow channel 15a, the plurality of first inflow connecting flow channels 16a and the second inflow connecting flow channels 17a is 5 to 50 microns (μm), and the size of the pore size depends on the fluid properties It depends. Next, please refer to FIG. 3F and FIG. 6B, the outflow connection flow channel 15a, each of the first inflow connection flow channel 16a and the second inflow connection flow channel 17a have a perforation depth d and a perforation aperture s. The depth-to-width ratio d/s of the formed connection flow channel can reach 40. In the implementation of this processing process, considering the appropriate depth-to-width ratio d/s of the connection flow channel can prevent the high temperature generated by the processing from affecting the polarity distribution of the back-end piezoelectric material , Causing a depolarization reaction.

請參閱第2圖、第3G圖,如步驟S6所示,腔體層蝕刻一儲流腔室,係腔體層1b透過一濕蝕刻製程於腔體層1b內部蝕刻出一儲流腔室11b。意即,透過蝕刻液由第一流通孔11g、複數個第二流通孔12g以及第三流通孔13g流入,經由出流連接流道15a、複數個第一進流連接流道16a以及第二進流連接流道17a流至腔體層1b,進而蝕刻並釋放移除腔體層1b之部分,藉以定義出儲流腔室11b。藉此,儲流腔室11b與出流連接流道15a、複數個第一進流連接流道16a以及第二進流連接流道17a相連通。於本案實施例中,濕蝕刻製程利用氫氟酸(HF)蝕刻液蝕刻腔體層1b,但不以此為限。於本案實施例中,腔體層1b厚度為1~5微米(μm),但不以此為限。值得注意的是,透過濕時刻製程成形儲流腔室11b時,遮罩層1g亦會一併被移除。完成儲流腔室11b成形與移除遮罩層1g後,基板1a之出口流道13a與出流連接流道15a相連通、入口流道14a與複數個第一進流連接流道16a以及第二進流連接流道17a相連通。Please refer to FIG. 2 and FIG. 3G. As shown in step S6, the cavity layer etches a reservoir chamber. The cavity layer 1b etches a reservoir chamber 11b inside the cavity layer 1b through a wet etching process. That is, the first liquid flow hole 11g, the plurality of second flow holes 12g, and the third flow hole 13g flow in through the etching solution, and pass through the outflow connection flow channel 15a, the plurality of first inflow connection flow channels 16a, and the second inlet The flow connection flow channel 17a flows to the cavity layer 1b, and then the portion of the cavity layer 1b is etched and released to define the flow storage chamber 11b. Thereby, the storage chamber 11b is in communication with the outflow connection flow channel 15a, the plurality of first inflow connection flow channels 16a, and the second inflow connection flow channel 17a. In the embodiment of the present invention, the wet etching process uses hydrofluoric acid (HF) etching solution to etch the cavity layer 1b, but it is not limited thereto. In the embodiment of the present invention, the thickness of the cavity layer 1b is 1 to 5 micrometers (μm), but not limited to this. It is worth noting that when the reservoir chamber 11b is formed through the wet-time process, the mask layer 1g is also removed together. After forming the storage chamber 11b and removing the mask layer 1g, the outlet flow channel 13a of the substrate 1a communicates with the outflow connection flow channel 15a, and the inlet flow channel 14a communicates with the plurality of first inflow connection flow channels 16a and the first The two inlet flow channels 17a communicate with each other.

請參閱第3G圖及第6C圖,於本案實施例中,濕蝕刻製程通常為等向性蝕刻,於本案實施例中,在蝕刻儲液腔室11b時,儲液腔室11b具有一腔體深度r,其等同於腔體層1b之厚度,而濕蝕刻所產生的側蝕距離為r',因此腔體深度r與側蝕距離r'相等,即為一等向性蝕刻。又由於出流連接流道15a、每一個第一進流連接流道16a以及第二進流連接流道17a的孔徑僅介於5~50微米(μm)之間,而腔體深度r僅介於1~5微米(μm)之間,因此在蝕刻儲液腔室11b時需要一過度蝕刻,以加長蝕刻時間才能將未被蝕刻之餘料移除乾淨。於本案實施例中,以此進行濕蝕刻製程形成儲液腔室11b時,會產生一過蝕距離L,並且過蝕距離L大於側蝕距離為r',才能使儲液腔室11b範圍內的二氧化矽材料完全被移除。Please refer to FIG. 3G and FIG. 6C. In the embodiment of the present invention, the wet etching process is usually isotropic etching. In the embodiment of the present invention, when etching the liquid storage chamber 11b, the liquid storage chamber 11b has a cavity The depth r is equivalent to the thickness of the cavity layer 1b, and the side etching distance generated by the wet etching is r'. Therefore, the cavity depth r and the side etching distance r'are equal, which is an isotropic etching. Moreover, since the diameter of the outflow connecting flow channel 15a, each of the first inflow connecting flow channel 16a and the second inflow connecting flow channel 17a is only between 5 and 50 microns (μm), and the cavity depth r is only It is between 1 and 5 micrometers (μm), so an over-etching is required when etching the storage chamber 11b, so as to increase the etching time to remove the unetched material. In the embodiment of the present invention, when the wet etching process is used to form the liquid storage chamber 11b, an over-etching distance L is generated, and the over-etching distance L is greater than the side-etching distance r'to make the liquid storage chamber 11b within the range The silicon dioxide material was completely removed.

請參閱第2圖、第3H圖及第3I圖,如步驟S7所示,提供一孔板層蝕刻複數個流道口,係透過蝕刻製程於孔板層1h蝕刻出一出流道口11h以及一入流道口12h。於本案實施例中,孔板層1h之蝕刻製程可為一濕蝕刻製程、一乾蝕刻製程或二者之組合,但不以此為限。於本案實施例中,孔板層1h為一不銹鋼材料或一玻璃材料,但不以此為限。Please refer to FIG. 2, FIG. 3H and FIG. 3I, as shown in step S7, a plurality of flow channel openings are provided by etching an orifice layer, an outlet channel opening 11h and an inflow are etched in the orifice layer 1h through the etching process Crossing 12h. In the embodiment of the present invention, the etching process of the orifice layer 1h may be a wet etching process, a dry etching process or a combination of the two, but not limited thereto. In the embodiment of the present invention, the orifice layer 1h is a stainless steel material or a glass material, but not limited to this.

請參閱第2圖、第3J圖、第3K圖及第5圖,如步驟S8所示,孔板層滾壓乾膜及微影製出一流道層之複數個通道,係先透過一乾膜材料滾壓於孔板層1h之上以形成流道層1i,再透過微影製程於流道層1i形成一出流通道11i、一入流通道12i以及複數個柱狀結構13i,且構成出流通道11i與孔板層1h之出流道口11h相連通,以及構成入流通道12i與孔板層1h之入流道口12h相連通。於本案實施例中,複數個柱狀結構13i交錯排列形成於入流通道12i內(如第5圖),用以過濾流體中之雜質。於本案實施例中,乾膜材料為一感光型高分子乾膜,但不以此為限。Please refer to Figure 2, Figure 3J, Figure 3K and Figure 5, as shown in step S8, the orifice layer rolls the dry film and the lithography to produce a plurality of channels of the first-class layer, first through a dry film material Rolling on the orifice layer 1h to form the flow channel layer 1i, and then forming an outflow channel 11i, an inflow channel 12i and a plurality of columnar structures 13i in the flow channel layer 1i through the lithography process, and forming an outflow channel 11i communicates with the outflow channel opening 11h of the orifice layer 1h, and the inflow channel 12i communicates with the inflow channel opening 12h of the orifice layer 1h. In the embodiment of the present invention, a plurality of columnar structures 13i are staggered and formed in the inflow channel 12i (as shown in FIG. 5) to filter impurities in the fluid. In the embodiment of the present invention, the dry film material is a photosensitive polymer dry film, but it is not limited thereto.

請回到第1圖及第2圖,如步驟S9所示,覆晶對位及熱壓接合流道層,係透過一覆晶對位製程以及一熱壓製程將流道層1i接合於基板1a之第二表面12a,形成本案之微流體致動器100。藉此,孔板層1h之出流道口11h藉由流道層1i之出流通道11i與基板1a之出口流道13a相連通;以及孔板層1h之入流道口12h藉由流道層1i之入流通道12i與基板1a之入口流道14a相連通。Please return to FIG. 1 and FIG. 2, as shown in step S9, the flip-chip alignment and hot-press bonding channel layer is to join the runner layer 1i to the substrate through a flip-chip alignment process and a hot-press process The second surface 12a of 1a forms the microfluidic actuator 100 in this case. Thereby, the outflow channel opening 11h of the orifice plate layer 1h communicates with the outlet flow channel 13a of the substrate 1a through the outflow channel 11i of the flow channel layer 1i; and the inflow channel opening 12h of the orifice plate layer 1h passes through the flow channel layer 1i The inflow channel 12i communicates with the inlet channel 14a of the substrate 1a.

值得注意的是,由於第三流通孔13g之孔徑大於每一複數個第二流通孔12g之孔徑,複數個第一進流連接流道16a係分別對應複數個第二流通孔12g的位置設置,以及第二進流連接流道17a係對應第三流通孔13g的位置設置,因此第二進流連接流道17a之孔徑大於每一複數個第一進流連接流道16a之孔徑。再者,第二進流連接流道17a設置在相對於儲液腔室11b的邊緣部分,因此第二進流連接流道17a的設置有助於儲液腔室11b的濕蝕刻製程。It is worth noting that since the diameter of the third circulation hole 13g is larger than the diameter of each of the plurality of second circulation holes 12g, the plurality of first inflow connecting flow channels 16a are respectively corresponding to the positions of the plurality of second circulation holes 12g, And the second inflow connecting flow channel 17a is provided corresponding to the position of the third circulation hole 13g, so the diameter of the second inflow connecting flow channel 17a is larger than that of each of the plurality of first inflow connecting flow channels 16a. Furthermore, the second inlet connection flow channel 17a is disposed at an edge portion relative to the liquid storage chamber 11b, so the arrangement of the second inlet flow channel 17a facilitates the wet etching process of the liquid storage chamber 11b.

請參閱第7A圖及第7B圖,於本案實施例中,微流體致動器100的具體作動方式,係提供具有相反相位電荷之驅動電源至上電極層1f以及下電極層1d,以驅動並控制振動層1c產生上下位移。如第7A圖所示,當施加正電壓給上電極層1f以及負電壓給下電極層1d時,壓電致動層1e帶動振動層1c朝向遠離基板1a的方向位移,藉此,外部流體由孔板層1h之入流道口12h被吸入至微流體致動器100內,而進入微流體致動器100內的流體接著依序通過流道層1i之入流通道12i、基板1a之入口流道14a以及基板1a之複數個第一進流連接流道16a與第二進流連接流道17a,最後匯集於腔體層1b之儲流腔室11b內。如第7B圖所示,接著轉換上電極層1f以及下電極層1d之電性,施加負電壓給上電極層1f以及正電壓給下電極層1d,如此振動層1c朝向靠近基板1a的方向位移,使儲流腔室11b內體積受振動層1c壓縮,致使匯集於儲流腔室11b內的流體得以依序通過基板1a之出流連接流道15a、基板1a之出口流道13a以及流道層1i之出流通道11i後自孔板層1h之出流道口11h排出於微流體致動器100外,完成流體之傳輸。Please refer to FIGS. 7A and 7B. In the embodiment of the present invention, the specific operation mode of the microfluidic actuator 100 is to provide driving power with opposite phase charges to the upper electrode layer 1f and the lower electrode layer 1d to drive and control The vibration layer 1c is displaced up and down. As shown in FIG. 7A, when a positive voltage is applied to the upper electrode layer 1f and a negative voltage to the lower electrode layer 1d, the piezoelectric actuation layer 1e drives the vibration layer 1c to move away from the substrate 1a, whereby the external fluid The inlet channel opening 12h of the orifice layer 1h is sucked into the microfluidic actuator 100, and the fluid entering the microfluidic actuator 100 then sequentially passes through the inlet channel 12i of the channel layer 1i and the inlet channel 14a of the substrate 1a And the plurality of first inflow connection channels 16a and the second inflow connection channels 17a of the substrate 1a are finally collected in the storage chamber 11b of the cavity layer 1b. As shown in FIG. 7B, the electrical properties of the upper electrode layer 1f and the lower electrode layer 1d are then converted, and a negative voltage is applied to the upper electrode layer 1f and a positive voltage to the lower electrode layer 1d, so that the vibration layer 1c is displaced toward the substrate 1a. , The volume in the storage chamber 11b is compressed by the vibrating layer 1c, so that the fluid collected in the storage chamber 11b can sequentially pass through the outflow connection flow channel 15a of the substrate 1a, the outlet flow channel 13a and the flow channel of the substrate 1a The outflow channel 11i of the layer 1i is discharged from the outflow channel opening 11h of the orifice layer 1h to the outside of the microfluidic actuator 100 to complete the fluid transmission.

值得注意的是,當微流體致動器100吸入外部流體時,部分外部流體會由孔板層1h之出流道口11h被吸入微流體致動器100內,但由於基板1a之出流連接流道15a對應到壓電致動層1c的位置並非位移量最大之區域,所以外部流體自出流道口11h被吸入的量相對較少。當微流體致動器100排出流體時,流道層1i之複數個柱狀結構13i對於回流之流體會產生阻尼效果,此外,基板1a之第二進流連接流道17a對應到壓電致動層1c位移量最小的邊緣位置。所以流體自入流道口12h被排出的量相對較少。It is worth noting that when the microfluidic actuator 100 draws in external fluid, part of the external fluid will be drawn into the microfluidic actuator 100 from the outflow port 11h of the orifice layer 1h, but due to the outflow connection flow of the substrate 1a The position of the channel 15a corresponding to the piezoelectric actuation layer 1c is not the region with the largest amount of displacement, so the amount of external fluid drawn into the outlet port 11h is relatively small. When the microfluidic actuator 100 discharges fluid, the plurality of columnar structures 13i of the flow channel layer 1i will have a damping effect on the returned fluid. In addition, the second inflow connecting flow channel 17a of the substrate 1a corresponds to the piezoelectric actuation The edge position where the displacement of layer 1c is the smallest. Therefore, the amount of fluid discharged from the inlet port 12h is relatively small.

再者,值得注意的是,基板1a之複數個第一進流連接流道16a流通阻力過大的問題可藉由調整電壓波形、拉長微流體致動器100吸入外部流體的作動時間而改善。Furthermore, it is worth noting that the problem of excessive flow resistance of the plurality of first inflow connection channels 16a of the substrate 1a can be improved by adjusting the voltage waveform and lengthening the actuation time of the microfluidic actuator 100 to draw in external fluid.

本案提供一微流體致動器之製造方法,主要以微機電半導體製程來完成的,並且藉由施加不同相位電荷之驅動電源於上電極層以及下電極層,使得振動層產生上下位移,進而達到流體傳輸。如此,微流體致動器能夠在極淺之腔室結構中克服靜電力,達到傳輸流體之實施可行性及在極微型化結構中產生極大的傳輸效率,極具產業之利用價值,爰依法提出申請。This case provides a method for manufacturing a microfluidic actuator, which is mainly completed by a micro-electromechanical semiconductor process, and by applying driving power of different phase charges to the upper electrode layer and the lower electrode layer, the vibrating layer is displaced up and down, and then reached Fluid transmission. In this way, the microfluidic actuator can overcome the electrostatic force in a very shallow chamber structure, achieve the feasibility of transmitting fluid and produce a very large transmission efficiency in a very miniaturized structure, and has great industrial use value. Application.

本案得由熟知此技術之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。This case may be modified by any person familiar with the technology, such as Shi Shisi, but none of them are as protected as the scope of the patent application.

100:微流體致動器1a:基板11a:第一表面12a:第二表面13a:出口流道14a:入口流道15a:出流連接流道16a:第一進流連接流道17a:第二進流連接流道1b:腔體層11b:儲流腔室1c:振動層1d:下電極層1e:壓電致動層1f:上電極層1g:遮罩層11g:第一流通孔12g:第二流通孔13g:第三流通孔1h:孔板層11h:出流道口12h:入流道口1i:流道層11i:出流通道12i:入流通道13i:柱狀結構e:緩衝距離t:過蝕深度d:穿孔深度s:穿孔孔徑r:腔體深度r':側蝕距離L:過蝕距離M:致動層S1~S9:微流體致動器之製造方法之步驟100: microfluidic actuator 1a: substrate 11a: first surface 12a: second surface 13a: outlet flow channel 14a: inlet flow channel 15a: outflow connection flow channel 16a: first inflow connection flow channel 17a: second Inflow connection flow channel 1b: cavity layer 11b: storage chamber 1c: vibration layer 1d: lower electrode layer 1e: piezoelectric actuation layer 1f: upper electrode layer 1g: mask layer 11g: first circulation hole 12g: No. Second flow hole 13g: third flow hole 1h: orifice layer 11h: outflow channel opening 12h: inflow channel opening 1i: flow channel layer 11i: outflow channel 12i: inflow channel 13i: columnar structure e: buffer distance t: overerosion Depth d: Perforation depth s: Perforation aperture r: Cavity depth r': Side erosion distance L: Overetch distance M: Actuating layer S1~S9: Steps of manufacturing method of microfluidic actuator

第1圖為本案微流體致動器之剖面示意圖。 第2圖為本案微流體致動器之製造方法之流程示意圖。 第3A圖至第3K圖為本案微流體致動器之製造步驟分解示意圖。 第4圖為本案微流體致動器之俯視示意圖。 第5圖為本案微流體致動器之仰視示意圖。 第6A圖至第6C圖為本案為流體致動器之進流連接流道之蝕刻步驟分解示意圖。 第7A圖至第7B圖為本案微流體致動器之作動示意圖。Figure 1 is a schematic cross-sectional view of the microfluidic actuator of this case. Fig. 2 is a schematic flow chart of the manufacturing method of the microfluidic actuator in this case. Figures 3A to 3K are exploded schematic diagrams of the manufacturing steps of the microfluidic actuator in this case. Figure 4 is a schematic top view of the microfluidic actuator of this case. Figure 5 is a schematic diagram of a bottom view of the microfluidic actuator of the present case. FIGS. 6A to 6C are exploded schematic diagrams of the etching steps of the inflow connecting flow channel of the fluid actuator in this case. Figures 7A to 7B are schematic diagrams of the operation of the microfluidic actuator in this case.

S1~S9:微流體致動器之製造方法之步驟 S1~S9: Steps of manufacturing method of microfluidic actuator

Claims (21)

一種微流體致動器之製造方法,包含以下步驟: 1.提供一基板沉積一腔體層,該基板具有一第一表面及一第二表面,係透過一氧化材料沉積於該基板之該第一表面上,以形成該腔體層; 2.該腔體層沉積一振動層,係透過一氮化材料沉積於該腔體層上以形成該振動層; 3.該振動層沉積蝕刻一致動層,係先透過一第一金屬材料沉積於該振動層上以形成一下電極層,透過一壓電材料沉積於該下電極層上以形成一壓電致動層,以及再透過一第二金屬材料沉積於該壓電致動層上以形成一上電極層,最後透過蝕刻定義出該致動層; 4.該基板蝕刻複數個流道,係透過蝕刻定義出該基板之一出口流道及一入口流道; 5.該基板沉積一遮罩層蝕刻複數個連接流道,係先透過該氧化材料沉積於該基板之該第二表面上以及該出口流道與該入口流道內,以形成該遮罩層,再透過穿孔露出該基板,而該基板經低溫深蝕刻定義出一出流連接流道、複數個第一進流連接流道及一第二進流連接流道; 6.該腔體層蝕刻一儲流腔室,係在該腔體層透過蝕刻定義出該儲流腔室,該儲流腔室與該出流連接流道、該複數個第一進流連接流道及該第二進流連接流道相連通; 7.提供一孔板層蝕刻複數個流道口,該孔板層透過蝕刻定義出一出流道口以及一入流道口; 8.該孔板層滾壓乾膜及微影製出一流道層之複數個通道,該孔板層先透過一乾膜材料滾壓於該孔板層上,以形成該流道層,再於該流道層透過微影製程於該流道層中定義出與該出流道口相連通之一出流通道、與該入流道口相連通之一入流通道以及複數個柱狀結構;以及 9.覆晶對位及熱壓接合該流道層,該流道層係透過覆晶對位及熱壓接合該流道層於該基板之該第二表面,使該孔板層之該出流道口與該基板之該出口流道相連通,該流道層之該入流通道對應到該基板之該入口流道,以及該孔板層之該入流道口與該基板之該入口流道相連通,以構成該微流體致動器整體結構。A method for manufacturing a microfluidic actuator includes the following steps: 1. Provide a substrate to deposit a cavity layer, the substrate having a first surface and a second surface, which is deposited on the first of the substrate through an oxide material On the surface, to form the cavity layer; 2. The cavity layer is deposited with a vibrating layer, which is deposited on the cavity layer through a nitride material to form the vibrating layer; 3. The vibrating layer is deposited by etching the moving layer, first A first metal material is deposited on the vibration layer to form a lower electrode layer, a piezoelectric material is deposited on the lower electrode layer to form a piezoelectric actuation layer, and a second metal material is deposited on the vibrating layer An upper electrode layer is formed on the piezoelectric actuation layer, and finally the actuation layer is defined by etching; 4. The substrate is etched with a plurality of flow channels, and an outlet flow channel and an inlet flow channel of the substrate are defined by etching 5. A mask layer is deposited on the substrate to etch a plurality of connecting flow channels, which are first deposited on the second surface of the substrate and the outlet flow channel and the inlet flow channel through the oxide material to form the mask Layer, and then expose the substrate through the perforation, and the substrate defines an outflow connection flow channel, a plurality of first inflow connection flow channels and a second inflow connection flow channel through low temperature deep etching; 6. The cavity layer etching A flow storage chamber is defined in the cavity layer through etching to define the flow storage chamber, the flow storage chamber and the outflow connecting flow channel, the plurality of first inflow connecting flow channels and the second inflow The connecting flow channels are connected; 7. Provide a hole plate layer to etch a plurality of flow channel openings, the hole plate layer defines an outlet flow channel opening and an inlet flow channel opening by etching; 8. The hole plate layer is rolled with dry film and lithography A plurality of channels of the flow channel layer are produced, and the orifice layer is first rolled on the orifice layer through a dry film material to form the flow channel layer, and then the flow channel layer is passed through the lithography process in the flow channel layer An outflow channel communicating with the outflow port, an inflow channel communicating with the inflow port, and a plurality of columnar structures are defined; and 9. Flip-chip alignment and thermocompression bonding of the flow channel layer, the flow The channel layer connects the flow channel layer to the second surface of the substrate through flip-chip alignment and hot pressing, so that the outlet channel opening of the orifice layer layer communicates with the outlet channel of the substrate. The inflow channel corresponds to the inlet channel of the substrate, and the inlet channel of the orifice layer communicates with the inlet channel of the substrate to form the overall structure of the microfluidic actuator. 如申請專利範圍第1項所述之微流體致動器之製造方法,其中該出流連接流道與該出口流道相連通,該複數個第一進流連接流道及該第二進流連接流道與該入口流道相連通。The method for manufacturing a microfluidic actuator as described in item 1 of the patent application scope, wherein the outflow connecting flow channel communicates with the outlet flow channel, the plurality of first inflow connecting channel and the second inflow The connecting flow channel communicates with the inlet flow channel. 如申請專利範圍第1項所述之微流體致動器之製造方法,其中步驟5更包含步驟:透過穿孔於該出口流道內,以形成一第一流通孔,以及透過穿孔於該入口流道內形成複數個第二流通孔及一第三流通孔,以使該基板露出。The method of manufacturing a microfluidic actuator as described in item 1 of the patent application, wherein step 5 further includes the steps of: forming a first flow hole through the perforation in the outlet flow channel, and passing the perforation in the inlet flow A plurality of second circulation holes and a third circulation hole are formed in the track to expose the substrate. 如申請專利範圍第1項所述之微流體致動器之製造方法,其中該低溫深蝕刻為一深反應性離子蝕刻製程。The method for manufacturing a microfluidic actuator as described in item 1 of the patent scope, wherein the low temperature deep etching is a deep reactive ion etching process. 如申請專利範圍第2項所述之微流體致動器之製造方法,其中步驟6係透過一氫氟酸濕蝕刻製程於該腔體層內部蝕刻出該儲流腔室。The method for manufacturing a microfluidic actuator as described in item 2 of the patent application, wherein step 6 is to etch the reservoir chamber inside the cavity layer through a hydrofluoric acid wet etching process. 如申請專利範圍第5項所述之微流體致動器之製造方法,其中該氫氟酸濕蝕刻透過蝕刻液由該出流連接流道、該複數個第一進流連接流道及該第二進流連接流道流至該腔體層,釋放並移除該腔體層之部分來定義出該儲流腔室,藉以構成該儲流腔室與該出流連接流道、該複數個第一進流連接流道及該第二進流連接流道相連通。The method for manufacturing a microfluidic actuator as described in item 5 of the patent application range, wherein the hydrofluoric acid wet etching passes through the etching solution from the outflow connection flow channel, the plurality of first inflow connection flow channels and the first The two inflow connecting flow channels flow to the cavity layer, and release and remove the part of the cavity layer to define the storage chamber, thereby forming the storage chamber and the outflow connecting flow channel, the plurality of first The inlet flow channel and the second inlet flow channel are in communication. 如申請專利範圍第1項所述之微流體致動器之製造方法,其中該複數個柱狀結構顯影形成於該入流通道內。The method for manufacturing a microfluidic actuator as described in item 1 of the patent application range, wherein the plurality of columnar structures are developed and formed in the inflow channel. 如申請專利範圍第1項所述之微流體致動器之製造方法,其中該基板為一矽基材。The method for manufacturing a microfluidic actuator as described in item 1 of the patent scope, wherein the substrate is a silicon substrate. 如申請專利範圍第1項所述之微流體致動器之製造方法,其中該氧化材料為一二氧化矽材料。The method for manufacturing a microfluidic actuator as described in item 1 of the patent application range, wherein the oxidizing material is a silicon dioxide material. 如申請專利範圍第1項所述之微流體致動器之製造方法,其中該第一金屬材料為一鉑金屬材料。The method for manufacturing a microfluidic actuator as described in item 1 of the patent application, wherein the first metal material is a platinum metal material. 如申請專利範圍第1項所述之微流體致動器之製造方法,其中該第一金屬材料為一鈦金屬材料。The method for manufacturing a microfluidic actuator as described in item 1 of the patent application range, wherein the first metal material is a titanium metal material. 如申請專利範圍第1項所述之微流體致動器之製造方法,其中該第二金屬材料為一金金屬材料。The method for manufacturing a microfluidic actuator as described in item 1 of the patent application, wherein the second metal material is a gold metal material. 如申請專利範圍第1項所述之微流體致動器之製造方法,其中該第二金屬材料為一鋁金屬材料。The method for manufacturing a microfluidic actuator as described in item 1 of the patent application scope, wherein the second metal material is an aluminum metal material. 如申請專利範圍第1項所述之微流體致動器之製造方法,其中該氮化材料為一氮化矽材料。The method for manufacturing a microfluidic actuator as described in item 1 of the patent application range, wherein the nitride material is a silicon nitride material. 如申請專利範圍第1項所述之微流體致動器之製造方法,其中該孔板層為一不鏽鋼材料。The method for manufacturing a microfluidic actuator as described in item 1 of the patent application, wherein the orifice layer is made of stainless steel. 如申請專利範圍第1項所述之微流體致動器之製造方法,其中該孔板層為一玻璃材料。The method for manufacturing a microfluidic actuator as described in item 1 of the patent application, wherein the orifice plate layer is a glass material. 如申請專利範圍第1項所述之微流體致動器之製造方法,其中該乾膜材料為一感光型高分子乾膜。The method for manufacturing a microfluidic actuator as described in item 1 of the patent application, wherein the dry film material is a photosensitive polymer dry film. 如申請專利範圍第1項所述之微流體致動器之製造方法,其中,提供具有不同相位電荷之驅動電源至該上電極層以及該下電極層,以驅動並控制該振動層產生上下位移,使流體自該入流道口吸入,通過該複數個第一進流連接流道及該第二進流連接流道流至該儲流腔室,最後受擠壓經由該出流連接流道後,自該出流道口排出以完成流體傳輸。The method for manufacturing a microfluidic actuator as described in item 1 of the patent application scope, wherein driving power with different phase charges is provided to the upper electrode layer and the lower electrode layer to drive and control the vibration layer to generate up and down displacement So that the fluid is sucked from the inlet channel, flows through the plurality of first inlet connection channels and the second inlet channel to the storage chamber, and finally is squeezed through the outlet channel The outflow port is discharged to complete fluid transfer. 如申請專利範圍第18項所述之微流體致動器之製造方法,其中流體自該入流道口吸入後,依序通過該入流通道、該入口流道以及該複數個第一進流連接流道與該第二進流連接流道流進入該儲流腔室。The method for manufacturing a microfluidic actuator as described in item 18 of the patent application scope, wherein after fluid is sucked from the inlet channel, it sequentially passes through the inlet channel, the inlet channel, and the plurality of first inlet connection channels The flow channel connected to the second inlet flows into the storage chamber. 如申請專利範圍第18項所述之微流體致動器之製造方法,其中該儲流腔室中之流體受擠壓後依序通過該出流連接流道、該出口流道以及該出流通道後,自該出流道口排出。The method for manufacturing a microfluidic actuator as described in item 18 of the patent application scope, wherein the fluid in the storage chamber is squeezed through the outflow connecting flow path, the outlet flow path and the outflow in sequence After the channel, it is discharged from the outlet of the outflow channel. 如申請專利範圍第18項所述之微流體致動器之製造方法,其中施加正電壓給該上電極層以及負電壓給該下電極層,使得該壓電致動層帶動該振動層朝向遠離該基板的方向位移,外部流體得由該入流道口被吸入至該微流體致動器內,而進入該微流體致動器內的流體,依序通過該入流通道、該入口流道、以及該複數個第一進流連接流道與該第二進流連接流道,再匯集於該儲流腔室內,再施加負電壓給該上電極層以及正電壓給該下電極層,該振動層朝向靠近該基板的方向位移,使該儲流腔室內體積受該振動層壓縮,匯集於該儲流腔室內的流體得以依序通過該出流連接流道、該出口流道以及該出流通道後自該出流道口排出於該微流體致動器外,完成流體之傳輸。The method for manufacturing a microfluidic actuator as described in item 18 of the patent application range, wherein a positive voltage is applied to the upper electrode layer and a negative voltage is applied to the lower electrode layer, so that the piezoelectric actuation layer drives the vibration layer away from When the direction of the substrate is displaced, the external fluid must be sucked into the microfluidic actuator from the inlet port, and the fluid entering the microfluidic actuator sequentially passes through the inlet channel, the inlet channel, and the A plurality of first inflow connecting flow channels and the second inflow connecting flow channels are collected in the storage chamber, and a negative voltage is applied to the upper electrode layer and a positive voltage to the lower electrode layer, the vibration layer faces Displacement in the direction close to the substrate causes the volume in the storage chamber to be compressed by the vibrating layer, and the fluid collected in the storage chamber can sequentially pass through the outflow connecting flow channel, the outlet flow channel, and the outflow channel. The outlet of the outflow channel is discharged outside the microfluidic actuator to complete the fluid transmission.
TW107141973A 2018-11-23 2018-11-23 Manufacturing method of micro fluid actuator TWI666165B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107141973A TWI666165B (en) 2018-11-23 2018-11-23 Manufacturing method of micro fluid actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107141973A TWI666165B (en) 2018-11-23 2018-11-23 Manufacturing method of micro fluid actuator

Publications (2)

Publication Number Publication Date
TWI666165B TWI666165B (en) 2019-07-21
TW202019808A true TW202019808A (en) 2020-06-01

Family

ID=68049629

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107141973A TWI666165B (en) 2018-11-23 2018-11-23 Manufacturing method of micro fluid actuator

Country Status (1)

Country Link
TW (1) TWI666165B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714384B (en) * 2019-12-06 2020-12-21 研能科技股份有限公司 Miniature fluid actuator device
TWI741581B (en) * 2020-04-30 2021-10-01 研能科技股份有限公司 Heterogeneous integration chip of micro fluid actuator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7338637B2 (en) * 2003-01-31 2008-03-04 Hewlett-Packard Development Company, L.P. Microfluidic device with thin-film electronic devices
EP1814817B1 (en) * 2004-10-21 2011-03-23 Fujifilm Dimatix, Inc. Method of etching using a sacrificial substrate
TWI342267B (en) * 2007-07-13 2011-05-21 Microjet Technology Co Ltd Micro-droplet spray structure
CA2740222C (en) * 2008-11-26 2015-11-17 Jonathan Posner Electroosmotic pump with improved gas management
TWI635041B (en) * 2017-06-09 2018-09-11 國立臺灣師範大學 Micro-flow channel chip and manufacturing method thereof

Also Published As

Publication number Publication date
TWI666165B (en) 2019-07-21

Similar Documents

Publication Publication Date Title
TWI722339B (en) Micro fluid actuator
TWM574151U (en) Micro-electromechanical pump
TWI686350B (en) Micro channel structure
TW202019808A (en) Manufacturing method of micro fluid actuator
TWI695120B (en) Micro fluid actuator
CN209940465U (en) Microfluidic actuator
CN209098182U (en) Microfluidic actuators
TWI713142B (en) Manufacturing method of miniature fluid actuator
TWM576620U (en) Miniature fluid actuator
TWI678819B (en) Manufacturing method of micro fluid actuator
TWI663121B (en) Manufacturing method of micro channel structure
TWI710517B (en) Micro fluid actuator
TWM580642U (en) Miniature fluid actuator
CN111217317B (en) Method for manufacturing microfluidic actuator
CN111254390B (en) Method for manufacturing micro-fluid actuator
TWI707487B (en) Manufacturing method of micro fluid actuator
TWM578699U (en) Micro fluid actuator
TWI683462B (en) Manufacturing method of micro fluid actuator module
TWI696580B (en) Manufacturing method of micro-electromechanical system pump
CN111217316A (en) Microfluidic actuator
CN111252727A (en) Microfluidic actuator
CN110905786B (en) Method for manufacturing micro-electromechanical pump
CN112808330B (en) Method for manufacturing micro-fluid actuator
TWI657040B (en) Manufacturing method of micro-electromechanical pump
CN111434386B (en) Method for manufacturing micro-fluid actuator