TW202006490A - 流量控制方法及流量控制裝置 - Google Patents

流量控制方法及流量控制裝置 Download PDF

Info

Publication number
TW202006490A
TW202006490A TW108122043A TW108122043A TW202006490A TW 202006490 A TW202006490 A TW 202006490A TW 108122043 A TW108122043 A TW 108122043A TW 108122043 A TW108122043 A TW 108122043A TW 202006490 A TW202006490 A TW 202006490A
Authority
TW
Taiwan
Prior art keywords
control valve
pressure
flow rate
flow
control
Prior art date
Application number
TW108122043A
Other languages
English (en)
Other versions
TWI719513B (zh
Inventor
平田薫
小川慎也
杉田勝幸
西野功二
池田信一
Original Assignee
日商富士金股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商富士金股份有限公司 filed Critical 日商富士金股份有限公司
Publication of TW202006490A publication Critical patent/TW202006490A/zh
Application granted granted Critical
Publication of TWI719513B publication Critical patent/TWI719513B/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/001Means for regulating or setting the meter for a predetermined quantity
    • G01F15/003Means for regulating or setting the meter for a predetermined quantity using electromagnetic, electric or electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0647Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/004Actuating devices; Operating means; Releasing devices actuated by piezoelectric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Flow Control (AREA)

Abstract

使用流量控制裝置(100)在流量上升時所進行之流量控制方法,流量控制裝置(100)係具備:設置於流路之第1控制閥(6)、設置於第1控制閥的下游側之第2控制閥(8)、及測定第1控制閥的下游側且第2控制閥的上游側的流體壓力之壓力感測器(3),其包含步驟(a)及(b),步驟(a),是在將第2控制閥閉鎖的狀態下,使用壓力感測器求出在第1控制閥的下游殘留的壓力,步驟(b),是根據壓力感測器的輸出調整第2控制閥的開度,藉此控制在第1控制閥的下游殘留的壓力,而在第2控制閥的下游側以第1流量讓流體流動。

Description

流量控制方法及流量控制裝置
本發明是關於流量控制方法及流量控制裝置,特別是關於適用於半導體製造裝置、化學工廠等之流量控制方法及流量控制裝置。
在半導體製造裝置、化學工廠,為了控制材料氣體、蝕刻氣體等的流體之流動,是利用各種型式的流量計及流量控制裝置。其中的壓力式流量控制裝置,因為藉由將控制閥和節流部(例如孔口板)組合而成之比較簡單的機構就能將各種流體的流量高精度地控制,而被廣泛地利用。此外,壓力式流量控制裝置,縱使一次側供給壓大幅變動仍能穩定地進行流量控制,因此具有優異的流量控制特性。壓力式流量控制裝置揭示於例如專利文獻1。
作為壓力式流量控制裝置所使用的控制閥,是採用藉由壓電元件驅動裝置(以下也稱為:壓電致動器)讓金屬隔膜閥體進行開閉之壓電元件驅動式閥。在專利文獻2揭示,作為控制閥所使用之常開型的壓電元件驅動式閥。
壓力式流量控制裝置構成為,藉由控制節流部的上游側之流體壓力(以下也稱為:上游壓力)來調整流量。上游壓力,可藉由調整設置在節流部上游側之控制閥的開度來控制,藉由讓上游壓力符合與所期望流量對應的壓力,能以所期望流量讓流體流動。 [先前技術文獻] [專利文獻]
[專利文獻1] 日本特開2007-192269號公報 [專利文獻2] 日本特許第4933936號公報 [專利文獻3] 日本特開2015-138338號公報 [專利文獻4] 國際公開第2018/021277號 [專利文獻5] 國際公開第2018/008420號 [專利文獻6] 國際公開第2013/179550號
[發明所欲解決之問題]
在先前的壓力式流量控制裝置,有在孔口下游側或孔口附近上游側設置開閉閥,將其進行開閉控制的情形。這種下游側的開閉閥,例如運用於將從處理室(process chamber)之氣體的供給停止。此外,使用壓力式流量控制裝置進行ALD(原子層沉積,Atomic Layer Deposition)製程的情況,會有藉由將下游側的開閉閥之開閉動作反覆而進行短周期之脈衝式流量控制的情形。
然而,縱使在將控制閥及下游側的開閉閥閉鎖而使流量成為0後,起因於透過控制閥之流體的微小洩漏等,會有流路內壓變高的情形。此外,依將控制閥及下游側的開閉閥關閉的時點,有在閉閥前流過之流體的壓力在閉閥後仍留在閥間,而使比較高的壓力殘留的情形。結果,當再度開始進行流量控制時,因為流路內壓變高,在將下游側的開閉閥開啟時,所殘留的壓力會一口氣往下游側釋放,而在上升時的控制流量發生所謂過衝(overshoot)的問題。
作為防止流量上升時的過衝之技術,在專利文獻3揭示出,在控制閥和孔口之間設置排氣管路,藉由在流量控制前事先進行排氣,讓上游壓力降低。然而,依專利文獻3所載的方式,必須另外設置排氣管路及排氣管路用的開閉閥,存在難以避免導致成本增加及裝置大型化的問題。此外,縱使在流量控制前進行了排氣,在根據上游壓力而將控制閥的開度反饋控制的方式,仍有難以讓流量上升時的響應性充分提高的情況。
本發明是有鑑於上述問題而開發完成的,其主要目的是為了提供一種流量控制方法及流量控制裝置,可防止流量上升時的過衝,此外,能讓響應性提高而迅速地往設定流量進行控制。 [解決問題之技術手段]
本發明的實施形態之流量控制方法,係使用流量控制裝置從流量零往第1流量將流量上升時所進行的流量控制方法,前述流量控制裝置係具備:設置於流路之第1控制閥、設置於前述第1控制閥的下游側之第2控制閥、及測定前述第1控制閥的下游側且前述第2控制閥的上游側的流體壓力之壓力感測器,該流量控制方法包含步驟(a)及步驟(b),前述步驟(a),是在將前述第2控制閥閉鎖的狀態下,根據前述壓力感測器的輸出求出在前述第1控制閥的下游殘留的壓力,前述步驟(b),是根據前述壓力感測器的輸出調整前述第2控制閥的開度,藉此控制在前述第1控制閥的下游殘留的壓力,而在前述第2控制閥的下游側以前述第1流量讓流體流動。
在某一實施形態中,在前述步驟(a),是在將前述第1控制閥和前述第2控制閥雙方閉鎖的狀態下求出前述殘留的壓力。
在某一實施形態中,上述的流量控制方法進一步包含以下步驟:當在前述步驟(a)根據前述壓力感測器的輸出所求出的壓力比相當於前述第1流量的壓力更低的情況,直到在前述第1控制閥的下游所殘留的壓力比相當於前述第1流量的壓力變得更高為止將前述第1控制閥開啟,在超過相當於前述第1流量的壓力的時點將前述第1控制閥關閉。
在某一實施形態中,在前述步驟(a),前述第1控制閥被關閉成,比根據前述壓力感測器的輸出以成為前述第1流量的方式控制前述第1控制閥的開度時的開度更小的開度,當根據前述壓力感測器的輸出所求出的壓力為閾值以上時,將前述第2控制閥開啟而進行前述步驟(b)。
在某一實施形態中,在前述步驟(b),當將α設為比例常數,將ΔP1/Δt設為前述壓力感測器所輸出的上游壓力之變化ΔP1和前述上游壓力的變化ΔP1所需的時間Δt之比、即壓力變化率,將V設為前述第1控制閥和前述第2控制閥之間的內容積時,以用Q=α・(ΔP1/Δt)・V表示的衰減(build-down)流量Q與前述第1流量一致的方式,根據前述壓力感測器所輸出的信號控制前述第2控制閥的開度。
在某一實施形態中,上述的流量控制方法進一步包含步驟(c),其是在進行前述步驟(b)後,當前述壓力感測器的輸出降低到既定值的時點,根據前述壓力感測器的輸出控制前述第1控制閥的開度而以前述第1流量在下游讓流體流動。
本發明的實施形態之流量控制裝置,係具備第1控制閥、第2控制閥、壓力感測器及控制迴路,前述第1控制閥是設置於流路,前述第2控制閥是設置於前述第1控制閥的下游側,前述壓力感測器是測定前述第1控制閥的下游側且前述第2控制閥的上游側之流體壓力,前述控制迴路,是控制前述第1控制閥及前述第2控制閥的動作,且構成為根據前述壓力感測器所輸出的信號控制前述第1控制閥及第2控制閥而藉此控制流量,當從流量零往第1流量將流量上升時,前述控制迴路執行步驟(a)及步驟(b),前述步驟(a),是在將前述第2控制閥閉鎖的狀態下,根據前述壓力感測器的輸出求出在第1控制閥的下游所殘留的壓力,前述步驟(b),是根據前述壓力感測器的輸出,藉由調整前述第2控制閥的開度來控制在第1控制閥的下游所殘留的壓力,而在前述第2控制閥的下游側以第1流量讓流體流動。
在某一實施形態中,上述的流量控制裝置進一步具備:設置在前述第2控制閥的下游側之其他的壓力感測器。
本發明的實施形態之流量控制裝置,係具備:設置於流路之第1控制閥、設置於前述第1控制閥的下游側之第2控制閥、以及測定前述第1控制閥的下游側且前述第2控制閥的上游側的流體壓力之壓力感測器,在從流量零的狀態往第1流量控制流量時,從前述第2控制閥被閉鎖且流量零的狀態,根據前述壓力感測器的輸出控制前述第2控制閥的開度,以使在前述第1控制閥的下游所殘留之壓力的變化率與從前述第2控制閥流出時的流量成為前述第1流量時之壓力的變化率一致的方式,控制前述第2控制閥的開度。
在某一實施形態中,在從前述流量零的狀態往前述第1流量控制流量時,前述第1控制閥是閉鎖的。
在某一實施形態中,在從前述流量零的狀態往前述第1流量控制流量時,前述第1控制閥被控制成比與前述第1流量對應的開度更小的開度。
在某一實施形態中,前述第2控制閥的開度,當將α設為比例常數,將ΔP1/Δt設為前述壓力感測器所輸出之上游壓力的變化ΔP1和前述上游壓力的變化ΔP1所需的時間Δt之比、即壓力變化率,將V設為前述第1控制閥和前述第2控制閥之間的內容積時,以用Q=α・(ΔP1/Δt)・V表示的衰減流量Q與前述第1流量一致的方式,根據前述壓力感測器所輸出的信號進行反饋控制。
在某一實施形態中,上述流量控制裝置進一步具備:設置在前述第2控制閥的下游側之其他的壓力感測器。
本發明的實施形態之流量控制裝置,係具備:設置於流路之第1控制閥、設置於前述第1控制閥的下游側之第2控制閥、以及測定前述第1控制閥的下游側且前述第2控制閥的上游側的流體壓力、即上游壓力之第1壓力感測器,且根據前述第1壓力感測器所輸出的信號控制下游側的流量,在從流量零往第1流量控制流量時,是使用在前述第1控制閥下游所殘留的壓力,依Q=α・(ΔP1/Δt)・V控制流量,在前述第1壓力感測器的壓力到達既定壓力的時點,切換成依Q=K1 ・P1的控制;在此,Q為流量,α為比例常數,ΔP1/Δt為前述上游壓力的壓力變化率,V為前述第1控制閥和前述第2控制閥之間的內容積,K1 為取決於流體種類和流體溫度之常數,P1為前述第1壓力感測器所輸出之上游壓力。
在某一實施形態中,在前述第1壓力感測器的壓力到達依Q=K1 ・P1的控制中之相當於前述第1流量的壓力之時點,將控制切換。
本發明的實施形態之流量控制裝置,係具備:設置於流路之第1控制閥、設置於前述第1控制閥的下游側之第2控制閥、測定前述第1控制閥的下游側且前述第2控制閥的上游側之流體壓力、即上游壓力之第1壓力感測器、以及測定前述第2控制閥的下游側之流體壓力、即下游壓力之第2壓力感測器,且根據前述第1壓力感測器及第2壓力感測器所輸出的信號控制下游側的流量,在從流量零往第1流量控制流量時,使用在前述第1控制閥下游所殘留的壓力,依Q=α・(ΔP1/Δt)・V控制流量,在前述第1壓力感測器及前述第2壓力感測器的壓力到達既定壓力的時點,切換成依Q=K2 ・P2m (P1-P2)n 的控制,在此,Q為流量,α為比例常數,ΔP1/Δt為前述第1壓力感測器所輸出之上游壓力的壓力變化率,V為前述第1控制閥和前述第2控制閥之間的內容積,K2 為取決於流體種類和流體溫度之常數,P1為前述上游壓力,P2為前述第2壓力感測器所輸出之下游壓力,m及n為以實際流量為基礎所導出的指數。
在某一實施形態中,在前述第1及第2壓力感測器的壓力到達依Q=K2 ・P2m (P1-P2)n 的控制中之相當於前述第1流量的壓力之時點,將控制切換。
本發明的實施形態之流量控制方法,係使用流量控制裝置從流量零往超過零之第1流量將流量變更時所進行之流量控制方法,前述流量控制裝置係具備:設置於流路之開度可調整的第1控制閥、設置於前述第1控制閥的下游側之開度可調整的第2控制閥、設置於前述第1控制閥的下游側之開度固定的節流部、以及測定前述第1控制閥的下游側且前述第2控制閥或前述節流部的上游側的流體壓力之壓力感測器,該流量控制方法係包含步驟(a)及步驟(b),前述步驟(a),是從前述第1控制閥和前述第2控制閥關閉且流量為零的狀態,根據前述壓力感測器的輸出調整前述第2控制閥的開度,藉此讓前述第1控制閥和前述第2控制閥之間的流體在前述第2控制閥的下游側以前述第1流量流動;步驟(b),是在前述步驟(a)之後,在前述壓力感測器的輸出降低到既定值的時點將前述第1控制閥開啟,根據前述壓力感測器的輸出控制前述第1控制閥的開度,藉此在前述節流部的下游側以前述第1流量讓流體流動。
在某一實施形態中,前述節流部和前述第2控制閥是一體地設置而構成孔口內設閥。 [發明之效果]
依據本發明的實施形態,可提供一種流量控制方法及流量控制裝置,在流量上升時可防止過衝且能縮短上升時間。
以下,參照圖式說明本發明的實施形態,但本發明並不限定於以下所說明的實施形態。
圖1係顯示為了進行本發明的實施形態的流量控制方法所使用之流量控制裝置100的構造。流量控制裝置100係具備:在連接於未圖示的氣體供給源之氣體G0的流路1上所設置之第1控制閥6、設置在第1控制閥6的下游側之節流部2、設置在第1控制閥6及節流部2的下游側之第2控制閥8、以及分別檢測第1控制閥6和節流部2間的流體壓力(上游壓力P1)及氣體溫度T之第1壓力感測器(上游壓力感測器)3及溫度感測器5。
本實施形態的流量控制裝置100還具備:測定第2控制閥8的下游側的壓力(下游壓力P2)之第2壓力感測器(下游壓力感測器)4。第1壓力感測器3可測定第1控制閥6和節流部2間的流體壓力、即上游壓力P1,第2壓力感測器4可測定第2控制閥8的下游側的壓力、即下游壓力P2。但在其他態樣,流量控制裝置100亦可不具備第2壓力感測器4及溫度感測器5。
在本實施形態,節流部2和第2控制閥8是作成孔口內設閥9而形成為一體,節流部2和第2控制閥8的閥體是近接地配置。在此情況,與上述態樣不同,也能在第2控制閥8的閥體之下游側配置節流部2。此外,當節流部2配置在第2控制閥8的閥體之下游側的情況,第1壓力感測器3是測定第1控制閥6和第2控制閥8間的流體壓力、即上游壓力P1。
此外,像本實施形態這樣在第2控制閥8的上游側設置節流部2的情況,當進行流量控制時,是測定第1控制閥6和節流部2間的流體壓力、即上游壓力P1,當第1控制閥6和第2控制閥8閉鎖時,因為節流部2的上游側(從第1控制閥6到節流部2)和節流部2的下游側(從節流部2到第2控制閥8)成為相同壓力,第1壓力感測器3變成測定從第1控制閥6到第2控制閥8之間的流體壓力。
第1壓力感測器3,只要配置成檢測第1控制閥6的下游側且前述第2控制閥8的上游側之流體壓力即可,可以是測定第1控制閥6和節流部2間的流體壓力者,也可以是測定第1控制閥6和第2控制閥8間的流體壓力者。
流量控制裝置100進一步具備:連接於第1控制閥6及第2控制閥8之控制迴路7。控制迴路7構成為,藉由根據第1壓力感測器3所輸出的信號控制第1控制閥6的開度而控制流量,且當流量上升時,根據第1壓力感測器3所輸出的信號控制第2控制閥8的開度。又在圖示的態樣,一個控制迴路7是對於第1控制閥6和第2控制閥8雙方共同設置,但並不限定於此,對於第1控制閥6及第2控制閥8分別設置個別的控制迴路當然也可以。
控制迴路7,可內設於流量控制裝置100,也能設置在流量控制裝置100的外部。控制迴路7,典型上是內設有CPU等的處理器、ROM及RAM等的記憶體(記憶裝置)、A/D轉換器等,可包含構成為執行後述的流量控制動作之電腦程式。控制迴路7可由硬體及軟體的組合來實現。
控制迴路7可具備:用於與電腦等的外部裝置交換資訊之介面,藉此,可從外部裝置往ROM進行程式及資料的寫入等。控制迴路7的構成要素(CPU等),不須全都在裝置內一體地設置,可將CPU等之一部分的構成要素配置在其他場所(裝置外)並利用匯流排(bus)相互連接而構成。這時,裝置內和裝置外,不僅利用有線,也能利用無線進行通訊。
以上般構成之流量控制裝置100的下游側,例如透過未圖示的下游閥連接於半導體製造裝置之處理室。在處理室連接著真空泵,典型上,在處理室的內部被真空抽吸的狀態下,從流量控制裝置100將流量控制後的氣體G1供給到處理室。作為上述的下游閥,例如可採用:利用壓縮空氣控制開閉動作之公知的空氣驅動閥(Air Operated Valve)、電磁閥等的開閉閥(ON-OFF閥)。
在本實施形態,節流部2是由孔口板所構成。孔口板,因為孔口剖面積是固定的,可作為開度固定的節流部來發揮功能。又因孔口發生堵塞、經年劣化等而可能使孔口面積無意中改變,在本說明書中,將不是構成為刻意控制開度的節流部稱為開度固定的節流部。此外,在本說明書中,「節流部」是指將流路的剖面積限制成比前後的流路剖面積更小之部分,例如是使用孔口板、臨界流噴嘴、音速噴嘴、狹縫構造等而構成,也能使用其他構件來構成。孔口或噴嘴的直徑設定為例如10μm~500μm。
作為第1控制閥6及第2控制閥8,是使用可調整成任意開度之閥,例如採用:將金屬製隔膜閥體使用壓電致動器進行開閉之公知的壓電元件驅動式閥。壓電元件驅動式閥,藉此控制對壓電元件的驅動電壓,可調整成任意開度。
在流量控制裝置100之通常的流量控制模式,第1控制閥6的開度,是根據來自第1壓力感測器3的輸出來控制,且以使第1壓力感測器3所輸出之上游壓力P1維持於設定值的方式進行反饋控制。第1控制閥6,是作為流量控制的主要閥、即主流量控制閥來使用。作為第1控制閥6,在此雖是使用常閉型的閥,但也能使用常開型的閥。
另一方面,第2控制閥8主要是用於例如將流量從零往低設定流量上升等之流量切換時,是用於進行後述之衰減式的流量控制。第2控制閥8,在流量切換時以外之通常的流量控制時,可維持全開、或具有至少比節流部2的開口面積更大的開口剖面積之開度。作為第2控制閥8,可使用常閉型的閥,亦可使用常開型的閥。如果作為第2控制閥8是使用常開型的閥,在流量零期間及流量上升期間以外的期間不須施加驅動電壓,可實現降低電力消耗。
又第2控制閥8,也能用於流量上升時以外的流量控制,例如也能用於從高設定流量往低設定流量將流量變更之流量下降時所進行的衰減式流量控制。這樣的流量控制方法揭示於本案申請人所提出之國際申請第 PCT/JP2019/16763號。本發明的實施形態之流量控制裝置100構成為,在流量上升時、流量下降時等之流量變動時,可使用第2控制閥8進行衰減式的流量控制。
此外,如上述般,在本實施形態,第2控制閥8和節流部2是一體地設置而構成孔口內設閥9。孔口內設閥9是例如記載於專利文獻4,在本實施形態也能採用與先前同樣的構造之孔口內設閥。在孔口內設閥9,第2控制閥8的閥體和作為節流部2的孔口板是近接地配置,其等間的流路容積降低到可視為大致零的程度。因此,如果使用孔口內設閥9,能讓流量之上升及下降的特性提高。此外,當使用孔口內設閥9的情況,第1控制閥6和第2控制閥8之間的內容積V,可考慮是大致等同於第1控制閥6到孔口板的內容積。因此,如後述般,當使用上述內容積V進行流量控制的情況,有容易以比較高的精度獲得近似的內容積V之好處。
在孔口內設閥9中,節流部2(在此為孔口板)和第2控制閥8,哪個設置在上游側皆可,使節流部2和第2控制閥8間的容積(在此,由孔口板和第2控制閥8的隔膜閥體及座部所包圍的空間)成為儘量小的容積是理想的。孔口內設閥9,是為了將上述容積極小化之適當態樣。
以上所說明的流量控制裝置100,在通常的流量控制模式,是利用在滿足臨界膨脹條件P1/P2≧約2(氬氣的情況)時流量是由上游壓力P1決定的原理來進行流量控制。在滿足臨界膨脹條件時,節流部2的下游側之流量Q是由Q=K1 ・P1(在此,K1 是取決於流體種類和流體溫度之常數)得出,流量Q與上游壓力P1成正比。此外,當具備第2壓力感測器4的情況,縱使上游壓力P1和下游壓力P2之差較小而不滿足上述臨界膨脹條件的情況,流量仍可藉由運算求出,根據藉由第1壓力感測器3及第2壓力感測器4所測定之上游壓力P1及下游壓力P2,依Q=K2 ・P2m (P1-P2)n (在此,K2 是取決於流體種類和流體溫度之常數,m、n是以實際流量為基礎所導出的指數)可求出流量Q。
在通常的流量控制模式,若從外部控制裝置等對控制迴路7發送設定流量信號,控制迴路7是根據第1壓力感測器3的輸出等,利用臨界膨脹條件或非臨界膨脹條件的流量計算式,依上述的Q=K1 ・P1或 Q=K2 ・P2m (P1-P2)n 運算流量。而且,以使通過節流部2之流體的流量接近設定流量的方式(亦即,以使運算流量和設定流量的差接近0的方式)將第1控制閥6進行反饋控制。運算流量,例如能以控制流量輸出值的形式在顯示裝置顯示。
本實施形態的流量控制裝置100,在從流量零的狀態往任意的超過零之第1流量進行流量上升時,可如以下所說明般進行流量控制。
圖2顯示,藉由本實施形態的流量控制方法進行流量上升時之(a)設定流量、(b)控制流量、(c)上游壓力P1、(d)第1控制閥6(也稱為第1閥)的驅動電壓、(e)常開型時之第2控制閥8(也稱為第2閥)的驅動電壓、(f)常閉型時之第2控制閥8的驅動電壓的各個之曲線圖。
在圖2(d),顯示第1控制閥6為常閉型(NC)時的驅動電壓。另一方面,在圖2(e)及(f),顯示第2控制閥8為常開型(NO)時、常閉型(NC)時之驅動電壓。第1控制閥6,驅動電壓越低則閥開度越小,在驅動電壓0之電壓無施加時成為完全地閉閥(CLOSE)。另一方面,常開型的第2控制閥8,驅動電壓越高則閥開度越小,在驅動電壓最大時成為全閉(CLOSE)的狀態,在驅動電壓0(電壓無施加)時成為全開(OPEN)的狀態。此外,常閉型的第2控制閥8,驅動電壓越低則閥開度越小,在驅動電壓0(電壓無施加)時成為完全地閉閥(CLOSE),在驅動電壓最大時成為全開(OPEN)的狀態。
此外,在圖2雖顯示將設定流量從0%往10%上升時的例子,但並不限定於此。但上升後的目標設定流量較大的情況,將第1控制閥6開啟後從一次側供給的壓力比殘留壓力更高,而難以發生過衝。因此,本實施形態的流量控制方法,特別是從0%往低設定流量(例如50%以下,典型為20%以下,特定為10%左右)上升時可適當地利用。
以下,設定流量、目標流量等的流量值,都是以額定流量值為100%的比率來表示。此外,臨界膨脹條件成立時,可將流量和上游壓力P1成正比納入考慮,有將流量值100%時之上游壓力設為100%而將上游壓力也用比率表示的情況。
首先,流量設定為0%,當氣體供給停止時,第1控制閥6及第2控制閥8完全地閉鎖(CLOSE)。但在氣體供給的停止之前,當以所期望流量讓氣體流過的情況,縱使在將第1控制閥6及第2控制閥8閉鎖後,在第1控制閥6和第2控制閥8間的流路內仍會有壓力殘留。在圖示的例子顯示,以100%流量讓氣體流過後將第1控制閥6及第2控制閥8閉鎖的狀態,在流量0時仍殘留之上游壓力P1值,在本實施例為較高的300kPa(abs)。
接下來,在圖2所示的時刻t0,從流量0%的狀態往流量10%的上升開始進行。這時,在時刻t0,如圖2(d)所示般,第1控制閥6維持完全閉鎖的狀態(CLOSE)。
另一方面,在時刻t0,如圖2(e)、(f)所示般,第2控制閥8開啟,開始進行將其開度調節的動作。
在時刻t0之後的狀態,沒有透過第1控制閥6之來自上游側的氣體流入,且第2控制閥8被開啟,在第1控制閥6和節流部2間的殘留氣體,更詳細的說是第1控制閥6和第2控制閥8間的殘留氣體,透過第2控制閥8而流出。又在此,流量控制裝置100的下游側是被真空抽吸,使下游側維持於真空壓力。
這時,殘留氣體及殘留壓力,當未進行第2控制閥8的開度調整的情況,會隨著流出時間而呈指數函數地持續減少,流量也同樣地降低。因此,為了以10%流量維持恆定地流出,必須進行第2控制閥8的開度調整。
於是,為了繼續維持10%流量,在本實施形態切換成衰減控制模式,以根據第1壓力感測器3的輸出使ΔP1/Δt與對應於10%設定的值一致之方式將第2控制閥8進行反饋控制。在此,ΔP1/Δt是第1壓力感測器3所輸出的上游壓力P1的變化ΔP1和上游壓力P1的變化ΔP1所需的時間Δt之比,是對應於上游壓力P1對於時間的下降率(以下也稱為壓力變化率)或對應於壓力下降的斜率。
這是因為,在第1控制閥6關閉的狀態下,在第2控制閥8的下游側流動之氣體的流量能用Q= α・(ΔP1/Δt)・V表示(其中,α為比例常數,V為第1控制閥6和第2控制閥8之間的內容積),只要ΔP1/Δt為一定,在第2控制閥8的下游側之流量也維持一定。又如上述般,當第2控制閥8和節流部2是以孔口內設閥的形式一體地設置的情況,上述內容積V可視為大致等同於從第1控制閥6到節流部2之流路容積。內容積V可根據第1控制閥6的下游側之流路的直徑等而事先求出。此外,內容積V也能如此般求出,自將第1控制閥6關閉而將其下游側維持於真空壓力的狀態,將第1控制閥6開啟並將第2控制閥8關閉,測定在容積V的空間以已知的基準流量讓氣體流入時的壓力上昇率(ΔP1/Δt),利用壓力上昇率法經由計算而求出(例如揭示於專利文獻5)。
根據ΔP1/Δt的測定結果求出流量Q之所謂衰減方式(例如揭示於專利文獻6),典型上,是測定在下游側維持於真空壓力等的低壓之狀態下將上游側的閥關閉後的流出氣體之ΔP1/Δt,藉此求出流量的方式。更具體的說,例如專利文獻6所記載般,可依Q=(1000/760)×60×(273/(273+T))×V×(ΔP/Δt)求出流量。在此,T為氣體溫度(℃),V為上述內容積(l),ΔP為壓力下降的大小(Torr),Δt為ΔP的壓力下降所需的時間(sec)。
在本實施形態也是,根據公知的衰減方式求出與所期望流量(亦即,流量上升後的目標流量,在此是10%流量)對應之ΔP1/Δt,以能實現所求出之ΔP1/Δt的方式,根據第1壓力感測器3的輸出將第2控制閥8的開度進行反饋控制,能以所期望的一定流量讓殘留氣體在第2控制閥8的下游側持續流動。又依上述式可知,氣體溫度T也會使流量改變,因此如果也使用測定氣體溫度T之溫度感測器5的輸出來進行ΔP1/Δt的控制,能以更加提高的精度進行流量控制。
將上述衰減方式的流量控制運用於第2控制閥8的情況,隨著第2控制閥8在時刻t0後逐漸開啟,控制流量從零增加,縱使在ΔP1/Δt到達與10%流量對應的值之時刻t1後,將ΔP1/Δt維持於一定值的控制仍繼續進行。該衰減流量控制期間中,第1控制閥6維持於關閉狀態,另一方面,第2控制閥8,是根據第1壓力感測器3的輸出以使ΔP1/Δt維持於一定值的方式藉由反饋控制持續調整開度。
在衰減方式的流量控制持續進行中,殘留氣體隨著上游壓力P1的直線降低而以一定流量流出。而且,若將第1壓力感測器3的輸出值降低到與在使用第1控制閥6之通常流量控制模式之10%流量對應的上游壓力(在此為30kPa(abs))時設定為時刻t2,在本實施形態,是在時刻t2將第1控制閥6以對應於10%流量的開度(從第1控制閥6到節流部2之內容積的壓力控制成30kPa(abs)的開度)開啟。如此,從第1控制閥6的上游使氣體流入,縱使在時刻t2之後,在節流部2及第2控制閥8的下游仍能以10%流量讓氣體持續流動。又在時刻t2之後,第2控制閥8是維持全開的狀態(OPEN),或是維持以至少節流部2之開口面積以上的開度開啟的狀態。
如以上所說明般,在本實施形態,是使用第2控制閥8進行根據ΔP1/Δt的測定之流量控制(衰減流量控制),在流量上升時轉移到衰減流量控制模式,然後,在到達既定壓力的時點,切換成使用第1控制閥6之通常流量控制模式而進行動作。
但為了進行衰減流量控制模式,殘留壓力必須大到某個程度。這是因為,當殘留壓力過低時,無法將ΔP1/Δt控制成符合所期望流量的值。此外,在上升後的目標流量較大時也是,為了進行衰減流量控制會有殘留壓力不足的情況。
在此情況,例如在轉移到衰減流量控制模式之前,可將第1控制閥6開啟而使殘留壓力增加。更具體的說,在轉移到衰減流量控制模式之前,首先在將第1控制閥6和第2控制閥8閉鎖的狀態下根據壓力感測器3的輸出求出在第1控制閥的下游殘留的壓力,當所求出的壓力比相當於目標流量之壓力低的情況,將第1控制閥6開啟直到在第1控制閥6的下游殘留之壓力比相當於目標流量的壓力更高為止。接著,只要在壓力感測器3的輸出超過相當於目標流量的壓力之時點將第1控制閥6關閉,就能在轉移到衰減流量控制模式之前獲得充分的殘留壓力。
又上述般殘留壓力低的情況、上升後的目標流量大的情況,殘留壓力所致之開閥時的過衝應難以發生。因此,可事先設定用於轉移到衰減流量控制模式之殘留壓力的閾值或目標流量的閾值,當未到達閾值的情況,不轉移到衰減流量控制模式,而轉移到通常的流量控制模式,亦即將第1控制閥6根據壓力感測器3的輸出進行開度調整之流量控制模式。這時,只要將第2控制閥8控制成,與第1控制閥6的開啟動作連動而以全開或節流部2的開口面積以上的開度開啟即可。
此外,本發明的其他態樣,可在轉移到衰減流量控制模式之前,進行將第2控制閥8迅速開啟到一定開度的動作。在此情況,可事先在記憶裝置等儲存殘留壓力及目標流量和閥開度的關聯表,使用該關聯表控制第2控制閥8的動作。當使用關聯表的情況,首先使第2控制閥8的開度接近依據關聯表的開度附近,再從該開度起進行根據壓力感測器3的輸出將ΔP1/Δt維持一定的反饋控制。
作為在上述關聯表所儲存的項目,可考慮氣體種類、殘留壓力、控制流量等之複數個參數。在此情況,可準備與各個參數對應之關聯表,也能準備基準表,當例如氣體種類不同的情況,設置對應於氣體種類的修正係數而涵蓋氣體種類的不同,將基準表修正後做使用。或是,縱使在使用未修正的基準表的情況,因為能使第2控制閥8以一定程度接近所期望開度,可使第2控制閥8的響應性提高並減少控制負荷。
依據以上所說明之本實施形態的流量控制方法,如圖2(b)所示般,可將控制流量在時刻t0~t1之短期間(例如0.1秒)急速上升,此外,因為將第1控制閥6保持關閉而利用殘留壓力讓氣體流動,縱使在往低設定流量上升時仍難以發生壓力超過,可防止過衝的發生。此外,藉由進行第2控制閥8的開度調整,能以上升後的流量穩定地讓氣體持續流動,再者,當殘留氣體降低到既定壓力之後,可藉由將第1控制閥6開啟而以所期望流量讓氣體持續流動。
以下,針對本實施形態的流量控制方法之例示的流程圖,使用圖3做說明。又在該流程圖,是以執行衰減流量控制模式為前提。
如圖3之步驟S1所示般,首先,在0%設定時,在將第1控制閥6(第1閥)及第2控制閥8(第2閥)閉鎖的狀態下,利用壓力感測器3測定兩閥閉鎖時的上游壓力P1、亦即殘留壓力。
接下來,如步驟S2所示般,判定所測定的上游壓力P1是否為閾值Pth以上。當上游壓力P1為閾值Pth以上的情況(是),轉移到步驟S4的衰減流量控制模式。另一方面,當上游壓力P1未達閾值的情況(否),像步驟S3-1那樣直到上游壓力P1成為閾值以上為止進行將第1控制閥6開啟的動作,然後像步驟S3-2那樣將第1控制閥6關閉。
又在其他態樣,在步驟S2,當所測定的上游壓力P1未達閾值Pth的情況,亦可不轉移到衰減流量控制模式,而如步驟S6所示般直接轉移到:將第1控制閥6開啟並根據壓力感測器的輸出控制其開度、即通常的流量控制模式。
當上游壓力P1非常大的情況,轉移到衰減流量控制模式而進行從流量0%往10%上升的動作。具體而言,一邊持續將第1控制閥6閉鎖的狀態,一邊將第2控制閥8開啟,將第1控制閥6和第2控制閥8(或節流部2)之間的流路容積設為容積V,而進行依Q=α・(ΔP1/Δt)・V之流量控制,亦即如步驟S4所示般,以使ΔP1/Δt維持既定值(對應於10%流量的值)的方式將第2控制閥8的開度根據壓力感測器3的輸出進行調整控制。
此外,如步驟S5所示般,監視第1壓力感測器3的輸出,判定第1壓力感測器3所輸出之上游壓力P1是否到達既定值,更具體的說,判定是否到達依Q=K1 ・P1的流量控制之與10%流量對應的既定值。當判斷未到達既定值的情況(否),返回步驟S4而繼續進行第2控制閥8的開度控制,繼續以10%流量讓氣體流動的衰減控制模式。
在步驟S5,當判定第1壓力感測器3的輸出到達既定值時(是),進行控制的切換,如步驟S6所示般,將第1控制閥6以對應於10%流量的開度開啟,並將第2控制閥8全開或以節流部2的開度以上開啟。如此,切換成通常的流量控制模式。然後,第1控制閥6是根據第1壓力感測器3的輸出進行反饋控制,藉由依Q=K1 ・P1的流量控制以10%流量讓氣體持續流動。
以上雖是說明本發明的實施形態,但可進行種種的改變。例如,以上雖是說明在流量上升開始後將第1控制閥6維持閉鎖狀態的態樣,但並不限定於此。亦可在流量上升開始後的衰減流量控制模式,將第1控制閥6開啟成比對應於目標流量的開度更小的一定開度(例如,對應於5%設定流量的開度)的狀態,使以未達目標流量的流量讓氣體流入的狀態持續。在此情況也是,只要根據第1壓力感測器3的輸出,以ΔP1/Δt維持既定值的方式調整第2控制閥8的開度,就能在第2控制閥8的下游側以目標流量讓流體流動。此外,如果將第1控制閥6在衰減流量控制中也稍微開啟,在時刻t2切換成通常的流量控制模式時,可更迅速將第1控制閥6開啟成所期望的開度,而使流量控制的穩定性提高。
但在衰減方式所使用的流量式,典型上,是以上游側的閥(第1控制閥6)閉鎖為前提的式子,當變成將上游側開啟而使流體流到容積V之一部分的狀態時,若採用原封不動的流量式,流量控制可能無法適切地進行。然而,如果從上游流到容積V的流量已知,應可將流量式修正做使用。因此,當流入量已知時,可視為實質上與上游側的閥閉鎖時相同的狀況。
此外,以上雖是說明,流量上升時,在步驟S1,在將第1控制閥6及第2控制閥8雙方關閉的狀態測定上游壓力P1的態樣,但並不限定於此。只要在流量即將上升之流量零時將第2控制閥8關閉即可,第1控制閥6可關閉成,比根據壓力感測器3的輸出以成為第1流量的方式控制第1控制閥6的開度時之開度更小的開度,而成為稍微開啟的狀態。在此情況,因為第1控制閥6開啟且第2控制閥8關閉,壓力感測器3的測定壓力會增加,只要在最初測定的壓力為閾值以上時,或是所增加的測定壓力到達閾值以上時,將第2控制閥8開啟而進行上述衰減流量控制即可。此外,上述般第1控制閥6稍微開啟的狀態,在衰減流量控制中持續亦可。
此外,以上,雖是說明將第1控制閥6、第2控制閥8成為全開的時點設定為設定流量100%的例子,但不一定要這樣做,也能將不是全開之一定開度的狀態設定為100%。而且,在上述實施例中,在設定流量100%之上游壓力P1為300kPa(abs),在設定流量10%之上游壓力P1為30kPa(abs),但並不限定於此,依所設定的流量、流量範圍、流體種類等,上游壓力P1會成為各種的數值,這是當然的。 [產業利用性]
本發明的實施形態之流量控制方法及流量控制裝置,在半導體製造過程中供給材料氣體等時,特別是從流量零進行上升時可適當地利用。
1‧‧‧流路 2‧‧‧節流部 3‧‧‧第1壓力感測器 4‧‧‧第2壓力感測器 5‧‧‧溫度感測器 6‧‧‧第1控制閥 7‧‧‧控制迴路 8‧‧‧第2控制閥 9‧‧‧孔口內設閥 100‧‧‧流量控制裝置 G0、G1‧‧‧氣體 P1‧‧‧上游壓力 P2‧‧‧下游壓力 T‧‧‧氣體溫度
圖1係顯示本發明的實施形態之流量控制裝置的構造之示意圖。 圖2係本發明的實施形態之流量下降(step-down)時之流量控制方法的說明圖,(a)顯示設定流量的曲線圖,(b)顯示控制流量的曲線圖,(c)顯示上游壓力P1的曲線圖,(d)顯示第1控制閥驅動電壓的曲線圖,(e)及(f)顯示第2控制閥驅動電壓的曲線圖。 圖3係顯示本發明的實施形態之流量控制方法的流程圖。
1‧‧‧流路
2‧‧‧節流部
3‧‧‧第1壓力感測器
4‧‧‧第2壓力感測器
5‧‧‧溫度感測器
6‧‧‧第1控制閥
7‧‧‧控制迴路
8‧‧‧第2控制閥
9‧‧‧孔口內設閥
100‧‧‧流量控制裝置
G0、G1‧‧‧氣體
P1‧‧‧上游壓力
P2‧‧‧下游壓力
T‧‧‧氣體溫度

Claims (17)

  1. 一種流量控制方法,係使用流量控制裝置從流量零往第1流量將流量上升時所進行的流量控制方法, 前述流量控制裝置係具備:設置於流路之第1控制閥、設置於前述第1控制閥的下游側之第2控制閥、及測定前述第1控制閥的下游側且前述第2控制閥的上游側的流體壓力之壓力感測器, 該流量控制方法包含步驟(a)及步驟(b), 前述步驟(a),是在將前述第2控制閥閉鎖的狀態下,根據前述壓力感測器的輸出求出在前述第1控制閥的下游殘留的壓力, 前述步驟(b),是根據前述壓力感測器的輸出調整前述第2控制閥的開度,藉此控制在前述第1控制閥的下游殘留的壓力,而在前述第2控制閥的下游側以前述第1流量讓流體流動。
  2. 如請求項1所述之流量控制方法,其中, 在前述步驟(a),是在將前述第1控制閥和前述第2控制閥雙方閉鎖的狀態下求出前述殘留的壓力。
  3. 如請求項2所述之流量控制方法, 進一步包含以下步驟: 當在前述步驟(a)根據前述壓力感測器的輸出所求出的壓力比相當於前述第1流量的壓力更低的情況,直到在前述第1控制閥的下游所殘留的壓力比相當於前述第1流量的壓力變得更高為止將前述第1控制閥開啟,在超過相當於前述第1流量的壓力的時點將前述第1控制閥關閉。
  4. 如請求項1所述之流量控制方法,其中, 在前述步驟(a),前述第1控制閥被控制成,比根據前述壓力感測器的輸出以成為前述第1流量的方式控制前述第1控制閥的開度時的開度更小的開度,當根據前述壓力感測器的輸出所求出的壓力為閾值以上時,將前述第2控制閥開啟而進行前述步驟(b)。
  5. 如請求項1至4中任一項所述之流量控制方法,其中, 在前述步驟(b),當將α設為比例常數,將ΔP1/Δt設為前述壓力感測器所輸出的上游壓力之變化ΔP1和前述上游壓力的變化ΔP1所需的時間Δt之比、即壓力變化率,將V設為前述第1控制閥和前述第2控制閥之間的內容積時,以用
    Figure 03_image001
    表示的衰減流量Q與前述第1流量一致的方式,根據前述壓力感測器所輸出的信號控制前述第2控制閥的開度。
  6. 如請求項1至4中任一項所述之流量控制方法, 進一步包含步驟(c),其是在進行前述步驟(b)後,當前述壓力感測器的輸出降低到既定值的時點,根據前述壓力感測器的輸出控制前述第1控制閥的開度而以前述第1流量在下游讓流體流動。
  7. 一種流量控制裝置,係具備第1控制閥、第2控制閥、壓力感測器及控制迴路, 前述第1控制閥是設置於流路,前述第2控制閥是設置於前述第1控制閥的下游側,前述壓力感測器是測定前述第1控制閥的下游側且前述第2控制閥的上游側之流體壓力,前述控制迴路,是控制前述第1控制閥及前述第2控制閥的動作,且構成為根據前述壓力感測器所輸出的信號控制前述第1控制閥及第2控制閥而藉此控制流量, 當從流量零往第1流量將流量上升時,前述控制迴路執行步驟(a)及步驟(b), 前述步驟(a),是在將前述第2控制閥閉鎖的狀態下,根據前述壓力感測器的輸出求出在第1控制閥的下游所殘留的壓力, 前述步驟(b),是根據前述壓力感測器的輸出,藉由調整前述第2控制閥的開度來控制在第1控制閥的下游所殘留的壓力,而在前述第2控制閥的下游側以第1流量讓流體流動。
  8. 如請求項7所述之流量控制裝置, 進一步具備:設置在前述第2控制閥的下游側之其他的壓力感測器。
  9. 一種流量控制裝置,係具備:設置於流路之第1控制閥、設置於前述第1控制閥的下游側之第2控制閥、以及測定前述第1控制閥的下游側且前述第2控制閥的上游側的流體壓力之壓力感測器,且根據前述壓力感測器所輸出的信號控制下游側的流量, 在從流量零的狀態往第1流量控制流量時,從前述第2控制閥被閉鎖且流量零的狀態,根據前述壓力感測器的輸出控制前述第2控制閥的開度,以使在前述第1控制閥的下游所殘留之壓力的變化率與從前述第2控制閥流出時的流量成為前述第1流量時之壓力的變化率一致的方式,控制前述第2控制閥的開度。
  10. 如請求項9所述之流量控制裝置,其中, 在從前述流量零的狀態往前述第1流量控制流量時,前述第1控制閥是閉鎖的。
  11. 如請求項9所述之流量控制裝置,其中, 在從前述流量零的狀態往前述第1流量控制流量時,前述第1控制閥被控制成比與前述第1流量對應的開度更小的開度。
  12. 如請求項9至11中任一項所述之流量控制裝置,其中, 前述第2控制閥的開度,當將α設為比例常數,將ΔP1/Δt設為前述壓力感測器所輸出之上游壓力的變化ΔP1和前述上游壓力的變化ΔP1所需的時間Δt之比、即壓力變化率,將V設為前述第1控制閥和前述第2控制閥之間的內容積時,以用
    Figure 03_image003
    表示的衰減流量Q與前述第1流量一致的方式,根據前述壓力感測器所輸出的信號進行反饋控制。
  13. 如請求項9至11中任一項所述之流量控制裝置, 進一步具備:設置於前述第2控制閥的下游側之其他的壓力感測器。
  14. 一種流量控制裝置,係具備:設置於流路之第1控制閥、設置於前述第1控制閥的下游側之第2控制閥、以及測定前述第1控制閥的下游側且前述第2控制閥的上游側的流體壓力、即上游壓力之第1壓力感測器,且根據前述第1壓力感測器所輸出的信號控制下游側的流量, 在從流量零往第1流量控制流量時,是使用在前述第1控制閥下游所殘留的壓力,依Q=α・(ΔP1/Δt)・V控制流量, 在前述第1壓力感測器的壓力到達既定壓力的時點,切換成依Q=K1 ・P1的控制; 在此,Q為流量,α為比例常數,ΔP1/Δt為前述上游壓力的壓力變化率,V為前述第1控制閥和前述第2控制閥之間的內容積,K1 為取決於流體種類和流體溫度之常數,P1為前述第1壓力感測器所輸出之上游壓力。
  15. 如請求項14所述之流量控制裝置,其中, 在前述第1壓力感測器的壓力到達依Q=K1 ・P1的控制中之相當於前述第1流量的壓力的時點,將控制切換。
  16. 一種流量控制裝置,係具備:設置於流路之第1控制閥、設置於前述第1控制閥的下游側之第2控制閥、測定前述第1控制閥的下游側且前述第2控制閥的上游側之流體壓力、即上游壓力之第1壓力感測器、以及測定前述第2控制閥的下游側之流體壓力、即下游壓力之第2壓力感測器,且根據前述第1壓力感測器及第2壓力感測器所輸出的信號控制下游側的流量, 在從流量零往第1流量控制流量時,使用在前述第1控制閥下游所殘留的壓力,依Q=α・(ΔP1/Δt)・V控制流量, 在前述第1壓力感測器及前述第2壓力感測器的壓力到達既定壓力的時點,切換成依Q=K2 ・P2m (P1-P2)n 的控制, 在此,Q為流量,α為比例常數,ΔP1/Δt為前述第1壓力感測器所輸出之上游壓力的壓力變化率,V為前述第1控制閥和前述第2控制閥之間的內容積,K2 為取決於流體種類和流體溫度之常數,P1為前述上游壓力,P2為前述第2壓力感測器所輸出之下游壓力,m及n為以實際流量為基礎所導出的指數。
  17. 如請求項16所述之流量控制裝置,其中, 在前述第1及第2壓力感測器的壓力到達依Q= K2 ・P2m (P1-P2)n 的控制中之相當於前述第1流量的壓力的時點,將控制切換。
TW108122043A 2018-06-26 2019-06-25 流量控制方法及流量控制裝置 TWI719513B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-120719 2018-06-26
JP2018120719 2018-06-26

Publications (2)

Publication Number Publication Date
TW202006490A true TW202006490A (zh) 2020-02-01
TWI719513B TWI719513B (zh) 2021-02-21

Family

ID=68987128

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108122043A TWI719513B (zh) 2018-06-26 2019-06-25 流量控制方法及流量控制裝置

Country Status (6)

Country Link
US (1) US11216016B2 (zh)
JP (1) JP7369456B2 (zh)
KR (1) KR102421587B1 (zh)
CN (1) CN112272809A (zh)
TW (1) TWI719513B (zh)
WO (1) WO2020004183A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11326921B2 (en) * 2017-02-10 2022-05-10 Fujikin Incorporated Flow rate measuring method and flow rate measuring device
US11269362B2 (en) * 2018-04-27 2022-03-08 Fujikin Incorporated Flow rate control method and flow rate control device
JP7369456B2 (ja) * 2018-06-26 2023-10-26 株式会社フジキン 流量制御方法および流量制御装置
WO2021176864A1 (ja) * 2020-03-05 2021-09-10 株式会社フジキン 流量制御装置および流量制御方法
JP7122335B2 (ja) * 2020-03-30 2022-08-19 Ckd株式会社 パルスショット式流量調整装置、パルスショット式流量調整方法、及び、プログラム
JP2022029854A (ja) * 2020-08-05 2022-02-18 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御プログラム
JP2023080611A (ja) * 2021-11-30 2023-06-09 株式会社堀場エステック 流量制御装置、流量制御方法、及び、流量制御装置用プログラム
CN117686042B (zh) * 2024-02-02 2024-05-24 成都秦川物联网科技股份有限公司 一种物联网超声波水表阀控联动方法、系统及设备

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933936B1 (zh) 1970-02-20 1974-09-11
JP3792915B2 (ja) * 1998-11-02 2006-07-05 株式会社東芝 ガスタ−ビン制御装置
US6782906B2 (en) * 2000-12-28 2004-08-31 Young-Chul Chang Time based mass flow controller and method for controlling flow rate using it
JP2002341947A (ja) * 2001-05-21 2002-11-29 Mitsubishi Heavy Ind Ltd 圧力流量制御装置
WO2003034169A1 (fr) * 2001-10-18 2003-04-24 Ckd Corporation Regulateur de debit par emission d'impulsions et procede de regulation de debit par emissions d'impulsions
JP2007058352A (ja) * 2005-08-22 2007-03-08 Asahi Organic Chem Ind Co Ltd 流体制御装置
JP4743763B2 (ja) 2006-01-18 2011-08-10 株式会社フジキン 圧電素子駆動式金属ダイヤフラム型制御弁
JP4820698B2 (ja) * 2006-07-03 2011-11-24 株式会社フジキン 圧力式流量制御装置の絞り機構下流側バルブの作動異常検出方法
JP4933936B2 (ja) 2007-03-30 2012-05-16 株式会社フジキン 圧電素子駆動式制御弁
TWI376581B (en) * 2007-06-05 2012-11-11 Ckd Corp Vacuum pressure control system
WO2009091935A1 (en) * 2008-01-18 2009-07-23 Pivotal Systems Corporation Method and apparatus for in situ testing of gas flow controllers
TWI435196B (zh) * 2009-10-15 2014-04-21 Pivotal Systems Corp 氣體流量控制方法及裝置
JP2012060104A (ja) * 2010-08-11 2012-03-22 Toshiba Corp 電源制御装置、プラズマ処理装置、及びプラズマ処理方法
US8997686B2 (en) * 2010-09-29 2015-04-07 Mks Instruments, Inc. System for and method of fast pulse gas delivery
US9348339B2 (en) * 2010-09-29 2016-05-24 Mks Instruments, Inc. Method and apparatus for multiple-channel pulse gas delivery system
JP5848980B2 (ja) * 2012-02-09 2016-01-27 日立オートモティブシステムズ株式会社 ブレーキ装置
JP5960614B2 (ja) * 2012-03-29 2016-08-02 Ckd株式会社 流体制御システム、流体制御方法
JP5665793B2 (ja) * 2012-04-26 2015-02-04 株式会社フジキン 可変オリフィス型圧力制御式流量制御器
KR101737373B1 (ko) 2012-05-31 2017-05-18 가부시키가이샤 후지킨 빌드다운 방식 유량 모니터 장착 유량 제어 장치
FR2994455B1 (fr) * 2012-08-10 2014-09-05 Faurecia Sys Echappement Ensemble de fourniture d'un flux dose de gaz, procede associe, ligne d'echappement de vehicule equipee d'un tel ensemble
US10031005B2 (en) * 2012-09-25 2018-07-24 Mks Instruments, Inc. Method and apparatus for self verification of pressure-based mass flow controllers
JP5797246B2 (ja) * 2013-10-28 2015-10-21 株式会社フジキン 流量計及びそれを備えた流量制御装置
JP6321972B2 (ja) 2014-01-21 2018-05-09 株式会社フジキン 圧力式流量制御装置及びその流量制御開始時のオーバーシュート防止方法
JP6512959B2 (ja) * 2015-06-19 2019-05-15 東京エレクトロン株式会社 ガス供給系、ガス供給制御方法、及びガス置換方法
WO2017110066A1 (ja) * 2015-12-25 2017-06-29 株式会社フジキン 流量制御装置および流量制御装置を用いる異常検知方法
JP6795832B2 (ja) 2016-07-05 2020-12-02 株式会社フジキン 流量制御機器、流量制御機器の流量校正方法、流量測定機器および流量測定機器を用いた流量測定方法
JP6786096B2 (ja) * 2016-07-28 2020-11-18 株式会社フジキン 圧力式流量制御装置
KR102188285B1 (ko) 2016-07-29 2020-12-08 가부시키가이샤 후지킨 오리피스 내장 밸브 및 압력식 유량 제어 장치
JP6818357B2 (ja) * 2016-11-28 2021-01-20 株式会社フジキン 圧電駆動式バルブおよび流量制御装置
US10031004B2 (en) * 2016-12-15 2018-07-24 Mks Instruments, Inc. Methods and apparatus for wide range mass flow verification
JP7107648B2 (ja) * 2017-07-11 2022-07-27 株式会社堀場エステック 流体制御装置、流体制御システム、流体制御方法、及び、流体制御装置用プログラム
KR102314330B1 (ko) * 2017-11-30 2021-10-19 가부시키가이샤 후지킨 유량 제어 장치
CN108121370B (zh) * 2017-12-23 2020-06-02 东北大学 一种真空环境气体流量的测控方法及测控系统
US11269362B2 (en) * 2018-04-27 2022-03-08 Fujikin Incorporated Flow rate control method and flow rate control device
JP7369456B2 (ja) * 2018-06-26 2023-10-26 株式会社フジキン 流量制御方法および流量制御装置
KR102667577B1 (ko) * 2019-08-05 2024-05-22 아이커 시스템즈, 인크. 층류 제한기

Also Published As

Publication number Publication date
KR102421587B1 (ko) 2022-07-15
KR20200093031A (ko) 2020-08-04
TWI719513B (zh) 2021-02-21
US20210240208A1 (en) 2021-08-05
JP7369456B2 (ja) 2023-10-26
WO2020004183A1 (ja) 2020-01-02
US11216016B2 (en) 2022-01-04
JPWO2020004183A1 (ja) 2021-07-08
CN112272809A (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
TW202006490A (zh) 流量控制方法及流量控制裝置
TWI698603B (zh) 流量控制方法及流量控制裝置
KR102250967B1 (ko) 압력식 유량 제어 장치 및 유량 제어 방법
TWI709013B (zh) 流量控制裝置及流量控制方法
TWI524054B (zh) Flow meter and flow control device with the flowmeter
JP7197897B2 (ja) コントロール弁のシートリーク検知方法
TW201506568A (zh) 具流量監測器之流量控制裝置
WO2018021327A1 (ja) 圧力式流量制御装置
KR20220017838A (ko) 유량 제어 장치, 유량 제어 방법, 및 유량 제어 프로그램이 기록된 프로그램 기록 매체
JP7495732B2 (ja) 流量制御装置
US12098940B2 (en) Pressure control system, pressure control method, and pressure control program
JP7538535B2 (ja) 流量制御装置および流量制御方法
TWI770792B (zh) 流量控制裝置以及流量控制方法
JP7232506B2 (ja) 流量圧力制御装置
JP7051211B2 (ja) 流体制御装置、制御プログラム及び流体制御システム
KR20240137654A (ko) 유량 제어 장치의 배기 구조, 배기 방법 및 그것을 구비한 가스 공급 시스템 및 가스 공급 방법