TW201933753A - Inverter device, roll-to-roll conveying system, and motor control system capable of providing pulse signals of different frequencies to application block - Google Patents

Inverter device, roll-to-roll conveying system, and motor control system capable of providing pulse signals of different frequencies to application block Download PDF

Info

Publication number
TW201933753A
TW201933753A TW107146082A TW107146082A TW201933753A TW 201933753 A TW201933753 A TW 201933753A TW 107146082 A TW107146082 A TW 107146082A TW 107146082 A TW107146082 A TW 107146082A TW 201933753 A TW201933753 A TW 201933753A
Authority
TW
Taiwan
Prior art keywords
inverter device
pulse
motor
frequency
output pulse
Prior art date
Application number
TW107146082A
Other languages
Chinese (zh)
Other versions
TWI681619B (en
Inventor
長谷川諭伴
Original Assignee
日商住友重機械工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友重機械工業股份有限公司 filed Critical 日商住友重機械工業股份有限公司
Publication of TW201933753A publication Critical patent/TW201933753A/en
Application granted granted Critical
Publication of TWI681619B publication Critical patent/TWI681619B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F13/00Common details of rotary presses or machines
    • B41F13/02Conveying or guiding webs through presses or machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/04Tripping devices or stop-motions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/16Programming systems for automatic control of sequence of operations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Inverter Devices (AREA)

Abstract

The present invention provides a motor control system capable of providing pulse signals of different frequencies to the application block and an inverter device applied to the motor control system. The network (106) may connect the first inverter device (200A) with the second inverter device (200B). The first inverter device (200A) is configured for driving a first motor (102A) based on the first output pulse POUTA from the first encoder (104), transmitting the first rotating information DA to the second inverter device (200B) based on the first output pulse POUTA, and outputting the first frequency-division pulse PDIVA with a frequency lower than that of the first output pulse POUTA. The second inverter device (200B) is configure for driving a second motor (102B) based on the second output pulse POUTB from the second encoder (104) and outputting the second frequency-division pulse PDIVB with a frequency lower than that of the first output pulse POUTA from the first inverter device (200A) and represented by the first rotating information DA.

Description

逆變器裝置、卷對卷輸送系統、馬達控制系統Inverter device, roll-to-roll conveyor system, motor control system

本發明係關於一種逆變器裝置。The invention relates to an inverter device.

卷對卷輸送系統用於各種印刷系統,其中以凹版印刷機、塗佈機、層壓機為代表。卷對卷輸送系統係輸送紙/薄膜等長條物(卷狀物)者,並且具備一邊與卷狀物接觸一邊旋轉之旋轉體及驅動旋轉體之馬達或逆變器裝置。
(先前技術文獻)
(專利文獻)
專利文獻1:日本特開2013-132877號公報
Roll-to-roll conveying systems are used in various printing systems, including gravure printing machines, coaters, and laminators. The roll-to-roll conveying system is for conveying long objects (rolls) such as paper / film, and includes a rotating body that rotates while contacting the roll, and a motor or inverter device that drives the rotating body.
(Prior technical literature)
(Patent Literature)
Patent Document 1: Japanese Patent Application Publication No. 2013-132877

(本發明所欲解決之課題)
本發明係在該種狀況下完成者,其中一個態樣的例示性目的之一在於提供一種能夠向應用塊提供頻率不同之脈衝訊號的馬達控制系統及能夠用於馬達控制系統的逆變器裝置。

(用以解決課題之手段)
本發明的一個態樣係關於一種馬達控制系統。馬達控制系統具備:第1馬達;第2馬達;第1編碼器,監視第1馬達;第2編碼器,監視第2馬達;第1逆變器裝置,驅動第1馬達;第2逆變器裝置,驅動第2馬達;及網絡,連接第1逆變器裝置與第2逆變器裝置。第1逆變器裝置構成為能夠依據來自第1編碼器的第1輸出脈衝來驅動第1馬達,並且向第2逆變器裝置發送基於第1輸出脈衝之第1旋轉資訊,且輸送頻率低於第1輸出脈衝的第1分頻脈衝。第2逆變器裝置構成為能夠依據來自第2編碼器的第2輸出脈衝來驅動第2馬達,並且從第1逆變器裝置接收第1旋轉資訊,且輸送頻率低於由第1旋轉資訊表示之第1輸出脈衝的第2分頻脈衝。
在逆變器裝置構裝與其它逆變器裝置之間用於收發送旋轉資訊的介面,並利用構裝於其它逆變器裝置之分頻功能,藉此無需在逆變器裝置上追加外置的訊號分配器或分頻器,亦能夠生成分頻比不同之複數個分頻脈衝。
馬達控制系統還可以具備顯示器裝置,該顯示器裝置依據第1分頻脈衝及第2分頻脈衝中的至少一個來顯示第1馬達的旋轉資訊。
本發明的一個態樣係關於一種用於馬達控制系統之逆變器裝置。馬達控制系統具備:複數個馬達;複數個編碼器,與複數個馬達對應;複數個逆變器裝置,與複數個馬達對應;及網絡,連接複數個逆變器裝置。逆變器裝置具備:驅動部,依據來自所對應之編碼器的輸出脈衝來驅動所對應之馬達;介面,(i)在第1模式中向其它逆變器裝置發送基於輸出脈衝之旋轉資訊,(ii)在第2模式中從其它逆變器裝置接收旋轉資訊;及分頻單元,(i)在第1模式中根據輸出脈衝生成分頻脈衝,(ii)在第2模式中根據由介面接收之旋轉資訊生成分頻脈衝。
在逆變器裝置構裝與其它逆變器裝置之間用於收發送旋轉資訊的介面,並利用構裝於其它逆變器裝置之分頻功能,藉此無需在逆變器裝置追加外置的訊號分配器或分頻器,亦能夠生成複數個系統的脈衝訊號。
分頻單元的分頻比可以為可變的。藉此能夠與各種周邊裝置對應。
本發明的另一態樣係關於一種卷對卷輸送系統。卷對卷輸送系統具備複數個上述逆變器裝置。
另外,在方法、裝置、系統等之間相互替換以上的構成要件的任意組合或本發明的構成要件或表現者,亦作為本發明的態樣而有效。

(發明之效果)
依據本發明的一個態樣,能夠向應用塊提供頻率不同之脈衝訊號。
(Problems to be Solved by the Invention)
The present invention was completed under such circumstances. One of the exemplary objects of one aspect is to provide a motor control system capable of providing pulse signals with different frequencies to an application block and an inverter device capable of being used in the motor control system. .

(Means to solve problems)
One aspect of the present invention relates to a motor control system. The motor control system includes a first motor, a second motor, a first encoder that monitors the first motor, a second encoder that monitors the second motor, a first inverter device that drives the first motor, and a second inverter. And a network that connects the first inverter device and the second inverter device. The first inverter device is configured to be able to drive the first motor based on the first output pulse from the first encoder, and to send the first rotation information based on the first output pulse to the second inverter device, and the transmission frequency is low. The first frequency division pulse is the first output pulse. The second inverter device is configured to be able to drive the second motor based on the second output pulse from the second encoder, and to receive the first rotation information from the first inverter device, and the transmission frequency is lower than that from the first rotation information. Represents the second divided pulse of the first output pulse.
The interface between the inverter device structure and other inverter devices for receiving and sending rotation information, and the frequency division function built in other inverter devices is used, thereby eliminating the need for additional external devices on the inverter device. The placed signal divider or frequency divider can also generate multiple frequency division pulses with different frequency division ratios.
The motor control system may further include a display device that displays rotation information of the first motor based on at least one of the first frequency-divided pulse and the second frequency-divided pulse.
One aspect of the present invention relates to an inverter device for a motor control system. The motor control system includes: a plurality of motors; a plurality of encoders corresponding to the plurality of motors; a plurality of inverter devices corresponding to the plurality of motors; and a network to connect the plurality of inverter devices. The inverter device includes a drive unit that drives a corresponding motor according to an output pulse from a corresponding encoder; an interface, (i) sends rotation information based on the output pulse to other inverter devices in the first mode, (ii) receiving rotation information from other inverter devices in the second mode; and a frequency dividing unit, (i) generating a frequency dividing pulse based on the output pulse in the first mode, and (ii) according to the interface in the second mode The received rotation information generates a frequency division pulse.
Interface for receiving and sending rotation information between the inverter device structure and other inverter devices, and using the frequency division function built in other inverter devices, thereby eliminating the need for additional external devices in the inverter device The signal divider or frequency divider can also generate pulse signals for multiple systems.
The frequency division ratio of the frequency division unit may be variable. This allows correspondence with various peripheral devices.
Another aspect of the present invention relates to a roll-to-roll transport system. The roll-to-roll transport system includes a plurality of the inverter devices.
In addition, any combination of the above constituent elements, or constituent elements or performers of the present invention may be replaced with each other among methods, devices, systems, and the like, and are also effective as aspects of the present invention.

(Effect of the invention)
According to one aspect of the present invention, pulse signals with different frequencies can be provided to the application block.

以下,依據較佳的實施形態並參閱圖式的同時對本發明進行說明。將各圖式中所示之相同或相等的構成要件、構件、處理設為賦予相同符號者,適當省略重複之說明。又,實施形態為例示,而非限定發明者,並且實施形態中所記述之所有特徵或其組合並非限定發明的本質者。
圖1是馬達控制系統(Motor Controlled System)100R的方塊圖。馬達控制系統100R具備複數個馬達102、複數個編碼器104、網絡106、控制器108及複數個逆變器裝置130。
編碼器104生成所對應之馬達102的旋轉狀態、具體而言顯示位置資訊之脈衝訊號S1 。脈衝訊號S1 包括位相偏移1/4週期之A相脈衝及B相脈衝。
逆變器裝置130的驅動部132依據脈衝訊號S1 獲取馬達102的位置資訊,且反映於馬達102的驅動控制。
馬達控制系統100R連接有應用程序固有的控制塊(以下,稱為應用塊)300。應用塊300中,獲取馬達102的旋轉狀態,有時欲用於控制或顯示。應用塊300具備一個或複數個周邊裝置302。有時因周邊裝置(例如微電腦)302的介面的動作速度的限制而無法直接接收由編碼器104生成之脈衝訊號S1 來進行解碼。
為了解決該問題,在逆變器裝置130中設置分頻器134。分頻器134以適當的分頻比N分頻來自編碼器104的具有第1頻率f1 之脈衝訊號S1 ,並生成具有第2頻率f2 (f2 =f1 /N)之脈衝訊號S2 。在逆變器裝置130中構裝分頻器134的功能,藉此能夠緩和可追加到馬達控制系統100R的周邊裝置302的限制。
複數個周邊裝置302需要馬達102的旋轉資訊之情況下,並不限制於能夠由複數個周邊裝置302接收的脈衝訊號的頻率相同。例如周邊裝置302A設為能夠接收第2頻率的脈衝訊號S2 ,周邊裝置302B設為能夠接收第3頻率f3 (f3 <f2 )的脈衝訊號。該種情況下,藉由訊號分配器150將脈衝訊號S2 分支成2個系統,將其中一個供給到周邊裝置302A,將另一個供給到分頻器152。分頻器152以分頻比M分頻脈衝訊號S2 ,並生成第3頻率f3 (=f2 /M)的脈衝訊號S3 而供給到周邊裝置302B。
另外,圖1的馬達控制系統100R中,若增加周邊裝置302的數量,則訊號分配器150及分頻器152的個數增加,馬達控制系統100R的成本變高。該問題藉由以下說明之技術來解決。
圖2是表示實施形態之馬達控制系統100的基本構成之方塊圖。馬達控制系統100具備複數個馬達102、複數個編碼器104、網絡106、控制器108及複數個逆變器裝置200。圖2中,為了容易理解,僅表示與2個馬達102A、102B對應之2個系統,但是本發明中馬達的個數(系統的規模)並不限定於此,能夠擴張到3以上的任一數量。本說明書中,添加的A、B……表示系統的編號,通用為#或者*。
網絡106連接第1逆變器裝置200A與第2逆變器裝置200B。網絡106連接整體控制馬達控制系統100之控制器108。逆變器裝置200A、200B依據來自控制器108的控制指令來驅動馬達102A、102B。
第1編碼器104A、第2編碼器104B生成表示所對應之第1馬達102A、102B的旋轉狀態之輸出脈衝POUT A、POUT B。各輸出脈衝POUT 包括位相偏移1/4週期之A相脈衝及B相脈衝。例如輸出脈衝的計數表示轉子的位置,A相脈衝與B相脈衝的位相的關係表示旋轉方向。
第1逆變器裝置200A與第2逆變器裝置200B經由網絡106來連接。
第1逆變器裝置200A構成為能夠依據來自第1編碼器104A的第1輸出脈衝POUT A來驅動第1馬達102A,並且輸出頻率低於第1輸出脈衝POUT A的第1分頻脈衝PDIV A。
另外,第1逆變器裝置200A經由網絡106,能夠向第2逆變器裝置200B發送基於第1輸出脈衝POUT A之第1旋轉資訊DA。
另一方面,第2逆變器裝置200B依據來自第2編碼器104B的第2輸出脈衝POUT B來驅動第2馬達102B。又,逆變器裝置200B係構成為經由網絡106,能夠從逆變器裝置200A接收第1旋轉資訊DA,另外能夠輸出頻率低於由第1旋轉資訊DA表示之第1輸出脈衝POUT A的第2分頻脈衝PDIV B。
該例子中,第1分頻脈衝PDIV A的頻率係第1輸出脈衝POUT A的頻率的1/2,第2分頻脈衝PDIV B的頻率係第1輸出脈衝POUT A的頻率的1/4,但是各分頻比能夠依據各自的供給處的周邊裝置302A、302B的介面來任意設定。
周邊裝置302A依據第1分頻脈衝PDIV A來獲取第1馬達102A的旋轉資訊。周邊裝置302B依據第2分頻脈衝PDIV B來獲取第1馬達102A的旋轉資訊。周邊裝置302A、302B依據第1馬達102A的旋轉資訊能夠執行各種處理。例如周邊裝置302A、302B亦可以將第1馬達102A的旋轉資訊顯示於顯示器裝置304。
以上為馬達控制系統100的基本構成。藉由該馬達控制系統100,如圖1,不追加訊號分配器150或分頻器152,亦能夠生成頻率不同之複數個分頻脈衝。藉此,能夠減少系統整體的成本。
接著,對逆變器裝置200A、200B的構成例進行說明。
圖3是表示圖2的逆變器裝置200A、200B的構成例之方塊圖。
首先,對第1逆變器裝置200A進行說明。第1逆變器裝置200A具備驅動部202A、分頻單元204A及介面206A。驅動部202A依據來自所對應之第1編碼器104A的第1輸出脈衝POUT A來驅動所對應之第1馬達102A。
分頻單元204A生成具有第1輸出脈衝POUT A的1/NA 倍的頻率的第1分頻脈衝PDIV A。分頻比NA 可以為可變的。
介面206A接收來自控制器108的控制指令,並且能夠對第2逆變器裝置200B發送基於第1輸出脈衝POUT A之第1旋轉資訊DA。不易以脈衝列的形態經由網絡106將第1輸出脈衝POUT #傳送到其它逆變器裝置200B。因此,亦可以將第1輸出脈衝POUT A轉換成具有能夠由介面206發送的資料形式之第1旋轉資訊DA來發送。第1旋轉資訊DA例如能夠包括第1輸出脈衝POUT A的頻率資訊及包含於此之A相、B相脈衝的位相資訊。
接著,對第2逆變器裝置200B進行說明。第2逆變器裝置200B具備驅動部202B、分頻單元204B及介面206B。驅動部202B的功能與驅動部202A相同,依據來自所對應之編碼器104B的第2輸出脈衝POUT B來驅動所對應之第2馬達102B。
介面206B接收來自控制器108的控制指令,並且能夠從第1逆變器裝置200A接收第1旋轉資訊DA。
分頻單元204B依據第1旋轉資訊DA來生成具有第1輸出脈衝POUT A的1/NB 倍的頻率之第2分頻脈衝PDIV B。分頻比NB 可以為可變的。
將第1逆變器裝置200A與第2逆變器裝置200B設為完全相同的硬體構成,亦可以藉由切換模式,切換功能。

(第1構成例)
圖4是表示能夠用作第1逆變器裝置、第2逆變器裝置的逆變器裝置400的第1構成例之方塊圖。逆變器裝置400中,若設置成第1模式(主模式),則作為第1逆變器裝置200A而動作,若設置成第2模式(從模式),則作為第2逆變器裝置200B而動作。
逆變器裝置400具備驅動部410、分頻單元420、介面430及轉換部440。逆變器裝置400的主要部可以由FPGA(Field Programmable Gate Array,現場可程式閘陣列)構裝,亦可以由通用微電腦(或者CPU)及軟體程序的組合構裝,還可以由専用設計之硬體亦即IC(Integrated Circuit,集成電路)構成。
驅動部410的動作與圖3的驅動部202A、202B對應。驅動部410的功能相同而與第1模式、第2模式無關,接收來自所對應之編碼器104#的輸出脈衝POUT #,並驅動所對應之馬達102#。
關於介面430,第1模式中發揮圖3的介面206A的功能,在第2模式中發揮圖3的介面206B的功能。亦即,在第1模式中,介面430將表示來自所對應之編碼器104#的輸出脈衝POUT #之旋轉資訊DTX 發送到其它逆變器裝置400。又,在第2模式中,介面430從其它逆變器裝置400接收旋轉資訊DRX
例如介面430包括發射機432及接收器434。發射機432在第1模式中成為有效,發送旋轉資訊DTX 。又,接收器434在第2模式中成為有效,接收旋轉資訊DRX
分頻單元420在第1模式中發揮圖3的分頻單元204A的功能,在第2模式中發揮圖3的分頻單元204B的功能。具體而言,關於分頻單元420,在第1模式中生成頻率低於所對應之編碼器104#的輸出脈衝的分頻脈衝PDIV #。又,關於分頻單元420,在第2模式中生成頻率低於表示由介面430接收之旋轉資訊DRX 之輸出脈衝的分頻脈衝PDIV #。
例如分頻單元420包括選擇器422及分頻器424。分頻器424構成為能夠以所設定之分頻比分頻輸入脈衝,生成輸出脈衝。在第1模式中,選擇器422選擇來自所對應之編碼器104#的輸出脈衝POUT #,並供給到分頻器424。又,在第2模式中,選擇器422選擇從轉換部440供給之內部脈衝PINT 。內部脈衝PINT 為由DRX 表示之輸出脈衝。
轉換部440包括脈衝/資料轉換部442及資料/脈衝轉換部444。脈衝/資料轉換部442在第1模式中成為有效,將脈衝形式的輸出脈衝POUT #轉換成具有能夠由介面430發送的資料形式之旋轉資訊。資料/脈衝轉換部444在第2模式中成為有效,將由介面430接收之旋轉資訊DRX 轉換成內部脈衝PINT 。以上為逆變器裝置400的第1構成例。

(第2構成例)
圖5是表示能夠用作第1逆變器裝置、第2逆變器裝置的逆變器裝置500的第2構成例之方塊圖。該逆變器裝置500能夠選擇第1模式(主模式)及第2模式(從模式)。
逆變器裝置500具備驅動部510、分頻單元520、介面530及轉換部540。逆變器裝置500的主要部可以由FPGA(Field Programmable Gate Array)構裝,亦可以由通用微電腦(或者CPU)及軟體程序的組合構裝,還可以由専用設計之硬體亦即IC(Integrated Circuit)構成。
驅動部510的動作與圖3的驅動部202A、202B對應。驅動部510的功能相同而與第1模式、第2模式無關,接收來自所對應之編碼器104#的輸出脈衝POUT #,並驅動所對應之馬達102#。
介面530在第1模式中發揮圖3的介面206A的功能,在第2模式中發揮圖3的介面206B的功能。亦即,第1模式中,介面530將表示來自所對應之編碼器104#的輸出脈衝POUT #之旋轉資訊DTX 發送到其它逆變器裝置500。又,在第2模式中,介面530從其它逆變器裝置500接收旋轉資訊DRX
與圖4相同地,介面530包括發射機532及接收器534。發射機532在第1模式中成為有效,發送旋轉資訊DTX 。又,接收器534在第2模式中成為有效,接收旋轉資訊DRX
分頻單元520在第1模式中發揮圖3的分頻單元204A的功能,在第2模式中發揮圖3的分頻單元204B的功能。
轉換部540在第1模式中成為有效,將脈衝形式的輸出脈衝POUT #轉換成具有能夠由介面430發送的資料形式之旋轉資訊。該旋轉資訊亦可供給到分頻單元520。
分頻單元520包括選擇器522及分頻器524。圖4的分頻器424為脈衝輸入、脈衝輸出,相對於此,圖5的分頻器424為資料輸入、脈衝輸出。在第1模式中,選擇器522選擇由轉換部540生成之旋轉資訊的資料,供給到分頻器524。又,在第2模式中,選擇器522選擇由介面530接收之旋轉資訊DRX 的資料。
如圖4或圖5所示,能夠切換模式地構成共用的逆變器裝置,藉此變得容易擴張系統。
藉由本領域技術人員可理解為,逆變器裝置的構成並不限定於圖4或圖5的裝置,能夠採用其它構成,又其它構成亦包含於本發明的範圍內。

(用途)
接著,對馬達控制系統100的用途進行說明。圖6是表示具備馬達控制系統100之卷對卷的輸送系統600之圖。輸送系統600具備輸送輥602、捲取輥604及上述馬達控制系統100。馬達控制系統100具備複數個馬達102,該複數個馬達102旋轉控制輸送輥602及繞緊輥604。卷狀物700的移動路徑中亦可以設置輥610、612,該輥610、612調節卷狀物的張力或者使卷狀物700的移動方向產生變化。
依據實施形態,利用具體的語句對本發明進行了說明,但是實施形態僅示出了本發明的原理、應用的一側面,實施形態在不脫離申請專利範圍中所規定之本發明的宗旨之範圍內,可允許改變許多變形例或配置。
Hereinafter, the present invention will be described based on a preferred embodiment and referring to the drawings. The same or equivalent constituent elements, members, and processes shown in the drawings are assigned the same symbols, and repeated descriptions are appropriately omitted. In addition, the embodiment is an example and does not limit the inventor, and all the features or combinations described in the embodiment are not the ones that limit the essence of the invention.
FIG. 1 is a block diagram of a Motor Controlled System 100R. The motor control system 100R includes a plurality of motors 102, a plurality of encoders 104, a network 106, a controller 108, and a plurality of inverter devices 130.
The encoder 104 generates a pulse signal S 1 corresponding to the rotation state of the motor 102, specifically, the display position information. The pulse signal S 1 includes an A-phase pulse and a B-phase pulse with a phase shift of 1/4 cycle.
The drive unit 132 of the inverter device 130 obtains the position information of the motor 102 according to the pulse signal S 1 , and the position information is reflected in the drive control of the motor 102.
A control block (hereinafter, referred to as an application block) 300 specific to an application program is connected to the motor control system 100R. In the application block 300, the rotation state of the motor 102 is obtained, and sometimes it is intended to be used for control or display. The application block 300 includes one or a plurality of peripheral devices 302. Sometimes due to a peripheral device (e.g. a microcomputer) limits the operation speed of the interface 302 can not be received directly by the encoder 104 generates the pulse signal S 1 for decoding.
To solve this problem, a frequency divider 134 is provided in the inverter device 130. The frequency divider 134 divides the pulse signal S 1 from the encoder 104 with a first frequency f 1 by an appropriate frequency division ratio N, and generates a pulse signal with a second frequency f 2 (f 2 = f 1 / N). S 2 . By constructing the function of the frequency divider 134 in the inverter device 130, the restriction of the peripheral device 302 that can be added to the motor control system 100R can be eased.
When the plurality of peripheral devices 302 require the rotation information of the motor 102, the frequency of the pulse signals that can be received by the plurality of peripheral devices 302 is not limited. For example, the peripheral device can receive the second set 302A frequency pulse signal S 2, the peripheral apparatus 302B is set to be able to receive the third frequency f 3 (f 3 <f 2 ) of the pulse signal. In this case, the pulse signal S 2 is branched into two systems by the signal distributor 150, and one of them is supplied to the peripheral device 302A and the other is supplied to the frequency divider 152. Frequency divider 152 division ratio M divided pulse signal S 2, and generates a third frequency f 3 (= f 2 / M ) of the pulse signal S 3 is supplied to the peripheral apparatus 302B.
In addition, in the motor control system 100R of FIG. 1, if the number of peripheral devices 302 is increased, the number of the signal distributor 150 and the frequency divider 152 is increased, and the cost of the motor control system 100R is increased. This problem is solved by the technique described below.
FIG. 2 is a block diagram showing a basic configuration of a motor control system 100 according to the embodiment. The motor control system 100 includes a plurality of motors 102, a plurality of encoders 104, a network 106, a controller 108, and a plurality of inverter devices 200. In FIG. 2, for easy understanding, only two systems corresponding to two motors 102A and 102B are shown. However, the number of motors (system size) in the present invention is not limited to this, and can be expanded to any of three or more. Quantity. In this manual, A, B, etc. are used to indicate the number of the system, and are generally # or *.
The network 106 connects the first inverter device 200A and the second inverter device 200B. The network 106 is connected to the controller 108 of the overall control motor control system 100. The inverter devices 200A and 200B drive the motors 102A and 102B in accordance with a control command from the controller 108.
The first encoder 104A and the second encoder 104B generate output pulses P OUT A and P OUT B indicating the rotation states of the corresponding first motors 102A and 102B. Each output pulse P OUT includes an A-phase pulse and a B-phase pulse with a phase shift of 1/4 cycle. For example, the count of the output pulse indicates the position of the rotor, and the relationship between the phase of the A-phase pulse and the B-phase pulse indicates the direction of rotation.
The first inverter device 200A and the second inverter device 200B are connected via a network 106.
The first inverter device 200A is configured to be able to drive the first motor 102A based on the first output pulse P OUT A from the first encoder 104A and to output a first frequency-divided pulse having a frequency lower than the first output pulse P OUT A P DIV A.
In addition, the first inverter device 200A can transmit the first rotation information DA based on the first output pulse P OUT A to the second inverter device 200B via the network 106.
On the other hand, the second inverter device 200B drives the second motor 102B based on the second output pulse P OUT B from the second encoder 104B. The inverter device 200B is configured to receive the first rotation information DA from the inverter device 200A via the network 106, and to output a frequency lower than the first output pulse P OUT A indicated by the first rotation information DA. The second frequency division pulse P DIV B.
In this example, the frequency of the first frequency dividing pulse P DIV A is 1/2 of the frequency of the first output pulse P OUT A, and the frequency of the second frequency dividing pulse P DIV B is the frequency of the first output pulse P OUT A 1/4, but each frequency division ratio can be arbitrarily set according to the interfaces of the peripheral devices 302A and 302B at the respective supply points.
The peripheral device 302A obtains the rotation information of the first motor 102A based on the first frequency-divided pulse P DIV A. The peripheral device 302B obtains the rotation information of the first motor 102A based on the second frequency-divided pulse P DIV B. The peripheral devices 302A and 302B can execute various processes based on the rotation information of the first motor 102A. For example, the peripheral devices 302A and 302B may display the rotation information of the first motor 102A on the display device 304.
The above is the basic configuration of the motor control system 100. With the motor control system 100, as shown in FIG. 1, a plurality of frequency division pulses with different frequencies can be generated without adding a signal distributor 150 or a frequency divider 152. This can reduce the cost of the entire system.
Next, a configuration example of the inverter devices 200A and 200B will be described.
FIG. 3 is a block diagram showing a configuration example of the inverter devices 200A and 200B of FIG. 2.
First, the first inverter device 200A will be described. The first inverter device 200A includes a driving unit 202A, a frequency dividing unit 204A, and an interface 206A. The driving unit 202A drives the corresponding first motor 102A based on the first output pulse P OUT A from the corresponding first encoder 104A.
The frequency dividing unit 204A generates a first frequency dividing pulse P DIV A having a frequency which is 1 / N A times of the first output pulse P OUT A. The frequency division ratio N A may be variable.
The interface 206A receives a control command from the controller 108 and can send the first rotation information DA based on the first output pulse P OUT A to the second inverter device 200B. It is not easy to transmit the first output pulse P OUT # in the form of a pulse train to the other inverter device 200B via the network 106. Therefore, the first output pulse P OUT A may also be converted into the first rotation information DA having a data format that can be transmitted by the interface 206 for transmission. The first rotation information DA can include, for example, frequency information of the first output pulse P OUT A and phase information of the A-phase and B-phase pulses included therein.
Next, the second inverter device 200B will be described. The second inverter device 200B includes a driving unit 202B, a frequency dividing unit 204B, and an interface 206B. The function of the driving section 202B is the same as that of the driving section 202A, and the corresponding second motor 102B is driven according to the second output pulse P OUT B from the corresponding encoder 104B.
The interface 206B receives a control command from the controller 108 and can receive the first rotation information DA from the first inverter device 200A.
The frequency dividing unit 204B generates a second frequency dividing pulse P DIV B having a frequency of 1 / N B times of the first output pulse P OUT A according to the first rotation information DA. N B division ratio may be variable.
The first inverter device 200A and the second inverter device 200B have the same hardware configuration, and the functions can be switched by switching modes.

(First configuration example)
FIG. 4 is a block diagram showing a first configuration example of an inverter device 400 that can be used as a first inverter device and a second inverter device. The inverter device 400 operates as the first inverter device 200A when it is set to the first mode (master mode), and functions as the second inverter device 200B when it is set to the second mode (slave mode). While action.
The inverter device 400 includes a driving section 410, a frequency dividing unit 420, an interface 430, and a conversion section 440. The main part of the inverter device 400 can be constructed by FPGA (Field Programmable Gate Array), or by a combination of a general-purpose microcomputer (or CPU) and software programs. The body is constituted by an IC (Integrated Circuit, integrated circuit).
The operation of the driving unit 410 corresponds to the driving units 202A and 202B of FIG. 3. The driving unit 410 has the same function regardless of the first mode and the second mode, and receives the output pulse P OUT # from the corresponding encoder 104 # and drives the corresponding motor 102 #.
The interface 430 functions as the interface 206A of FIG. 3 in the first mode, and functions as the interface 206B of FIG. 3 in the second mode. That is, in the first mode, the interface 430 sends the rotation information D TX indicating the output pulse P OUT # from the corresponding encoder 104 # to the other inverter device 400. In the second mode, the interface 430 receives the rotation information D RX from the other inverter device 400.
For example, the interface 430 includes a transmitter 432 and a receiver 434. The transmitter 432 is enabled in the first mode, and transmits rotation information D TX . The receiver 434 is enabled in the second mode and receives the rotation information D RX .
The frequency dividing unit 420 functions as the frequency dividing unit 204A of FIG. 3 in the first mode, and functions as the frequency dividing unit 204B of FIG. 3 in the second mode. Specifically, the frequency division unit 420 generates a frequency division pulse P DIV # having a frequency lower than the output pulse of the corresponding encoder 104 # in the first mode. The frequency dividing unit 420 generates a frequency dividing pulse P DIV # having a frequency lower than the output pulse representing the rotation information D RX received by the interface 430 in the second mode.
For example, the frequency dividing unit 420 includes a selector 422 and a frequency divider 424. The frequency divider 424 is configured to divide an input pulse by a set frequency division ratio to generate an output pulse. In the first mode, the selector 422 selects the output pulse P OUT # from the corresponding encoder 104 # and supplies it to the frequency divider 424. In the second mode, the selector 422 selects the internal pulse P INT supplied from the conversion unit 440. The internal pulse P INT is an output pulse indicated by D RX .
The conversion section 440 includes a pulse / data conversion section 442 and a data / pulse conversion section 444. The pulse / data conversion unit 442 becomes effective in the first mode, and converts the output pulse P OUT # in the form of a pulse into rotation information having a data format that can be transmitted through the interface 430. The data / pulse conversion unit 444 is enabled in the second mode, and converts the rotation information D RX received by the interface 430 into an internal pulse P INT . The above is the first configuration example of the inverter device 400.

(Second configuration example)
FIG. 5 is a block diagram showing a second configuration example of an inverter device 500 that can be used as a first inverter device and a second inverter device. This inverter device 500 can select a first mode (master mode) and a second mode (slave mode).
The inverter device 500 includes a driving unit 510, a frequency dividing unit 520, an interface 530, and a conversion unit 540. The main part of the inverter device 500 can be constructed by FPGA (Field Programmable Gate Array), or by a combination of a general-purpose microcomputer (or CPU) and software programs. It can also be an IC (Integrated), which is designed hardware. Circuit) composition.
The operation of the driving unit 510 corresponds to the driving units 202A and 202B of FIG. 3. The driving unit 510 has the same function regardless of the first mode and the second mode, and receives the output pulse P OUT # from the corresponding encoder 104 # and drives the corresponding motor 102 #.
The interface 530 functions as the interface 206A of FIG. 3 in the first mode, and functions as the interface 206B of FIG. 3 in the second mode. That is, in the first mode, the interface 530 sends the rotation information D TX indicating the output pulse P OUT # from the corresponding encoder 104 # to the other inverter device 500. In the second mode, the interface 530 receives the rotation information D RX from the other inverter device 500.
As in FIG. 4, the interface 530 includes a transmitter 532 and a receiver 534. The transmitter 532 is enabled in the first mode and transmits rotation information D TX . The receiver 534 is enabled in the second mode and receives the rotation information D RX .
The frequency dividing unit 520 functions as the frequency dividing unit 204A of FIG. 3 in the first mode and functions as the frequency dividing unit 204B of FIG. 3 in the second mode.
The conversion unit 540 becomes effective in the first mode, and converts the output pulse P OUT # in the form of a pulse into rotation information having a data format that can be transmitted through the interface 430. The rotation information may also be supplied to the frequency division unit 520.
The frequency dividing unit 520 includes a selector 522 and a frequency divider 524. The frequency divider 424 in FIG. 4 is a pulse input and a pulse output. In contrast, the frequency divider 424 in FIG. 5 is a data input and a pulse output. In the first mode, the selector 522 selects data of the rotation information generated by the conversion unit 540 and supplies it to the frequency divider 524. In the second mode, the selector 522 selects the data of the rotation information D RX received by the interface 530.
As shown in FIG. 4 or FIG. 5, a common inverter device can be configured to switch modes, thereby making it easy to expand the system.
It can be understood by those skilled in the art that the configuration of the inverter device is not limited to the device of FIG. 4 or FIG. 5, and other configurations can be adopted, and other configurations are also included in the scope of the present invention.

(use)
Next, an application of the motor control system 100 will be described. FIG. 6 is a diagram showing a roll-to-roll conveyance system 600 including a motor control system 100. The transport system 600 includes a transport roller 602, a take-up roller 604, and the motor control system 100 described above. The motor control system 100 includes a plurality of motors 102 that rotationally control the conveyance roller 602 and the take-up roller 604. Rollers 610 and 612 may also be provided in the moving path of the roll 700, and the rollers 610 and 612 may adjust the tension of the roll or change the moving direction of the roll 700.
According to the embodiment, the present invention has been described using specific sentences, but the embodiment shows only one side of the principle and application of the present invention, and the embodiment is within the scope not departing from the spirit of the present invention specified in the scope of patent application. Can allow many variations or configurations to be changed.

100‧‧‧馬達控制系統100‧‧‧Motor control system

102‧‧‧馬達 102‧‧‧Motor

102A‧‧‧第1馬達 102A‧‧‧The first motor

102B‧‧‧第2馬達 102B‧‧‧The second motor

104‧‧‧編碼器 104‧‧‧Encoder

104A‧‧‧第1編碼器 104A‧‧‧1st encoder

104B‧‧‧第2編碼器 104B‧‧‧ 2nd encoder

106‧‧‧網絡 106‧‧‧ Network

108‧‧‧控制器 108‧‧‧controller

200‧‧‧逆變器裝置 200‧‧‧ Inverter device

200A‧‧‧第1逆變器裝置 200A‧‧‧1st inverter device

200B‧‧‧第2逆變器裝置 200B‧‧‧Second Inverter Device

202‧‧‧驅動部 202‧‧‧Driver

204‧‧‧分頻單元 204‧‧‧ Crossover unit

206‧‧‧介面 206‧‧‧Interface

300‧‧‧應用塊 300‧‧‧ Application Block

302‧‧‧周邊裝置 302‧‧‧peripherals

304‧‧‧顯示器裝置 304‧‧‧display device

400‧‧‧逆變器裝置 400‧‧‧ Inverter device

410‧‧‧驅動部 410‧‧‧Driver

420‧‧‧分頻單元 420‧‧‧ Crossover unit

422‧‧‧選擇器 422‧‧‧ selector

424‧‧‧分頻器 424‧‧‧Frequency Divider

430‧‧‧介面 430‧‧‧ interface

432‧‧‧發射機 432‧‧‧Transmitter

434‧‧‧接收器 434‧‧‧ Receiver

440‧‧‧轉換部 440‧‧‧ Conversion Department

442‧‧‧脈衝/資料轉換部 442‧‧‧Pulse / data conversion department

444‧‧‧資料/脈衝轉換部 444‧‧‧Data / Pulse Conversion Department

500‧‧‧逆變器裝置 500‧‧‧ inverter device

510‧‧‧驅動部 510‧‧‧Driver

520‧‧‧分頻單元 520‧‧‧ Crossover unit

522‧‧‧選擇器 522‧‧‧ selector

524‧‧‧分頻器 524‧‧‧Frequency Divider

530‧‧‧介面 530‧‧‧Interface

532‧‧‧發射機 532‧‧‧Transmitter

534‧‧‧接收器 534‧‧‧ Receiver

540‧‧‧轉換部 540‧‧‧ Conversion Department

600‧‧‧輸送系統 600‧‧‧ Conveying System

602‧‧‧輸送輥 602‧‧‧ conveyor roller

604‧‧‧捲取輥 604‧‧‧ take-up roller

圖1是馬達控制系統的方塊圖。FIG. 1 is a block diagram of a motor control system.

圖2是表示實施形態之馬達控制系統的基本構成之方塊圖。 Fig. 2 is a block diagram showing a basic configuration of a motor control system according to the embodiment.

圖3是表示圖2的逆變器裝置的構成例之方塊圖。 FIG. 3 is a block diagram showing a configuration example of the inverter device of FIG. 2.

圖4是表示能夠用作第1逆變器裝置、第2逆變器裝置的逆變器裝置的第1構成例之方塊圖。 4 is a block diagram showing a first configuration example of an inverter device that can be used as a first inverter device and a second inverter device.

圖5是表示能夠用作第1逆變器裝置、第2逆變器裝置的逆變器裝置的第2構成例之方塊圖。 FIG. 5 is a block diagram showing a second configuration example of an inverter device that can be used as a first inverter device and a second inverter device.

圖6是表示具備馬達控制系統之卷對卷的輸送系統之圖。 FIG. 6 is a diagram showing a roll-to-roll transport system including a motor control system.

Claims (6)

一種馬達控制系統,其特徵為,具備: 第1馬達; 第2馬達; 第1編碼器,監視前述第1馬達; 第2編碼器,監視前述第2馬達; 第1逆變器裝置,驅動前述第1馬達; 第2逆變器裝置,驅動前述第2馬達;及 網絡,連接前述第1逆變器裝置與前述第2逆變器裝置, 前述第1逆變器裝置構成為能夠依據來自前述第1編碼器的第1輸出脈衝來驅動前述第1馬達,並且向前述第2逆變器裝置發送基於前述第1輸出脈衝之第1旋轉資訊,且輸出頻率低於前述第1輸出脈衝的第1分頻脈衝, 前述第2逆變器裝置構成為能夠依據來自前述第2編碼器的第2輸出脈衝來驅動前述第2馬達,並且從前述第1逆變器裝置接收前述第1旋轉資訊,且輸出頻率低於由前述第1旋轉資訊表示之前述第1輸出脈衝的第2分頻脈衝。A motor control system, comprising: First motor Second motor The first encoder monitors the aforementioned first motor; A second encoder monitoring the aforementioned second motor; A first inverter device for driving the first motor; A second inverter device that drives the second motor; and A network connecting the first inverter device and the second inverter device, The first inverter device is configured to be able to drive the first motor based on a first output pulse from the first encoder, and to send first rotation information based on the first output pulse to the second inverter device. , And the output frequency is lower than the first frequency division pulse of the first output pulse, The second inverter device is configured to be able to drive the second motor based on a second output pulse from the second encoder, and to receive the first rotation information from the first inverter device, and the output frequency is lower than The second frequency-divided pulse of the first output pulse indicated by the first rotation information. 如申請專利範圍第1項所述之馬達控制系統,其中,更具備顯示器裝置,該顯示器裝置依據前述第1分頻脈衝及前述第2分頻脈衝中的至少一個顯示前述第1馬達的旋轉資訊。The motor control system according to item 1 of the scope of patent application, further comprising a display device that displays rotation information of the first motor according to at least one of the first frequency division pulse and the second frequency division pulse . 一種卷對卷輸送系統,其中,具備如申請專利範圍第1或2項所述之馬達控制系統。A roll-to-roll conveying system includes a motor control system as described in item 1 or 2 of the scope of patent application. 一種逆變器裝置,其用於馬達控制系統,其特徵為, 前述馬達控制系統具備: 複數個馬達; 複數個編碼器,與前述複數個馬達對應; 複數個前述逆變器裝置,與前述複數個馬達對應;及 網絡,連接複數個前述逆變器裝置, 前述逆變器裝置具備: 驅動部,依據來自所對應之編碼器的輸出脈衝來驅動所對應之馬達; 介面,(i)在第1模式中向其它逆變器裝置發送基於前述輸出脈衝之旋轉資訊,(ii)在第2模式中從其它逆變器裝置接收旋轉資訊;及 分頻單元,(i)在前述第1模式中依據前述輸出脈衝生成分頻脈衝,(ii)在前述第2模式中依據由前述介面接收之旋轉資訊生成分頻脈衝。An inverter device for a motor control system is characterized in that: The aforementioned motor control system includes: A plurality of motors; A plurality of encoders corresponding to the aforementioned plurality of motors; The plurality of inverter devices corresponding to the plurality of motors; and Network, connecting a plurality of the aforementioned inverter devices, The aforementioned inverter device includes: The driving unit drives the corresponding motor according to the output pulse from the corresponding encoder; The interface, (i) sends rotation information based on the aforementioned output pulse to other inverter devices in the first mode, and (ii) receives rotation information from other inverter devices in the second mode; and The frequency dividing unit (i) generates a frequency dividing pulse based on the output pulse in the first mode, and (ii) generates a frequency dividing pulse based on the rotation information received by the interface in the second mode. 如申請專利範圍第4項所述之逆變器裝置,其中, 前述分頻單元的分頻比為可變的。The inverter device according to item 4 of the scope of patent application, wherein The frequency division ratio of the aforementioned frequency division unit is variable. 一種卷對卷輸送系統,其特徵為,具備複數個如申請專利範圍第4或5項所述之逆變器裝置。A roll-to-roll conveying system is characterized in that it has a plurality of inverter devices as described in item 4 or 5 of the scope of patent application.
TW107146082A 2018-01-30 2018-12-20 Inverter device, roll-to-roll conveyor system, motor control system TWI681619B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018013535A JP7094709B2 (en) 2018-01-30 2018-01-30 Inverter device, roll-to-roll transfer system, motor control system
JP2018-013535 2018-01-30

Publications (2)

Publication Number Publication Date
TW201933753A true TW201933753A (en) 2019-08-16
TWI681619B TWI681619B (en) 2020-01-01

Family

ID=67443671

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107146082A TWI681619B (en) 2018-01-30 2018-12-20 Inverter device, roll-to-roll conveyor system, motor control system

Country Status (4)

Country Link
JP (1) JP7094709B2 (en)
KR (1) KR102518882B1 (en)
CN (1) CN110091579B (en)
TW (1) TWI681619B (en)

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4144440A (en) * 1974-06-21 1979-03-13 Fael Sa Method and apparatus for controlling welding operations during resistance welding
US4094478A (en) * 1975-11-28 1978-06-13 Honeywell Inc. Dual motor tape recorder system
US4271379A (en) * 1978-12-29 1981-06-02 Harris Corporation Web fed printing press motor control
IT1145778B (en) * 1981-06-03 1986-11-12 Gd Spa FEEDING AND CUTTING DEVICE IN CUTS A CONTINUOUS TAPE WITH AUTOMATIC CHANGE OF THE TAPE UNWINDING REEL
US5359154A (en) * 1989-12-15 1994-10-25 Anritsu Corporation Conveyor apparatus having plural conveyors with equalized conveying speeds controlled by an inverter means
DE4038881A1 (en) * 1990-01-27 1991-08-01 Schubert & Salzer Maschinen DRIVING DEVICE OF A OE SPINDING MACHINE
KR100203063B1 (en) * 1992-07-09 1999-06-15 윤종용 Speed detecting apparatus in encoder type motor
US5559419A (en) * 1993-12-22 1996-09-24 Wisconsin Alumni Research Foundation Method and apparatus for transducerless flux estimation in drives for induction machines
NL1000305C2 (en) * 1995-05-04 1996-11-05 Stork X Cel Bv Method of printing and embossing of paper rolls
KR100324491B1 (en) * 1997-12-29 2002-04-17 이종수 Motor driver
US6263186B1 (en) * 1999-03-31 2001-07-17 Konica Corporation Image forming apparatus and conveyance control method thereof
US6519432B1 (en) * 2001-07-17 2003-02-11 Toshiba Tec Kabushiki Kaisha Image forming apparatus
JP2003180095A (en) * 2001-12-07 2003-06-27 Hitachi Unisia Automotive Ltd Controller of voltage driven pwm inverter
JP4444719B2 (en) * 2003-07-07 2010-03-31 株式会社リコー Image forming apparatus
JP4539279B2 (en) * 2004-10-15 2010-09-08 オムロン株式会社 Inverter system, inverter device and frequency setting method thereof
CN1855692A (en) * 2005-04-25 2006-11-01 张新华 High speed sine pulse midth modification
US7391181B2 (en) * 2006-03-16 2008-06-24 General Motors Corporation Loss minimized PWM for voltage source inverters taking into account inverter non-linearity
KR100936270B1 (en) * 2007-10-16 2010-01-12 주식회사 포스콘 Apparatus for transforming encoder signal and method thereof
WO2009128198A1 (en) * 2008-04-15 2009-10-22 パナソニック株式会社 Motor driving device, integrated circuit device, motor device and motor driving system
EP2446279B1 (en) * 2009-06-26 2015-04-22 Mitsubishi Electric Corporation Rotary speed detection device with error monitoring
JP5560842B2 (en) * 2010-03-30 2014-07-30 シンフォニアテクノロジー株式会社 Sublimation printer
CN201807625U (en) * 2010-08-20 2011-04-27 鞍钢集团自动化公司 Tail automatic positioning control device of level coil separating line coiler
DE112011105542T5 (en) * 2011-06-14 2014-04-30 Kabushiki Kaisha Yaskawa Denki Multi-axis motor drive system and multi-axis motor drive device
JP6032522B2 (en) 2011-12-27 2016-11-30 大日本印刷株式会社 Gravure printing machine and control method thereof
JP5906971B2 (en) * 2012-07-03 2016-04-20 株式会社デンソー Motor drive device
CN103701401B (en) * 2013-12-30 2017-01-18 苏州汇川技术有限公司 Control method, device and system for eddy current motor
JP6291996B2 (en) * 2014-04-21 2018-03-14 ダイキン工業株式会社 Power converter
CN105490617A (en) * 2015-12-21 2016-04-13 北京市普利门机电高技术公司 Method and system for driving motor
JP6483039B2 (en) * 2016-01-26 2019-03-13 株式会社日立製作所 Power converter
CN205450398U (en) * 2016-03-29 2016-08-10 国家电网公司 Optical cable unwrapping wire coaster for transmission line of intelligent control
CN206266000U (en) * 2016-10-21 2017-06-20 汕头市万物打印科技有限公司 A kind of 3D consumptive materials automatic winding converter plant

Also Published As

Publication number Publication date
KR20190092251A (en) 2019-08-07
TWI681619B (en) 2020-01-01
JP2019134546A (en) 2019-08-08
CN110091579A (en) 2019-08-06
KR102518882B1 (en) 2023-04-05
CN110091579B (en) 2020-10-27
JP7094709B2 (en) 2022-07-04

Similar Documents

Publication Publication Date Title
ATE509444T1 (en) SYSTEM WITH ONE MAIN UNIT AND SEVERAL SLAVE UNITS FOR THE OPERATION OF SEVERAL DEVICES
JP2005539331A (en) Driving device and method for driving processing machine
JP2009153311A (en) Synchronous control system, controller, and synchronous control method
TW201933753A (en) Inverter device, roll-to-roll conveying system, and motor control system capable of providing pulse signals of different frequencies to application block
US6281645B1 (en) Motor control system and image forming apparatus using the same
JP4646816B2 (en) Synchronous control system
US8578077B2 (en) Group master communication system and method for serially transmitting data in automation systems
JP2883643B2 (en) Inverter group operation method
KR101072608B1 (en) Timing controller, apparatus for controlling data signal sending using timing controller
JP3565326B2 (en) Semiconductor device and circuit module mounting the same
KR100449743B1 (en) Chained image display apparatus having mutual examining function
JP2014123947A (en) Automatic system and method for synchronizing the same
WO2023100623A1 (en) Termination setting device, termination setting method, and termination setting program
KR20110083409A (en) Timing controller, apparatus for controlling synchronization using timing controller
US8004230B2 (en) Device for controlling a rotary press
KR100324491B1 (en) Motor driver
CN102545730A (en) Motor control system
US11327522B2 (en) Information processing apparatus and circuit device
JP2007067801A (en) Switching control system and control unit applied thereto
KR0140632Y1 (en) Message/clock transmission device of digital switching system
KR20120014461A (en) Dual communication unit of cpp control system
KR101696245B1 (en) Apparatus for power line communication of bi-directional communication
CN202494895U (en) Device for controlling forward and reverse coiling in composite material tearing
JPS61158233A (en) Branching device
JP2002297203A (en) Multi-shaft servo system