WO2023100623A1 - Termination setting device, termination setting method, and termination setting program - Google Patents

Termination setting device, termination setting method, and termination setting program Download PDF

Info

Publication number
WO2023100623A1
WO2023100623A1 PCT/JP2022/042118 JP2022042118W WO2023100623A1 WO 2023100623 A1 WO2023100623 A1 WO 2023100623A1 JP 2022042118 W JP2022042118 W JP 2022042118W WO 2023100623 A1 WO2023100623 A1 WO 2023100623A1
Authority
WO
WIPO (PCT)
Prior art keywords
termination
node
slave
termination setting
setting frame
Prior art date
Application number
PCT/JP2022/042118
Other languages
French (fr)
Japanese (ja)
Inventor
まゆ美 仲田
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2023100623A1 publication Critical patent/WO2023100623A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]

Definitions

  • the present invention relates to a termination setting device and the like in a system comprising a master node and slave nodes.
  • Patent Document 1 discloses a home appliance that includes a master node and a plurality of slave nodes that are serially and ring-connected to the master node.
  • slave nodes include sensors that measure various parameters of home appliances and actuators that drive various parts of home appliances. These slave nodes perform cooperative operations while communicating with the master node, so that the intended operation of the home appliance is realized.
  • the present invention has been made in view of this situation, and its object is to provide a termination setting device or the like that can efficiently set termination nodes.
  • a termination setting device includes a master node and one or more slave nodes connected in series with the master node as a starting node.
  • the master node has a termination setting frame transmitter that transmits a termination setting frame including termination designation information designating a termination node in the slave node.
  • a slave node has a termination designation information confirmation unit for confirming whether or not termination designation information contained in a termination setting frame received from an adjacent preceding node designates itself as a termination node, , the termination setting section sets a communication path that returns a frame received from a preceding node to the preceding node, and if the termination designation information does not designate itself as a termination node, the termination setting frame is sent to the adjacent subsequent node.
  • a termination setting frame retransmitting unit for retransmitting to the slave node.
  • the slave node located at the end can be efficiently set as the end node by the termination setting frame transmitted from the master node located at the start.
  • a termination setting frame including termination designation information designating a termination node in one or a plurality of slave nodes connected in series with a master node as a starting node is transmitted from the master node to an adjacent subsequent slave node.
  • a slave node that has received a termination setting frame from an adjacent preceding node sets a communication path for returning a frame received from the preceding node to the preceding node if the termination designation information designates itself as a terminal node; If the termination designation information does not designate itself as a termination node, it retransmits the termination setting frame to the adjacent subsequent slave node.
  • terminal nodes can be set efficiently.
  • FIG. 4 shows an example of a termination setting frame. 4 schematically shows a mode of termination setting by a termination setting unit; 4 is a flowchart of termination setting processing by a termination setting device; 1 is a perspective view showing the overall structure of a linear transfer system as an example of an industrial system; FIG. 1 shows the configuration of a printing apparatus as an example of an industrial system;
  • FIG. 1 is a functional block diagram of the termination setting device 1 according to the embodiment of the present invention.
  • the termination setting device 1 includes a master node 3 and one or more slave nodes 4 connected in series and in a line with the master node 3 as a starting node by wire or wirelessly.
  • three slave nodes 4A, 4B, and 4C having the same functional block groups 41 to 45 are provided, and are collectively referred to as slave nodes 4 unless they need to be distinguished.
  • the master node 3 and slave node 4 are provided in the same or different industrial equipment, respectively, and constitute an industrial system as a whole. Therefore, it can be said that the termination setting device 1 is provided in an industrial system. Desired operations of the industrial system and the termination setting device 1 are realized by one or more slave nodes 4 performing cooperative operations while communicating with the master node 3 .
  • the industrial equipment provided with the master node 3 and the slave node 4 is equipment used for specific purposes in industrial sites that produce and provide various products and services. Specific examples of industrial equipment will be described later, but for example, boilers/motors, mining machinery, chemical machinery, environmental equipment, tanks, plastic machinery, wind and hydraulic machinery, transportation machinery, and power transmission devices handled by the Japan Society of Industrial Machinery Manufacturers , industrial machinery, industrial machinery, industrial equipment used in industrial sites such as factories of companies such as iron manufacturing machinery, commercial washing machines, etc., manufacturing equipment such as semiconductors, machine tools, printing machines, industrial robots. Note that general-purpose devices such as personal computers and smartphones used for monitoring and controlling these devices also correspond to industrial devices in the context of this embodiment.
  • the master node 3 and/or the slave node 4 may correspond to an entire industrial device, or may correspond to each part (eg, each component) of one industrial device.
  • the master node 3 is configured by the controller of one industrial device, and the driver that drives the motors inside and outside the industrial device based on commands from the controller, and the various parameters inside and outside the industrial device.
  • the slave node 4 may be configured by a sensor that measures and provides to the controller.
  • a driver that constitutes the slave node 4 controls the movement of the movable parts of the industrial equipment itself (for example, the joints of industrial robots, the processing parts of machine tools, and the table on which the workpiece is placed) and the operations of each part of the industrial equipment. It drives motors and the like for driving movable parts of control parts such as relays and solenoid valves. If the industrial device is a motor driver, the motor to be driven is provided outside the industrial device (slave node 4).
  • a sensor that configures the slave node 4 measures, for example, the position, speed, acceleration, etc., of an object driven by a driver that configures another slave node 4 (eg, a table in a machine tool, a roll of paper unwound by a rotary printing machine), etc. sensors that measure other parameters of the driven object (e.g. web tension or pressure applied by rollers) and parameters related to the environment in which the industrial equipment operates (e.g. temperature, humidity, air pressure, brightness) is a sensor that measures
  • the functional blocks of the master node 3 and slave nodes 4A, 4B, and 4C include hardware resources such as a computer's central processing unit, memory, input device, output device, and peripheral devices connected to the computer. It is realized by the cooperation of the software executed using. Regardless of the type of computer or installation location, each of the above functional blocks may be implemented using the hardware resources of a single computer, or may be implemented by combining hardware resources distributed among multiple computers. . For example, some or all of the functional blocks of the master node 3 and slave nodes 4A, 4B, and 4C may be realized by a computer installed outside the industrial equipment or outside the industrial site.
  • the master node 3 includes a termination setting frame transmitting section 31 and a termination setting frame receiving section 32.
  • Each slave node 4 includes a termination setting frame receiving section 41 , a termination designation information confirming section 42 , a termination setting frame retransmitting section 43 , a termination setting section 44 and a termination setting frame returning section 45 .
  • the termination setting frame transmission unit 31 transmits a termination setting frame 5 including termination designation information 55 that designates termination nodes in the plurality of slave nodes 4A, 4B, and 4C to the adjacent subsequent slave node 4A.
  • FIG. 2 shows an example of the termination setting frame 5.
  • the 46-byte fixed-length termination setting frame 5 includes a 1-byte frame number 51, a 1-byte frame type 52, 2-byte connection mode information 53, 2-byte slave number information 54, and a 2-byte termination setting frame. It has designation information 55, a dummy field 56 of 36 bytes, and an error notification field 57 of 2 bytes. Note that the frame length of the termination setting frame 5 and the field lengths of the information 51 to 57 can be appropriately changed according to the communication protocol of the industrial system.
  • the frame number 51 is the number assigned to the termination setting frame 5 by the master node 3 .
  • the frame type 52 is information indicating the type of frame, and is written with a number uniquely assigned to the termination setting frame as the type (for example, "14" in decimal).
  • the connection mode information 53 is information indicating the connection mode of the slave node 4, for example, information indicating either line or ring. In the present embodiment, in which the terminal setting of the slave node 4 is performed, the connection mode information 53 indicating that the slave node 4 is connected in series and in a line is written.
  • the slave number information 54 is information indicating the total number of slave nodes 4, and in the example of FIG. 1 in which three slave nodes 4A, 4B, and 4C are provided, a decimal number "3" is written.
  • the termination designation information 55 is information that designates the termination node in the plurality of slave nodes 4A, 4B, and 4C, and in the example of FIG. is written. Dummy data consisting of, for example, 36 “0”s is written in the dummy field 56 . These dummy data are meaningless data that are not used in the processing of the termination setting frame 5, but keep the length of the termination setting frame 5 to 46 bytes, which is the same as the communication frame for communication between each node 3, 4. inserted for convenience.
  • a frame check sequence (FCS: Frame Check Sequence) for error detection during communication of the termination setting frame 5 is written in the error notification field 57 .
  • the termination setting frame receiving unit 41 of the slave node 4A receives the termination setting frame 5 from the master node 3 as the adjacent preceding node.
  • the termination designation information confirmation unit 42 confirms whether or not the termination designation information 55 included in the termination setting frame 5 received from the master node 3 designates itself (slave node 4A) as a termination node.
  • the termination designation information confirmation unit 42 of the slave node 4A confirms that itself is not designated as the termination node. According to this confirmation result, the termination setting frame retransmitting unit 43 retransmits the termination setting frame 5 received from the master node 3 by the termination setting frame receiving unit 41 to the adjacent subsequent slave node 4B.
  • the termination setting frame receiving unit 41 of the slave node 4B receives the termination setting frame 5 from the slave node 4A as the adjacent preceding node.
  • the termination designation information confirmation unit 42 confirms whether or not the termination designation information 55 included in the termination setting frame 5 received from the slave node 4A designates itself (slave node 4B) as a termination node.
  • the termination designation information confirmation unit 42 of the slave node 4B confirms that itself is not designated as the termination node. According to this confirmation result, the termination setting frame retransmitting unit 43 retransmits the termination setting frame 5 received by the termination setting frame receiving unit 41 from the slave node 4A to the adjacent subsequent slave node 4C.
  • the termination setting frame receiving unit 41 of the slave node 4C receives the termination setting frame 5 from the slave node 4B as the adjacent preceding node.
  • the termination designation information confirmation unit 42 confirms whether or not the termination designation information 55 included in the termination setting frame 5 received from the slave node 4B designates itself (the slave node 4C) as a termination node.
  • the terminal designation information confirmation unit 42 of the slave node 4C confirms that it is designated as the terminal node. Based on this confirmation result, the termination setting unit 44 sets a communication path for returning the communication frame received from the preceding slave node 4B to the preceding slave node 4B.
  • FIG. 3 schematically shows a mode of termination setting by the termination setting unit 44.
  • FIG. FIG. 3A shows the communication path before termination setting
  • FIG. 3B shows the communication path after termination setting.
  • Each slave node 4 has a previous-stage input/output interface (in FIG. 3, the input interface is denoted as "frame entrance” and the output interface is denoted as "frame exit") with the adjacent preceding-stage node (master node 3 or slave node 4). ) and a subsequent input/output interface with the adjacent subsequent slave node 4 .
  • the slave node 4C before termination setting in FIG. A communication path is formed for transmission to the slave node 4B.
  • a communication path is formed to return the communication frame received from the preceding slave node 4B to the preceding slave node 4B.
  • a cyclic communication path is formed, with the slave node 4C serving as a terminal node as a loopback point, and the master node 3 as a starting point and an end point, going back and forth through each of the slave nodes 4A, 4B, and 4C.
  • Information necessary for cooperative operation is timely shared between the nodes 3 and 4 through this communication path, so that the desired operation of the industrial system as a whole is realized.
  • a programmable FPGA Field-Programmable Gate Array
  • the termination setting frame returning unit 45 receives the termination setting frame 5 received by the termination setting frame receiving unit 41 from the slave node 4B. is sent back to the adjacent preceding slave node 4B. At this time, the slave node 4C may write, in the termination setting frame 5, termination setting completion information indicating that the termination setting by the termination setting unit 44 has been completed.
  • the termination setting frame returning unit 45 of the slave node 4B returns the termination setting frame 5 received from the adjacent subsequent slave node 4C to the adjacent preceding slave node 4A.
  • the termination setting frame returning unit 45 of the slave node 4A returns the termination setting frame 5 received from the adjacent subsequent slave node 4B to the adjacent master node 3 of the preceding stage.
  • the termination setting frame receiver 32 of the master node 3 receives the termination setting frame 5 from the adjacent subsequent slave node 4A.
  • the master node 3 receives the termination setting frame 5 normally by the termination setting frame receiving unit 32, or receives the termination setting completion information written in the termination setting frame 5 by the slave node 4C as the termination node. With this confirmation, it can be confirmed that the termination setting in the termination node (slave node 4C) has been completed normally.
  • FIG. 4 is a flowchart of termination setting processing by the termination setting device 1.
  • FIG. "S" in the description of the flowchart represents a step or process.
  • the termination setting frame transmitter 31 of the master node 3 transmits the termination setting frame 5 to the adjacent subsequent slave node 4A.
  • the termination setting frame receiving unit 41 of the slave node 4 receives the termination setting frame 5 from the adjacent preceding node.
  • the termination designation information confirmation unit 42 confirms whether or not the termination designation information 55 included in the termination setting frame 5 received in S2 designates itself as a termination node.
  • the process proceeds to S5, and the termination setting frame retransmitting unit 43 retransmits the termination setting frame 5 received in S2 to the adjacent slave node 4 in the subsequent stage.
  • the termination setting frame 5 retransmitted in S5 is received in S2 by the slave node 4 in the adjacent subsequent stage.
  • the termination setting unit 44 sets a communication path for looping back the communication frame received from the slave node 4 in the previous stage to the slave node 4 in the previous stage.
  • the termination setting frame return unit 45 receives the termination setting frame 5 received in S2 (in the case of the slave node 4C, which is the terminal node) or the termination setting frame 5 received from the adjacent subsequent slave node 4 (the slave node that is not the terminal node). for nodes 4B and 4A) to the adjacent preceding node.
  • the termination setting frame receiver 32 of the master node 3 receives the termination setting frame 5 from the adjacent subsequent slave node 4A. With the successful reception of the termination setting frame 5 in S8, the master node 3 can confirm that the termination setting in the termination node (slave node 4C) has been completed normally.
  • the termination setting device 1 described above is applicable to any industrial system.
  • FIG. 5 is a perspective view showing the overall structure of a linear transport system 100, which is an example of an industrial system.
  • the linear transfer system 100 includes a stator 200 that forms an annular rail or track, and a plurality of movers 300A, 300B, 300C, and 300D (hereinafter referred to as moveable child 300).
  • Electromagnets or coils provided on the stator 200 and permanent magnets provided on the mover 300 face each other to form a linear motor along an annular rail.
  • this linear motor and the driver that drives it constitute the slave node 4 in FIG.
  • a sensor for measuring the position, velocity, acceleration of the mover 300 to be driven by the driver, temperature, humidity, atmospheric pressure, etc.
  • a master node 3 that can communicate with these slave nodes 4 is provided in a controller (not shown) of the linear transport system 100 .
  • the stator 200 may be provided with a permanent magnet
  • the mover 300 may be provided with an electromagnet or a coil.
  • the rail formed by the stator 200 may be of any shape, not limited to an annular shape.
  • the rails may be linear or curved, one rail may branch into a plurality of rails, or a plurality of rails may merge into one rail.
  • the installation direction of the rails formed by the stator 200 is arbitrary. In the example of FIG. It may be arranged in the plane of the corner or in the curved surface.
  • the stator 200 has a rail surface 210 whose normal direction is the horizontal direction.
  • the rail surface 210 extends in a belt shape along the direction of rail formation, and when forming an annular rail as in the example of FIG.
  • a plurality of electromagnets are embedded continuously or periodically in the rail surface 210 that can form rails of any shape.
  • a controller master node 3
  • a driver slave node 4
  • the mover 300 equipped with permanent magnets moves along the rail.
  • a traveling magnetic field is generated which drives linearly in the desired tangential direction.
  • the normal direction of the rail surface 210 forming the annular rail in the horizontal plane is the horizontal direction, but the normal direction of the rail surface 210 may be the vertical direction or any other direction.
  • the positioning unit 220 provided on the upper surface or the lower surface perpendicular to the rail surface 210 has a plurality of magnetic scales (not shown) attached to the mover 300 that can measure the position of a magnetic scale (not shown) as a positioning target.
  • a positioning device (not shown) is continuously or periodically embedded.
  • a magnetic positioning device for positioning a magnetic scale formed by a striped magnetic pattern with a constant pitch generally includes a plurality of magnetic detection heads. The magnetic positioning device can measure the position of the magnetic scale with high accuracy by shifting the intervals of the plurality of magnetic detection heads with respect to the pitch or period of the magnetic pattern of the magnetic scale. In a typical magnetic positioning device provided with two magnetic detection heads, for example, the distance between the two magnetic detection heads is shifted by 1/4 pitch with respect to the magnetic pattern of the magnetic scale (the phase is shifted by 90 degrees). .
  • the positioning device provided on the stator 200 and the positioning target attached to the mover 300 are not limited to the magnetic type as described above, and may be optical or other type.
  • the mover 300 is attached with an optical scale formed by a striped pattern with a constant pitch
  • the stator 200 is provided with an optical positioning device capable of optically reading the striped pattern of the optical scale.
  • the positioning device measures the positioning target (magnetic scale or optical scale) without contact, the object conveyed by the mover 300 scatters and reaches the positioning point (top surface of the stator 200). It is possible to reduce the risk of malfunction of the positioning device when it enters.
  • the optical method if the optical scale is covered by a transported object such as liquid or powder that has entered the positioning location, the positioning accuracy will deteriorate. It is preferable to use a magnetic type that does not deteriorate the positioning accuracy.
  • the mover 300 includes a mover main body 310 facing the rail surface 210 of the stator 200, a positioning target portion 320 projecting horizontally from the top of the mover main body 310 and facing the positioning portion 220 of the stator 200, and a positioning target.
  • the mover main body 310 includes one or more permanent magnets (not shown) facing the plurality of electromagnets embedded in the rail surface 210 of the stator 200 along the rail. Since the moving magnetic field generated by the electromagnet of the stator 200 applies linear force in the rail tangential direction to the permanent magnet of the mover 300 , the mover 300 is linearly driven along the rail surface 210 with respect to the stator 200 .
  • a magnetic scale or an optical scale as a positioning target is provided on the positioning target portion 320 of the mover 300 so as to face the positioning device provided on the positioning portion 220 of the stator 200 .
  • a positioning target such as a magnetic scale is attached to the lower surface of the positioning target portion 320 of the mover 300 .
  • stator 200 it is preferable to form the rail surface 210 and the positioning part 220 on different surfaces or in a separate place, and in the mover 300, form the mover main body 310 and the positioning part 320 on different surfaces or in a separate place.
  • FIG. 6 shows the configuration of a printing device 10 as an example of an industrial system.
  • the printing apparatus 10 includes a first printing unit 11A for printing black (K), a second printing unit 11B for printing cyan (C), a third printing unit 11C for printing magenta (M), and a yellow (Y ), and a (register) control device 30 provided with the master node 3 in FIG.
  • the first printing unit 11A to the fourth printing unit 11D are collectively referred to as the printing unit 11 below.
  • the printing colors of each printing unit 11 are not limited to the above, and arbitrary printing colors can be assigned to each printing unit 11 in an arbitrary order. Moreover, in order to print more colors, five or more printing units may be provided.
  • the first printing unit 11A includes a first plate cylinder 13A, a first impression cylinder 17A, a first drive motor 19A, a first encoder 21A, and a first mark sensor 23A.
  • the second printing unit 11B includes a second plate cylinder 13B, a second impression cylinder 17B, a second drive motor 19B, a second encoder 21B, and a second mark sensor 23B.
  • the third printing unit 11C includes a third plate cylinder 13C, a third impression cylinder 17C, a third drive motor 19C, a third encoder 21C, and a third mark sensor 23C.
  • the fourth printing unit 11D includes a fourth plate cylinder 13D, a fourth impression cylinder 17D, a fourth drive motor 19D, a fourth encoder 21D and a fourth mark sensor 23D.
  • the first plate cylinder 13A to the fourth plate cylinder 13D are collectively referred to as the plate cylinder 13
  • the first impression cylinder 17A to the fourth impression cylinder 17D are collectively referred to as the impression cylinder 17
  • 19D is collectively called the drive motor 19
  • the first encoder 21A to the fourth encoder 21D are collectively called the encoder 21
  • the first mark sensor 23A to the fourth mark sensor 23D are collectively called the mark sensor .
  • the printing device 10 prints on the web 50, which is a roll of paper, as a print material.
  • Each printing unit 11 is installed along the moving direction of the web 50 .
  • the web 50 is guided by the guide rollers 25 arranged along its moving path, and the printing cylinders 13 and impression cylinders 17 of each printing unit 11 produce images of respective colors corresponding to the printing plates wound around the printing cylinder 13 . Printed sequentially.
  • the plate cylinder 13 has a mark printing section 15 that prints register marks that are measured by the mark sensor 23 for register control.
  • the mark printing section 15 of the first printing unit 11A also prints reference marks for additional printing on the same web 50 .
  • the reference mark may indicate the cutting position of the web 50 after printing is completed, and is also called cut mark.
  • the first register mark is printed at a predetermined first position by the mark printing section 15 of the first plate cylinder 13A
  • the second register mark is printed at a predetermined second position by the mark printing section 15 of the second plate cylinder 13B.
  • the third register mark is printed at a predetermined third position by the mark printing section 15 of the third plate cylinder 13C
  • the fourth register mark is printed at a predetermined fourth position by the mark printing section 15 of the fourth plate cylinder 13D.
  • the first to fourth register marks are collectively referred to as register marks.
  • each printing unit 11 prints a picture of each color once by rotating each printing cylinder 13 once, and prints continuously by repeating this process.
  • Each plate cylinder 13 is rotationally driven by a separate drive motor 19 controlled by a motor driver that constitutes slave node 4 in FIG.
  • each drive motor 19 is electrically synchronized through the motor driver (slave node 4) under the control of the control device 30 (master node 3), and each plate cylinder 13 rotates in the same manner. rotate at speed. That is, the printing apparatus 10 is configured with a sectional drive system.
  • Each drive motor 19 is provided with an encoder 21 that constitutes the slave node 4 in FIG. 1 on its mechanical axis.
  • the encoder 21 is an incremental encoder.
  • the encoder 21 outputs a predetermined number of A-phase and B-phase pulse signals and one Z-phase pulse signal for each rotation of the plate cylinder 13 .
  • the A-phase and B-phase pulse signals are counted by a counter, and the Z-phase pulse signal resets the count value.
  • the phase (rotational position) of the plate cylinder 13 is detected from the count value of the pulse signal.
  • the encoder 21 may be of any type as long as it can detect the phase of the plate cylinder 13, and may be an absolute type serial encoder.
  • the pressure applied to the web 50 by the impression cylinder 17, the tension of the web 50, the temperature, humidity, atmospheric pressure, brightness, etc. around the printing apparatus 10 may be provided as slave nodes 4.
  • each device described in the embodiments can be realized by hardware resources or software resources, or by cooperation between hardware resources and software resources.
  • Processors, ROMs, RAMs, and other LSIs can be used as hardware resources.
  • Programs such as operating systems and applications can be used as software resources.
  • the present invention relates to a termination setting device and the like in a system comprising a master node and slave nodes.
  • Termination setting device Master node 4 Slave node 5 Termination setting frame 31 Termination setting frame transmitter 32 Termination setting frame receiver 41 Termination setting frame receiver 42 Termination designation information confirmation unit 43 Termination setting frame 44 Termination setting unit 45 Termination setting frame return unit 53 Connection mode information 54 Number of slaves information 55 Termination designation information.

Abstract

A termination setting device 1 comprises slave nodes 4 connected in series to a master node 3 serving as a start terminal node. The master node 3 comprises a termination setting frame transmission unit 31 that transmits a termination setting frame which includes termination setting information for specifying a termination node among the slave nodes 4. The slave nodes 4 each comprise: a termination specification information confirmation unit 42 that confirms whether the host slave node is specified as the termination node by termination specification information included in a termination setting frame received from an adjacent previous-stage node; a termination setting unit 44 that, if the host slave node is designated as the termination node by the termination setting information, sets a communication path for sending back, to the previous-stage node, the frame received from the previous-stage node; and a termination setting frame re-transmission unit 43 that, if the host slave node is not designated as the termination node by the termination setting information, re-transmits the termination setting frame to an adjacent latter-stage slave node 4.

Description

終端設定装置、終端設定方法、終端設定プログラムTermination setting device, termination setting method, termination setting program
 本発明は、マスタノードとスレーブノードを備えるシステムにおける終端設定装置等に関する。 The present invention relates to a termination setting device and the like in a system comprising a master node and slave nodes.
 特許文献1には、マスタノードと、当該マスタノードに直列かつリング状に接続された複数のスレーブノードを備える家電機器が開示されている。スレーブノードとしては、家電機器の様々なパラメータを測定するセンサや、家電機器の各部を駆動するアクチュエータが例示されている。これらのスレーブノードが、マスタノードと通信しながら協調動作を行うことで、家電機器の所期の動作が実現される。 Patent Document 1 discloses a home appliance that includes a master node and a plurality of slave nodes that are serially and ring-connected to the master node. Examples of slave nodes include sensors that measure various parameters of home appliances and actuators that drive various parts of home appliances. These slave nodes perform cooperative operations while communicating with the master node, so that the intended operation of the home appliance is realized.
特開平8-280078号公報JP-A-8-280078
 特許文献1のような家電機器と異なり、製品やサービスの生産や提供を行う産業現場で使用される産業システムでは、マスタノードやスレーブノードを構成する比較的大型の各産業装置を個別に調達し、産業現場において主にマニュアルで設置、接続、設定を行うことが一般的である。マスタノードを始端ノードとしてスレーブノードを直列かつライン状に接続する場合、終端に位置するスレーブノードを終端ノードとして設定する必要がある。従来の産業システムでは、産業装置の回路基板に設けられる機械的なスイッチを切り替えることで当該産業装置を終端ノードに設定していたが、作業効率が悪く人為的なミスが発生する可能性もあった。 Unlike home appliances such as those disclosed in Patent Document 1, in industrial systems used in industrial sites that produce and provide products and services, relatively large industrial devices that constitute master nodes and slave nodes are individually procured. , installation, connection, and setting are generally performed mainly manually at industrial sites. When slave nodes are connected in series and in a line with the master node as the starting node, it is necessary to set the slave node located at the end as the terminal node. In conventional industrial systems, the industrial equipment was set as a terminal node by switching a mechanical switch installed on the circuit board of the industrial equipment, but work efficiency was poor and human error could occur. rice field.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、効率的に終端ノードを設定できる終端設定装置等を提供することにある。 The present invention has been made in view of this situation, and its object is to provide a termination setting device or the like that can efficiently set termination nodes.
 上記課題を解決するために、本発明のある態様の終端設定装置は、マスタノードと、当該マスタノードを始端ノードとして直列に接続された一または複数のスレーブノードと、を備える。マスタノードは、スレーブノードにおける終端ノードを指定する終端指定情報を含む終端設定フレームを送信する終端設定フレーム送信部を備える。スレーブノードは、隣接する前段のノードから受信した終端設定フレームに含まれる終端指定情報が自身を終端ノードとして指定するか否かを確認する終端指定情報確認部と、終端指定情報が自身を終端ノードとして指定する場合、前段のノードから受信するフレームを当該前段のノードに折り返す通信経路を設定する終端設定部と、終端指定情報が自身を終端ノードとして指定しない場合、終端設定フレームを隣接する後段のスレーブノードに再送信する終端設定フレーム再送信部と、を備える。 In order to solve the above problems, a termination setting device according to one aspect of the present invention includes a master node and one or more slave nodes connected in series with the master node as a starting node. The master node has a termination setting frame transmitter that transmits a termination setting frame including termination designation information designating a termination node in the slave node. A slave node has a termination designation information confirmation unit for confirming whether or not termination designation information contained in a termination setting frame received from an adjacent preceding node designates itself as a termination node, , the termination setting section sets a communication path that returns a frame received from a preceding node to the preceding node, and if the termination designation information does not designate itself as a termination node, the termination setting frame is sent to the adjacent subsequent node. a termination setting frame retransmitting unit for retransmitting to the slave node.
 この態様によれば、始端に位置するマスタノードから送信される終端設定フレームによって、終端に位置するスレーブノードを終端ノードとして効率的に設定できる。 According to this aspect, the slave node located at the end can be efficiently set as the end node by the termination setting frame transmitted from the master node located at the start.
 本発明の別の態様は終端設定方法である。この方法は、マスタノードを始端ノードとして直列に接続された一または複数のスレーブノードにおける終端ノードを指定する終端指定情報を含む終端設定フレームを、当該マスタノードから隣接する後段のスレーブノードに送信し、隣接する前段のノードから終端設定フレームを受信したスレーブノードは、終端指定情報が自身を終端ノードとして指定する場合、前段のノードから受信するフレームを当該前段のノードに折り返す通信経路を設定し、終端指定情報が自身を終端ノードとして指定しない場合、終端設定フレームを隣接する後段のスレーブノードに再送信する。 Another aspect of the present invention is a termination setting method. In this method, a termination setting frame including termination designation information designating a termination node in one or a plurality of slave nodes connected in series with a master node as a starting node is transmitted from the master node to an adjacent subsequent slave node. , a slave node that has received a termination setting frame from an adjacent preceding node sets a communication path for returning a frame received from the preceding node to the preceding node if the termination designation information designates itself as a terminal node; If the termination designation information does not designate itself as a termination node, it retransmits the termination setting frame to the adjacent subsequent slave node.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above constituent elements, and any conversion of the expression of the present invention between methods, devices, systems, recording media, computer programs, etc. are also effective as embodiments of the present invention.
 本発明によれば、効率的に終端ノードを設定できる。 According to the present invention, terminal nodes can be set efficiently.
終端設定装置の機能ブロック図である。It is a functional block diagram of a termination setting device. 終端設定フレームの例を示す。4 shows an example of a termination setting frame. 終端設定部による終端設定の態様を模式的に示す。4 schematically shows a mode of termination setting by a termination setting unit; 終端設定装置による終端設定処理のフローチャートである。4 is a flowchart of termination setting processing by a termination setting device; 産業システムの一例であるリニア搬送システムの全体構造を示す斜視図である。1 is a perspective view showing the overall structure of a linear transfer system as an example of an industrial system; FIG. 産業システムの一例である印刷装置の構成を示す。1 shows the configuration of a printing apparatus as an example of an industrial system;
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明または図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限りは限定的に解釈されるものではない。実施形態は例示であり、本発明の範囲を何ら限定するものではない。実施形態に記載される全ての特徴やそれらの組合せは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description or drawings, the same or equivalent constituent elements, members, and processes are denoted by the same reference numerals, and overlapping descriptions are omitted. The scales and shapes of the illustrated parts are set for convenience in order to facilitate the explanation, and should not be construed as limiting unless otherwise specified. The embodiments are illustrative and do not limit the scope of the invention in any way. Not all features or combinations of features described in the embodiments are essential to the invention.
 図1は、本発明の実施形態に係る終端設定装置1の機能ブロック図である。終端設定装置1は、マスタノード3と、当該マスタノード3を始端ノードとして直列かつライン状に有線または無線で接続された一または複数のスレーブノード4を備える。図示の例では、同一の機能ブロック群41~45を備える三つのスレーブノード4A、4B、4Cが設けられ、これらを区別する必要がある場合を除いてスレーブノード4と総称される。マスタノード3およびスレーブノード4は、それぞれ同じまたは異なる産業装置に設けられ、全体として産業システムを構成する。従って、終端設定装置1は産業システムに設けられているといえる。一または複数のスレーブノード4が、マスタノード3と通信しながら協調動作を行うことで、産業システムおよび終端設定装置1の所期の動作が実現される。 FIG. 1 is a functional block diagram of the termination setting device 1 according to the embodiment of the present invention. The termination setting device 1 includes a master node 3 and one or more slave nodes 4 connected in series and in a line with the master node 3 as a starting node by wire or wirelessly. In the illustrated example, three slave nodes 4A, 4B, and 4C having the same functional block groups 41 to 45 are provided, and are collectively referred to as slave nodes 4 unless they need to be distinguished. The master node 3 and slave node 4 are provided in the same or different industrial equipment, respectively, and constitute an industrial system as a whole. Therefore, it can be said that the termination setting device 1 is provided in an industrial system. Desired operations of the industrial system and the termination setting device 1 are realized by one or more slave nodes 4 performing cooperative operations while communicating with the master node 3 .
 マスタノード3およびスレーブノード4が設けられる産業装置は、各種の製品やサービスの生産や提供を行う産業現場において、特定の用途に使用される装置である。産業装置の具体例については後述するが、例えば、日本産業機械工業会が取り扱っているボイラ・原動機、鉱山機械、化学機械、環境装置、タンク、プラスチック機械、風水力機械、運搬機械、動力伝導装置、製鉄機械、業務用洗濯機等の企業の工場等の産業現場で使用される産業用機械、産業機械、産業機器等や、半導体等の製造装置、工作機械、印刷機、産業ロボットを含む。なお、これらの装置の監視や制御に使用されるパーソナルコンピュータやスマートフォン等の汎用装置も、本実施形態の文脈では産業装置に該当するものとする。 The industrial equipment provided with the master node 3 and the slave node 4 is equipment used for specific purposes in industrial sites that produce and provide various products and services. Specific examples of industrial equipment will be described later, but for example, boilers/motors, mining machinery, chemical machinery, environmental equipment, tanks, plastic machinery, wind and hydraulic machinery, transportation machinery, and power transmission devices handled by the Japan Society of Industrial Machinery Manufacturers , industrial machinery, industrial machinery, industrial equipment used in industrial sites such as factories of companies such as iron manufacturing machinery, commercial washing machines, etc., manufacturing equipment such as semiconductors, machine tools, printing machines, industrial robots. Note that general-purpose devices such as personal computers and smartphones used for monitoring and controlling these devices also correspond to industrial devices in the context of this embodiment.
 マスタノード3および/またはスレーブノード4は、一つの産業装置の全体に対応してもよいし、一つの産業装置の各部(例えば各構成部品)に対応してもよい。後者の例として、一つの産業装置のコントローラによってマスタノード3を構成し、当該コントローラからの指令に基づいて当該産業装置の内外のモータ等を駆動するドライバや、当該産業装置の内外の各種のパラメータを測定して当該コントローラに提供するセンサによってスレーブノード4を構成してもよい。 The master node 3 and/or the slave node 4 may correspond to an entire industrial device, or may correspond to each part (eg, each component) of one industrial device. As an example of the latter, the master node 3 is configured by the controller of one industrial device, and the driver that drives the motors inside and outside the industrial device based on commands from the controller, and the various parameters inside and outside the industrial device. The slave node 4 may be configured by a sensor that measures and provides to the controller.
 スレーブノード4を構成するドライバは、産業装置自体の可動部(例えば、産業ロボットのジョイント、工作機械の加工部や被加工物が載置されるテーブル)や、産業装置の各部の動作を制御するリレー(継電器)や電磁弁等の制御部品の可動部を駆動するためのモータ等を駆動する。産業装置がモータドライバの場合、駆動されるモータは産業装置(スレーブノード4)外に設けられる。スレーブノード4を構成するセンサは、例えば、別のスレーブノード4を構成するドライバによる駆動対象(例えば、工作機械におけるテーブル、輪転印刷機で巻き出される巻取紙)等の位置、速度、加速度等を測定するセンサや、駆動対象のその他のパラメータ(例えば、巻取紙の張力やローラから加えられる圧力)を測定するセンサや、産業装置が稼働している環境に関するパラメータ(例えば、温度、湿度、気圧、輝度)を測定するセンサである。 A driver that constitutes the slave node 4 controls the movement of the movable parts of the industrial equipment itself (for example, the joints of industrial robots, the processing parts of machine tools, and the table on which the workpiece is placed) and the operations of each part of the industrial equipment. It drives motors and the like for driving movable parts of control parts such as relays and solenoid valves. If the industrial device is a motor driver, the motor to be driven is provided outside the industrial device (slave node 4). A sensor that configures the slave node 4 measures, for example, the position, speed, acceleration, etc., of an object driven by a driver that configures another slave node 4 (eg, a table in a machine tool, a roll of paper unwound by a rotary printing machine), etc. sensors that measure other parameters of the driven object (e.g. web tension or pressure applied by rollers) and parameters related to the environment in which the industrial equipment operates (e.g. temperature, humidity, air pressure, brightness) is a sensor that measures
 なお、マスタノード3および各スレーブノード4A、4B、4Cの一部または全部は、異なる産業現場に設けられてもよいし、産業現場から離れたオフィスやデータセンター等に設けられてもよい。また、マスタノード3および各スレーブノード4A、4B、4Cの機能ブロックは、コンピュータの中央演算処理装置、メモリ、入力装置、出力装置、コンピュータに接続される周辺機器等のハードウェア資源と、それらを用いて実行されるソフトウェアの協働により実現される。コンピュータの種類や設置場所は問わず、上記の各機能ブロックは、単一のコンピュータのハードウェア資源で実現してもよいし、複数のコンピュータに分散したハードウェア資源を組み合わせて実現してもよい。例えば、マスタノード3および各スレーブノード4A、4B、4Cの機能ブロックの一部または全部が、産業装置外または産業現場外に設置されるコンピュータで実現されてもよい。 Some or all of the master node 3 and each of the slave nodes 4A, 4B, and 4C may be provided in different industrial sites, or may be provided in offices, data centers, etc., away from the industrial sites. The functional blocks of the master node 3 and slave nodes 4A, 4B, and 4C include hardware resources such as a computer's central processing unit, memory, input device, output device, and peripheral devices connected to the computer. It is realized by the cooperation of the software executed using. Regardless of the type of computer or installation location, each of the above functional blocks may be implemented using the hardware resources of a single computer, or may be implemented by combining hardware resources distributed among multiple computers. . For example, some or all of the functional blocks of the master node 3 and slave nodes 4A, 4B, and 4C may be realized by a computer installed outside the industrial equipment or outside the industrial site.
 マスタノード3は、終端設定フレーム送信部31と、終端設定フレーム受信部32を備える。各スレーブノード4は、終端設定フレーム受信部41と、終端指定情報確認部42と、終端設定フレーム再送信部43と、終端設定部44と、終端設定フレーム返送部45を備える。 The master node 3 includes a termination setting frame transmitting section 31 and a termination setting frame receiving section 32. Each slave node 4 includes a termination setting frame receiving section 41 , a termination designation information confirming section 42 , a termination setting frame retransmitting section 43 , a termination setting section 44 and a termination setting frame returning section 45 .
 終端設定フレーム送信部31は、複数のスレーブノード4A、4B、4Cにおける終端ノードを指定する終端指定情報55を含む終端設定フレーム5を、隣接する後段のスレーブノード4Aに送信する。 The termination setting frame transmission unit 31 transmits a termination setting frame 5 including termination designation information 55 that designates termination nodes in the plurality of slave nodes 4A, 4B, and 4C to the adjacent subsequent slave node 4A.
 図2は、終端設定フレーム5の例を示す。46バイトの固定長の終端設定フレーム5は、1バイトのフレーム番号51と、1バイトのフレーム種別52と、2バイトの接続態様情報53と、2バイトのスレーブ数情報54と、2バイトの終端指定情報55と、36バイトのダミーフィールド56と、2バイトのエラー通知フィールド57を備える。なお、終端設定フレーム5のフレーム長、各情報51~57のフィールド長は、産業システムの通信プロトコルに応じて適宜変更可能である。 FIG. 2 shows an example of the termination setting frame 5. The 46-byte fixed-length termination setting frame 5 includes a 1-byte frame number 51, a 1-byte frame type 52, 2-byte connection mode information 53, 2-byte slave number information 54, and a 2-byte termination setting frame. It has designation information 55, a dummy field 56 of 36 bytes, and an error notification field 57 of 2 bytes. Note that the frame length of the termination setting frame 5 and the field lengths of the information 51 to 57 can be appropriately changed according to the communication protocol of the industrial system.
 フレーム番号51は、マスタノード3が終端設定フレーム5に割り当てた番号である。フレーム種別52は、フレームの種別を示す情報であり、種別としての終端設定フレームにユニークに割り当てられた数字(例えば十進数で「14」)が書き込まれる。接続態様情報53は、スレーブノード4の接続態様を示す情報であり、例えば、ライン状とリング状のいずれかを示す情報である。スレーブノード4の終端設定を行う本実施形態では、スレーブノード4が直列かつライン状に接続されていることを示す接続態様情報53が書き込まれる。スレーブ数情報54は、スレーブノード4の総数を示す情報であり、三つのスレーブノード4A、4B、4Cが設けられる図1の例では十進数で「3」が書き込まれる。 The frame number 51 is the number assigned to the termination setting frame 5 by the master node 3 . The frame type 52 is information indicating the type of frame, and is written with a number uniquely assigned to the termination setting frame as the type (for example, "14" in decimal). The connection mode information 53 is information indicating the connection mode of the slave node 4, for example, information indicating either line or ring. In the present embodiment, in which the terminal setting of the slave node 4 is performed, the connection mode information 53 indicating that the slave node 4 is connected in series and in a line is written. The slave number information 54 is information indicating the total number of slave nodes 4, and in the example of FIG. 1 in which three slave nodes 4A, 4B, and 4C are provided, a decimal number "3" is written.
 終端指定情報55は、複数のスレーブノード4A、4B、4Cにおける終端ノードを指定する情報であり、三つ目のスレーブノード4Cが終端ノードとして指定される図1の例では十進数で「3」が書き込まれる。ダミーフィールド56には、例えば36個の「0」からなるダミーデータが書き込まれる。これらのダミーデータは、終端設定フレーム5の処理では使用されない無意味なデータであるが、終端設定フレーム5の長さを各ノード3、4間の通信のための通信フレームと同じ46バイトに維持するために便宜的に挿入される。エラー通知フィールド57には、終端設定フレーム5の通信時のエラー検出のためのフレームチェックシーケンス(FCS: Frame Check Sequence)が書き込まれる。 The termination designation information 55 is information that designates the termination node in the plurality of slave nodes 4A, 4B, and 4C, and in the example of FIG. is written. Dummy data consisting of, for example, 36 “0”s is written in the dummy field 56 . These dummy data are meaningless data that are not used in the processing of the termination setting frame 5, but keep the length of the termination setting frame 5 to 46 bytes, which is the same as the communication frame for communication between each node 3, 4. inserted for convenience. A frame check sequence (FCS: Frame Check Sequence) for error detection during communication of the termination setting frame 5 is written in the error notification field 57 .
 スレーブノード4Aの終端設定フレーム受信部41は、隣接する前段のノードとしてのマスタノード3から終端設定フレーム5を受信する。終端指定情報確認部42は、マスタノード3から受信した終端設定フレーム5に含まれる終端指定情報55が自身(スレーブノード4A)を終端ノードとして指定するか否かを確認する。この例ではスレーブノード4Cが終端ノードとして指定されているため、スレーブノード4Aの終端指定情報確認部42は自身が終端ノードとして指定されていない旨を確認する。この確認結果に応じて、終端設定フレーム再送信部43は、終端設定フレーム受信部41がマスタノード3から受信した終端設定フレーム5を、隣接する後段のスレーブノード4Bに再送信する。 The termination setting frame receiving unit 41 of the slave node 4A receives the termination setting frame 5 from the master node 3 as the adjacent preceding node. The termination designation information confirmation unit 42 confirms whether or not the termination designation information 55 included in the termination setting frame 5 received from the master node 3 designates itself (slave node 4A) as a termination node. In this example, since the slave node 4C is designated as the termination node, the termination designation information confirmation unit 42 of the slave node 4A confirms that itself is not designated as the termination node. According to this confirmation result, the termination setting frame retransmitting unit 43 retransmits the termination setting frame 5 received from the master node 3 by the termination setting frame receiving unit 41 to the adjacent subsequent slave node 4B.
 スレーブノード4Bの終端設定フレーム受信部41は、隣接する前段のノードとしてのスレーブノード4Aから終端設定フレーム5を受信する。終端指定情報確認部42は、スレーブノード4Aから受信した終端設定フレーム5に含まれる終端指定情報55が自身(スレーブノード4B)を終端ノードとして指定するか否かを確認する。この例ではスレーブノード4Cが終端ノードとして指定されているため、スレーブノード4Bの終端指定情報確認部42は自身が終端ノードとして指定されていない旨を確認する。この確認結果に応じて、終端設定フレーム再送信部43は、終端設定フレーム受信部41がスレーブノード4Aから受信した終端設定フレーム5を、隣接する後段のスレーブノード4Cに再送信する。 The termination setting frame receiving unit 41 of the slave node 4B receives the termination setting frame 5 from the slave node 4A as the adjacent preceding node. The termination designation information confirmation unit 42 confirms whether or not the termination designation information 55 included in the termination setting frame 5 received from the slave node 4A designates itself (slave node 4B) as a termination node. In this example, since the slave node 4C is designated as the termination node, the termination designation information confirmation unit 42 of the slave node 4B confirms that itself is not designated as the termination node. According to this confirmation result, the termination setting frame retransmitting unit 43 retransmits the termination setting frame 5 received by the termination setting frame receiving unit 41 from the slave node 4A to the adjacent subsequent slave node 4C.
 スレーブノード4Cの終端設定フレーム受信部41は、隣接する前段のノードとしてのスレーブノード4Bから終端設定フレーム5を受信する。終端指定情報確認部42は、スレーブノード4Bから受信した終端設定フレーム5に含まれる終端指定情報55が自身(スレーブノード4C)を終端ノードとして指定するか否かを確認する。この例ではスレーブノード4Cが終端ノードとして指定されているため、スレーブノード4Cの終端指定情報確認部42は自身が終端ノードとして指定されている旨を確認する。この確認結果に応じて、終端設定部44は、前段のスレーブノード4Bから受信する通信フレームを当該前段のスレーブノード4Bに折り返す通信経路を設定する。 The termination setting frame receiving unit 41 of the slave node 4C receives the termination setting frame 5 from the slave node 4B as the adjacent preceding node. The termination designation information confirmation unit 42 confirms whether or not the termination designation information 55 included in the termination setting frame 5 received from the slave node 4B designates itself (the slave node 4C) as a termination node. In this example, since the slave node 4C is designated as the terminal node, the terminal designation information confirmation unit 42 of the slave node 4C confirms that it is designated as the terminal node. Based on this confirmation result, the termination setting unit 44 sets a communication path for returning the communication frame received from the preceding slave node 4B to the preceding slave node 4B.
 図3は、終端設定部44による終端設定の態様を模式的に示す。図3(A)は終端設定前の通信経路を示し、図3(B)は終端設定後の通信経路を示す。各スレーブノード4は、隣接する前段のノード(マスタノード3またはスレーブノード4)との前段側入出力インターフェース(図3では、入力インターフェースが「フレーム入口」と表記され、出力インターフェースが「フレーム出口」と表記される)と、隣接する後段のスレーブノード4との後段側入出力インターフェースを備える。 FIG. 3 schematically shows a mode of termination setting by the termination setting unit 44. FIG. FIG. 3A shows the communication path before termination setting, and FIG. 3B shows the communication path after termination setting. Each slave node 4 has a previous-stage input/output interface (in FIG. 3, the input interface is denoted as "frame entrance" and the output interface is denoted as "frame exit") with the adjacent preceding-stage node (master node 3 or slave node 4). ) and a subsequent input/output interface with the adjacent subsequent slave node 4 .
 図3(A)における終端設定前のスレーブノード4Cでは、前段のスレーブノード4Bから受信する通信フレームを後段の実在しないスレーブノードに送信すると共に、後段の実在しないスレーブノードから受信する通信フレームを前段のスレーブノード4Bに送信する通信経路が形成される。これに対して、図3(B)における終端設定後のスレーブノード4Cでは、前段のスレーブノード4Bから受信する通信フレームを当該前段のスレーブノード4Bに折り返す通信経路が形成される。 The slave node 4C before termination setting in FIG. A communication path is formed for transmission to the slave node 4B. On the other hand, in the slave node 4C after the termination setting in FIG. 3B, a communication path is formed to return the communication frame received from the preceding slave node 4B to the preceding slave node 4B.
 このように、終端ノードとしてのスレーブノード4Cを折り返し点とし、マスタノード3を始点および終点として各スレーブノード4A、4B、4Cを往復する巡回的な通信経路が形成される。この通信経路によって各ノード3、4間で協調動作に必要な情報がタイムリーに共有されるため、産業システム全体としての所期の動作が実現される。なお、各スレーブノード4の少なくとも一部をプログラム可能なFPGA(Field-Programmable Gate Array)等によって構成することで、図3(A)から図3(B)への通信経路または回路構成の変更をFPGA等に対する変更指令によって容易に実現できる。 In this way, a cyclic communication path is formed, with the slave node 4C serving as a terminal node as a loopback point, and the master node 3 as a starting point and an end point, going back and forth through each of the slave nodes 4A, 4B, and 4C. Information necessary for cooperative operation is timely shared between the nodes 3 and 4 through this communication path, so that the desired operation of the industrial system as a whole is realized. By configuring at least a part of each slave node 4 with a programmable FPGA (Field-Programmable Gate Array) or the like, it is possible to change the communication path or circuit configuration from FIG. 3(A) to FIG. 3(B). It can be easily realized by a change command to FPGA or the like.
 終端ノードとしてのスレーブノード4Cにおいて、以上のような終端設定を終端設定部44が行った後、終端設定フレーム返送部45は、終端設定フレーム受信部41がスレーブノード4Bから受信した終端設定フレーム5を、隣接する前段のスレーブノード4Bに返送する。この際、スレーブノード4Cは終端設定部44による終端設定が完了した旨を示す終端設定完了情報を終端設定フレーム5に書き込んでもよい。 In the slave node 4C as a terminal node, after the termination setting unit 44 performs the termination setting as described above, the termination setting frame returning unit 45 receives the termination setting frame 5 received by the termination setting frame receiving unit 41 from the slave node 4B. is sent back to the adjacent preceding slave node 4B. At this time, the slave node 4C may write, in the termination setting frame 5, termination setting completion information indicating that the termination setting by the termination setting unit 44 has been completed.
 スレーブノード4Bの終端設定フレーム返送部45は、隣接する後段のスレーブノード4Cから受信した終端設定フレーム5を、隣接する前段のスレーブノード4Aに返送する。スレーブノード4Aの終端設定フレーム返送部45は、隣接する後段のスレーブノード4Bから受信した終端設定フレーム5を、隣接する前段のマスタノード3に返送する。マスタノード3の終端設定フレーム受信部32は、隣接する後段のスレーブノード4Aから終端設定フレーム5を受信する。マスタノード3は、終端設定フレーム受信部32が終端設定フレーム5を正常に受信したことを持って、または、終端ノードとしてのスレーブノード4Cによって終端設定フレーム5に書き込まれた終端設定完了情報を正常に確認したことを持って、終端ノード(スレーブノード4C)における終端設定が正常に完了したことを確認できる。 The termination setting frame returning unit 45 of the slave node 4B returns the termination setting frame 5 received from the adjacent subsequent slave node 4C to the adjacent preceding slave node 4A. The termination setting frame returning unit 45 of the slave node 4A returns the termination setting frame 5 received from the adjacent subsequent slave node 4B to the adjacent master node 3 of the preceding stage. The termination setting frame receiver 32 of the master node 3 receives the termination setting frame 5 from the adjacent subsequent slave node 4A. The master node 3 receives the termination setting frame 5 normally by the termination setting frame receiving unit 32, or receives the termination setting completion information written in the termination setting frame 5 by the slave node 4C as the termination node. With this confirmation, it can be confirmed that the termination setting in the termination node (slave node 4C) has been completed normally.
 図4は、終端設定装置1による終端設定処理のフローチャートである。フローチャートの説明における「S」はステップまたは処理を表す。S1では、マスタノード3の終端設定フレーム送信部31が、終端設定フレーム5を隣接する後段のスレーブノード4Aに送信する。S2では、スレーブノード4の終端設定フレーム受信部41が、隣接する前段のノードから終端設定フレーム5を受信する。S3およびS4では、終端指定情報確認部42が、S2で受信した終端設定フレーム5に含まれる終端指定情報55が自身を終端ノードとして指定するか否かを確認する。S4でNoの場合はS5に進み、終端設定フレーム再送信部43が、S2で受信した終端設定フレーム5を、隣接する後段のスレーブノード4に再送信する。S5で再送信された終端設定フレーム5は、隣接する後段のスレーブノード4がS2で受信する。 FIG. 4 is a flowchart of termination setting processing by the termination setting device 1. FIG. "S" in the description of the flowchart represents a step or process. In S1, the termination setting frame transmitter 31 of the master node 3 transmits the termination setting frame 5 to the adjacent subsequent slave node 4A. In S2, the termination setting frame receiving unit 41 of the slave node 4 receives the termination setting frame 5 from the adjacent preceding node. In S3 and S4, the termination designation information confirmation unit 42 confirms whether or not the termination designation information 55 included in the termination setting frame 5 received in S2 designates itself as a termination node. If No in S4, the process proceeds to S5, and the termination setting frame retransmitting unit 43 retransmits the termination setting frame 5 received in S2 to the adjacent slave node 4 in the subsequent stage. The termination setting frame 5 retransmitted in S5 is received in S2 by the slave node 4 in the adjacent subsequent stage.
 S4でYesの場合はS6に進み、終端設定部44が、前段のスレーブノード4から受信する通信フレームを当該前段のスレーブノード4に折り返す通信経路を設定する。S7では、終端設定フレーム返送部45が、S2で受信した終端設定フレーム5(終端ノードであるスレーブノード4Cの場合)または隣接する後段のスレーブノード4から受信した終端設定フレーム5(終端ノードでないスレーブノード4B、4Aの場合)を、隣接する前段のノードに返送する。S8では、マスタノード3の終端設定フレーム受信部32が、隣接する後段のスレーブノード4Aから終端設定フレーム5を受信する。マスタノード3は、S8で終端設定フレーム5を正常に受信したことを持って、終端ノード(スレーブノード4C)における終端設定が正常に完了したことを確認できる。 If Yes in S4, proceed to S6, and the termination setting unit 44 sets a communication path for looping back the communication frame received from the slave node 4 in the previous stage to the slave node 4 in the previous stage. In S7, the termination setting frame return unit 45 receives the termination setting frame 5 received in S2 (in the case of the slave node 4C, which is the terminal node) or the termination setting frame 5 received from the adjacent subsequent slave node 4 (the slave node that is not the terminal node). for nodes 4B and 4A) to the adjacent preceding node. In S8, the termination setting frame receiver 32 of the master node 3 receives the termination setting frame 5 from the adjacent subsequent slave node 4A. With the successful reception of the termination setting frame 5 in S8, the master node 3 can confirm that the termination setting in the termination node (slave node 4C) has been completed normally.
 以上の終端設定装置1は、任意の産業システムに適用可能である。 The termination setting device 1 described above is applicable to any industrial system.
 図5は、産業システムの一例であるリニア搬送システム100の全体構造を示す斜視図である。リニア搬送システム100は、環状のレールまたは軌道を構成する固定子200と、当該固定子200に対して駆動されレールに沿って移動可能な複数の可動子300A、300B、300C、300D(以下では可動子300と総称する)を備える。固定子200に設けられる電磁石またはコイルと、可動子300に設けられる永久磁石が互いに対向することで、環状のレールに沿ってリニアモータが構成されている。例えば、このリニアモータやそれを駆動するドライバが図1におけるスレーブノード4を構成する。また、ドライバの駆動対象としての可動子300の位置、速度、加速度、リニア搬送システム100の周りの温度、湿度、気圧等を測定するセンサを、図1におけるスレーブノード4として設けてもよい。これらのスレーブノード4と通信可能なマスタノード3は、リニア搬送システム100の不図示のコントローラに設けられる。なお、固定子200に永久磁石が設けられ、可動子300に電磁石またはコイルが設けられてもよい。 FIG. 5 is a perspective view showing the overall structure of a linear transport system 100, which is an example of an industrial system. The linear transfer system 100 includes a stator 200 that forms an annular rail or track, and a plurality of movers 300A, 300B, 300C, and 300D (hereinafter referred to as moveable child 300). Electromagnets or coils provided on the stator 200 and permanent magnets provided on the mover 300 face each other to form a linear motor along an annular rail. For example, this linear motor and the driver that drives it constitute the slave node 4 in FIG. Further, a sensor for measuring the position, velocity, acceleration of the mover 300 to be driven by the driver, temperature, humidity, atmospheric pressure, etc. around the linear transfer system 100 may be provided as the slave node 4 in FIG. A master node 3 that can communicate with these slave nodes 4 is provided in a controller (not shown) of the linear transport system 100 . Note that the stator 200 may be provided with a permanent magnet, and the mover 300 may be provided with an electromagnet or a coil.
 固定子200が形成するレールは環状に限らない任意の形状でよい。例えば、レールは直線状でもよいし、曲線状でもよいし、一つのレールが複数のレールに分岐してもよいし、複数のレールが一つのレールに合流してもよい。また、固定子200が形成するレールの設置方向も任意である、図5の例では水平面内にレールが配設されるが、レールは鉛直面内に配設されてもよいし、任意の傾斜角の平面内や曲面内に配設されてもよい。 The rail formed by the stator 200 may be of any shape, not limited to an annular shape. For example, the rails may be linear or curved, one rail may branch into a plurality of rails, or a plurality of rails may merge into one rail. Moreover, the installation direction of the rails formed by the stator 200 is arbitrary. In the example of FIG. It may be arranged in the plane of the corner or in the curved surface.
 固定子200は、水平方向を法線方向とするレール面210を有する。レール面210はレールの形成方向に沿って帯状に延在し、図5の例のように環状のレールを形成する場合は(仮想的な)両端が連結された無端帯状となる。このように任意の形状のレールを形成可能なレール面210には、複数の電磁石(不図示)が連続的または周期的に埋設されている。不図示のコントローラ(マスタノード3)の制御下で、ドライバ(スレーブノード4)がリニアモータの多数の電磁石に三相交流等の駆動電流を流すと、永久磁石を備える可動子300をレールに沿う所望の接線方向に直線駆動する移動磁界が発生する。なお、図5の例では環状のレールを水平面内に形成するレール面210の法線方向が水平方向であったが、レール面210の法線方向は鉛直方向その他の任意の方向でもよい。 The stator 200 has a rail surface 210 whose normal direction is the horizontal direction. The rail surface 210 extends in a belt shape along the direction of rail formation, and when forming an annular rail as in the example of FIG. A plurality of electromagnets (not shown) are embedded continuously or periodically in the rail surface 210 that can form rails of any shape. Under the control of a controller (master node 3) (not shown), when a driver (slave node 4) supplies a drive current such as a three-phase alternating current to a large number of electromagnets of the linear motor, the mover 300 equipped with permanent magnets moves along the rail. A traveling magnetic field is generated which drives linearly in the desired tangential direction. In the example of FIG. 5, the normal direction of the rail surface 210 forming the annular rail in the horizontal plane is the horizontal direction, but the normal direction of the rail surface 210 may be the vertical direction or any other direction.
 固定子200において、レール面210に対して垂直な上面または下面に設けられる測位部220には、可動子300に取り付けられる測位対象としての磁気スケール(不図示)の位置を測定可能な複数の磁気測位装置(不図示)が連続的にまたは周期的に埋設されている。一定ピッチの縞状の磁気パターンによって形成される磁気スケールを測位対象とする磁気測位装置は、一般的に複数の磁気検出ヘッドを備える。磁気スケールの磁気パターンのピッチまたは周期に対して、複数の磁気検出ヘッドの間隔をずらすことによって、磁気測位装置は磁気スケールの位置を高精度に測定できる。二つの磁気検出ヘッドが設けられる典型的な磁気測位装置では、例えば、二つの磁気検出ヘッドの間隔が磁気スケールの磁気パターンに対して1/4ピッチずれている(位相が90度ずれている)。 In the stator 200, the positioning unit 220 provided on the upper surface or the lower surface perpendicular to the rail surface 210 has a plurality of magnetic scales (not shown) attached to the mover 300 that can measure the position of a magnetic scale (not shown) as a positioning target. A positioning device (not shown) is continuously or periodically embedded. A magnetic positioning device for positioning a magnetic scale formed by a striped magnetic pattern with a constant pitch generally includes a plurality of magnetic detection heads. The magnetic positioning device can measure the position of the magnetic scale with high accuracy by shifting the intervals of the plurality of magnetic detection heads with respect to the pitch or period of the magnetic pattern of the magnetic scale. In a typical magnetic positioning device provided with two magnetic detection heads, for example, the distance between the two magnetic detection heads is shifted by 1/4 pitch with respect to the magnetic pattern of the magnetic scale (the phase is shifted by 90 degrees). .
 なお、固定子200に設けられる測位装置および可動子300に取り付けられる測位対象は以上のような磁気式に限らず、光学式その他の方式でもよい。光学式の場合、可動子300には一定ピッチの縞模様によって形成される光学スケールが取り付けられ、固定子200には光学スケールの縞模様を光学的に読み取り可能な光学測位装置が設けられる。磁気式や光学式では、測位装置が測位対象(磁気スケールや光学スケール)を非接触で測定するため、可動子300が搬送する被搬送物が飛散して測位箇所(固定子200の上面)に入り込んだ場合の測位装置の故障等のリスクを低減できる。但し、光学式では測位箇所に入り込んだ液体や粉体等の被搬送物によって光学スケールが覆われると測位精度が悪化してしまうため、磁性が無視できる被搬送物であれば測位箇所に入り込んでも測位精度を悪化させない磁気式とするのが好ましい。 It should be noted that the positioning device provided on the stator 200 and the positioning target attached to the mover 300 are not limited to the magnetic type as described above, and may be optical or other type. In the case of the optical type, the mover 300 is attached with an optical scale formed by a striped pattern with a constant pitch, and the stator 200 is provided with an optical positioning device capable of optically reading the striped pattern of the optical scale. In the magnetic type or the optical type, since the positioning device measures the positioning target (magnetic scale or optical scale) without contact, the object conveyed by the mover 300 scatters and reaches the positioning point (top surface of the stator 200). It is possible to reduce the risk of malfunction of the positioning device when it enters. However, with the optical method, if the optical scale is covered by a transported object such as liquid or powder that has entered the positioning location, the positioning accuracy will deteriorate. It is preferable to use a magnetic type that does not deteriorate the positioning accuracy.
 可動子300は、固定子200のレール面210に対向する可動子本体310と、可動子本体310の上部から水平方向に張り出して固定子200の測位部220に対向する被測位部320と、被測位部320とは反対側(固定子200から遠い側)に可動子本体310から水平方向に張り出して被搬送物が載置または固定される搬送部330を備える。可動子本体310は、レールに沿って固定子200のレール面210に埋設されている複数の電磁石と対向する一または複数の永久磁石(不図示)を備える。固定子200の電磁石が発生させる移動磁界が可動子300の永久磁石にレールの接線方向の直線動力を加えるため、可動子300は固定子200に対してレール面210に沿って直線駆動される。 The mover 300 includes a mover main body 310 facing the rail surface 210 of the stator 200, a positioning target portion 320 projecting horizontally from the top of the mover main body 310 and facing the positioning portion 220 of the stator 200, and a positioning target. On the side opposite to the positioning section 320 (the side farther from the stator 200), there is provided a conveying section 330 that protrudes horizontally from the mover main body 310 and on which an object to be conveyed is placed or fixed. The mover main body 310 includes one or more permanent magnets (not shown) facing the plurality of electromagnets embedded in the rail surface 210 of the stator 200 along the rail. Since the moving magnetic field generated by the electromagnet of the stator 200 applies linear force in the rail tangential direction to the permanent magnet of the mover 300 , the mover 300 is linearly driven along the rail surface 210 with respect to the stator 200 .
 可動子300の被測位部320には、測位対象としての磁気スケールや光学スケールが、固定子200の測位部220に設けられる測位装置と対向するように設けられる。測位装置が固定子200の上面に設けられる図5の例では、磁気スケール等の測位対象が可動子300の被測位部320の下面に取り付けられる。測位部220および被測位部320が磁気式の場合、レール面210の電磁石および可動子本体310の永久磁石の間の磁界が、測位部220および被測位部320の磁気測位に影響しないように、固定子200においてはレール面210と測位部220を異なる面または離れた箇所に形成し、可動子300においては可動子本体310と被測位部320を異なる面または離れた箇所に形成するのが好ましい。 A magnetic scale or an optical scale as a positioning target is provided on the positioning target portion 320 of the mover 300 so as to face the positioning device provided on the positioning portion 220 of the stator 200 . In the example of FIG. 5 in which the positioning device is provided on the upper surface of the stator 200 , a positioning target such as a magnetic scale is attached to the lower surface of the positioning target portion 320 of the mover 300 . When the positioning unit 220 and the positioning target unit 320 are magnetic, the magnetic field between the electromagnet of the rail surface 210 and the permanent magnet of the mover body 310 does not affect the magnetic positioning of the positioning unit 220 and the positioning target unit 320. In the stator 200, it is preferable to form the rail surface 210 and the positioning part 220 on different surfaces or in a separate place, and in the mover 300, form the mover main body 310 and the positioning part 320 on different surfaces or in a separate place. .
 図6は、産業システムの一例である印刷装置10の構成を示す。印刷装置10は、ブラック(K)の印刷を行う第1印刷ユニット11A、シアン(C)の印刷を行う第2印刷ユニット11B、マゼンタ(M)の印刷を行う第3印刷ユニット11C、イエロー(Y)の印刷を行う第4印刷ユニット11D、図1におけるマスタノード3が設けられる(見当)制御装置30を備える。以下では第1印刷ユニット11A~第4印刷ユニット11Dを印刷ユニット11と総称する。なお、各印刷ユニット11の印刷色は上記に限らず、任意の印刷色を任意の順序で各印刷ユニット11に割り当てることができる。また、より多くの色を印刷するため、印刷ユニットを5個以上設けてもよい。 FIG. 6 shows the configuration of a printing device 10 as an example of an industrial system. The printing apparatus 10 includes a first printing unit 11A for printing black (K), a second printing unit 11B for printing cyan (C), a third printing unit 11C for printing magenta (M), and a yellow (Y ), and a (register) control device 30 provided with the master node 3 in FIG. The first printing unit 11A to the fourth printing unit 11D are collectively referred to as the printing unit 11 below. Note that the printing colors of each printing unit 11 are not limited to the above, and arbitrary printing colors can be assigned to each printing unit 11 in an arbitrary order. Moreover, in order to print more colors, five or more printing units may be provided.
 第1印刷ユニット11Aは、第1版胴13A、第1圧胴17A、第1駆動モータ19A、第1エンコーダ21A、第1マークセンサ23Aを備える。第2印刷ユニット11Bは、第2版胴13B、第2圧胴17B、第2駆動モータ19B、第2エンコーダ21B、第2マークセンサ23Bを備える。第3印刷ユニット11Cは、第3版胴13C、第3圧胴17C、第3駆動モータ19C、第3エンコーダ21C、第3マークセンサ23Cを備える。第4印刷ユニット11Dは、第4版胴13D、第4圧胴17D、第4駆動モータ19D、第4エンコーダ21D、第4マークセンサ23Dを備える。以下では第1版胴13A~第4版胴13Dを版胴13と総称し、第1圧胴17A~第4圧胴17Dを圧胴17と総称し、第1駆動モータ19A~第4駆動モータ19Dを駆動モータ19と総称し、第1エンコーダ21A~第4エンコーダ21Dをエンコーダ21と総称し、第1マークセンサ23A~第4マークセンサ23Dをマークセンサ23と総称する。 The first printing unit 11A includes a first plate cylinder 13A, a first impression cylinder 17A, a first drive motor 19A, a first encoder 21A, and a first mark sensor 23A. The second printing unit 11B includes a second plate cylinder 13B, a second impression cylinder 17B, a second drive motor 19B, a second encoder 21B, and a second mark sensor 23B. The third printing unit 11C includes a third plate cylinder 13C, a third impression cylinder 17C, a third drive motor 19C, a third encoder 21C, and a third mark sensor 23C. The fourth printing unit 11D includes a fourth plate cylinder 13D, a fourth impression cylinder 17D, a fourth drive motor 19D, a fourth encoder 21D and a fourth mark sensor 23D. Hereinafter, the first plate cylinder 13A to the fourth plate cylinder 13D are collectively referred to as the plate cylinder 13, the first impression cylinder 17A to the fourth impression cylinder 17D are collectively referred to as the impression cylinder 17, and the first drive motor 19A to the fourth drive motor. 19D is collectively called the drive motor 19, the first encoder 21A to the fourth encoder 21D are collectively called the encoder 21, and the first mark sensor 23A to the fourth mark sensor 23D are collectively called the mark sensor .
 印刷装置10は、巻取紙であるウェブ50を被印刷物として印刷する。各印刷ユニット11は、ウェブ50の移動方向に沿って設置される。ウェブ50は、その移動経路に沿って配列されるガイドローラ25により案内され、各印刷ユニット11の版胴13及び圧胴17により、版胴13に巻き付けられた刷版に対応した各色の絵柄が順次印刷される。 The printing device 10 prints on the web 50, which is a roll of paper, as a print material. Each printing unit 11 is installed along the moving direction of the web 50 . The web 50 is guided by the guide rollers 25 arranged along its moving path, and the printing cylinders 13 and impression cylinders 17 of each printing unit 11 produce images of respective colors corresponding to the printing plates wound around the printing cylinder 13 . Printed sequentially.
 版胴13は、見当制御のためにマークセンサ23によって測定されるレジスタマークを印刷するマーク印刷部15を有する。第1印刷ユニット11Aのマーク印刷部15は、同一のウェブ50に追い刷りを行う際の基準マークも印刷する。基準マークは、印刷完了後のウェブ50の裁断位置を示すこともあり、カットマークとも呼ばれる。第1レジスタマークは、第1版胴13Aのマーク印刷部15で所定の第1位置に印刷され、第2レジスタマークは、第2版胴13Bのマーク印刷部15で所定の第2位置に印刷され、第3レジスタマークは、第3版胴13Cのマーク印刷部15で所定の第3位置に印刷され、第4レジスタマークは、第4版胴13Dのマーク印刷部15で所定の第4位置に印刷される。以下では第1レジスタマーク~第4レジスタマークをレジスタマークと総称する。 The plate cylinder 13 has a mark printing section 15 that prints register marks that are measured by the mark sensor 23 for register control. The mark printing section 15 of the first printing unit 11A also prints reference marks for additional printing on the same web 50 . The reference mark may indicate the cutting position of the web 50 after printing is completed, and is also called cut mark. The first register mark is printed at a predetermined first position by the mark printing section 15 of the first plate cylinder 13A, and the second register mark is printed at a predetermined second position by the mark printing section 15 of the second plate cylinder 13B. The third register mark is printed at a predetermined third position by the mark printing section 15 of the third plate cylinder 13C, and the fourth register mark is printed at a predetermined fourth position by the mark printing section 15 of the fourth plate cylinder 13D. printed on Hereinafter, the first to fourth register marks are collectively referred to as register marks.
 各版胴13の周長は同一であり、各印刷ユニット11は各版胴13を一回転させることで各色の絵柄を一回分印刷し、その繰り返しで連続的に印刷する。各版胴13は、図1におけるスレーブノード4を構成するモータドライバによって制御される個別の駆動モータ19で回転駆動される。印刷装置10の印刷動作中、制御装置30(マスタノード3)の制御下でモータドライバ(スレーブノード4)を通じて各駆動モータ19は電気的に回転同期がとられ、各版胴13は同一の回転速度で回転する。すなわち、印刷装置10は、セクショナルドライブ方式で構成される。各駆動モータ19は、その機械軸に図1におけるスレーブノード4を構成するエンコーダ21が設けられる。 The circumference of each printing cylinder 13 is the same, and each printing unit 11 prints a picture of each color once by rotating each printing cylinder 13 once, and prints continuously by repeating this process. Each plate cylinder 13 is rotationally driven by a separate drive motor 19 controlled by a motor driver that constitutes slave node 4 in FIG. During the printing operation of the printing device 10, each drive motor 19 is electrically synchronized through the motor driver (slave node 4) under the control of the control device 30 (master node 3), and each plate cylinder 13 rotates in the same manner. rotate at speed. That is, the printing apparatus 10 is configured with a sectional drive system. Each drive motor 19 is provided with an encoder 21 that constitutes the slave node 4 in FIG. 1 on its mechanical axis.
 エンコーダ21は、インクリメンタル式エンコーダである。エンコーダ21は、版胴13の一回転につき、予め定められた回数のA相、B相のパルス信号と、一回のZ相のパルス信号を出力する。A相、B相のパルス信号はカウンタでカウントされ、Z相のパルス信号でカウント値がリセットされる。パルス信号のカウント値により版胴13の位相(回転位置)が検知される。なお、エンコーダ21は、版胴13の位相を検知できるものであれば方式は問わず、アブソリュート式のシリアルエンコーダでもよい。なお、図1におけるスレーブノード4を構成するエンコーダ21やマークセンサ23に加えて、駆動モータ19(スレーブノード4としてのモータドライバ)の駆動対象としての版胴13やウェブ50の位置、速度、加速度、圧胴17がウェブ50に加える圧力、ウェブ50の張力、印刷装置10の周りの温度、湿度、気圧、輝度等を測定するセンサをスレーブノード4として設けてもよい。 The encoder 21 is an incremental encoder. The encoder 21 outputs a predetermined number of A-phase and B-phase pulse signals and one Z-phase pulse signal for each rotation of the plate cylinder 13 . The A-phase and B-phase pulse signals are counted by a counter, and the Z-phase pulse signal resets the count value. The phase (rotational position) of the plate cylinder 13 is detected from the count value of the pulse signal. The encoder 21 may be of any type as long as it can detect the phase of the plate cylinder 13, and may be an absolute type serial encoder. In addition to the encoder 21 and mark sensor 23 that constitute the slave node 4 in FIG. , the pressure applied to the web 50 by the impression cylinder 17, the tension of the web 50, the temperature, humidity, atmospheric pressure, brightness, etc. around the printing apparatus 10 may be provided as slave nodes 4. FIG.
 以上、本発明を実施形態に基づいて説明した。実施形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiments. It should be understood by those skilled in the art that the embodiments are examples, and that various modifications can be made to combinations of each component and each treatment process, and such modifications are also within the scope of the present invention.
 なお、実施形態で説明した各装置の機能構成はハードウェア資源またはソフトウェア資源により、あるいはハードウェア資源とソフトウェア資源の協働により実現できる。ハードウェア資源としてプロセッサ、ROM、RAM、その他のLSIを利用できる。ソフトウェア資源としてオペレーティングシステム、アプリケーション等のプログラムを利用できる。 Note that the functional configuration of each device described in the embodiments can be realized by hardware resources or software resources, or by cooperation between hardware resources and software resources. Processors, ROMs, RAMs, and other LSIs can be used as hardware resources. Programs such as operating systems and applications can be used as software resources.
 本発明は、マスタノードとスレーブノードを備えるシステムにおける終端設定装置等に関する。 The present invention relates to a termination setting device and the like in a system comprising a master node and slave nodes.
 1 終端設定装置、3 マスタノード、4 スレーブノード、5 終端設定フレーム、31 終端設定フレーム送信部、32 終端設定フレーム受信部、41 終端設定フレーム受信部、42 終端指定情報確認部、43 終端設定フレーム再送信部、44 終端設定部、45 終端設定フレーム返送部、53 接続態様情報、54 スレーブ数情報、55 終端指定情報。 1 Termination setting device 3 Master node 4 Slave node 5 Termination setting frame 31 Termination setting frame transmitter 32 Termination setting frame receiver 41 Termination setting frame receiver 42 Termination designation information confirmation unit 43 Termination setting frame 44 Termination setting unit 45 Termination setting frame return unit 53 Connection mode information 54 Number of slaves information 55 Termination designation information.

Claims (7)

  1.  マスタノードと、当該マスタノードを始端ノードとして直列に接続された一または複数のスレーブノードと、を備え、
     前記マスタノードは、前記スレーブノードにおける終端ノードを指定する終端指定情報を含む終端設定フレームを送信する終端設定フレーム送信部を備え、
     前記スレーブノードは、
     隣接する前段のノードから受信した前記終端設定フレームに含まれる前記終端指定情報が自身を終端ノードとして指定するか否かを確認する終端指定情報確認部と、
     前記終端指定情報が自身を終端ノードとして指定する場合、前記前段のノードから受信するフレームを当該前段のノードに折り返す通信経路を設定する終端設定部と、
     前記終端指定情報が自身を終端ノードとして指定しない場合、前記終端設定フレームを隣接する後段のスレーブノードに再送信する終端設定フレーム再送信部と、
     を備える、
     終端設定装置。
    A master node and one or more slave nodes connected in series with the master node as a starting node,
    The master node comprises a termination setting frame transmitting unit that transmits a termination setting frame including termination designation information designating a termination node in the slave node,
    The slave node is
    a termination designation information confirmation unit for confirming whether or not the termination designation information included in the termination setting frame received from the adjacent preceding node designates itself as a termination node;
    a termination setting unit configured to set a communication path for returning a frame received from the preceding node to the preceding node when the termination designation information designates itself as a termination node;
    a termination setting frame retransmitting unit that retransmits the termination setting frame to an adjacent subsequent slave node when the termination designation information does not specify itself as a termination node;
    comprising a
    Termination setting device.
  2.  前記終端設定フレームは、直列に接続された前記スレーブノードの数を示すスレーブ数情報を含む、請求項1に記載の終端設定装置。 The termination setting device according to claim 1, wherein said termination setting frame includes slave number information indicating the number of said slave nodes connected in series.
  3.  前記終端設定フレームは、前記スレーブノードが直列に接続されていることを示す接続態様情報を含む、請求項1または2に記載の終端設定装置。 The termination setting device according to claim 1 or 2, wherein the termination setting frame includes connection mode information indicating that the slave nodes are connected in series.
  4.  前記終端設定フレームの長さは、各ノード間の通信のための通信フレームと同じである、請求項1から3のいずれかに記載の終端設定装置。 The termination setting device according to any one of claims 1 to 3, wherein the length of the termination setting frame is the same as a communication frame for communication between nodes.
  5.  前記マスタノードおよび前記スレーブノードの少なくともいずれかは産業装置に設けられる、請求項1から4のいずれかに記載の終端設定装置。 The termination setting device according to any one of claims 1 to 4, wherein at least one of said master node and said slave node is provided in an industrial device.
  6.  マスタノードを始端ノードとして直列に接続された一または複数のスレーブノードにおける終端ノードを指定する終端指定情報を含む終端設定フレームを、当該マスタノードから隣接する後段のスレーブノードに送信し、
     隣接する前段のノードから前記終端設定フレームを受信したスレーブノードは、
     前記終端指定情報が自身を終端ノードとして指定する場合、前記前段のノードから受信するフレームを当該前段のノードに折り返す通信経路を設定し、
     前記終端指定情報が自身を終端ノードとして指定しない場合、前記終端設定フレームを隣接する後段のスレーブノードに再送信する、
     終端設定方法。
    transmitting a termination setting frame including termination designation information designating a termination node in one or more slave nodes serially connected with the master node as the starting node, from the master node to an adjacent subsequent slave node;
    A slave node that receives the termination setting frame from an adjacent preceding node,
    when the termination designation information designates itself as a terminal node, setting a communication path for looping back a frame received from the preceding node to the preceding node;
    If the termination designation information does not designate itself as a termination node, resend the termination setting frame to an adjacent subsequent slave node;
    Termination setting method.
  7.  マスタノードを始端ノードとして直列に接続された一または複数のスレーブノードにおける終端ノードを指定する終端指定情報を含む終端設定フレームを、当該マスタノードから隣接する後段のスレーブノードに送信させ、
     隣接する前段のノードから前記終端設定フレームを受信したスレーブノードに、
     前記終端指定情報が自身を終端ノードとして指定する場合、前記前段のノードから受信するフレームを当該前段のノードに折り返す通信経路を設定させ、
     前記終端指定情報が自身を終端ノードとして指定しない場合、前記終端設定フレームを隣接する後段のスレーブノードに再送信させる、
     終端設定プログラム。
    causing a master node to transmit a termination setting frame including termination designation information designating a termination node in one or more slave nodes connected in series with a master node as a starting node to an adjacent subsequent slave node;
    To the slave node that received the termination setting frame from the adjacent preceding node,
    if the termination designation information designates itself as a termination node, setting a communication path for looping back a frame received from the preceding node to the preceding node;
    If the termination designation information does not designate itself as a termination node, retransmit the termination setting frame to an adjacent subsequent slave node;
    Termination setting program.
PCT/JP2022/042118 2021-12-01 2022-11-11 Termination setting device, termination setting method, and termination setting program WO2023100623A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-195351 2021-12-01
JP2021195351 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023100623A1 true WO2023100623A1 (en) 2023-06-08

Family

ID=86612075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042118 WO2023100623A1 (en) 2021-12-01 2022-11-11 Termination setting device, termination setting method, and termination setting program

Country Status (2)

Country Link
TW (1) TW202324004A (en)
WO (1) WO2023100623A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013240122A (en) * 2013-09-05 2013-11-28 Toshiba Corp Network system, control method of network system, transmission station, and program of transmission station
WO2019069401A1 (en) * 2017-10-04 2019-04-11 三菱電機株式会社 Network management system and network management method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013240122A (en) * 2013-09-05 2013-11-28 Toshiba Corp Network system, control method of network system, transmission station, and program of transmission station
WO2019069401A1 (en) * 2017-10-04 2019-04-11 三菱電機株式会社 Network management system and network management method

Also Published As

Publication number Publication date
TW202324004A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
EP2897801B1 (en) Enhanced roller registration systems and associated structures
CN106170422B (en) The method of trolley conveyer system and manufacture article
JP4260108B2 (en) Driving device and method for driving processing machine
JP6111288B2 (en) Arrangement and method for handling electronic components
EP1892872A2 (en) Error check for master-slave data transfer
JP6349687B2 (en) Encoder and servo system
JP5497730B2 (en) Wireless communication system, wireless communication apparatus, and wireless communication method
CN101204869B (en) Printing press with printing plate manipulation device
US20230015917A1 (en) Data transmission in a linear transport system
CN108306556B (en) Motor operation control system, multi-axis machine, and motor operation control method
US20070205910A1 (en) Wireless motion control system
WO2023100623A1 (en) Termination setting device, termination setting method, and termination setting program
US20020049506A1 (en) Sensor system for detecting location/position and/or speed and/or acceleration, drive control system based on this, and method of networking a control unit with one or more sensor systems
US5420485A (en) Uncoordinated machine initialization system and method
WO2023100699A1 (en) Delay measurement device, delay measurement method, and delay measurement program
JP4833833B2 (en) Driving device and driving method for controlling unit of printing press
JP2012145359A (en) Encoder signal processor
US11181881B2 (en) Motor control system, control method, and motor control apparatus
KR101664155B1 (en) Servo apparatus using dual feedback control
EP4050918A1 (en) Motor-driven conveyor-roller controller, system comprising such a controller and method for operating a motor roller
US9207707B2 (en) Automated system and method for synchronizing an automated system
JP4118695B2 (en) Numerical control system
JPH11149308A (en) Motor controller for automatic machine
WO2023106038A1 (en) Monitoring target data storage device, monitoring target data storage method, and monitoring target data storage program
CN100501618C (en) Self-synchronous alternating current servo system combined with high-speed serial communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901056

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023564847

Country of ref document: JP