JP2003180095A - Controller of voltage driven pwm inverter - Google Patents

Controller of voltage driven pwm inverter

Info

Publication number
JP2003180095A
JP2003180095A JP2001373712A JP2001373712A JP2003180095A JP 2003180095 A JP2003180095 A JP 2003180095A JP 2001373712 A JP2001373712 A JP 2001373712A JP 2001373712 A JP2001373712 A JP 2001373712A JP 2003180095 A JP2003180095 A JP 2003180095A
Authority
JP
Japan
Prior art keywords
inverter
carrier frequency
pwm
electric motor
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001373712A
Other languages
Japanese (ja)
Inventor
Shiyouji Kano
紹次 狩野
Toshiaki Shinohara
俊朗 篠原
Tatsuo Matsumura
達雄 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Hitachi Unisia Automotive Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Unisia Automotive Ltd filed Critical Hitachi Unisia Automotive Ltd
Priority to JP2001373712A priority Critical patent/JP2003180095A/en
Publication of JP2003180095A publication Critical patent/JP2003180095A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a voltage driven PWM inverter for controlling a motor in which the control performance and durability of an inverter element are enhanced. <P>SOLUTION: When the output frequency ωm of an inverter (proportional to a rotational speed) multiplied by a constant Kf is lower than a PWM carrier frequency Fpl at the time of low rotation, a PWM carrier frequency Fp is decreased gradually to Fpl (S1-S4→S8) and when it is not lower than the PWM carrier frequency Fpl at the time of low rotation, the PWM carrier frequency Fp is increased gradually to FpH (S1→S5-S7→S8). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電動機を原動機と
する電気自動車やハイブリッド自動車等に搭載されて、
直流電流を交流電流に変換して交流電動機を駆動制御す
るインバータの制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is mounted on an electric vehicle, a hybrid vehicle or the like which uses an electric motor as a prime mover,
The present invention relates to an inverter control device that converts a direct current into an alternating current to drive and control an alternating current motor.

【0002】[0002]

【従来の技術】前記インバータは、搬送波直流電流をパ
ルス幅変調により交流電流に変換して電動機に出力し、
前記パルス幅変調による周波数可変制御により交流電流
の周波数を可変として電動機の回転速度を制御してい
る。従来、PWM搬送波周波数は、一般に電動機の回転
速度制御とは無関係に一定に設定されている。
2. Description of the Related Art The inverter converts a carrier direct current into an alternating current by pulse width modulation and outputs the alternating current to a motor,
The rotation speed of the electric motor is controlled by changing the frequency of the alternating current by the frequency variable control by the pulse width modulation. Conventionally, the PWM carrier frequency is generally set constant regardless of the rotation speed control of the electric motor.

【0003】特開平9−46819号公報には、ハイブ
リッド車両のアイドルストップ時に、音振違和感を抑制
するため、PWM搬送波周波数を可変制御し、かつ周波
数を高めにしてインバータの作動音を大きくすることが
記載されているが、このように、PWM搬送波周波数が
高めに設定されると、アイドルストップ中のような低速
度領域で不必要にPWM搬送波周波数の設定が高くなる
ことに伴い、素子のスイッチ(ON/OFF切換)回数
が増大し、電力損失(ターンオン/ターンオフ損失)が
増大すると共に、発熱量が増大して素子の劣化が早めら
れる。
Japanese Patent Laid-Open Publication No. 9-46819 discloses that the PWM carrier frequency is variably controlled and the operating noise of the inverter is increased to suppress the feeling of strange sound when the hybrid vehicle is idle stopped. However, if the PWM carrier frequency is set higher in this way, the setting of the PWM carrier frequency becomes unnecessarily high in the low speed region such as during idle stop, and the switch of the element is The number of (ON / OFF switching) increases, the power loss (turn-on / turn-off loss) increases, and the amount of heat generation increases, which accelerates the deterioration of the element.

【0004】また、電圧駆動型PWMインバータの場
合、PWM搬送波のパルス幅をデューティ制御で変える
ことにより駆動電圧を連続的に変化させて、電動機の駆
動電流(トルク)を制御しているので、PWM搬送波周
波数を高くすると、パルス間隔自体が短くなって、分解
能が低下する。特に、電動機は低回転ほど電流レンジが
広くなる特性を有しているため、低回転領域では電流の
ダイナミックレンジが広く、パルス幅による電流の制御
分解能が極端に悪くなる。
In the case of a voltage-driven PWM inverter, the pulse width of the PWM carrier wave is changed by duty control to continuously change the drive voltage to control the drive current (torque) of the electric motor. When the carrier frequency is increased, the pulse interval itself is shortened and the resolution is lowered. Particularly, since the electric motor has a characteristic that the current range becomes wider as the rotation speed becomes lower, the dynamic range of the current becomes wider in the low rotation region, and the control resolution of the current due to the pulse width becomes extremely poor.

【0005】上記電動機の低速制御域での要求に合わせ
て、PWM搬送波周波数を低めに設定すると、高速にな
るほどインバータで変換される交流電流波形のひずみが
大きくなって、最高回転速度が制限されてしまう。本発
明は、このような従来の課題に着目してなされたもの
で、電動機の制御性能およびインバータ素子の耐久性が
向上するようにしたインバータの制御装置を提供するこ
とを目的とする。
If the PWM carrier frequency is set to a low value in accordance with the demand in the low speed control range of the electric motor, the higher the speed, the larger the distortion of the AC current waveform converted by the inverter, and the maximum rotation speed is limited. I will end up. The present invention has been made in view of such conventional problems, and an object thereof is to provide an inverter control device in which control performance of an electric motor and durability of an inverter element are improved.

【0006】[0006]

【課題を解決するための手段】このため、請求項1に係
る発明は、電動機制御用の電圧駆動型PWMインバータ
において、PWM搬送波周波数を、インバータ出力周波
数が低いときは低くし、インバータ出力周波数が高いと
きは高くすることを特徴とする。
Therefore, in the invention according to claim 1, in a voltage-driven PWM inverter for controlling a motor, the PWM carrier frequency is lowered when the inverter output frequency is low, and the inverter output frequency is reduced. When it is high, it is characterized by making it high.

【0007】請求項1に係る発明によると、前記PWM
搬送波周波数を低くすることにより、電力損失を低減で
きインバータ素子の耐久性を向上できると共に、電流制
御の分解能を向上できる。また、電動機の高回転制御時
は、PWM搬送波周波数を高くすることにより、インバ
ータによって変換される交流電流の波形を正弦波に近づ
けることができ、ひいては電動機の最高回転速度を高く
制御できる。
According to the invention of claim 1, the PWM is
By lowering the carrier frequency, it is possible to reduce power loss, improve the durability of the inverter element, and improve the resolution of current control. Further, during high rotation control of the electric motor, by increasing the PWM carrier frequency, the waveform of the alternating current converted by the inverter can be approximated to a sine wave, and thus the maximum rotation speed of the electric motor can be controlled to be high.

【0008】また、請求項2に係る発明は、PWM搬送
波周波数の下限値をトルクリプル影響の小さい範囲での
下限周波数近傍に設定することを特徴とする。請求項2
に係る発明によると、搬送波周波数を低くしすぎるとき
に生じるトルクリプル現象を抑制することができ、安定
したトルク制御を行える。
The invention according to claim 2 is characterized in that the lower limit value of the PWM carrier frequency is set near the lower limit frequency in the range where the influence of torque ripple is small. Claim 2
According to the present invention, it is possible to suppress the torque ripple phenomenon that occurs when the carrier wave frequency is made too low, and to perform stable torque control.

【0009】また、請求項3に係る発明は、インバータ
の素子温度を検出し、該素子温度が高すぎるときは、電
動機の高回転制御時でもPWM搬送波周波数を低くする
ことを特徴とする。請求項3に係る発明によると、素子
温度検出によるフェールセーフを行うことで素子の熱破
壊を回避し、かつ、耐久性を確保することができる。
The invention according to claim 3 is characterized in that the element temperature of the inverter is detected, and when the element temperature is too high, the PWM carrier frequency is lowered even during high rotation control of the electric motor. According to the third aspect of the present invention, by performing fail-safe by detecting the element temperature, it is possible to avoid thermal destruction of the element and ensure durability.

【0010】また、請求項4に係る発明は、インバータ
の素子温度を、インバータ本体に設けた温度センサによ
り直接検出することを特徴とする。また、請求項5に係
る発明は、インバータの素子温度を、インバータ本体を
冷却する冷却水温度を検出する温度センサにより間接的
に検出することを特徴とする。
The invention according to claim 4 is characterized in that the element temperature of the inverter is directly detected by a temperature sensor provided in the inverter body. The invention according to claim 5 is characterized in that the element temperature of the inverter is indirectly detected by a temperature sensor for detecting the temperature of cooling water for cooling the inverter body.

【0011】また、請求項6に係る発明は、インバータ
の素子を流れる電流と電動機への通電電流とを検出し、
これら検出値に基づいて算出される電力損失の積算値に
よってインバータの素子温度を推定して検出することを
特徴とする。請求項4、請求項5または請求項6に係る
発明によると、インバータの素子温度を直接または間接
的に検出することができる。
Further, the invention according to claim 6 detects the current flowing through the element of the inverter and the current flowing to the electric motor,
It is characterized in that the element temperature of the inverter is estimated and detected by the integrated value of the power loss calculated based on these detected values. According to the invention according to claim 4, claim 5 or claim 6, the element temperature of the inverter can be detected directly or indirectly.

【0012】また、請求項7に係る発明は、前記電動機
は、自動車に搭載される走行用の電動機であることを特
徴とする。請求項7に係る発明によると、電気自動車や
ハイブリッド自動車等、回転速度制御範囲の広い電動機
の制御に適用することにより、本発明を特に有効に発揮
できる。
Further, the invention according to claim 7 is characterized in that the electric motor is a traveling electric motor mounted on an automobile. According to the invention of claim 7, the invention can be particularly effectively exerted by being applied to the control of an electric motor having a wide range of rotation speed control such as an electric vehicle and a hybrid vehicle.

【0013】[0013]

【発明の実施の形態】以下に、本発明の実施形態を図に
基づいて説明する。図1は、実施形態にかかるインバー
タ制御装置を搭載した電気自動車のシステム概略構成を
示し、バッテリ1から供給される電力で駆動されるイン
バータ2により、三相交流電動機3のトルク(電流)及
び回転速度が制御される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a system schematic configuration of an electric vehicle equipped with an inverter control device according to an embodiment, in which a torque (current) and a rotation of a three-phase AC motor 3 are driven by an inverter 2 driven by electric power supplied from a battery 1. The speed is controlled.

【0014】図2、図3は、前記インバータ2及び電動
機3の回路構成および動作を示す。図2において、イン
バータ2は、バッテリ1(電源電位VB)にU,V,W相
のスイッチング素子がH,L一対ずつ接続され、H,L
スイッチング素子の接続点に、電動機3のU,V,W相
コイルの外側端子が接続された構成を有している。そし
て、U,V,W相のスイッチング素子を、120°ずつ
位相差を持たせてON、OFFの時間割合(デューテ
ィ)を、周期的に変化させること(パルス幅変調)によ
り、直流電流を三相交流電流に変換する。ここで、平均
ON時間割合によって電動機の出力電流(トルク)を制
御し、ON、OFFの時間割合を変化させる周波数によ
って交流電流の周波数を電動機回転数×極数に一致させ
て制御するようになっている。
2 and 3 show circuit configurations and operations of the inverter 2 and the electric motor 3, respectively. In FIG. 2, the inverter 2 has a pair of H, L switching elements of U, V, W phases connected to the battery 1 (power supply potential VB).
It has a configuration in which the outer terminals of the U-, V-, and W-phase coils of the electric motor 3 are connected to the connection points of the switching elements. Then, the U, V, and W phase switching elements are provided with a phase difference of 120 °, and the ON / OFF time ratio (duty) is periodically changed (pulse width modulation) to generate a direct current of three. Convert to phase alternating current. Here, the output current (torque) of the electric motor is controlled according to the average ON time ratio, and the frequency of the AC current is controlled by matching the frequency of the ON / OFF time with the electric motor rotation speed × pole number. ing.

【0015】図2(A)は図3のA点の状態を示し、こ
のとき、U相のH側スイッチング素子をON、V,W相
のH側スイッチング素子をOFF、U相のL側スイッチ
ング素子をOFF、V,W相のL側スイッチング素子を
ONであり、図2(A)の矢印に示すように、電流がU
相からV,W相に分岐して流れる。図2(B)は図3の
B点の状態を示し、このとき、U相のH側スイッチング
素子をOFF、V,W相のH側スイッチング素子をO
N、U相のL側スイッチング素子をON、V,W相のL
側スイッチング素子をOFFであり、図2(B)の矢印
に示すように、電流がV,W相からU相に合流して流れ
る。
FIG. 2A shows the state of point A in FIG. 3, in which the U-phase H-side switching element is turned ON, the V and W-phase H-side switching elements are turned OFF, and the U-phase L-side switching element is turned ON. The element is OFF and the V- and W-phase L-side switching elements are ON, and the current is U as shown by the arrow in FIG.
The phase branches into V and W phases. FIG. 2B shows the state of point B in FIG. 3, in which the U-phase H-side switching element is turned off and the V- and W-phase H-side switching elements are turned off.
ON the L side switching element of N and U phases, L of V and W phases
The side switching element is OFF, and current flows from the V and W phases to the U phase in a merged manner, as shown by the arrow in FIG.

【0016】かかる基本的な制御に加えて、本発明では
電動機の回転速度、すなわちインバータの出力周波数に
応じたPWM搬送波周波数の可変制御を行う。PWM搬
送波の周波数可変制御の第1の実施形態を、図4のフロ
ーチャートに従って説明する。ステップ1では、電動機
の回転速度の極数倍である電気角周波数ωmの予め設定
された任意の定数Kf倍が低回転時PWM搬送波周波数
Fplより大きいか否かを判定する。
In addition to such basic control, the present invention performs variable control of the PWM carrier frequency according to the rotation speed of the electric motor, that is, the output frequency of the inverter. A first embodiment of variable frequency control of a PWM carrier will be described with reference to the flowchart of FIG. In step 1, it is determined whether or not a preset arbitrary constant Kf times the electrical angular frequency ωm, which is the number of poles times the rotation speed of the electric motor, is greater than the PWM carrier frequency Fpl during low rotation.

【0017】Kf×ωm>Fplと判定されたとき、つまり
高速回転制御時は、ステップ2へ進み、周波数変更カウ
ンタのカウント値CNTが高回転時用PWM搬送波周波
数Fphと低回転時用PWM搬送波周波数Fplとの差(=
Fph−Fpl)以上であるかを判定する。そして、CNT
≧Fph−Fplと判定されたときは、ステップ3へ進んで
カウント値CNTをCNT=Fph−Fplとして制限し、
CNT<Fph−Fplと判定されたときは、ステップ4ヘ
進んでカウント値CNTを所定値dltfずつ増大する(C
NT←CNT+dltf)。
When it is determined that Kf × ωm> Fpl, that is, during high speed rotation control, the routine proceeds to step 2, where the count value CNT of the frequency change counter is the PWM carrier frequency Fph for high rotation and the PWM carrier frequency for low rotation. Difference from Fpl (=
Fph-Fpl) or more is determined. And CNT
When it is determined that ≧ Fph−Fpl, the routine proceeds to step 3, where the count value CNT is limited as CNT = Fph−Fpl,
When it is determined that CNT <Fph-Fpl, the routine proceeds to step 4, where the count value CNT is increased by a predetermined value dltf (C
NT ← CNT + dltf).

【0018】また、ステップ1でKf×ωm≦Fplと判定
されたとき、つまり低速回転制御時は、ステップ5へ進
み、カウント値CNTが0以下であるかを判定し、CN
T≦0のときはCNT=0に制限し、CNT>0のとき
はステップ6ヘ進んでカウント値CNTを所定値dltfず
つ減少する(CNT←CNT−dltf)。そして、ステッ
プ5でPWM搬送波周波数Fpを、低回転時用PWM搬
送波周波数Fplにカウント値CNTを加算した値に設定
する。
Further, when it is determined in step 1 that Kf × ωm ≦ Fpl, that is, during low speed rotation control, the process proceeds to step 5 and it is determined whether the count value CNT is 0 or less, and CN
When T ≦ 0, CNT is limited to 0, and when CNT> 0, the process proceeds to step 6 to decrease the count value CNT by a predetermined value dltf (CNT ← CNT−dltf). Then, in step 5, the PWM carrier frequency Fp is set to a value obtained by adding the count value CNT to the low rotation PWM carrier frequency Fpl.

【0019】つまり、電動機の回転速度が100ωm≦
Fplとなる低回転速度に維持されているときは、PWM
搬送波周波数Fpを低回転時用PWM搬送波周波数Fpl
に維持し、回転速度が増大してKf×ωm>Fplとなって
からを徐々に増大させて高回転時用PWM搬送波周波数
Fphまで増大する。この状態から電動機を減速制御して
Kf×ωm≦Fplになると、PWM搬送波周波数Fpを徐
々に減少して低回転時用搬送波周波数Fplまで減少す
る。
That is, the rotation speed of the electric motor is 100Ωm ≦
When the low rotation speed of Fpl is maintained, PWM
The carrier frequency Fp is the PWM carrier frequency Fpl for low rotation.
The rotation speed is increased to Kf × ωm> Fpl, and is gradually increased to the PWM carrier frequency Fph for high rotation. When the motor is decelerated from this state and Kf × ωm ≦ Fpl, the PWM carrier frequency Fp is gradually reduced to the low rotation carrier frequency Fpl.

【0020】このように、低回転時はPWM搬送波周波
数を低周波数Fplに設定することにより、インバータの
スイッチング素子のスイッチ回数を減少させて電力損失
を低減できスイッチング素子の発熱量も減少して熱破壊
を回避でき、かつ、耐久性も向上する(図5(A)参
照)。また、PWM搬送波周波数を低くすることで搬送
波のパルス間隔を大きくすることができるので、電動機
の電流制御分解能を高い値に維持できる(図5(B)参
照)。
As described above, by setting the PWM carrier frequency to the low frequency Fpl at the time of low rotation, the number of times of switching of the switching element of the inverter can be reduced to reduce the power loss and the heat generation amount of the switching element is also reduced. Breakage can be avoided and durability is also improved (see FIG. 5A). Further, since the pulse interval of the carrier can be increased by lowering the PWM carrier frequency, the current control resolution of the electric motor can be maintained at a high value (see FIG. 5 (B)).

【0021】ただし、PWM搬送波周波数を低くしすぎ
ると、通電断続周期が大きくなってトルクリプルの影響
が出るので、該影響が出ないように最低周波数(本実施
形態ではFpl)を設定する。一方、高速回転制御時はP
WM搬送波周波数Fpを高周波数Fphに設定することに
より、交流電流の波形をできるだけ正弦波に近づけるこ
とができる(図6参照)。すなわち、高速回転になるほ
ど、単位時間当たりの駆動電圧変化量が大きくなるた
め、PWM搬送周波数が低いとパルス毎の変化量が大き
くなりすぎて正弦波形状に対するひずみが大きくなる。
ひずみのない正弦波を得るためには、最低でもPWM搬
送波周波数=インバータ出力周波数(=電動機回転速度
/電動機極数)×100倍程度とする必要がある。
However, if the PWM carrier frequency is too low, the energization / interruption period becomes large and the torque ripple is affected. Therefore, the lowest frequency (Fpl in this embodiment) is set so as not to exert the effect. On the other hand, during high speed rotation control, P
By setting the WM carrier frequency Fp to the high frequency Fph, the waveform of the alternating current can be made as close to a sine wave as possible (see FIG. 6). That is, as the rotation speed increases, the amount of change in the drive voltage per unit time increases. Therefore, if the PWM carrier frequency is low, the amount of change for each pulse becomes too large, and the distortion with respect to the sine wave shape becomes large.
In order to obtain a sine wave without distortion, at least PWM carrier frequency = inverter output frequency (= motor rotation speed / motor pole number) × about 100 times is required.

【0022】図7は、電動機特性とPWM搬送波周波数
との関係を示す。次に、PWM搬送波の周波数可変制御
の第2の実施形態について説明する。第2の実施形態
は、基本的な制御は第1の実施形態と同様であるが、フ
ェールセーフ機能を追加する。ハードウエアとして、図
8に示すように、インバータ2のスイッチング素子の温
度を直接検出する素子温度センサ11を配設するか、も
しくは、図で一点鎖線に示すように、インバータを冷却
する水冷システムの冷却水温度の検出を介して間接的に
検出する水温センサ12を配設する。これら、素子温度
センサ11または水温センサ12は、熱電対等で構成す
ることができる。また、素子温度をセンサで検出する代
わりに、図9に示すように、電源電流Ibを検出する電
流センサ21と、電動機3の通電電流Imを検出する電
流センサ22を設け、これら電流Ib、Imから次式のよ
うに算出される素子の電力損失ERから、該電力損失ER
に相関する素子温度を推定してもよい。
FIG. 7 shows the relationship between the motor characteristics and the PWM carrier frequency. Next, a second embodiment of frequency variable control of the PWM carrier wave will be described. The second embodiment has the same basic control as the first embodiment, but adds a fail-safe function. As the hardware, as shown in FIG. 8, an element temperature sensor 11 for directly detecting the temperature of the switching element of the inverter 2 is provided, or as shown by a dashed line in the figure, a water cooling system for cooling the inverter is provided. A water temperature sensor 12 that indirectly detects the temperature of the cooling water is provided. The element temperature sensor 11 or the water temperature sensor 12 can be configured by a thermocouple or the like. Further, instead of detecting the element temperature with a sensor, as shown in FIG. 9, a current sensor 21 for detecting a power supply current Ib and a current sensor 22 for detecting a conduction current Im of the electric motor 3 are provided, and these currents Ib, Im From the power loss ER of the element calculated from
The element temperature that correlates with?

【0023】ER=∫{Ib−(Im実効値)×Vb}dt Im実効値=√2/3×(Im振幅)/2 図10は、第2の実施形態の制御フローを示す。ステッ
プ13以下は、前記第1の実施形態のフローチャートを
示す図4と同様である。ステップ11で前記素子温度セ
ンサ11または水温センサ12によって検出され、もし
くは前記素子の電力損失ERから推定されたインバータ
2の素子温度が異常判定温度未満かを判定し、異常判定
温度未満と判定されたときは、ステップ13以降へ進ん
で、前記第1の実施形態と同様の電動機制御状態に応じ
たPWM搬送波周波数制御を行う。ここで、異常判定温
度は80°C〜100°C程度の温度に設定されてい
る。
ER = ∫ {Ib− (Im effective value) × Vb} dt Im effective value = √2 / 3 × (Im amplitude) / 2 FIG. 10 shows a control flow of the second embodiment. Steps 13 and subsequent steps are the same as those in FIG. 4 showing the flowchart of the first embodiment. In step 11, it is determined whether the element temperature of the inverter 2 detected by the element temperature sensor 11 or the water temperature sensor 12 or estimated from the power loss ER of the element is lower than the abnormality determination temperature, and is determined to be lower than the abnormality determination temperature. In this case, the process proceeds to step 13 and subsequent steps, and the PWM carrier frequency control according to the electric motor control state similar to that of the first embodiment is performed. Here, the abnormality determination temperature is set to a temperature of about 80 ° C to 100 ° C.

【0024】ステップ11でインバータ2の素子温度が
異常判定温度以上と判定されたときはステップ12へ進
んで前記第1の実施形態で説明したカウンタのカウント
値CNTを0にリセットする。これにより、ステップ2
0で設定されるPWM搬送波周波数が低回転時用PWM
搬送波周波数Fplに維持される。すなわち、素子温度が
異常に高くなったときは、電動機の高速制御時であって
もPWM搬送波周波数Fpを低く設定することにより、
スイッチング回数を少なくして発熱を抑制し素子温度の
上昇を抑制して熱破壊を回避し、かつ、耐久性を確保す
る。
When it is determined in step 11 that the element temperature of the inverter 2 is equal to or higher than the abnormality determination temperature, the process proceeds to step 12 and the count value CNT of the counter described in the first embodiment is reset to zero. By doing this, step 2
PWM for low rotation when PWM carrier frequency set by 0
The carrier frequency Fpl is maintained. That is, when the element temperature becomes abnormally high, the PWM carrier frequency Fp is set low even during high-speed control of the electric motor,
The number of times of switching is reduced to suppress heat generation, suppress an increase in element temperature, avoid thermal destruction, and ensure durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態にかかるインバータ制御装置
を搭載した電気自動車のシステム構成を示す図。
FIG. 1 is a diagram showing a system configuration of an electric vehicle equipped with an inverter control device according to an embodiment of the present invention.

【図2】同上実施形態のインバータ及び電動機の回路構
成及び動作を示す図。
FIG. 2 is a diagram showing a circuit configuration and an operation of an inverter and an electric motor of the same embodiment.

【図3】同上インバータ及び電動機の動作を示すタイム
チャート。
FIG. 3 is a time chart showing the operation of the inverter and the electric motor of the same.

【図4】PWM搬送波の周波数制御の第1の実施形態を
示すフローチャート。
FIG. 4 is a flowchart showing a first embodiment of PWM carrier frequency control.

【図5】同上実施形態の低速制御時における電力損失低
減効果及び分解能向上効果を示す図。
FIG. 5 is a diagram showing a power loss reduction effect and a resolution improvement effect during low-speed control according to the same embodiment.

【図6】同上実施形態の高速制御時における交流電流の
波形精度向上効果を示す図。
FIG. 6 is a diagram showing the effect of improving the waveform accuracy of an alternating current during high-speed control according to the same embodiment.

【図7】同上実施形態の電動機特性と搬送波周波数との
関係を示す
FIG. 7 shows the relationship between the motor characteristics and the carrier frequency of the above embodiment.

【図8】PWM搬送波の周波数制御の第2の実施形態に
おけるハードウエア構成を示す図。
FIG. 8 is a diagram showing a hardware configuration in a second embodiment of frequency control of a PWM carrier wave.

【図9】PWM搬送波の周波数制御の第2の実施形態に
おけるハードウエア構成の別の例を示す図。
FIG. 9 is a diagram showing another example of the hardware configuration in the second embodiment of the frequency control of the PWM carrier wave.

【図10】PWM搬送波の周波数制御の第2の実施形態
を示すフローチャート。
FIG. 10 is a flowchart showing a second embodiment of PWM carrier frequency control.

【符号の説明】[Explanation of symbols]

1 バッテリ 2 インバータ 3 電動機 11 素子温度センサ 13 水温センサ 21、22 電流センサ 1 battery 2 inverter 3 electric motor 11 element temperature sensor 13 Water temperature sensor 21, 22 Current sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松村 達雄 神奈川県厚木市恩名1370番地 株式会社ユ ニシアジェックス内 Fターム(参考) 5H007 AA04 AA06 AA08 BB06 CA02 CB02 CB05 CC23 DA03 DB02 DB03 DB13 DC02 DC03 DC08 EA14 HA05 5H115 PA15 PC06 PG04 PI16 PU08 PV09 PV24 QN23 RB22 TO05 TO12 TR02 TU11 TZ01 5H575 AA17 BB04 BB06 BB09 DD03 HA09 HB20 JJ03 JJ04 JJ12 JJ22 LL01 LL22 LL33 5H576 AA15 BB04 BB06 BB09 CC04 DD02 EE15 EE19 HA04 HB02 JJ03 JJ04 JJ12 JJ22 LL01 LL22 LL43    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tatsuo Matsumura             1370 Onna, Atsugi, Kanagawa             Nissia Jex F-term (reference) 5H007 AA04 AA06 AA08 BB06 CA02                       CB02 CB05 CC23 DA03 DB02                       DB03 DB13 DC02 DC03 DC08                       EA14 HA05                 5H115 PA15 PC06 PG04 PI16 PU08                       PV09 PV24 QN23 RB22 TO05                       TO12 TR02 TU11 TZ01                 5H575 AA17 BB04 BB06 BB09 DD03                       HA09 HB20 JJ03 JJ04 JJ12                       JJ22 LL01 LL22 LL33                 5H576 AA15 BB04 BB06 BB09 CC04                       DD02 EE15 EE19 HA04 HB02                       JJ03 JJ04 JJ12 JJ22 LL01                       LL22 LL43

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】電動機制御用の電圧駆動型PWMインバー
タにおいて、 PWM搬送波周波数を、インバータ出力周波数が低いと
きは低くし、インバータ出力周波数が高いときは高くす
ることを特徴とする電圧駆動型PWMインバータの制御
装置。
1. A voltage-driven PWM inverter for controlling a motor, wherein the PWM carrier frequency is low when the inverter output frequency is low, and is high when the inverter output frequency is high. Control device.
【請求項2】PWM搬送波周波数の下限値をトルクリプ
ル影響の小さい範囲での下限周波数近傍に設定すること
を特徴とする請求項1に記載の電圧駆動型PWMインバ
ータの制御装置。
2. The control device for a voltage-driven PWM inverter according to claim 1, wherein the lower limit value of the PWM carrier frequency is set near the lower limit frequency within a range where torque ripple influence is small.
【請求項3】インバータの素子温度を検出し、該素子温
度が高すぎるときは、電動機の高回転制御時でもPWM
搬送波周波数を低くすることを特徴とする請求項1また
は請求項2に記載の電圧駆動型PWMインバータの制御
装置。
3. An inverter element temperature is detected, and when the element temperature is too high, PWM is performed even during high rotation control of an electric motor.
The control device for the voltage-driven PWM inverter according to claim 1 or 2, wherein the carrier frequency is lowered.
【請求項4】インバータの素子温度を、インバータ本体
に設けた温度センサにより直接検出することを特徴とす
る請求項3に記載の電圧駆動型PWMインバータの制御
装置。
4. The control device for a voltage-driven PWM inverter according to claim 3, wherein the element temperature of the inverter is directly detected by a temperature sensor provided in the inverter body.
【請求項5】インバータの素子温度を、インバータ本体
を冷却する冷却水温度を検出する温度センサにより間接
的に検出することを特徴とする請求項3に記載の電圧駆
動型PWMインバータの制御装置。
5. The control device for a voltage-driven PWM inverter according to claim 3, wherein the element temperature of the inverter is indirectly detected by a temperature sensor that detects a cooling water temperature for cooling the inverter body.
【請求項6】インバータの素子を流れる電流と電動機の
通電電流とを検出し、これら検出値に基づいて算出され
る電力損失の積算値によってインバータの素子温度を推
定して検出することを特徴とする請求項3に記載の電圧
駆動型PWMインバータの制御装置。
6. An inverter element temperature is estimated and detected by detecting a current flowing through an element of an inverter and a current flowing through an electric motor, and by integrating a power loss calculated based on these detected values. The control device for the voltage-driven PWM inverter according to claim 3.
【請求項7】前記電動機は、自動車に搭載される走行用
の電動機であることを特徴とする請求項1〜請求項6の
いずれか1つに記載のインバータの制御装置。
7. The control device for an inverter according to claim 1, wherein the electric motor is a traveling electric motor mounted on an automobile.
JP2001373712A 2001-12-07 2001-12-07 Controller of voltage driven pwm inverter Pending JP2003180095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001373712A JP2003180095A (en) 2001-12-07 2001-12-07 Controller of voltage driven pwm inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001373712A JP2003180095A (en) 2001-12-07 2001-12-07 Controller of voltage driven pwm inverter

Publications (1)

Publication Number Publication Date
JP2003180095A true JP2003180095A (en) 2003-06-27

Family

ID=19182384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001373712A Pending JP2003180095A (en) 2001-12-07 2001-12-07 Controller of voltage driven pwm inverter

Country Status (1)

Country Link
JP (1) JP2003180095A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191775A (en) * 2005-01-07 2006-07-20 Mitsubishi Electric Corp Motor device
JP2008120272A (en) * 2006-11-13 2008-05-29 Toyota Motor Corp Vertical take-off/landing aircraft
US7852035B2 (en) 2005-06-03 2010-12-14 Rohm Co., Ltd. Motor drive circuit
KR20120061434A (en) * 2010-12-03 2012-06-13 현대모비스 주식회사 Fault diagnosis apparatus of thermal sensor for hybrid and electronic vehicle and method of the same
JP2014036446A (en) * 2012-08-07 2014-02-24 Fuji Electric Co Ltd Control device for controlling power conversion device
CN110091579A (en) * 2018-01-30 2019-08-06 住友重机械工业株式会社 DC-to-AC converter, roll-to-roll transportation system and motor control system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191775A (en) * 2005-01-07 2006-07-20 Mitsubishi Electric Corp Motor device
JP4717446B2 (en) * 2005-01-07 2011-07-06 三菱電機株式会社 Electric motor device
US7852035B2 (en) 2005-06-03 2010-12-14 Rohm Co., Ltd. Motor drive circuit
JP2008120272A (en) * 2006-11-13 2008-05-29 Toyota Motor Corp Vertical take-off/landing aircraft
US8041471B2 (en) 2006-11-13 2011-10-18 Toyota Jidosha Kabushiki Kaisha Vertical take-off and landing aircraft and vertical take-off and landing aircraft control method
KR20120061434A (en) * 2010-12-03 2012-06-13 현대모비스 주식회사 Fault diagnosis apparatus of thermal sensor for hybrid and electronic vehicle and method of the same
KR101691211B1 (en) * 2010-12-03 2016-12-30 현대모비스 주식회사 Fault diagnosis apparatus of thermal sensor for hybrid and electronic vehicle and method of the same
JP2014036446A (en) * 2012-08-07 2014-02-24 Fuji Electric Co Ltd Control device for controlling power conversion device
CN110091579A (en) * 2018-01-30 2019-08-06 住友重机械工业株式会社 DC-to-AC converter, roll-to-roll transportation system and motor control system

Similar Documents

Publication Publication Date Title
WO2013057854A1 (en) Motor drive system and control method thereof
JP5133834B2 (en) AC motor control device
JP4353304B2 (en) Motor drive control device
US8536810B2 (en) Control device and control method for alternating-current motor
US7898208B2 (en) Control device and corresponding control method for a boost converter in a motor drive system
JP5482574B2 (en) AC motor control system
JP2009291019A (en) Controller for inverter for ac motor
JP2007082281A (en) Controller for power converter circuit
US20120286705A1 (en) Apparatus and method for controlling rotary electric machine
US20160352269A1 (en) Apparatus for controlling rotary electric machine
JP3688227B2 (en) Control device for hybrid vehicle
JP2009027881A (en) Drive control device for semiconductor switching element
JP2009130954A (en) Power converter
JP3683135B2 (en) AC motor drive control device
JP2011050183A (en) Inverter device
JP6080996B1 (en) Electric motor drive system
JP2008259348A (en) Motor control device
JP2003180095A (en) Controller of voltage driven pwm inverter
EP2579447A2 (en) Control device and control method of alternating current motor
JPH05184182A (en) Inverter controller
JP6180578B1 (en) Control device and control method for power conversion device
JP6015346B2 (en) Control device and control method for three-phase AC motor
JP2003189668A (en) Power converter
JP7424058B2 (en) motor control device
JP6165683B2 (en) Inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306