JPH05184182A - Inverter controller - Google Patents

Inverter controller

Info

Publication number
JPH05184182A
JPH05184182A JP4001319A JP131992A JPH05184182A JP H05184182 A JPH05184182 A JP H05184182A JP 4001319 A JP4001319 A JP 4001319A JP 131992 A JP131992 A JP 131992A JP H05184182 A JPH05184182 A JP H05184182A
Authority
JP
Japan
Prior art keywords
inverter
load
motor
circuit
carrier frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4001319A
Other languages
Japanese (ja)
Inventor
Hirohisa Yamamura
博久 山村
Keigo Naoi
啓吾 直井
Sanshiro Obara
三四郎 小原
Ryozo Masaki
良三 正木
Satoshi Ibori
敏 井堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4001319A priority Critical patent/JPH05184182A/en
Publication of JPH05184182A publication Critical patent/JPH05184182A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To perform high-efficiency operation at low load by reducing the carrier frequency, according to car velocity and load, and calm the noise at high load by raising carrier frequency, in the controller of an inverter for an electric rolling stock. CONSTITUTION:An induction motor 15 is driven by performing voltage type PWM control with an inverter 12 through an input filter 19 from a battery 18. A microcomputer 1 operates a speed command value by the revolution N of a motor, and further operates a vector, and outputs three-phase current command value, and ACRs 4, 5, and 6 outputs sine wave voltage command values by the deviation from the actual current value of the motor 15. So, PWMs 9, 10, and 11 generate control signals, comparing the output value of a triangular wave oscillator OSC3 with a sine wave voltage command value, and turns on or turns off IGBT through a gate driver 20. What is more, a logic circuit 2 judges the difference of load condition by a motor current 10 and motor revolution N, and changes the cycle of OSC3, and performs optimum operation from both aspects of efficiency and noise.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気車用インバータに
係り、特に軽負荷時に効率良く走行できる機能を有し、
かつ高負荷時にも低騒音化の可能なインバータ制御装置
に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverter for an electric vehicle, which has a function capable of efficiently traveling especially at light load,
Further, the present invention relates to an inverter control device capable of reducing noise even under high load.

【0002】[0002]

【従来の技術】インバータ駆動の電気車は、交流モータ
本来のけんろう化のメリットがパワーエレクトロニクス
の発展により生かされ、直流から交流へと移行する方向
にある。
2. Description of the Related Art In an electric vehicle driven by an inverter, the merits of the original brazing of an AC motor have been utilized by the development of power electronics, and there is a tendency to shift from DC to AC.

【0003】インバータの制御としては、ベクトル制御
が一般的であり、一般に励磁電流一定で行われていた。
一般産業用では、効率よりもトルク特性重視であるため
これらの考えで十分であった。
As the control of the inverter, vector control is generally used, and the excitation current is generally constant.
For general industrial use, these considerations were sufficient because torque characteristics are more important than efficiency.

【0004】電気車の場合には、加速特性も重要である
が、定常運転状態における効率も重要となってくる。こ
の両者を解決する案として、特公平2−58875号に示すよ
うに、負荷条件に応じて電圧を加減し、効率,加速両者
の良いファン特性に関するものがある。
In the case of an electric vehicle, the acceleration characteristic is important, but the efficiency in a steady operation state is also important. As a solution to both of these, as shown in Japanese Examined Patent Publication No. 2-58875, there is one relating to good fan characteristics of both efficiency and acceleration by adjusting voltage depending on load conditions.

【0005】しかし、パワー素子そのものの損失が直流
チョッパとインバータでは、約3〜6倍異なっており、
インバータのパワー素子の損失が大きい問題があり、実
際の効率改善には、さらに検討が必要であった。
However, the loss of the power element itself is about 3 to 6 times different between the DC chopper and the inverter.
There was a problem that the power element loss of the inverter was large, and further study was necessary to improve the actual efficiency.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、運転
条件に応じ、インバータのキャリア周波数を低くしスイ
ッチング損失を低減し、高効率なインバータを提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly efficient inverter that lowers the carrier frequency of the inverter and reduces switching loss according to the operating conditions.

【0007】又、他の目的は、負荷条件として電流情報
を用い、軽負荷時の高効率運転を行うインバータを提供
するにある。
Another object of the present invention is to provide an inverter which uses current information as a load condition and performs a high efficiency operation at a light load.

【0008】又、他の目的は、高負荷時には、10KH
z以上のキャリア周波数に上げることにより静音化を行
うことを特徴とするインバータを提供することにある。
Another object is that the load is 10 KH when the load is high.
An object of the present invention is to provide an inverter characterized in that noise is reduced by raising the carrier frequency to z or higher.

【0009】[0009]

【課題を解決するための手段】インバータを構成する主
回路素子として、電気車を駆動可能なIGBT,FET等
の高速スイッチング素子を用い、スイッチング周波数を
10KHz以上にあげで静音化を行い、かつ、一充電走
行距離を論じる軽負荷走行において、効率が向上する様
に、車速と負荷に応じてキャリア周波数を低減し、スイ
ッチング損失を減らし、交流機,インバータの損失を低
減することにした。
Means for Solving the Problems As a main circuit element constituting an inverter, a high speed switching element such as an IGBT or FET capable of driving an electric car is used, and a switching frequency is raised to 10 KHz or higher to reduce noise. We decided to reduce the carrier frequency, reduce the switching loss, and reduce the loss of the AC machine and the inverter according to the vehicle speed and the load so that the efficiency is improved in the light load traveling that discusses one charging mileage.

【0010】前記キャリア周波数可変手段として、電圧
応動形三角波発振器を用い、その入力条件判定回路とし
てマイクロコンピュータを用いることにした。
A voltage-responsive triangular wave oscillator is used as the carrier frequency varying means, and a microcomputer is used as the input condition determining circuit.

【0011】[0011]

【作用】キャリア周波数可変手段は、PWMインバータ
のスイッチング周波数を変化することにより、IGBT
等のスイッチング損失を低減し、効率を向上する働きを
する。又、負荷条件,車速判定手段により、軽負荷時に
は高効率で運転し、スイッチング周波数が可ちょう周波
数以内となり音は聞えるものの電流も小さくなることよ
り、騒音の増加を招かず、一方高負荷時には、スイッチ
ング周波数は10KHz以上となり、電流波形は20K
Hzとなり静音化できる働きがある。
The carrier frequency varying means changes the switching frequency of the PWM inverter to change the IGBT frequency.
It works to reduce switching loss and improve efficiency. Also, depending on the load condition and the vehicle speed determination means, it operates at high efficiency at light load, the switching frequency is within the flexible frequency, and the sound is heard but the current also decreases, so that it does not increase noise, while at the time of high load, Switching frequency is over 10KHz, current waveform is 20K
It has the function of reducing noise to Hz.

【0012】代案として、キャリア周波数を可変にする
手段を、三角波と正弦波の比較でなく、マイコンで直接
不等ピッチでPWMを作っても同様な働きがある。
As an alternative, if the means for varying the carrier frequency is not a comparison between a triangular wave and a sine wave, but a PWM is directly created by a microcomputer at an unequal pitch, the same effect can be obtained.

【0013】[0013]

【実施例】図1は本発明の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【0014】まず、主回路の構成は、主バッテリー18
より入力フィルター19を通し、インバータ12により
電圧形PWM制御を行い、誘導電動機15を回すように
なっている。誘導電動機15はギア7を通して走行負荷
8を駆動する。通常タイヤにより路面を走行する。
First, the main circuit is composed of the main battery 18
Further, the input motor 19 is passed through, the voltage-type PWM control is performed by the inverter 12, and the induction motor 15 is rotated. The induction motor 15 drives the traveling load 8 through the gear 7. It usually runs on the road with tires.

【0015】つぎに、制御回路について、マイコン1内
で、アクセル,ブレーキ,モータ回転数Nにより速度指
令を演算し、さらにベクトル演算し、三相の電流指令i
u*,iv*,iw*を出力する。これに応じた電流を流す
ため、モータの実電流との偏差によりACR4,5,6
を通し、正弦波電圧指令vu*,vv*,vw* が出され
る。
Next, for the control circuit, in the microcomputer 1, a speed command is calculated by the accelerator, brake, and motor rotation speed N, and further vector calculation is performed, and a three-phase current command i is calculated.
u *, i v *, and outputs the i w *. Since a current corresponding to this is flown, the ACR 4, 5, 6 may differ depending on the deviation from the actual current of the motor.
Through the sine wave voltage commands v u *, v v *, v w *.

【0016】電圧形PWMインバータでは、電圧をチョ
ッピングし、平均的な実効電圧が正弦波と同じになる様
に印加するが、この時のチョッピングは、三角波発振器
であるOSCの出力と正弦波電圧であるvu*,vv*,
w* と比較することによりPWM9,10,11より
信号が作られ、ゲートドライバー20を通して、IGBTを
オン,オフしている。
In the voltage type PWM inverter, the voltage is chopped and applied so that the average effective voltage becomes the same as a sine wave. The chopping at this time is the output of the OSC, which is a triangular wave oscillator, and the sine wave voltage. Some v u *, v v *,
By comparing with v w *, a signal is generated from PWM 9, 10, and 11, and the IGBT is turned on and off through the gate driver 20.

【0017】この時、チョッピング周波数は、キャリア
周波数と呼ばれ、基本周波数の1サイクル波形の中に2
0回以上刻みが入る様に通常行っている。このキャリア
周波数は、音に対しては10KHz〜20KHzが静か
となるが、効率面でマイナス要因となる。今回負荷条
件,回転数条件により、OSC3の周期を最適に選ぶロ
ジック回路2を設けた。
At this time, the chopping frequency is called the carrier frequency, and is 2 in the cycle of the basic frequency.
It is usually done so that the time is 0 or more. The carrier frequency of 10 KHz to 20 KHz is quiet with respect to sound, but it is a negative factor in terms of efficiency. This time, the logic circuit 2 that optimally selects the cycle of the OSC 3 according to the load condition and the rotation speed condition is provided.

【0018】図2は、電気自動車の負荷点を示す図であ
る。
FIG. 2 is a diagram showing load points of an electric vehicle.

【0019】加速時、車速v1 では、最大トルクT3
通り、最高速時は車速v2 ,トルクはT2 の点で運転さ
れる。又、軽負荷の平地走行時では、v1,T1で運転さ
れる。
At the time of acceleration, the vehicle speed v 1 passes through the maximum torque T 3, and at the maximum speed, the vehicle speed v 2 and the torque are T 2 . Further, when traveling on a flat road with a light load, the vehicle is operated at v 1 and T 1 .

【0020】図1中のロジック回路2は、このような負
荷点の違いを、モータ電流Iとモータ回転数Nにより判
別し、図3に示すようにOSCの周期を変化させ効率,
騒音の両面より最適な運転を行う様にしている。
The logic circuit 2 in FIG. 1 discriminates such a difference in load points from the motor current I and the motor speed N, and changes the cycle of the OSC as shown in FIG.
We try to operate optimally from both sides of noise.

【0021】図3で、トルク,回転数で(T11)の点
と(T2,v2)の点を比較すると、正弦波電圧信号vu
は高速ほど周波数は高くなる。一方、キャリア周波数O
SC出力についてみれば、リップル電流を小さくしベク
トル制御可能な範囲に波形を正弦波に近くする条件で
は、(T11)の方が、OSC周波数を低くでき、図5
に示す様にスイッチング損を小さくでき、効率を向上で
きる効果がある。
In FIG. 3, comparing the points (T 1 v 1 ) and (T 2 , v 2 ) in terms of torque and rotation speed, the sinusoidal voltage signal v u
The higher the frequency, the higher the frequency. On the other hand, the carrier frequency O
As for the SC output, under the condition that the ripple current is small and the waveform is close to a sine wave in the vector controllable range, (T 1 v 1 ) can lower the OSC frequency.
As shown in, the switching loss can be reduced and the efficiency can be improved.

【0022】又図3で(T11)の点と(T3,v1)の
点を比較すると、図4で示す様に騒音からみて、他運転
域と同程度とするために(T3,v1)の負荷点では、キ
ャリアを10KHz程度とした。
In addition, comparing the point (T 1 v 1 ) and the point (T 3 , v 1 ) in FIG. 3, as shown in FIG. At the load point of (T 3 , v 1 ), the carrier was set to about 10 KHz.

【0023】図6は、図1中のベクトル制御を示すブロ
ック図である。
FIG. 6 is a block diagram showing the vector control in FIG.

【0024】アクセル開度,ブレーキストロークに対し
て、加速度指令21,減速度指令22でそれぞれ、加速
度指令,減速度指令が出され、次に、速度指令が演算さ
れる。速度指令とモータ回転数Nとの偏差により速度制
御演算を行い、トルク指令τ*を算出する。また弱め励
磁演算部25では、モータ速度により、磁束の大きさを
制御するため、磁束指令φ*を演算する。この磁束指令
φ*に基づき励磁電流指令IM を計算するが、誘導モー
タの回路時定数を考慮して、励磁電流演算部27で1次
遅れ演算を行い、励磁電流指令IM を算出している。誘
導モータのトルクτは、励磁電流とそれに直交するトル
ク電流を乗じた値に比例するので、トルク電流演算部2
6においてトルク電流指令It は、トルク指令τを励磁
電流指令IM で除算することにより得られる。直交する
トルク電流指令It と励磁電流IM とのベクトル和が1
次電流指令となるので、I1* は電流指令演算部28,
トルク角指令ψ*は、トルク角演算部29により各々演
算される。
With respect to the accelerator opening and the brake stroke, the acceleration command 21 and the deceleration command 22 give an acceleration command and a deceleration command, respectively, and then a speed command is calculated. A speed control calculation is performed based on a deviation between the speed command and the motor rotation speed N to calculate a torque command τ *. Further, the weak-excitation calculating unit 25 calculates the magnetic flux command φ * in order to control the magnitude of the magnetic flux according to the motor speed. While calculating the excitation current command I M based on the magnetic flux command phi *, induction motor in consideration of the circuit time constant of, performs a first-order delay calculation by the excitation current calculation unit 27 calculates the excitation current command I M There is. Since the torque τ of the induction motor is proportional to the value obtained by multiplying the exciting current and the torque current orthogonal thereto, the torque current calculating unit 2
In 6, the torque current command I t is obtained by dividing the torque command τ by the exciting current command I M. The vector sum of the orthogonal torque current command I t and the exciting current I M is 1
Since it becomes the next current command, I 1 * is the current command calculation unit 28,
The torque angle command ψ * is calculated by the torque angle calculation unit 29.

【0025】またすべり速度演算部31では、誘導モー
タのすべり速度指令ωs を、トルク指令τ*と磁束指令
φ*から演算している。すべり速度指令ωs′ はトルク
指令τ*に比例と、磁束指令φ*の2乗に反比例するの
で、すべり速度指令演算部31内では、この演算を行っ
ている。励磁電流の回転速度指令ω1* は、モータ速度
ωに、すべり速度ωs′ を加算したものであり、積分器
32において、回転速度を積分することにより、励磁電
流指令IM の位相、つまり、励磁電流位相指令θ0 を得
ている。この結果、ψ*+θ0 により位相指令θ*を得
ている。以上の方法により得られた電流指令I1* と位
相指令θ*が静止座標系よりみたときの1次電流指令ベ
クトルである。これらを120°ずつずれた3相電流指
令iu*,iv*,iw*に変換するのが、3相変換回路3
0である。
Further, the slip velocity calculation unit 31 calculates the slip velocity command ω s of the induction motor from the torque command τ * and the magnetic flux command φ *. Since the slip velocity command ω s ′ is proportional to the torque command τ * and inversely proportional to the square of the magnetic flux command φ *, the slip velocity command calculator 31 performs this calculation. The rotation speed command ω 1 * of the exciting current is obtained by adding the sliding speed ω s ′ to the motor speed ω, and the integrator 32 integrates the rotation speed to obtain the phase of the exciting current command I M , that is, , The excitation current phase command θ 0 is obtained. As a result, the phase command θ * is obtained from ψ * + θ 0 . The current command I 1 * and the phase command θ * obtained by the above method are the primary current command vectors when viewed from the stationary coordinate system. These were shifted by 120 ° 3-phase current command i u *, i v *, to convert the i w * is 3-phase conversion circuit 3
It is 0.

【0026】[0026]

【発明の効果】本発明の効果は、電気車特有の加速時の
騒音をへらしつつ、一充電走行時の軽負荷効率を向上で
きることである。
The effect of the present invention is that it is possible to improve the light load efficiency during one-charge running while reducing the noise peculiar to an electric vehicle during acceleration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】電気自動車の負荷点を示す図である。FIG. 2 is a diagram showing load points of an electric vehicle.

【図3】OSCの周期を変化させ効率,騒音の両面より
最適な運転状態を示す図である。
FIG. 3 is a diagram showing an optimal operating state in terms of efficiency and noise by changing the OSC cycle.

【図4】騒音からみて、他運転域と同程度とするために
(T3,v1)の負荷点では、キャリアを10KHz程度
としたことを示す図である。
FIG. 4 is a diagram showing that the carrier is set to about 10 KHz at the load point of (T 3 , v 1 ) in order to make it about the same as other driving ranges in terms of noise.

【図5】スイッチング損を小さくしたことを示す図であ
る。
FIG. 5 is a diagram showing that switching loss is reduced.

【図6】図1のベクトル制御を示すブロック図である。6 is a block diagram showing the vector control of FIG. 1. FIG.

【符号の説明】[Explanation of symbols]

1…マイクロコンピュータ、2…ロジック回路、3…可
変三角波発振器、12…インバータ主回路、15…交流
機、16…回転センサ(エンコーダ)。
DESCRIPTION OF SYMBOLS 1 ... Microcomputer, 2 ... Logic circuit, 3 ... Variable triangular wave oscillator, 12 ... Inverter main circuit, 15 ... AC machine, 16 ... Rotation sensor (encoder).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 正木 良三 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 井堀 敏 千葉県習志野市東習志野7丁目1番地1号 株式会社日立製作所習志野工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Ryozo Masaki 4026, Kuji-machi, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi Ltd. Inside the Narashino factory of Hitachi, Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】電気車用電圧形PWMインバータにおい
て、アクセル開度に応じて交流機の速度又はトルク指令
を演算する第1の回路を有し、前記第1の回路の出力に
応じて、前記電動機の速度又はトルクを制御する第2の
回路を有し、第2の回路の正弦波出力と三角波発生回路
の出力を比較するコンパレータを有し、前記コンパレー
タの出力により駆動されるインバータ主回路を有し、前
記三角波発生回路のキャリア周波数を、車速又は交流機
の回転数と負荷条件により変化させることを特徴とする
インバータ制御装置。
1. A voltage-type PWM inverter for an electric vehicle, comprising a first circuit for calculating a speed or torque command of an AC machine in accordance with an accelerator opening, and in accordance with an output of the first circuit, A second circuit for controlling the speed or torque of the electric motor, a comparator for comparing the sine wave output of the second circuit and the output of the triangular wave generating circuit, and an inverter main circuit driven by the output of the comparator are provided. An inverter control device, comprising: a carrier frequency of the triangular wave generation circuit, which is changed according to a vehicle speed or a rotation speed of an AC machine and a load condition.
【請求項2】請求項1において、負荷条件の検出方法と
して、モータ電流値を用いたことを特徴とするインバー
タ制御装置。
2. The inverter controller according to claim 1, wherein a motor current value is used as a method for detecting a load condition.
【請求項3】請求項1において、高速又は高負荷になる
に従って前記三角波発生回路のキャリア周波数を上げる
ことを特徴とするインバータ制御装置。
3. The inverter control device according to claim 1, wherein the carrier frequency of the triangular wave generation circuit is increased as the speed or load increases.
【請求項4】請求項1において、前記三角波発生回路の
キャリア周波数に最小値,最大値を設け、さらに負荷,
車速に応じて変化することを特徴とするインバータ制御
装置。
4. The carrier frequency of the triangular wave generating circuit according to claim 1, wherein a minimum value and a maximum value are set, and a load,
An inverter control device characterized in that it changes according to the vehicle speed.
JP4001319A 1992-01-08 1992-01-08 Inverter controller Pending JPH05184182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4001319A JPH05184182A (en) 1992-01-08 1992-01-08 Inverter controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4001319A JPH05184182A (en) 1992-01-08 1992-01-08 Inverter controller

Publications (1)

Publication Number Publication Date
JPH05184182A true JPH05184182A (en) 1993-07-23

Family

ID=11498174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4001319A Pending JPH05184182A (en) 1992-01-08 1992-01-08 Inverter controller

Country Status (1)

Country Link
JP (1) JPH05184182A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744301A1 (en) * 1996-01-30 1997-08-01 Thomson Csf INVERTER FOR SUPPLYING AN ELECTRIC VEHICLE TRACTION MOTOR
US7148651B2 (en) * 2003-07-22 2006-12-12 Hitachi, Ltd. Apparatus and method for controlling AC motor and module therefor
JP2006528881A (en) * 2003-05-08 2006-12-21 ウェイブクレスト ラボラトリーズ リミテッド ライアビリティ カンパニー Highly accurate adaptive motor control in cruise control system with various motor control mechanisms
WO2010110013A1 (en) 2009-03-24 2010-09-30 株式会社Ihi Device and method for power-saving driving of device having same load pattern
JP2010221856A (en) * 2009-03-24 2010-10-07 Hitachi Automotive Systems Ltd Steering control device
JP2011036100A (en) * 2009-08-05 2011-02-17 Ihi Corp Device and method for power-saving driving of device having same load pattern
JP2013192429A (en) * 2012-03-15 2013-09-26 Ntn Corp Electric vehicle and motor driving device
CN103607104A (en) * 2013-11-22 2014-02-26 乐金电子研发中心(上海)有限公司 Sine wave modulation circuit and sine wave modulation method
US8912742B2 (en) 2010-02-03 2014-12-16 Toyota Jidosha Kabushiki Kaisha Control device for rotating electric machine and method of controlling rotating electric machine
US9007002B2 (en) 2010-06-15 2015-04-14 Ihi Corporation Device and method for power-saving driving of device having same load pattern
JP2016160046A (en) * 2015-03-03 2016-09-05 東芝エレベータ株式会社 Passenger conveyor
US9481254B1 (en) 2015-12-22 2016-11-01 Faraday&Future Inc. System and method for improving acceleration performance of an electric vehicle
CN107733317A (en) * 2016-08-12 2018-02-23 株式会社斯巴鲁 Vehicle
JP2022176934A (en) * 2018-02-14 2022-11-30 日立Astemo株式会社 Internal impedance detection device and vehicle

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788220A1 (en) * 1996-01-30 1997-08-06 Thomson-Csf Inverter to supply an electric traction motor in a vehicle
US5852356A (en) * 1996-01-30 1998-12-22 Thomson-Csf DC/AC inverter for power supply to an electrical motor for the traction of a vehicle
FR2744301A1 (en) * 1996-01-30 1997-08-01 Thomson Csf INVERTER FOR SUPPLYING AN ELECTRIC VEHICLE TRACTION MOTOR
JP2011177020A (en) * 2003-05-08 2011-09-08 Wavecrest Lab Llc High-precision adaptive motor control in cruise control system having various motor control schemes
JP2006528881A (en) * 2003-05-08 2006-12-21 ウェイブクレスト ラボラトリーズ リミテッド ライアビリティ カンパニー Highly accurate adaptive motor control in cruise control system with various motor control mechanisms
US7148651B2 (en) * 2003-07-22 2006-12-12 Hitachi, Ltd. Apparatus and method for controlling AC motor and module therefor
JP2010221856A (en) * 2009-03-24 2010-10-07 Hitachi Automotive Systems Ltd Steering control device
CN102362427A (en) * 2009-03-24 2012-02-22 株式会社Ihi Device and method for power-saving driving of device having same load pattern
WO2010110013A1 (en) 2009-03-24 2010-09-30 株式会社Ihi Device and method for power-saving driving of device having same load pattern
US8866429B2 (en) 2009-03-24 2014-10-21 Ihi Corporation Device and method for power-saving driving of device having same load pattern
JP2011036100A (en) * 2009-08-05 2011-02-17 Ihi Corp Device and method for power-saving driving of device having same load pattern
US8912742B2 (en) 2010-02-03 2014-12-16 Toyota Jidosha Kabushiki Kaisha Control device for rotating electric machine and method of controlling rotating electric machine
US9007002B2 (en) 2010-06-15 2015-04-14 Ihi Corporation Device and method for power-saving driving of device having same load pattern
JP2013192429A (en) * 2012-03-15 2013-09-26 Ntn Corp Electric vehicle and motor driving device
CN103607104A (en) * 2013-11-22 2014-02-26 乐金电子研发中心(上海)有限公司 Sine wave modulation circuit and sine wave modulation method
JP2016160046A (en) * 2015-03-03 2016-09-05 東芝エレベータ株式会社 Passenger conveyor
CN105936468A (en) * 2015-03-03 2016-09-14 东芝电梯株式会社 Passenger conveyor
US9481254B1 (en) 2015-12-22 2016-11-01 Faraday&Future Inc. System and method for improving acceleration performance of an electric vehicle
US9722518B2 (en) 2015-12-22 2017-08-01 Faraday & Future Inc. System and method for improving acceleration performance of an electric vehicle
CN107733317A (en) * 2016-08-12 2018-02-23 株式会社斯巴鲁 Vehicle
JP2022176934A (en) * 2018-02-14 2022-11-30 日立Astemo株式会社 Internal impedance detection device and vehicle

Similar Documents

Publication Publication Date Title
US8138712B2 (en) Motor drive system and its control method
US6222334B1 (en) Regenerative braking system
JP2555038B2 (en) Induction motor type electric vehicle controller
US10081354B2 (en) Motor controller for hybrid vehicle
JP3308993B2 (en) Electric motor driving device and air conditioner using the same
US5686807A (en) Torque control system for AC motor
JPH05184182A (en) Inverter controller
CN110168905B (en) Inverter driving device and electric vehicle system using the same
CN111713012B (en) Motor control device and electric vehicle system using the same
CN112840556B (en) Motor control device and electric vehicle system
JP2002171606A (en) Inverter system for hybrid vehicle
KR970069851A (en) Control device to control elevator AC motor with high driving efficiency
US10396698B2 (en) Drive device and drive system
JPH0951699A (en) Control device of multiple-phase ac motor
JP2001314095A (en) Motor driving device and air conditioner using the same
JP7382890B2 (en) Inverter control device, electric vehicle system
Prejbeanu Self-Scanning system and evaluation of dynamic electrical performance of electric vehicles using different control systems
JP2003180095A (en) Controller of voltage driven pwm inverter
JPS6264201A (en) Brake system for internal combustion engine-driven electric motor vehicle
JP3184053B2 (en) Speed control device for electric diesel locomotive
JPH0732607B2 (en) Control device for electric vehicle power converter
JPH0424957B2 (en)
JPH08214410A (en) Driving controller for electric vehicle
JPS62213503A (en) Controlling method for induction motor of electric vehicle
JP4147970B2 (en) Induction motor control method