TW201931616A - 光轉換膜及使用其之影像顯示元件 - Google Patents

光轉換膜及使用其之影像顯示元件 Download PDF

Info

Publication number
TW201931616A
TW201931616A TW107133430A TW107133430A TW201931616A TW 201931616 A TW201931616 A TW 201931616A TW 107133430 A TW107133430 A TW 107133430A TW 107133430 A TW107133430 A TW 107133430A TW 201931616 A TW201931616 A TW 201931616A
Authority
TW
Taiwan
Prior art keywords
light
layer
liquid crystal
group
wavelength
Prior art date
Application number
TW107133430A
Other languages
English (en)
Inventor
桑名康弘
中田秀俊
山口英彦
三木崇之
佐佐木友
境駿希
Original Assignee
日商迪愛生股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商迪愛生股份有限公司 filed Critical 日商迪愛生股份有限公司
Publication of TW201931616A publication Critical patent/TW201931616A/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/701Chalcogenides
    • C09K11/703Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/60Pleochroic dyes
    • C09K19/601Azoic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0091Positioning aspects of the light source relative to the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/05Function characteristic wavelength dependent
    • G02F2203/055Function characteristic wavelength dependent wavelength filtering

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)

Abstract

本發明之一方面係一種光轉換膜,其具備:光轉換層:含有將具有特定波長之光轉換為紅色、綠色及藍色之任一顏色之光而發光之發光性奈米結晶粒子,及波長選擇性穿透層:設置於光轉換層之至少一側,使特定波長區域之光穿透。

Description

光轉換膜及使用其之影像顯示元件
本發明係關於一種光轉換膜及使用其之影像顯示元件。
作為顯示二維圖像或三維圖像之影像顯示裝置,存在液晶顯示元件或者無機或有機EL(電致發光)等各種設備。由於液晶顯示元件並非自發光型,因此需要光源,其係藉由使用液晶材料作為利用電壓控制通過像素之光閘而顯示影像之平面狀且薄型之影像顯示裝置。另一方面,無機或有機EL(電致發光)係可藉由電流量調節發光強度之自發光型顯示裝置,為利用發光層由無機或有機化合物構成之發光二極體(LED)之影像顯示裝置。目前主流為任一像素均由紅、綠、藍之3色構成且連接有具備用以使光穿透各顏色之開關功能之薄膜電晶體(TFT)的影像顯示裝置。
主動矩陣型液晶顯示裝置由於顯示品質優異,故而出現於可攜終端機、液晶電視、投影機、電腦等之市場。關於主動矩陣顯示方式,TFT(薄膜電晶體)或MIM(金屬-絕緣體-金屬)等係被使用於各像素,於與具有高電壓保持率之液晶組成物之組合中,使用TN型(twist nematic,扭轉向列)、VA(vertical alignment,垂直配向)、IPS(In Plane Switching,橫向電場效應)、FFS(Fringe Field Switching,邊緣電場效應)等。尤其是由於液晶顯示元件為了實現彩色顯示而將彩色濾光片與液晶元件一併使用,故而即便改良光源部亦難以提高色再現性,因此為了提高色再現性,必須藉由謀求彩色濾 光片中之高顏料濃度化、或增大著色膜厚而提高色純度。
另一方面,以有機EL元件等為代表之EL元件為自發光而無需背光源,可薄型化、輕量化,構件少而容易可摺疊化,但另一方面,存在由發光構件之劣化導致之顯示不良等問題。即,業界要求解決由製造元件時良率差導致之高成本、壽命原因引起之元件之殘像、顯示不均等問題。進而,於將有機EL元件進行全彩化之情形時,需要使紅色、綠色、藍色之各色獨自地發光,尤其是高能量線之短波長之藍色容易產生上述問題,長期使用中亦存在因藍色褪色導致元件黃變等問題。
因此,作為用以同時解決影像顯示元件之色再現性與發光效率之技術,為發光性奈米結晶粒子之一例之量子點技術(參照專利文獻1)受到關注。藉由使用量子點,可獲得半值寬小之三原色之光源,故而可實現廣色域顯示器,因此揭示有一種色再現性經提高之液晶顯示元件(參照專利文獻2及非專利文獻1)。進而,提出有使用近紫外線或藍色等短波長可見光線作為光源,使用三色之量子點代替習知之彩色濾光片(參照專利文獻3)。該等顯示元件原理上可同時實現高發光效率與色再現性。
先前技術文獻 專利文獻
專利文獻1:日本特表2001-523758號公報
專利文獻2:國際公開第2004/074739號小冊子
專利文獻3:美國專利第8648524號說明書
非專利文獻
非專利文獻1:SID 2012 DIGEST, p895-896
然而,於如上述專利文獻2、3及非專利文獻1般使用為發光性奈米結晶粒子一例之量子點作為影像顯示元件之彩色濾光片之情形時,若提高該量子點之含量,則鄰接之量子點彼此吸收所發出之光而消光,因此外部量子效率不會提高。另一方面,若降低該量子點之含量,則會產生使用於量子點之發光的藍光穿透而色純度降低之問題。
另外,亦產生如下問題:圍繞量子點之外部環境導致量子點鈍化,或所使用之配位基、硬化樹脂等導致外部量子效率低於單獨之量子點。
因此,本發明所欲解決之技術課題在於提供一種可同時實現高發光效率與高色純度之光轉換膜及具備其之影像顯示元件。
本發明人等為了解決上述課題經潛心研究後,結果發現可解決上述課題,從而完成本發明。
本發明之一方面係一種光轉換膜,其具備:光轉換層:含有將具有特定波長之光轉換為紅色、綠色及藍色之任一顏色之光而發光之發光性奈米結晶粒子;及波長選擇性穿透層:設置於光轉換層之至少一側,使特定波長區域之光穿透。
該光轉換膜由於具備與入射光之波長及發光性奈米結晶粒子之發光波長相應之波長選擇性穿透層,因此可藉由波長選擇性穿透層將由光轉換層發出之光之一部分加以反射,且可將由該光轉換層發出之光放大並提取至一面側。
本發明之另一方面係一種影像顯示元件,其具備:光源部; 光轉換層:含有將具有特定波長之光轉換為紅色、綠色及藍色之任一顏色之光而發光之發光性奈米結晶粒子;及波長選擇性穿透層:設置於光轉換層之至少一側,使特定波長區域之光穿透。
該影像顯示元件由於具備光轉換層及波長選擇性穿透層,因此可藉由波長選擇性穿透層將由光轉換層發出之光之一部分加以反射,且可將由該光轉換層發出之光放大並提取至顯示側。
本發明之影像顯示元件之發光效率及色純度優異。本發明之影像顯示元件之穿透率優異,且長期維持色再現區域。本發明之光轉換膜之發光效率及色純度優異。本發明之光轉換膜之穿透率優異,且長期維持色再現區域。
1000A、1000B‧‧‧液晶顯示元件
100A、100B‧‧‧背光單元
101A、101B‧‧‧光源部
102‧‧‧導光部
200A、200B‧‧‧液晶面板
L‧‧‧發光元件
NC‧‧‧發光性奈米結晶粒子(化合物半導體)
1‧‧‧第一偏光層
2‧‧‧第一基板
3‧‧‧電極層
3a‧‧‧第一電極層(像素電極)
3b‧‧‧第二電極層(共用電極)
4‧‧‧第一配向層
5‧‧‧液晶層
6‧‧‧第二配向層
7‧‧‧第二偏光層
8、11‧‧‧波長選擇性穿透層
9‧‧‧光轉換層
10‧‧‧第二基板
12‧‧‧支持基板
13‧‧‧閘極絕緣膜
14‧‧‧閘極電極
16‧‧‧汲極電極
17‧‧‧源極電極
18‧‧‧鈍化膜
19‧‧‧半導體層
20‧‧‧保護膜
21‧‧‧像素電極
22‧‧‧共用電極
23、25‧‧‧絕緣層
1000C‧‧‧影像顯示元件(LED面板)
51‧‧‧基板
52‧‧‧第一電極
53‧‧‧電洞注入層
54‧‧‧電洞傳輸層
55‧‧‧發光層
56‧‧‧電子傳輸層
57‧‧‧電子注入層
58‧‧‧第二電極
59‧‧‧外覆層
60‧‧‧基板
500‧‧‧電致發光層
圖1係表示影像顯示元件(液晶顯示元件)之一實施形態之立體圖。
圖2係表示影像顯示元件(液晶顯示元件)之另一實施形態之立體圖。
圖3係用以說明一實施形態之液晶面板之構成的剖視圖。
圖4係表示光轉換膜之一實施形態之剖視圖。
圖5係表示波長選擇性穿透層之穿透特性之一例的曲線圖。
圖6係用以說明另一實施形態之液晶面板之構成的剖視圖。
圖7係用以說明另一實施形態之液晶面板之構成的剖視圖。
圖8係用以說明另一實施形態之液晶面板之構成的剖視圖。
圖9係表示光轉換膜之另一實施形態之剖視圖。
圖10係用以說明另一實施形態之液晶面板之構成的剖視圖。
圖11係用以說明另一實施形態之液晶面板之構成的剖視圖。
圖12係表示光轉換膜之另一實施形態之立體圖。
圖13係以等效電路表示液晶顯示元件之像素部分之示意圖。
圖14係表示像素電極形狀之一例的示意圖。
圖15係表示像素電極形狀之一例的示意圖。
圖16係表示IPS型液晶顯示元件之電極結構的示意圖。
圖17係沿圖14或圖15中之III-III線方向將液晶顯示元件切開而獲得之剖視圖之一例。
圖18係沿圖16中之III-III線方向將IPS型液晶面板切開而獲得之剖視圖。
圖19係將圖2中形成於基板上之含有薄膜電晶體之電極層3之以XIV線圍成之區域放大而獲得之俯視圖。
圖20係沿圖18中之III-III線方向將圖2所示之液晶顯示元件切開而獲得之剖視圖。
圖21係表示影像顯示元件(OLED)之一實施形態之示意圖。
圖22係將實施例與比較例進行對比之曲線圖。
以下,一邊適當參照圖式,一邊對本發明之實施形態進行詳細說明。
首先,對影像顯示元件之實施形態進行說明。影像顯示元件例如可為液晶顯示元件、有機EL顯示元件等。圖1係表示影像顯示元件(液晶顯示元件)之一實施形態之立體圖。於圖1中,為了方便說明,而將各構成要素分開表示。
如圖1所示,一實施形態之液晶顯示元件1000A具備背光單元100A、及液晶面板200A。背光單元100A含有具有多個發光元件L之光源部101A、及發揮導光板或光擴散板之作用之導光部102A。
如圖1所示,背光單元100A之一實施形態係將含有多個發光元件L之光源部101A配置於導光部102A之一側面。視需要可將含有多個發光元件L之光源部101A不僅設置於液晶面板200A之一側面側(導光部102A之一側面),而且設置於導光部102A之另一側面側(相對向之兩側面),另外亦可以包圍導光部102A之周圍之方式將含有多個發光元件L之光源部101A設置於導光部102A之3個側面,或以包圍導光部102A之全部周圍之方式設置於4個側面。導光部102A亦可視需要具備光擴散板來代替導光板。
發光元件L係發出為紫外光或可見光之光LT1之發光元件。發光元件L對波長區域並無特別限制,較佳為於藍色區域具有主發光峰。例如,可適宜地使用於420nm~480nm之波長區域具有主發光峰之發光二極體(藍色發光二極體)。作為此種發光元件L,可使用公知之發光元件,例如,可例示至少具備形成於藍寶石基板上之由AlN構成之晶種層、形成於晶種層上之底層、及以GaN為主體之積層半導體層的發光元件等。積層半導體層可為從基板側起依序積層底層、n型半導體層、發光層及p型半導體層所構成者。
發出紫外線之發光元件L例如可為低壓水銀燈、中壓水銀燈、高壓水銀燈、超高壓水銀燈、碳弧燈、無電極燈、金屬鹵化物燈、氙弧燈、LED等,較佳為LED。
此外,於本說明書中,將420nm~480nm之波長區域之光(尤其是於該波長區域具有發光中心波長之光)稱為藍光,將500nm~560nm之波長區域之光(尤其是於該波長區域具有發光中心波長之光)稱為綠光,將605nm~665nm之波長區域之光(尤其是於該波長區域具有發光中心波長之光)稱 為紅光。另外,本說明書之所謂紫外光係指300nm以上且未達420nm之波長區域之光(尤其是於該波長區域具有發光中心波長之光)。進而,於本說明書中,所謂「半值寬」係指以峰高1/2計之峰之波長寬度。
如圖1所示,於一實施形態中,液晶面板200A具有自靠近背光單元100A之側起依序積層有第一偏光層1、第一基板2、電極層3、第一配向層4、液晶層5、第二配向層6、第二偏光層7、波長選擇性穿透層8、光轉換層9、及第二基板10之構成。
換言之,於第一基板2之一面設置有第一偏光層1,於另一面設置有電極層3、及被覆電極層3之第一配向層4。第二基板10係以隔著液晶層5而與第一基板2相對向之方式設置,於第二基板10之第一基板2側之面,自靠近第二基板10之側起依序設置有光轉換層9A(9)、波長選擇性穿透層8A(8)、第二偏光層7及第二配向層6。
第一偏光層1及第二偏光層7並無特別限制,可使用公知之偏光板(偏光層)。作為該偏光板(偏光層),例如可列舉:二色性有機色素偏光元件、塗佈型偏光層、線柵型偏光元件、或膽固醇液晶型偏光元件等。例如,線柵型偏光元件較佳為藉由奈米壓印法、嵌段共聚物法、電子束(E beam)微影法或掠射角蒸鍍法中之任一種所形成。於偏光層為塗佈型偏光層之情形時,可進一步設置下文所述之配向層。即,於一實施形態中,較佳為設置有塗佈型偏光層與配向層兩者。
第一基板2及第二基板10分別為例如由玻璃或塑膠等具有柔軟性之材料所形成之具有透明性及絕緣性之透明絕緣基板。
電極層3例如係由ITO等透明之材料所形成。於圖1所示之液晶面板200A中,揭示有於第一基板2側設置有像素電極(未圖示)與共用電極(未圖示)作為電極層3之形態,於其他實施形態中,亦可如例如下文所述之 圖2所示之液晶面板200B般,將像素電極(第一電極層)3a設置於第一基板2上,將共用電極(第二電極層)3b設置於第二基板10上。
藉由設置第一配向層4,於未施加電壓時,液晶層5中之液晶分子可相對於基板2、7而沿特定方向配向。於圖1中揭示藉由一對之配向層4、6夾持液晶層5之形態,於另一實施形態中,配向層亦可僅設置於第一基板2及第二基板10之其中任一側。於另一實施形態中,亦可於第一基板2及第二基板10之任一者均不設置配向層。即,另一實施形態之液晶面板可具有自靠近背光單元100A之側起依序積層有第一偏光層1、第一基板2、電極層3、液晶層5、第二偏光層7、波長選擇性穿透層8、光轉換層9、及第二基板10之構成。
於圖1所示之液晶顯示元件1000A中,自光源部101A(發光元件L)發出之光LT1通過導光部102A內(例如經由導光板或光擴散板)而入射至液晶面板200A內。入射至液晶面板200A內之光藉由第一偏光層1而偏向特定之方向後,入射至液晶層5。於液晶層5中,可藉由電極層3之驅動而控制液晶分子之配向方向,藉此,液晶層5發揮作為光閘之作用。藉由液晶層5改變偏光之方向之光於被第二偏光層7遮斷或偏向特定方向後,穿透波長選擇性穿透層8而入射至光轉換層9。於光轉換層9中,入射光之顏色被轉換(詳細內容如下文所述),經轉換之光LT2向液晶面板200A之外部射出。
此時,若導光部102A(尤其是導光板)之形狀為具備厚度從由發光元件L發出之光入射之側面朝向對向面逐漸減少之側面的平板體(側面為錐形之形態或楔狀四邊形板),則可將線光轉換為面光,因此容易使光入射至液晶面板200A內,故而較佳。
圖2係表示另一實施形態之液晶顯示元件之立體圖。此外,以下將與圖1所示之液晶顯示元件重複之說明省略。如圖2所示,於另一實施形態之液晶顯示元件1000B中,背光單元100B亦可具有將光源部101B中之多個發光元 件L相對於平板狀導光部102B大致平行地配置成平面狀之所謂正下方型背光結構。正下方型背光結構由於來自發光元件L之光LT1為面光,因此導光部102B之形狀與圖1所示之實施形態不同,無需為錐形。
如圖2所示,可於第一基板2之液晶層5側之面設置第一電極層(薄膜電晶體層或像素電極)3a,且可於第二基板10之液晶層5側之面設置第二電極層(共用電極)3b。另外,於液晶層5之第二基板10側,可除了第一波長選擇性穿透層8以外進一步設置第二波長選擇性穿透層11。第二波長選擇性穿透層11可設置於第二基板10之與液晶層5相反之側。
即,於圖2所示之實施形態中,液晶面板200B具有自靠近背光單元100B之側起依序積層有第一偏光層1、第一基板2、第一電極層3a、液晶層5、第二電極層3b、第二偏光層7、第一波長選擇性穿透層8、光轉換層9、第二基板10、及第二波長選擇性穿透層11之構成。
作為其他實施形態,於圖2之液晶面板200B中,可進一步設置配向層。即,圖2之液晶面板200B之變化例可具有自靠近背光單元100B之側起依序積層有第一偏光層1、第一基板2、第一電極層3a、配向層4、液晶層5、配向層4、第二電極層3b、第二偏光層7、第一波長選擇性穿透層8、光轉換層9、第二基板10、及第二波長選擇性穿透層11之構成。
以下,對如圖1、2所示之液晶面板中之偏光層1、7、液晶層5、光轉換層9、波長選擇性穿透層8、11等構成進一步進行詳細說明。圖3係用以說明一實施形態之液晶面板之構成的剖視圖。於圖3中,為了易於理解地說明偏光層、液晶層、光轉換層、波長選擇性穿透層等之位置關係,而將電極層3、3a、3b及配向層4、6省略(圖3之後之圖式中有時亦同樣地省略)。
如圖3所示,於圖1所示之液晶面板中,如上所述,自靠近背光單元100A(入射光入射)之側起依序積層有第一偏光層1、第一基板2、液晶層 5、第二偏光層7、波長選擇性穿透層8A(8)、光轉換層9A(9)、及第二基板10。此外,對於液晶層5,將由背光單元側(入射光LT1入射之側)之基板(第一基板2)與積層於該基板之各層構成之積層體稱為陣列基板(A-SUB),將由背光單元相反側(與入射光LT1入射之側相反之側)之基板(第二基板10)與積層於該基板之各層構成之積層體稱為對向基板(O-SUB)(以下相同)。
於圖3所示之實施形態中,光轉換層9A(9)及波長選擇性穿透層8A(8)設置於對向基板(O-SUB)內。該實施形態係具有將光轉換層9A(9)與第二偏光層7設置於一對基板(第一基板2及第二基板10)之間之所謂內嵌型構成之形態。
於將圖3所示之實施形態應用於VA型液晶顯示元件之情形時,較佳為於第一基板2上形成有第一電極層(像素電極),且於對向基板側O-SUB,於液晶層5與第二偏光層7之間、或第二偏光層7與光轉換層9A(9)之間設置有第二電極層(共用電極)。較佳為於對向基板(O-SUB)及陣列基板(A-SUB)之至少一者,在與液晶層5相接之面形成有配向層。於圖3中液晶顯示元件為FFS型或IPS型之情形時,較佳為於第一基板2上形成有像素電極及共用電極。
通常之液晶顯示元件係於彩色濾光片中對來自白色光源之入射光進行波長選擇,並將其一部分吸收,藉此進行各顏色顯示,相對於此,於本實施形態中,以將具備含有發光性奈米結晶粒子之光轉換層9A(9)及波長選擇性穿透層8A(8)之光轉換膜用作彩色濾光片之代替構件作為特徵之一。即,光轉換膜具備紅色(R)、綠色(G)及藍色(B)之三原色像素,發揮與所謂之彩色濾光片同樣之作用。
圖4係表示光轉換膜之一實施形態之剖視圖。該光轉換膜相當於 圖3所示之液晶面板中所使用之光轉換膜。如圖3、4所示,一實施形態之光轉換膜90A具備光轉換層9A(9)、及設置於光轉換層9A(9)之一側之波長選擇性穿透層8A(8)。
光轉換層9A(9)具備紅色像素部(R:亦稱為紅色色層部)、綠色像素部(G:亦稱為綠色色層部)、及藍色像素部(G:亦稱為藍色色層部)。於光轉換層9A(9)中,可如圖3所示般3色之像素部(R、G、B)互相相接,亦可如圖4所示,以防止各色之像素部間之混色為目的,設置將3色之像素部(R、G、B)互相劃分之黑色矩陣(BM)。於此實施形態中,於光轉換層9A(9)之一面上形成(積層)有波長選擇性穿透層8A(8)。如圖3、4所示,該光轉換膜90A以入射光LT1自波長選擇性穿透層8A(8)側入射之方式使用。
紅色像素部(R)例如為含有吸收入射光而發出紅光之紅色發光性奈米結晶粒子(NCR)之光轉換像素層(NC-紅)。綠色像素部(G)例如為含有吸收入射光而發出綠光之綠色發光性奈米結晶粒子(NCG)之光轉換像素層(NC-綠)。藍色像素部(B)例如為含有吸收入射光而發出藍光之藍色發光性奈米結晶粒子(NCB)之光轉換像素層(NC-藍)。
入射光LT1例如可為由藍色LED等發出之於450nm附近具有主峰之光(藍光)。於該情形時,可將藍色LED發出之藍光用作由光轉換層發出之藍光。因此,於入射光為藍光之情形時,3色之像素部(R、G、B)中,藍色像素部(B)亦可不為含有藍色發光性奈米結晶粒子(NCB)之光轉換像素層,而為以可直接使用藍色之入射光之方式使藍光穿透之光穿透層。於該情形時,藍色像素部(B)可由含有透明樹脂或藍色色材之色材層(所謂之藍色彩色濾光片)(CF-藍)等構成。因此,藍色發光性奈米結晶粒子(NCB)可成為任意成分,故而於圖3、4及之後之圖式中,以虛線表示藍色發光性奈米結晶 粒子(NCB)。
波長選擇性穿透層8A(8)係根據入射光LT1之波長及由光轉換層9A(9)所轉換之光之波長而選擇性地使特定波長區域之光穿透之層。波長選擇性穿透層8A(8)較佳使第1波長區域(例如,WL1nm~WL2nm)之光穿透,且將與第1波長區域不同之第2波長區域(WL3nm~WL4nm)之光反射。藉此,由光轉換層9A(9)所轉換之光或向光轉換層9A(9)入射之光中,使第1波長區域之光穿透,且將第1波長區域以外之第2波長區域之光反射,藉此可提高色純度。換言之,波長選擇性穿透層8A(8)係將特定波長區域(第2波長區域)之光反射,因此亦可稱為波長選擇性反射層(選擇反射層)。
波長選擇性穿透層8A(8)於可見光區域(例如380nm~780nm)可具有2個以上使之穿透之光的波長區域(第1波長區域),亦可具有2個以上使之反射之光的波長區域(第2波長區域)。藉此,於波長選擇性穿透層8A(8)為單層之情形時,亦可提高2種以上之顏色之純度。
波長選擇性穿透層8A(8)較佳為具有如下至少一種性質:使包含藍色波長區域以外之波長區域之光穿透;使包含綠色波長區域以外之波長區域之光穿透;或使包含紅色波長區域以外之波長區域之光穿透。
波長選擇性穿透層8A(8)較佳為具有如下至少一種性質:「將包含藍色波長區域之光反射」、「將包含綠色波長區域之光反射」或「將包含紅色波長區域之光反射」。
波長選擇性穿透層8A(8)較佳為具有如下至少一種性質:「使包含藍色波長區域以外之波長區域之光穿透,且將包含藍色波長區域之光反射」;「使包含綠色波長區域以外之波長區域之光穿透,且將包含綠色波長區域之光反射」;或「使包含紅色波長區域以外之波長區域之光穿透,且將包含紅色波長區域之光反射」。
於本說明書中,所謂「(特定波長區域之)光穿透於層」意指該(特定波長區域之)光對於層之穿透率沿垂直方向為70%以上,所謂「(特定波長區域之)光被層反射」意指該(特定波長區域之)光對於層之反射率沿垂直方向為10%以上。
波長選擇性穿透層8A(8)較佳為具有如下穿透特性:使入射光LT1穿透,並且將由光轉換層9A(9)發出之光之波長區域、即藍色、綠色及紅色中至少任一顏色之波長區域之光線選擇性地反射。此處,來自光轉換層9A(9)之發光係源自吸收入射光LT1之發光性奈米結晶粒子之發光,根據發光性奈米結晶粒子之形狀而出現球面波(量子點等等向性粒子)或偶極波(量子棒等異向性粒子)之類之發光形態。相對於此,若將使入射光LT1穿透、且將來自光轉換層9A(9)之發光反射之波長選擇性穿透層8A(8)與光轉換層9A(9)鄰接,則可使所需要之波長區域之光(欲提取至外部之光)向一個方向聚焦。藉此,於圖3所示之實施形態中,入射光LT1可向光轉換層9A(9)適宜地入射,並且來自光轉換層9A(9)之發光中向液晶層5側放射之光被波長選擇性穿透層8A(8)反射,因此可將來自光轉換層9A(9)之發光中向第二基板10側放射之光與被波長選擇性穿透層8A(8)反射之光合併顯示(視認),故而發光效率及色純度提高。
圖5係表示波長選擇性穿透層之穿透特性(穿透率之波長依存性)之一例的曲線圖。例如,於波長選擇性穿透層8A(8)具有如圖5所示之穿透特性之情形時,認為波長選擇性穿透層8A(8)僅選擇性地反射約620nm~700nm之紅色波長區域(換言之,使藍色波長區域與綠色波長區域之光穿透),因此被光轉換層9A(9)轉換之紅色波長區域之光藉由波長選擇性穿透層8A(8)之反射而被放大,紅色波長區域之光之色純度提高。
作為尤佳之實施形態,可列舉如下形態(但並不限定於該形 態):入射光為自藍色LED等發出之於450nm附近具有主峰之光(藍光),紅色像素部(R)含有吸收入射光(藍光)而發出紅光之紅色發光性奈米結晶粒子(NCR),綠色像素部(G)含有吸收入射光(藍光)而發出綠光之綠色發光性奈米結晶粒子(NCG),藍色像素部(B)係使入射光(藍光)穿透之藍光穿透層,波長選擇性穿透層8A(8)使藍色波長區域(紅色波長區域及綠色波長區域以外之波長區域)之光穿透,且將紅色波長區域及綠色波長區域之光反射。
於該情形時,入射光適宜地穿透波長選擇性穿透層8A(8)而入射至光轉換層9A(9),被發光性奈米結晶粒子所吸收,於紅色像素部(R)被轉換為紅色波長區域之光,於綠色像素部(G)被轉換為綠色波長區域之光,另一方面,於藍色像素部(B)直接穿透。此外,於光轉換層9A(9)之紅色像素部(R)及綠色像素部(G)發出之光中,向液晶層5側放射之光被波長選擇性穿透層8A(8)反射(其他光被吸收或穿透),而與於光轉換層9A(9)發出之光中向第二基板10側放射之光被合併顯示。如上所述,藉由使用光轉換層9A(9)及波長選擇性穿透層8A(8)之組合,可同時實現高發光效率與高色純度。
液晶面板亦可為其他實施形態。以下,對其他實施形態進行說明,但省略與上述實施形態重複之說明。
圖6係用以說明另一實施形態之液晶面板之構成的剖視圖。如圖6所示,該實施形態係如下形態:將光轉換層9A(9)及波長選擇性穿透層8A(8)設置於對向基板(O-SUB)內,且將光轉換層9A(9)設置於一對基板(第一基板2及第二基板10)之外側。於該實施形態中,亦可使用圖4所示之光轉換膜。於該實施形態中,進一步設置有支持第二偏光層7、光轉換層9A(9)及波長選擇性穿透層8A(8)之支持基板12。支持基板12較佳為透明基板。
即,於該實施形態之液晶面板中,自靠近背光單元之側(入射光LT1入射之側)起依序積層有第一偏光層1、第一基板2、液晶層5、第二基板10、第二偏光層7、波長選擇性穿透層8A(8)、光轉換層9A(9)、及支持基板12。
於將圖6所示之實施形態應用於VA型液晶顯示元件之情形時,較佳為於第一基板2上形成有第一電極層(像素電極),且於對向基板(O-SUB)中於液晶層5與第二偏光層7之間設置有第二電極層(共用電極)。較佳為於對向基板(O-SUB)及陣列基板(A-SUB)之至少一者中,於與液晶層5相接之面形成有配向層。於圖6中液晶顯示元件為FFS型或IPS型之情形時,較佳為於第一基板2上形成有像素電極及共用電極。
圖7係用以說明另一實施形態之液晶面板之構成的剖視圖。如圖7所示,該實施形態與圖3所示之實施形態同樣為內嵌型之形態,但光轉換層9B(9)之構成與圖3所示之實施形態不同。
具體而言,於光轉換層9B(9)中,紅色像素部(R)具有自靠近背光單元(入射光LT1入射之側)之側起依序積層含有紅色發光性奈米結晶粒子(NCR)之光轉換像素層(NC-紅)與含有紅色色材之色材層(所謂之紅色彩色濾光片)(CF-紅)而成的2層結構。綠色像素部(G)具有自靠近背光單元(入射光LT1入射之側)之側起依序積層含有發出綠光之綠色發光性奈米結晶粒子(NCG)之光轉換像素層(NC-綠)與含有綠色色材之色材層(所謂之綠色彩色濾光片)(CF-綠)而成的2層結構。
於該情形時,於紅色像素部(R)及綠色像素部(G)中,即便於全部入射光(較佳為藍光)不被含有發光性奈米結晶粒子之光轉換像素層轉換之情形時,紅色彩色濾光片(CF-紅)及綠色彩色濾光片(CF-綠)亦分別不使入射光穿透而將其吸收,因此紅色及綠色之色純度進一步提高。
圖8係用以說明另一實施形態之液晶面板之構成的剖視圖。圖9係表示光轉換膜之另一實施形態之剖視圖。該光轉換膜可適宜地用於圖8所示之液晶面板。如圖8所示,該實施形態與圖7所示之實施形態同樣為內嵌型之形態,但波長選擇性穿透層之構成與圖7所示之實施形態不同。
具體而言,於該實施形態中,於光轉換層9A(9)之背光單元側(入射光LT1入射之側)設置有第一波長選擇性穿透層8A(8),於光轉換層9A(9)之與背光單元相反之側(與入射光LT1入射之側相反之側)設置有第二波長選擇性穿透層11。即,於該實施形態之液晶面板中,自靠近背光單元之側(入射光LT1入射之側)起依序積層有第一偏光層1、第一基板2、液晶層5、第二偏光層7、第一波長選擇性穿透層8A(8)、光轉換層9A(9)、第二波長選擇性穿透層11、及第二基板10。
同樣地,圖9所示之光轉換膜90B依序具備波長選擇性穿透層8A(8)、光轉換層9A(9)、及第二波長選擇性穿透層11。換言之,該光轉換膜具備光轉換層9A(9)、以及分別設置於光轉換層9A(9)兩側之波長選擇性穿透層8A(8)及第二波長選擇性穿透層11。
第二波長選擇性穿透層11例如可為吸收藍色波長區域之光、且使藍色波長區域以外之波長區域之光穿透的含有黃色色材之色材層(所謂之黃色彩色濾光片)(CF-黃)。第二波長選擇性穿透層11例如亦可為將藍色波長區域之光反射一部分、且使一部分穿透之第二波長選擇性穿透層。藉由設置如該等之第二波長選擇性穿透層11,於入射光為藍色之情形時,可抑制由來自外部之無用光(尤其是藍光)之侵入導致之畫質降低,並且即便於來自藍色像素部(B)之發光較來自紅色像素部(R)及綠色像素部(G)之發光強時,亦可適當地調整色調。
於該光轉換膜90B之光轉換層9C(9)中,紅色像素部、綠色像 素部及藍色像素部藉由黑色矩陣(BM)而分別互相劃分。紅色像素部具有自靠近背光單元(入射光LT1入射之側)之側起依序積層含有紅色發光性奈米結晶粒子(NCR)之光轉換像素層(NC-紅)與含有紅色色材之色材層(紅色彩色濾光片)(CF-紅)而成的2層結構。綠色像素部具有自靠近背光單元(入射光LT1入射之側)之側起依序積層含有發出綠光之綠色發光性奈米結晶粒子(NCG)之光轉換像素層(NC-綠)與含有綠色色材之色材層(綠色彩色濾光片)(CF-綠)而成的2層結構。藍色像素部係由含有藍色色材之色材層(藍色彩色濾光片)(CF-藍)所構成。
於該情形時,於紅色像素部及綠色像素部中,即便於全部入射光(較佳為藍光)不被含有發光性奈米結晶粒子之光轉換像素層轉換之情形時,紅色彩色濾光片(CF-紅)及綠色彩色濾光片(CF-綠)亦分別不使入射光穿透而將其吸收,因此紅色及綠色之色純度進一步提高。
於將圖8所示之實施形態應用於VA型液晶顯示元件之情形時,較佳為於第一基板2上形成有第一電極層(像素電極),且於對向基板(O-SUB)中於液晶層5與第二偏光層7之間設置有第二電極層(共用電極)。較佳為於對向基板(O-SUB)及陣列基板(A-SUB)之至少一者中,於與液晶層5相接之面形成有配向層。於圖8中液晶顯示元件為FFS型或IPS型之情形時,較佳為於第一基板2上形成有像素電極及共用電極。
圖10係用以說明另一實施形態之液晶面板之構成的剖視圖。如圖10所示,該實施形態與圖3、7所示之實施形態同樣為內嵌型之形態,但光轉換層9D(9)之構成與圖3、7所示之實施形態不同。
具體而言,光轉換層9A(9)具有自靠近背光單元之側(入射光LT1入射之側)起依序積層跨各色之像素部(R、G、B)而設置於整體之發光層(NCL)、及按照各色之像素部(R、G、B)劃分而設置之色材層(所謂 之彩色濾光片)(CFL)而成的構成。
發光層(NCL)含有至少包含紅色發光性奈米結晶粒子及綠色發光性奈米結晶粒子之發光性奈米結晶粒子(NC)。發光性奈米結晶粒子(NC)可視需要而進一步含有藍色發光性奈米結晶粒子。
色材層(CFL)於與紅色像素部(R)相對應之位置具有紅色色層部(紅色彩色濾光片。不含發光性奈米結晶粒子)(CF-紅),於與綠色像素部(G)相對應之位置具有綠色色層部(綠色彩色濾光片)(CF-綠。不含發光性奈米結晶粒子),於與藍色像素部(B)相對應之位置具有藍色色層部(藍色彩色濾光片。不含發光性奈米結晶粒子)(CF-藍)。綠色色層部為了考慮激發光之穿透而進行色校正,亦可為含有黃色色材之色材層(黃色彩色濾光片)(CF-黃)。紅色色層部(CF-紅)、綠色色層部(CF-綠)及藍色色層部(CF-藍)可如圖10所示般分別互相相接,亦可為了防止混色而於各色之色層部之間配置黑色矩陣作為遮光層。
於將圖10所示之實施形態應用於VA型液晶顯示元件之情形時,較佳為於第一基板2上形成有第一電極層(像素電極),且於對向基板(O-SUB)中於液晶層5與第二偏光層7之間設置有第二電極層(共用電極)。於圖10中液晶顯示元件為FFS型或IPS型之情形時,較佳為於第一基板2上形成有像素電極及共用電極。於VA型、FFS型或IPS型液晶顯示元件中,較佳為於對向基板(O-SUB)及陣列基板(A-SUB)之至少一者中,於與液晶層5相接之面形成有配向層。
圖11係用以說明另一實施形態之液晶面板之構成的剖視圖。如圖11所示,波長選擇性穿透層8A(8)及光轉換層9A(9)可與上述實施形態不同而設置於陣列基板(A-SUB)內。該實施形態係具有將光轉換層9A(9)、第一偏光層1及第二偏光層7設置於一對基板(第一基板2及第二基板10)之間 之所謂內嵌型之構成的形態。
即,於該實施形態之液晶面板中,自靠近背光單元之側(入射光LT1入射之側)起依序積層有第一基板2、波長選擇性穿透層8A(8)、光轉換層9A(9)、第一偏光層1、液晶層5、第二偏光層7、及第二基板10。
於以上所說明之各實施形態中,第二偏光層7與第二基板10可互相替換,於液晶層5與第一偏光層1之間可設置有含有TFT之電極層(TFT電極層),亦可設置於液晶層5與第二偏光層7之間。
即,於一變化例之液晶面板中,可自靠近背光單元之側(入射光LT1入射之側)起依序積層有TFT電極層、液晶層5、第二基板10、及第二偏光層7。若列舉更具體之例,則於圖11所示之實施形態之一變化例之液晶面板中,可自靠近背光單元之側(入射光LT1入射之側)起依序積層有第一基板2、波長選擇性穿透層8A(8)、光轉換層9A(9)、第一偏光層1、TFT電極層、液晶層5、第二基板10、及第二偏光層7。
於另一變化例之液晶面板中,可自靠近背光單元之側(入射光LT1入射之側)起依序積層有液晶層5、TFT電極層、第二偏光層7、及第二基板10。若列舉更具體之例,則於圖11所示之實施形態之另一變化例之液晶面板中,可自靠近背光單元之側(入射光LT1入射之側)起依序積層有第一基板2、波長選擇性穿透層8A(8)、光轉換層9A(9)、第一偏光層1、液晶層5、TFT電極層、第二偏光層7、及第二基板10。
於另一變化例之液晶面板中,可自靠近背光單元之側(入射光LT1入射之側)起依序積層有液晶層5、TFT電極層、第二基板10、及第二偏光層7。若列舉更具體之例,則於圖11所示之實施形態之另一變化例之液晶面板中,可自靠近背光單元之側(入射光LT1入射之側)起依序積層有第一基板2、波長選擇性穿透層8A(8)、光轉換層9A(9)、第一偏光層1、液晶層5、TFT 電極層、第二基板10、及第二偏光層7。
於以上所詳細說明之各實施形態中,光轉換層9所含之發光性奈米結晶粒子經由作為光開關發揮功能之液晶層5及偏光層1、7而吸收短波長之可見光線或紫外光等使用高能量光線之光源的光(入射光),藉由該發光性奈米結晶粒子將該吸收之光轉換為特定波長之光而發光,藉此顯示顏色。
即便於各實施形態中,就顯著地表現出可抑制或防止由照射高能量光線引起之液晶層5劣化的效果之方面而言,較佳為尤其是具有將光轉換層9設置於對向基板(O-SUB)之結構之形態。
上述實施形態中,於具有僅於光轉換層9之背光單元側(入射光LT1入射之側)設置波長選擇性穿透層8之構成之形態中,可根據所使用之光源種類(作為發光元件為藍色LED)或光之強度,而與圖8所示之實施形態同樣地,亦於光轉換層9之與背光單元相反之側(與入射光LT1入射之側相反之側)進一步設置波長選擇性穿透層(第二波長選擇性穿透層11),亦可於光轉換層9與波長選擇性穿透層8之間進一步設置波長選擇性穿透層(第二波長選擇性穿透層11)。於該等情形時,亦與圖8所示之實施形態同樣,可抑制由來自外部之無用光(尤其是藍光)之侵入導致之畫質降低。
於該等形態中,第一波長選擇性穿透層8與第二波長選擇性穿透層11互相可相同亦可不同。較佳之形態係如下形態:波長選擇性穿透層8使入射至光轉換層9之光穿透,而將來自含有紅色發光性奈米結晶粒子(NCR)之光轉換像素層(NC-紅)之發出之紅光及/或來自含有綠色發光性奈米結晶粒子(NCG)之光轉換像素層(NC-綠)之發出之綠光反射,第二波長選擇性穿透層11使來自含有紅色發光性奈米結晶粒子(NCR)之光轉換像素層(NC-紅)之發出之紅光及/或來自含有綠色發光性奈米結晶粒子(NCG)之光轉換像素層(NC-綠)之發出之綠光穿透,而將其他顏色之光(尤其是入射光(藍 光))反射或吸收。於該形態中,可進一步提高紅色或綠色之色純度。
於上述各實施形態中,光轉換層9含有選自由藍色發光性奈米結晶粒子NCB、綠色發光性奈米結晶粒子NCG及紅色發光性奈米結晶粒子NCR所組成之群中之至少1種即可,亦包括上述實施形態在內,光轉換層9較佳為含有選自由藍色發光性奈米結晶粒子NCB、綠色發光性奈米結晶粒子NCG及紅色發光性奈米結晶粒子NCR所組成之群中之至少2種。
上述各實施形態中之波長選擇性穿透層8,於一實施形態中,係對應於各色之像素部(R、G、B)被劃分。圖12係表示光轉換膜之另一實施形態之剖視圖。該光轉換膜90C可於波長選擇性穿透層8B(8)對應於各色之像素部(R、G、B)被劃分的形態中使用。
該光轉換膜9OC與上述實施形態同樣地具備光轉換層9A(9)與波長選擇性穿透層8B(8),但波長選擇性穿透層8B(8)之構成與上述實施形態不同。具體而言,波長選擇性穿透層8B(8)具有:波長選擇性穿透部SRR:設置於與紅色像素部(R)相對應之位置,將紅色波長區域之光選擇性地反射,且使除此以外之波長區域之光穿透;波長選擇性穿透部SRG:設置於與綠色像素部(G)相對應之位置,將綠色波長區域之光選擇性地反射,且使除此以外之波長區域之光穿透;及波長選擇性穿透部SRB:設置於與藍色像素部(B)相對應之位置,將藍色波長區域之光選擇性地反射,且使除此以外之波長區域之光穿透。
於該實施形態中,當來自藍色LED之藍光等入射光LT1穿透波長選擇性穿透層8B(8),於含有紅色發光性奈米結晶粒子(NCR)之光轉換像素層(NC-紅)被吸收後發出紅光之情形時,雖會放射出取決於紅色發光性奈米結晶粒子之形狀之發光波,但朝向入射光入射之方向之紅色放射光會被選擇性地反射紅色波長區域之光之波長選擇性穿透部SRR反射,因此朝向光轉換 層9A(9)側之紅光之強度提高。入射至綠色像素部(G)之光亦同樣地會被選擇性地反射綠色波長區域之光之波長選擇性穿透部SRG反射,因此朝向光轉換層9A(9)側之綠光之強度提高。
於圖12所示之實施形態中,雖然於藍色像素部(B)設置有選擇性地反射藍色波長區域之光且使除此以外之波長區域之光穿透的波長選擇性穿透部SRB,但亦可根據入射光之種類或強度而不設置該波長選擇性穿透部SRB。例如於入射光(藍光)之發光強度強之情形時,可如圖9所示之實施形態般,於光轉換層9A(9)之與波長選擇性穿透層8B(8)相反之側(與背光單元相反之側)設置使紅色波長區域之光及/或綠色區域之波長區域之光選擇性地穿透(吸收藍光)之第二波長選擇性穿透層11。
於上述各實施形態(光轉換膜)中,光轉換層9與波長選擇性穿透層8以直接接觸之方式互相積層,而於其他實施形態中,光轉換層9與波長選擇性穿透層8亦可隔著其他層互相積層。其他層例如可為接著層等。
於上述各實施形態(光轉換膜)中,波長選擇性穿透層8設置於光轉換層9之整面,而於其他實施形態中,波長選擇性穿透層8亦可設置於光轉換層9之一部分。
繼而,對上述各實施形態中之光轉換層及波長選擇性穿透層進行詳細說明。
(光轉換層)
光轉換層之像素部之構成要素含有發光性奈米結晶粒子作為必需成分,亦可含有樹脂成分、其他視需要之對該發光性奈米結晶具有親和性之分子、公知之添加劑、其他色材。另外,如上所述,就對比度之方面而言,較佳為於各像素部之邊界部分具有黑色矩陣。
本實施形態之光轉換層含有發光性奈米結晶粒子。本說明書中 之用語「奈米結晶粒子」較佳係指具有100nm以下之至少1種長度之粒子。奈米結晶之形狀可具有任意之幾何學形狀,可為對稱或不對稱。作為該奈米結晶之形狀之具體例,包括細長、棒狀之形狀、圓形(球狀)、橢圓形、角錐之形狀、碟狀、枝狀、網狀或任意不規則之形狀等。於一部分實施形態中,奈米結晶較佳為量子點或量子棒。
該發光性奈米結晶粒子較佳為具有:含有至少1種第一半導體材料之芯、及被覆上述芯且含有與上述芯相同或不同之第二半導體材料之殼。
因此,發光性奈米結晶粒子係由至少含有第一半導體材料之芯、及含有第二半導體材料之殼所構成,上述第一半導體材料與上述第二半導體材料可相同亦可不同。另外,芯及/或殼亦可均含有第一半導體及/或第二半導體以外之第三半導體材料。此外,此處所謂之被覆芯,只要被覆芯之至少一部分即可。
進而,該發光性奈米結晶粒子較佳為具有:含有至少1種第一半導體材料之芯、被覆上述芯且含有與上述芯相同或不同之第二半導體材料之第一殼、及視需要之被覆上述第一殼且含有與上述第一殼相同或不同之第三半導體材料之第二殼。
因此,本實施形態之發光性奈米結晶粒子較佳為具有以下3種結構中之至少一種:具有含有第一半導體材料之芯及被覆上述芯且含有與上述芯相同之第二半導體材料之殼的形態,即由1種或2種以上之半導體材料構成之態樣(=僅芯之結構(亦稱為芯結構));具有含有第一半導體材料之芯及被覆上述芯且含有與上述芯不同之第二半導體材料之殼的形態等,即芯/殼結構;以及具有含有第一半導體材料之芯、被覆上述芯且含有與上述芯不同之第二半 導體材料之第一殼、及被覆上述第一殼且含有與上述第一殼不同之第三半導體材料之第二殼的形態,即芯/殼/殼結構。
另外,本實施形態之發光性奈米結晶粒子如上所述,較佳包含芯結構、芯/殼結構、芯/殼/殼結構之3種形態,於該情形時,芯可為含有2種以上之半導體材料之混晶(例如,CdSe+CdS、CIS+ZnS等)。又進而,殼亦可同樣為含有2種以上之半導體材料之混晶。
本實施形態之半導體材料較佳為選自由II-VI族半導體、III-V族半導體、I-III-VI族半導體、IV族半導體及I-II-IV-VI族半導體所組成之群中之1種或2種以上。本實施形態之第一半導體材料、第二半導體材料及第三半導體材料之較佳例與上述半導體材料相同。
具體而言,本實施形態之半導體材料選擇選自由CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe;Si、Ge、SiC、SiGe、AgInSe2、CuGaSe2、CuInS2、CuGaS2、CuInSe2、AgInS2、AgGaSe2、AgGaS2、C、Si及Ge所組成 之群中之至少1種以上,該等化合物半導體可單獨使用,或者亦可混合兩種以上,更佳為選擇選自由CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、InP、InAs、InSb、GaP、GaAs、GaSb、AgInS2、AgInSe2、AgInTe2、AgGaS2、AgGaSe2、AgGaTe2、CuInS2、CuInSe2、CuInTe2、CuGaS2、CuGaSe2、CuGaTe2、Si、C、Ge及Cu2ZnSnS4所組成之群中之至少1種以上,該等化合物半導體可單獨使用,或者亦可混合兩種以上。
本實施形態之發光性奈米結晶粒子較佳含有選自由發出紅光之紅色發光性奈米結晶粒子、發出綠光之綠色發光性奈米結晶粒子及發出藍光之藍色發光性奈米結晶粒子所組成之群中之至少1種奈米結晶。通常,發光性奈米結晶粒子之發光色若根據井型位能模型之薛丁格波動方程式(Schrodinger wave Equation)之解,則會取決於粒徑,但亦會取決於發光性奈米結晶粒子所具有之能隙,因此藉由調整所使用之發光性奈米結晶粒子與其粒徑而選擇發光色。
本實施形態中發出紅光之紅色發光性奈米結晶粒子之螢光光譜的波長峰之上限較佳為665nm、663nm、660nm、658nm、655nm、653nm、651nm、650nm、647nm、645nm、643nm、640nm、637nm、635nm、632nm或630nm,上述波長峰之下限較佳為628nm、625nm、623nm、620nm、615nm、610nm、607nm或605nm。
本實施形態中發出綠光之綠色發光性奈米結晶粒子之螢光光譜的波長峰之上限較佳為560nm、557nm、555nm、550nm、547nm、545nm、543nm、540nm、537nm、535nm、532nm或530nm,上述波長峰之下限較佳為528nm、525nm、523nm、520nm、515nm、510nm、507nm、505nm、503nm或500nm。
本實施形態中發出藍光之藍色發光性奈米結晶粒子之螢光光譜 的波長峰之上限較佳為480nm、477nm、475nm、470nm、467nm、465nm、463nm、460nm、457nm、455nm、452nm或450nm,上述波長峰之下限較佳為450nm、445nm、440nm、435nm、430nm、428nm、425nm、422nm或420nm。
本實施形態中,使用於發出紅光之紅色發光性奈米結晶粒子之半導體材料較理想為發光之波峰波長進入635nm±30nm之範圍。同樣地,使用於發出綠光之綠色發光性奈米結晶粒子之半導體材料較理想為發光之波峰波長進入530nm±30nm之範圍,使用於發出藍光之藍色發光性奈米結晶粒子之半導體材料較理想為發光之波峰波長進入450nm±30nm之範圍。
本實施形態之發光性奈米結晶粒子之螢光量子產率之下限值較佳依序為40%以上、30%以上、20%以上、10%以上。
本實施形態之發光性奈米結晶粒子之螢光光譜的半值寬之上限值較佳依序為60nm以下、55nm以下、50nm以下、45nm以下。
本實施形態之紅色發光性奈米結晶粒子之粒徑(1次粒子)之上限值較佳依序為50nm以下、40nm以下、30nm以下、20nm以下。
本實施形態之紅色發光性奈米結晶粒子之波峰波長之上限值為665nm,下限值為605nm,以符合該波峰波長之方式選擇化合物及其粒徑。同樣地,綠色發光性奈米結晶粒子之波峰波長之上限值為560nm,下限值為500nm,藍色發光性奈米結晶粒子之波峰波長之上限值為420nm,下限值為480nm,以分別符合該波峰波長之方式選擇化合物及其粒徑。
本實施形態之液晶顯示元件具備至少1個像素。構成該像素之顏色係藉由鄰近之3個像素獲得,各像素含有以紅色(例如,為CdSe之發光性奈米結晶粒子、CdSe之棒狀發光性奈米結晶粒子、具備芯殼結構之棒狀發光性奈米結晶粒子,為該殼部分為CdS且內側之芯部為CdSe、具備芯殼結構之棒狀發 光性奈米結晶粒子,為該殼部分為CdS且內側之芯部為ZnSe、具備芯殼結構之發光性奈米結晶粒子,為該殼部分為CdS且內側之芯部為CdSe、具備芯殼結構之發光性奈米結晶粒子,為該殼部分為CdS且內側之芯部為ZnSe、CdSe與ZnS之混晶之發光性奈米結晶粒子、CdSe與ZnS之混晶之棒狀發光性奈米結晶粒子、InP之發光性奈米結晶粒子、InP之發光性奈米結晶粒子、InP之棒狀發光性奈米結晶粒子、CdSe與CdS之混晶之發光性奈米結晶粒子、CdSe與CdS之混晶之棒狀發光性奈米結晶粒子、ZnSe與CdS之混晶之發光性奈米結晶粒子、ZnSe與CdS之混晶之棒狀發光性奈米結晶粒子等)、綠色(CdSe之發光性奈米結晶粒子、CdSe之棒狀之發光性奈米結晶粒子、CdSe與ZnS之混晶之發光性奈米結晶粒子、CdSe與ZnS之混晶之棒狀發光性奈米結晶粒子等)及藍色(為ZnSe之發光性奈米結晶粒子、ZnSe之棒狀發光性奈米結晶粒子、ZnS之發光性奈米結晶粒子、ZnS之棒狀發光性奈米結晶粒子、具備芯殼結構之發光性奈米結晶粒子,為該殼部分為ZnSe且內側之芯部為ZnS、具備芯殼結構之棒狀發光性奈米結晶粒子,為該殼部分為ZnSe且內側之芯部為ZnS、CdS之發光性奈米結晶粒子、CdS之棒狀發光性奈米結晶粒子)發光之不同之奈米結晶。關於其他顏色(例如,黃色),亦可視需要含有於光轉換層中,進而亦可使用鄰近之4像素以上之不同顏色。
本說明書中之本實施形態之發光性奈米結晶粒子之平均粒徑(1次粒子)可藉由TEM觀察進行測定。通常,作為奈米結晶之平均粒徑之測定方法,可列舉光散射法、使用溶劑之沈澱式粒度測定法、藉由電子顯微鏡直接觀察粒子而實測平均粒徑之方法。由於發光性奈米結晶粒子容易因水分等而劣化,因此於本實施形態中,適宜為如下方法:藉由穿透式電子顯微鏡(TEM)或掃描式電子顯微鏡(SEM)直接觀察任意之多個結晶,根據由投影二維圖像獲得之長短徑比算出各自之粒徑,並求出其平均值。因此,於本實施形態中應 用上述方法算出平均粒徑。所謂發光性奈米結晶粒子之1次粒子係構成之數~數十nm大小之單晶或與其相近之微晶,認為發光性奈米結晶粒子之一次粒子之大小或形狀取決於該一次粒子之化學組成、結構、製造方法或製造條件等。
於本實施形態之光轉換層中,發光性奈米結晶粒子就分散穩定性之觀點而言,較佳於其表面具有有機配位基。有機配位基例如可配位鍵結於發光性奈米結晶粒子之表面。換言之,發光性奈米結晶粒子之表面可被有機配位基所鈍化。另外,發光性奈米結晶粒子可於其表面具有高分子分散劑。於一實施形態中,例如,可從上述具有有機配位基之發光性奈米結晶粒子去除有機配位基,將有機配位基與高分子分散劑交換,藉此使高分子分散劑鍵結於發光性奈米結晶粒子之表面。但就製成噴墨油墨時之分散穩定性之觀點而言,較佳為對配位有有機配位基之狀態之發光性奈米結晶粒子摻合高分子分散劑。
作為有機配位基,係具有對發光性奈米結晶粒子具親和性之官能基之低分子及高分子,作為具親和性之官能基,並無特別限定,較佳為含有選自由氮、氧、硫及磷所組成之群中之1種元素之基。例如可列舉:有機系硫基、有機系磷酸基吡咯啶酮基、吡啶基、胺基、醯胺基、異氰酸基、羰基、及羥基等。例如可列舉:TOP(三辛基膦)、TOPO(三辛基氧化膦)、油酸、油胺、辛基胺、三辛基胺、十六基胺、辛烷硫醇(octanethiol)、十二烷硫醇、己基膦酸(HPA)、十四烷基膦酸(TDPA)、及辛基次膦酸(OPA)。
作為發光性奈米結晶粒子,可使用以膠體形態分散於有機溶劑中者。於有機溶劑中處於分散狀態之發光性奈米結晶粒子之表面較佳為被上述有機配位基所鈍化。作為有機溶劑,例如可列舉:環己烷、己烷、庚烷、氯仿、甲苯、辛烷、氯苯、四氫萘、二苯醚、丙二醇單甲醚乙酸酯、丁基卡必醇乙酸酯、或該等之混合物。
較佳使本實施形態之光轉換層(或該光轉換層之製備用油墨組 成物)含有高分子分散劑。高分子分散劑可使光散射性粒子均勻分散於油墨中。
本實施形態中之光轉換層較佳為除了上述所示之發光性奈米結晶粒子以外,還含有使該發光性奈米結晶粒子適度地分散穩定化之高分子分散劑。
於本實施形態中,高分子分散劑係具有750以上之重量平均分子量,且具有對光散射性粒子具有親和性之官能基之高分子化合物,具有使光散射性粒子分散之功能。高分子分散劑經由對光散射性粒子具有親和性之官能基而吸附於光散射性粒子,藉由高分子分散劑彼此之靜電排斥及/或立體排斥,將光散射性粒子分散於油墨組成物中。高分子分散劑較佳與光散射性粒子之表面結合而吸附於光散射性粒子,亦可結合於發光性奈米結晶粒子之表面而吸附至發光性奈米粒子,亦可游離於油墨組成物中。
作為對光散射性粒子具有親和性之官能基,可列舉酸性官能基、鹼性官能基及非離子性官能基。酸性官能基具有解離性之質子,可被胺、氫氧化物離子等鹼中和,鹼性官能基可被有機酸、無機酸等酸中和。
作為酸性官能基,可列舉:羧基(-COOH)、磺酸基(-SO3H)、硫酸基(-OSO3H)、膦酸基(-PO(OH)3)、磷酸基(-OPO(OH)3)、次膦酸基(-PO(OH)-)、巰基(-SH)。
作為鹼性官能基,可列舉:一級、二級及三級胺基、銨基、亞胺基、以及吡啶、嘧啶、吡、咪唑、三唑等含氮雜環基等。
作為非離子性官能基,可列舉:羥基、醚基、硫醚基、亞磺醯基(-SO-)、磺醯基(-SO2-)、羰基、甲醯基、酯基、碳酸酯基、醯胺基、胺甲醯基、脲基、硫醯胺基、硫脲基、胺磺醯基、氰基、烯基、炔基、氧化膦(phosphine oxide)基、硫化膦(phosphine sulfide)基。
就光散射性粒子之分散穩定性之觀點、不易引起發光性奈米結晶粒子沈澱之副作用之觀點、高分子分散劑之合成之容易性之觀點、及官能基之穩定性之觀點而言,作為酸性官能基,可較佳地使用羧基、磺酸基、膦酸基及磷酸基,作為鹼性官能基,可較佳地使用胺基。該等中,可更佳地使用羧基、膦酸基及胺基,最佳為使用胺基。
具有酸性官能基之高分子分散劑具有酸值。具有酸性官能基之高分子分散劑之酸值較佳為以固體成分換算計為1~150mgKOH/g。若酸值為1以上,則容易獲得光散射性粒子之充分之分散性,若酸值為150以下,則像素部(油墨組成物之硬化物)之保存穩定性不易降低。
另外,具有鹼性官能基之高分子分散劑具有胺值。具有鹼性官能基之高分子分散劑之胺值較佳為以固體成分換算計為1~200mgKOH/g。若胺值為1以上,則容易獲得光散射性粒子之充分之分散性,若胺值為200以下,則像素部(油墨組成物之硬化物)之保存穩定性不易降低。
高分子分散劑可為單一單體之聚合物(均聚物),亦可為多種單體之共聚物(copolymer)。另外,高分子分散劑可為無規共聚物、嵌段共聚物或接枝共聚物之任一種。另外,於高分子分散劑為接枝共聚物之情形時,可為梳形之接枝共聚物,亦可為星形之接枝共聚物。高分子分散劑例如可為丙烯酸樹脂、聚酯樹脂、聚胺酯樹脂、聚醯胺樹脂、聚醚、酚樹脂、聚矽氧樹脂、聚脲樹脂、胺基樹脂、聚伸乙基亞胺及聚烯丙基胺等聚胺、環氧樹脂、聚醯亞胺等。
作為上述高分子分散劑,亦可使用市售品,作為市售品,可使用Ajinomoto Fine-Techno股份有限公司之Ajisper PB系列、BYK公司製造之DISPERBYK系列及BYK-系列、BASF公司製造之Efka系列等。
本實施形態之光轉換層(或該光轉換層之製備用油墨組成物) 較佳含有在硬化物中作為黏合劑而發揮功能之樹脂成分。本實施形態之樹脂成分較佳為硬化性樹脂,作為該硬化性樹脂,較佳為熱硬化性樹脂或UV硬化性樹脂。
作為該熱硬化性樹脂,具有硬化性基,作為該硬化性基,可列舉環氧基、氧環丁烷基、異氰酸基、胺基、羧基、羥甲基等,就油墨組成物之硬化物之耐熱性及保存穩定性優異之觀點、以及對遮光部(例如黑色矩陣)及基材之密接性優異之觀點而言,較佳為環氧基。熱硬化性樹脂可具有1種硬化性基,亦可具有兩種以上之硬化性基。
熱硬化性樹脂可為單一單體之聚合物(均聚物),亦可為多種單體之共聚物(copolymer)。另外,熱硬化性樹脂可為無規共聚物、嵌段共聚物或接枝共聚物之任一種。
作為熱硬化性樹脂,可使用1分子中具有2個以上之熱硬化性官能基之化合物,通常與硬化劑組合使用。於使用熱硬化性樹脂之情形時,可進一步添加可促進熱硬化反應之觸媒(硬化促進劑)。換言之,油墨組成物可含有包含熱硬化性樹脂(以及視需要而使用之硬化劑及硬化促進劑)之熱硬化性成分。另外,除了該等以外,亦可進而使用本身無聚合反應性之聚合物。
作為1分子中具有2個以上之熱硬化性官能基之化合物,例如可使用1分子中具有2個以上之環氧基之環氧樹脂(以下亦稱為「多官能環氧樹脂」)。「環氧樹脂」包括單體性環氧樹脂及聚合物性環氧樹脂此兩者。多官能性環氧樹脂於1分子中所具有之環氧基之個數較佳為2~50個,更佳為2~20個。環氧基為具有環氧乙烷環結構之結構即可,例如可為環氧丙基、氧伸乙基(oxyethylene group)、環氧環己基等。作為環氧樹脂,可列舉可藉由羧酸硬化之公知之多元環氧樹脂。此種環氧樹脂例如於新保正樹編「環氧樹脂手冊」日刊工業新聞社刊(1987年)等中有廣泛揭示,可使用該等。
作為熱硬化性樹脂,若使用分子量相對較小之多官能環氧樹脂,則會於油墨組成物(噴墨油墨)中補充環氧基,環氧基之反應點濃度成為高濃度,可提高交聯密度。
作為用以使熱硬化性樹脂硬化之硬化劑及硬化促進劑,可使用可溶解或分散於上述有機溶劑中之公知慣用者之任一種。
熱硬化性樹脂就容易獲得可靠性優異之彩色濾光片像素部之觀點而言,可為鹼不溶性。所謂熱硬化性樹脂為鹼不溶性,意指以熱硬化性樹脂之總質量為基準,於25℃之熱硬化性樹脂相對於1質量%之氫氧化鉀水溶液之溶解量在30質量%以下。熱硬化性樹脂之上述溶解量較佳為10質量%以下,更佳為3質量%以下。
熱硬化性樹脂之重量平均分子量就容易獲得適合作為噴墨油墨之黏度之觀點、油墨組成物之硬化性變得良好之觀點、以及像素部(油墨組成物之硬化物)之耐溶劑性及磨耗性提高之觀點而言,可為750以上,亦可為1000以上,亦可為2000以上。就設為作為噴墨油墨之合適之黏度的觀點而言,可為500000以下,亦可為300000以下,亦可為200000以下。但交聯後之分子量並不限於此。
熱硬化性樹脂之含量就容易獲得適合作為噴墨油墨之黏度之觀點、油墨組成物之硬化性變得良好之觀點、以及像素部(油墨組成物之硬化物)之耐溶劑性及磨耗性提高之觀點而言,以油墨組成物之不揮發成分之質量為基準,可為10質量%以上,亦可為15質量%以上,亦可為20質量%以上。熱硬化性樹脂之含量就像素部之厚度對於光轉換功能而不會過厚之觀點而言,以油墨組成物之不揮發成分之質量為基準,可為90質量%以下,亦可為80質量%以下,亦可為70質量%以下,亦可為60質量%以下,亦可為50質量%以下。
上述UV硬化性樹脂較佳為藉由光之照射而聚合之使光自由基聚 合性化合物或光陽離子聚合性化合物聚合而成之樹脂,可為光聚合性之單體或低聚物。該等可與光聚合起始劑一併使用。較佳為光自由基聚合性化合物與光自由基聚合起始劑一併使用,光陽離子聚合性化合物與光陽離子聚合起始劑一併使用。換言之,本實施形態之光轉換層用之油墨組成物可含有包含光聚合性化合物及光聚合起始劑之光聚合性成分,亦可含有包含光自由基聚合性化合物及光自由基聚合起始劑之光自由基聚合性成分,亦可含有包含光陽離子聚合性化合物及光陽離子聚合起始劑之光陽離子聚合性成分。可併用光自由基聚合性化合物與光陽離子聚合性化合物,亦可使用具備光自由基聚合性與光陽離子聚合性之化合物,亦可併用光自由基聚合起始劑與光陽離子聚合起始劑。光聚合性化合物可單獨使用一種,亦可併用兩種以上。
作為上述光自由基聚合性化合物,可舉(甲基)丙烯酸酯化合物。(甲基)丙烯酸酯化合物可為具有一個(甲基)丙烯醯基之單官能(甲基)丙烯酸酯,亦可為具有多個(甲基)丙烯醯基之多官能(甲基)丙烯酸酯。就可抑制由製造彩色濾光片時之硬化收縮引起之平滑性降低的觀點而言,較佳為組合單官能(甲基)丙烯酸酯與多官能(甲基)丙烯酸酯加以使用。此外,於本說明書中,所謂(甲基)丙烯酸酯意指「丙烯酸酯」及與其相對應之「甲基丙烯酸酯」。「(甲基)丙烯醯基」之表述亦相同。
作為光陽離子聚合性化合物,可列舉環氧化合物、氧環丁烷化合物、乙烯醚化合物等。
另外,作為本實施形態中之光聚合性化合物,亦可使用日本特開2013-182215號公報之段落0042~0049所記載之光聚合性化合物。
於本實施形態之光轉換層用之油墨組成物中,於僅以光聚合性化合物或以其作為主成分而構成可硬化成分之情形時,就可進一步提高硬化物之耐久性(強度、耐熱性等)之方面而言,更佳為作為如上所述之光聚合性化 合物,使用一分子中具有2個以上之聚合性官能基之2官能以上的多官能光聚合性化合物作為必需成分。
光聚合性化合物就容易獲得可靠性優異之彩色濾光片像素部之觀點而言,可為鹼不溶性。於本說明書中,所謂「光聚合性化合物為鹼不溶性」,意指於25℃之光聚合性化合物相對於1質量%之氫氧化鉀水溶液之溶解量以光聚合性化合物之總質量為基準而為30質量%以下。光聚合性化合物之上述溶解量較佳為10質量%以下,更佳為3質量%以下。
光聚合性化合物之含量就油墨組成物之硬化性變得良好之觀點、以及像素部(油墨組成物之硬化物)之耐溶劑性及磨耗性提高之觀點而言,以油墨組成物之不揮發成分之質量為基準,可為10質量%以上,亦可為15質量%以上,亦可為20質量%以上。光聚合性化合物之含量就可獲得更優異之光學特性(漏光)之觀點而言,以油墨組成物之不揮發成分之質量為基準,可為90質量%以下,亦可為80質量%以下,亦可為70質量%以下,亦可為60質量%以下,亦可為50質量%以下。
光聚合性化合物就像素部(油墨組成物之硬化物)之穩定性優異(例如,可抑制經時劣化,高溫保存穩定性及濕熱保存穩定性優異)之觀點而言,可具有交聯性基。交聯性基係藉由熱或活性能量線(例如,紫外線)而與其他交聯性基進行反應之官能基,例如可列舉:環氧基、氧呾(oxetane)基、乙烯基、丙烯醯基、丙烯醯氧基、乙烯醚基等。
作為光自由基聚合起始劑,適宜為分子裂解型或奪氫型之光自由基聚合起始劑。
光聚合起始劑之含量就油墨組成物之硬化性之觀點而言,相對於光聚合性化合物100質量份,可為0.1質量份以上,亦可為0.5質量份以上,或亦可為1質量份以上。光聚合起始劑之含量就像素部(油墨組成物之硬化物) 之經時穩定性之觀點而言,相對於光聚合性化合物100質量份,可為40質量份以下,亦可為30質量份以下,或亦可為20質量份以下。
另外,可將一部分熱塑性樹脂與該等UV硬化樹脂併用,作為該熱塑性樹脂,例如可列舉:胺酯系樹脂、丙烯酸系樹脂、聚醯胺系樹脂、聚醯亞胺系樹脂、苯乙烯順丁烯二酸系樹脂、苯乙烯順丁烯二酸酐系樹脂等。
另外,本實施形態之光轉換層之製備用油墨組成物可使用公知之有機溶劑,例如可列舉:乙二醇單丁醚乙酸酯、二乙二醇單丁醚乙酸酯、二乙二醇單乙醚乙酸酯、二乙二醇二丁醚、己二酸二乙酯、草酸二丁酯、丙二酸二甲酯、丙二酸二乙酯、丁二酸二甲酯、丁二酸二乙酯、1,4-丁二醇二乙酸酯、甘油三乙酸酯等。
進而,於本實施形態之光轉換層(或該光轉換層之製備用油墨組成物)中,除了上述硬化性樹脂、上述高分子分散劑、上述發光性奈米結晶粒子以外,亦可含有光散射性粒子等公知之添加劑。
於藉由使用發光性奈米結晶粒子之油墨組成物形成彩色濾光片像素部(以下,亦簡稱為「像素部」)之情形時,存在來自光源之光未被發光性奈米結晶粒子吸收而從像素部漏出之情況。由於此種漏光會降低像素部之色再現性,因此於使用上述像素部作為光轉換層之情形時,較佳為儘量減少該漏光。為了防止像素部之漏光,可適宜地使用上述光散射性粒子。光散射性粒子例如為光學非活性之無機微粒。光散射性粒子可使照射至彩色濾光片像素部之來自光源之光散射。
作為構成光散射性粒子之材料,例如可列舉:鎢、鋯、鈦、鉑、鉍、銠、鈀、銀、錫、金等單質金屬;二氧化矽、硫酸鋇、碳酸鋇、碳酸鈣、滑石、黏土、高嶺土、鋁白、氧化鈦、氧化鎂、氧化鋇、氧化鋁、氧化鉍、氧化鋯、氧化鋅等金屬氧化物;碳酸鎂、碳酸鋇、次碳酸鉍、碳酸鈣等金 屬碳酸鹽;氫氧化鋁等金屬氫氧化物;鋯酸鋇、鋯酸鈣、鈦酸鈣、鈦酸鋇、鈦酸鍶等複合氧化物、次硝酸鉍等金屬鹽等。光散射性粒子就漏光之減少效果更優異之觀點而言,較佳含有選自由氧化鈦、氧化鋁、氧化鋯、氧化鋅、碳酸鈣、硫酸鋇及二氧化矽所組成之群中之至少1種,更佳含有選自由氧化鈦、硫酸鋇及碳酸鈣所組成之群中之至少一種。
光散射性粒子之形狀可為球狀、絲狀、不定形狀等。然而,就可進一步提高油墨組成物之均一性、流動性及光散射性之方面而言,作為光散射性粒子,較佳使用作為在粒子形狀上方向性少之粒子(例如,球狀、正四面體狀等之粒子)。
油墨組成物中之光散射性粒子之平均粒徑(體積平均直徑)就漏光之減少效果更優異之觀點而言,可為0.05μm以上,亦可為0.2μm以上,或亦可為0.3μm以上。油墨組成物中之光散射性粒子之平均粒徑(體積平均直徑)就噴出穩定性優異之觀點而言,可為1.0μm以下,亦可為0.6μm以下,或亦可為0.4μm以下。油墨組成物中之光散射性粒子之平均粒徑(體積平均直徑)可為0.05~1.0μm、0.05~0.6μm、0.05~0.4μm、0.2~1.0μm、0.2~0.6μm、0.2~0.4μm、0.3~1.0μm、0.3~0.6μm、或0.3~0.4μm。就容易獲得此種平均粒徑(體積平均直徑)之觀點而言,所使用之光散射性粒子之平均粒徑(體積平均直徑)可為50nm以上,且可為1000nm以下。光散射性粒子之平均粒徑(體積平均直徑)可藉由利用動態光散射式Nanotrac粒度分佈計進行測定,算出體積平均直徑而獲得。另外,所使用之光散射性粒子之平均粒徑(體積平均直徑)可藉由利用例如穿透式電子顯微鏡或掃描式電子顯微鏡測定各粒子之粒徑,算出體積平均直徑而獲得。
光散射性粒子之含量就漏光之減少效果更優異之觀點而言,以油墨組成物之不揮發成分之質量為基準,可為0.1質量%以上,亦可為1質量%以 上,亦可為5質量%以上,亦可為7質量%以上,亦可為10質量%以上,亦可為12質量%以上。光散射性粒子之含量就漏光之減少效果更優異之觀點及噴出穩定性優異之觀點而言,以油墨組成物之不揮發成分之質量為基準,可為60質量%以下,亦可為50質量%以下,亦可為40質量%以下,亦可為30質量%以下,亦可為25質量%以下,亦可為20質量%以下,或亦可為15質量%以下。於本實施形態中,由於油墨組成物含有高分子分散劑,因此即便於將光散射性粒子之含量設為上述範圍之情形時,亦可使光散射性粒子良好地分散。
光散射性粒子含量相對於發光性奈米結晶粒子含量之質量比(光散射性粒子/發光性奈米結晶粒子)為0.1~5.0。質量比(光散射性粒子/發光性奈米結晶粒子)就漏光之減少效果更優異之觀點而言,可為0.2以上,亦可為0.5以上。質量比(光散射性粒子/發光性奈米結晶粒子)就漏光之減少效果更優異之觀點而言,可為2.0以下,亦可為1.5以下。質量比(光散射性粒子/發光性奈米結晶粒子)可為0.1~2.0、0.1~1.5、0.2~5.0、0.2~2.0、0.2~1.5、0.5~5.0、0.5~2.0、或0.5~1.5。此外,認為利用光散射性粒子之漏光減少係利用如下機制。即,認為於不存在光散射性粒子之情形時,背光僅大致直進通過像素部內,被發光性奈米結晶粒子吸收之機會少。另一方面,若使光散射性粒子存在於與發光性奈米結晶粒子相同之像素部內,則於該像素部內背光被全方位地散射,發光性奈米結晶粒子可接收該背光,因此認為即便使用相同之背光源,像素部中之光吸收量亦會增大。結果認為藉由此種機制可防止漏光。
本實施形態之光轉換層具備紅(R)、綠(G)、藍(B)之三色像素部,可視需要含有色材,作為該色材,可使用公知之色材,例如較佳為於紅(R)之像素部中含有二酮吡咯并吡咯(diketopyrrolopyrrole)顏料及/或陰離子性紅色有機染料,於綠(G)之像素部中含有選自由鹵化銅酞青顏料、酞青素系綠色染料、酞青素系藍色染料與偶氮系黃色有機染料之混合物所組成之 群中之至少一種,於藍(B)之像素部中含有ε型銅酞青顏料及/或陽離子性藍色有機染料。
另外,於在本實施形態之光轉換層中含有黃色(Y)像素部(黃色之色層)之情形時,亦較佳為作為色材,而於黃色之色層中含有選自由C.I.Pigment Yellow 150、C.I.Pigment Yellow 215、C.I.Pigment Yellow 185、C.I.Pigment Yellow 138、C.I.Pigment Yellow 139、C.I.Solvent Yellow 21、82、C.I.Solvent Yellow 83:1、C.I.Solvent Yellow 33、C.I.Solvent Yellow 162所組成之群中之至少1種黃色有機染料顏料。
彩色濾光片較佳使用上述色材所形成。例如,較佳為於紅色(R)之彩色濾光片中含有二酮吡咯并吡咯顏料及/或陰離子性紅色有機染料,於綠色(G)之彩色濾光片中含有選自由鹵化銅酞青顏料、酞青素系綠色染料、酞青素系藍色染料與偶氮系黃色有機染料之混合物所組成之群中之至少一種,於藍色(B)之彩色濾光片中含有ε型銅酞青顏料及/或陽離子性藍色有機染料。
另外,亦可視需要於彩色濾光片中含有上文所述之透明樹脂或下文所述之光硬化性化合物、分散劑等,彩色濾光片之製造方法可藉由公知之光微影法等所形成。
(光轉換層之製造方法)
光轉換層可藉由先前公知之方法所形成。作為像素部之形成方法之代表性方法,為光微影法,其為如下方法:將後文記載之含有發光用奈米結晶之光硬化性組成物塗佈於習知之彩色濾光片用透明基板的設置有黑色矩陣之側之面並加熱乾燥(預烘烤)後,透過光罩照射紫外線,藉此進行圖案曝光,使與像素部相對應之部位之光硬化性化合物硬化後,以顯影液將未曝光部分顯影,去除非像素部,使像素部固著於透明基板。於該方法中,由含有發光用奈米結晶之 光硬化性組成物之硬化著色覆膜構成之像素部可形成於透明基板上。
對於紅色(R)像素、綠色(G)像素、藍色(B)像素、視需要之黃色(Y)像素等其他顏色之各像素,製備後文記載之光硬化性組成物,重複上述操作,藉此可製造於特定之位置具有紅色(R)像素、綠色(G)像素、藍色(B)像素、黃色(Y)像素之著色像素部之光轉換層。
作為將後文記載之含有發光性奈米結晶粒子之光硬化性組成物塗佈於玻璃等透明基板上之方法,例如可列舉旋轉塗佈法、輥塗法、噴墨法等。
塗佈於透明基板之含有發光性奈米結晶粒子之光硬化性組成物的塗膜之乾燥條件亦根據各成分之種類、摻合比例等而有所不同,但通常為50~150℃,1~15分鐘左右。另外,作為使用於含有發光性奈米結晶粒子之光硬化性組成物之光硬化的光,較佳使用200~500nm之波長範圍之紫外線,或可見光。可使用發出該波長範圍之光之各種光源。
作為顯影方法,例如可列舉溢液法、浸漬法、噴霧法等。於光硬化性組成物之曝光、顯影後,將形成有必需顏色之像素部之透明基板水洗並加以乾燥。對於由此獲得之彩色濾光片,利用加熱板、烘箱等加熱裝置,於90~280℃加熱處理(後烘烤)特定時間,藉此去除著色塗膜中之揮發性成分,同時將殘存於含有發光性奈米結晶粒子之光硬化性組成物之硬化著色覆膜中的未反應之光硬化性化合物熱硬化,而完成光轉換層。
本實施形態之光轉換層用色材、樹脂藉由與本實施形態之發光性奈米結晶粒子一起使用,而可提供防止液晶層之電壓保持率(VHR)降低、由藍光或紫外光引起之劣化、離子密度(ID)增加,解決脫色、配向不均、殘像等顯示不良問題之液晶顯示裝置。
作為上述含有發光性奈米結晶粒子之光硬化性組成物之製造方 法,通常為如下方法:將發光性奈米結晶粒子與有機溶劑混合,視需要添加具有親和性之分子、分散劑、色材(=染料及/或顏料組成物),以變得均勻之方式加以攪拌分散,首先製備用以形成光轉換層之像素部之分散液,然後於其中添加光硬化性化合物、及視需要之熱塑性樹脂或光聚合起始劑等,而製成含有發光性奈米結晶粒子之含發光性奈米結晶粒子光硬化性組成物。
作為此處所使用之有機溶劑,例如可列舉:甲苯或二甲苯、甲氧基苯等芳香族系溶劑;乙酸乙酯或乙酸丙酯或乙酸丁酯、丙二醇單甲醚乙酸酯、丙二醇單乙醚乙酸酯、二乙二醇甲基醚乙酸酯、二乙二醇乙基醚乙酸酯、二乙二醇丙基醚乙酸酯、二乙二醇丁基醚乙酸酯等乙酸酯系溶劑;乙氧基丙酸乙酯等丙酸酯系溶劑;甲醇、乙醇等醇系溶劑;丁基賽路蘇、丙二醇單甲醚、二乙二醇乙基醚、二乙二醇二甲醚等醚系溶劑;甲基乙基酮、甲基異丁基酮、環己酮等酮系溶劑;己烷等脂肪族烴系溶劑;N,N-二甲基甲醯胺、γ-丁內醯胺、N-甲基-2-吡咯啶酮、苯胺、吡啶等氮化合物系溶劑;γ-丁內酯等內酯系溶劑;胺基甲酸甲酯與胺基甲酸乙酯之48:52之混合物之類的胺基甲酸酯等。
作為此處所使用之分散劑,例如可含有:BYK-Chemie公司之DISPERBYK 130、DISPERBYK 161、DISPERBYK 162、DISPERBYK 163、DISPERBYK 170、DISPERBYK 171、DISPERBYK 174、DISPERBYK 180、DISPERBYK 182、DISPERBYK 183、DISPERBYK 184、DISPERBYK 185、DISPERBYK 2000、DISPERBYK 2001、DISPERBYK 2020、DISPERBYK 2050、DISPERBYK 2070、DISPERBYK 2096、DISPERBYK 2150、DISPERBYK LPN21116、DISPERBYK LPN6919、EFKA公司之EFKA 46、EFKA 47、EFKA 452、EFKA LP4008、EFKA 4009、EFKA LP4010、EFKA LP4050、LP4055、EFKA 400、EFKA 401、EFKA 402、EFKA 403、EFKA 450、EFKA 451、EFKA 453、EFKA 4540、EFKA 4550、EFKA LP4560、EFKA 120、EFKA 150、EFKA 1501、EFKA 1502、EFKA 1503、Lubrizol公司之Solsperse 3000、Solsperse 9000、Solsperse 13240、Solsperse 13650、Solsperse 13940、Solsperse 17000、18000、Solsperse 20000、Solsperse 21000、Solsperse 20000、Solsperse 24000、Solsperse 26000、Solsperse 27000、Solsperse 28000、Solsperse 32000、Solsperse 36000、Solsperse 37000、Solsperse 38000、Solsperse 41000、Solsperse 42000、Solsperse 43000、Solsperse 46000、Solsperse 54000、Solsperse 71000、Ajinomoto股份有限公司之Ajisper PB711、Ajisper PB821、Ajisper PB822、Ajisper PB814、Ajisper PN411、Ajisper PA111等分散劑,或丙烯酸系樹脂、胺酯系樹脂、醇酸系樹脂、木松香、松香(gum rosin)、妥爾油松脂等天然松脂、聚合松脂、歧化松脂、氫化松脂、氧化松脂、順丁烯二酸化(Maleated)松脂等改質松脂、松脂胺、石灰松脂、松脂環氧烷加成物(rosin alkyleneoxide adduct)、松脂醇酸加成物、松脂改質酚等松脂衍生物等室溫下為液狀且水不溶性之合成樹脂。該等分散劑、或樹脂之添加亦有助於絮凝之減少、顏料之分散穩定性之提高、分散體之黏度特性之提高。
另外,作為分散助劑,亦可含有有機顏料衍生物,例如鄰苯二甲醯亞胺甲基衍生物、鄰苯二甲醯亞胺磺酸衍生物、鄰苯二甲醯亞胺N-(二烷基胺基)甲基衍生物、鄰苯二甲醯亞胺N-(二烷基胺基烷基)磺醯胺(Sulfonic acid amide)衍生物等。當然,該等衍生物亦可併用兩種以上不同種類者。
作為使用於製備「含有發光性奈米結晶粒子之光硬化性組成物」的熱塑性樹脂,例如可列舉:胺酯系樹脂、丙烯酸系樹脂、聚醯胺系樹脂、聚醯亞胺系樹脂、苯乙烯順丁烯二酸系樹脂、苯乙烯順丁烯二酸酐系樹脂等。
作為含有發光性奈米結晶粒子之光硬化性化合物,例如可列 舉:如1,6-己二醇二丙烯酸酯、乙二醇二丙烯酸酯、新戊二醇二丙烯酸酯、三乙二醇二丙烯酸酯、雙(丙烯醯氧基乙氧基)雙酚A、3-甲基戊二醇二丙烯酸酯等之2官能單體;三羥甲基丙烷三丙烯酸酯、新戊四醇三丙烯酸酯、三[2-(甲基)丙烯醯氧基乙基]三聚異氰酸酯(isocyanurate)、二新戊四醇六丙烯酸酯、二新戊四醇五丙烯酸酯等分子量相對較小之多官能單體;如聚酯丙烯酸酯、聚胺酯丙烯酸酯(polyurethane acrylate)、聚醚丙烯酸酯等分子量相對較大之多官能單體。
作為光聚合起始劑,例如可列舉:苯乙酮、二苯甲酮、二苯乙二酮二甲基縮酮、過氧化苯甲醯、2-氯-9-氧硫、1,3-雙(4'-疊氮苯亞甲基)-2-丙烷、1,3-雙(4'-疊氮苯亞甲基)-2-丙烷-2'-磺酸、4,4'-二疊氮二苯乙烯-2,2'-二磺酸等。作為市售之光聚合起始劑,例如有BASF公司製造之「Irgacure(商標名)-184」、「Irgacure(商標名)-369」、「Darocur(商標名)-1173」、BASF公司製造之「Lucirin-TPO」、日本化藥公司製造之「Kayacure(商標名)DETX」、「Kayacure(商標名)OA」、Stauffer公司製造之「Vicure 10」、「Vicure 55」、Akzo公司製造之「Trigonal PI」、Sandoz公司製造之「Sandoray 1000」、Upjohn公司製造之「Deap」、黑金化成公司製造之「Biimidazole」等。
另外,亦可將公知慣用之光敏劑與上述光聚合起始劑併用。作為光敏劑,例如可列舉:胺類、脲類、具有硫原子之化合物、具有磷原子之化合物、具有氯原子之化合物或者腈類或其他具有氮原子之化合物等。該等可單獨使用,亦可組合2種以上而使用。
光聚合起始劑之摻合率並無特別限定,較佳為以質量基準計,相對於具有光聚合性或光硬化性官能基之化合物而為0.1~30%之範圍。若未達0.1%,則有光硬化時之感光度降低之傾向,若超過30%,則於使顏料分散阻劑 之塗膜乾燥時,存在光聚合起始劑之結晶析出而引起塗膜物性之劣化之情況。
使用如上所述之各材料,以質量基準計,相對於本實施形態之發光性奈米結晶粒子100份,以變得均勻之方式將300~100000份之有機溶劑與1~500份之具有親和性之分子或分散劑攪拌分散,而可獲得上述染料顏料液。繼而,相對於該顏料分散液100份,添加合計為0.125~2500份之熱塑性樹脂與光硬化性化合物、相對於光硬化性化合物1份而為0.05~10份之光聚合起始劑、及視需要進而添加之有機溶劑,以變得均勻之方式加以攪拌分散,而可獲得用以形成像素部之含有發光性奈米結晶粒子之光硬化性組成物。
作為顯影液,可使用公知慣用之有機溶劑或鹼性水溶液。尤其是當於上述光硬化性組成物含有熱塑性樹脂或光硬化性化合物,該等之至少一者具有酸值,呈現鹼可溶性之情形時,於鹼性水溶液中之洗淨對彩色濾光片像素部之形成有效。
此處,已對利用光微影法之R像素、G像素、B像素、Y像素之著色像素部的製造方法進行了詳細記載,使用本實施形態之含有發光性奈米結晶粒子之組成物所製備之像素部亦可藉由其他電沈積法、轉印法、微胞電解法、PVED(Photovoltaic Electrodeposition)法、噴墨法、反轉印刷法、熱硬化法等方法形成各色像素部,而製造光轉換層。
對本實施形態之光轉換層用油墨組成物之製造方法進行說明。油墨組成物之製造方法例如包括:準備含有光散射性粒子及高分子分散劑之光散射性粒子之分散體的第1步驟、與將光散射性粒子之分散體及發光性奈米結晶粒子混合之第2步驟。於該方法中,光散射性粒子之分散體可進而含有熱硬化性樹脂,於第2步驟中,可進而混合熱硬化性樹脂。根據該方法,可使光散射性粒子充分地分散。因此,可容易地獲得可減少像素部中之漏光之油墨組成物。
於準備光散射性粒子之分散體之步驟中,可將光散射性粒子、高分子分散劑、及視情形之熱硬化性樹脂加以混合,進行分散處理,藉此製備光散射性粒子之分散體。混合及分散處理可使用珠磨機、塗料調節器、行星式攪拌機等分散裝置而進行。就光散射性粒子之分散性變得良好,容易將光散射性粒子之平均粒徑調整為想要的範圍之觀點而言,較佳使用珠磨機或塗料調節器。
油墨組成物之製造方法可於第2步驟前進而包括準備含有發光性奈米結晶粒子與熱硬化性樹脂之發光性奈米結晶粒子之分散體的步驟。於該情形時,於第2步驟中,將光散射性粒子之分散體與發光性奈米結晶粒子之分散體混合。若根據該方法,則可使發光性奈米結晶粒子充分地分散。因此,可容易地獲得可減少像素部中之漏光之油墨組成物。於準備發光性奈米結晶粒子之分散體之步驟中,可使用與準備光散射性粒子之分散體之步驟相同之分散裝置,進行發光性奈米結晶粒子與熱硬化性樹脂之混合及分散處理。
於將本實施形態之油墨組成物用作噴墨方式用油墨組成物之情形時,較佳應用於藉由使用有壓電元件之機械噴出機構之壓電噴墨方式之噴墨記錄裝置。於壓電噴墨方式中,於噴出時,不存在油墨組成物被瞬間暴露於高溫之情況,不易引起發光性奈米結晶粒子之變質,彩色濾光片像素部(光轉換層)亦更容易地獲得如所期待之發光特性。
本實施形態之光轉換層例如可藉由如下方法而製造:將作為遮光部之黑色矩陣以圖案狀形成於基材上後,藉由噴墨方式使上述實施形態之油墨組成物(噴墨油墨)選擇性地附著於基材上被遮光部劃分之像素部形成區域,藉由活性能量線之照射或加熱使油墨組成物硬化。
形成遮光部之方法可舉下述方法等:於基材之一面側之成為多個像素部間之邊界的區域,形成鉻等金屬薄膜或使其含有遮光性粒子之樹脂組 成物之薄膜,並將該薄膜圖案化。金屬薄膜例如可藉由濺鍍法、真空蒸鍍法等而形成,使其含有遮光性粒子之樹脂組成物之薄膜例如可藉由塗佈、印刷等方法而形成。作為進行圖案化之方法,可列舉光微影法等。
作為噴墨方式,可列舉使用電熱轉換體作為能量產生元件之氣泡噴墨(註冊商標)方式、或使用壓電元件之壓電噴墨方式等。
於藉由照射活性能量線(例如紫外線)進行油墨組成物之硬化之情形時,例如可使用水銀燈、金屬鹵化物燈、氙氣燈、LED等。所照射之光之波長例如可為200nm以上,且可為440nm以下。曝光量例如可為10mJ/cm2以上,且可為4000mJ/cm2以下。
於藉由加熱進行油墨組成物之硬化之情形時,加熱溫度例如可為110℃以上,且可為250℃以下。加熱時間例如可為10分鐘以上,且可為120分鐘以下。
以上,已對彩色濾光片及光轉換層、及該等之製造方法之一實施形態進行了說明,但本發明並不限定於上述實施形態。
(波長選擇性穿透層)
本實施形態之波長選擇性穿透層之平均膜厚,可根據想要的穿透之光之波長區域或想要的反射之光之波長區域等適當選擇,較佳為0.5~15μm,更佳為0.7~12μm,進而較佳為1~10μm。
本實施形態之光轉換膜可視需要而具有支持基材(亦稱為支持基板。相當於圖6所示之支持基板12),例如可為了支持光轉換層、為了支持波長選擇性穿透層或為了支持光轉換膜而使用支持基板。作為該支持基板,較佳為玻璃基板、透明基材(塑膠膜或塑膠片),作為塑膠透明基材,可較佳地列舉由聚烯烴樹脂、乙烯系樹脂、聚酯樹脂、丙烯酸樹脂、聚醯胺樹脂、纖維素系樹脂、聚苯乙烯樹脂、聚碳酸酯樹脂、聚芳酯(polyarylate)樹脂、聚醯 亞胺樹脂等所構成者,可列舉聚對酞酸乙二酯(PET)膜等聚酯樹脂、三乙醯纖維素(TAC)等纖維素系樹脂等。
上述支持基材就與設置於其上之層(光轉換層或波長選擇性穿透層)之密接性之觀點而言,可視需要對單面或兩面實施電暈放電處理、鉻氧化處理、熱風處理、臭氧處理法、紫外線處理法、噴砂法、溶劑處理法或電漿處理等物理或化學表面處理。
本實施形態之支持基材之厚度並無特別限制,若確保耐久性,且考慮通用性,則通常為20~200μm左右之範圍,較佳為30~150μm之範圍。
上述支持該材就基材與波長選擇性穿透層或光轉換層之間之密接性、強化接著性之觀點而言,亦可實施形成底漆(primer)層、背面底漆層等處理。作為使用於形成該底漆層之材料,並無特別限定,可列舉丙烯酸系樹脂、氯乙烯-乙酸乙烯酯共聚物、聚酯、聚胺酯、氯化聚丙烯、氯化聚乙烯等。此外,使用於背面底漆層之材料可根據被接著材而適當選擇。
本實施形態之透明基材之厚度並無特別限制,若確保耐久性,且考慮通用性,則通常為20~200μm左右之範圍,較佳為30~150μm之範圍。
本實施形態之波長選擇性穿透層較佳為介電質多層膜或膽固醇液晶層。
該介電質多層膜具有折射率不同之2層,指將折射率高於另一者之高折射率層與折射率低於該高折射率層之低折射率層交替積層而成之膜,為跨多組(例如,2~9組)積層而成之多層結構。該積層而成之多層結構例如可具有「表面技術」雜誌、p890~894、第48卷、No.9、1997年刊、栗山桂司著所記載之構成。
藉由此種多層結構,可獲得具有高反射率之鏡面、將特定之波長範圍之光分為反射與穿透之流線式濾波器類(短波穿透濾波器(short wave pass filter)、長波穿透濾波器(long wave pass filter)等)。通常,介電質多層膜藉由將高折射率層與低折射率層之折射率差設計得較大,而可以較少之層數提高想要的波長之光之反射率。另外,已知此時若將各折射率層之厚度d設為光學膜厚而設計為1/4波長,即將層材料相對於想要的反射光之波長λ之折射率設為n而設計為d=λ/4n,則於層之邊界反射之波互相抵消,而出現針對該波之禁帶,因而使穿透率減少。
於本實施形態中,於由高折射率層及與該高折射率層抵接之低折射率層所構成之至少1組中,高折射率層與低折射率層之折射率差較佳為0.04以上,更佳為0.05以上,進而較佳為0.08以上,進而更佳為0.11以上,進而更佳為0.21以上,尤佳為0.38以上。
例如,作為高折射率層之較佳折射率,為1.2~2.7,更佳為1.5~2.5,進而較佳為1.7~2.3,尤佳為1.9~2.2。另外,作為低折射率層之較佳折射率,較佳為0.9~1.7,更佳為1.2~1.55,進而較佳為1.25~1.5。
另外,介電質多層膜可用於DBR(Distributed Bragg Reflector)膜等,可選擇性地反射特定之波長光。作為本實施形態之介電質多層膜之材料,可含有選自由Si、Ti、Zr、Nb、Ta及Al所組成之群中之至少一種氧化物或氮化物而形成。該介電質多層膜之總膜厚較佳為0.05μm~2μm左右,更佳為0.1μm~1.5μm左右。
本實施形態之介電質多層膜可藉由利用真空蒸鍍等交替形成氧化鈦及氧化矽之積層物,例如SiO2、MgF2、CaF2等低折射率之氧化膜與TiO2、ZnO2、CeO2、Ta2O3或Nb2O5等高折射率之氧化膜而獲得。除此以外,可列舉銀與SiO2或Al2O3之2層結構之膜、將二氧化矽(SiO2)層及二氧化鈦(TiO2)層交替積層而成之膜、將氮化鋁(AlN)層及氧化鋁(Al2O3)層交替積層而成之膜等,作為構成介電質多層膜之層之材料,可自AlN、SiO2、SiN、ZrO2、 SiO2、TiO2、Ta2O3、ITONb2O5、ITO等中選擇,例如可列舉SiO2/Ta2O3、SiO2/Nb2O5、SiO2/TiO2之組合之介電質多層膜。該等材料(TiO2、Nb2O5及Ta2O3)折射率之順序為TiO2>Nb2O5>Ta2O3,SiO2之總膜厚於SiO2/TiO2之組合之介電質多層膜時變薄。
例如,介電質多層膜中作為目前所市售者,可列舉:DFY-520(黃色)(Optical Solutions公司製造)、DFM-495(深紅色)(Optical Solutions公司製造)、DFC-590(青色)(Optical Solutions公司製造)、DFB-500(藍色)(Optical Solutions公司製造)、DFG-505(綠色)(Optical Solutions公司製造)、DFR-610(紅色)(Optical Solutions公司製造)、DIF-50S-BLE(SIGMAKOKI公司製造)、DIF-50S-GRE(SIGMAKOKI公司製造)、DIF-50S-RED(SIGMAKOKI公司製造)、DIF-50S-YEL(SIGMAKOKI公司製造)、DIF-50S-MAG(SIGMAKOKI公司製造)或DIF-50S-CYA(SIGMAKOKI公司製造)等。
另外,作為介電質多層膜,可適宜地使用使想要範圍之波長區域穿透,並將該想要的範圍之波長區域以外之波長區域反射者。
作為本實施形態之介電質多層膜之製造方法,並無特別限制,例如可參考日本專利3704364號、日本專利4037835號、日本專利4091978號、日本專利3709402號、日本專利4860729號、日本專利3448626號等所記載之方法來製造,將該等專利公報之內容併入至本實施形態中。
於本實施形態之光轉換膜中,作為使用介電質多層膜之情形時之光轉換膜之製造方法,如上所述,可於藉由噴墨法或光微影法製作之光轉換層之至少一面積層平坦化膜,進而藉由上述文獻等所記載之方法,利用濺鍍等蒸鍍法於其上形成選擇性光穿透層,藉此製作使用介電質多層膜之情形時之光轉換膜。
上述平坦化膜具備使光轉換層平坦化之功能,可為有機材料,亦可為無機材料。於有機材料之情形時,可製成藉由使用感光性樹脂組成物所形成之絕緣性膜。即,該平坦化膜可列舉由環狀烯烴樹脂、丙烯酸樹脂、丙烯醯胺樹脂、聚矽氧烷、環氧樹脂、酚樹脂、卡多樹脂(cardo resin)、聚醯亞胺樹脂、聚醯胺醯亞胺樹脂、聚碳酸酯樹脂、聚對酞酸乙二酯樹脂或酚醛清漆樹脂構成之膜,本實施形態中所使用之由有機材料構成之鈍化膜較佳為由含有上述樹脂及公知之有機溶劑之樹脂組成物所形成。
另外,於無機材料之情形時,可列舉由氮化矽、氧化矽等無機化合物構成之膜。該等平坦化膜(鈍化膜)藉由根據膜之形成材料的公知方法進行成膜即可,可藉由電漿CVD法、蒸鍍法等進行成膜。本實施形態之平坦化膜較佳為以0.1μm~5μm之平均膜厚形成。
本實施形態之膽固醇液晶層係將自一面入射之光(電磁波)中之右旋圓偏光成分之光或左旋圓偏光成分之光選擇性地反射,並且使其他成分之光穿透之層。另外,作為能夠僅使特定之圓偏光成分之光穿透(或反射)之材料,較佳使用膽固醇液晶或手性向列型液晶。已知膽固醇液晶具備圓偏光二色性之性質,表現出「將沿液晶之平面排列之螺旋軸入射之光(電磁波)的右旋性或左旋性之任一圓偏光中之一者選擇性地反射」之性質。因此,藉由適當選擇膽固醇液晶之回轉方向,可將具有與該回轉方向相同之旋光方向之圓偏光選擇性地反射。
即,本實施形態之膽固醇液晶之選擇反射層於相對於透明基材表面為法線之方向(光之入射角θ=0°)具有成為多層結構之一定週期之螺旋結構(膽固醇結構),具有將與螺距相對應之波長之圓偏光反射的波長選擇反射性。選擇反射波長(λ)與螺距(p)之關係,係以λ=p‧N(N為聚合性膽固醇液晶組成物之平均折射率)之關係表示,表現出選擇反射之波長之寬度 (△λ),則以聚合性液晶組成物之雙折射異向性(△n)與p之積表示。
本實施形態之膽固醇液晶之選擇反射的波峰波長,係由膽固醇結構之螺距長度所決定,於使用向列型液晶分子(液晶化合物)與手性化合物獲得膽固醇液晶之情形時,可藉由調整手性化合物之添加量等而控制螺距長度。因此,為了獲得想要之螺距長度,可根據手性化合物之種類、手性化合物之添加量、所使用之液晶化合物之種類適當進行調整,藉此任意地選擇「選擇波長區域」。
本實施形態之膽固醇液晶層較佳使含有聚合性液晶化合物、手性化合物及聚合起始劑之聚合性液晶組成物進行聚合而獲得。
另外,於本實施形態中,聚合性液晶化合物之所謂「液晶」意指僅1種所使用之聚合性液晶化合物表現出液晶性,或與其他液晶化合物混合而製成混合物之情形時表現出液晶性。此外,聚合性液晶組成物可藉由利用紫外線等之光照射、加熱或該等之併用進行聚合處理而進行聚合物化(膜化)。
關於本實施形態之波長選擇性穿透層,作為使用膽固醇液晶層之形態,較佳為積層有右旋性(亦稱為右繞)膽固醇液晶層與左旋性(亦稱為左繞)膽固醇液晶層之2層積層體、於2層右旋性膽固醇液晶層之間夾持有λ/2板之積層體(依序積層有右旋性膽固醇液晶層、λ/2板及右旋性膽固醇液晶層之積層體)、於2層左旋性膽固醇液晶層之間夾持有λ/2板之積層體(依序積層有左旋性膽固醇液晶層、λ/2板及左旋性膽固醇液晶層之積層體)。
作為本實施形態之光轉換層之較佳形態,可列舉如下6種形態:於光轉換層之一面形成有將右旋性之膽固醇液晶層與左旋性膽固醇液晶層積層而成之2層積層體的形態;於光轉換層之一面形成有於2層右旋性膽固醇液晶層之間夾持有λ/2板之積層體的形態;於光轉換層之一面形成有於2層左旋性膽固醇液晶層之間夾持有λ/2板之積層體的形態;於光轉換層之一面形成有將右旋性 膽固醇液晶層與左旋性膽固醇液晶層積層而成之2層積層體,且於另一面形成有黃色彩色濾光片的形態;於光轉換層之一面形成有於2層右旋性膽固醇液晶層之間夾持有λ/2板之積層體,且於另一面形成有黃色彩色濾光片的形態;於光轉換層之一面形成有於2層左旋性膽固醇液晶層之間夾持有λ/2板之積層體,且於另一面形成有黃色彩色濾光片的形態。
本實施形態之膽固醇液晶層之總膜厚較佳為1μm~12μm左右,更佳為1μm~10μm左右,進而較佳為2μm~8μm左右。此處所謂總膜厚係平均膜厚之含義,意指膽固醇液晶層(右旋性、左旋性)之2層與視需要所含之λ/2板的合計膜厚,不包括視需要而設置之基板的厚度。另外,上述中已對使用膽固醇液晶層作為本實施形態之波長選擇性穿透層的6種形態(積層體)進行了說明,各右旋性膽固醇液晶層及/或各左旋性膽固醇液晶層之單層之平均厚度較佳為4.1μm以下,更佳為3.1μm以下。另外,視需要而設置之λ/2板之平均厚度較佳為2μm以下。
使用於本實施形態之膽固醇液晶層的聚合性液晶組成物含有具有至少1種聚合性基之液晶性化合物作為必需成分。本實施形態之具有至少1種聚合性基之液晶性化合物為具有液晶原(mesogen)性骨架之聚合性化合物即可,單獨之上述化合物可不表現出液晶性。
例如可列舉:如Handbook of Liquid Crystals(D.Demus,J.W.Goodby,G.W.Gray,H.W.Spiess,V.Vill編輯,Wiley-VCH社發行,1998年)、季刊化學總說No.22、液晶之化學(日本化學會編,1994年)、或日本特開平7-294735號公報、日本特開平8-3111號公報、日本特開平8-29618號公報、日本特開平11-80090號公報、日本特開平11-116538號公報、日本特開平11-148079號公報等所記載之具有將多個1,4-伸苯基、1,4-伸環己基等結構連結而成之被稱為液晶原之剛直部位及2個以上之乙烯基、丙烯酸基(acryl group)、(甲基)丙烯酸基等聚合性官能基之棒狀聚合性液晶化合物;或如日本特開2004-2373號公報、日本特開2004-99446號公報所記載之具有順丁烯二醯亞胺基之具有2個以上之聚合性基的棒狀聚合性液晶化合物。其中,具有2個以上之聚合性基之棒狀液晶化合物容易製作包括室溫前後之低溫作為液晶溫度範圍者而較佳。
作為本實施形態之膽固醇液晶層,於將具有綠色波長區域(例如490~595nm,更佳為510~590nm)之光反射之情形時,調整p(螺距)與N(聚合性膽固醇液晶組成物之平均折射率)之積以使其滿足490=p×N、595=p×N之關係式。同樣地,於將具有紅色波長區域(例如600~710nm,更佳為610~700nm)之光反射之情形時,調整p(螺距)與N(聚合性膽固醇液晶組成物之平均折射率)之積以使其滿足620=p×N、690=p×N之關係式。
具體而言,較佳將本實施形態之聚合性膽固醇液晶組成物之硬化物的各層之平均折射率設為0.9~2.1之範圍,更佳為設為1.0~2.0之範圍,進而較佳為設為1.1~1.9之範圍,進而更佳為設為1.2~1.8之範圍,尤佳為設為1.4~1.75之範圍。另外,本實施形態之聚合性膽固醇液晶組成物之硬化物之螺距p可根據所添加之手性化合物之量或種類而適當調整,另外,有如下傾向:若本實施形態之聚合性膽固醇液晶組成物中之手性化合物之螺旋扭轉力(HTP)強,則手性化合物之添加量可為少量,若該組成物中之手性化合物之HTP弱,則手性化合物之添加量增多。
於本實施形態之光轉換膜中,作為使用膽固醇液晶層之情形時的光轉換膜之製造方法,可舉如下方法:對如上所述藉由噴墨法或光微影法製作之光轉換層之至少一面,進行以捲繞有例如由尼龍、嫘縈、棉等纖維構成之布之輥沿一定方向摩擦之摩擦處理後,塗佈聚合性膽固醇液晶組成物,使膽固醇液晶分子配向後,使聚合性膽固醇液晶聚合而硬化。作為其他光轉換膜之製 造方法,可列舉如下方法等:「於光轉換層之至少一面塗佈用以形成平坦化膜(有機材料)或(光)配向層之組成物並使其硬化後,對為硬化物之平坦化膜或配向層進行以捲繞有由尼龍、嫘縈、棉等纖維構成之布之輥沿一定方向摩擦之摩擦處理」,或「對光配向層(下文所述之光配向膜)進行照射偏光或非偏光之放射線之光配向處理」。
使用於本實施形態之膽固醇液晶層的聚合性液晶組成物,較佳為含有下述通式(I-2)所表示之聚合性液晶化合物作為第一成分:P121-(Sp121-X121)q121-MG121-(X122-Sp122)q122-P122 (I-2)
(式中,P121及P122分別獨立地表示聚合性官能基,Sp121及Sp122分別獨立地表示碳原子數1~18之伸烷基(alkylene)或單鍵,該伸烷基中之1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被-COO-、-OCO-或-OCO-O-取代,該伸烷基所具有之1個或2個以上之氫原子可被鹵素原子(氟原子、氯原子、溴原子、碘原子)或CN基取代,X121及X122分別獨立地表示-O-、-S-、-OCH2-、-CH2O-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH2-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-SCF2-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH2CH2-、-OCO-CH2CH2-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2-、-OCO-CH2-、-CH2-COO-、-CH2-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-或單鍵(其中,P121-Sp121、P122-Sp122、Sp121-X121及Sp122-X122中不包含雜原子彼此之直接鍵結),q121及q122分別獨立地表示0或1,MG122表示下述通式(I-2-b)所表示之液晶原基,-(A1-Z1)r1-A2-Z2-A3- (I-2-b)
通式(I-2-b)中,A1、A2及A3分別獨立地表示1,4-伸苯基、1,4-伸環己基、1,4-環己烯基、四氫吡喃-2,5-二基、1,3-二烷-2,5-二基、四氫噻喃-2,5-二基、1,4-雙伸環(2,2,2)辛基、十氫萘-2,6-二基、吡啶-2,5-二基、嘧啶-2,5-二基、吡-2,5-二基、噻吩-2,5-二基-、1,2,3,4-四氫萘-2,6-二基、2,6-伸萘基、菲-2,7-二基、9,10-二氫菲-2,7-二基、1,2,3,4,4a,9,10a-八氫菲-2,7-二基、1,4-伸萘基、苯并[1,2-b:4,5-b']二噻吩-2,6-二基、苯并[1,2-b:4,5-b']二硒吩-2,6-二基、[1]苯并噻吩并(benzothieno)[3,2-b]噻吩-2,7-二基、[1]苯并硒吩并(benzoselenopheno)[3,2-b]硒吩-2,7-二基、或茀-2,7-二基,Z1及Z2分別獨立地表示-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-C=N-、-N=C-、-CONH-、-NHCO-、-C(CF3)2-、可具有鹵素原子(氟原子、氯原子、溴原子、碘原子)之碳原子數2~10之烷基或單鍵,r1表示0、1、2或3,於存在多個A1、及Z1之情形時,分別可相同亦可不同)。
聚合性液晶組成物較佳含有選自下述通式(II-2)所表示之化合物中之聚合性液晶化合物作為第二成分:P221-Sp221-X221-MG221-R221 (II-2)
(式中,P221表示聚合性官能基,Sp221表示碳原子數1~18之伸烷基,該伸烷基中之1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被-O-、-COO-、-OCO-或-OCO-O-取代,該伸烷基所具有之1個或2個以上之氫原子可被鹵素原子(氟原子、氯原子、溴原子、碘原子)或CN基取代,X221表示-O-、-S-、-OCH2-、-CH2O-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、- SCH2-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-SCF2-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH2CH2-、-OCO-CH2CH2-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2-、-OCO-CH2-、-CH2-COO-、-CH2-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-或單鍵(其中,P221-Sp221、及Sp221-X221中不包含C、H以外之雜原子彼此之直接鍵結),MG221表示液晶原基,R221表示氫原子、鹵素原子(氟原子、氯原子、溴原子、碘原子)、氰基、碳原子數1至12之直鏈或支鏈烷基、碳原子數1至12之直鏈或支鏈烯基,該烷基及烯基中之1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-NH-、-N(CH3)-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-或-C≡C-取代,該烷基及該烯基所具有之1個或2個以上之氫原子可分別獨立地被鹵素原子(氟原子、氯原子、溴原子、碘原子)或氰基取代,於取代多個之情形時,分別可相同亦可不同)。
聚合性液晶組成物較佳含有下述通式(II-1)所表示之聚合性液晶化合物作為第三成分:
(通式(II-1)中,P211表示聚合性官能基,A211及A212各自獨立地表示1,4-伸苯基、1,4-伸環己基、雙環[2.2.2]辛烷-1,4-二基、吡啶-2,5-二基、嘧啶-2,5-二基、萘-2,6-二基、萘-1,4-二基、四氫萘-2,6-二基、十氫萘-2,6-二基或1,3-二烷-2,5-二基,該等基可未經取代,或經1個以上之取代基L取代, L表示氟原子、氯原子、溴原子、碘原子、五氟硫烷基(pentafluorosulfuranyl)、硝基、氰基、異氰基、胺基、羥基、巰基、甲基胺基、二甲胺基、二乙胺基、二異丙胺基、三甲基矽基、二甲基矽基、硫基異氰基(thioisocyano)、可經取代之苯基、可經取代之苯基烷基、可經取代之環己基烷基、或1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NR0-、-NR0-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-N=N-、-CR0=N-、-N=CR0-、-CH=N-N=CH-、-CF=CF-或-C≡C-(式中,R0表示氫原子或碳原子數1至8之烷基)取代之碳原子數1至20之直鏈狀或支鏈狀烷基,該烷基中之任意氫原子可被取代為氟原子,於化合物內存在多個L之情形時,該等可相同亦可不同,於存在多個A212之情形時,該等可相同亦可不同,Z211表示-O-、-S-、-OCH2-、-CH2O-、-CH2CH2-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-OCO-NH-、-NH-COO-、-NH-CO-NH-、-NH-O-、-O-NH-、-SCH2-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-SCF2-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH2CH2-、-OCO-CH2CH2-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2-、-OCO-CH2-、-CH2-COO-、-CH2-OCO-、-CH=CH-、-N=N-、-CH=N-、-N=CH-、-CH=N-N=CH-、-CF=CF-、-C≡C-或單鍵,於存在多個Z211之情形時,該等可相同亦可不同,m211表示1~3之整數, T211表示氫原子、-OH基、-SH基、-CN基、-COOH基、-NH2基、-NO2基、-COCH3基、-O(CH2)nCH3、或-(CH2)nCH3,n表示0~20之整數)。
聚合性液晶組成物較佳含有手性化合物作為第四成分。
於上述通式(I-2)中,P121及P122分別獨立地表示聚合性官能基,較佳表示選自由下述式(P-1)至式(P-17)所組成之群中之基:
該等聚合性基係藉由自由基聚合、自由基加成聚合、陽離子聚合及陰離子聚合而進行聚合。尤其是作為聚合方法而進行紫外線聚合之情形時,較佳為式(P-1)、式(P-2)、式(P-3)、式(P-4)、式(P-8)、式(P-10)、式(P-12)或式(P-15),更佳為式(P-1)、式(P-2)、式(P-3)、式(P-4)、式(P-8)或式(P-10),進而較佳為式(P-1)、式(P-2)或式(P-3),尤佳為式(P-1)或式(P-2)。
於上述通式(I-2)中,Sp121及Sp122較佳分別獨立地表示碳原子數1~15之伸烷基,該伸烷基中之1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被-COO-、-OCO-或-OCO-O-取代,該伸烷基所具有之1個或2個以上之氫原子可被鹵素原子(較佳為氟原子、氯原子、溴原子、碘原子)或CN基取代,Sp11及Sp12更佳為分別獨立地表示碳原子數1~12之伸烷基, 該伸烷基中之1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被-O-、-COO-、-OCO-或-OCO-O-取代。
於上述通式(I-2)中,X121及X122較佳分別獨立地表示-O-、-OCH2-、-CH2O-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CF2O-、-OCF2-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH2CH2-、-OCO-CH2CH2-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2-、-OCO-CH2-、-CH2-COO-、-CH2-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-或單鍵,X121及X122更佳分別獨立地表示-O-、-OCH2-、-CH2O-、-CO-、-COO-、-OCO-、-O-CO-O-、-CF2O-、-OCF2-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH2CH2-、-OCO-CH2CH2-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2-、-OCO-CH2-、-CH2-COO-、-CH2-OCO-、-CH=CH-、-CF=CF-、-C≡C-或單鍵。
MG122表示液晶原基,通式(I-2-b)-(A1-Z1)r1-A2-Z2-A3- (I-2-b)
通式(I-2-b)中,A1、A2及A3分別獨立地表示1,4-伸苯基、1,4-伸環己基、1,4-環己烯基、四氫吡喃-2,5-二基、1,3-二烷-2,5-二基、四氫噻喃-2,5-二基、1,4-雙伸環(2,2,2)辛基、十氫萘-2,6-二基、吡啶-2,5-二基、嘧啶-2,5-二基、吡-2,5-二基、噻吩-2,5-二基-、1,2,3,4-四氫萘-2,6-二基、2,6-伸萘基、菲-2,7-二基、9,10-二氫菲-2,7-二基、1,2,3,4,4a,9,10a-八氫菲-2,7-二基、1,4-伸萘基、苯并[1,2-b:4,5-b']二噻吩-2,6-二基、苯并[1,2-b:4,5-b']二硒吩-2,6-二基、[1]苯并噻吩并 [3,2-b]噻吩-2,7-二基、[1]苯并硒吩并[3,2-b]硒吩-2,7-二基、或茀-2,7-二基,可具有1個以上之F、Cl、CF3、OCF3、CN基、碳原子數1~8之烷基、碳原子數1~8之烷氧基、碳原子數1~8之烷醯基(alkanoyl)、碳原子數1~8之烷醯氧基、碳原子數1~8之烷氧基羰基、碳原子數2~8之烯基、碳原子數2~8之烯氧基、碳原子數2~8之烯醯基(alkenoyl)、及/或碳原子數2~8之烯醯氧基作為取代基L2,Z1及Z2分別獨立地表示-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-C=N-、-N=C-、-CONH-、-NHCO-、-C(CF3)2-、可具有鹵素原子(較佳為氟原子、氯原子、溴原子、碘原子)之碳原子數2~10之烷基或單鍵,Z1及Z2較佳分別獨立為-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-或單鍵,更佳為-COO-、-OCO-、-OCH2-、-CH2O-、-CH2CH2O-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-或單鍵,r1表示0、1、2或3,於存在多個A1、及Z1之情形時,分別可相同亦可不同。其中,A1、A2及A3較佳分別獨立地表示1,4-伸苯基、1,4-伸環己基、2,6-伸萘基(該1,4-伸苯基、2,6-伸萘基可具有取代基L2)。
作為上述通式(I-2)之例,可列舉下述通式(I-2-1)~(I-2-4)所表示之化合物,但並不限定於下述之通式。
P121-(Sp121-X121)q121-A2-Z2-A3-(X122-Sp122)q122-P122 (I-2-1)
P121-(Sp121-X121)q121-A11-Z11-A2-Z2-A3-(X122-Sp122)q122-P122 (I-2-2)
P121-(Sp121-X121)q121-A11-Z11-A12-Z12-A2-Z2-A3-(X122-Sp122)q122-P122 (I-2-3)
P121-(Sp121-X121)q121-A11-Z11-A12-Z12-A13-Z13-A2-Z2-A3-(X122-Sp122)q122-P122 (I-2-4)
式中,P121、Sp121、X121、q121、X122、Sp122、q122、P122分別表示與上述通式(I-2)之定義相同者, A11、A12及A13、A2、A3表示與上述通式(I-2-b)之A1~A3之定義相同者,分別可相同亦可不同, Z11、Z12及Z13、Z2分別表示與上述通式(I-2-b)之Z1、Z2之定義相同者,分別可相同亦可不同。
上述通式(I-1-1-1)~(I-1-1-4)所表示之化合物中,若使用通式(I-2-2)~(I-2-4)所表示之化合物中具有3個以上之環結構之化合物,則所獲得之光學異向體之配向性變得良好,故而較佳,尤佳為使用化合物中具有3個環結構之通式(I-2-2)所表示之化合物。
作為上述通式(I-2-1)~(I-2-4)所表示之化合物,可例示以下之通式(I-2-1-1)~通式(I-2-1-21)所表示之化合物,但並不限定於該等。
通式(I-2-1-1)~通式(I-2-1-21)中,Rd及Re分別獨立地表示氫原子或甲基,上述環狀基可具有1個以上之F、Cl、CF3、OCF3、CN基、碳原子數1~8之烷基、碳原子數1~8之烷氧基、碳原子數1~8之烷醯基、碳原子數1~8之烷醯氧基、碳原子數1~8之烷氧基羰基、碳原子數2~8之烯基、碳原子數2~8之烯氧基、碳原子數2~8之烯醯基、碳原子數2~8之烯醯氧基作為取代基,m1、m2、m3、m4分別獨立地表示0~18之整數,較佳分別獨立為0~8之整數,n1、n2、n3、n4分別獨立地表示0或1。
上述通式(I-2)所表示之2官能聚合性液晶化合物可使用1種或2種以上,通式(I-2)所表示之2官能聚合性液晶化合物之合計含量於聚合性液晶組成物所使用之聚合性液晶化合物之合計量中,較佳為含有0~50質量%,更佳為含有0~30質量%。另外,於在聚合性液晶組成物中添加有手性化合物時,為了容易表現出扭轉向列相或膽固醇相,較佳為化合物之結構非對稱者、或液晶原骨架部分具有取代基者,於聚合性液晶組成物所使用之聚合性液晶化合物之合計量中,尤佳為含有0~20質量%。另外,具體而言,於使用上述通式(I-2-1)~(I-2-4)所表示之化合物、進而使用上述通式(I-2-1-1)~通式(I-2-1-21)所表示之化合物之情形時,亦較佳以該比例含有。
上述通式(I-2-1-1)~通式(I-2-1-21)所表示之化合物可進一步具體地例示以下之通式(I-2-2-1)~通式(I-2-2-24)所表示之化合物,但並不限定於該等。
上述通式(I-2)所表示之2官能聚合性液晶化合物可使用1種或2種以上,通式(I-2)所表示之2官能聚合性液晶化合物之合計含量就密接性及耐熱性之方面而言,較佳為含有5~50質量%,更佳為含有5~40質量%,尤佳為含有5~30質量%,最佳為含有5~20質量%。
另外,作為通式(I-2)所表示之化合物,具體而言,較佳為下述之式(I-1-1)至式(I-1-7)所表示之化合物。
(上述通式(I-1-1)~通式(I-1-7)中,Re及Rd各自獨立地表示氫原子或甲基,m1及m2各自獨立地表示0~8之整數,n1及n2各自獨立地表示0或 1,於m1=0之情形時表示n1=0,於m2=0之情形時表示n2=0)
上述通式(I-1-1)~通式(I-1-7)中,最佳為通式(I-1-1)之化合物。
上述通式(I-2)所表示之2官能聚合性液晶化合物可使用1種或2種以上,通式(I-2)所表示之2官能聚合性液晶化合物之合計含量於聚合性液晶組成物所使用之聚合性液晶化合物之合計量中,較佳為含有5~50質量%,更佳為含有5~40質量%,尤佳為含有5~30質量%,最佳為含有5~20質量%。
較佳於本實施形態之聚合性液晶組成物中含有上述通式(I-2)所表示之2官能聚合性液晶化合物,更佳為將作為第二成分之下述通式(II-2)所表示之單官能聚合性液晶化合物與該2官能聚合性液晶化合物併用。藉此,該聚合性液晶組成物之相容性會獲得提高,並且於藉由實用水準之UV照射量進行測定之情形時之高溫放置後之上述選擇反射波長之變化會變小。
P221-Sp221-X221-MG221-R221 (II-2)
式中,P221表示聚合性官能基,Sp221表示碳原子數1~18之伸烷基,該伸烷基中之1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被-O-、-COO-、-OCO-或-OCO-O-,該伸烷基所具有之1個或2個以上之氫原子可被取代為鹵素原子(氟原子、氯原子、溴原子、碘原子)或CN基取代,X221表示-O-、-S-、-OCH2-、-CH2O-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH2-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-SCF2-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH2CH2-、-OCO-CH2CH2-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2-、-OCO-CH2-、-CH2-COO-、- CH2-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-或單鍵(其中,P221-Sp221、及Sp221-X221中不包含C、H以外之雜原子彼此之直接鍵結),MG221表示液晶原基,R221表示氫原子、鹵素原子(氟原子、氯原子、溴原子、碘原子)、氰基、碳原子數1至12之直鏈或支鏈烷基、碳原子數1至12之直鏈或支鏈烯基,該烷基及烯基中之1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-NH-、-N(CH3)-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-或-C≡C-取代,該烷基及該烯基所具有之1個或2個以上之氫原子可分別獨立地被鹵素原子(氟原子、氯原子、溴原子、碘原子)或氰基取代,於取代多個之情形時,分別可相同亦可不同。
於上述通式(II-2)中,P221表示聚合性官能基,較佳表示選自上述式(P-1)至式(P-17)中之基,該等聚合性基係藉由自由基聚合、自由基加成聚合、陽離子聚合及陰離子聚合而進行聚合。尤其是於進行紫外線聚合作為聚合方法之情形時,較佳為式(P-1)、式(P-2)、式(P-3)、式(P-4)、式(P-8)、式(P-10)、式(P-12)或式(P-15),更佳為式(P-1)、式(P-2)、式(P-3)、式(P-4)、式(P-8)或式(P-10),進而較佳為式(P-1)、式(P-2)或式(P-3),尤佳為式(P-1)或式(P-2)。
於上述通式(II-2)中,Sp221較佳為表示碳原子數1~8之伸烷基,該伸烷基中之1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被-O-、-COO-、-OCO-或-OCO-O-取代,該伸烷基所具有之1個或2個以上之氫原子可被鹵素原子(氟原子、氯原子、溴原子、碘原子)或CN基取 代。
於上述通式(II-2)中,X221較佳表示-O-、-OCH2-、-CH2O-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CF2O-、-OCF2-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH2CH2-、-OCO-CH2CH2-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2-、-OCO-CH2-、-CH2-COO-、-CH2-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-或單鍵,X221更佳表示-O-、-OCH2-、-CH2O-、-CO-、-COO-、-OCO-、-O-CO-O-、-CF2O-、-OCF2-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH2CH2-、-OCO-CH2CH2-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2-、-OCO-CH2-、-CH2-COO-、-CH2-OCO-、-CH=CH-、-CF=CF-、-C≡C-或單鍵。
於上述通式(II-2)中,MG221表示液晶原基,通式(II-2-b)-(A1-Z1)r1-A2-Z2-A3- (II-2-b)
(式中,A1、A2及A3分別獨立地表示1,4-伸苯基、1,4-伸環已基、1,4-環己烯基、四氫吡喃-2,5-二基、1,3-二烷-2,5-二基、四氫噻喃-2,5-二基、1,4-雙伸環(2,2,2)辛基、十氫萘-2,6-二基、吡啶-2,5-二基、嘧啶-2,5-二基、吡-2,5-二基、噻吩-2,5-二基、1,2,3,4-四氫萘-2,6-二基、2,6-伸萘基、菲-2,7-二基、9,10-二氫菲-2,7-二基、1,2,3,4,4a,9,10a-八氫菲-2,7-二基、1,4-伸萘基、苯并[1,2-b:4,5-b']二噻吩-2,6-二基、苯并[1,2-b:4,5-b']二硒吩-2,6-二基、[1]苯并噻吩并[3,2-b]噻吩-2,7-二 基、[1]苯并硒吩并[3,2-b]硒吩-2,7-二基、茀-2,7-二基、膽固醇基、或膽甾烷基(cholestanyl),可具有1個以上之F、Cl、CF3、OCF3、CN基、碳原子數1~8之烷基、碳原子數1~8之烷氧基、碳原子數1~8之烷醯基、碳原子數1~8之烷醯氧基、碳原子數1~8之烷氧基羰基、碳原子數2~8之烯基、碳原子數2~8之烯氧基、碳原子數2~8之烯醯基、及/或碳原子數2~8之烯醯氧基作為取代基L2,其中,A1~A3較佳分別獨立地表示可具有上述取代基L2之1,4-伸苯基、1,4-伸環己基、2,6-伸萘基。另外,作為取代基L2,較佳為F、碳原子數1~8之烷基或碳原子數1~8之烷氧基。
於上述通式(II-2)中,R221更佳表示氫原子、鹵素原子(氟原子、氯原子、溴原子、碘原子)、氰基、碳原子數1至8之直鏈或支鏈烷基、碳原子數1至8之直鏈或支鏈烯基,該烷基及烯基中之1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被-O-、-CO-、-COO-、-OCO-、-O-CO-O-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、或-C≡C-取代,該烷基及該烯基所具有之1個或2個以上之氫原子可分別獨立地被鹵素原子(氟原子、氯原子、溴原子、碘原子)或氰基取代,於取代多個之情形時,分別可相同亦可不同。
作為通式(II-2)之例,可列舉下述通式(II-2-1)~(II-2-4)所表示之化合物,但並不限定於下述之通式。
P221-Sp221-X221-A2-Z2-A3-R221 (II-2-1)
P221-Sp221-X221-A11-Z11-A2-Z2-A3-R221 (II-2-2)
P221-Sp221-X221-A11-Z11-A12-Z12-A2-Z2-A3-R221 (II-2-3)
P221-Sp221-X221-A11-Z11-A12-Z12-A13-Z13-A2-Z2-A3-R221 (II-2-4)
式中,P221、Sp221、X221、及R221分別表示與上述通式(II-2)之定義相同者, A11、A12、A13、A2、A3表示與上述通式(II-2-b)之A1~A3之定義相同者,分別可相同亦可不同,Z11、Z12、Z13、Z2表示與上述通式(II-2-b)之Z1~Z3之定義相同者,分別可相同亦可不同,作為上述通式(II-2-1)~(II-2-4)所表示之化合物,可例示以下之通式(II-2-1-1)~通式(II-2-1-26)所表示之化合物,但並不限定於該等。
上述通式(II-2-1-1)~通式(II-2-1-26)中,Rc表示氫原子或甲基,m表示1~8之整數,n表示0或1,R221表示與上述通式(II-2-1)~(II-2-4)之定義相同者,R221較佳表示氫原子、鹵素原子(氟原子、氯原子、溴原子、碘原子)、氰基、1個-CH2-可被-O-、-CO-、-COO-、-OCO-取代之碳原子數1至6之直鏈烷基或碳原子數1至6之直鏈烯基。
上述通式(II-2-1-1)~通式(II-2-1-26)中,環狀基可具有1個以上之F、Cl、CF3、OCF3、CN基、碳原子數1~8之烷基、碳原子數1~8之烷氧基、碳原子數1~8之烷醯基、碳原子數1~8之烷醯氧基、碳原子數1~8之烷氧基羰基、碳原子數2~8之烯基、碳原子數2~8之烯氧基、碳原子數2~8之烯醯基、碳原子數2~8之烯醯氧基作為取代基。
上述通式(II-2)所表示之單官能聚合性液晶化合物可使用1種或2種以上,通式(II-2)所表示之單官能聚合性液晶化合物之合計含量於聚合性液晶組成物所使用之聚合性液晶化合物之合計量中,較佳為含有30~90質量%,更佳為含有40~90質量%,尤佳為含有45~90質量%,最佳為含有50 ~90質量%。
於本實施形態中,藉由進而使用下述通式(II-1)所表示之單官能聚合性液晶化合物作為第三成分,可進一步減小表現出選擇反射之波長之半值寬(△λ),除此以外,可進一步提高對基材之密接性。此處,於具有選擇反射波長之膽固醇液晶之情形時,通常選擇反射波長(λ)與螺距(p)之關係以λ=p‧N(N為膽固醇液晶組成物之平均折射率)之關係表示,表現出選擇反射之波長之半值寬(△λ)係以聚合性液晶組成物之雙折射異向性(△n)與p之積表示。於欲僅選擇反射某特定波長之情形時等,較理想為減小該選擇反射之波長寬度(△λ),於通式(II-1)中,藉由含有不具有間隔基而具有1個直接連結於環狀基之聚合性官能基之聚合性液晶化合物,於使該聚合性液晶組成物聚合之情形時,存在於各通式所表示之聚合性液晶化合物中之液晶原骨架部分的配向性局部不一致,而獲得配向秩序低之聚合物,因此可將雙折射異向性(△n)抑制為較低,可減小選擇反射之波長寬度(△λ)。
(通式(II-1)中,P211表示聚合性官能基,A211及A212各自獨立地表示1,4-伸苯基、1,4-伸環己基、雙環[2.2.2]辛烷-1,4-二基、吡啶-2,5-二基、嘧啶-2,5-二基、萘-2,6-二基、萘-1,4-二基、四氫萘-2,6-二基、十氫萘-2,6-二基或1,3-二烷-2,5-二基,該等基可未經取代,或經1個以上之取代基L取代,
L表示氟原子、氯原子、溴原子、碘原子、五氟硫烷基、硝基、氰基、異氰基、胺基、羥基、巰基、甲基胺基、二甲胺基、二乙胺基、二異丙胺基、三甲基矽基、二甲基矽基、硫基異氰基、可經取代之苯基、可經取代之苯基烷基、可經取代之環己基烷基、或1個-CH2-或未鄰接之2個以上之-CH2-可各 自獨立地被-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NR0-、-NR0-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-N=N-、-CR0=N-、-N=CR0-、-CH=N-N=CH-、-CF=CF-或-C≡C-(式中,R0表示氫原子或碳原子數1至8之烷基)取代之碳原子數1至20之直鏈狀或支鏈狀烷基,該烷基中之任意氫原子可被取代為氟原子,於化合物內存在多個L之情形時,該等可相同亦可不同,於存在多個A212之情形時,該等可相同亦可不同,Z211表示-O-、-S-、-OCH2-、-CH2O-、-CH2CH2-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-OCO-NH-、-NH-COO-、-NH-CO-NH-、-NH-O-、-O-NH-、-SCH2-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-SCF2-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH2CH2-、-OCO-CH2CH2-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2-、-OCO-CH2-、-CH2-COO-、-CH2-OCO-、-CH=CH-、-N=N-、-CH=N-、-N=CH-、-CH=N-N=CH-、-CF=CF-、-C≡C-或單鍵,於存在多個Z211之情形時,該等可相同亦可不同,m211表示1~3之整數,T211表示氫原子、-OH基、-SH基、-CN基、-COOH基、-NH2基、-NO2基、-COCH3基、-O(CH2)nCH3、或-(CH2)nCH3,n表示0~20之整數)
於上述通式(II-1)中,P211表示聚合性官能基,較佳表示選自上述式(P-1)至式(P-17)中之基,該等聚合性基係藉由自由基聚合、自由基加成聚合、陽離子聚合及陰離子聚合而進行聚合。尤其是於進行紫外線 聚合作為聚合方法之情形時,較佳為式(P-1)、式(P-2)、式(P-3)、式(P-4)、式(P-8)、式(P-10)、式(P-12)或式(P-15),更佳為式(P-1)、式(P-2)、式(P-3)、式(P-4)、式(P-8)或式(P-10),進而較佳為式(P-1)、式(P-2)或式(P-3),尤佳為式(P-1)或式(P-2)。
於上述通式(II-1)中,A211及A212各自獨立地表示1,4-伸苯基、1,4-伸環己基、雙環[2.2.2]辛烷-1,4-二基、吡啶-2,5-二基、嘧啶-2,5-二基、萘-2,6-二基、萘-1,4-二基、四氫萘-2,6-二基、十氫萘-2,6-二基或1,3-二烷-2,5-二基,該等基可未經取代,或經1個以上之取代基L取代。就合成之容易性、原料之獲得容易性及液晶性之觀點而言,A211及A212較佳各自獨立地表示未經取代或可經1個以上之取代基L取代之1,4-伸苯基、1,4-伸環己基、雙環[2.2.2]辛烷-1,4-二基、萘-2,6-二基或萘-1,4-二基,更佳各自獨立地表示選自下述之式(A-1)至式(A-16)中之基。
進而,除此以外,就折射率異向性之高低之觀點而言,進而較佳為A211及A212中至少一者表示選自上述式(A-2)或式(A-10)中之基,其餘者各自獨立地表示選自上述式(A-1)至式(A-7)及式(A-10)中之基,進而更佳為A211及A212中至少一者表示上述式(A-2)所表示之基,其餘者各自獨立地表示選自上述式(A-1)至式(A-7)中之基,尤佳為A211及A212中至少一者表示上述式(A-2)所表示之基,其餘者各自獨立地表示選自上述式(A-1)至式(A-4)中之基。此外,於存在多個A212之情形時,該等可相同亦可不同。
於上述通式(II-1)中,L表示氟原子、氯原子、溴原子、碘原子、五氟硫烷基、硝基、氰基、異氰基、胺基、羥基、巰基、甲基胺基、二甲胺基、二乙胺基、二異丙胺基、三甲基矽基、二甲基矽基、硫基異氰基、可經取代之苯基、可經取代之苯基烷基、可經取代之環己基烷基、或1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NR0-、-NR0-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-N=N-、-CR0=N-、-N=CR0-、-CH=N-N=CH-、-CF=CF-或-C≡C-(式中,R0表示氫原子或碳原子數1至8之烷基)取代之碳原子數1至20之直鏈狀或支鏈狀烷基,該烷基中之任意氫原子可被取代為氟原子,於化合物內存在多個L之情形時,該等可相同亦可不同。就液晶性、合成之容易性之觀點而言,取代基L較佳表示氟原子、氯原子、五氟硫烷基、硝基、甲基胺基、二甲胺基、二乙胺基、二異丙胺基、或任意氫原子可被取代為氟原子且1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被選自-O-、-S-、-CO-、-COO-、-OCO-、-O-CO-O-、-CH=CH-、-CF=CF-或-C≡C-中之基取代之碳原子數 1至20之直鏈狀或支鏈狀烷基,取代基L更佳表示氟原子、氯原子、或任意氫原子可被取代為氟原子且1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被選自-O-、-COO-或-OCO-中之基取代之碳原子數1至12之直鏈狀或支鏈狀烷基,取代基L進而較佳表示氟原子、氯原子、或者任意氫原子可被取代為氟原子之碳原子數1至12之直鏈狀或支鏈狀烷基或烷氧基,取代基L尤佳表示氟原子、氯原子、或碳原子數1至8之直鏈烷基或直鏈烷氧基。
於上述通式(II-1)中,Z212表示-O-、-S-、-OCH2-、-CH2O-、-CH2CH2-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-OCO-NH-、-NH-COO-、-NH-CO-NH-、-NH-O-、-O-NH-、-SCH2-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-SCF2-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH2CH2-、-OCO-CH2CH2-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2-、-OCO-CH2-、-CH2-COO-、-CH2-OCO-、-CH=CH-、-N=N-、-CH=N-、-N=CH-、-CH=N-N=CH-、-CF=CF-、-C≡C-或單鍵,於存在多個Z212之情形時,該等可相同亦可不同。
於上述通式(II-1)中,於重視配向缺陷之多少之情形時,較佳為於存在多個Z212之情形時,該等可相同亦可不同,表示-OCH2-、-CH2O-、-CH2CH2-、-COO-、-OCO-、-CO-NH-、-NH-CO-、-CF2O-、-OCF2-、-CH=CH-COO-、-OCO-CH=CH-、-COO-CH2CH2-、-CH2CH2-OCO-、-CH=CH-、-N=N-、-CH=N-、-N=CH-、-CH=N-N=CH-、-CF=CF-、-C≡C-或單鍵,更佳為於存在多個Z212之情形時,該等可相同亦可不同,表示-COO-、-OCO-、 -CO-NH-、-NH-CO-、-CF2O-、-OCF2-、-CH=CH-COO-、-OCO-CH=CH-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-或單鍵,進而較佳為於存在多個Z212之情形時,該等可相同亦可不同,表示-COO-、-OCO-、-CO-NH-、-NH-CO-、-CF2O-、-OCF2-或單鍵,尤佳為於存在多個Z212之情形時,該等可相同亦可不同,表示-COO-、-OCO-、-CF2O-、-OCF2-或單鍵。
於上述通式(II-1)中,m211表示1~3之整數,m211較佳表示1或2,m211較佳表示1。
於上述通式(II-1)中,T211表示氫原子、-OH基、-SH基、-CN基、-COOH基、-NH2基、-NO2基、-COCH3基、-O(CH2)nCH3、或-(CH2)nCH3(n表示0~20之整數),T211更佳表示氫原子、-O(CH2)nCH3、或-(CH2)nCH3(n表示0~10之整數),T211尤佳表示-O(CH2)nCH3、或-(CH2)nCH3(n表示0~8之整數)。
作為通式(II-1)所表示之化合物,具體而言,較佳為下述之式(II-1-1)至式(II-1-7)所表示之化合物。
上述通式(II-1)所表示之單官能聚合性液晶化合物可使用1種或2種以上,就密接性之觀點而言,通式(II-1)所表示之單官能聚合性液晶化合物之合計含量於聚合性液晶組成物所使用之聚合性液晶化合物之合計量中,較佳為含有5~50質量%,更佳為含有5~40質量%,尤佳為含有10~40質量%,最佳為含有15~35質量%。
另外,於本實施形態中,使用上述通式(I-1)所表示之化合物作為2官能聚合性液晶化合物,且併用上述通式(II-1)及上述通式(II-2)所表示之化合物作為上述單官能聚合性液晶化合物,於該情形時,尤其是就密接性與耐熱性之方面而言,於聚合性液晶組成物所使用之聚合性液晶化合物之合計量中,為單官能成分之上述通式(II-1)及上述通式(II-2)所表示之化合物之合計較佳為50~95質量%之範圍、60~95質量%之範圍,尤其是70 ~95質量%之範圍。
於不損及物性之範圍內,可於本實施形態之聚合性液晶組成物含有分子內具有3個以上之聚合性官能基之聚合性液晶化合物。作為分子內具有3個以上之聚合性官能基之聚合性液晶化合物,可例示下述通式(III-1)、通式(III-2)所表示之化合物。
式中,P31~P35分別獨立地表示聚合性官能基,Sp31~S35分別獨立地表示碳原子數1~18之伸烷基或單鍵,該伸烷基中之1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被-O-、-COO-、-OCO-或-OCO-O-取代,該伸烷基所具有之1個或2個以上之氫原子可被鹵素原子(較佳為氟原子、氯原子、溴原子、碘原子)或CN基取代,X31~X35分別獨立地表示-O-、-S-、-OCH2-、-CH2O-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH2-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-SCF2-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH2CH2-、-OCO-CH2CH2-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2-、-OCO-CH2-、-CH2-COO-、-CH2-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-或單鍵(其中,P31-Sp31、P32-Sp32、P33-Sp33、P34-Sp34、P35-Sp35、Sp31-X31、Sp32-X32、Sp33-X33、Sp34-X34、及Sp35-X35中不包含氧原子彼此之直接鍵結),q31、q32、q34、q35、q36、q37、q38及q39分別獨立地表示0或1, j3表示0或1,MG31表示液晶原基。
於上述通式(III-1)~通式(III-2)中,P31~P35較佳分別獨立地表示選自下述之式(P-2-1)至式(P-2-20)所表示之聚合性基中之取代基。
該等聚合性官能基中,就提高聚合性之觀點而言,較佳為式(P-2-1)、(P-2-2)、(P-2-7)、(P-2-12)、(P-2-13),更佳為式(P-2-1)、(P-2-2)。
於上述通式(III-1)~通式(III-2)中,Sp31~Sp35分別獨立地較佳表示碳原子數1~15之伸烷基,該伸烷基中之1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被-O-、-COO-、-OCO-或-OCO-O-取代,該伸烷基所具有之1個或2個以上之氫原子可被鹵素原子(較佳為氟原子、氯原子、溴原子、碘原子)或CN基取代,Sp31~Sp35更佳分別獨立地表示碳原子數1~12之伸烷基,該伸烷基中之1個-CH2-或未鄰接之2個以上之-CH2-可各自獨立地被-O-、-COO-、-OCO-或-OCO-O-取代。
於上述通式(III-1)~通式(III-2)中,X31~X35較佳分別獨立地表示-O-、-OCH2-、-CH2O-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CF2O-、-OCF2-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH2CH2-、-OCO-CH2CH2-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2-、-OCO-CH2-、-CH2-COO-、-CH2-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-或單鍵,X31~X35更佳分別獨立地表示-O-、-OCH2-、-CH2O-、-CO-、-COO-、-OCO-、-O-CO-O-、-CF2O-、-OCF2-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH2CH2-、-OCO-CH2CH2-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2-、-OCO-CH2-、-CH2-COO-、-CH2-OCO-、-CH=CH-、-CF=CF-、-C≡C-或單鍵。
於上述通式(III-1)~通式(III-2)中,MG31表示液晶原基,通式(III-A)-(A1-Z1)r1-A2-Z2-A3- (III-A)
式中,A1、A2及A3分別獨立地表示1,4-伸苯基、1,4-伸環己基、1,4-環己烯基、四氫吡喃-2,5-二基、1,3-二烷-2,5-二基、四氫噻喃-2,5-二基、1,4-雙伸環(2,2,2)辛基、十氫萘-2,6-二基、吡啶-2,5-二基、嘧啶-2,5-二基、吡-2,5-二基、噻吩-2,5-二基-、1,2,3,4-四氫萘-2,6-二基、2,6-伸萘基、菲-2,7-二基、9,10-二氫菲-2,7-二基、1,2,3,4,4a,9,10a-八氫菲-2,7-二基、1,4-伸萘基、苯并[1,2-b:4,5-b']二噻吩-2,6-二基、苯并[1,2-b:4,5-b']二硒吩-2,6-二基、[1]苯并噻吩并[3,2-b]噻吩-2,7-二基、[1]苯并硒吩并[3,2-b]硒吩-2,7-二基、或茀-2,7-二 基,可具有1個以上之F、Cl、CF3、OCF3、CN基、碳原子數1~8之烷基、碳原子數1~8之烷氧基、碳原子數1~8之烷醯基、碳原子數1~8之烷醯氧基、碳原子數1~8之烷氧基羰基、碳原子數2~8之烯基、碳原子數2~8之烯氧基、碳原子數2~8之烯醯基、及/或碳原子數2~8之烯醯氧基作為取代基,於形成上述通式(III-1)所表示之結構之情形時,所存在之A1、A2及A3之任一者具有-(X33)q35-(Sp33)q34-P33基。Z1及Z2分別獨立地表示-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-C=N-、-N=C-、-CONH-、-NHCO-、-C(CF3)2-、可具有鹵素原子(較佳為氟原子、氯原子、溴原子、碘原子)之碳原子數2~10之烷基或單鍵,Z1及Z2較佳分別獨立為-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-或單鍵,r1表示0、1、2或3,於存在多個A1、及Z1之情形時,分別可相同亦可不同)。其中,A1、A2及A3較佳分別獨立地表示1,4-伸苯基、1,4-伸環己基、2,6-伸萘基。
作為通式(III)之例,可列舉下述通式(III-1-1)~通式(III-1-8)、通式(III-2-1)~通式(III-2-2)所表示之化合物,但並不限定於下述之通式。
式中,P31~P35、Sp31~Sp35、X31~X35、q31~q39MG31分別表示與上述通式(III-1)~通式(III-2)之定義相同者,A11、A12及A13、A2、A3分別表示與上述通式(III-A)之A1~A3之定義相同者,分別可相同亦可不同, Z11、Z12及Z13、Z2分別表示與上述通式(III-A)之Z1、Z2之定義相同者,分別可相同亦可不同。
作為上述通式(III-1-1)~通式(III-1-8)、通式(III-2-1)、通式(III-2-2)所表示之化合物,可例示以下之通式(III-9-1)~(III-9-6)所表示之化合物,但並不限定於該等。
上述通式(III-9-1)~(III-9-6)中,Rf、Rg及Rh分別獨立地表示氫原子或甲基,Ri、Rj及Rk分別獨立地表示氫原子、鹵素原子(較佳為氟原子、氯原子、溴原子、碘原子)、碳數1~6之烷基、碳數1~6之烷氧基、氰基,於該等基為碳數1~6之烷基、或碳數1~6之烷氧基之情形時,可全部未經取代,或可經1個或2個以上之鹵素原子(較佳為氟原子、氯原子、溴原子、碘原子)取代,上述環狀基可具有1個以上之F、Cl、CF3、OCF3、CN基、碳原子數1~8之烷基、碳原子數1~8之烷氧基、碳原子數1~8之烷醯基、碳原子數1~8之烷醯氧基、碳原子數1~8之烷氧基羰基、碳原子數2~8之烯基、碳原子數2~8之烯氧基、碳原子數2~8之烯醯基、碳原子數2~8之烯醯氧基作為取代基。
m4~m9分別獨立地表示0~18之整數,n4~n10分別獨立地表示0或1。
具有3個以上之聚合性官能基之多官能聚合性液晶化合物可使用1種或2種以上。
分子內具有3個聚合性官能基之多官能聚合性液晶化合物之合計含量於聚合性液晶組成物所使用之聚合性液晶化合物之合計量中,較佳為以20質量%以下之範圍含有,其中尤佳為以10質量%以下、尤其是5質量%以下之範圍含有。
另外,可於本實施形態之聚合性液晶組成物中添加不具有聚合性基之含有液晶原基之化合物,可列舉通常之液晶設備、例如STN(超扭轉向列)液晶、或TN(扭轉向列)液晶、TFT(薄膜電晶體)液晶等所使用之化合物。
具體而言,不具有聚合性官能基之含有液晶原基之化合物較佳為以下之通式(5)所表示之化合物。
R51-MG3-R52 (5)
MG3所表示之液晶原基或液晶原性支持基可列舉通式(5-b)所表示之化合物:-Z0d-(A1d-Z1d)ne-A2d-Z2d-A3d-Z3d- (5-b)
(式中,A1d、A2d及A3d分別獨立地表示1,4-伸苯基、1,4-伸環己基、1,4-環己烯基、四氫吡喃-2,5-二基、1,3-二烷-2,5-二基、四氫噻喃-2,5-二基、1,4-雙伸環(2,2,2)辛基、十氫萘-2,6-二基、吡啶-2,5-二基、嘧啶-2,5-二基、吡-2,5-二基、噻吩-2,5-二基-、1,2,3,4-四氫萘-2,6-二基、2,6-伸萘基、菲-2,7-二基、9,10-二氫菲-2,7-二基、1,2,3,4,4a,9,10a-八氫菲-2,7-二基、1,4-伸萘基、苯并[1,2-b:4,5-b']二噻吩-2,6-二基、苯并[1,2-b:4,5-b']二硒吩-2,6-二基、[1]苯并噻吩并[3,2-b]噻吩-2,7-二基、[1]苯并硒吩并[3,2-b]硒吩-2,7-二基、或茀-2,7-二基,可具有1個以上之F、Cl、CF3、OCF3、CN基、碳原子數1~8之烷基、烷氧基、烷醯基、烷醯氧基、碳原子數2~8之烯基、烯氧基、烯醯基、烯醯氧基作 為取代基,Z0d、Z1d、Z2d及Z3d分別獨立地表示-COO-、-OCO-、-CH2 CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-CONH-、-NHCO-、碳數2~10之可具有鹵素原子(較佳為氟原子、氯原子、溴原子、碘原子)之伸烷基或單鍵,ne表示0、1或2,R51及R52分別獨立地表示氫原子、鹵素原子(較佳為氟原子、氯原子、溴原子、碘原子)、氰基或碳原子數1~18之烷基,該烷基可經1個以上之鹵素原子(較佳為氟原子、氯原子、溴原子、碘原子)或CN取代,存在於該基中之1個CH2基或未鄰接之2個以上之CH2基分別可相互獨立地以氧原子相互不直接鍵結之形式被-O-、-S-、-NH-、-N(CH3)-、-CO-、-COO-、-OCO-、-OCOO-、-SCO-、-COS-或-C≡C-取代)。
具體而言,如以下所示,但並不限定於該等。
Ra及Rb分別獨立地表示氫原子、碳數1~6之烷基、碳數1~6之烷氧基、碳數1~6之烯基、氰基,於該等基為碳數1~6之烷基、或碳數1~6之烷氧基之情形時,可全部未經取代,或可經1個或2個以上之鹵素原子取代。
具有液晶原基之化合物之總含量相對於聚合性液晶組成物之總量,較佳為0質量%以上且20質量%以下,於使用之情形時,較佳為1質量%以上,較佳為2質量%以上,較佳為5質量%以上,另外,較佳為15質量%以下,較佳為10質量%以下。
本實施形態中之聚合性液晶組成物為了使所獲得之光學膜具有膽固醇液晶性,而含有可表現出液晶性或可為非液晶性之手性化合物。手性化合物中,較佳使用具有聚合性之聚合性手性化合物。
作為本實施形態所使用之聚合性手性化合物,較佳具有1個以上之聚合性官能基。作為此種化合物,例如可列舉:如日本特開平11-193287號公報、日本特開2001-158788號公報、日本特表2006-52669號公報、日本特開2007-269639號公報、日本特開2007-269640號公報、2009-84178號公報等所記載之含有異山梨醇(isosorbide)、去水甘露糖醇、葡萄糖苷等手性醣類且具有1,4-伸苯基、1,4-伸環己基等剛直部位與乙烯基、丙烯醯基、(甲基)丙烯醯基或順丁烯二醯亞胺基等聚合性官能基之聚合性手性化合物;如日本特開平8-239666號公報所記載之由類萜衍生物構成之聚合性手性化合物;如NATURE VOL35 467~469頁(1995年11月30日發行)、NATURE VOL392 476~479頁(1998年4月2日發行)等所記載之由具有液晶原基與手性部位之間隔基構成之聚合性手性化合物;或如日本特表2004-504285號公報、日本特開2007-248945號公報所記載之含有聯萘基之聚合性手性化合物。其中,螺旋扭轉力(HTP)大之手性化合物對本實施形態之聚合性液晶組成物而言較佳。
手性化合物中,作為螺旋扭轉力(HTP)較大之手性化合物,可列舉下述通式(3-1)~通式(3-4),更佳使用選自通式(3-1)~通式(3-3)中之手性化合物,選自通式(3-1)~通式(3-3)中之手性化合物中,尤佳使用具有下述通式(3-a)所表示之聚合性基之聚合性手性化合物,尤其更佳為通式(3-1)中R3a及R3b為(P1)之化合物。
式中,Sp3a、及Sp3b分別獨立地表示碳原子數0~18之伸烷基,該伸烷基可經1個以上之鹵素原子、CN基、或具有聚合性官能基之碳原子數1~8之烷基取代,存在於該基中之1個CH2基或未鄰接之2個以上之CH2基分別可相互獨立地以氧原子相互不直接鍵結之形式被-O-、-S-、-NH-、-N(CH3)-、-CO-、-COO-、-OCO-、-OCOO-、-SCO-、-COS-或-C≡C-取代,A1、A2、A3、A4、A5及A6分別獨立地表示1,4-伸苯基、1,4-伸環己基、1,4-環己烯基、四氫吡喃-2,5-二基、1,3-二烷-2,5-二基、四氫噻喃-2,5-二基、1,4-雙伸環(2,2,2)辛基、十氫萘-2,6-二基、吡啶-2,5-二基、嘧啶-2,5-二基、吡-2,5-二基、噻吩-2,5-二基-、1,2,3,4-四氫萘-2,6-二基、2,6-伸萘基、菲-2,7-二基、9,10-二氫菲-2,7-二基、1,2,3,4,4a,9,10a-八氫菲-2,7-二基、1,4-伸萘基、苯并[1,2-b:4,5-b']二噻吩-2,6-二基、苯并[1,2-b:4,5-b']二硒吩-2,6-二基、[1]苯并噻吩并[3,2-b]噻吩-2,7-二基、[1]苯并硒吩并[3,2-b]硒吩-2,7-二基、或茀-2,7-二基,可具有1個以上之F、Cl、CF3、OCF3、CN基、碳原子數1~8之烷基、碳原子數1~8之烷氧基、碳原子數1~8之烷醯基、碳原子數1~8之烷醯氧基、碳原 子數1~8之烷氧基羰基、碳原子數2~8之烯基、碳原子數2~8之烯氧基、碳原子數2~8之烯醯基、及/或碳原子數2~8之烯醯氧基作為取代基。A1、A2、A3、A4、A5及A6較佳分別獨立地表示1,4-伸苯基、1,4-伸環己基或2,6-伸萘基,可具有1個以上之F、CN基、碳原子數1~8之烷基、碳原子數1~8之烷氧基作為取代基。
n、l、k及s分別獨立地表示0或1,Z0、Z1、Z2、Z3、Z4、Z5、及Z6分別獨立地表示-COO-、-OCO-、-CH2 CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-CONH-、-NHCO-、碳數2~10之可具有鹵素原子之烷基或單鍵,n5、及m5分別獨立地表示0或1,R3a及R3b表示氫原子、鹵素原子、氰基或碳原子數1~18之烷基,該烷基可經1個以上之鹵素原子或CN取代,存在於該基中之1個CH2基或未鄰接之2個以上之CH2基分別可相互獨立地以氧原子相互不直接鍵結之形式被-O-、-S-、-NH-、-N(CH3)-、-CO-、-COO-、-OCO-、-OCOO-、-SCO-、-COS-或-C≡C-取代,或R3a及R3b為通式(3-a),-P3a (3-a)
(式中,P3a表示聚合性官能基)
P3a較佳表示選自下述之式(P-1)至式(P-20)所表示之聚合性基中之取代基。
該等聚合性官能基中,就提高聚合性及保存穩定性之觀點而言,較佳為式(P-1)或式(P-2)、(P-7)、(P-12)、(P-13),更佳為式(P-1)、(P-7)、(P-12)。
作為聚合性手性化合物之具體例,可列舉化合物(3-5)~(3-26)之化合物,但並不限定於下述之化合物。
式中,m、n、k、l分別獨立地表示1~18之整數,R1~R4分別獨 立地表示氫原子、碳數1~6之烷基、碳數1~6之烷氧基、羧基、氰基。於該等基為碳數1~6之烷基、或碳數1~6之烷氧基之情形時,可全部未經取代,或可經1個或2個以上之鹵素原子取代。
上述通式(3-5)~通式(3-26)所表示之聚合性手性化合物中,作為螺旋扭轉力(HTP)大之手性化合物,尤佳使用通式(3-5)~通式(3-9)、通式(3-12)~通式(3-14)、通式(3-16)~通式(3-18)、(3-25)、及(3-26)所表示之聚合性手性化合物,進而尤佳使用(3-8)、(3-25)、及(3-26)所表示之聚合性手性化合物。
為了使所獲得之光學膜具有膽固醇性,且獲得穿透性良好之光學膜,本實施形態中之聚合性液晶組成物中,相對於聚合性液晶組成物所使用之聚合性液晶化合物之合計100質量份,較佳使用0.5~20質量份之上述手性化合物,更佳使用1~15質量份之上述手性化合物,尤佳使用1.5~10質量份之上述手性化合物。
本實施形態中之聚合性液晶組成物較佳含有光聚合起始劑。作為該光聚合起始劑,於本實施形態之組成中,就耐熱性之方面而言,較佳為醯基氧化膦(acyl phosphine oxide)系光聚合起始劑或α-胺基烷基苯酮系起始劑。作為該光聚合起始劑,具體而言,作為醯基氧化膦系光聚合起始劑,可列舉:2,4,6-三甲基苯甲醯基-二苯基-氧化膦(BASF公司製造之「Irgacure TPO」)、雙(2,4,6-三甲基苯甲醯基)-苯基氧化膦(BASF公司製造之「Irgacure 819」),作為α-胺基烷基苯酮系起始劑,可列舉:2-甲基-1-(4-甲硫基苯基)-2-N-啉基丙烷-1-酮(BASF公司製造之「Irgacure 907」)、2-苄基-2-二甲胺基-1-(4-N-啉基苯基)-丁酮-1(BASF公司製造之「Irgacure 369E」)、2-(二甲胺基)-2-[(4-甲基苯基)甲基]-1-[4-(4-啉基)苯基]-1-丁酮(BASF公司製造之「Irgacure 379」)。
另外,亦可併用上述光聚合起始劑,作為該光聚合起始劑,可列舉:「Lucirin TPO」、「Darocur 1173」、「Darocur MBF」或LAMBSON公司製造之「Esacure 1001M」、「Esacure KIP150」、「Speedcure BEM」、「Speedcure BMS」、「Speedcure MBP」、「Speedcure PBZ」、「Speedcure ITX」、「Speedcure DETX」、「Speedcure EBD」、「Speedcure MBB」、「Speedcure BP」或日本化藥公司製造之「Kayacure DMBI」、Nihon SiberHegner公司製造(現DKSH公司)之「TAZ-A」、ADEKA公司製造之「Adeka Optomer SP-152」、「Adeka Optomer SP-170」、「Adeka Optomer N-1414」、「Adeka Optomer N-1606」、「Adeka Optomer N-1717」、「Adeka Optomer N-1919」、UCC公司製造之「Cyracure UVI-6990」、「Cyracure UVI-6974」或「Cyracure UVI-6992」、旭電化工業公司製造之「Adeka Optomer SP-150、SP-152、SP-170、SP-172」或Rhodia Japan製造之「PHOTOINITIATOR2074」、BASF公司製造之「Irgacure 250」、GE Silicones公司製造之「UV-9380C」、Midori Kagaku公司製造之「DTS-102」等。
光聚合起始劑之使用量相對於聚合性液晶組成物中所含之聚合性液晶化合物之含量100質量份,較佳為0.1~10質量份,尤佳為0.5~7質量份。為了提高光學異向體之硬化性,較佳為相對於聚合性液晶化合物之含量100質量份而使用3質量份以上之光聚合起始劑。該等可單獨使用,亦可混合2種以上使用,另外,亦可添加增感劑等。
亦可於本實施形態中之聚合性液晶組成物中添加有機溶劑。作為所使用之有機溶劑,並無特別限定,較佳為聚合性液晶化合物表現出良好之溶解性之有機溶劑,且較佳為可於100℃以下之溫度下乾燥去除之有機溶劑。作為此種溶劑,例如可列舉:甲苯、二甲苯、異丙苯、均三甲苯(mesitylene) 等芳香族系烴;乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯等酯系溶劑;甲基乙基酮(MEK)、甲基異丁基酮(MIBK)、環己酮、環戊酮等酮系溶劑;四氫呋喃、1,2-二甲氧基乙烷、甲氧苯等醚系溶劑;N,N-二甲基甲醯胺、N-甲基-2-吡咯啶酮等醯胺系溶劑;丙二醇單甲醚乙酸酯、二乙二醇單甲醚乙酸酯、γ-丁內酯及氯苯等。該等可單獨使用,亦可混合2種以上使用,就溶液穩定性之方面而言,較佳使用酮系溶劑、醚系溶劑、酯系溶劑及芳香族烴系溶劑中之任意1種以上。
使用於本實施形態之組成物若製成使用有機溶劑之溶液,則可塗佈於基板。使用於聚合性液晶組成物之有機溶劑之比率只要不顯著地有損塗佈之狀態,則並無特別限制,含有聚合性液晶組成物之溶液中之有機溶劑之合計量較佳為10~95質量%,進而較佳為12~90質量%,尤佳為15~85質量%。
於將聚合性液晶組成物溶解於有機溶劑時,為了使其均勻地溶解,較佳為進行加熱攪拌。加熱攪拌時之加熱溫度考慮所使用之組成物相對於有機溶劑之溶解性適當調節即可,就生產性之方面而言,較佳為15℃~110℃,更佳為15℃~105℃,進而較佳為15℃~100℃,尤佳為設為20℃~90℃。
另外,較佳於添加溶劑時藉由分散攪拌機加以攪拌混合。作為分散攪拌機,具體而言,可使用分散器、具有螺旋槳、渦輪葉等攪拌葉之分散機、塗料振盪機、行星式攪拌裝置、振盪機、振盪器或旋轉蒸發器等。除此以外,可使用超音波照射裝置。
添加溶劑時之攪拌轉速較佳為根據所使用之攪拌裝置適當調整,為了製成均勻之聚合性液晶組成物溶液,較佳為將攪拌轉速設為10rpm~1000rpm,更佳為設為50rpm~800rpm,尤佳為設為150rpm~600rpm。
較佳為於本實施形態中之聚合性液晶組成物中添加聚合抑制劑。作為聚合抑制劑,可列舉:酚系化合物、醌系化合物、胺系化合物、硫醚 系化合物、亞硝基化合物等。
作為酚系化合物,可列舉:對甲氧基苯酚、甲酚、第三丁基兒茶酚、3.5-二第三丁基-4-羥基甲苯、2.2'-亞甲基雙(4-甲基-6-第三丁基苯酚)、2.2'-亞甲基雙(4-乙基-6-第三丁基苯酚)、4.4'-硫代雙(3-甲基-6-第三丁基苯酚)、4-甲氧基-1-萘酚、4,4'-二烷氧基-2,2'-聯-1-萘酚等。
作為醌系化合物,可列舉:對苯二酚、甲基對苯二酚、第三丁基對苯二酚、對苯醌、甲基對苯醌、第三丁基對苯醌、2,5-二苯基苯醌、2-羥基-1,4-萘醌、1,4-萘醌、2,3-二氯-1,4-萘醌、蒽醌、聯苯醌等。
作為胺系化合物,可列舉:對苯二胺、4-胺基二苯基胺、N.N'-二苯基對苯二胺、N-異丙基-N'-苯基對苯二胺、N-(1.3-二甲基丁基)-N'-苯基對苯二胺、N.N'-二-2-萘基對苯二胺、二苯基胺、N-苯基-β-萘基胺、4.4'-二異丙苯-二苯基胺、4.4'-二辛基-二苯基胺等。
作為硫醚系化合物,可列舉:啡噻、硫代二丙酸二硬脂酯等。
作為亞硝基系化合物,可列舉:N-亞硝基二苯基胺、N-亞硝基苯基萘基胺、N-亞硝基二萘基胺、對亞硝基苯酚、亞硝基苯、對亞硝基二苯基胺、α-亞硝基-β-萘酚等、N,N-二甲基對亞硝基苯胺、對亞硝基二苯基胺、對亞硝基二甲胺、對亞硝基-N,N-二乙胺、N-亞硝基乙醇胺、N-亞硝基二正丁基胺、N-亞硝基-N-正丁基-4-丁醇胺、N-亞硝基二異丙醇胺、N-亞硝基-N-乙基-4-丁醇胺、5-亞硝基-8-羥基喹啉、N-亞硝基啉、N-亞硝基-N-苯基羥基胺銨鹽、亞硝基苯、2,4,6-三第三丁基亞硝基苯、N-亞硝基-N-甲基-對甲苯磺醯胺、N-亞硝基-N-乙基胺酯、N-亞硝基-N-正丙基胺酯、1-亞硝基-2-萘酚、2-亞硝基-1-萘酚、1 -亞硝基-2-萘酚-3,6-磺酸鈉、2-亞硝基-1-萘酚-4-磺酸鈉、2-亞硝基-5-甲基胺基苯酚鹽酸鹽、2-亞硝基-5-甲基胺基苯酚鹽酸鹽等。
聚合抑制劑之添加量相對於聚合性液晶組成物,較佳為0.01~1.0質量%,更佳為0.05~0.5質量%。
於本實施形態中之聚合性液晶組成物中,可與光聚合起始劑一併使用熱聚合起始劑。作為熱聚合起始劑,可使用公知慣用者,例如可使用:過氧化乙醯乙酸甲酯、氫過氧化異丙苯、過氧化苯甲醯、過氧化二碳酸雙(4-第三丁基環己基)酯、過氧化苯甲酸第三丁酯、甲基乙基酮過氧化物、1,1-雙(第三己基過氧基)3,3,5-三甲基環己烷、對五氫過氧化物、氫過氧化第三丁基、二異丙苯基過氧化物、異丁基過氧化物、過氧化二碳酸二(3-甲基-3-甲氧基丁基)酯、1,1-雙(第三丁基過氧基)環己烷等有機過氧化物;2,2'-偶氮二異丁腈、2,2'-偶氮雙(2,4-二甲基戊腈)等偶氮腈化合物;2,2'-偶氮雙(2-甲基-N-苯基丙脒)二鹽酸鹽等偶氮脒化合物;2,2'偶氮二{2-甲基-N-[1,1-雙(羥基甲基)-2-羥基乙基]丙醯胺}等偶氮醯胺化合物;2,2'-偶氮雙(2,4,4-三甲基戊烷)等烷基偶氮化合物等。具體而言,可列舉:和光純藥工業股份有限公司製造之「V-40」、「VF-096」、日本油脂股份有限公司(現日油股份有限公司)之「PERHEXYL D」、「PERHEXYL I」等。
熱聚合起始劑之使用量相對於聚合性液晶組成物中所含之聚合性液晶化合物之含量100質量份,較佳為0.1~10質量份,尤佳為0.5~5質量份。該等可單獨使用,亦可混合2種以上使用。
為了減少製成光學異向體之情形時之膜厚不均,本實施形態中之聚合性液晶組成物亦可含有至少1種以上之界面活性劑。作為可含有之界面活性劑,可列舉:烷基羧酸鹽、烷基磷酸鹽、烷基磺酸鹽、氟烷基羧酸鹽、氟烷基磷酸鹽、氟烷基磺酸鹽、聚氧乙烯衍生物、氟烷基環氧乙烷衍生物、聚乙 二醇衍生物、烷基銨鹽、氟烷基銨鹽類等,尤佳為氟系或丙烯酸系界面活性劑。
於本實施形態中,界面活性劑並非必需成分,於添加之情形時,界面活性劑之添加量相對於聚合性液晶組成物中所含之聚合性液晶化合物之含量100質量份,較佳為0.01~2質量份,更佳為0.05~0.5質量份。
另外,於藉由使用上述界面活性劑,將本實施形態之聚合性液晶組成物製成光學異向體之情形時,可有效地減小空氣界面之傾斜角(tilt angle)。
本實施形態中之聚合性液晶組成物中,除了具有有效減小製成光學異向體之情形時之空氣界面之傾斜角的效果之上述界面活性劑以外,可舉具有下述通式(7)所表示之重複單位之重量平均分子量為100以上之化合物。
式中,R11、R12、R13及R14分別獨立地表示氫原子、鹵素原子或碳原子數1~20之烴基,該烴基中之氫原子可經1個以上之鹵素原子取代。
作為通式(7)所表示之適宜之化合物,例如可列舉:聚乙烯、聚丙烯、聚異丁烯、石蠟、液態石蠟、氯化聚丙烯、氯化石蠟、氯化液態石蠟等。
通式(7)所表示之化合物之添加量相對於聚合性液晶組成物中所含之聚合性液晶化合物之含量100質量份,較佳為0.01~1質量份,更佳為0.05~0.5質量份。
本實施形態之聚合性液晶組成物亦可添加具有聚合性基但不為液晶化合物之化合物。作為此種化合物,通常只要為該技術領域作為聚合性單體或聚合性低聚物而被認識者,則可無特別限制地使用。具有聚合性基之非液晶性化合物之添加量相對於聚合性液晶組成物中所含之聚合性液晶化合物之含 量100質量份,較佳為0.01~15質量份,更佳為0.05~10質量份,尤佳為0.05~5質量份。具體而言,可列舉:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、丙烯酸2-羥基乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸2-羥基丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸4-羥基丁酯、(甲基)丙烯酸2-羥基丁酯、(甲基)丙烯酸辛酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸十二烷基酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸二環戊基氧基乙酯、(甲基)丙烯酸異莰基氧基乙酯、(甲基)丙烯酸異莰酯、(甲基)丙烯酸金剛烷酯、(甲基)丙烯酸二甲基金剛烷酯、(甲基)丙烯酸二環戊酯、(甲基)丙烯酸二環戊烯酯、(甲基)丙烯酸二環戊烯氧基乙酯、(甲基)丙烯酸甲氧基乙酯、乙基卡必醇(甲基)丙烯酸酯、(甲基)丙烯酸四氫糠酯、(甲基)丙烯酸苄酯、(甲基)丙烯酸苯氧基乙酯、2-苯氧基二乙二醇(甲基)丙烯酸酯、ω-羧基-聚己內酯(n≒2)單丙烯酸酯、丙烯酸2-羥基-3-苯氧基丙酯、(甲基)丙烯酸2-羥基-3-苯氧基乙酯、(甲基)丙烯酸(2-甲基-2-乙基-1,3-二氧雜環戊烷-4-基)甲酯、(甲基)丙烯酸(3-乙基氧環丁烷-3-基)甲酯、鄰苯基苯酚乙氧基(甲基)丙烯酸酯、二甲胺基(甲基)丙烯酸酯、二乙胺基(甲基)丙烯酸酯、(甲基)丙烯酸2,2,3,3,3-五氟丙酯、(甲基)丙烯酸2,2,3,4,4,4-六氟丁酯、(甲基)丙烯酸2,2,3,3,4,4,4-七氟丁酯、(甲基)丙烯酸2-(全氟丁基)乙酯、(甲基)丙烯酸2-(全氟己基)乙酯、(甲基)丙烯酸1H,1H,3H-四氟丙酯、(甲基)丙烯酸1H,1H,5H-八氟戊酯、(甲基)丙烯酸1H,1H,7H-十二氟庚酯、(甲基)丙烯酸1H-1-(三氟甲基)三氟乙酯、(甲基)丙烯酸1H,1H,3H-六氟丁酯、(甲基)丙烯酸1,2,2,2-四氟-1-(三氟甲基)乙酯、(甲基)丙烯酸1H,1H-十五氟辛酯、(甲基)丙烯酸1H,1H,2H,2H-十三氟辛酯、2-(甲基)丙烯醯氧基乙基鄰苯二甲酸、2-(甲基)丙烯醯氧基乙基六氫鄰苯二甲酸、(甲基)丙烯酸環氧丙酯、2-(甲基)丙烯醯氧基乙基磷酸、丙烯醯基啉、二甲基丙烯醯胺、二甲胺基丙基丙烯醯胺、異丙 基丙烯醯胺、二乙基丙烯醯胺、羥基乙基丙烯醯胺、N-丙烯醯氧基乙基六氫鄰苯二甲醯亞胺等單(甲基)丙烯酸酯;1,4-丁二醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、乙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯、環氧乙烷改質雙酚A二(甲基)丙烯酸酯、三環癸烷二甲醇二(甲基)丙烯酸酯、9,9-雙[4-(2-丙烯醯氧基乙氧基)苯基]茀、甘油二(甲基)丙烯酸酯、甲基丙烯酸2-羥基-3-丙烯醯氧基丙酯、1,6-己二醇二環氧丙醚之丙烯酸加成物、1,4-丁二醇二環氧丙醚之丙烯酸加成物等二丙烯酸酯;三羥甲基丙烷三(甲基)丙烯酸酯、乙氧基化異三聚氰酸三丙烯酸酯、新戊四醇三(甲基)丙烯酸酯、ε-己內酯改質三(2-丙烯醯氧基乙基)三聚異氰酸酯(isocyanurate)等三(甲基)丙烯酸酯;新戊四醇四(甲基)丙烯酸酯、二-三羥甲基丙烷四(甲基)丙烯酸酯等四(甲基)丙烯酸酯;二新戊四醇六(甲基)丙烯酸酯、低聚物型之(甲基)丙烯酸酯、各種胺酯丙烯酸酯(urethane acrylate)、各種巨單體、乙二醇二環氧丙醚、二乙二醇二環氧丙醚、丙二醇二環氧丙醚、新戊二醇二環氧丙醚、1,6-己二醇二環氧丙醚、甘油二環氧丙醚、雙酚A二環氧丙醚等環氧化合物;順丁烯二醯亞胺等。該等可單獨使用,亦可混合2種以上使用。
為了進一步提高製成光學異向體之情形時與基材之密接性,本實施形態中之聚合性液晶組成物亦較佳為添加鏈轉移劑。作為鏈轉移劑,較佳為硫醇化合物,更佳為單硫醇、二硫醇、三硫醇、四硫醇化合物,進而更佳為三硫醇化合物。具體而言,較佳為下述通式(8-1)~(8-13)所表示之化合物。
式中,R65表示碳原子數2~18之烷基,該烷基可為直鏈,亦可為支鏈,該烷基中之1個以上之亞甲基(methylene)亦可以氧原子及硫原子相互不直接鍵結之形態被氧原子、硫原子、-CO-、-OCO-、-COO-、或-CH=CH-取代,R66表示碳原子數2~18之伸烷基,該伸烷基中之1個以上之亞甲基亦可以氧原子及硫原子相互不直接鍵結之形態被氧原子、硫原子、-CO-、-OCO-、-COO-、或-CH=CH-取代。
另外,作為硫醇以外之鏈轉移劑,亦可適宜地使用α-甲基苯乙烯二聚物。鏈轉移劑之添加量相對於聚合性液晶組成物中所含之聚合性液晶化合物之含量100質量份,較佳為0.5~10質量份,更佳為1.0~5.0質量份。
可視需要於本實施形態之聚合性液晶組成物中含有色素。所使用之色素並無特別限定,可於不擾亂配向性之範圍內含有公知慣用者。
作為上述色素,例如可列舉2色性色素、螢光色素等。作為此種色素,例如可列舉:多偶氮色素、蒽醌色素、花青基苷(cyanin)色素、酞青素色素、苝色素、芘色素、方酸鎓色素等,就添加之觀點而言,上述色素較佳為表現出液晶性之色素。例如,可使用美國專利第2,400,877號公報、Dreyer J.F.,Phys.and Colloid Chem.,1948,52,808.,"The Fixing of Molecular Orientation"、Dreyer J.F.,Journal de Physique,1969,4,114.,"Light Polarization from Films of Lyotropic Nematic Liquid Crystals"、及J.Lydon,"Chromonics" in "Handbook of Liquid Crystals Vol.2B:Low MolecularWeight Liquid Crystals II",D.Demus,J.Goodby,G.W.Gray,H.W.Spiessm,V.Villed,Willey-VCH,P.981-1007(1998)、Dichroic Dyes for Liquid Crystal Display A.V.lvashchenko CRC Press,1994年、及「功能性色素市場之新展開」、第一章、1頁、1994年、CMC股份有限公司發行等所記載之色素。
作為2色性色素,例如可列舉以下之式(d-1)~式(d-8)。
上述2色性色素等色素之添加量相對於粉體混合物所含之聚合性液晶化合物之總量100質量份,較佳為0.001~10質量份,更佳為0.01~5質量份。
可視需要於本實施形態之聚合性液晶組成物中含有填料。所使用之填料並無特別限定,可於所獲得之聚合物之導熱性不降低之範圍內含有公知慣用者。具體而言,可列舉:氧化鋁、鈦白、氫氧化鋁、滑石、黏土、雲母、鈦酸鋇、氧化鋅、玻璃纖維等無機質填充材、銀粉、銅粉等金屬粉末或氮化鋁、氮化硼、氮化矽、氮化鎵、碳化矽、氧化鎂(magnesia)、氧化鋁(alumina)、結晶性二氧化矽(氧化矽)、熔融二氧化矽(氧化矽)等導熱性填料、銀奈米粒子等。
進而為了調整物性,可根據目的而以不顯著地降低液晶之配向能力之程度添加無液晶性之聚合性化合物、觸變劑、紫外線吸收劑、紅外線吸收劑、抗氧化劑、表面處理劑等添加劑。
繼而,本實施形態之光學膜係由以上所詳細說明之聚合性液晶組成物之硬化物所構成者。作為由本實施形態之聚合性液晶組成物製造光學膜 之方法,具體而言,可舉將聚合性液晶組成物塗佈於基材上並加以乾燥後照射紫外線之方法。
使用於本實施形態之光學膜的基材只要為通常用於液晶設備、顯示器、光學零件或光學膜之基材,且為具有可耐受塗佈本實施形態之聚合性液晶組成物後進行乾燥時之加熱之耐熱性之材料,則並無特別限制。作為此種基材,可列舉玻璃基材、金屬基材、陶瓷基材或塑膠基材等有機材料。尤其是於基材為有機材料之情形時,可列舉:纖維素衍生物、聚烯烴、聚酯、聚碳酸酯、聚丙烯酸酯(丙烯酸樹脂)、聚芳酯、聚醚碸、聚醯亞胺、聚苯硫醚、聚苯醚、尼龍或聚苯乙烯等。其中,較佳為聚酯、聚苯乙烯、聚丙烯酸酯、聚烯烴、纖維素衍生物、聚芳酯、聚碳酸酯等塑膠基材,進而較佳為聚酯、聚丙烯酸酯、聚烯烴、纖維素衍生物等基材,尤佳為作為聚酯而使用PET(聚對酞酸乙二酯),作為聚烯烴而使用COP(環烯烴聚合物),作為纖維素衍生物而使用TAC(三乙醯纖維素),作為聚丙烯酸酯而使用PMMA(聚甲基丙烯酸甲酯)。作為基材之形狀,除了平板以外,亦可為具有曲面者。該等基材可視需要具有電極層、反射防止功能、反射功能。
為了提高本實施形態之聚合性液晶組成物之塗佈性或接著性,亦可進行該等基材之表面處理。作為表面處理,可列舉臭氧處理、電漿處理、電暈處理、矽烷偶合處理等。另外,為了調節光之穿透率或反射率,可藉由蒸鍍等方法於基材表面設置有機薄膜、無機氧化物薄膜或金屬薄膜等,或為了使其具有光學性之附加價值,基材可為讀取透鏡(pickup lens)、棒形透鏡、光碟、相位差膜、光擴散膜、彩色濾光片等。其中,較佳為附加價值變得更高之讀取透鏡、相位差膜、光擴散膜、彩色濾光片。
另外,作為上述基材,較佳為以於塗佈本實施形態之聚合性液晶組成物並加以乾燥時聚合性液晶組成物進行配向之方式單獨設置玻璃基材或 於基材上設置配向膜。作為配向處理,可列舉延伸處理、摩擦處理、偏光紫外可見光照射處理、離子束處理等。於使用配向膜之情形時,配向膜可使用公知慣用者。作為此種配向膜,可利用含有聚醯亞胺、聚醯胺、卵磷脂、羥基、羧酸基或磺酸基之親水性聚合物、或親水性之無機化合物、光配向膜等。作為親水性聚合物,可列舉:聚乙烯醇、聚丙烯酸、聚丙烯酸鈉、聚甲基丙烯酸、聚海藻酸鈉、聚羧基甲基纖維素鈉鹽、聚三葡萄糖(pullulan)、聚苯乙烯磺酸。另外,作為親水性之無機化合物,可列舉Si、Al、Mg、Zr等之氧化物或氟化物等無機化合物。親水性之基材係對使光學異向體之光學軸相對於基材沿法線方向大致平行地配向而言有效者,因此對於為了獲得正C板(positive C plate)之光學異向體而言較佳,但於對親水性之基材進行摩擦處理之情形時,作為水平配向膜而發揮作用,因此於親水性聚合物層中摩擦處理會對垂直配向性產生不良影響,故而對於為了獲得正C板之光學膜而言欠佳。
作為於上述基材塗佈本實施形態之聚合性液晶組成物之方法,可進行敷料器法、棒式塗佈法、旋轉塗佈法、輥式塗佈法、直接凹版塗佈法、反向凹版塗佈法、柔性塗佈法、噴墨法、模嘴塗佈法、覆塗法、浸漬塗佈法、狹縫式塗佈法等公知慣用之方法。塗佈聚合性液晶組成物後,視需要將聚合性液晶組成物所含之溶劑加熱乾燥去除。
關於本實施形態之聚合性液晶組成物之聚合操作,於聚合性液晶組成物中之液晶化合物相對於基材進行膽固醇配向之狀態下,通常藉由紫外線等之光照射、或加熱而進行。於藉由光照射進行聚合之情形時,具體而言,較佳為照射390nm以下之紫外光,最佳為照射250~370nm之波長之光。其中於藉由390nm以下之紫外光引起聚合性液晶組成物分解等之情形時,亦存在較佳為藉由390nm以上之紫外光進行聚合處理之情形。該光較佳為擴散光且未偏光之光。
作為使本實施形態之聚合性液晶組成物進行聚合之方法,可列舉照射活性能量線之方法或熱聚合法等,就無需加熱而於室溫進行反應之方面而言,較佳為照射活性能量線之方法,其中,就操作簡便之方面而言,較佳為照射紫外線等光之方法。
照射時之溫度係設為本實施形態之聚合性液晶組成物可保持液晶相之溫度,為了避免誘發聚合性液晶組成物之熱聚合,較佳為儘量設為50℃以下。
於照射紫外線等光之情形時,其照射強度、及照射能量會大幅地影響到所獲得之光學膜之耐熱性。若照射強度、或照射能量過弱,則產生聚合反應未結束之部分,對耐熱性造成影響,即便照射強度、或照射能量過強,沿層之深度方向聚合程度產生差異,亦會同樣地對耐熱性造成影響。作為照射強度,較佳為照射30~2,000mW/cm2之UVA光(UVA為315~380nm之紫外光)之紫外光,更佳為照射50~1,500mW/cm2之UVA光之紫外光,進而更佳為照射120~1,000mW/cm2之UVA光之紫外光,最佳為照射250~1,000mW/cm2之UVA光之紫外光。作為照射能量,較佳為照射100~5,000mJ/cm2之UVA光之紫外光,更佳為照射150~4,000mJ/cm2之UVA光之紫外光,進而更佳為照射200~3,000mJ/cm2之UVA光之紫外光,最佳為照射300~1,000mJ/cm2之UVA光之紫外光。關於UV照射,可為照射多次之方法,較佳為第1次之照射強度為上述UV強度,更佳為進而第1次之照射能量為上述UV照射能量。
另外,於本實施形態中,關於上述通式(I-1)所表示之2官能聚合性液晶化合物與上述通式(II-1)所表示之單官能聚合性液晶化合物,於以質量基準計以存在比率[(I-1)/(II-1)]成為90/10~50/50之比例使用之情形時,就耐熱性變得良好之方面而言,較佳為以300~1,000mJ/cm2之照射量照射UVA之紫外線。
使本實施形態之聚合性液晶組成物進行聚合而獲得之光學膜可自基板剝離而單獨作為光學膜使用,亦可不自基板剝離而直接作為光學膜使用。尤其是不易污染其他構件,因此於作為被積層基板使用、或貼合於其他基板使用時有用。
由此獲得之光學膜可表現出作為膽固醇反射膜而優異之色純度。作為該膽固醇反射膜,可用作棒狀液晶性化合物相對於基材進行膽固醇配向之負C板、反射特定波長之光之選擇反射膜(帶阻濾波器)、棒狀液晶性化合物相對於基材水平時進行配向且採用扭轉之配向狀態之扭轉正A板。
此處,本實施形態之膽固醇液晶層藉由與λ/4板、及雙亮度增強膜(DBEF)積層,可僅將來自光源之光中之多餘的顏色選擇性地反射,從而提高作為顯示元件之色純度。
另外,本實施形態之λ/2板(或λ/2層)並無特別限制,可使用公知者,可視需要進行適當變更而使用較佳者。
該λ/2板係例如將由組合上述聚合性液晶化合物而成之組成物之硬化物或透明樹脂構成之膜加以延伸所獲得者。另外,作為上述透明樹脂,只要為平均膜壓0.1mm且總光線穿透率為80%以上者則可使用。例如可列舉:三乙醯纖維素等乙酸酯系樹脂、聚酯系樹脂、聚醚碸系樹脂、聚碳酸酯系樹脂、鏈狀聚烯烴系樹脂、具有脂環式結構之聚合物樹脂(降莰烯系聚合物、單環之環狀烯烴系聚合物、環狀共軛二烯系聚合物、乙烯脂環式烴聚合物及該等之氫化物)、丙烯酸系樹脂、聚乙烯醇系樹脂、聚氯乙烯系樹脂等。
亦可視需要於上述透明樹脂中添加抗氧化劑、熱穩定劑、光穩定劑、紫外線吸收劑、抗靜電劑、分散劑等公知之添加劑。
(液晶面板)
繼而,對液晶顯示元件中之液晶面板之結構進行說明。
使用圖13~20對液晶面板200A、200B之較佳之實施形態說明。圖13表示液晶顯示部之電極層3之結構圖之示意圖,為以等效電路表示液晶面板200A、200B之電極部分之示意圖,圖14及15係表示像素電極形狀之一例之示意圖,作為本實施形態之一例,為表示FFS型液晶顯示元件之電極結構之示意圖。圖17係表示FFS型液晶顯示元件之液晶面板之截面的示意圖。另外,圖16係作為本實施形態之一例而表示IPS型液晶顯示元件之電極結構的示意圖。圖18係表示IPS型液晶顯示元件之液晶面板之截面的示意圖。進而,圖19係作為本實施形態之一例而表示VA型液晶顯示元件之電極結構的示意圖。圖20係表示VA型液晶顯示元件之液晶面板之截面的示意圖。如圖1、2所示,藉由設置背光單元作為從側面側或背面側對液晶面板200A、200B進行照明之照明手段,而作為液晶顯示元件進行驅動。
於圖1、2及圖13中,電極層3a、3b具備1個以上之共用電極及/或1個以上之像素電極。例如,於FFS型液晶顯示元件中,像素電極隔著絕緣層(例如,氮化矽(SiN)等)配置於共用電極上,於VA型液晶顯示元件中,像素電極與共用電極則是隔著液晶層5相對向地配置。
像素電極係配置於每個顯示像素,形成有狹縫狀之開口部。共用電極與像素電極係由例如ITO(Indium Tin Oxide)所形成之透明電極,電極層3於顯示部具備沿多個顯示像素排列之列延伸之閘極匯流排線GBL(GBL1、GBL2‧‧‧GBLm)、及沿多個顯示像素排列之行延伸之源極匯流排線SBL(SBL1、SBL2‧‧‧SBLm),且於閘極匯流排線與源極匯流排線交叉之位置附近具備作為像素開關之薄膜電晶體。另外,該薄膜電晶體之閘極電極與相對應之閘極匯流排線GBL電連接,該薄膜電晶體之源極電極與相對應之訊號線SBL電連接。進而,薄膜電晶體之汲極電極與相對應之像素電極電連接。
電極層3具備閘極驅動器與源極驅動器作為驅動多個顯示像素之 驅動手段,上述閘極驅動器及上述源極驅動器係配置於液晶顯示部之周圍。另外,多條閘極匯流排線與閘極驅動器之輸出端子電連接,多條源極匯流排線與源極驅動器之輸出端子電連接。
閘極驅動器對多條閘極匯流排線依序施加接通電壓,而向與所選擇之閘極匯流排線電連接之薄膜電晶體之閘極電極供給接通電壓。閘極電極被供給接通電壓之薄膜電晶體之源極-汲極電極間導通。源極驅動器向多條源極匯流排線分別供給相對應之輸出訊號。供給至源極匯流排線之訊號經由源極-汲極電極間導通之薄膜電晶體而被施加至相對應之像素電極。閘極驅動器及源極驅動器係由配置於液晶顯示元件之外部之顯示處理部(亦稱為控制電路)控制其動作。
本實施形態之顯示處理部除了通常驅動以外,為了降低驅動功率,亦可具備低頻驅動之功能與間歇驅動之功能,對作為用以驅動TFT液晶面板之閘極匯流排線之LSI的閘極驅動器之動作及作為用以驅動TFT液晶面板之源極匯流排線之LSI的源極驅動器之動作進行控制。另外,對共用電極供給共通電壓VCOM,而亦對背光單元之動作進行控制。例如,本實施形態之顯示處理部亦可具有區域調光手段,其將顯示畫面整體分為多個區塊,根據放映於各區塊之影像之明亮程度調整背光源之光之強度。
使用圖14、圖15及圖17對本實施形態之液晶顯示元件中的FFS型液晶面板之例進行說明。
圖14係作為像素電極形狀之一例而表示梳形像素電極之圖,係將圖4及2中形成於基板2上之電極層3之以XIV線圍成之區域放大之俯視圖。如圖14所示,形成於第一基板2之表面之包含薄膜電晶體之電極層3中用以供給掃描訊號之多條閘極匯流排線26與用以供給顯示訊號之多條源極匯流排線25互相交叉而配置成矩陣狀。藉由由該多條閘極匯流排線26與該多條源極匯流排線25 圍成之區域形成液晶顯示裝置之單位像素,於該單位像素內形成有像素電極21及共用電極22。於閘極匯流排線26與源極匯流排線25互相交叉之交叉部附近設置有含有源極電極27、汲極電極24及閘極電極28之薄膜電晶體。該薄膜電晶體作為向像素電極21供給顯示訊號之開關元件而與像素電極21連結。另外,與閘極匯流排線26平行地設置共用線29。該共用線29為了向共用電極22供給共通訊號而與共用電極22連結。
於像素電極21之背面隔著絕緣層18(未圖示)而於一面形成有共用電極22。並且,鄰接之共用電極與像素電極之最短分離路徑之水平分量短於配向層彼此(或基板彼此)之最短分離距離(單元間隙)。較佳為上述像素電極之表面被保護絕緣膜及配向層所被覆。此處所謂之「最短分離路徑之水平分量」係指將連結鄰接之共用電極與像素電極之最短相隔路徑分解為與基板水平之方向及與基板垂直之方向(=厚度方向)所獲得之分量中與基板水平之方向之分量。此外,亦可於由上述多條閘極匯流排線26與多條源極匯流排線25所圍成之區域設置保存經由源極匯流排線25所供給之顯示訊號之儲存電容器(未圖示)。
另外,圖15係圖14之變化例,係作為像素電極之形狀之一例而表示狹縫狀之像素電極之圖。該圖15所示之像素電極21係將大致長方形之平板體之電極於該平板體之中央部及兩端部挖出三角形之缺口部,將其他部分挖出大致矩形框狀之缺口部而成之形狀。此外,缺口部之形狀並無特別限制,可使用橢圓、圓形、長方形、菱形、三角形、或平行四邊形等公知之形狀之缺口部。
此外,圖14及圖15中僅示出一個像素中之一對閘極匯流排線26及一對源極匯流排線25。
圖17係沿圖14或圖15中之III-III線方向將液晶顯示元件切開而 獲得之剖視圖之一例。於一面形成有第一配向層4及含有薄膜電晶體(TFT)之電極層3且於另一面形成有第一偏光層1之第一基板2與於一面形成有第二配向層6、第二偏光層7、光轉換膜90之第二基板10以特定之間隔G以配向層彼此相對之方式分離,於該第一基板2與第二基板10之間填充有含有液晶組成物之液晶層5。於第一基板2之表面之一部分依序積層有閘極絕緣膜13、薄膜電晶體(14、15、16、17、19)、鈍化膜18、平坦化膜33、共用電極22、絕緣膜35、像素電極21及第一配向層4。於圖17中記載分開設置鈍化膜18與平坦膜33此2層之例,亦可設置一層兼具鈍化膜18與平坦膜33之功能之平坦化膜。另外,於圖17中示出具備配向層4、6之例,亦可如上述圖2所示般,不形成配向層4、6。光轉換膜90具備上述光轉換層及波長選擇性穿透層。
上文已對上述圖17中之FFS型液晶面板中本實施形態之光轉換膜之較佳實施形態進行了說明,該等光轉換膜之較佳實施形態亦可應用於IPS型液晶顯示元件、VA型液晶顯示元件中之光轉換膜90。
於圖17中,薄膜電晶體之結構之適宜之一態樣具有形成於基板2表面之閘極電極14、以覆蓋該閘極電極14且覆蓋上述基板2之大致整個面之方式設置之閘極絕緣層13、以與上述閘極電極14相對向之方式形成於上述閘極絕緣層13之表面之半導體層19、以覆蓋上述半導體層19之表面之一部分的方式設置之保護膜20、以覆蓋上述保護膜20及上述半導體層19之一側端部且與形成於上述基板2表面之上述閘極絕緣層13接觸之方式設置之汲極電極16、以覆蓋上述保護膜20及上述半導體層19之另一側端部且與形成於上述基板2表面之上述閘極絕緣層13接觸之方式設置之源極電極17、以及以覆蓋上述汲極電極16及上述源極電極17之方式設置之絕緣保護層18。基於消除與閘極電極之階差等理由,亦可於閘極電極14之表面形成陽極氧化被膜(未圖示)。
於如圖17所示之FFS型液晶顯示元件之實施形態中,共用電極 22係形成於閘極絕緣層13上之大致整個面之平板狀之電極,另一方面,像素電極21係形成於覆蓋共用電極22之絕緣保護層18上之梳形電極。即,共用電極22係配置於較像素電極21更靠近第一基板2之位置,該等電極隔著絕緣保護層18而互相重疊配置。像素電極21與共用電極22例如由ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IZTO(Indium Zinc Tin Oxide)等透明導電性材料所形成。由於像素電極21與共用電極22係由透明導電性材料所形成,故而單位像素面積中開口之面積變大,開口率及穿透率增加。
另外,像素電極21與共用電極22為了於該等電極間形成橫向邊緣電場,而以像素電極21與共用電極22之間之電極間路徑之水平分量(亦稱為最小分離路徑之水平分量)R小於第一基板2與第二基板10之間之液晶層5之厚度G之方式形成。此處,電極間路徑之水平分量R表示各電極間之與基板水平之方向之距離。於圖17中,由於平板狀共用電極22與梳形像素電極21重疊,故而揭示最小分離路徑之水平分量(或電極間距離):R=0之例,由於最小分離隔路徑之水平分量R小於第一基板2與第二基板10之間的液晶層厚度(亦稱為單元間隙):G,故而形成橫向邊緣電場E。因此,FFS型液晶顯示元件可利用沿著與形成像素電極21之梳形之線垂直之方向所形成之水平方向之電場與拋物線狀之電場。像素電極21之梳狀部分之電極寬度:1及像素電極21之梳狀部分之間隙寬度:m較佳形成為可藉由所產生之電場驅動液晶層5內之全部液晶分子之程度之寬度。另外,像素電極與共用電極之最小分離路徑之水平分量R可藉由絕緣膜35之(平均)膜厚等加以調整。
使用圖16及圖18對本實施形態之液晶顯示元件中之FFS型液晶面板的變化例即IPS型液晶面板之例進行說明。IPS型液晶顯示元件中之液晶面板之構成係與上述圖1之FFS型同樣地於單側之基板上設置有電極層3(包含共用電極、像素電極及TFT)之結構,為依序積層第一偏光層1、第一基板2、電 極層3、第一配向層4、含有液晶組成物之液晶層5、第二配向層6、第二偏光層7、光轉換膜90、及第二基板10之構成。
圖16係將IPS型液晶顯示部中之圖13的形成於第一基板2上之電極層3之以XIV線圍成之區域的一部分放大而獲得之俯視圖。如圖16所示,於由用以供給掃描訊號之多條閘極匯流排線26與用以供給顯示訊號之多條源極匯流排線25所圍成之區域內(單位像素內),梳齒形第一電極(例如,像素電極)21與梳齒型第二電極(例如,共用電極)22以互相可動嵌合之狀態(兩電極以保持一定距離之狀態分離而嚙合之狀態)設置。於該單位像素內,於閘極匯流排線26與源極匯流排線25互相交叉之交叉部附近設置有包含源極電極27、汲極電極24及閘極電極28之薄膜電晶體。該薄膜電晶體作為向第一電極21供給顯示訊號之開關元件而與第一電極21連結。另外,與閘極匯流排線26平行地設置共用線(Vcom)29。該共用線29為了向第二電極22供給共通訊號而與第二電極22連結。
圖18係沿圖16中之III-III線方向將IPS型液晶面板切開而獲得之剖視圖。於第一基板2上設置以覆蓋閘極匯流排線26(未圖示)、且覆蓋第一基板2之大致整個面之方式設置之閘極絕緣層32、及形成於閘極絕緣層32之表面之絕緣保護層31,第一電極(像素電極)21及第二電極(共用電極)22係被分離設置於絕緣保護膜31上。絕緣保護層31係具有絕緣功能之層,由氮化矽、二氧化矽、氮氧化矽膜等所形成。另外,於一面形成有第一配向層4及包含薄膜電晶體之電極層3且於另一面形成有第一偏光層1之第一基板2與於一面形成有第二配向層6、第二偏光層7及光轉換層9之第二基板10以特定之間隔以配向層彼此相對之方式分離,於該空間填充有含有液晶組成物之液晶層5。該光轉換膜90具備上述光轉換層與波長選擇性穿透層。光轉換膜90之說明如同上述所說明般。
於如圖16及圖18所示之實施形態中,第一電極21及第二電極22係形成於絕緣保護層31上即形成於同一層上之梳形電極,以互相分開而嚙合之狀態被設置。於IPS型液晶顯示部中,第一電極21與第二電極22之間的電極間距離:G及第一基板2與第二基板10之間的液晶層厚度(單元間隙):H滿足G≧H之關係。所謂電極間距離:G,表示第一電極21及第二電極22之間的與基板水平之方向的最短距離,於圖16及圖18所示之例中,表示相對於第一電極21與第二電極22可動嵌合而交替地形成之線為水平之方向的距離。所謂第一基板2與第二基板10之距離:H,表示第一基板2與第二基板10之間的液晶層厚度,具體而言,表示分別設置於第一基板2及第二基板10之配向層4(最表面)間的距離(即單元間隙)、液晶層的厚度。
另外,於圖18中,示出具備配向層4、6之例,但如上述圖4所示般,亦可不形成配向層4、6。
另一方面,於前文所述之FFS型液晶面板中,第一基板2與第二基板10之間的液晶層厚度為第一電極21與第二電極22之間的與基板水平之方向之最短距離以上,IPS型液晶顯示部中第一基板2與第二基板10之間的液晶層厚度未達第一電極21與第二電極22之間的與基板水平之方向之最短距離。
IPS型液晶面板係利用形成於第一電極21及第二電極22間之相對於基板面為水平之方向的電場來驅動液晶分子。第一電極21之電極寬度:Q及第二電極22之電極寬度:R較佳形成為可藉由所產生之電場驅動液晶層5內之全部液晶分子之程度的寬度。
本實施形態之較佳之液晶面板之其他實施形態係垂直配向型液晶面板(VA型液晶顯示器)。使用圖19及圖20對本實施形態之液晶顯示元件之VA型液晶面板之例進行說明。圖19係將形成於基板上之包含薄膜電晶體之電極層3(或亦稱為薄膜電晶體層3)以XIV線圍成之區域放大而獲得之俯視圖。圖 20係沿圖19中之III-III線方向將圖3、8所示之液晶面板切開而獲得之剖視圖。
本實施形態之液晶顯示元件中之液晶面板之構成如圖3、8所記載,具有「具備(透明)電極層3b(或亦稱為共用電極3b)、第二偏光層7及光轉換層9之第二基板10」、「包含形成有像素電極及控制各像素所具備之上述像素電極之薄膜電晶體的電極層3之第一基板2」以及「夾持於上述第一基板2與第二基板10之間之液晶層5(由液晶組成物所構成)」,係該液晶組成物中之液晶分子之未施加電壓時的配向相對於上述基板2、7大致垂直之液晶顯示元件,其特徵之一在於使用特定之液晶組成物作為液晶層。另外,電極層3b較佳為與其他液晶顯示元件同樣地由透明導電性材料所構成。此外,於圖18中記載有於上述第二基板10與第二偏光層7之間設置有光轉換膜90之例,但未必限定於此。進而,亦可視需要以與本實施形態之液晶層5鄰接且與構成該液晶層5之液晶組成物直接相接之方式於透明電極(層)3a、3b表面形成一對配向層4、6(於圖20中圖示有配向層4、6)。於上述第一基板2之背光單元側之面設置有第一偏光層1,第二偏光層7設置於透明電極(層)3b與光轉換膜90之間。因此,本實施形態之液晶顯示元件中之液晶面板的較佳形態之一係「於一面形成有第一配向層4及包含薄膜電晶體之電極層3且於另一面形成有第一偏光層1之第一基板2」與「於一面形成有第二配向層6、透明電極(層)3b、第二偏光層7及光轉換膜90之第二基板10」以特定之間隔分離成配向層彼此相對,於上述第一基板2與第二基板10之間填充有含有液晶組成物之液晶層5。光轉換膜90之說明如同上述所說明般。
圖19係作為像素電極21之形狀之一例而示出“”形之像素電極之圖,為將圖12、4中形成於基板2上之電極層3以XIV線圍成之區域放大而獲得之俯視圖。上述像素電極21與上述圖14、15及16同樣地,於由閘極匯流排線26與源極匯流排線25所圍成之區域之大致整個面形成為“”形,但像素電極之形 狀並不限定於此,於用於PSVA等之情形時,亦可為魚骨結構之像素電極。另外,像素電極21之其他構成及功能等如上所述,因此此處省略。
垂直配向型液晶顯示元件之液晶面板部與上述IPS型或FFS型不同,共用電極3b(未圖示)與像素電極21相對向分開,形成於與TFT相對向之基板上。換言之,像素電極21與共用電極22形成於不同之基板上。另一方面,前文所述之FFS或IPS型液晶顯示元件其像素電極21及共用電極22形成於同一基板上。
另外,該光轉換膜90就防止漏光之觀點而言,可於與薄膜電晶體及儲存電容器23相對應之部分形成黑色矩陣(未圖示)。
圖20係沿圖19中之III-III線方向將圖3、8所示之液晶顯示元件切開而獲得之剖視圖。即,本實施形態之液晶顯示元件之液晶面板200係依序積層有第一偏光層1、第一基板2、包含薄膜電晶體之電極層(或亦稱為薄膜電晶體層)3a、第一配向層4、含有液晶組成物之液晶層5、第二配向層6、共用電極3b、第二偏光層7、光轉換膜90及第二基板10的構成。本實施形態之液晶顯示元件之薄膜電晶體之結構(圖20之IV之區域)的適宜之一態樣係如上所述,因此此處省略。
本實施形態之液晶顯示元件可具有區域調光(local dimming)之手法,該區域調光之手法係藉由對少於「液晶之像素數」之多個區塊的各區塊控制背光單元100之亮度,來提高對比度。
作為區域調光之手法,可將所存在之多個發光元件L用作液晶面板上之特定區域之光源,根據顯示區域之亮度控制各發光元件L。於該情形時,該多個發光元件L可為排列成平面狀之形態,亦可為於液晶面板200之一側面側排列為一列之形態。
於成為作為上述區域調光之手法而具有背光單元100之導光部 102及液晶面板200之結構的情形時,可於導光板(及/或光擴散板)與液晶面板之光源側之基板之間具有對少於「液晶之像素數」之特定區域之各區域控制背光源之光量的控制層作為該導光部102。
作為控制背光源之光量之手法,可進而具有少於「液晶之像素數」的液晶元件,作為液晶元件,可使用既有之各種手法,就穿透率之方面而言,較佳為含有形成有聚合物網路之液晶的LCD層。該含有形成有聚合物網路之(向列)液晶的層(視需要而為由一對透明電極夾持之含有形成有聚合物網路之(向列)液晶的層)於電壓OFF時使光散射,於電壓ON時使光穿透,因此藉由將劃分成將顯示畫面整體分為多個區塊且含有形成有聚合物網路之液晶的LCD層設置於導光板(及/或光擴散板)與液晶面板之光源側之基板之間,而可實現區域調光。
以下,對「為本實施形態之液晶顯示元件之液晶面板部的構成要素」之液晶層、配向層等進行說明。
本實施形態之液晶層具有含有通式(i)所表示之化合物之液晶組成物。
(式中,Ri1及Ri2分別獨立地表示碳原子數1~8之烷基、碳原子數2~8之烯基、碳原子數1~8之烷氧基或碳原子數2~8之烯氧基,Ai1表示1,4-伸苯基或反式-1,4-伸環己基,ni1表示0或1)
藉由上述化合物可構成含有針對耐光性之可靠性高之化合物的液晶層,因此可抑制、防止由來自光源之光尤其是藍光(來自藍色LED)引起之液晶層劣化。另外,由於可調整液晶層之延遲,故而可抑制或防止液晶顯示元件之穿透率降低。
於本實施形態之液晶層中,上述通式(i)所表示之化合物之較 佳含量下限值相對於本實施形態之組成物之總量,為1質量%、2質量%、3質量%、5質量%、7質量%、10質量%、15質量%、20質量%、25質量%、30質量%、35質量%、40質量%、45質量%、50質量%、55質量%。較佳含量上限值相對於本實施形態之組成物之總量,為95質量%、90質量%、85質量%、80質量%、75質量%、70質量%、65質量%、60質量%、55質量%、50質量%、45質量%、40質量%、35質量%、30質量%、25質量%。
尤佳於本實施形態之液晶層中含有10~50質量%之上述通式(i)所表示之化合物。
上述通式(i)所表示之化合物較佳為選自通式(i-1)~(i-2)所表示之化合物群中之化合物。
通式(i-1)所表示之化合物為下述之化合物。
(式中,Ri11及Ri12分別獨立地表示與通式(i)中之Ri1及Ri2相同之含義)
Ri11及Ri12較佳為直鏈狀之碳原子數1~5之烷基、直鏈狀之碳原子數1~4之烷氧基及直鏈狀之碳原子數2~5之烯基。
通式(i-1)所表示之化合物可單獨使用,亦可組合2種以上之化合物而使用。可組合之化合物之種類並無特別限制,根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率等所要求之性能而適當組合使用。所使用之化合物種類,例如作為本實施形態之一實施形態,為1種、2種、3種、4種、5種以上。
較佳含量之下限值相對於本實施形態之組成物之總量,為1質量%、2質量%、3質量%、5質量%、7質量%、10質量%、12質量%、15質量%、17質量%、20質量%、22質量%、25質量%、27質量%、30質量%、35質量%、40質量%、45質量%、50質量%、55質量%。較佳含量上限值相對於本實施形態 之組成物之總量,為95質量%、90質量%、85質量%、80質量%、75質量%、70質量%、65質量%、60質量%、55質量%、50質量%、48質量%、45質量%、43質量%、40質量%、38質量%、35質量%、33質量%、30質量%、28質量%、25質量%、23質量%、20質量%。
於將本實施形態之組成物之黏度保持為較低,需要響應速度快之組成物之情形時,較佳為上述下限值高,且上限值高。進而,於將本實施形態之組成物之TNI保持為較高,需要溫度穩定性良好之組成物之情形時,較佳為上述下限值適中,且上限值適中。另外,於為了將驅動電壓保持為較低而欲增大介電各向導性時,較佳為上述下限值較低,且上限值較低。
通式(i-1)所表示之化合物較佳為選自通式(i-1-1)所表示之化合物群中之化合物。
(式中Ri12表示與通式(i-1)中之含義相同之含義)
通式(i-1-1)所表示之化合物較佳為選自式(i-1-1.1)至式(i-1-1.3)所表示之化合物群中之化合物,較佳為式(i-1-1.2)或式(i-1-1.3)所表示之化合物,尤佳為式(i-1-1.3)所表示之化合物。
相對於本實施形態之組成物之總量,式(i-1-1.3)所表示之化合物之較佳含量下限值為1質量%、2質量%、3質量%、5質量%、7質量%、10質量%。較佳含量上限值相對於本實施形態之組成物之總量,為20質量%、15質量%、13質量%、10質量%、8質量%、7質量%、6質量%、5質量%、3質量 %。
就即便於作為背光源而照射處於紫外線區域之波長200~400nm之光之情形時亦可保持優異之耐久性、表現出電壓保持率之方面而言,通式(i-1)所表示之化合物較佳為選自通式(i-1-2)所表示之化合物群中之化合物。
(式中,Ri12表示與通式(i-1)中之含義相同之含義)
相對於本實施形態之組成物之總量,式(i-1-2)所表示之化合物之較佳含量下限值為1質量%、5質量%、10質量%、15質量%、17質量%、20質量%、23質量%、25質量%、27質量%、30質量%、35質量%。較佳含量上限值相對於本實施形態之組成物之總量,為60質量%、55質量%、50質量%、45質量%、42質量%、40質量%、38質量%、35質量%、33質量%、30質量%。
進而,通式(i-1-2)所表示之化合物較佳為選自式(i-1-2.1)至式(i-1-2.4)所表示之化合物群中之化合物,較佳為式(i-1-2.2)至式(i-1-2.4)所表示之化合物。尤其是式(i-1-2.2)所表示之化合物因尤其改善本實施形態之組成物之響應速度而較佳。另外,於相較於響應速度而要求高TNI時,較佳使用式(i-1-2.3)或式(i-1-2.4)所表示之化合物。為了使在低溫之溶解度良好,將式(i-1-2.3)及式(i-1-2.4)所表示之化合物之含量設為30質量%以上欠佳。
相對於本實施形態之組成物之總量,式(i-1-2.2)所表示之化合物之較佳含量下限值為10質量%、15質量%、18質量%、20質量%、23質量%、25質量%、27質量%、30質量%、33質量%、35質量%、38質量%、40質量%。較佳含量上限值相對於本實施形態之組成物之總量,為60質量%、55質量%、50質量%、45質量%、43質量%、40質量%、38質量%、35質量%、32質量%、30質量%、20質量%、15質量%、10質量%。該等中,就防止對藍色可見光之液晶層劣化的觀點而言,含量之上限值較佳為15質量%,尤佳為10質量%。
相對於本實施形態之組成物之總量,式(i-1-1.3)所表示之化合物及式(i-1-2.2)所表示之化合物之合計之較佳含量下限值為10質量%、15質量%、20質量%、25質量%、27質量%、30質量%、35質量%、40質量%。較佳含量上限值相對於本實施形態之組成物之總量,為60質量%、55質量%、50質量%、45質量%、43質量%、40質量%、38質量%、35質量%、32質量%、30質量%、27質量%、25質量%、22質量%。
通式(i-1)所表示之化合物較佳為選自通式(i-1-3)所表示之化合物群中之化合物。
(式中,Ri13及Ri14分別獨立地表示碳原子數1~8之烷基或碳原子數1~8之烷氧基)
Ri13及Ri14較佳為直鏈狀之碳原子數1~5之烷基、直鏈狀之碳原子數1~4之烷氧基及直鏈狀之碳原子數2~5之烯基。
相對於本實施形態之組成物之總量,式(i-1-3)所表示之化合物之較佳含量下限值為1質量%、5質量%、10質量%、13質量%、15質量%、17質量%、20質量%、23質量%、25質量%、30質量%。較佳含量上限值相對於本實施形態之組成物之總量,為60質量%、55質量%、50質量%、45質量%、40 質量%、37質量%、35質量%、33質量%、30質量%、27質量%、25質量%、23質量%、20質量%、17質量%、15質量%、13質量%、10質量%。進而,通式(i-1-3)所表示之化合物較佳為選自式(i-1-3.1)至式(i-1-3.12)所表示之化合物群中之化合物,較佳為式(i-1-3.1)、式(i-1-3.3)或式(i-1-3.4)所表示之化合物。尤其是式(i-1-3.1)所表示之化合物因尤其改善本實施形態之組成物之響應速度而較佳。另外,於相較於響應速度而要求高TNI時,較佳使用式(i-1-3.3)、式(i-1-3.4)、式(i-1-3.11)及式(i-1-3.12)所表示之化合物。為了使在低溫之溶解度良好,將式(i-1-3.3)、式(i-1-3.4)、式(i-1-3.11)及式(i-1-3.12)所表示之化合物之合計之含量設為20質量%以上欠佳。
通式(i-1)所表示之化合物較佳為選自通式(i-1-4)及/或(i-1-5)所表示之化合物群中之化合物。
(式中,Ri15及Ri16分別獨立地表示碳原子數1~8之烷基或碳原子數1~8之烷氧基)
Ri15及Ri16較佳為直鏈狀之碳原子數1~5之烷基、直鏈狀之碳原子數1~4之烷氧基及直鏈狀之碳原子數2~5之烯基。
相對於本實施形態之組成物之總量,式(i-1-4)所表示之化合物之較佳含量下限值為1質量%、5質量%、10質量%、13質量%、15質量%、17質量%、20質量%。較佳含量上限值相對於本實施形態之組成物之總量,為25質量%、23質量%、20質量%、17質量%、15質量%、13質量%、10質量%。
相對於本實施形態之組成物之總量,式(i-1-5)所表示之化合物之較佳含量下限值為1質量%、5質量%、10質量%、13質量%、15質量%、17質量%、20質量%。較佳含量上限值相對於本實施形態之組成物之總量,為25質量%、23質量%、20質量%、17質量%、15質量%、13質量%、10質量%。
進而,通式(i-1-4)及(i-1-5)所表示之化合物較佳為選自式(i-1-4.1)至式(i-1-5.3)所表示之化合物群中之化合物,較佳為式(i-1-4.2)或式(i-1-5.2)所表示之化合物。
相對於本實施形態之組成物之總量,式(i-1-4.2)所表示之化合物之較佳含量下限值為1質量%、2質量%、3質量%、5質量%、7質量%、10質量%、13質量%、15質量%、18質量%、20質量%。較佳含量上限值相對於 本實施形態之組成物之總量,為20質量%、17質量%、15質量%、13質量%、10質量%、8質量%、7質量%、6質量%。
較佳組合選自式(i-1-1.3)、式(i-1-2.2)、式(i-1-3.1)、式(i-1-3.3)、式(i-1-3.4)、式(i-1-3.11)及式(i-1-3.12)所表示之化合物中之2種以上之化合物,較佳組合選自式(i-1-1.3)、式(i-1-2.2)、式(i-1-3.1)、式(i-1-3.3)、式(i-1-3.4)及式(i-1-4.2)所表示之化合物中之2種以上之化合物,該等化合物之合計含量之較佳含量下限值相對於本實施形態之組成物之總量,為1質量%、2質量%、3質量%、5質量%、7質量%、10質量%、13質量%、15質量%、18質量%、20質量%、23質量%、25質量%、27質量%、30質量%、33質量%、35質量%,上限值相對於本實施形態之組成物之總量,為80質量%、70質量%、60質量%、50質量%、45質量%、40質量%、37質量%、35質量%、33質量%、30質量%、28質量%、25質量%、23質量%、20質量%。於重視組成物之可靠性之情形時,較佳組合選自式(i-1-3.1)、式(i-1-3.3)及式(i-1-3.4))所表示之化合物中之2種以上之化合物,於重視組成物之響應速度之情形時,較佳組合選自式(i-1-1.3)、式(i-1-2.2)所表示之化合物中之2種以上之化合物。
通式(i-1)所表示之化合物較佳為選自通式(i-1-6)所表示之化合物群中之化合物。
(式中,Ri17及Ri18分別獨立地表示甲基或氫原子)
相對於本實施形態之組成物之總量,式(i-1-6)所表示之化合物之較佳含量下限值為1質量%、5質量%、10質量%、15質量%、17質量%、20質量%、23質量%、25質量%、27質量%、30質量%、35質量%。較佳含量上限值相對於本實施形態之組成物之總量,為60質量%、55質量%、50質量%、 45質量%、42質量%、40質量%、38質量%、35質量%、33質量%、30質量%。
進而,通式(i-1-6)所表示之化合物較佳為選自式(i-1-6.1)至式(i-1-6.3)所表示之化合物群中之化合物。
通式(i-2)所表示之化合物為下述之化合物。
(式中,Ri21及Ri22分別獨立地表示與通式(i)中之Ri1及Ri2相同之含義)
Ri21較佳為碳原子數1~5之烷基或碳原子數2~5之烯基,RL22較佳為碳原子數1~5之烷基、碳原子數4~5之烯基或碳原子數1~4之烷氧基。
通式(i-2)所表示之化合物可單獨使用,亦可組合2種以上之化合物而使用。可組合之化合物之種類並無特別限制,根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率等所要求之性能而適當組合使用。所使用之化合物種類,例如作為本實施形態之一實施形態,為1種、2種、3種、4種、5種以上。
於重視在低溫之溶解性之情形時,若將含量設定多一點,則效果高,相反地,於重視響應速度之情形時,若將含量設定少一點,則效果高。進而,於改良滴加痕或殘像特性之情形時,較佳將含量之範圍設定為居中。
相對於本實施形態之組成物之總量,式(i-2)所表示之化合物之較佳含量下限值為1質量%、2質量%、3質量%、5質量%、7質量%、10質量%。較佳含量上限值相對於本實施形態之組成物之總量,為20質量%、15質量%、13質量%、10質量%、8質量%、7質量%、6質量%、5質量%、3質量%。
本實施形態之組成物較佳進而含有1種或2種以上之選自通式 (N-1)、(N-2)、(N-3)及(N-4)所表示之化合物中之化合物。該等化合物相當於介電性為負之化合物(△ε之符號為負,且其絕對值大於2)。
[上述通式(N-1)、(N-2)、(N-3)及(N-4)中,RN11、RN12、RN21、RN22、RN31、RN32、RN41及RN42分別獨立地表示具有碳原子數1~8之烷基、或碳原子數2~8之烷基鏈中之1個或非鄰接之2個以上之-CH2-分別獨立地經-CH=CH-、-C≡C-、-O-、-CO-、-COO-或-OCO-取代之化學結構之結構部位,AN11、AN12、AN21、AN22、AN31、AN32、AN41及AN42分別獨立地表示選自由(a)及(b)、(c)、(d)所組成之群中之基:(a)1,4-伸環己基(存在於該基中之1個-CH2-或未鄰接之2個以上之-CH2-可被取代為-O-)及(b)1,4-伸苯基(存在於該基中之1個-CH=或未鄰接之2個以上之-CH=可被取代為-N=)(c)萘-2,6-二基、1,2,3,4-四氫萘-2,6-二基或十氫萘-2,6-二基 (存在於萘-2,6-二基或1,2,3,4-四氫萘-2,6-二基中之1個-CH=或未鄰接之2個以上之-CH=可被取代為-N=)(d)1,4-伸環己烯基
關於上述基(a)、基(b)、基(c)及基(d),其結構中之氫原子可分別獨立地經氰基、氟原子或氯原子取代,ZN11、ZN12、ZN21、ZN22、ZN31、ZN32、ZN41及ZN42分別獨立地表示單鍵、-CH2CH2-、-(CH2)4-、-OCH2-、-CH2O-、-COO-、-OCO-、-OCF2-、-CF2O-、-CH=N-N=CH-、-CH=CH-、-CF=CF-或-C≡C-,XN21表示氫原子或氟原子,TN31表示-CH2-或氧原子,XN41表示氧原子、氮原子或-CH2-,YN41表示單鍵或-CH2-,nN11、nN12、nN21、nN22、nN31、nN32、nN41及nN42分別獨立地表示0~3之整數,nN11+nN12、nN21+nN22及nN31+nN32分別獨立為1、2或3,於存在多個AN11~AN32、ZN11~ZN32之情形時,該等可相同亦可不同,nN41+nN42表示0~3之整數,於存在多個AN41及AN42、ZN41及ZN42之情形時,該等可相同亦可不同]
通式(N-1)、(N-2)、(N-3)及(N-4)所表示之化合物較佳為△ε為負且其絕對值大於2之化合物。
通式(N-1)、(N-2)、(N-3)及(N-4)中,RN11、RN12、RN21、RN22、RN31、RN32、RN41及RN42分別獨立較佳為碳原子數1~8之烷基、碳原子數1~8之烷氧基、碳原子數2~8之烯基或碳原子數2~8之烯氧基,較佳為碳原子數1~5之烷基、碳原子數1~5之烷氧基、碳原子數2~5之烯基或碳原子數2~5之烯氧基,進而較佳為碳原子數1~5之烷基或碳原子數2~5之烯基,進而較佳為碳原子數2~5之烷基或碳原子數2~3之烯基,尤佳為碳原子數3之烯基(丙烯基)。
另外,於其所鍵結之環結構為苯基(芳香族)之情形時,較佳為直鏈狀之碳原子數1~5之烷基、直鏈狀之碳原子數1~4之烷氧基及碳原子數4~5之烯基,於其所鍵結之環結構為環己烷、吡喃及二烷等飽和之環結構之情形時,較佳為直鏈狀之碳原子數1~5之烷基、直鏈狀之碳原子數1~4之烷氧基及直鏈狀之碳原子數2~5之烯基。為了使向列相穩定化,當存在碳原子及氧原子之情形時的氧原子之合計為5以下,較佳為直鏈狀。
作為烯基,較佳選自式(R1)至式(R5)之任一者所表示之基。(各式中之黑點表示環結構中之碳原子)
於要求增大△n之情形時,AN11、AN12、AN21、AN22、AN31及AN32分別獨立地較佳為芳香族,為了改善響應速度,較佳為脂肪族,較佳表示反式-1,4-伸環己基、1,4-伸苯基、2-氟-1,4-伸苯基、3-氟-1,4-伸苯基、3,5-二氟-1,4-伸苯基、2,3-二氟-1,4-伸苯基、1,4-伸環己烯基、1,4-雙環[2.2.2]伸辛基、哌啶-1,4-二基、萘-2,6-二基、十氫萘-2,6-二基或1,2,3,4-四氫萘-2,6-二基,更佳表示下述之結構,
更佳表示反式-1,4-伸環己基、1,4-伸環己烯基或1,4-伸苯基。
ZN11、ZN12、ZN21、ZN22、ZN31及ZN32分別獨立地較佳表示-CH2O-、-CF2O-、-CH2CH2-、-CF2CF2-或單鍵,進而較佳為-CH2O-、-CH2CH2-或單鍵,尤佳為-CH2O-或單鍵。
XN21較佳為氟原子。
TN31較佳為氧原子。
nN11+nN12、nN21+nN22及nN31+nN32較佳為1或2,較佳為nN11為1且nN12為0之組合、nN11為2且nN12為0之組合、nN11為1且nN12為1之組合、nN11為0且nN12為2之組合、nN21為1且nN22為0之組合、nN21為2且nN22為0之組合、nN31為1且nN32為0之組合、nN31為2且nN32為0之組合。
相對於本實施形態之組成物之總量,式(N-1)所表示之化合物之較佳含量下限值為1質量%、10質量%、20質量%、30質量%、40質量%、50質量%、55質量%、60質量%、65質量%、70質量%、75質量%、80質量%。較佳含量上限值為95質量%、85質量%、75質量%、65質量%、55質量%、45質量%、35質量%、25質量%、20質量%。
相對於本實施形態之組成物之總量,式(N-2)所表示之化合物之較佳含量下限值為1質量%、10質量%、20質量%、30質量%、40質量%、50質量%、55質量%、60質量%、65質量%、70質量%、75質量%、80質量%。較佳含量上限值為95質量%、85質量%、75質量%、65質量%、55質量%、45質量%、35質量%、25質量%、20質量%。
相對於本實施形態之組成物之總量,式(N-3)所表示之化合物之較佳含量下限值為1質量%、10質量%、20質量%、30質量%、40質量%、50質量%、55質量%、60質量%、65質量%、70質量%、75質量%、80質量%。較佳含量上限值為95質量%、85質量%、75質量%、65質量%、55質量%、45質量%、35質量%、25質量%、20質量%。
於將本實施形態之組成物之黏度保持為較低,需要響應速度快之組成物之情形時,較佳為上述下限值低,且上限值低。進而,於將本實施形態之組成物之TNI保持為較高,需要溫度穩定性良好之組成物之情形時,較佳為上述下限值低,且上限值低。另外,於為了將驅動電壓保持為較低而欲增大介電各向導性時,較佳提高上述下限值,且上限值高。
本實施形態之液晶組成物較佳於通式(N-1)所表示之化合物、通式(N-2)所表示之化合物、通式(N-3)所表示之化合物及通式(N-4)所表示之化合物中,具有通式(N-1)所表示之化合物。
作為通式(N-1)所表示之化合物,可列舉下述之通式(N-1a)~(N-1g)所表示之化合物群。
作為通式(N-4)所表示之化合物,可列舉下述之通式(N-1h)所表示之化合物群。
(式中,RN11及RN12表示與通式(N-1)中之RN11及RN12相同之含義,nNa11表示0或1,nNb11表示0或1,nNc11表示0或1,nNd11表示0或1,nNe11表示1或2,nNf11 表示1或2,nNg11表示1或2,ANe11表示反式-1,4-伸環己基或1,4-伸苯基,ANg11表示反式-1,4-伸環己基、1,4-伸環己烯基或1,4-伸苯基,但至少一者表示1,4-伸環己烯基,ZNe11表示單鍵或伸乙基,但至少一者表示伸乙基)
更具體而言,通式(N-1)所表示之化合物較佳為選自通式(N-1-1)~(N-1-21)所表示之化合物群中之化合物。
(p型化合物)
本實施形態之組成物較佳進而含有1種或2種以上之通式(J)所表示之化合物。該等化合物相當於介電性為正之化合物(△ε大於2)。
(式中,RJ1表示碳原子數1~8之烷基,該烷基中之1個或非鄰接之2個以上之-CH2-可分別獨立地被-CH=CH-、-C≡C-、-O-、-CO-、-COO-或-OCO-取代,nJ1表示0、1、2、3或4,AJ1、AJ2及AJ3分別獨立地表示選自由(a)、(b)及(c)所組成之群中之基:(a)1,4-伸環己基(存在於該基中之1個-CH2-或未鄰接之2個以上之-CH2-可被取代為-O-)(b)1,4-伸苯基(存在於該基中之1個-CH=或未鄰接之2個以上之-CH=可被取代為-N=)及(c)萘-2,6-二基、1,2,3,4-四氫萘-2,6-二基或十氫萘-2,6-二基(存在於萘-2,6-二基或1,2,3,4-四氫萘-2,6-二基中之1個-CH=或未鄰接之2個以上之-CH=可被取代為-N=)
上述基(a)、基(b)及基(c)可分別獨立地經氰基、氟原子、氯原子、甲基、三氟甲基或三氟甲氧基取代, ZJ1及ZJ2分別獨立地表示單鍵、-CH2CH2-、-(CH2)4-、-OCH2-、-CH2O-、-OCF2-、-CF2O-、-COO-、-OCO-或-C≡C-,於nJ1為2、3或4而存在多個AJ2之情形時,該等可相同亦可不同,於nJ1為2、3或4而存在多個ZJ1之情形時,該等可相同亦可不同,XJ1表示氫原子、氟原子、氯原子、氰基、三氟甲基、氟甲氧基、二氟甲氧基、三氟甲氧基或2,2,2-三氟乙基)
通式(J)中,RJ1較佳為碳原子數1~8之烷基、碳原子數1~8之烷氧基、碳原子數2~8之烯基或碳原子數2~8之烯氧基,較佳為碳原子數1~5之烷基、碳原子數1~5之烷氧基、碳原子數2~5之烯基或碳原子數2~5之烯氧基,進而較佳為碳原子數1~5之烷基或碳原子數2~5之烯基,進而較佳為碳原子數2~5之烷基或碳原子數2~3之烯基,尤佳為碳原子數3之烯基(丙烯基)。
於重視可靠性之情形時,RJ1較佳為烷基,於重視降低黏性之情形時,較佳為烯基。
另外,於其所鍵結之環結構為苯基(芳香族)之情形時,較佳為直鏈狀之碳原子數1~5之烷基、直鏈狀之碳原子數1~4之烷氧基及碳原子數4~5之烯基,於其所鍵結之環結構為環己烷、吡喃及二烷等飽和之環結構之情形時,較佳為直鏈狀之碳原子數1~5之烷基、直鏈狀之碳原子數1~4之烷氧基及直鏈狀之碳原子數2~5之烯基。為了使向列相穩定化,當存在碳原子及氧原子之情形時的氧原子之合計為5以下,較佳為直鏈狀。
作為烯基,較佳選自式(R1)至式(R5)之任一者所表示之基。(各式中之黑點表示烯基所鍵結之環結構中之碳原子)
於要求增大△n之情形時,AJ1、AJ2及AJ3分別獨立地較佳為芳香 族,為了改善響應速度,較佳為脂肪族,較佳表示反式-1,4-伸環己基、1,4-伸苯基、1,4-伸環己烯基、1,4-雙環[2.2.2]伸辛基、哌啶-1,4-二基、萘-2,6-二基、十氫萘-2,6-二基或1,2,3,4-四氫萘-2,6-二基,該等可經氟原子取代,更佳為表示下述之結構,
更佳為表示下述之結構。
ZJ1及ZJ2分別獨立地較佳表示-CH2O-、-OCH2-、-CF2O-、-CH2CH2-、-CF2CF2-或單鍵,進而較佳為-OCH2-、-CF2O-、-CH2CH2-或單鍵,尤佳為-OCH2-、-CF2O-或單鍵。
XJ1較佳為氟原子或三氟甲氧基,較佳為氟原子。
nJ1較佳為0、1、2或3,較佳為0、1或2,當重點在於改善△ε之情形時,較佳為0或1,於重視TNI之情形時,較佳為1或2。
可組合之化合物之種類並無特別限制,根據在低溫之溶解性、 轉移溫度、電可靠性、雙折射率等所需之性能而組合使用。所使用之化合物種類,例如作為本實施形態之一實施形態,1種、2種、3種。又進而,於本實施形態之另一實施形態中為4種、5種、6種、7種以上。
於本實施形態之組成物中,通式(J)所表示之化合物之含量需根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率、製程相容性、滴加痕、殘像、介電各向導性等所要求之性能進行適當調整。
相對於本實施形態之組成物之總量,通式(J)所表示之化合物之較佳含量下限值為1質量%、10質量%、20質量%、30質量%、40質量%、50質量%、55質量%、60質量%、65質量%、70質量%、75質量%、80質量%。較佳含量上限值相對於本實施形態之組成物之總量,例如於本實施形態之一形態中為95質量%、85質量%、75質量%、65質量%、55質量%、45質量%、35質量%、25質量%。
於將本實施形態之組成物之黏度保持為較低,需要響應速度快之組成物之情形時,較佳使上述下限值低一點,且使上限值低一點。進而,於將本實施形態之組成物之TNI保持為較高,需要溫度穩定性良好之組成物之情形時,較佳上述下限值低一點,且使上限值低一點。另外,於為了將驅動電壓保持為較低而欲增大介電各向導性時,較佳使上述下限值高一點,且使上限值高一點。
於重視可靠性之情形時,RJ1較佳為烷基,於重視降低黏性之情形時,較佳為烯基。
作為通式(J)所表示之化合物,較佳為通式(M)所表示之化合物及通式(K)所表示之化合物。
本實施形態之組成物較佳進而含有1種或2種以上之通式(M)所表示之化合物。該等化合物相當於介電性為正之化合物(△ε大於2)。
(式中,RM1表示碳原子數1~8之烷基,該烷基中之1個或非鄰接之2個以上之-CH2-可分別獨立地被-CH=CH-、-C≡C-、-O-、-CO-、-COO-或-OCO-取代,nM1表示0、1、2、3或4,AM1及AM2分別獨立地表示選自由(a)及(b)所組成之群中之基:(a)1,4-伸環己基(存在於該基中之1個-CH2-或未鄰接之2個以上之-CH2-可被取代為-O-或-S-)及(b)1,4-伸苯基(存在於該基中之1個-CH=或未鄰接之2個以上之-CH=可被取代為-N=)
上述之基(a)及基(b)上之氫原子可分別獨立地經氰基、氟原子或氯原子取代,ZM1及ZM2分別獨立地表示單鍵、-CH2CH2-、-(CH2)4-、-OCH2-、-CH2O-、-OCF2-、-CF2O-、-COO-、-OCO-或-C≡C-,於nM1為2、3或4而存在多個AM2之情形時,該等可相同亦可不同,於nM1為2、3或4而存在多個ZM1之情形時,該等可相同亦可不同,XM1及XM3分別獨立地表示氫原子、氯原子或氟原子,XM2表示氫原子、氟原子、氯原子、氰基、三氟甲基、氟甲氧基、二氟甲氧基、三氟甲氧基或2,2,2-三氟乙基。
通式(M)中,RM1較佳為碳原子數1~8之烷基、碳原子數1~8之烷氧基、碳原子數2~8之烯基或碳原子數2~8之烯氧基,較佳為碳原子數1~5之烷基、碳原子數1~5之烷氧基、碳原子數2~5之烯基或碳原子數2~5之烯氧基,進而較佳為碳原子數1~5之烷基或碳原子數2~5之烯基,進而較佳為 碳原子數2~5之烷基或碳原子數2~3之烯基,尤佳為碳原子數3之烯基(丙烯基)。
於重視可靠性之情形時,RM1較佳為烷基,於重視降低黏性之情形時,較佳為烯基。
另外,於其所鍵結之環結構為苯基(芳香族)之情形時,較佳為直鏈狀之碳原子數1~5之烷基、直鏈狀之碳原子數1~4之烷氧基及碳原子數4~5之烯基,於其所鍵結之環結構為環己烷、吡喃及二烷等飽和之環結構之情形時,較佳為直鏈狀之碳原子數1~5之烷基、直鏈狀之碳原子數1~4之烷氧基及直鏈狀之碳原子數2~5之烯基。為了使向列相穩定化,當存在碳原子及氧原子之情形時的氧原子之合計為5以下,較佳為直鏈狀。
作為烯基,較佳選自式(R1)至式(R5)之任一者所表示之基。(各式中之黑點表示烯基所鍵結之環結構中之碳原子)
於要求增大△n之情形時,AM1及AM2分別獨立地較佳為芳香族,為了改善響應速度,較佳為脂肪族,較佳表示反式-1,4-伸環己基、1,4-伸苯基、2-氟-1,4-伸苯基、3-氟-1,4-伸苯基、3,5-二氟-1,4-伸苯基、2,3-二氟-1,4-伸苯基、1,4-伸環己烯基、1,4-雙環[2.2.2]伸辛基、哌啶-1,4-二基、萘-2,6-二基、十氫萘-2,6-二基或1,2,3,4-四氫萘-2,6-二基,更佳表示下述之結構,
更佳表示下述之結構。
ZM1及ZM2分別獨立地較佳表示-CH2O-、-CF2O-、-CH2CH2-、-CF2CF2-或單鍵,進而較佳為-CF2O-、-CH2CH2-或單鍵,尤佳為-CF2O-或單鍵。
nM1較佳為0、1、2或3,較佳為0、1或2,當重點在於改善△ε之情形時,較佳為0或1,於重視TNI之情形時,較佳為1或2。
可組合之化合物之種類並無特別限制,根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率等所需之性能而組合使用。所使用之化合物種類,例如作為本實施形態之一實施形態,為1種、2種、3種。又進而,於本實施形態之另一實施形態中為4種、5種、6種、7種以上。
於本實施形態之組成物中,通式(M)所表示之化合物之含量需根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率、製程相容性、滴加痕、殘像、介電各向導性等所要求之性能進行適當調整。
相對於本實施形態之組成物之總量,式(M)所表示之化合物之較佳含量下限值為1質量%、10質量%、20質量%、30質量%、40質量%、50質量%、55質量%、60質量%、65質量%、70質量%、75質量%、80質量%。較佳含量上限值相對於本實施形態之組成物之總量,例如於本實施形態之一形態中為95質量%、85質量%、75質量%、65質量%、55質量%、45質量%、35質量%、25質量%。
於將本實施形態之組成物之黏度保持為較低,需要響應速度快之組成物之情形時,較佳使上述下限值低一點,且使上限值低一點。進而,於 將本實施形態之組成物之TNI保持為較高,需要溫度穩定性良好之組成物之情形時,較佳使上述下限值低一點,且使上限值低一點。另外,於為了將驅動電壓保持為較低而欲增大介電各向導性時,較佳使上述下限值高一點,且使上限值高一點。
本實施形態之液晶組成物較佳進而含有1種或2種以上之通式(L)所表示之化合物。通式(L)所表示之化合物相當於介電性大致為中性之化合物(△ε之值為-2~2)。
(式中,RL1及RL2分別獨立地表示碳原子數1~8之烷基,該烷基中之1個或非鄰接之2個以上之-CH2-可分別獨立地被-CH=CH-、-C≡C-、-O-、-CO-、-COO-或-OCO-取代,nL1表示0、1、2或3,AL1、AL2及AL3分別獨立地表示選自由(a)、(b)、(c)所組成之群中之基:(a)1,4-伸環己基(存在於該基中之1個-CH2-或未鄰接之2個以上之-CH2-可被取代為-O-)及(b)1,4-伸苯基(存在於該基中之1個-CH=或未鄰接之2個以上之-CH=可被取代為-N=)(c)萘-2,6-二基、1,2,3,4-四氫萘-2,6-二基或十氫萘-2,6-二基(存在於萘-2,6-二基或1,2,3,4-四氫萘-2,6-二基中之1個-CH=或未鄰接之2個以上之-CH=可被取代為-N=)
上述基(a)、基(b)及基(c)可分別獨立地經氰基、氟原子或氯原子取代,ZL1及ZL2分別獨立地表示單鍵、-CH2CH2-、-(CH2)4-、-OCH2-、- CH2O-、-COO-、-OCO-、-OCF2-、-CF2O-、-CH=N-N=CH-、-CH=CH-、-CF=CF-或-C≡C-,於nL1為2或3而存在多個AL2之情形時,該等可相同亦可不同,於nL1為2或3而存在多個ZL2之情形時,該等可相同亦可不同,但通式(N-1)、(N-2)、(N-3)、(J)及(i)所表示之化合物除外)
通式(L)所表示之化合物可單獨使用,亦可組合使用。可組合之化合物之種類並無特別限制,根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率等所需之性能而適當組合使用。所使用之化合物種類,例如作為本實施形態之一實施形態,為1種。或於本實施形態之另一實施形態中為2種、3種、4種、5種、6種、7種、8種、9種、10種以上。
於本實施形態之組成物中,通式(L)所表示之化合物之含量需根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率、製程相容性、滴加痕、殘像、介電各向導性等所要求之性能進行適當調整。
相對於本實施形態之組成物之總量,式(L)所表示之化合物之較佳含量下限值為1質量%、10質量%、20質量%、30質量%、40質量%、50質量%、55質量%、60質量%、65質量%、70質量%、75質量%、80質量%。較佳含量上限值為95質量%、85質量%、75質量%、65質量%、55質量%、45質量%、35質量%、25質量%。
於將本實施形態之組成物之黏度保持為較低,需要響應速度快之組成物之情形時,較佳為上述下限值高,且上限值高。進而,於將本實施形態之組成物之TNI保持為較高,需要溫度穩定性良好之組成物之情形時,較佳為上述下限值高,且上限值高。另外,於為了將驅動電壓保持為較低而欲增大介電各向導性時,較佳降低上述下限值,且上限值低。
於重視可靠性之情形時,較佳為RL1及RL2均為烷基,於重視降 低化合物之揮發性之情形時,較佳為烷氧基,於重視降低黏性之情形時,較佳為至少一者為烯基。
分子內所存在之鹵素原子較佳為0、1、2或3個,較佳為0或1個,於重視與其他液晶分子之相容性之情形時,較佳為1個。
RL1及RL2於其所鍵結之環結構為苯基(芳香族)之情形時,較佳為直鏈狀之碳原子數1~5之烷基、直鏈狀之碳原子數1~4之烷氧基及碳原子數4~5之烯基,於其所鍵結之環結構為環己烷、吡喃及二烷等飽和之環結構之情形時,較佳為直鏈狀之碳原子數1~5之烷基、直鏈狀之碳原子數1~4之烷氧基及直鏈狀之碳原子數2~5之烯基。為了使向列相穩定化,當存在碳原子及氧原子之情形時的氧原子之合計為5以下,較佳為直鏈狀。
作為烯基,較佳選自式(R1)至式(R5)之任一者所表示之基。(各式中之黑點表示環結構中之碳原子)
於重視響應速度之情形時,nL1較佳為0,為了改善向列相之上限溫度,較佳為2或3,為了取得該等之平衡,較佳為1。另外,為了滿足作為組成物所要求之特性,較佳組合不同之值之化合物。
於要求增大△n之情形時,AL1、AL2及AL3較佳為芳香族,為了改善響應速度,較佳為脂肪族,分別獨立地較佳表示反式-1,4-伸環己基、1,4-伸苯基、2-氟-1,4-伸苯基、3-氟-1,4-伸苯基、3,5-二氟-1,4-伸苯基、1,4-伸環己烯基、1,4-雙環[2.2.2]伸辛基、哌啶-1,4-二基、萘-2,6-二基、十氫萘-2,6-二基或1,2,3,4-四氫萘-2,6-二基,更佳表示下述之結構,
更佳表示反式-1,4-伸環己基或1,4-伸苯基。
於重視響應速度之情形時,ZL1及ZL2較佳為單鍵。
通式(L)所表示之化合物較佳為分子內之鹵素原子數為0個或1個。
通式(L)所表示之化合物較佳為選自式(L-3)~(L-8)所表示之化合物群中之化合物。
通式(L-3)所表示之化合物為下述之化合物。
(式中,RL31及RL32分別獨立地表示與通式(L)中之RL1及RL2相同之含義)
RL31及RL32分別獨立地較佳為碳原子數1~5之烷基、碳原子數4~5之烯基或碳原子數1~4之烷氧基。
通式(L-3)所表示之化合物可單獨使用,亦可組合2種以上之化合物而使用。可組合之化合物之種類並無特別限制,根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率等所要求之性能而適當組合使用。所使用之化合物種類,例如作為本實施形態之一實施形態,為1種、2種、3種、4種、5種以上。
相對於本實施形態之組成物之總量,式(L-3)所表示之化合物之較佳含量下限值為1質量%、2質量%、3質量%、5質量%、7質量%、10質量%。較佳含量上限值相對於本實施形態之組成物之總量,為20質量%、15質量%、13質量%、10質量%、8質量%、7質量%、6質量%、5質量%、3質量%。
通式(L-4)所表示之化合物為下述之化合物。
(式中,RL41及RL42分別獨立地表示與通式(L)中之RL1及RL2相同之含義)
RL41較佳為碳原子數1~5之烷基或碳原子數2~5之烯基,RL42較佳為碳原子數1~5之烷基、碳原子數4~5之烯基或碳原子數1~4之烷氧基。
通式(L-4)所表示之化合物可單獨使用,亦可組合2種以上之化合物而使用。可組合之化合物之種類並無特別限制,根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率等所要求之性能而適當組合使用。所使用之化合物種類,例如作為本實施形態之一實施形態,為1種、2種、3種、4種、5種以上。
於本實施形態之組成物中,通式(L-4)所表示之化合物之含量需根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率、製程相容性、滴加痕、殘像、介電各向導性等所要求之性能進行適當調整。
相對於本實施形態之組成物之總量,式(L-4)所表示之化合物之較佳含量下限值為1質量%、2質量%、3質量%、5質量%、7質量%、10質量%、14質量%、16質量%、20質量%、23質量%、26質量%、30質量%、35質量%、40質量%。相對於本實施形態之組成物之總量,式(L-4)所表示之化合物之較佳含量上限值為50質量%、40質量%、35質量%、30質量%、20質量%、15質量%、10質量%、5質量%。
通式(L-5)所表示之化合物為下述之化合物。
(式中,RL51及RL52分別獨立地表示與通式(L)中之RL1及RL2相同之含義)
RL51較佳為碳原子數1~5之烷基或碳原子數2~5之烯基,RL52較 佳為碳原子數1~5之烷基、碳原子數4~5之烯基或碳原子數1~4之烷氧基。
通式(L-5)所表示之化合物可單獨使用,亦可組合2種以上之化合物而使用。可組合之化合物之種類並無特別限制,根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率等所要求之性能而適當組合使用。所使用之化合物種類,例如作為本實施形態之一實施形態,為1種、2種、3種、4種、5種以上。
於本實施形態之組成物中,通式(L-5)所表示之化合物之含量需根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率、製程相容性、滴加痕、殘像、介電各向導性等所要求之性能進行適當調整。
相對於本實施形態之組成物之總量,式(L-5)所表示之化合物之較佳含量下限值為1質量%、2質量%、3質量%、5質量%、7質量%、10質量%、14質量%、16質量%、20質量%、23質量%、26質量%、30質量%、35質量%、40質量%。相對於本實施形態之組成物之總量,式(L-5)所表示之化合物之較佳含量上限值為50質量%、40質量%、35質量%、30質量%、20質量%、15質量%、10質量%、5質量%。
通式(L-6)所表示之化合物為下述之化合物。
(式中,RL61及RL62分別獨立地表示與通式(L)中之RL1及RL2相同之含義,XL61及XL62分別獨立地表示氫原子或氟原子)
RL61及RL62分別獨立地較佳為碳原子數1~5之烷基或碳原子數2~5之烯基,較佳為XL61及XL62中之一者為氟原子而另一者為氫原子。
通式(L-6)所表示之化合物可單獨使用,亦可組合2種以上之化合物而使用。可組合之化合物之種類並無特別限制,根據在低溫之溶解 性、轉移溫度、電可靠性、雙折射率等所要求之性能而適當組合使用。所使用之化合物種類,例如作為本實施形態之一實施形態,為1種、2種、3種、4種、5種以上。
相對於本實施形態之組成物之總量,式(L-6)所表示之化合物之較佳含量下限值為1質量%、2質量%、3質量%、5質量%、7質量%、10質量%、14質量%、16質量%、20質量%、23質量%、26質量%、30質量%、35質量%、40質量%。相對於本實施形態之組成物之總量,式(L-6)所表示之化合物之較佳含量上限值為50質量%、40質量%、35質量%、30質量%、20質量%、15質量%、10質量%、5質量%。當重點在於增大△n之情形時,較佳為增多含量,當重點在於低溫下之析出之情形時,較佳為含量少。
通式(L-7)所表示之化合物為下述之化合物。
(式中,RL71及RL72分別獨立地表示與通式(L)中之RL1及RL2相同之含義,AL71及AL72分別獨立地表示與通式(L)中之AL2及AL3相同之含義,AL71及AL72上之氫原子可分別獨立地被氟原子取代,ZL71表示與通式(L)中之ZL2相同之含義,XL71及XL72分別獨立地表示氟原子或氫原子)
式中,RL71及RL72分別獨立地較佳為碳原子數1~5之烷基、碳原子數2~5之烯基或碳原子數1~4之烷氧基,AL71及AL72分別獨立地較佳為1,4-伸環己基或1,4-伸苯基,AL71及AL72上之氫原子可分別獨立地被氟原子取代,ZL71較佳為單鍵或COO-,較佳為單鍵,XL71及XL72較佳為氫原子。
可組合之化合物之種類並無特別限制,根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率等所要求之性能進行組合。所使用之化合物種類,例如作為本實施形態之一實施形態,為1種、2種、3種、4種。
於本實施形態之組成物中,通式(L-7)所表示之化合物之含量需根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率、製程相容性、滴加痕、殘像、介電各向導性等所要求之性能進行適當調整。
相對於本實施形態之組成物之總量,式(L-7)所表示之化合物之較佳含量下限值為1質量%、2質量%、3質量%、5質量%、7質量%、10質量%、14質量%、16質量%、20質量%。相對於本實施形態之組成物之總量,式(L-7)所表示之化合物之較佳含量上限值為30質量%、25質量%、23質量%、20質量%、18質量%、15質量%、10質量%、5質量%。
於期待本實施形態之組成物為高TNI之實施形態之情形時,較佳使式(L-7)所表示之化合物之含量多一點,於期待低黏度之實施形態之情形時,較佳使含量少一點。
通式(L-8)所表示之化合物為下述之化合物。
(式中,RL81及RL82分別獨立地表示與通式(L)中之RL1及RL2相同之含義,AL81表示與通式(L)中之AL1相同之含義或單鍵,AL81上之氫原子可分別獨立地被氟原子取代,XL81~XL86分別獨立地表示氟原子或氫原子)
式中,RL81及RL82分別獨立地較佳為碳原子數1~5之烷基、碳原子數2~5之烯基或碳原子數1~4之烷氧基,AL81較佳為1,4-伸環己基或1,4-伸苯基,AL71及AL72上之氫原子可分別獨立地被氟原子取代,於通式(L-8)中之同一環結構上,氟原子較佳為0個或1個,於分子內,氟原子較佳為0個或1個。
可組合之化合物之種類並無特別限制,根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率等所要求之性能進行組合。所使用之化合物種 類,例如作為本實施形態之一實施形態,為1種、2種、3種、4種。
於本實施形態之組成物中,通式(L-8)所表示之化合物之含量需根據在低溫之溶解性、轉移溫度、電可靠性、雙折射率、製程相容性、滴加痕、殘像、介電各向導性等所要求之性能進行適當調整。
相對於本實施形態之組成物之總量,式(L-8)所表示之化合物之較佳含量下限值為1質量%、2質量%、3質量%、5質量%、7質量%、10質量%、14質量%、16質量%、20質量%。相對於本實施形態之組成物之總量,式(L-8)所表示之化合物之較佳含量上限值為30質量%、25質量%、23質量%、20質量%、18質量%、15質量%、10質量%、5質量%。
於期待本實施形態之組成物為高TNI之實施形態之情形時,較佳使式(L-8)所表示之化合物之含量多一點,於期待低黏度之實施形態之情形時,較佳使含量少一點。
相對於本實施形態之組成物之總量,通式(i)、通式(L)、(N-1)、(N-2)、(N-3)及(J)所表示之化合物之合計之較佳含量下限值為80質量%、85質量%、88質量%、90質量%、92質量%、93質量%、94質量%、95質量%、96質量%、97質量%、98質量%、99質量%、100質量%。較佳含量上限值為100質量%、99質量%、98質量%、95質量%。但就獲得△ε之絕對值大之組成物之觀點而言,較佳為通式(N-1)、(N-2)、(N-3)或(J)所表示之化合物之任一者為0質量%。
本實施形態之組成物較佳不含分子內具有過酸(-CO-OO-)結構等氧原子彼此鍵結之結構之化合物。
於重視組成物之可靠性及長期穩定性之情形時,較佳相對於上述組成物之總質量而將具有羰基之化合物之含量設為5質量%以下,更佳設為3質量%以下,進而較佳設為1質量%以下,最佳為實質上不含有。
於重視UV照射下之穩定性之情形時,較佳相對於上述組成物之總質量而將取代有氯原子之化合物之含量設為15質量%以下,較佳設為10質量%以下,較佳設為8質量%以下,更佳設為5質量%以下,較佳設為3質量%以下,進而較佳為實質上不含有。
較佳為增多分子內之環結構全部為6員環之化合物之含量,較佳相對於上述組成物之總質量而將分子內之環結構全部為6員環之化合物之含量設為80質量%以上,更佳設為90質量%以上,進而較佳設為95質量%以上,最佳為實質上僅由分子內之環結構全部為6員環之化合物構成組成物。
為了抑制由組成物之氧化引起之劣化,較佳減少具有伸環己烯基作為環結構之化合物之含量,較佳相對於上述組成物之總質量而將具有伸環己烯基之化合物之含量設為10質量%以下,較佳設為8質量%以下,更佳設為5質量%以下,較佳設為3質量%以下,進而較佳為實質上不含有。
於重視黏度之改善及TNI之改善之情形時,較佳減少分子內具有氫原子可被取代為鹵素之2-甲基苯-1,4-二基之化合物之含量,較佳相對於上述組成物之總質量而將分子內具有上述2-甲基苯-1,4-二基之化合物之含量設為10質量%以下,較佳設為8質量%以下,更佳設為5質量%以下,較佳設為3質量%以下,進而較佳為實質上不含有。
於本案中,所謂實質上不含有,意指除了不刻意含有者以外不含有。
於本實施形態之第一實施形態之組成物所含之化合物具有烯基作為側鏈之情形時,於上述烯基鍵結於環己烷之情形時,該烯基之碳原子數較佳為2~5,於上述烯基鍵結於苯之情形時,該烯基之碳原子數較佳為4~5,較佳為上述烯基之不飽和鍵與苯不直接鍵結。
為了製作PS模式、橫向電場型PSA模式或橫向電場型PSVA模式 等液晶顯示元件,可使本實施形態之組成物含有聚合性化合物。作為可使用之聚合性化合物,可舉藉由光等能量射線進行聚合之光聚合性單體等,作為結構,例如可列舉聯苯衍生物、聯三苯衍生物等具有連結多個六員環之液晶骨架的聚合性化合物等。進一步具體而言,較佳為通式(XX)所表示之二官能單體,
(式中,X201及X202分別獨立地表示氫原子或甲基,Sp201及Sp202分別獨立地較佳為單鍵、碳原子數1~8之伸烷基或-O-(CH2)s-(式中,s表示2至7之整數,氧原子係鍵結於芳香環),Z201表示-OCH2-、-CH2O-、-COO-、-OCO-、-CF2O-、-OCF2-、-CH2CH2-、-CF2CF2-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CH2CH2-、-OCO-CH2CH2-、-CH2CH2-COO-、-CH2CH2-OCO-、-COO-CH2-、-OCO-CH2-、-CH2-COO-、-CH2-OCO-、-CY1=CY2-(式中,Y1及Y2分別獨立地表示氟原子或氫原子)、-C≡C-或單鍵,L201及L202分別獨立為氟原子、碳原子數1~8之烷基或碳原子數1~8之烷氧基,M201表示1,4-伸苯基、反式-1,4-伸環己基或單鍵,式中之全部1,4-伸苯基中任意氫原子可被氟原子、碳原子數1~8之烷基或碳原子數1~8之烷氧基取代,n201及n202分別獨立為0~4之整數)。
較佳為X201及X202均表示氫原子之二丙烯酸酯衍生物、均具有甲基之二甲基丙烯酸酯衍生物的任一者,亦較佳為「一者表示氫原子,另一者表示甲基」之化合物。關於該等化合物之聚合速度,二丙烯酸酯衍生物最快,二 甲基丙烯酸酯衍生物較慢,非對稱化合物則位於其中間,可根據其用途使用較佳之態樣。於PSA顯示元件中,尤佳為二甲基丙烯酸酯衍生物。
Sp201及Sp202分別獨立地表示單鍵、碳原子數1~8之伸烷基或-O-(CH2)s-,於PSA顯示元件中,較佳為至少一者為單鍵,較佳為均表示單鍵之化合物或一者為單鍵且另一者表示碳原子數1~8之伸烷基或-O-(CH2)s-之態樣。於該情形時,較佳為1~4之烷基,s較佳為1~4。
Z201較佳為-OCH2-、-CH2O-、-COO-、-OCO-、-CF2O-、-OCF2-、-CH2CH2-、-CF2CF2-或單鍵,更佳為-COO-、-OCO-或單鍵,尤佳為單鍵。
M201表示任意氫原子可經氟原子取代之1,4-伸苯基、反式-1,4-伸環己基或單鍵,較佳為1,4-伸苯基或單鍵。於M201表示單鍵以外之環結構之情形時,Z201亦較佳為單鍵以外之連結基,於M201為單鍵之情形時,Z201較佳為單鍵。
就該等方面而言,於通式(XX)中,Sp201及Sp202之間之環結構具體而言較佳為如下所記載之結構。
於通式(XX)中,於M201表示單鍵,環結構由兩個環形成之情形時,較佳表示如下之式(XXa-1)至式(XXa-5),更佳表示式(XXa-1)至式(XXa-3),尤佳為表示式(XXa-1)。
(式中,兩端係鍵結於Sp201或Sp202)
含有該等骨架之聚合性化合物於聚合後之配向限制力最適於PSA型液晶顯示元件,可獲得良好之配向狀態,因此可抑制顯示不均,或完全不產生顯示不均。
就以上內容而言,作為聚合性單體,尤佳為通式(XX-1)~通式(XX-4),其中最佳為通式(XX-2)。
(式中,苯可經氟原子取代,Sp20表示碳原子數2至5之伸烷基)
於本實施形態之組成物含有聚合性化合物的情形時之含量較佳 為0.01質量%~5質量%,較佳為0.05質量%~3質量%,較佳為0.1質量%~2質量%。
於向本實施形態之組成物添加單體之情形時,雖然於即便不存在聚合起始劑之情形時聚合亦會進行,但為了促進聚合,亦可含有聚合起始劑。作為聚合起始劑,可列舉:安息香醚類、二苯甲酮類、苯乙酮類、二苯乙二酮縮酮(benzil ketal)類、醯基氧化膦類等。
本實施形態之液晶顯示元件如上所述,可為具有配向層4、6者,就容易製造液晶顯示元件之方面而言,較佳為在不設置配向層下,使構成本實施形態之液晶層的液晶組成物中含有自發配向劑,於無配向膜之情況下使液晶自立,或使用溶劑可溶型之配向型聚醯亞胺將其配向,或者藉由光配向膜尤其是非聚醯亞胺系之光配向膜將液晶配向。
本實施形態之液晶組成物較佳含有自發配向劑。該自發配向劑可控制構成液晶層之液晶組成物所含的液晶分子之配向方向。認為可藉由使自發配向劑之成分集聚於液晶層之界面或吸附於該界面,而控制液晶分子之配向方向。藉此,於液晶組成物中含有自發配向劑之情形時,可省去液晶面板之配向層。
本實施形態之液晶組成物中之自發配向劑的含量較佳於液晶組成物之整體中含有0.1~10質量%。另外,本實施形態之液晶組成物中之自發配向劑可與上述聚合性化合物併用。
作為該自發配向劑,較佳為以下之通式(al-1)及/或通式(al-2)。
(式中,Ral1、Ral2、Zal1、Zal2、Lal1、Lal2、Lal3、Spal1、Spal2、Spal3、Xal1、Xal2、Xal3、mal1、mal2、mal3、nal1、nal2、nal3、pal1及pal2分別互相獨立,Ral1表示氫原子、鹵素、具有1~20個碳原子之直鏈狀、支鏈狀或環狀烷基,此處,於該烷基中,1個或2個以上之未鄰接之CH2基可以O及/或S原子互相不直接鍵結之方式被-O-、-S-、-CO-、-CO-O-、-O-CO-、-O-CO-O-取代,進而,1個或2個以上之氫原子可經F或Cl取代,Ral2表示具有以下之任一部分結構之基,
Spal1、Spal2及Spal3分別互相獨立地表示碳原子數1~12個之烷基或單鍵,Xal1、Xal2及Xal3分別互相獨立地表示烷基、丙烯酸基、甲基丙烯酸基或乙烯基,Zal1表示-O-、-S-、-CO-、-CO-O-、-OCO-、-O-CO-O-、-OCH2-、-CH2O-、-SCH2-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-SCF2-、-(CH2)n al-、-CF2CH2-、-CH2CF2-、-(CF2)n al-、-CH=CH-、-CF=CF-、-C≡C-、-CH=CH-COO-、-OCO-CH=CH-、-(CRal3Ral4)n al-、-CH(-Spal1-Xal1)-、-CH2CH(-Spal1-Xal1)-、-CH(-Spal1-Xal1)CH(-Spal1-Xal1)-,Zal2分別互相獨立地表示單鍵、-O-、-S-、-CO-、-CO-O-、-OCO-、-O-CO-O-、-OCH2-、-CH2O-、-SCH2-、-CH2S-、-CF2O-、-OCF2-、-CF2S-、-SCF2-、-(CH2)n1-、-CF2CH2-、-CH2CF2-、-(CF2)n al-、-CH=CH-、-CF=CF-、-C≡C-、-CH=CH- COO-、-OCO-CH=CH-、-(CRal3Ral4)na1-、-CH(-Spal1-Xal1)-、-CH2CH(-Spal1-Xal1)-、-CH(-Spal1-Xal1)CH(-Spal1-Xal1)-,Lal1、Lal2、Lal3分別互相獨立地表示氫原子、氟原子、氯原子、溴原子、碘原子、-CN、-NO2、-NCO、-NCS、-OCN、-SCN、-C(=O)N(Ral3)2、-C(=O)Ral3、具有3~15個碳原子之經任意地取代之矽基、經任意地取代之芳基或環烷基,此處,1個或2個以上之氫原子可經鹵素原子(氟原子、氯原子)取代,上述Ral3表示具有1~12個碳原子之烷基,上述Ral4表示氫原子或具有1~12個碳原子之烷基,上述nal表示1~4之整數,pal1及pal2分別互相獨立地表示0或1,mal1、mal2及mal3分別互相獨立地表示0~3之整數,nal1、nal2及nal3分別互相獨立地表示0~3之整數)
(式中,Zi1及Zi2分別獨立地表示單鍵、-CH=CH-、-CF=CF-、-C≡C-、-COO-、-OCO-、-OCOO-、-OOCO-、-CF2O-、-OCF2-、-CH=CHCOO-、-OCOCH=CH-、-CH2-CH2COO-、-OCOCH2-CH2-、-CH=C(CH3)COO-、-OCOC(CH3)=CH-、-CH2-CH(CH3)COO-、-OCOCH(CH3)-CH2-、-OCH2CH2O-、或碳原子數2~20之伸烷基,該伸烷基中之1個或不鄰接之2個以上之-CH2-可被-O-、-COO-或-OCO-取代,但於Ki1為(K-11)之情形時,於液晶原基至少含有-CH2-CH2COO-、-OCOCH2-CH2-、-CH=C(CH3)COO-、-OCOC(CH3)=CH-、-CH2-CH(CH3)COO-、-OCOCH(CH3)-CH2-、-OCH2CH2O-之任一者,Aal21及Aal22分別獨立地表示二價之6員環芳香族基或二價之6員環脂肪族 基,二價之未經取代之6員環芳香族基、二價之未經取代之6員環脂肪族基或該等之環結構中之氫原子較佳為未經取代或經碳原子數1~6之烷基、碳原子數1~6之烷氧基、鹵素原子取代,較佳為二價之未經取代之6員環芳香族基或其環結構中之氫原子經氟原子取代之基、或者二價之未經取代之6員環脂肪族基,較佳為取代基上之氫原子可經鹵素原子、烷基或烷氧基取代之1,4-伸苯基、2,6-萘基或1,4-環己基,但至少一取代基經Pi1-Spi1-取代,於分別存在多個Zi1、Aal21及Aal22之情形時,可分別互相相同,亦可互不相同,Spi1較佳表示碳原子數1~18之直鏈狀伸烷基或單鍵,更佳表示碳原子數2~15之直鏈狀伸烷基或單鍵,進而較佳表示碳原子數3~12之直鏈狀伸烷基或單鍵,Ral21表示氫原子、碳原子數1~20之直鏈或支鏈之烷基、鹵化烷基或Pi1-Spi1-,該烷基中之-CH2-較佳為-O-、-OCO-、或-COO-(其中-O-並不連續),更佳表示氫原子、碳原子數1~18之直鏈或支鏈之烷基或Pi1-Spi1-,該烷基中之-CH2-表示-O-、-OCO-(其中-O-並不連續)。
Ki1表示以下之通式(K-1)~通式(K-11)所表示之取代基,
Pi1表示聚合性基,表示選自以下之通式(P-1)~通式(P-15)所表示之群中之取代基(式中,右端之黑點表示鍵結鍵),
於分別存在多個Zi1、Zi2、Aal21、miii1及/或Aal22之情形時,可分別互相相同,亦可互不相同,其中,Ai1及Ai2之任一者經至少一個Pi1-Spi1-取代,於Ki1為(K-11)之情形時,Zii1至少包含有-CH2-CH2COO-、-OCOCH2-CH2-、-CH2-CH(CH3)COO-、-OCOCH(CH3)-CH2-、-OCH2CH2O-之任一者, miii1表示1~5之整數,miii2表示1~5之整數,Gi1表示二價、三價、四價之任一價之支鏈結構或者二價、三價、四價之任一價之脂肪族或芳香族之環結構,miii3表示較Gi1之價數小1之整數)
除此以外,作為省去液晶面板之配向層之手段,可列舉於將含有聚合性化合物之液晶組成物填充於第1基板及第2基板間時,以Tni以上之狀態填充該液晶組成物,對含有聚合性化合物之液晶組成物進行UV照射而使聚合性化合物硬化之方法等。
本實施形態中之組成物可進而含有通式(Q)所表示之化合物。
(式中,RQ表示碳原子數1至22之直鏈烷基或支鏈烷基,該烷基中之1個或2個以上之CH2基可以氧原子不直接鄰接之方式被-O-、-CH=CH-、-CO-、-OCO-、-COO-、-C≡C-、-CF2O-、-OCF2-取代,MQ表示反式-1,4-伸環己基、1,4-伸苯基或單鍵)
RQ表示碳原子數1至22之直鏈烷基或支鏈烷基,該烷基中之1個或2個以上之CH2基可以氧原子不直接鄰接之方式被-O-、-CH=CH-、-CO-、-OCO-、-COO-、-C≡C-、-CF2O-、-OCF2-取代,較佳為碳原子數1至10之直鏈烷基、直鏈烷氧基、1個CH2基被取代為-OCO-或-COO-之直鏈烷基、支鏈烷基、支鏈烷氧基、1個CH2基被取代為-OCO-或-COO-之支鏈烷基,進而較佳為碳原子數1至20之直鏈烷基、1個CH2基被取代為-OCO-或-COO-之直鏈烷基、支鏈烷基、支鏈烷氧基、1個CH2基被取代為- OCO-或-COO-之支鏈烷基。MQ表示反式-1,4-伸環己基、1,4-伸苯基或單鍵,較佳為反式-1,4-伸環己基或1,4-伸苯基。
更具體而言,通式(Q)所表示之化合物較佳為下述之通式(Q-a)至通式(Q-d)所表示之化合物。
式中,RQ1較佳為碳原子數1至10之直鏈烷基或支鏈烷基,RQ2較佳為碳原子數1至20之直鏈烷基或支鏈烷基,RQ3較佳為碳原子數1至8之直鏈烷基、支鏈烷基、直鏈烷氧基或支鏈烷氧基,LQ較佳為碳原子數1至8之直鏈伸烷基或支鏈伸烷基。通式(Q-a)至通式(Q-d)所表示之化合物中,進而較佳為通式(Q-c)及通式(Q-d)所表示之化合物。
於本實施形態之組成物中,較佳含有1種或2種通式(Q)所表示之化合物,進而較佳含有1種至5種,其含量較佳為0.001至1質量%,進而較佳為0.001至0.1質量%,尤佳為0.001至0.05質量%。
含有本實施形態之聚合性化合物之組成物用於「藉由利用紫外線照射使其中所含之聚合性化合物進行聚合而被賦予液晶配向能力,並利用組成物之雙折射而控制光之透光量」之液晶顯示元件。
於本實施形態之液晶組成物含有聚合性化合物之情形時,作為使聚合性化合物聚合之方法,為了獲得液晶之良好之配向性能,宜為適度之聚合速度,因此較佳藉由照射單一之紫外線或電子射線等活性能量線,或者併用或依序照射紫外線或電子射線等活性能量線而使其聚合之方法。於使用紫外線之情形時,可使用偏光光源,亦可使用非偏光光源。另外,於在將含聚合性化合物之組成物夾持於2片基板間之狀態下進行聚合之情形時,至少必須對照射面側之基板賦予對於活性能量線而言適當之透明性。另外,亦可使用如下手段:於光照射時使用遮罩而僅使特定之部分聚合後,藉由改變電場、磁場或溫度等條件,使未聚合部分之配向狀態發生變化,進一步照射活性能量線而使其聚合。尤其是於進行紫外線曝光時,較佳為一面對含聚合性化合物之組成物施加交流電場一面進行紫外線曝光。所施加之交流電場較佳為頻率10Hz至10kHz之交流,更佳為頻率60Hz至10kHz,電壓係根據液晶顯示元件之所需之預傾角(pretilt angle)而選擇。即,可藉由所施加之電壓控制液晶顯示元件之預傾角。於橫向電場型MVA模式之液晶顯示元件中,就配向穩定性及對比度之觀點而言,較佳將預傾角控制為80度至89.9度。
照射時之溫度較佳為保持本實施形態之組成物之液晶狀態的溫度範圍內。較佳為於接近室溫之溫度,即典型而言於15~35℃之溫度使其聚合。作為產生紫外線之燈,可使用金屬鹵化物燈、高壓水銀燈、超高壓水銀燈等。另外,作為所照射之紫外線之波長,較佳照射並非組成物之吸收波長區域的波長區域之紫外線,較佳為視需要將紫外線進行濾除而使用。所照射之紫外線之強度較佳為0.1mW/cm2~100W/cm2,更佳為2mW/cm2~50W/cm2。所照射之紫外線之能量可適當進行調整,較佳為10mJ/cm2至500J/cm2,更佳為100mJ/cm2至200J/cm2。於照射紫外線時,亦可改變強度。照射紫外線之時間可根據所照射之紫外線強度而適當選擇,較佳為10秒至3600秒,更佳為10秒至600 秒。
於本實施形態之適宜之液晶顯示元件中,為了使液晶層5之液晶分子進行配向,可視需要而於和第一基板與第二基板之間之液晶組成物相接之面設置配向層。於必需配向層之液晶顯示元件中,係配置於光轉換層與液晶層之間,即便為配向層之膜厚較厚者,亦薄至100nm以下,並非將構成光轉換層之發光性奈米結晶粒子、顏料等色素與構成液晶層之液晶化合物之相互作用完全遮斷者。
另外,於不使用配向層之液晶顯示元件中,構成光轉換層之發光性奈米結晶粒子、顏料等色素與構成液晶層之液晶化合物的相互作用變得更大。
本實施形態之配向層較佳為選自由摩擦配向層及光配向層所組成之群中之至少1種。於摩擦配向層之情形時,並無特別限制,可適宜地使用公知之聚醯亞胺系之配向層。
作為該摩擦配向層材料,可使用聚醯亞胺、聚醯胺、BCB(苯并環丁烯聚合物)、聚乙烯醇等透明性有機材料,尤佳為將由對苯二胺、4,4'-二胺基二苯基甲烷等脂肪族或脂環族二胺等二胺及丁烷四羧酸酐或2,3,5-三羧基環戊基乙酸酐等脂肪族或脂環式四羧酸酐、均苯四甲酸二酐等芳香族四羧酸酐所合成之聚醯胺酸進行醯亞胺化而成之聚醯亞胺配向層。於用於垂直配向層等之情形時,亦可不賦予配向而使用。
於本實施形態之配向層為光配向層之情形時,只要為含有1種以上之光響應性分子者即可。上述光響應性分子較佳為選自由對光響應而藉由二聚化形成交聯結構之光響應性二聚化型分子、對光響應進行異構化而相對於偏光軸大致垂直或平行地配向之光響應性異構化型分子、及對光響應而切斷高分子鏈之光響應性分解型高分子所組成之群中之至少1種,就感度、配向限制力 之方面而言,尤佳為光響應性異構化型分子。
影像顯示元件之另一實施形態係一種有機EL顯示元件(OLED),該機EL顯示元件(OLED)其具有:第1電極基板及第2電極基板對向設置之一對電極基板、設置於上述第1電極與第2電極之間之電致發光層、由多個像素構成且將具有藍色發光光譜之上述電致發光層發出之光轉換為不同波長之上述光轉換層、及設置於上述第1電極或上述第2電極與上述光轉換層之間之上述波長選擇性穿透層。
圖21係表示影像顯示元件(OLED)之一實施形態之剖視圖。一實施形態之影像顯示元件(OLED)1000C具有第一電極52及第二電極58作為一對對向之電極,於該電極間具備電致發光層500,於第二電極58之與電致發光層500為相反側之面上,自電致發光層500側起依序具備波長選擇性穿透層8A(8)及光轉換層9A(9)。
電致發光層500至少具有發光層55即可,更佳為具有電子傳輸層56、發光層55、電洞傳輸層54及電洞注入層53。電致發光層512較佳具有電子注入層57、電子傳輸層56、發光層55、電洞傳輸層54及電洞注入層53。為了提高外部量子效率且提高發光強度,亦可於發光層55與電洞傳輸層54之間設置電子阻擋層(未圖示)。同樣地,為了提高外部量子效率且提高發光強度,亦可於發光層55與電子傳輸層56之間設置電洞阻擋層(未圖示)。
於影像顯示元件(OLED)1000C中,電致發光層500具有與第一電極52相接之電洞注入層53,且具有將電洞傳輸層54、發光層55及電子傳輸層56依序積層之構成。
於本實施形態中,以下,方便起見而以第一電極52作為陽極,以第二電極58作為陰極進行說明,但影像顯示元件(LED面板)1000C之構成並不限定於此,亦可以第一電極52作為陰極,以第二電極58作為陽極,而使該 等電極間之積層之順序相反。換言之,亦可自陽極側之第二電極58起,依序積層電洞注入層53、電洞傳輸層54、視需要而設置之電子阻擋層、發光層55、視需要而設置之電洞阻擋層、電子傳輸層56及電子注入層57。
光轉換層9A(9)及波長選擇性穿透層8A(8)可分別與上述液晶顯示元件中之光轉換層9及波長選擇性穿透層8相同。本實施形態之特徵之一在於使用此種光轉換層9A(9)及波長選擇性穿透層8A(8)作為彩色濾光片之代替構件。
於該實施形態中,於在450nm附近具有主峰之光(具有藍色之發光光譜之光)藉由電致發光層500而發光之情形時,光轉換層9A(9)可利用該藍光作為藍色。因此,於由作為光源之電致發光層500發出之光為藍光之情形時,上述各色之光轉換像素層(NC-紅、NC-綠、NC-藍)中可如圖21所示省略光轉換像素層(NC-藍),而藍色直接使用背光。於該情形時,顯示藍色色層可由含有透明樹脂或藍色色材之色材層(所謂之藍色彩色濾光片)(CF-藍)等構成。
可視需要而於紅色色層R、綠色色層G及藍色色層B適當含有色材。亦可於含有發光用奈米結晶NC之層(NCL)中含有與各顏色相對應之色材。
根據以上內容,於圖21所示之影像顯示元件1000C中,若於第一電極52及第二電極58間施加電壓,則電子會自陰極亦即第二電極58注入至電致發光層500,電洞會自陽極亦即第一電極52注入至電致發光層500,藉此流通電流。此外,藉由所注入之電子及電洞再結合,而形成激子。藉此發光層55所具有之發光材料成為激發狀態,可由發光材料獲得發光。
其後,自發光層55發出之光穿透電子傳輸層56、電子注入層57及第二電極58,藉波長選擇性穿透層8A(8)選擇為特定波長區域之光入射至 光轉換層9A(9)之面內。該入射至光轉換層9A(9)內之光被發光性奈米結晶粒子吸收,而被轉換為紅色(R)、綠色(G)、藍色(B)之任一發光光譜,藉此顯示出紅色(R)、綠色(G)、藍色(B)之任一顏色。另外,光轉換層9A(9)與波長選擇性穿透層8A(8)鄰接,穿透之特定波長區域以外之光被反射,因此可使發光性奈米結晶粒子之發光方向聚焦於一個方向。
此外,就降低電洞或電子之注入之電位障壁之目的、提高電洞或電子之傳輸性之目的、阻礙電洞或電子之傳輸性之目的或抑制、防止電極引起之消光現象之目的而言,電致發光層500亦可視需要形成單層或多層表現出各種效果之層。
可以被覆光轉換層9A(9)及波長選擇性穿透層8A(8)之方式設置外覆層(overcoat layer)59作為保護膜,另外,亦可視需要將玻璃等基板60整個面地貼合於該外覆層59上。此時,可視需要於該外覆層59與基板60之間設置公知之接著層(例如熱硬化或紫外線硬化型樹脂)。於發光元件為自基板60顯示光之頂部發光型之情形時,外覆層59、基板60較佳為透明之材料。另一方面,於為底部發光型之情形時,外覆層59、基板51並無特別限定。
於圖21中表示將第一電極52形成於基板51上之形態,該基板係支持包含第一電極52、電致發光層500、第二電極58、光轉換層9A(9)及波長選擇性穿透層8A(8)之積層體的支持體,可使用公知者。
於圖21所示之實施形態中,雖然電致發光之光為來自有機EL之光,但是於另一實施形態中,電致發光之光可為來自發光性奈米結晶粒子之光,於該情形時,影像顯示元件亦被稱為QLED。於該情形時,電致發光層之構成可為能夠發出來自發光性奈米結晶粒子之電致發光之光的公知之構成。
實施例
以下,列舉例子來更詳細地說明本發明,但本發明並不限定於 該等。於實施例中,關於化合物之記載,使用以下之代號。此外,n表示自然數。
(側鏈)
(連結基)
(環結構)
實施例中,所測定之特性如以下所述。
TNI:向列相-等向性液體相轉移溫度(℃)
△n:20℃之折射率異向性
△ε:20℃之介電各向導性
η:20℃之黏度(mPa‧s)
γ1:20℃之旋轉黏度(mPa‧s)
K11:20℃之彈性常數K11(pN)
K33:20℃之彈性常數K33(pN)
KAVG:K11與K33之平均值(KAVG=(K11+K33)/2)(pN)
VHR測定
(頻率60Hz,施加電壓1V之條件下於333K之電壓保持率(%))
於450nm具有主發光峰之LED耐光試驗:
對於2萬cd/m2之於450nm具有主發光峰之可見光LED光源下暴露1週之前與之後之VHR進行測定。
於385nm具有主發光峰之LED耐光試驗:
對以於385nm具有波峰之單色LED照射60秒、130J之前與之後之VHR進行測定。
<光轉換膜之製作>
「發光性奈米結晶粒子之製作」
下述製造發光性奈米結晶粒子之操作及製造油墨之操作,係於充滿氮氣之手套箱內或遮斷大氣而於氮氣氣流下之燒瓶內進行。
另外,以下所例示之全部原料係將氮氣導入於容器內,將該容器內之大氣預先置換為氮氣而使用。此外,關於液體材料,將氮氣導入於液體,將溶氧置換為氮氣而使用。關於氧化鈦,於使用前,於1mmHg之減壓下在120℃加熱2小時,並於氮氣環境下放置冷卻。
另外,以下所使用之有機溶劑及液體材料係使用「每10ml而於氮氣環境下以1g之比例添加關東化學股份有限公司之分子篩3A,脫水48小時以上經乾燥而成」者。
〔紅色發光性奈米結晶粒子之製造〕
於1000ml之燒瓶中加入乙酸銦17.48g、三辛基氧化膦25.0g、月桂酸35.98g,一面通入氮氣一面於160℃攪拌40分鐘。進而於250℃攪拌20分鐘後,加熱至300℃並繼續攪拌。於手套箱內將三(三甲基矽基)膦4.0g溶解於三辛基膦15.0g中後,填充至玻璃注射器。將其注入至加熱至300℃之上述燒瓶中,於250℃反應10分鐘。進而於手套箱內以12分鐘將三(三甲基矽基)膦7.5g溶解於三辛基膦30.0g而成之混合液5ml滴加至上述反應溶液,其後,每隔15分鐘添加5ml至反應溶液中,直至用完為止。
於另一三口燒瓶中加入乙酸銦5.595g、三辛基氧化膦10.0g、月桂酸11.515g,一面通入氮氣一面於160℃攪拌40分鐘。進而於250℃攪拌20分鐘,並加熱至300℃後,將冷卻至70℃之混合溶液添加至上述反應溶液。再次以12分鐘將於手套箱內使三(三甲基矽基)膦4.0g溶解於三辛基膦15.0g而成之混合液5ml滴加至上述反應溶液中,其後,每隔15分鐘添加5ml至反應溶液,直至用完為止。維持攪拌1小時,冷卻至室溫後,添加甲苯100ml與乙醇400ml,使微粒凝聚。使用離心分離機使微粒沈澱後,將上清液丟棄,將沈澱之微粒溶解於三辛基膦中,藉此獲得磷化銦(InP)紅色發光性奈米結晶粒子之三辛基膦溶液。
〔綠色發光性奈米結晶粒子之製造〕
於1000ml之燒瓶中加入乙酸銦23.3g、三辛基氧化膦40.0g、月桂酸48.0g,一面通入氮氣一面於160℃攪拌40分鐘。進而於250℃攪拌20分鐘後,加熱至300℃並繼續攪拌。於手套箱內將三(三甲基矽基)膦10.0g溶解於三辛基膦30.0g中後,填充至玻璃注射器。將其注入至加熱至300℃之上述燒瓶中,於250℃反應5分鐘。將燒瓶冷卻至室溫,添加甲苯100ml與乙醇400ml,使微粒凝聚。使用離心分離機使微粒沈澱後,將上清液丟棄,將沈澱之微粒溶解於三辛基膦,藉此獲得磷化銦(InP)綠色發光性奈米結晶粒子之三辛基膦溶液。
〔InP/ZnS芯殼奈米結晶之製造〕
於上述所合成之磷化銦(InP)紅色發光性奈米結晶粒子之三辛基膦溶液中調整為InP 3.6g、三辛基膦90g後,投入至1000ml之燒瓶,進而添加三辛基氧化膦90g、月桂酸30g。另一方面,藉由在手套箱內將二乙基鋅之1M己烷溶液42.9ml、雙(三甲基矽基)硫醚之三辛基膦9.09重量%溶液92.49g與三辛基膦162g混合而製作儲備溶液(stock solution)。將燒瓶內置換為氮氣環境後,將燒瓶之溫度設定為180℃,於達到80℃之時點添加上述儲備溶液15ml,其後每隔10分鐘繼續添加15ml(燒瓶溫度維持為180℃)。最後之添加結束後,進一步將 溫度維持10分鐘,藉此使反應結束。反應結束後,將溶液冷卻至常溫,添加甲苯500ml與乙醇2000ml,使奈米結晶凝聚。使用離心分離機使奈米結晶沈澱後,將上清液丟棄,以溶液中之奈米結晶濃度成為20質量%之方式再次將沈澱物溶解於氯仿中,藉此獲得InP/ZnS芯殼奈米結晶(紅色發光性)之氯仿溶液(QD分散液1)。
另外,使用上述磷化銦(InP)綠色發光性奈米結晶粒子代替磷化銦(InP)紅色發光性奈米結晶粒子,而獲得InP/ZnS芯殼奈米結晶(綠色發光性)之氯仿溶液(QD分散液2)。
〔QD之配位基交換〕
參考日本特開2002-121549(三菱化學股份有限公司之公開專利公報),來合成3-巰基丙酸之三乙二醇單甲醚酯(三乙二醇單甲醚巰基丙酸酯)(TEGMEMP),並進行減壓乾燥。
於充滿氮氣之容器內將QD分散液1(含有上述InP/ZnS芯殼奈米結晶(紅色發光性))與將上述所合成之TEGMEMP 8g溶解而成之氯仿溶液80g混合,於80℃攪拌2小時,藉此進行配位基交換,並冷卻至室溫。
其後,一面於減壓下以40℃進行攪拌一面使甲苯/氯仿蒸發,濃縮至液量成為100ml。於該分散液添加4倍重量之正己烷使QD凝聚,藉由離心分離與傾析去除上清液。於沈澱物添加50g之甲苯,藉由超音波使其再分散。將該洗淨操作共計進行3次,將殘存於液中之游離之配位基成分去除。將傾析後之沈澱物於室溫下真空乾燥2小時,而獲得經TEGMEMP修飾之QD(QD-TEGMEMP)之粉體2g。
「油墨組成物之製作」
〔氧化鈦分散液之製備〕
於充滿氮氣之容器內,以不揮發成分成為40%之方式將氧化鈦6g、高分子 分散劑1.01g及1,4-丁二醇二乙酸酯加以混合。於充滿氮氣之容器內之摻合物添加氧化鋯珠(直徑:1.25mm)後,使用塗料調節器將充滿氮氣之密封容器振盪2小時,藉此進行摻合物之分散處理。藉此獲得光散射性粒子分散體1。上述材料全部使用導入氮氣將溶氧置換為氮氣而成者。
〔油墨組成物1之製備〕
於充滿氮氣之容器內,將以下之(1)、(2)及(3)均勻地混合後,於手套箱內,藉由孔徑5μm之過濾器過濾混合物,並進一步將氮氣導入至油墨內而使氮氣飽和。繼而,進行減壓而將氮氣去除,藉此獲得油墨組成物。由此獲得經脫氧處理之實質上不含水分之最終油墨組成物1。
此外,所使用之材料如下。
[光散射性粒子]
‧氧化鈦:MPT141(石原產業股份有限公司製造)
[熱硬化系樹脂]
‧含有環氧丙基之固體丙烯酸樹脂:「FINEDIC A-254」(DIC股份有限公司製造,環氧當量500)
[高分子分散劑]
‧高分子分散劑:BYK-2164
(BYK公司製造之商品名,「DISPERBYK」為註冊商標)
[有機溶劑]
‧1,4-丁二醇二乙酸酯(大賽璐股份有限公司製造)
(1)將有機溶劑1,4-丁二醇二乙酸酯混合於上述所製備之QD-TEGMEMP使不揮發成分成為30%之QD-TEGMEMP分散液1(含有上述InP/ZnS芯殼奈米結晶(紅色發光性)):22.5g
(2)熱硬化系樹脂:以不揮發成分成為30%之方式將DIC股份有限公司製 造之「FINEDIC A-254」(6.28g)、硬化劑:1-甲基環己烷-4,5-二羧酸酐(1.05g)及硬化促進劑:二甲基苄胺(0.08g)溶解於有機溶劑:1,4-丁二醇二乙酸酯而成之熱硬化性樹脂溶液:12.5g
(3)上述光散射性粒子分散體1:7.5g
關於氧化鈦,於混合前,於1mmHg之減壓下在120℃加熱2小時,並於氮氣環境下放置冷卻。
〔油墨組成物2之製備〕
使用QD分散液2(含有上述InP/ZnS芯殼奈米結晶(綠色發光性))代替QD分散液1,以與油墨組成物1同樣之方式獲得油墨組成物2。
〔油墨組成物3之製備〕
使用作為(1)之1,4-丁二醇二乙酸酯代替上述(1)之QD-TEGMEMP分散液1,以與油墨組成物1同樣之方式獲得油墨組成物3。
〔油墨組成物4之製備〕
將Y138(BASF股份有限公司製造)0.50質量份與氯化鈉1.50質量份、二乙二醇0.75質量份一併磨碎。其後,將該混合物投入至600質量份之溫水,攪拌1小時。將不溶於水之成分過濾分離並藉由溫水充分洗淨後,於90℃送風乾燥而進行顏料化。顏料之粒徑在100nm以下,粒子之平均長度/寬度比未達3.00。使用所獲得之喹啉黃化合物之黃色顏料進行以下之分散試驗及彩色濾光片評價試驗。
將藉由上述方法進行顏料化之Y138(BASF股份有限公司製造)0.660質量份置於玻璃瓶,添加丙二醇單甲醚乙酸酯6.42質量份、DISPERBYK(註冊商標)LPN-6919(BYK-Chemie股份有限公司製造)0.467質量份、DIC股份有限公司製造之丙烯酸樹脂溶液UNIDIC(註冊商標)ZL-2950.700質量份、0.3~0.4mm SEPR珠22.0質量份,藉由塗料調節器(東洋精機股份有限公司製 造)分散4小時,而獲得顏料分散體。進而,將所獲得之顏料分散體2.00質量份、DIC股份有限公司製造之丙烯酸樹脂溶液UNIDIC(註冊商標)ZL-2950.490質量份、丙二醇單甲醚乙酸酯0.110質量份置於玻璃瓶,而製作油墨組成物4。
「光轉換層之製作」
以乾燥後之膜厚成為3.5μm之方式,藉由旋轉塗佈機於充滿氮氣之手套箱中將上述所獲得之油墨組成物1、2分別塗佈於玻璃基板(支持基板)上。於氮氣中將塗佈膜加熱為180℃使其硬化,而以由油墨組成物之硬化物構成之層(光轉換層)之形式,於玻璃基板上分別形成紅色發光性之光轉換層(1)與綠色發光性之光轉換層(2)。
「波長選擇性穿透層之形成」
(膽固醇液晶層之波長選擇性穿透層)
[聚合性液晶組成物之製備]
以下之膽固醇液晶層係相對於與選自由以下之式(A-1)~式(A-4)及式(B-1)~式(B-9)所表示之聚合性液晶性化合物所組成之群中的1種或2種以上之化合物之合計量100質量份,分別適當摻合選自由式(C-1)~式(C-3)所表示之聚合性手性化合物所組成之群中之1種或2種以上之化合物、選自由式(D-1)~式(D-6)所表示之聚合起始劑所組成之群中之1種或2種以上之化合物、作為聚合抑制劑之(E-1)、作為界面活性劑之(F-1)、作為溶劑之(I-1)~(I-3)或該等之混合、及配向控制劑(H-1),從而製備聚合性液晶組成物。
具體而言,相對於式(A-1)所表示之化合物9質量份、式(A-2)所表示之化合物4質量份、式(B-3)所表示之化合物12質量份、及式(B-9)所表示之化合物75質量份之合計值100質量份,添加式(C-3)所表示之化合物 4.6質量份、(D-4)6質量份、及(E-1)0.1質量份,並且以固體成分成為30%之方式添加作為有機溶劑之(G-1),使用具有攪拌螺旋槳之攪拌裝置,於攪拌速度為500rpm、溶液溫度為60℃之條件下攪拌15分鐘後,藉由0.2μm之膜濾器進行過濾,而獲得聚合性液晶組成物(1)。
同樣地以如下之表1-1~表1-5所示之組成比製備聚合性液晶組成物(2)~(17),另外藉由與上述同樣之方法亦製備用於λ/2波長板之組成物(10)。
以下,將實施例所使用之聚合性液晶組成物(1)~(17)之組成表示於以下。
聚合抑制劑:4-甲氧基苯酚(MEHQ)(E-1)
界面活性劑:BYK-352(BYK-Chemie公司製造)(F-1)
配向控制劑:聚丙烯(H-1)
溶劑:甲苯(I-1)、甲基乙基酮(I-2)、環戊酮(I-3)
[膽固醇液晶層之形成]
(實施例1)
於室溫(25℃)藉由旋轉塗佈法以800rpm之旋轉速度將所製備之聚合性液晶組成物(11)塗佈於經摩擦之上述綠色發光性之光轉換層(2)上15秒,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此於上述綠色發光性之光轉換層(2)上形成右捲之膽固醇液晶層(11)。進而,對所形成之右捲之膽固醇液晶層(11)之表面進行摩擦處理後,於室溫(25℃)藉由旋轉塗佈法以800rpm之旋轉速度將所製備之聚合性液晶組成物(10)塗佈15秒,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此於上述右捲之膽固醇層(11)上形成λ/2層。進而,藉由同樣之方法將所製備之聚合性液晶組成物(11)塗佈於λ/2層上,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此於上述λ/2層上形成右捲之膽固醇液晶層(11),而製作支持基板-綠色發光性之光轉換層(2)-右捲之膽固醇液晶層(11)-λ/2層-右捲之膽固醇液晶層(11)之積層體即光轉換膜(1)。該光轉換膜(1)之選擇反射波長之中心值(λ)為550nm。
(實施例2)
使用聚合性液晶組成物(8)代替聚合性液晶組成物(11),以與實施例1同樣之方式製作支持基板-綠色發光性之光轉換層(2)-右捲之膽固醇液晶層(8)-λ/2層-右捲之膽固醇液晶層(8)之積層體即光轉換膜(2)。該光轉換膜(2)之選擇反射波長之中心值(λ)為570nm。
(實施例3)
於室溫(25℃)藉由旋轉塗佈法以800rpm之旋轉速度將所製備之聚合性液晶組成物(4)塗佈於經摩擦之上述紅色發光性之光轉換層(1)上15秒,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此於上述紅色發光性之光轉換層(1)上形成右捲之膽固醇液晶層(4)。進而,對所形成之右捲之膽固醇液晶層(4)之表面進行摩擦處理後,於室溫(25℃)藉由旋轉塗佈法以800rpm之旋轉速度將所製備之聚合性液晶組成物(10)塗佈15秒,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此於上述右捲之膽固醇層(4)上形成λ/2層。進而,藉由同樣之方法將所製備之聚合性液晶組成物(4)塗佈於λ/2層上,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此於上述λ/2層上形成右捲之膽固醇液晶層(4),而製作支持基板-紅色發光性之光轉換層(1)-右捲之膽固醇液晶層(4)-λ/2層-右捲之膽固醇液晶層(4)之積層體即光轉換膜(3)。該光轉換膜(3)之選擇反射波長之中心值(λ)為630nm。
(實施例4)
使用聚合性液晶組成物(9)代替聚合性液晶組成物(4),以與實施例3同樣之方式製作支持基板-紅色發光性之光轉換層(1)-右捲之膽固醇液晶層(9)-λ/2層-右捲之膽固醇液晶層(9)之積層體即光轉換膜(4)。該光轉換膜(4)之選擇反射波長之中心值(λ)為670nm。
(實施例5)
使用聚合性液晶組成物(12)代替聚合性液晶組成物(4),以與實施例3同樣之方式製作支持基板-紅色發光性之光轉換層(1)-右捲之膽固醇液晶層(12)-λ/2層-右捲之膽固醇液晶層(12)之積層體即光轉換膜(5)。該 光轉換膜(5)之選擇反射波長之中心值(λ)為660nm。於圖5中記載實施例5之波長穿透性選擇膜之穿透光譜之資料作為一例。根據圖5,確認到由右捲之膽固醇液晶層(12)-λ/2層-右捲之膽固醇液晶層(12)之層構成所構成之波長穿透性選擇膜使620nm附近以下之光穿透,將約620nm以上~700nm之區域之波長光反射,且使700nm附近以上之光穿透。
(實施例6)
於室溫(25℃)藉由旋轉塗佈法以800rpm之旋轉速度將所製備之聚合性液晶組成物(5)塗佈於經摩擦之上述綠色發光性之光轉換層(2)上15秒,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此於上述綠色發光性之色光轉換層(2)上形成右捲之膽固醇液晶層(5)。進而,對所形成之右捲之膽固醇液晶層(5)之表面進行摩擦處理後,於室溫(25℃)藉由旋轉塗佈法以800rpm之旋轉速度將所製備之聚合性液晶組成物(1)塗佈於膽固醇液晶層(1)上15秒,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此於上述右捲之膽固醇液晶層(5)上形成左捲之膽固醇液晶層(1),而製作支持基板-綠色發光性之光轉換層(2)-右捲之膽固醇液晶層(5)-左捲之膽固醇液晶層(1)之積層體即光轉換膜(6)。該光轉換膜(6)之選擇反射波長之中心值(λ)為560nm。
(實施例7)
使用聚合性液晶組成物(2)代替聚合性液晶組成物(1),以與實施例6同樣之方式製作支持基板-綠色發光性之光轉換層(2)-右捲之膽固醇液晶層(5)-左捲之膽固醇液晶層(2)之積層體即光轉換膜(7)。該光轉換膜(7)之選擇反射波長之中心值(λ)為550nm。
(實施例8)
使用聚合性液晶組成物(3)代替聚合性液晶組成物(1),以與實施例6同樣之方式製作支持基板-綠色發光性之光轉換層(2)-右捲之膽固醇液晶層(5)-左捲之膽固醇液晶層(3)之積層體即光轉換膜(8)。該光轉換膜(3)之選擇反射波長之中心值(λ)為550nm。
(實施例9)
使用紅色發光性之光轉換層(1)代替綠色發光性之光轉換層(2),使用聚合性液晶組成物(15)代替聚合性液晶組成物(5),使用聚合性液晶組成物(16)代替聚合性液晶組成物(1),以與實施例6同樣之方式製作支持基板-紅色發光性之光轉換層(1)-右捲之膽固醇液晶層(15)-左捲之膽固醇液晶層(16)之積層體即光轉換膜(9)。該光轉換膜(9)之選擇反射波長之中心值(λ)為660nm。
(實施例10)
於室溫(25℃)藉由旋轉塗佈法以800rpm之旋轉速度將所製備之聚合性液晶組成物(6)塗佈於經摩擦之上述綠色發光性之光轉換層(2)上15秒,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此於上述光轉換層(2)上形成右捲之膽固醇液晶層(6)。進而,對所形成之右捲之膽固醇液晶層(6)之表面進行摩擦處理後,於室溫(25℃)藉由旋轉塗佈法以800rpm之旋轉速度將所製備之聚合性液晶組成物(10)塗佈15秒,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此於上述右捲之膽固醇層(6)上形成λ/2層。進而,藉由同樣之方法將所製備之聚合性液晶組成物(6)塗佈於λ/2層上,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此於上述λ/2層上形成右捲之膽固醇液晶層(6),而製作支持基板- 綠色發光性之光轉換層(2)-右捲之膽固醇液晶層(6)-λ/2層-右捲之膽固醇液晶層(6)之積層體即光轉換膜(10)。該光轉換膜(1)之選擇反射波長之中心值(λ)為470nm。
(實施例11)
使用紅色發光性之光轉換層(1)代替綠色發光性之光轉換層(2),以與實施例10同樣之方式製作支持基板-紅色發光性之光轉換層(1)-右捲之膽固醇液晶層(6)-λ/2層-右捲之膽固醇液晶層(6)之積層體即光轉換膜(11)。該光轉換膜(9)之選擇反射波長之中心值(λ)為470nm。
(實施例12)
使用聚合性液晶組成物(7)代替聚合性液晶組成物(6),以與實施例11同樣之方式製作支持基板-紅色發光性之光轉換層(1)-右捲之膽固醇液晶層(7)-λ/2層-右捲之膽固醇液晶層(7)之積層體即光轉換膜(12)。該光轉換膜(12)之選擇反射波長之中心值(λ)為462nm。
(實施例13)
於室溫(25℃)藉由旋轉塗佈法以800rpm之旋速度將所製備之聚合性液晶組成物(7)塗佈於附摩擦配向膜之玻璃基板上15秒,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此於摩擦配向膜上形成右捲之膽固醇液晶層(7)。進而,對所形成之右捲之膽固醇液晶層(7)之表面進行摩擦處理後,於室溫(25℃)藉由旋轉塗佈法以800rpm之旋轉速度將所製備之聚合性液晶組成物(10)塗佈15秒,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此於上述右捲之膽固醇層(7)上形成λ/2層。進而,藉由同樣之方法將所製備之聚合性液晶組成物(7)塗佈於λ/2層上,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高 壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此於上述λ/2層上形成右捲之膽固醇液晶層(7),而形成支持基板-摩擦配向膜-右捲之膽固醇液晶層(7)-λ/2層-右捲之膽固醇液晶層(7)之積層體。
繼而,以乾燥後之膜厚成為3.0μm之方式,藉由旋轉塗佈機於充滿氮氣之手套箱中將上述所獲得之油墨組成物1塗佈於表面之右捲之膽固醇液晶層(7)上。於氮氣中以180℃加熱塗佈膜使其硬化,而形成作為光轉換層之紅色發光性之光轉換層(1)。然後,對所形成之紅色發光性之光轉換層(1)之表面進行摩擦處理,藉由與實施例3同樣之方法,製作支持基板-摩擦配向膜-右捲之膽固醇液晶層(7)-λ/2層-右捲之膽固醇液晶層(7)-紅色發光性之光轉換層(1)-右捲之膽固醇液晶層(4)-λ/2層-右捲之膽固醇液晶層(4)之積層體即光轉換膜(13)。該光轉換膜(13)之選擇反射波長之中心值(λ)為462nm、630nm。
(實施例14)
使用綠色發光性之光轉換層(2)代替紅色發光性之光轉換層(1),使用聚合性液晶組成物(6)代替聚合性液晶組成物(7),使用聚合性液晶組成物(8)代替聚合性液晶組成物(4),以與實施例13同樣之方式製作支持基板-摩擦配向膜-右捲之膽固醇液晶層(6)-λ/2層-右捲之膽固醇液晶層(6)-綠色發光性之光轉換層(2)-右捲之膽固醇液晶層(8)-λ/2層-右捲之膽固醇液晶層(8)之積層體即光轉換膜(14)。該光轉換膜(14)之選擇反射波長之中心值(λ)為470nm、570nm。
(比較例1)
以形成於玻璃基板上之綠色發光性之光轉換層(2)作為比較例1之膜。
(比較例2)
以形成於玻璃基板上之紅色發光性之光轉換層(1)作為比較例2之膜。
(選擇反射波長之算出)
於室溫(25℃)藉由旋轉塗佈法以800rpm之旋轉速度分別將聚合性組成物(1)~(17)塗佈於玻璃基板上15秒,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉由紫外可見分光光度計V-560(日本分光公司製造)對由此獲得之薄膜測定分光穿透率,由此求出選擇反射波長之中心值(λ)。例如,若使用聚合性液晶組成物(12)製作膽固醇液晶層(12)並進行選擇反射波長之測定,則可獲得如圖5所示之選擇反射波長。
使用上述所獲得之光轉換膜,按照以下之順序進行評價。
使用藍色LED(波峰發光波長:450nm),將積分球連接於上述大塚電子股份有限公司製造之放射分光光度計(商品名「MCPD-9800」),將積分球設置於藍色LED之上側。於藍色LED與積分球之間插入光轉換膜,點亮藍色LED測定所觀測到之光譜、各波長下之照度。
更詳細而言,關於實施例1~實施例9所製作之光轉換膜(1)~(9)及光轉換膜(13)~(14),以將膽固醇液晶層設置於藍色LED側之方式進行設置,且以對膽固醇液晶層直接照射藍色LED之光之方式進行配置。換言之,依序配置藍色LED-膽固醇液晶層-光轉換層-(膽固醇液晶層)-支持基板-積分球,測定各波長下之照度。
另一方面,關於實施例10~實施例14所製作之光轉換膜(10)~(12),以將支持基板(玻璃基板)設置於藍色LED側之方式進行設置,且以對玻璃基板直接照射藍色LED之光之方式進行配置。換言之,依序配置藍色LED-支持基板-光轉換層-膽固醇液晶層-積分球,測定各波長下之照度。
根據藉由上述測定裝置測得之光譜,以於400~500nm之照度之合計作為藍色之光照度,以於500~600nm之照度之合計作為綠色之光照度, 以於600~700nm之照度之合計作為紅色之光照度。
〔外部量子效率(EQE)〕
使用上述藍色LED(波峰發光波長:450nm),將積分球連接於上述大塚電子股份有限公司製造之放射分光光度計(商品名「MCPD-9800」),將積分球設置於藍色LED之上側。於藍色LED與積分球之間插入具有光轉換層之基材,點亮藍色LED測定所觀測到之光譜、各波長下之照度。
根據藉由上述測定裝置測得之光譜及照度,以如下方式求出外部量子效率。該值係表示入射至光轉換層之光(光子)中以何種程度之比例以螢光之形式放射至觀測者側之值。因此,該值越大,表示光轉換層越優異,係重要之評價指標。
紅色發光光轉換層之外部量子效率=P(紅)/E(藍)×100(%)=(以下亦稱為R/B值)
綠色發光光轉換層之外部量子效率=P(綠)/E(藍)×100(%)=(以下亦稱為G/B值)
此處,E(藍)、P(紅)、P(綠)分別如以下所示。
E(藍):
表示在380~490nm之波長之「照度×波長÷hc」於該波長區域中之合計值。此外,h表示普朗克常數,c表示光速。(其係相當於所觀測到之光子數之值)
P(紅):
表示在490~590nm之測定波長之「照度×波長÷hc」於該波長區域中之合計值。(相當於所觀測到之光子數)
P(綠):
表示在590~780nm之測定波長之「照度×波長÷hc」於該波長區域中之合 計值。(相當於所觀測到之光子數)
根據表2,確認到實施例1中所製作之光轉換膜(1)與比較例2相比,藉由膽固醇液晶層之存在,綠色之光照度有所增大。其原因在於被光轉換層(2)轉換之光中,對於射出至上述藍色LED側之光,藉由膽固醇液晶層所具有之選擇反射特性,將上述射出至藍色LED側之光之一部分反射至分光放射計側,從而證明本發明之效果。
另外,根據表2,確認到實施例3中所製作之光轉換膜(3)與比較例1相比,藉由膽固醇液晶層之存在,紅色之光照度有所增大,而可期待同樣之效果。
關於實施例6~9中所製作之光轉換膜6~9,亦確認到與比較例1、2相比,藉由膽固醇液晶層之存在,紅色、綠色之照度有所增大。於實施例6~9之實驗結果中,R/B及G/B提高,因此確認到紅色、綠色之色純度亦有所增大。
實施例10~實施例11之藍光穿透率與EQE(外部量子效率)之實驗結果如以下所述。
若將比較例1與實施例10進行對比,則藉由將遮蔽藍色之膽固醇 液晶層設置於綠色發光性之光轉換層(1)之上,藍色穿透率大致減少11%,EQE成為大致1.20倍。
若將比較例2與實施例11進行對比,則藉由將遮蔽藍色之膽固醇液晶層設置於紅色發光性之光轉換層(2)之上,藍色穿透率大致減少11%,EQE成為大致1.18倍。
根據該等內容,認為遮蔽藍色之膽固醇液晶層對提高光轉換層之光學特性有效。
(介電質多層膜之波長選擇性穿透層)
以乾燥後之膜厚成為3μm之方式,藉由旋轉塗佈機將上述含有紅色發光性奈米結晶粒子之油墨組成物1塗佈於玻璃基板上。於氮氣環境下將塗佈膜加以乾燥、硬化而製作紅色發光性之光轉換層(1)。
同樣地,使用含有綠色發光性奈米結晶粒子之油墨組成物2製作綠色發光性之光轉換層(2)。
(實施例15)
藉由旋轉塗佈對上述紅色發光性之光轉換層(1)塗佈平坦化膜用組成物(商品名PIG-7424:JNC股份有限公司製造)並加以乾燥、後烘烤,藉此獲得平坦化膜。繼而,使用無芯材之透明雙面膠帶(日榮化工股份有限公司製造之MHM-FWV)貼合介電質多層膜(使500nm以下之波長區域之光穿透且將510nm以上之波長區域之光反射之雙向濾色片(dichroic filter)(DFB-500(Optical Solutions公司製造)))而製作光轉換膜基板15。
(實施例16)
與實施例15同樣地,對上述綠色發光性之光轉換層(2)貼合介電質多層膜(使500nm以下之波長區域之光穿透且將510nm以上之波長區域之光反射之雙向濾色片(DFB-500(Optical Solutions公司製造)))而製作光轉換膜基板 16。
(比較例1)
與上述比較例1同樣地以形成於玻璃基板上之紅色發光性之光轉換層(1)作為比較例1之膜。
(比較例2)
與上述比較例2同樣地以形成於玻璃基板上之綠色發光性之光轉換層(2)作為比較例2之膜。
使用上述所獲得之光轉換膜10、11及比較例1、2之膜,進行以下之評價。
[光轉換膜之螢光發光強度之評價]
使用CCS股份有限公司製造之藍色LED(波峰發光波長:450nm)作為面發光光源。測定裝置係將積分球連接於大塚電子股份有限公司製造之放射分光光度計(商品名「MCPD-9800」),將積分球設置於藍色LED之上側。點亮藍色LED測定所觀測到之光譜、各波長下之照度。此時,於藍色LED上設置下述表1所示之樣品,測定所觀測到之波長450nm與螢光之波峰波長下之螢光強度(照度),分別設為S(450)、S(PL)。螢光強度S(PL)相當於來自光轉換層之螢光發光強度。因此,該值越大,表示光轉換層越優異,係重要之評價指標。
將使用上述介電質多層膜之評價結果示於表3-1及表3-2。
(螢光強度係將不使用波長選擇性穿透層之情形設為100而進行相對評價)
(螢光強度係將不使用波長選擇性穿透層之情形設為100而進行相對評價)
註)實施例15、16之測定系統之位置關係由下往上依序為藍色LED、波長選擇性穿透層(DFB-500)、光轉換層(1)或(2)及積分球。
*1:P(藍)為380~500nm
根據上述表3-1及表3-2所示之實驗結果可知,藉由將介電質多層膜設置於藍色LED與光轉換層之間,發光強度顯著增大。此外,使用SIGMAKOKI製造之DIF-50S-BLE代替DIF-500之情形亦可獲得同樣之結果。
圖22表示比較例1之光轉換層與實施例15之光轉換膜之實驗資料之比較。圖22之實驗資料表示各波長區域與照度之關係。例如,如圖22所示,根據上述表3-1之實驗結果,於照度之積分值(面積)比較中,藉由雙向濾色 片,R光之波峰強度(642nm)為1.22倍,R光/B光之比(面積比)成為0.417至0.586(1.40倍),R光/(R光+B光)之比(面積比)成為0.294至0.369(1.25倍)。另外,確認到藉由下述式算出之外部量子效率(EQE)成為13.6%至18.8%,增加1.38倍。
(EQE=R光之光子數/(僅Filter測定之情形時之B光之光子數)×100(%)
此外,上述B光(藍光)意指400~520nm之波長區域RB下之光,R光(紅光)意指580~720nm之波長區域RR下之光。
藉此,確認到具備介電質多層膜之光轉換膜基板之紅色及綠色之色純度提高。
<液晶面板、背光單元及液晶顯示元件之製作方法>
[光轉換膜之製作]
首先,按照以下之順序製作具有被稱為黑色矩陣(BM)之遮光部的基板(BM基板)。即,於由無鹼玻璃構成之玻璃基板(日本電氣硝子公司製造之「OA-10G」)上塗佈黑色光阻(東京應化工業公司製造之「CFPR-BK」)後,進行預烘烤、圖案曝光、顯影及後烘烤,藉此形成圖案狀之遮光部。曝光係藉由以250mJ/cm2之曝光量對黑色光阻照射紫外線而進行。遮光部之圖案係相當於200μm×600μm之子像素之具有開口部分之圖案,線寬為20μm,厚度為2.6μm。
藉由噴墨方式將上述油墨組成物1(紅色發光)、油墨組成物2(綠色發光)及油墨組成物3(透明)印刷於BM基板上之開口部分後,加以乾燥並照射紫外線,繼而於氮氣環境下、150℃加熱30分鐘。藉此,使油墨組成物硬化而形成由油墨組成物之硬化物構成之像素部。藉此,於BM基板上形成使藍光穿透/散射之像素部、將藍光轉換為紅光之像素部、及將藍光轉換為綠光 之像素部。藉由以上之操作,獲得具備多種像素部之附圖案之光轉換層(3)。
(實施例17)
繼而,藉由旋轉塗佈將平坦化膜用組成物(商品名PIG-7424:JNC股份有限公司製造)塗佈於光轉換層(3)之-面並進行乾燥、後烘烤,藉此獲得平坦化膜。形成平坦化膜(鈍化膜)後,製作積層有波長選擇性穿透層(介電質多層膜)之光轉換膜基板(17)。
此處,介電質多層膜係將TiO2濺鍍製膜於玻璃基材,進一步將SiO2與TiO2交替濺鍍製膜14層,形成SiO2膜後,進一步將SiO2與TiO2交替製膜12層,最後將SiO2製膜而製成。各層之光學膜厚係依照日本特開平10-31982號表1所記載之使藍色穿透之多層光干涉膜。該介電質多層膜係使500nm以下之光穿透,且將500nm以上之光反射。
此外,經由透明雙面膠帶(日榮化工股份有限公司製造之MHM-FWV)於製膜有介電質多層膜之玻璃基板之介電質多層膜面貼合上述平坦化膜,而製成光轉換膜基板(17)。
藉此,獲得支持基板-具備多種像素部之附圖案之光轉換層(3)-平坦化膜-波長選擇性穿透層(介電質多層膜)之積層體即光轉換膜基板(17)。
(實施例18)
對形成有上述使藍光穿透/散射之像素部、將藍光轉換為紅光之像素部、及將藍光轉換為綠光之像素部之光轉換層(3)進行摩擦處理後,藉由噴墨方式對將藍光轉換為綠光之像素部印刷右旋性聚合性組成物(13)後,加以乾燥並照射紫外線,繼而於氮氣環境下、150℃加熱30分鐘,形成膽固醇液晶層(13)(為上述聚合性組成物(13)之塗膜)後,進一步藉由噴墨方式於其上 印刷聚合性組成物(14)後,加以乾燥並照射紫外線,繼而於氮氣環境下、150℃加熱30分鐘,而形成左旋性膽固醇液晶層(14)。同樣地於將藍光轉換為紅光之像素部形成源自右旋性聚合性組成物(15)之膽固醇液晶層(15)及源自左旋性之聚合性組成物(16)之膽固醇液晶層(16)。其後,藉由旋轉塗佈將平坦化膜用組成物(商品名PIG-7424:JNC股份有限公司製造)塗佈於形成有膽固醇液晶層之面上並進行乾燥、後烘烤,藉此形成平坦化膜,而獲得具備多種像素部之附圖案之光轉換層(3)-膽固醇液晶層(於綠色像素上為膽固醇液晶層(13)-膽固醇液晶層(14),於紅色像素上為膽固醇液晶層(15)-膽固醇液晶層(16))-平坦化膜之積層體即光轉換膜基板(18)。
(實施例19)
對形成有上述使藍光穿透/散射之像素部、將藍光轉換為紅光之像素部、及將藍光轉換為綠光之像素部之光轉換層(3)進行摩擦處理後,藉由旋轉塗佈法於一面塗佈本發明之聚合性液晶組成物(17),於80℃乾燥2分鐘。將所獲得之塗膜置於60℃之加熱板上,使用經以獲得僅365nm附近之紫外光(UV光)之方式藉由帶通濾波器進行過調整之高壓水銀燈,以15mW/cm2之強度照射UV光10秒。繼而取下帶通濾波器,以70mW/cm2之強度照射UV光20秒,藉此獲得膽固醇液晶層(17)。進一步對右捲之膽固醇液晶層(17)之表面進行摩擦處理後,於室溫(25℃)藉由旋轉塗佈法以800rpm之旋轉速度將所製備之聚合性液晶組成物(10)塗佈15秒,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此形成λ/2層。繼而,藉由同樣之方法將所製備之聚合性液晶組成物(17)塗佈於λ/2層上,於60℃乾燥2分鐘後,於25℃放置1分鐘後,使用高壓水銀燈以420mJ/cm2照射UVA之最大照度為300mW/cm2之UV光,藉此於上述λ/2層上形成右捲之膽固醇液晶層(17),而製作支持基板-具備多種像素部之附 圖案之光轉換層(3)-右捲之膽固醇液晶層(17)-λ/2層-右捲之膽固醇液晶層(17)之積層體即光轉換膜(19)。為膽固醇液晶之反射波長區域(540~690nm)。
(實施例20)
藉由旋轉塗佈機於藉由上述方法獲得之實施例17之光轉換膜基板(17)之支持基板上塗佈油墨組成物4後進行乾燥。繼而,於230℃加熱1小時後,於光轉換膜(17)之支持基板上形成黃色彩色濾光片,該黃色彩色濾光片顯示使用高色再現用色標準中之C光源之情形時的各綠色色度。藉此,獲得黃色彩色濾光片-支持基板-光轉換層(3)-平坦化膜-波長選擇性穿透層(介電質多層膜)之積層體即光轉換膜(20)。
(實施例21)
藉由旋轉塗佈機於藉由上述方法獲得之實施例18之光轉換膜(18)之支持基板上塗佈油墨組成物4後進行乾燥。繼而,於230℃加熱1小時後,於光轉換膜(18)之支持基板上形成黃色彩色濾光片,該黃色彩色濾光片顯示使用高色再現用色標準中之C光源之情形時的各綠色色度。藉此,獲得黃色彩色濾光片-支持基板-光轉換層(3)-平坦化膜-波長選擇性穿透層(膽固醇液晶層)之積層體即光轉換膜(21)。
(比較例3)
使用光轉換層(3)作為比較例3。
「具備內嵌式偏光層之電極基板之製造」
[對向基板1之製作]
於上述所製作之光轉換膜(17)之波長選擇性穿透層(介電質多層膜)上塗佈可樂麗公司製造之「POVAL 103」水溶液(固體成分濃度4質量%)並加以乾燥後,實施摩擦處理。
繼而,於摩擦處理面塗佈由MEGAFAC F-554(DIC股份有限公司製造)0.03質量份、以下之式(az-1)之偶氮色素1質量份、以下之式(az-2)之偶氮色素1質量份、 氯仿98質量份、環氧乙烷改質三羥甲基丙烷三丙烯酸酯(V#360,大阪有機化學公司製造)2質量份、二新戊四醇六丙烯酸酯(KAYARAD DPHA,日本化藥公司製造)2質量份、Irgacure 907(Ciba Specialty Chemicals公司製造)0.06質量份及Kayacure DETX(日本化藥公司製造)構成之偏光層用塗佈液並加以乾燥,而製作具備偏光層及光轉換膜(17)之基板1。其後,藉由濺鍍法使ITO沈積,而製作對向基板1(=第2(電極)基板)。
[對向基板2之製作]
藉由與上述具備光轉換膜(17)之基板1同樣之方法,將偏光層製作於光轉換膜(18)之波長選擇性穿透層(膽固醇液晶層)上,其後,藉由濺鍍法使ITO沈積,而製作對向基板2(=第2(電極)基板)。
[對向基板3之製作]
藉由與上述具備光轉換膜(17)之基板1同樣之方法,將偏光層製作於光轉換膜(20)之波長選擇性穿透層(介電質多層膜)上,而製作對向基板3(=第2(電極)基板)。
[對向基板4之製作]
藉由與上述具備光轉換膜(17)之基板1同樣之方法,將偏光層製作於光轉換膜(19)之波長選擇性穿透層(膽固醇液晶層)上,其後,藉由濺鍍法使 ITO沈積,而製作對向基板4(=第2(電極)基板)。
[對向基板5之製作]
將鋁濺鍍成膜(約100nm,芝浦機械電子公司製造)於上述所製作之光轉換膜(17)所使用之形成有波長選擇性穿透層(介電質多層膜)之玻璃基板的與介電質多層膜面為相反側之玻璃面上後,於其上依序濺鍍形成氧化矽被膜、矽被膜。藉由旋轉塗佈法以厚度成為100nm之方式於上述成膜面均勻地塗佈光硬化性抗蝕劑後,於70℃之烘箱中將抗蝕劑層乾燥5分鐘。於將樹脂模(圖案模具:間距130nm、Duty0.4、圖案高度180nm之線&空間圖案)均勻地加壓於經乾燥之抗蝕劑層上之狀態下,以1000mJ/cm2之光量照射包含365nm之波長之紫外光而使其光硬化後,將樹脂模剝離。進而,藉由RIE裝置(Reactive Ion Etching處理裝置),利用由氧氣形成之電漿對抗蝕劑圖案之凹部選擇性地進行蝕刻處理,僅留有凸部而獲得抗蝕劑之遮罩。
形成抗蝕劑遮罩後,藉由RIE裝置,利用由CHF3氣體形成之電漿向垂直於基板之方向對矽層與氧化矽層進行異向性蝕刻處理。另外,藉由RIE裝置,利用由氯氣(Cl)形成之電漿向基板之膜厚方向(垂直於基板之方向)對由鋁構成之層進行異向性蝕刻處理。繼而,利用由氧氣形成之電漿,藉由蝕刻處理將殘存於矽層之上部之抗蝕劑遮罩去除,而製作具備表面具有線柵偏光層之光轉換膜(17)之基板。其後,藉由濺鍍法使ITO沈積,而製作對向基板5(=第2(電極)基板)。
[對向基板6之製作]
藉由旋轉塗佈將平坦化膜用組成物(商品名PIG-7424:JNC股份有限公司製造)塗佈於上述所製作之光轉換膜(19)之膽固醇液晶層上並進行乾燥、後烘烤,藉此形成平坦化膜後,於與對向基板5之製作方法相同之條件下於光轉換膜(19)之膽固醇液晶層上設置線柵偏光層。其後,藉由濺鍍法使ITO沈 積,而製作對向基板6(=第2(電極)基板)。
(對向基板7之製作)
藉由旋轉塗佈將平坦化膜用組成物(商品名PIG-7424:JNC股份有限公司製造)塗佈於上述所製作之光轉換膜(21)之介電質多層膜上並進行乾燥、後烘烤,藉此形成平坦化膜後,於與對向基板5之製作方法相同之條件下於光轉換膜(21)之上述平坦化膜上設置線柵偏光層。其後,藉由濺鍍法使ITO沈積,而製作對向基板7(=第2(電極)基板)。
(對向基板8之製作)
藉由旋轉塗佈將平坦化膜用組成物(商品名PIG-7424:JNC股份有限公司製造)塗佈於上述所製作之光轉換膜(18)之膽固醇液晶層上並進行乾燥、後烘烤,藉此形成平坦化膜後,於與對向基板5之製作方法相同之條件下於光轉換膜(18)之上述平坦化膜上設置線柵偏光層。其後,藉由濺鍍法使ITO沈積,而製作對向基板8(=第2(電極)基板)。
(對向基板9之製作)
作為比較例3,藉由旋轉塗佈將平坦化膜用組成物(商品名PIG-7424:JNC股份有限公司製造)塗佈於上述所製作之光轉換層(3)上並進行乾燥、後烘烤,藉此形成平坦化膜後,於與對向基板3之製作方法相同之條件下於光轉換層(3)上設置線柵偏光層。其後,藉由濺鍍法使ITO沈積,而製作對向基板9(=第2(電極)基板)。
(對向基板10之製作)
藉由旋轉塗佈將平坦化膜用組成物(商品名PIG-7424:JNC股份有限公司製造)塗佈於上述所製作之光轉換膜(18)之膽固醇液晶層上並進行乾燥、後烘烤,藉此形成平坦化膜後,於與對向基板5之製作方法相同之條件下於光轉換膜(18)之上述平坦化膜上設置線柵偏光層,而製作對向基板10(=第2 (電極)基板)(無ITO)。
「VA型液晶面板」
(實施例22)
於上述第2(電極)基板(對向基板8)之ITO上及附TFT之第1(電極)基板之透明電極上分別形成垂直配向層後,將上述形成有透明電極及垂直配向層之第1基板與上述形成有垂直配向層之第2(電極)基板(對向基板8)以各配向層相對向且該配向層之配向方向成為反平行方向(180°)之方式進行配置,於在2片基板間保持一定間隙(4μm)之狀態下,利用密封劑將周邊部貼合而製作VA型液晶單元。其次,藉由真空注入法於由配向層表面及密封劑劃分之單元間隙內填充下述表4所記載之液晶組成物(組成例1~4),將偏光板貼合於第1基板上,藉此製作VA型液晶面板1~4(將使用組成例3之VA型液晶單元設為VA型液晶面板3)。將以上述方式製作之液晶面板1~4作為評價用元件,進行VHR測定及與上述同樣之螢光發光強度評價。
(比較例4)
作為比較例,使用不具備波長選擇性穿透層之對向基板9代替對向基板8,且填充組成例1作為液晶組成物,藉由與液晶面板1~4之製作方法同樣之方法製作比較用液晶面板5,並進行螢光發光強度。
其結果為,即便於對液晶面板1~4照射於450nm具有主發光峰之光1週之情形時,VHR亦達到98%以上,因此認為對於在450nm具有主發光峰之光可發揮穩定之效果。另外,將VA型液晶面板1~4之螢光發光強度與液晶面板5之螢光發光強度之評價進行比較,結果判明藉由膽固醇液晶層之存在,發光強度顯著地增大,確認到與實施例1~5之螢光強度測定結果同樣之傾向。
(實施例23)
另外,使用對向基板5代替實施例22之對向基板8,且填充組成例1作為液晶組成物,藉由與液晶面板1~4之製作方法同樣之方法製作VA型液晶面板6並 進行螢光發光強度。其結果判明藉由波長選擇性穿透層(介電質多層膜)之存在,發光強度顯著地增大,確認到與實施例15、16之螢光強度測定結果同樣之傾向。
(實施例24)
進而,使用對向基板4代替對向基板8,且填充組成例1作為液晶組成物,藉由與VA型液晶面板1~4之製作方法同樣之方法製作液晶面板7並進行螢光發光強度。其結果為,確認到藉由膽固醇液晶層之存在,不僅發光強度顯著地增大,而且R/B比或G/B比提高。
「PSVA型液晶面板」
(實施例25)
於上述第2(電極)基板(對向基板2)之ITO上及附TFT之第1基板之透明電極上分別形成誘發垂直配向之聚醯亞胺配向膜後,將上述形成有透明電極及垂直配向層之第1基板與上述形成有垂直配向層之第2(電極)基板(對向基板2)以各配向層相對向且該配向層之配向方向成為反平行方向(180°)之方式進行配置,於在2片基板間保持一定間隙(4μm)之狀態下,藉由密封劑將周邊部貼合。其次,於由配向層表面及密封劑劃分之單元間隙內,藉由真空注入法注入將以下之聚合性化合物 0.3質量份與99.7質量份之組成物例1混合而成之含聚合性化合物之液晶組成物1。使用JSR公司製造之JALS2096作為垂直配向膜形成材料。另外,第1基板係使用魚骨結構之附ITO之基板。
其後,於以頻率100Hz對注入有含有聚合性化合物之液晶組成物的液晶面板施加10V電壓之狀態下,使用高壓水銀燈,透過將325nm以下之 紫外線濾除之過濾器照射紫外線。此時,以於中心波長365nm之條件下測得之照度成為100mW/cm2之方式進行調整,並照射累計光量10J/cm2之紫外線。其次,使用螢光UV燈,以於中心波長313nm之條件下測得之照度成為3mW/cm2之方式進行調整,並進一步照射累計光量10J/cm2之紫外線,獲得PSVA型液晶面板1,與上述組成例1同樣地進行利用於450nm具有主發光峰之光之耐光試驗及利用於385nm具有主發光峰之光之耐光試驗之評價。其結果為,於在450nm具有主發光峰及在385nm具有主發光峰之光之任一情形時均成為與VA型液晶面板1~4大致相同之結果。另外,判明藉由具有波長選擇性穿透層(膽固醇液晶層),發光強度顯著地增大,確認到與實施例1~5之螢光強度測定結果同樣之傾向。
(實施例26)
於上述第2(電極)基板(對向基板1)之ITO上及附TFT之第1基板之透明電極上分別形成誘發垂直配向之聚醯亞胺配向膜後,將上述形成有透明電極及垂直配向層之第1基板與上述形成有垂直配向層之第2(電極)基板(對向基板1)以各配向層相對向且該配向層之配向方向成為反平行方向(180°)之方式進行配置,於在2片基板間保持一定間隙(4μm)之狀態下,藉由密封劑將周邊部貼合。其次,於由配向層表面及密封劑劃分之單元間隙內,藉由真空注入法注入將以下之聚合性化合物(XX-5)、 及99.7質量份之組成物例2混合而成之含聚合性化合物之液晶組成物2。使用JSR公司製造之JALS2096作為垂直配向膜形成材料。另外,第1基板係使用魚骨結構之附ITO之基板。
其後,於以頻率100Hz對注入有含有聚合性化合物之液晶組成 物的液晶面板施加10V電壓之狀態下,使用高壓水銀燈,透過將325nm以下之紫外線濾除之過濾器照射紫外線。此時,以於中心波長365nm之條件下測得之照度成為100mW/cm2之方式進行調整,並照射累計光量10J/cm2之紫外線。其次,使用螢光UV燈,以於中心波長313nm之條件下測得之照度成為3mW/cm2之方式進行調整,並進一步照射累計光量10J/cm2之紫外線,獲得PSVA型液晶面板2,與上述組成例1同樣地進行利用於450nm具有主發光峰之光之耐光試驗及利用於385nm具有主發光峰之光之耐光試驗之評價。其結果為,於在450nm具有主發光峰及在385nm具有主發光峰之光之任一情形時均成為與VA型液晶面板1~4大致相同之結果。另外,判明藉由波長選擇性穿透層(介電質多層膜)之存在,發光強度顯著地增大,確認到與實施例15、16之螢光強度測定結果同樣之傾向。
「自發配向型之VA型液晶面板」
(實施例27)
將附TFT之形成有透明電極之第1基板與上述第2基板(對向基板2)以各電極相對向之方式進行配置,於在2片基板間保持一定間隙(4μm)之狀態下,藉由密封劑將周邊部貼合(不形成配向膜)。其次,藉由真空注入法於由密封劑劃分之單元間隙內填充對上述液晶組成物1(100質量份)添加自發配向劑(以下之式(al-1))2質量份與上述聚合性化合物(XX-2)0.5質量份而成之液晶組成物,將偏光板貼合於第1基板上,於與實施例25同樣之條件下照射紫外線而製作VA型液晶面板8。
(實施例28)
(VA型液晶面板8)
將第2基板(對向基板2)變更為對向基板7,除此以外,以同樣之方法製作VA型液晶面板9。
(實施例29)
將附TFT之形成有透明電極之第1基板與第2透明電極基板(上述對向基板1)以各電極相對向之方式進行配置,於在2片基板間保持一定間隙(4μm)之狀態下,藉由密封劑將周邊部貼合(不形成配向膜)。其次,藉由真空注入法於由配向層表面及密封劑劃分之單元間隙內填充對上述液晶組成物1(100質量份)添加自發配向劑(以下之式(P-1-2))2質量份與上述聚合性化合物(XX-5)而成之液晶組成物,將偏光板貼合於第1基板上,於與實施例20同樣之條件下照射紫外線,而製作VA型液晶面板10。
對實施例27~29中所製作之自發配向型之VA型液晶面板8~10進行螢光發光強度之評價,結果確認到與無波長選擇性穿透層者相比,發光強度顯著地增大,另外,確認到R/B值、G/B值增大。
(實施例30)
藉由旋轉塗佈法於附TFT之形成有透明電極之第1基板上塗布國際公開2013/002260號小冊子之實施例22所使用之垂直配向層溶液,形成乾燥厚度0.1μm之配向層。對於上述第2透明電極基板(對向基板2)亦同樣地於表面形成光配向層。將形成有透明電極及光配向層之第1基板與上述形成有光配向層之第2(電極)基板(對向基板2)以各配向層相對向且該配向層之配向方向成為反 平行方向(180°)之方式進行配置,於在2片基板間保持一定間隙(4μm)之狀態下,藉由密封劑將周邊部貼合。其次,藉由真空注入法於由配向層表面及密封劑劃分之單元間隙內填充上述液晶組成物1,將偏光板貼合於第1基板上,藉此製作VA型液晶面板11。
(實施例31)
將VA型液晶面板11之製造方法中之對向基板2替換為對向基板1,藉由與VA型液晶面板10之製造方法同樣之方法製作VA型液晶面板12。
對實施例30~31中所製作之VA型液晶面板10~11進行螢光發光強度之評價,結果確認到與無波長選擇性穿透層者相比,發光強度顯著地增大,另外,確認到R/B值、G/B值增大。
「IPS型液晶面板」
(實施例32)
藉由旋轉塗佈法於形成於透明基板之一對梳齒電極上形成水平配向層溶液,而形成配向層,藉此製作形成有該梳形透明電極及配向層之第1基板。另外,藉由旋轉塗佈法於上述對向基板3(第2(電極)基板)上形成水平配向層溶液,形成配向層後,以各配向層相對向且經照射直線偏光或沿水平方向摩擦之方向成為反平行方向(180°)之方式進行配置,於在2片基板間保持一定間隙(4μm)之狀態下,利用密封劑將周邊部貼合。其次,藉由真空注入法於由配向層表面及密封劑劃分之單元間隙內填充上述液晶組成物(組成例3),其後將一對偏光板貼合於第1基板及第2基板上而製作IPS型液晶面板。
對實施例32中所製作之IPS型液晶面板進行螢光發光強度之評價,結果確認到與無波長選擇性穿透層者相比,發光強度顯著地增大,另外,確認到R/B值、G/B值增大。
「FFS型液晶面板」
(實施例33)
於第1透明基板形成平板狀之共用電極後,形成絕緣層膜,進而於該絕緣層膜上形成透明梳齒電極後,藉由旋轉塗佈法於該透明梳齒電極上形成配向層溶液,而形成第1電極基板。另外,藉由旋轉塗佈法於上述對向基板10(第2(電極)基板)上形成水平配向層溶液,而形成配向層。繼而,將形成有梳形透明電極及配向層之第1基板與形成有配向層、偏光層、光轉換膜之第2基板以各配向層相對向且經照射直線偏光或進行摩擦之方向成為反平行方向(180°)之方式進行配置,於在2片基板間保持一定間隙(4μm)之狀態下,利用密封劑將周邊部貼合。其次,藉由滴加法於由配向層表面及密封劑劃分之單元間隙內填充上述液晶組成物(組成例2),而製作FFS型液晶面板。
對實施例33中所製作之FFS型液晶面板進行螢光發光強度之評價,結果確認到與無波長選擇性穿透層者相比,發光強度顯著地增大,另外,確認到R/B值、G/B值增大。
<液晶顯示裝置>
(背光單元1之製作)
將藍色LED光源設置於導光板一邊之端部,藉由反射片覆蓋除照射面以外之部分,將擴散片配置於導光板之照射側而製作背光單元1。
(背光單元2之製作)
將藍色LED以格子狀配置於將光進行散射反射之下側反射板上,進而於其照射側正上方配置擴散板,進而於其照射側配置擴散片,而製作背光單元2。
(3)液晶顯示元件之製作與色再現區域之測定
對於上述所獲得之VA型液晶面板1~11及PSVA型液晶面板,分別安裝上述所製作之背光單元1~2,對色再現區域及螢光發光強度進行測定。其結果為,均確認到於具備光轉換膜之液晶顯示元件與不具備光轉換膜之習知之液晶顯示 元件中,前者之色再現區域擴大,色純度增大。
同樣地,對於上述所獲得之IPS型液晶面板,安裝上述所製作之背光單元1~2,對色再現區域及螢光發光強度進行測定。其結果為,均確認到於具備光轉換膜之液晶顯示元件與不具備光轉換膜之習知之液晶顯示元件中,前者之色再現區域擴大,色純度增大。
對於上述所獲得之FFS型液晶面板,安裝上述所製作之背光單元1~2,對色再現區域及螢光發光強度進行測定。其結果為,均確認到於具備光轉換層之液晶顯示元件與不具備光轉換膜之習知之液晶顯示元件中,前者之色再現區域擴大,色純度增大。
<發光元件或有機EL影像顯示元件>
(實施例34)
於積層有上述光轉換膜(17)之TFT積層玻璃基板之表面之波長選擇性穿透層(介電質多層膜)上蒸鍍ITO電極後,藉由「Appl.Mater.Interfaces 2013,5,7341-7351.」所記載之方法於該ITO電極上設置具備發藍光之電致發光層之發光元件1後,經由接觸孔將ITO電極與TFT層電連接,而製作與上述光轉換膜(17)相對應之影像顯示元件1。
(實施例35)
於積層有上述光轉換膜(18)之TFT積層玻璃基板表面之波長選擇性穿透層(膽固醇液晶層)上蒸鍍ITO電極後,藉由與上述實施例34同樣之方法製作與上述光轉換膜(18)相對應之影像顯示元件2。
(比較例5)
於積層有上述光轉換層(3)之TFT積層玻璃基板表面之光轉換層(3)上蒸鍍ITO電極後,藉由與上述實施例34同樣之方法製作與上述光轉換層(3)相對應之影像顯示元件3。
具體而言,該具備發藍光之電致發光層之發光元件1均為以下之構成。
使用以下之TAPC作為上述發光元件1之電洞傳輸層。
使用以下之mCP作為上述發光元件1之電子阻擋層。
作為上述發光元件1之第1發光層,發光材料(摻雜劑)係使用以下之化合物,
使用以下之mCP作為上述發光元件1之上述第1發光層之主體材料。
作為上述發光元件1之第2發光層,發光材料(摻雜劑)係使用 以下之化合物,
使用以下之UGH2作為上述發光元件1之第2發光層之主體材料。
使用上述UGH2作為上述發光元件1之電洞阻擋層。
使用以下之化合物作為上述發光元件1之電子傳輸層。
依序將上述電洞傳輸層、上述電子阻擋層、上述第1發光層、上述第2發光層、上述電洞阻擋層、及上述電子傳輸層進行圖案化於上述ITO電極上,藉由「Appl.Mater.Interfaces 2013,5,7341-7351.」所記載之方法將藍色發光層製膜,進而依序將作為陰極之(LiF/Al)電極與保護層全版製膜並進行積層,而製作具備發藍光之發光元件之影像顯示元件1、2。
對於上述所獲得之影像顯示元件1、2,測定色再現區域及螢光發光強度。其結果為,均確認到於具備光轉換膜之影像顯示元件與不具備光轉換膜之習知之影像顯示元件中,前者之色再現區域擴大,色純度增大。

Claims (11)

  1. 一種光轉換膜,其具備:光轉換層:含有將具有特定波長之光轉換為紅色、綠色及藍色之任一顏色之光而發光之發光性奈米結晶粒子;及波長選擇性穿透層:設置於該光轉換層之至少一側,使特定波長區域之光穿透。
  2. 如請求項1之光轉換膜,其中,該波長選擇性穿透層係使該具有特定波長之光穿透且將來自該光轉換層之發光反射之層。
  3. 如請求項1或2之光轉換膜,其中,該具有特定波長之光為藍光,該光轉換層具有:紅色像素部:含有吸收該具有特定波長之光而發出紅光之紅色發光性奈米結晶粒子;綠色像素部:含有吸收該具有特定波長之光而發出綠光之綠色發光性奈米結晶粒子;及藍色像素部:使該具有特定波長之光穿透。
  4. 如請求項1至3中任一項之光轉換膜,其具備該波長選擇性穿透層、該光轉換層、及第二波長選擇性穿透層。
  5. 一種影像顯示元件,其具備:光源部;光轉換層:含有將具有特定波長之光轉換為紅色、綠色及藍色之任一顏色之光而發光之發光性奈米結晶粒子;及波長選擇性穿透層:設置於該光轉換層之至少一側,使特定波長區域之光穿透。
  6. 如請求項5之影像顯示元件,其中,該波長選擇性穿透層係以來自該光源部之光入射之方式設置,為使來自該光源部之光穿透且將來自該光轉換層之發光反射之層,該光轉換層設置於該波長選擇性穿透層之與該光源部相反之側,為含有將穿透該波長選擇性穿透層之穿透光轉換為紅色、綠色及藍色之任一顏色之光而發光之發光性奈米結晶粒子的層。
  7. 如請求項6之影像顯示元件,其中,來自該光源部之光為藍光,該光轉換層具有:紅色像素部:含有吸收該穿透光而發出紅光之紅色發光性奈米結晶粒子;綠色像素部:含有吸收該穿透光而發出綠光之綠色發光性奈米結晶粒子;及藍色像素部:使該穿透光穿透。
  8. 如請求項6或7之影像顯示元件,其於該光轉換層之與該波長選擇性穿透層相反之側進而具備第二波長選擇性穿透層。
  9. 如請求項6至8中任一項之影像顯示元件,其於該波長選擇性穿透層之與該光轉換層相反之側進而具備液晶層。
  10. 如請求項6至8中任一項之影像顯示元件,其於該光轉換層之與該波長選擇性穿透層相反之側進而具備液晶層。
  11. 如請求項5至10中任一項之影像顯示元件,其中,來自該光源部之光為電致發光之光。
TW107133430A 2017-09-22 2018-09-21 光轉換膜及使用其之影像顯示元件 TW201931616A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017182481 2017-09-22
JPJP2017-182481 2017-09-22

Publications (1)

Publication Number Publication Date
TW201931616A true TW201931616A (zh) 2019-08-01

Family

ID=65811376

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107133430A TW201931616A (zh) 2017-09-22 2018-09-21 光轉換膜及使用其之影像顯示元件

Country Status (6)

Country Link
US (1) US20200264461A1 (zh)
JP (1) JP6628012B2 (zh)
KR (1) KR20200060430A (zh)
CN (1) CN111051934A (zh)
TW (1) TW201931616A (zh)
WO (1) WO2019059308A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114902088A (zh) * 2019-12-26 2022-08-12 住友化学株式会社 显示装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7011055B2 (ja) 2017-10-27 2022-01-26 サムスン エスディアイ カンパニー,リミテッド 量子ドット含有組成物、量子ドット製造方法およびカラーフィルタ
TWI814843B (zh) * 2018-07-03 2023-09-11 日商Dic股份有限公司 液晶顯示元件之製造方法
KR102284417B1 (ko) * 2018-07-26 2021-08-02 주식회사 엘지화학 광학 필름
JP6816780B2 (ja) * 2019-01-09 2021-01-20 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法、ヘッドマウントディスプレイおよび電子機器
CN109616019B (zh) * 2019-01-18 2021-05-18 京东方科技集团股份有限公司 显示面板、显示装置、三维显示方法和三维显示系统
KR102419673B1 (ko) * 2019-01-21 2022-07-08 삼성에스디아이 주식회사 양자점, 이를 포함하는 경화성 조성물, 상기 조성물을 이용하여 제조된 경화막, 상기 경화막을 포함하는 컬러필터, 디스플레이 장치 및 상기 경화막의 제조방법
KR102654290B1 (ko) * 2019-01-22 2024-04-03 삼성디스플레이 주식회사 라이트 유닛, 라이트 유닛의 제조 방법 및 라이트 유닛을 포함하는 표시 장치
KR102296792B1 (ko) 2019-02-01 2021-08-31 삼성에스디아이 주식회사 무용매형 경화성 조성물, 이를 이용하여 제조된 경화막, 상기 경화막을 포함하는 컬러필터, 디스플레이 장치 및 상기 경화막의 제조방법
KR102360987B1 (ko) 2019-04-24 2022-02-08 삼성에스디아이 주식회사 양자점 함유 경화성 조성물, 이를 이용한 수지막 및 디스플레이 장치
JP2020193249A (ja) 2019-05-27 2020-12-03 信越化学工業株式会社 量子ドット、量子ドット組成物、波長変換材料、波長変換フィルム、バックライトユニット及び画像表示装置
KR20200140436A (ko) * 2019-06-05 2020-12-16 삼성디스플레이 주식회사 백라이트 유닛, 이를 포함하는 표시 장치 및 그 제조 방법
KR20200144181A (ko) * 2019-06-17 2020-12-29 삼성디스플레이 주식회사 표시 장치
KR102504790B1 (ko) 2019-07-26 2023-02-27 삼성에스디아이 주식회사 양자점, 이를 포함하는 경화성 조성물, 상기 조성물을 이용하여 제조된 경화막, 상기 경화막을 포함하는 컬러필터, 디스플레이 장치
US11670740B2 (en) 2019-09-26 2023-06-06 Osram Opto Semiconductors Gmbh Conversion layer, light emitting device and method of producing a conversion layer
CN111290162B (zh) * 2020-03-27 2021-05-28 Tcl华星光电技术有限公司 液晶显示装置、电子设备
US20230320140A1 (en) * 2020-09-04 2023-10-05 Merck Patent Gmbh Device
CN112505962A (zh) * 2020-12-21 2021-03-16 深圳扑浪创新科技有限公司 一种显示器件及其制备方法和应用
CN112802948A (zh) * 2021-03-30 2021-05-14 北京芯海视界三维科技有限公司 显示器件及显示器件的制作方法
KR20220145646A (ko) * 2021-04-22 2022-10-31 삼성전자주식회사 표시장치
CN113571552B (zh) * 2021-07-02 2023-10-31 武汉华星光电技术有限公司 一种显示面板及显示装置
CN113589416B (zh) * 2021-07-13 2023-04-07 Tcl华星光电技术有限公司 滤光片及其制备方法、显示面板
WO2023026671A1 (ja) * 2021-08-26 2023-03-02 富士フイルム株式会社 加飾用材料、加飾用材料の製造方法、成型物、加飾用パネル及び電子デバイス
WO2023049130A1 (en) * 2021-09-21 2023-03-30 Solaria Systems, Inc. Therapeutic environment sensing and/or altering device
CN114779515B (zh) * 2022-05-06 2024-02-27 Tcl华星光电技术有限公司 液晶显示装置及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322901B1 (en) 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US20050146258A1 (en) 1999-06-02 2005-07-07 Shimon Weiss Electronic displays using optically pumped luminescent semiconductor nanocrystals
CN1206565C (zh) * 2002-02-01 2005-06-15 凌巨科技股份有限公司 半穿透式彩色液晶显示器
WO2004074739A1 (ja) 2003-02-21 2004-09-02 Sanyo Electric Co., Ltd. 発光素子及びディスプレイ
US8947619B2 (en) * 2006-07-06 2015-02-03 Intematix Corporation Photoluminescence color display comprising quantum dots material and a wavelength selective filter that allows passage of excitation radiation and prevents passage of light generated by photoluminescence materials
JP2010096955A (ja) * 2008-10-16 2010-04-30 Sony Corp 表示装置
JP5574359B2 (ja) * 2009-03-27 2014-08-20 株式会社ジャパンディスプレイ 液晶表示装置
JP5657243B2 (ja) * 2009-09-14 2015-01-21 ユー・ディー・シー アイルランド リミテッド カラーフィルタ及び発光表示素子
US8921872B2 (en) * 2011-12-09 2014-12-30 Sony Corporation Display unit and method of manufacturing the same, electronic apparatus, illumination unit, and light-emitting device and method of manufacturing the same
JP2015084000A (ja) * 2012-02-07 2015-04-30 シャープ株式会社 表示素子、照明装置
JP6087872B2 (ja) * 2013-08-12 2017-03-01 富士フイルム株式会社 光学フィルム、バリアフィルム、光変換部材、バックライトユニットおよび液晶表示装置
JP6158248B2 (ja) * 2014-05-27 2017-07-05 ザ・ボード・オブ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・イリノイThe Board Of Trustees Of The University Of Illinois ナノ構造材料の方法および素子
JP6153907B2 (ja) * 2014-09-16 2017-06-28 富士フイルム株式会社 発光スクリーン、表示装置
WO2016186158A1 (ja) * 2015-05-20 2016-11-24 東レ株式会社 照明装置、及び表示装置
JP2017037121A (ja) * 2015-08-07 2017-02-16 シャープ株式会社 色変換基板および表示装置
KR102480902B1 (ko) * 2015-09-18 2022-12-22 삼성전자주식회사 표시 장치
US10712614B2 (en) * 2015-09-30 2020-07-14 Samsung Display Co., Ltd. Color conversion panel and display device including the same
EP3591443A4 (en) * 2017-03-03 2020-12-02 Nippon Kayaku Kabushiki Kaisha IMAGE DISPLAY DEVICE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114902088A (zh) * 2019-12-26 2022-08-12 住友化学株式会社 显示装置

Also Published As

Publication number Publication date
WO2019059308A1 (ja) 2019-03-28
US20200264461A1 (en) 2020-08-20
KR20200060430A (ko) 2020-05-29
CN111051934A (zh) 2020-04-21
JPWO2019059308A1 (ja) 2019-11-14
JP6628012B2 (ja) 2020-01-08

Similar Documents

Publication Publication Date Title
TW201931616A (zh) 光轉換膜及使用其之影像顯示元件
TWI766927B (zh) 分散體及使用其之噴墨用墨水組成物、光轉換層及液晶顯示元件
WO2018105545A1 (ja) 液晶表示素子
CN107209419B (zh) 电光切换元件和显示器件
JP2018511830A (ja) 色変換フィルム、および光学デバイス
JP6699759B2 (ja) 偏光発光フィルム
TW201833301A (zh) 液晶顯示元件
WO2008106833A1 (fr) Appareil d&#39;affichage et téléphone cellulaire, ordinateur et télévision comprenant ledit appareil d&#39;affichage
JP2020177071A (ja) 液晶表示素子
KR102360774B1 (ko) 액정 표시 장치 및 그 제조 방법
JP6797361B2 (ja) 液晶表示素子
JP7427633B2 (ja) 光学シートおよびこれを含む表示装置
CN110869844A (zh) 显示装置以及显示装置的制造方法
WO2019225536A1 (ja) 表示装置及び偏光部材
WO2021069432A1 (en) Vertically aligned liquid-crystal element having at least one light converting layer which shifts the wavelength of incident light to longer values
JP2024063719A (ja) 表示装置