TW201928352A - 具有延伸的主要平面的基板之偏航率感測器以及製造偏航率感測器的方法 - Google Patents

具有延伸的主要平面的基板之偏航率感測器以及製造偏航率感測器的方法 Download PDF

Info

Publication number
TW201928352A
TW201928352A TW107139507A TW107139507A TW201928352A TW 201928352 A TW201928352 A TW 201928352A TW 107139507 A TW107139507 A TW 107139507A TW 107139507 A TW107139507 A TW 107139507A TW 201928352 A TW201928352 A TW 201928352A
Authority
TW
Taiwan
Prior art keywords
rotating element
mass
yaw rate
assembly
rate sensor
Prior art date
Application number
TW107139507A
Other languages
English (en)
Other versions
TWI805639B (zh
Inventor
安德烈亞斯 拉瑟
布克哈德 庫曼
珍 提摩 賴沃德
馬錫雅斯 庫奈兒
奈歐斯 鮑德
尼歐斯 菲力克斯 庫曼
尚伯格 彼得 迪根佛德
藍哈德 諾爾
Original Assignee
德商羅伯特博斯奇股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商羅伯特博斯奇股份有限公司 filed Critical 德商羅伯特博斯奇股份有限公司
Publication of TW201928352A publication Critical patent/TW201928352A/zh
Application granted granted Critical
Publication of TWI805639B publication Critical patent/TWI805639B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion
    • G01C19/5747Structural details or topology the devices having two sensing masses in anti-phase motion each sensing mass being connected to a driving mass, e.g. driving frames

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

本發明主張一種具有延伸的主要平面(100、200)的基板之偏航率感測器(1),該偏航率感測器(1)包含旋轉元件總成(10、20),該旋轉元件總成(10、20)經設計用於偵測處於該基板之第一延伸主軸(100)中的偏航率及處於垂直於該第一延伸主軸(100)的該基板之第二延伸主軸(200)中的偏航率,其特徵在於,該偏航率感測器(1)具有感測器總成(40),其中該感測器總成(40)經設計用於偵測垂直於該基板之該延伸的主要平面(100、200)之偏航率,其中該感測器總成(40)及該旋轉元件總成(10、20)皆可藉由驅動總成(30)驅動,其中該驅動總成(30)經設計用於沿著該第一延伸主軸(100)之驅動移動。

Description

具有延伸的主要平面的基板之偏航率感測器以及製造偏航率感測器的方法
本發明係關於根據如請求項1所述之偏航率感測器。
偏航率感測器為特定的微機電系統(micro-electromechanical system;MEMS),藉由其可量測偏航率。通常,此等感測器係在矽基基板上製造。詳言之,在汽車應用中,通常使用通常可量測圍繞僅一個軸線之偏航率的偏航率感測器。用於汽車應用之雙軸線偏航率感測器亦自先前技術已知。然而,自先前技術已知之感測器具有以下劣勢:可處於不同方向上的偏航率之量測不能按高精確度及按高可靠性/穩固性實施。
本發明之目標為提議一種偏航率感測器,其准許圍繞三條軸線之偏航率量測,且同時,關於外部線性及/或旋轉加速度穩固,詳言之,以便確保有利可靠性/安全性。
如與先前技術相比,根據本發明之偏航率感測器的主要技術方案具有以下優勢:該偏航率感測器具有感測器總成,其中該感測器總成經設計 用於偵測垂直於該基板之延伸的主要平面之偏航率,其中該感測器總成及經設計用於偵測處於該基板之第一延伸主軸及垂直於該基板之該第一延伸主軸的第二延伸主軸中的偏航率之旋轉元件總成皆可借助於一個驅動總成來驅動,其中該驅動總成經設計用於沿著該第一延伸主軸之驅動移動。根據本發明,以此方式,有利地,可借助於同一驅動總成(例如,同一驅動框架)驅動旋轉元件總成及感測器總成兩者係可能的。此導致可節省感測器核心中的其他驅動結構及連接襯墊及相關聯之佈線之優勢。藉由共同驅動,亦可更緊湊地建置受影響之特殊應用積體電路(application-specific integrated circuit;ASIC),詳言之,此係由於僅必須提供一個驅動控制電路。詳言之,共同驅動之優勢亦在於,避免了個別感測器核心之不同驅動頻率。因此,根據本發明,可將例如作為驅動力之寄生串擾之結果的相互影響最小化。此外,可能的是,封裝變得更簡單,且量測軸線相對於彼此之可能未對準藉由整體感測器製造之公差判定,關於此,意謂如與藉由構造及連接技術的個別核心之配置相比,可按數量級減小後者。根據本發明的多軸感測器設計之再一優勢為避免干擾模式,干擾模式可以各種方式導致來自感測器之錯誤信號,例如,作為藉由外部力(振動)的(共振)激發之結果,或作為系統之機構或靜電中的非線性串擾之結果。根據本發明,可能的是,偏航率感測器之特別有利的可靠性及安全性可達成,其例如准許在汽車行業中之使用。
相反地,當使用具有三個(相同)單軸感測器(及單獨驅動結構)的自先前技術已知之系統時,所有感測器具有相同干擾模式,由於該過程,所述干擾模式處於稍微不同頻率下,使得自先前技術已知的此等感測器中之干擾模式之總數目因此不利地在考慮之頻率範圍中三倍增加。
在根據本發明之一多軸感測器元件中,有可能按使得其具有少於三倍干擾模式數目之方式設計感測器元件。三軸線感測器元件中的干擾模式 之相當大之減少係可能的,詳言之,當針對多於僅一個量測軸線各敏感地設計相同偵測結構時。
根據本發明,垂直於基板之延伸的主要平面之偏航率應理解為意謂相關偏航率之旋轉軸垂直於基板之延伸的主要平面。此對應地對於處於基板之第一及第二主要延伸軸線中之偏航率適用。
作為該旋轉元件總成包含一第一旋轉元件及一第二旋轉元件之事實之結果,其中該第一旋轉元件可借助於該驅動總成圍繞一第一旋轉軸驅動,其中該第二旋轉元件可借助於該驅動總成圍繞一第二旋轉軸驅動,其中該第一旋轉軸垂直於該延伸的主要平面配置,其中該第二旋轉軸垂直於該延伸的主要平面配置,根據本發明之一個實施方式,有利可能的是,外部線性及旋轉加速度不產生任何(或最小化之)差分信號。結果,可進行圍繞關於振動穩固之兩個軸線(基板之第一及第二延伸主軸)的偏航率之量測係可能的。此外,結果,干擾模式僅在減小之延伸上發生係可能的。此外,根據本發明之一個實施方式,在第一及第二旋轉元件下配置偵測電極係可能的,借助於偵測電極,旋轉元件圍繞第一及/或第二延伸主軸之傾斜係可量測的。
作為感測器總成包含一第一質量塊、一第二質量塊及一第三質量塊之事實之結果,其中該第一質量塊及該第二質量塊至少部分地經設計用於在驅動移動期間在相同方向上移動,其中該第三質量塊至少部分地經設計用於在驅動移動期間在與該第一質量塊及該第二質量塊之移動相反之方向上之一移動,其中詳言之,該第三質量塊在平行於該基板之該第二延伸主軸之一方向上配置於該第一質量塊與該第二質量塊之間,根據本發明之一個實施方式,可實施具有三個質量塊的感測器配置之特定有利形式係可能的。在相同方向之移動應理解為,第一質量塊與第二質量塊在沿著該第一延伸主軸之一個(且相同)方向上同時移動。該第三質量塊同時在相反方向上移動,也就是說,在對置方 向上。
原則上,可能的是,第一、第二及第三質量塊完成各別驅動移動(各別完全地或各別僅部分地,例如各別質量塊之僅一個驅動框架組件)。
第三質量塊實質上分別為第一質量塊及第二質量塊之兩倍重特別較佳。
作為對該第一質量塊指派該驅動總成之一第一驅動結構之事實之結果,其中該第一驅動結構機械連接至該第一旋轉元件,其中對該第二質量塊指派該驅動總成之一第二驅動結構,其中該第二驅動結構機械連接至該第二旋轉元件,根據本發明之一個實施方式,允許該感測器總成與該旋轉元件總成之有利耦接係可能的。此准許該兩個旋轉元件之特別有利之雙側驅動。此處,舉例而言,可能的是,該第一質量塊借助於一第一樑或腹板(且詳言之,另外經由一彈簧)耦接至該第一旋轉元件,且該第二質量塊借助於一第二樑或腹板(且詳言之,另外經由一彈簧)耦接至該第二旋轉元件。此導致以下可能性:在該驅動移動期間,可完成該第一質量塊及該第二質量塊沿著該第一延伸主軸之一平行驅動移動,且在該第一旋轉元件及該第二旋轉元件之一旋轉移動中繼續該等質量塊之此移動,特定言之,以使得該第一旋轉元件與該第二旋轉元件完成圍繞該第一旋轉軸及該第二旋轉軸的相對於彼此之一反相旋轉移動之方式。
作為該第一旋轉元件與該第二旋轉元件借助於該彈簧結構連接之事實之結果,詳言之,以使得該第一旋轉元件及該第二旋轉元件圍繞該第一延伸主軸之平行傾斜受到抑制且允許該第一旋轉元件及該第二旋轉元件圍繞該第一延伸主軸之反平行傾斜之方式,根據本發明之一個實施方式,可實施該第一旋轉元件與該第二旋轉元件之特定有利耦接係可能的。較佳可能的是,該彈簧結構連接至該第三驅動結構之至少一個腹板結構,詳言之,以使得借助於該 彈簧結構及該腹板結構產生該第三質量塊與該第一旋轉元件以及該第二旋轉元件之間的一機械連接之方式。
作為該第一旋轉元件與該第二旋轉元件借助於一耦接結構機械連接之事實之結果,其中該耦接結構詳言之包含至少一個搖臂結構,其中該搖臂結構係以使得該第一旋轉元件及該第二旋轉元件圍繞該第二延伸主軸之平行傾斜受到抑制且該第一旋轉元件及該第二旋轉元件圍繞該第二延伸主軸之反平行傾斜可能之方式形成,根據本發明之一個實施方式,可能的是,僅該第一旋轉元件及該第二旋轉元件在該第二延伸主軸之方向上之反平行傾斜係可能的,此有利地准許該兩個旋轉元件之一純反平行偵測移動。
作為該第一旋轉元件與該第二旋轉元件借助於再一耦接結構機械連接之事實之結果,其中該再一耦接結構與該第三驅動結構之至少一個腹板結構交叉,其中該腹板結構較佳地配置於在該再一耦接結構下之一額外層中的交叉區域中,根據本發明之一個實施方式,可能的是,該第三驅動結構較佳地連接至該第一旋轉元件及該第二旋轉元件,詳言之,在該第一旋轉元件與該第二旋轉元件之間的該區域中(在該第二延伸主軸之方向上)。特別較佳地,該第三驅動結構連接至配置於該第一旋轉元件與該第二旋轉元件之間的該彈簧結構。
作為該第一旋轉元件借助於一第一懸架連接至該基板之事實之結果,其中該第二旋轉元件借助於一第二懸架連接至該基板,其中詳言之,該第一懸架部分配置於該第一旋轉元件中之一中心切口中,其中詳言之,該第二懸架部分配置於該第二旋轉元件中之一中心切口中,根據本發明之一個實施方式,可能的是,該第一旋轉元件及該第二旋轉元件圍繞該第一旋轉軸及該第二旋轉軸之有利旋轉係可能的。詳言之,提供該第一懸架及該第二懸架按以下方式形成:該第一旋轉元件及該第二旋轉元件可各自圍繞該第一旋轉軸及該第二 旋轉軸旋轉,且同時,可圍繞該第一延伸主軸及該第二延伸主軸傾斜。
作為該第一質量塊借助於一第一彈簧總成連接至該第三質量塊之事實之結果,其中該第二質量塊借助於一第二彈簧總成連接至該第三質量塊,根據本發明之一個實施方式,可能的是,該感測器配置經特別有利地設計以用於偵測垂直於該基板之該延伸的主要平面之偏航率。此處,特別較佳地,該第一彈簧總成及該第二彈簧總成以使得其准許該第一質量塊與該第三質量塊及該第二質量塊與該第三質量塊在該第二延伸主軸中之一反相移動之方式形成。詳言之,較佳地,由該第一質量塊包含的該第一驅動總成之一部分(一驅動框架之一第一部分)借助於該第一彈簧總成連接至由該第三質量塊包含的該第三驅動總成之一部分(一驅動框架之一第三部分)。同樣較佳地,由該第二質量塊包含的該第二驅動總成之一部分(一驅動框架之一第二部分)借助於該第二彈簧總成連接至由該第三質量塊包含該第三驅動總成之一部分(一驅動框架之一第三部分)。
如與先前技術相比,用於製造根據本發明之一個實施方式的一偏航率感測器之根據本發明之方法具有已結合根據本發明之偏航率感測器或根據本發明之偏航率感測器之一實施方式描述的優勢。
本發明之例示性實施方式在圖式中說明且在以下描述中更詳細地解釋。
圖1展示根據本發明之第一實施方式的一偏航率感測器之示意性平面圖。
圖2展示根據本發明之第二實施方式的一偏航率感測器之示意性平面圖。
圖3展示根據本發明之第三實施方式的一偏航率感測器之示意性平面圖。
圖4圖5圖6中,說明根據本發明之實施方式的第一懸架11及第二懸架21之示意性平面圖。
圖7展示根據本發明之第四實施方式的一偏航率感測器之示意性平面圖。
圖8示意性地展示根據本發明之實施方式的一偏航率感測器之一部分。
圖9示意性地展示根據本發明之第五實施方式的一偏航率感測器之一部分。
在各種圖中,相同部分始終具備相同參考符號,且因此通常亦各經命名及提到僅一次。
經設計用於偵測處於基板之第一延伸主軸100中之偏航率及處於垂直於第一延伸主軸100的基板之第二延伸主軸100中之偏航率的例示性旋轉元件總成10、20展示於圖1、圖2、圖3及圖7中。
經設計用於偵測垂直於基板之延伸的主要平面100、200之一偏航率的例示性感測器總成40說明於圖1、圖2、圖3及圖7中。
圖1中,說明根據本發明之一第一實施方式的一偏航率感測器1之示意性平面圖。該偏航率感測器1包含一旋轉元件總成10、20,其用於偵測處於基板之第一延伸主軸100及垂直於第一延伸主軸100的基板之第二延伸主軸200中之偏航率。旋轉元件總成10、20包含一第一旋轉元件10及一第二旋轉元件20,其中該第一旋轉元件10可由該驅動總成30圍繞一第一旋轉軸驅動,且該第二旋轉元件20可由該驅動總成30圍繞一第二旋轉軸驅動。該第一旋轉元件10及該第二旋轉元件20各具有一中央切口。第一及第二旋轉軸垂直於延伸的主要平面100、200。第一旋轉元件10借助於第一懸架11連接至基板,且第二旋轉元件20借助於第二懸架21連接至基板。第一懸架11(至少部分地)配置於第一旋 轉元件10中之中央切口中,且第二懸架21(至少部分地)配置於第二旋轉元件20中之中央切口中。第一旋轉元件10及第二旋轉元件20之驅動移動反相地發生,如由在旋轉元件10、20中繪製之箭頭指示。在旋轉元件10、20下及/或上方,較佳地附接未說明之偵測電極。借助於此等偵測電極,可偵測旋轉元件10、20之傾斜。偏航率感測器1亦包含一感測器總成40。該感測器總成40經設計用於偵測垂直於該基板之延伸的主要平面100、200之一偏航率。感測器總成40及旋轉元件總成10、20皆可借助於一驅動總成30驅動。驅動總成30經設計用於沿著第一延伸主軸100之驅動移動。驅動總成30包含一第一驅動結構31、一第二驅動結構32及一第三驅動結構33。對該第一驅動結構31指派感測器總成40之一第一質量塊41。詳言之,該第一驅動結構31包含一樑。借助於樑(及此外,借助於一彈簧),第一質量塊41連接至第一旋轉元件10。對第二驅動結構32指派該感測器總成40之一第二質量塊42。詳言之,該第二驅動結構32包含一樑。借助於該樑(及此外,一彈簧),第二質量塊42連接至第二旋轉元件20。該感測器總成40亦包含一第三質量塊43。該第一質量塊41及該第二質量塊42經設計用於在驅動移動期間在相同方向上移動。第三質量塊43經設計用於在驅動移動期間在與該第一質量塊41及該第二質量塊42之移動相反的一方向(相對於第一延伸主軸100)上之移動。此由在質量塊41、42、43上繪製之箭頭指示。在該展示之實施方式中之第一質量塊41、第二質量塊42及第三質量塊43實質上在彼此旁邊平行於第二延伸主軸200形成。此處,第一質量塊41與第三質量塊43借助於一第一彈簧總成37連接,且第三質量塊43與第二質量塊42借助於一第二彈簧總成38連接。第一彈簧總成37及第二彈簧總成38(或耦接結構)按准許質量塊41、42、43之反對稱移動(亦即,在第二延伸主軸200之方向(由繪製之箭頭說明)上,該第一質量塊及該第二質量塊同相移動,而第三質量塊反相移動)之方式形成。在第一旋轉元件10與第二旋轉元件20之間配置一彈簧結構 70,其將兩個旋轉元件10、20相互連接。詳言之,彈簧結構70按以下方式形成:第一旋轉元件10及第二旋轉元件20圍繞第一延伸主軸100之平行傾斜受到抑制且允許第一及第二旋轉元件圍繞第一延伸主軸100之反平行傾斜。彈簧結構70連接至驅動總成30之第三驅動結構33之腹板結構45。詳言之,腹板結構45包含兩個樑,其在第一延伸主軸之方向上平行延伸且經由橫撐連接至彈簧結構70。藉由彈簧結構70及腹板結構45,在第三質量塊43與第一旋轉元件10以及第二旋轉元件20之間產生一機械連接。第一旋轉元件10與第二旋轉元件20進一步由一耦接結構60及另一耦接結構63機械連接。耦接結構60包含一搖臂結構61,其抑制第一旋轉元件10及第二旋轉元件20圍繞第二延伸主軸200之平行傾斜且允許第一旋轉元件及第二旋轉元件圍繞第二延伸主軸200之反平行傾斜。第一旋轉元件10及第二旋轉元件20在平行於第二延伸主軸200之方向及平行於第一延伸主軸100之方向上的允許之反平行傾斜由第一旋轉元件10及第二旋轉元件20中與平面圖(及因此,與延伸的主要平面100、200)成直角所示之箭頭(即,叉與點)示出。該另一耦接結構63與腹板結構45(詳言之,腹板結構45之兩個樑)不接觸地交叉。由於在此交叉區域81中之腹板結構45(或兩個樑)在一額外層中形成,因此此情形係可能的,該額外層位置比該另一耦接結構63且詳言之比在交叉區域81外側的腹板結構45之其餘區域靠下(亦即,靠近基板)。該另一耦接結構63包含另一搖臂結構61,其抑制第一旋轉元件10及第二旋轉元件20圍繞第二延伸主軸200之平行傾斜且允許第一旋轉元件及第二旋轉元件圍繞第二延伸主軸200之反平行傾斜。根據本發明,可能的是,第一旋轉元件10、第二旋轉元件20及感測器總成40可藉由同一驅動總成30驅動。詳言之,此意謂,借助於第一驅動結構31、第二驅動結構32及第三驅動結構33,將第一質量塊41、第二質量塊42及第三質量塊43沿著第一延伸主軸100之一驅動移動傳遞至旋轉元件10、20上,且結果,可圍繞第一及第二旋轉軸驅動旋轉元 件10、20。
圖2中,說明根據本發明之一第二實施方式的偏航率感測器1之示意性平面圖。第二實施方式類似圖1中所說明之第一實施方式,差異為,不存在另一耦接結構63。此使腹板結構45(且詳言之,其樑)不配置於額外層中之一交叉區域81中,而是在與其他元件相同之層中。
圖3中,說明根據本發明之一第三實施方式的一偏航率感測器1之示意性平面圖。第三實施方式類似於圖1中所說明之第一實施方式,差異為,不存在腹板結構45。結果,在彈簧結構70與第三質量塊43之間不產生機械連接。
圖4圖5圖6中,說明根據本發明之實施方式的第一旋轉元件10之第一懸架11及第二旋轉元件20之第二懸架21之示意性平面圖。在基板上之第一懸架11及第二懸架21分別以使得第一旋轉元件10及第二旋轉元件20可完成圍繞第一旋轉軸及圍繞垂直於基板之延伸的主要區域100、200之第二旋轉軸之一旋轉移動且同時第一旋轉元件10及第二旋轉元件20可能圍繞第一延伸主軸100及第二延伸主軸200(或圍繞平行於此等延伸主軸之軸線)傾斜之方式組態。
圖7展示根據本發明之一第四實施方式的一偏航率感測器之示意性平面圖。第四實施方式包含圖1中示意性說明之組件。此外,在第四實施方式中,感測器總成40包含一偵測結構(其可在偵測方向上移動)、一科氏結構(其可在驅動方向及偵測方向上移動)及一驅動結構(其可在驅動方向上移動)。質量塊41、42及43中之每一者分別包含偵測結構、科氏結構及驅動結構之一部分。對於第二質量塊42,科氏結構42'及偵測結構42"之相關聯部分經提供參考符號。科氏結構經由彈簧連接至驅動結構。同樣地,科氏結構經由彈簧連接至偵測結構。在第三質量塊43中,科氏框架由驅動框架分離。為了確保一 共同偵測模式,可以經由額外層產生連接80。各種質量塊41、42、43之偵測結構之該等部分各經由一耦接交叉連接,此准許兩個鄰近質量塊之反相移動且抑制一同相移動。驅動框架之個別部分經由耦接結構37、38(耦接搖臂)連接,此同樣地准許鄰近質量塊41、42、43在驅動模式中之反相移動且抑制同相移動。該驅動總成30包含第一質量塊41、第二質量塊42及第三質量塊43之驅動結構,且另外形成為圍繞感測器總成40之旋轉元件10、20及科氏結構之一圓周框架(詳言之,具有較小不連續部分),且亦借助於腹板結構45、彈簧結構70及另一腹板結構連接於旋轉元件10、20之間。為了在耦接結構60及/或另一耦接結構63下或上實施驅動總成30,使用額外層。根據本發明,該額外層可實施為比配置其他組件之層(例如,如圖8中所說明)薄得多的層,使得腹板結構45及另一腹板結構可用作彎曲彈簧以用於移出延伸的主要平面100、200。對於旋轉元件10、20圍繞第一延伸主軸100傾斜之偵測移動,驅動總成30(或驅動框架)能夠在附接至旋轉元件10、20之處附近移出平面將是有利的。在此實施方式中,此由在彈簧結構70附近且在外框架上之額外層中的其他結構實現。
在一替代性實施方式中,該感測器總成40亦可僅包含兩個框架。該等偵測結構接著整合至科氏框架中,且伴隨驅動移動而移動。
圖8中,示意性地說明根據本發明之一個實施方式的一偏航率感測器1之一部分。詳言之,作為透視圖之結果,可看見額外層。在此額外層中,腹板結構45配置於具有另一耦接結構63之交叉區域81中。較佳地,額外層比主要形成偏航率感測器1之其他元件之層薄。
圖9中,示意性地說明根據本發明之一第五實施方式的一偏航率感測器之一部分。在此實施方式中,在另一耦接結構63及腹板結構45之交叉區域81中,將該另一耦接結構63配置於額外層(且非腹板結構45)中。該另一耦接結構63此處包含三個搖臂結構61。作為三搖臂結構之結果,允許旋轉元件 10、20之所要的偵測移動,如由指向及指離平面之箭頭說明。在此實施方式中,更薄額外層在驅動移動中為靜態且未經加載係有利的。耦接結構60具有以上描述的與另一耦接結構63相同之特徵。

Claims (12)

  1. 一種具有延伸的主要平面(100、200)的基板之偏航率感測器(1),該偏航率感測器(1)包含旋轉元件總成(10、20),該旋轉元件總成(10、20)經設計用於偵測處於該基板之第一延伸主軸(100)中的偏航率及處於垂直於該第一延伸主軸(100)的該基板之第二延伸主軸(200)中的偏航率,其特徵在於,該偏航率感測器(1)具有感測器總成(40),其中該感測器總成(40)經設計用於偵測垂直於該基板之該延伸的主要平面(100、200)之偏航率,其中該感測器總成(40)及該旋轉元件總成(10、20)皆可藉由驅動總成(30)驅動,其中該驅動總成(30)經設計用於沿著該第一延伸主軸(100)之驅動移動。
  2. 如請求項1所述之偏航率感測器(1),其中該旋轉元件總成(10、20)包含第一旋轉元件(10)及第二旋轉元件(20),其中該第一旋轉元件(10)可借助於該驅動總成(30)圍繞第一旋轉軸驅動,其中該第二旋轉元件(20)可借助於該驅動總成(30)圍繞第二旋轉軸驅動,其中該第一旋轉軸垂直於該延伸的主要平面(100、200)配置,其中該第二旋轉軸垂直於該延伸的主要平面(100、200)配置。
  3. 如請求項1或2項所述之偏航率感測器(1),其中該感測器總成(40)包含第一質量塊(41)、第二質量塊(42)及第三質量塊(43),其中該第一質量塊及該第二質量塊(41、42)至少部分地經設計用於在該驅動移動期間在相同方向上移動,其中該第三質量塊(43)至少部分地經設計用於在該驅動移動期間在與該第一質量塊及該第二質量塊(41、42)之該移動相反之方向上移動,其中該第三質量塊(43)特別在平行於該基板之該第二延伸主軸(200)之方向上配置於該第一質量塊(41)與該第二質量塊(42)之間。
  4. 如請求項3所述之偏航率感測器(1),其中該第一質量塊 (41)經指派該驅動總成(30)之第一驅動結構(31),其中該第一驅動結構(31)機械連接至該第一旋轉元件(10),其中該第二質量塊(42)經指派該驅動總成(30)之第二驅動結構(32),其中該第二驅動結構(32)機械連接至該第二旋轉元件(20)。
  5. 如請求項3或4所述之偏航率感測器(1),其中該第三質量塊(43)經指派該驅動總成(30)之第三驅動結構(33)。
  6. 如請求項2至5中任一項所述之偏航率感測器(1),其中彈簧結構(70)係配置於該第一旋轉元件(10)與該第二旋轉元件(20)之間,其中該第一旋轉元件(10)與該第二旋轉元件(20)借助於該彈簧結構(70)連接,詳言之,以使得抑制該第一旋轉元件及該第二旋轉元件圍繞該第一延伸主軸(100)之平行傾斜且允許該第一旋轉元件及該第二旋轉元件圍繞該第一延伸主軸(100)之反平行傾斜之方式。
  7. 如請求項6所述之偏航率感測器(1),其中該彈簧結構(70)連接至該第三驅動結構(33)之至少一個腹板結構(45),詳言之,如以下方式:借助於該彈簧結構(70)及該腹板結構(45),產生該第三質量塊(43)與該第一旋轉元件(10)以及該第二旋轉元件(20)之間的一機械連接。
  8. 如請求項2至7中任一項所述之偏航率感測器(1),其中該第一旋轉元件(10)與該第二旋轉元件(20)借助於耦接結構(60)機械連接,其中該耦接結構(60)特別包含至少一個搖臂結構(61),其中該搖臂結構(61)以使得抑制該第一旋轉元件及該第二旋轉元件圍繞該第二延伸主軸(200)之平行傾斜且允許該第一旋轉元件及該第二旋轉元件圍繞該第二延伸主軸(200)之反平行傾斜之方式形成。
  9. 如請求項8所述之偏航率感測器(1),其中該第一旋轉元件(10)與該第二旋轉元件(20)借助於另一耦接結構(63)機械連接,其中該 另一耦接結構(63)與該第三驅動結構(33)之至少一個腹板結構(45)交叉,其中該腹板結構(45)較佳地配置於該另一耦接結構(63)下的一額外層中之交叉區域中。
  10. 如請求項1至9中任一項所述之偏航率感測器(1),其中該第一旋轉元件(10)借助於第一懸架(11)連接至該基板,其中該第二旋轉元件(20)借助於第二懸架(21)連接至該基板,其中詳言之,該第一懸架(11)部分配置於該第一旋轉元件(10)中之中央切口中,其中詳言之,該第二懸架(21)部分配置於該第二旋轉元件(20)中之中央切口中。
  11. 如請求項1至10中任一項所述之偏航率感測器(1),其中該第一質量塊(41)借助於第一彈簧總成(37)連接至該第三質量塊(43),其中該第二質量塊(42)借助於第二彈簧總成(38)連接至該第三質量塊(43)。
  12. 一種用於製造如請求項1至11中任一項所述之偏航率感測器(1)之方法。
TW107139507A 2017-11-09 2018-11-07 具有延伸的主要平面的基板之偏航率感測器以及製造偏航率感測器的方法 TWI805639B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017219933.4 2017-11-09
DE102017219933.4A DE102017219933A1 (de) 2017-11-09 2017-11-09 Drehratensensor mit einem eine Haupterstreckungsebene aufweisenden Substrat, Herstellungsverfahren für einen Drehratensensor
??102017219933.4 2017-11-09

Publications (2)

Publication Number Publication Date
TW201928352A true TW201928352A (zh) 2019-07-16
TWI805639B TWI805639B (zh) 2023-06-21

Family

ID=64049224

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107139507A TWI805639B (zh) 2017-11-09 2018-11-07 具有延伸的主要平面的基板之偏航率感測器以及製造偏航率感測器的方法

Country Status (7)

Country Link
US (1) US11421991B2 (zh)
KR (1) KR20200080302A (zh)
CN (1) CN111316062B (zh)
DE (1) DE102017219933A1 (zh)
FR (1) FR3073281B1 (zh)
TW (1) TWI805639B (zh)
WO (1) WO2019091788A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021200483A1 (de) 2021-01-20 2022-07-21 Robert Bosch Gesellschaft mit beschränkter Haftung Dreiachsiger Drehratensensor mit einem Substrat und einem Doppelrotor

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635640A (en) * 1995-06-06 1997-06-03 Analog Devices, Inc. Micromachined device with rotationally vibrated masses
DE102009027897B4 (de) * 2009-07-21 2023-07-20 Robert Bosch Gmbh Mikromechanischer Drehratensensor
SG188578A1 (en) * 2010-09-27 2013-04-30 Univ Kanagawa Vehicle behavior analysis device, vehicle behavior analysis program and drive recorder
DE102010062095A1 (de) * 2010-11-29 2012-05-31 Robert Bosch Gmbh Drehratensensor und Verahren zum Betrieb eines Drehratensensors
FR2985029B1 (fr) * 2011-12-22 2014-10-24 Commissariat Energie Atomique Dispositif micro/nano capteur inertiel multiaxial de mouvements
DE102011057081A1 (de) 2011-12-28 2013-07-04 Maxim Integrated Products, Inc. Mikro-Drehratensensor und Verfahren zum Betreiben eines Mikro-Drehratensensors
DE102012200132A1 (de) * 2012-01-05 2013-07-11 Robert Bosch Gmbh Drehratensensor und Verfahren zum Betrieb eines Drehratensensors
DE102012219511A1 (de) * 2012-10-25 2014-04-30 Robert Bosch Gmbh Mikromechanische Struktur
US9506756B2 (en) * 2013-03-15 2016-11-29 Freescale Semiconductor, Inc. Multiple axis rate sensor
DE102013208828A1 (de) * 2013-05-14 2014-11-20 Robert Bosch Gmbh Drehratensensor und Verfahren zum Betrieb eines Drehratensensors
DE102013216935A1 (de) 2013-08-26 2015-02-26 Robert Bosch Gmbh Drehratensensor mit voreingestelltem Quadratur-Offset
US9618533B2 (en) 2014-06-26 2017-04-11 Lumedyne Technologies Incorporated Systems and methods for determining rotation from nonlinear periodic signals
EP3217146B1 (en) * 2014-11-27 2019-09-25 Goertek Inc. Tri-axial micro-electro-mechanical gyroscope
FI127203B (en) * 2015-05-15 2018-01-31 Murata Manufacturing Co Vibrating micromechanical sensor for angular velocity
DE102015209100A1 (de) * 2015-05-19 2016-11-24 Robert Bosch Gmbh Drehratensensor und Verfahren zum Betrieb eines Drehratensensors mit kreisförmigem Antrieb
DE102015213465A1 (de) * 2015-07-17 2017-01-19 Robert Bosch Gmbh Mehrachsiger Drehratensensor mit geteiltem zentralem Rotor
ITUA20161498A1 (it) * 2016-03-09 2017-09-09 St Microelectronics Srl Struttura di rilevamento micromeccanica di un dispositivo sensore mems, in particolare di un giroscopio mems, con migliorate caratteristiche di azionamento
US10514259B2 (en) * 2016-08-31 2019-12-24 Analog Devices, Inc. Quad proof mass MEMS gyroscope with outer couplers and related methods
CN109696165A (zh) * 2017-10-20 2019-04-30 立锜科技股份有限公司 微机电装置

Also Published As

Publication number Publication date
US20210172737A1 (en) 2021-06-10
FR3073281A1 (fr) 2019-05-10
WO2019091788A1 (de) 2019-05-16
DE102017219933A1 (de) 2019-05-09
CN111316062B (zh) 2024-04-05
CN111316062A (zh) 2020-06-19
FR3073281B1 (fr) 2022-08-05
TWI805639B (zh) 2023-06-21
US11421991B2 (en) 2022-08-23
KR20200080302A (ko) 2020-07-06

Similar Documents

Publication Publication Date Title
JP6300395B2 (ja) 直交誤差補償を有する角速度センサ
US11733263B2 (en) 3-axis accelerometer
CN102575934B (zh) 具有嵌套的线性振荡地震元件的双轴抗震旋转速率传感器
RU2405126C1 (ru) Датчик угловой скорости
US9476711B2 (en) Angular rate sensor with quadrature error compensation
US8794066B2 (en) Micromechanical Coriolis rate of rotation sensor
KR101371149B1 (ko) 멤즈 기반의 자이로스코프
JP2009505064A (ja) 多軸微細機械加工加速度計
CN101839718A (zh) 三轴角速率传感器
JP2013092525A (ja) 軸外ばねシステムを有する慣性センサ
JP2011158319A (ja) 角速度センサ
US20130047726A1 (en) Angular rate sensor with different gap sizes
JP6558466B2 (ja) 容量性微小電気機械加速度計
KR102633689B1 (ko) 선형 및 회전 구동형 센서 장치들을 구비한 3축 마이크로기계식 요레이트 센서 어셈블리
TW201928352A (zh) 具有延伸的主要平面的基板之偏航率感測器以及製造偏航率感測器的方法
JP7380761B2 (ja) 2つのシーソーを有する加速度計
JP2018538530A (ja) マイクロメカニカルヨーレートセンサ及びその製造方法
JP7298030B2 (ja) マイクロメカニカル角速度センサシステム、角速度センサアレイ及び対応する製造方法
CN110998232B (zh) 单轴和双轴的转速传感器
JP2010210420A (ja) 加速度センサ
JP2010210424A (ja) 加速度センサ
US9964561B2 (en) Acceleration sensor
JP4939671B2 (ja) 回転振動型ジャイロ
JP2004317380A (ja) 2軸検出型双音さ型振動ジャイロセンサ
JP2010210418A (ja) 加速度センサ