TW201927873A - 預浸料及其製造方法及纖維強化複合材料之製造方法 - Google Patents

預浸料及其製造方法及纖維強化複合材料之製造方法 Download PDF

Info

Publication number
TW201927873A
TW201927873A TW107142863A TW107142863A TW201927873A TW 201927873 A TW201927873 A TW 201927873A TW 107142863 A TW107142863 A TW 107142863A TW 107142863 A TW107142863 A TW 107142863A TW 201927873 A TW201927873 A TW 201927873A
Authority
TW
Taiwan
Prior art keywords
epoxy resin
prepreg
particles
polyamide particles
resin composition
Prior art date
Application number
TW107142863A
Other languages
English (en)
Other versions
TWI798298B (zh
Inventor
小田顕通
桑原広明
河本紘典
Original Assignee
日商帝人股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商帝人股份有限公司 filed Critical 日商帝人股份有限公司
Publication of TW201927873A publication Critical patent/TW201927873A/zh
Application granted granted Critical
Publication of TWI798298B publication Critical patent/TWI798298B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5033Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2477/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2481/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2481/06Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

藉由本發明可提供一種預浸料,其係由強化纖維所成之強化纖維基材與一部分或全部含浸於前述強化纖維基材的環氧樹脂組成物所成,
前述環氧樹脂組成物包含環氧樹脂、胺系硬化劑及聚醯胺粒子作為必須成分,
前述環氧樹脂組成物包含環氧樹脂可溶性熱塑性樹脂作為任意成分,
在前述聚醯胺粒子表面導入有環氧基,及/或
前述環氧樹脂組成物所包含之前述環氧樹脂、前述胺系硬化劑及前述環氧樹脂可溶性熱塑性樹脂之至少任一種之一部分滲透至前述聚醯胺粒子。

Description

預浸料及其製造方法及纖維強化複合材料之製造方法
本發明係有關預浸料及其製造方法及纖維強化複合材料之製造方法。更詳細而言,本發明係有關製作具有高之Mode I層間韌性(mode I interlaminar fracture toughness)(GIc)之纖維強化複合材料用的預浸料及其製造方法;使用該預浸料製作之纖維強化複合材料之製造方法。
由強化纖維與樹脂所成之纖維強化複合材料,具有輕量、高強度、高彈性模數等的特長,而被廣泛應用於飛機、運動、休閒等一般產業。此纖維強化複合材料,大多經由強化纖維與稱為基質樹脂的樹脂預先一體化的預浸料所製造者。
構成預浸料的樹脂係由於預浸料之黏性、懸垂性(drape)所致之成形自由度的高度,因此使用熱硬化性樹脂的預浸料被廣泛使用。纖維強化複合材料,大多作為層合板使用的情形,強化纖維未配向於板厚方向,故層間強度弱,而有容易產生層間剝離的課題。因此,檢討改善層間強度的方法。
改善此層間強度的方法,以往有專利文獻1~5所記載的方法已為人知。
專利文獻1記載藉由將熱塑性樹脂溶解於熱硬化性樹脂,而對熱硬化性樹脂賦予韌性的方法。依據此方法時,對於熱硬化性樹脂,可賦予某程度的韌性。但是為了賦予高的韌性時,必須將大量的熱塑性樹脂溶解於熱硬化性樹脂中。結果有大量的熱塑性樹脂溶解的熱硬化性樹脂,黏度明顯變高,在由碳纖維所成之強化纖維基材內部,含浸充分量之樹脂變得困難。使用這種預浸料所製作的纖維強化複合材料,內部存在空隙等的許多缺陷。結果對纖維強化複合材料之壓縮性能及損傷容許性等不良影響。
專利文獻2~4中記載在預浸料表面,使熱塑性樹脂微粒子局在化的預浸料。此等之預浸料係熱塑性樹脂微粒子作為層間粒子產生作用,但是完全未言及此層間粒子的表面狀態。
[先前技術文獻]
[專利文獻]
[專利文獻1] 日本特開昭60-243113號公報
[專利文獻2] 日本特開平07- 41575號公報
[專利文獻3] 日本特開平07- 41576號公報
[專利文獻4] 日本特開平07- 41577號公報
[發明所欲解決之課題]
本發明之目的係解決上述以往技術的問題點,提供可製作Mode I層間韌性(GIc)高之纖維強化複合材料的預浸料及其製造方法及使用該預浸料製作之纖維強化複合材料的製造方法。

[用以解決課題之手段]
本發明人等為了解決上述課題,而檢討的結果,發現使用作為層間粒子之聚醯胺粒子,藉由提高該聚醯胺粒子與環氧樹脂之界面接著性,可提高所得之纖維強化複合材料的Mode I層間韌性(GIc),而完成本發明。又,藉由將該聚醯胺粒子進行熱處理及/或表面修飾,可使該聚醯胺粒子之表面狀態均勻,而完成本發明。
解決上述課題之本發明係如以下所記載者。
一種預浸料,其係由強化纖維所成之強化纖維基材與一部分或全部含浸於前述強化纖維基材的環氧樹脂組成物所成,
前述環氧樹脂組成物包含環氧樹脂、胺系硬化劑及聚醯胺粒子作為必須成分,
前述環氧樹脂組成物包含環氧樹脂可溶性熱塑性樹脂作為任意成分,
在前述聚醯胺粒子表面導入有環氧基,及/或
前述環氧樹脂組成物所包含之前述環氧樹脂、前述胺系硬化劑及前述環氧樹脂可溶性熱塑性樹脂之至少任一種之一部分滲透至前述聚醯胺粒子。
上述所記載的發明,分為以下[1]~[5]。
[1]一種預浸料,其係由強化纖維所成之強化纖維基材與一部分或全部含浸於前述強化纖維基材的環氧樹脂組成物所成,
前述環氧樹脂組成物包含環氧樹脂、胺系硬化劑及聚醯胺粒子,
前述環氧樹脂及/或前述胺系硬化劑之一部分滲透至前述聚醯胺粒子而成。
上述[1]所記載之發明係至少包含環氧樹脂、胺系硬化劑、聚醯胺粒子所成之環氧樹脂組成物為含浸於強化纖維基材而成的預浸料。此預浸料係環氧樹脂及/或胺系硬化劑之一部分滲透至聚醯胺粒子。
[2]一種預浸料,其係由強化纖維所成之強化纖維基材與一部分或全部含浸於前述強化纖維基材之環氧樹脂組成物所成,
前述環氧樹脂組成物包含環氧樹脂、胺系硬化劑、聚醯胺粒子及環氧樹脂可溶性熱塑性樹脂,
前述環氧樹脂、前述胺系硬化劑、及前述環氧樹脂可溶性熱塑性樹脂之至少1種之一部分滲透至前述聚醯胺粒子而成。
上述[2]所記載之發明係至少包含環氧樹脂、胺系硬化劑、聚醯胺粒子及環氧樹脂可溶性熱塑性樹脂所成之環氧樹脂組成物為含浸於強化纖維基材而成的預浸料。此預浸料係環氧樹脂、胺系硬化劑及環氧樹脂可溶性熱塑性樹脂之至少1種之一部分滲透至聚醯胺粒子。
[3]如前述[1]或[2]之預浸料,其中前述聚醯胺粒子為在表面導入有環氧基之表面修飾聚醯胺粒子。
上述[3]所記載之發明係聚醯胺粒子為在表面導入有環氧基之表面修飾聚醯胺粒子。
[4]一種預浸料,其係由強化纖維所成之強化纖維基材與一部分或全部含浸於前述強化纖維基材之環氧樹脂組成物所成,
前述環氧樹脂組成物包含環氧樹脂、胺系硬化劑及聚醯胺粒子,
前述聚醯胺粒子為在表面導入有環氧基之表面修飾聚醯胺粒子。
上述[4]所記載之發明係至少包含環氧樹脂、胺系硬化劑及聚醯胺粒子所成之環氧樹脂組成物為含浸於強化纖維基材而成的預浸料。此預浸料係聚醯胺粒子之表面導入有環氧基之表面修飾聚醯胺粒子。
[5]如上述[4]所記載之預浸料,其係進一步包含環氧樹脂可溶性熱塑性樹脂。
[6]如上述[1]至[5]之任一項的預浸料,其係藉由紅外吸收光譜法所測量之在波數範圍1300±50cm-1 具有波峰頂部之吸收波峰之波峰面積的積分值設為E(但是以波數範圍2150~1950cm-1 作為基線( base line)),在波數範圍3300±50cm-1 具有波峰頂部之吸收波峰之波峰面積的積分值設為A(但是以波數範圍3480~3150cm-1 作為基線)時,前述聚醯胺粒子之表層部中,滿足下述式(1)
0.15≦E/A ・・・式(1)。
上述[6]所記載之發明係聚醯胺粒子之表層部(表層部之定義如後述)中之IR光譜的面積強度比具有特定的關係。亦即,對聚醯胺粒子之環氧樹脂、胺系硬化劑及環氧樹脂可溶性熱塑性樹脂之至少任1種之滲透的程度受限定。
[7]如上述[1]至[6]之任一項的預浸料,其係藉由紅外吸收光譜法所測量之在波數範圍1300±50cm-1 具有波峰頂部之吸收波峰之波峰面積的積分值設為E(但是以波數範圍2150~1950cm-1 作為基線),在波數範圍3300±50cm-1 具有波峰頂部之吸收波峰之波峰面積的積分值設為A(但是以波數範圍3480~3150cm-1 作為基線)時,前述聚醯胺粒子之中心部中,滿足下述式(2)
E/A≦0.3 ・・・式(2)。
上述[7]所記載之發明係聚醯胺粒子之中心部(中心部之定義如後述)中之IR光譜的面積強度比具有特定的關係。亦即,對聚醯胺粒子之環氧樹脂、胺系硬化劑及環氧樹脂可溶性熱塑性樹脂之至少1種之滲透的程度受限定。換言之,滲透之程度在表層部與中心部不同。
[8]如上述[1]至[7]之任一項的預浸料,其中前述聚醯胺粒子之藉由廣角X光繞射法測量之結晶化度為42%以下。
[9]如上述[8]之預浸料,其中前述結晶化度為25%~42%。
上述[8]或[9]所記載之發明係聚醯胺粒子之結晶化度在特定之範圍。具有此範圍之結晶化度的聚醯胺粒子係與環氧樹脂之界面接著性高,且作為層間粒子發揮高的功能。
[10]如上述[1]至[9]之任一項的預浸料,其中前述環氧樹脂可溶性熱塑性樹脂為聚醚碸。
[11]如上述[1]至[10]之任一項的預浸料,其中前述聚醯胺粒子為預先施予環氧基導入處理之聚醯胺粒子,藉由飛行時間型二次離子質量分析測量所測量之對聚醯胺粒子表面之環氧基導入率為大於0。
[12]如上述[1]至[11]之任一項的預浸料,其中前述聚醯胺粒子之疏充填體積密度(D1)與藉由定容積膨脹法之乾式密度測量所得之表觀密度(D2),滿足下述式(3)
D1/D2≧0.30 ・・・式(3)。
[13]一種預浸料之製造方法,其係如上述[1]至[12]之任一項的預浸料之製造方法,其係將環氧樹脂與聚醯胺粒子在溫度70~150℃下混練10分鐘以上,製作環氧樹脂組成物後,將前述環氧樹脂組成物含浸於強化纖維基材內。
[14]一種預浸料之製造方法,其係如上述[1]至[12]之任一項的預浸料之製造方法,其係將表面修飾聚醯胺粒子與環氧樹脂進行混練,製作環氧樹脂組成物後,使前述環氧樹脂組成物含浸於強化纖維基材內。
上述[13]及[14]所記載之發明係上述[1]至[12]之任一項的預浸料的製造方法。
[15]一種纖維強化複合材料之製造方法,其係層合如上述[1]至[11]之任一項的預浸料,以壓力0.1~2MPa、溫度150~210℃下加熱1~8小時。
上述[15]所記載的發明為使用上述[1]至[11]所記載之預浸料之Mode I層間韌性(GIc)高之纖維強化複合材料的製造方法。

[發明效果]
本發明之一態樣的預浸料係因作為層間粒子作用之聚醯胺粒子為特定的表面狀態,故環氧樹脂與聚醯胺粒子之界面接著性高。因此,可提高所得之纖維強化複合材料之Mode I層間韌性(GIc),同時可使其品質安定化。
本發明之一態樣的預浸料係作為層間粒子作用之聚醯胺粒子,使用在表面導入有環氧基之表面修飾聚醯胺粒子。因此,可使環氧樹脂與表面修飾聚醯胺粒子之界面接著性均勻地控制。結果可提高所得之纖維強化複合材料之Mode I層間韌性(GIc),同時可使其品質安定化。
本發明之一態樣的預浸料製造方法係對於作為層間粒子作用之聚醯胺粒子,以特定條件進行熱處理。因此,可使環氧樹脂與聚醯胺粒子之界面接著性均勻地控制。結果可提高所得之纖維強化複合材料之Mode I層間韌性(GIc),同時可使其品質安定化。

[實施發明之形態]
以下,詳細說明本發明之預浸料及其製造方法及使用本發明之預浸料之纖維強化複合材料之製造方法。
1. 預浸料
本發明之預浸料係由強化纖維基材與含浸於前述強化纖維基材內之環氧樹脂組成物所成。本發明使用之環氧樹脂組成物係至少包含環氧樹脂與胺系硬化劑,及再包含具有特定之表面狀態的聚醯胺粒子所成。本發明使用之環氧樹脂組成物,除此等外,也可包含熱塑性樹脂或其他的添加劑。
本發明之預浸料為強化纖維基材之一部分或全體含浸有上述環氧樹脂組成物的預浸料。預浸料全體中之環氧樹脂組成物之含有率係以預浸料之全質量為基準,較佳為15~60質量%。樹脂含有率為未達15質量%時,所得之纖維強化複合材料產生空隙等,有使機械物性降低的情形。樹脂含有率為超過60質量%時,藉由強化纖維之補強效果不足,實質上,有質量對比機械物性低的情形。樹脂含有率,較佳為20~55質量%,更佳為25~50質量%。
(1-1)強化纖維基材
本發明使用之強化纖維基材,無特別限制,可列舉例如碳纖維、玻璃纖維、芳香族聚醯胺纖維、碳化矽纖維、聚酯纖維、陶瓷纖維、氧化鋁纖維、硼纖維、金屬纖維、礦物纖維、岩石纖維及礦渣纖維(Slag Fiber)等。
此等之強化纖維之中,較佳為碳纖維、玻璃纖維、芳香族聚醯胺纖維。就可得到比強度、比彈性模數良好,輕量且高強度之纖維強化複合材料的觀點,更佳為碳纖維。就拉伸強度優異的觀點,特佳為聚丙烯腈(PAN)系碳纖維。
強化纖維使用PAN系碳纖維時,其拉伸彈性係數,較佳為100~600GPa,更佳為200~500GPa,特佳為230~450GPa。又,拉伸強度,較佳為2000~10000MPa,更佳為3000~8000MPa。碳纖維之直徑,較佳為4~20μm,更佳為5~10μm。藉由使用這種碳纖維,可提高所得之纖維強化複合材料的機械特性。
強化纖維以使用形成薄片狀之強化纖維薄片為佳。強化纖維薄片,可列舉例如,將多數根之強化纖維在一方向排列整齊的薄片或、平織或斜紋(twill)等之二方向織物、多軸織物、不織布、氈(mat)、針織(knit)、編織、製造強化纖維的紙。此等之中,使用將強化纖維作為連續纖維,形成薄片狀之一方向排列整齊的薄片或二方向織物、多軸織物基材時,可得到機械物性更優異之纖維強化複合材料,故較佳。強化纖維薄片之厚度,較佳為0.01~3mm,更佳為0.1~1.5mm。
(1-2)環氧樹脂
環氧樹脂可使用以往公知的環氧樹脂。具體而言,可使用以下所例示者。此等之中,含有芳香族基之環氧樹脂為佳,含有環氧丙基胺結構、環氧丙醚結構之任一的環氧樹脂更佳。又,脂環族環氧樹脂也可適合使用。
含有環氧丙基胺結構的環氧樹脂,可列舉四環氧丙基二胺基二苯基甲烷、N,N,O-三環氧丙基-p-胺基苯酚、N,N,O-三環氧丙基-m-胺基苯酚、N,N,O-三環氧丙基-3-甲基-4-胺基苯酚、三環氧丙基胺基甲酚之各種異構物。
含有環氧丙醚結構的環氧樹脂,可列舉雙酚A型環氧樹脂、雙酚F型環氧樹脂、雙酚S型環氧樹脂、苯酚酚醛清漆型環氧樹脂、甲酚醛清漆型環氧樹脂、間苯二酚型環氧樹脂。
又,此等之環氧樹脂,必要時,芳香族環結構等也可具有非反應性取代基。非反應性取代基,可列舉甲基、乙基、異丙基等之烷基或苯基等之芳香族基、烷氧基、芳烷基、氯或溴等之鹵基。
(1-3)胺系硬化劑
本發明使用之環氧樹脂組成物,可使用公知的胺系硬化劑。胺系硬化劑,可列舉例如雙氰胺、芳香族胺系硬化劑之各種異構物、胺基苯甲酸酯類。芳香族胺系硬化劑,可列舉例如芳香族二胺化合物。
雙氰胺係預浸料之保存安定性優異,故較佳。又,4,4’-二胺基二苯基碸、3,3’-二胺基二苯基碸、4,4’-二胺基二苯基甲烷等之芳香族二胺化合物、及具有非反應性取代基之彼等之衍生物,由於可提供耐熱性之良好的硬化物的觀點,故特佳。在此,非反應性取代基,可列舉甲基、乙基、異丙基等之烷基、苯基等之芳香族基、烷氧基、芳烷基、氯或溴等之鹵基。
胺基苯甲酸酯類,較佳為使用三亞甲基乙二醇二-p-胺基苯甲酸酯或新戊二醇二-p-胺基苯甲酸酯。使用此等使硬化的複合材料,相較於二胺基二苯基碸之各種異構物,雖耐熱性較差,但是拉伸伸度優異。因此,配合複合材料之用途,使用的硬化劑之種類可適宜選擇。
環氧樹脂組成物所含有之硬化劑的量為適合至少使調配於環氧樹脂組成物之環氧樹脂硬化的量。硬化劑的量,只要配合使用之環氧樹脂及硬化劑的種類適宜調節即可。硬化劑的量係考慮其他之硬化劑或硬化促進劑之有無或與其添加量、與環氧樹脂之化學反應量論、及組成物之硬化速度等,適宜調整。相對於預浸料所含有之環氧樹脂100質量份,硬化劑較佳為添加30~100質量份,更佳為添加30~70質量份。
(1-4)聚醯胺粒子
本發明所使用的環氧樹脂組成物為包含特定之聚醯胺粒子。
聚醯胺粒子為在複數之預浸料經層合製作的纖維強化複合材料中,分散於強化纖維基材與鄰接之強化纖維基材之間的狀態(以下此分散的粒子也稱為「層間粒子」)。此層間粒子係使用纖維強化複合材料之韌性提高。
環氧樹脂、胺系硬化劑及環氧樹脂可溶性熱塑性樹脂之至少任一種之一部分滲透至此聚醯胺粒子的表面。
亦即,此聚醯胺粒子之表層部,與環氧樹脂之親和性高的狀態。因此,所得之纖維強化複合材料中,聚醯胺粒子與環氧樹脂之界面接著性高,結果可提高所得之纖維強化複合材料之Mode I層間韌性(GIc)。
為了使環氧樹脂、胺系硬化劑、及環氧樹脂可溶性熱塑性樹脂之至少任一種滲透至聚醯胺粒子時,將聚醯胺粒子與環氧樹脂、胺系硬化劑、及環氧樹脂可溶性熱塑性樹脂之至少任一種一同在溫度70~150℃下混練10分鐘以上為佳。藉由在加熱條件下長時間混練,環氧樹脂等滲透至聚醯胺粒子中之空隙或、聚醯胺之分子間及/或分子內。混練溫度,更佳為90~140℃,特佳為115~130℃。混練時間,更佳為20~300分鐘,特佳為30~150分鐘。
本發明中,聚醯胺粒子可藉由進行加熱處理的方法及/或使用後述表面修飾聚醯胺粒子的方法,可提高聚醯胺粒子之表層部與環氧樹脂之接著性。結果可提高使用本發明之預浸料所製作之複合材料的耐衝撃性。聚醯胺粒子更佳為併用進行加熱處理的方法及使用後述表面修飾聚醯胺粒子的方法。
又,本發明之預浸料係以聚醯胺粒子之表層部中之IR光譜之面積強度比(以下以稱為「IR強度比」)為具有特定關係為佳。具體而言,藉由紅外吸收光譜法所測量之在波數範圍1300±50cm-1 具有波峰頂部之吸收波峰之波峰面積的積分值設為E(但是以波數範圍2150~1950cm-1 作為基線),在波數範圍3300±50cm-1 具有波峰頂部之吸收波峰之波峰面積的積分值設為A(但是以波數範圍3480~3150cm-1 作為基線)時,,滿足下述式(1)為佳。
0.15≦E/A ・・・式(1)
又,在波數範圍1300±50cm-1 ,存在波峰頂部的波峰係來自環氧樹脂、胺系硬化劑及環氧樹脂可溶性熱塑性樹脂的波峰。又,在波數範圍3300±50cm-1 ,存在波峰頂部的波峰係來自聚醯胺的波峰。
在此,表層部係指由聚醯胺粒子之外側(周圍部)朝向中心,對於該聚醯胺粒子之半徑而言為30%之深度為止的部分。又,本發明中,聚醯胺粒子之中心部係指由聚醯胺粒子之中心朝向外側(周圍部),對於該聚醯胺粒子之半徑而言為30%之範圍的部分。亦即,半徑10μm的聚醯胺粒子時,表層部係指由聚醯胺粒子之周圍朝向中心,3μm為止的深度部分,中心部係指由聚醯胺粒子之中心朝向周圍部,3μm為止的範圍,亦即,係指粒子中心部之直徑6μm的部分。聚醯胺粒子之形狀為橢圓時,中心為長軸與短軸之交點,由中心至橢圓周上之點為止的距離非固定。此時,分別係指對於由中心至橢圓周上之點的距離為30%的部分。其他形狀的情形也同樣,對中心與周圍上之點的距離為30%的部分各自為表層部、中心部。
聚醯胺粒子之表層部之IR強度比(E/A)的最低值為未達0.15時,與環氧樹脂之親和性低。因此,所得之纖維強化複合材料中,環氧樹脂與聚醯胺粒子之界面接著性變低。聚醯胺粒子之表層部之IR強度比(E/A)之最低值,較佳為0.15以上,更佳為0.2~3.0之範圍,又更佳為0.3~2.0之範圍。又,聚醯胺粒子之表層部之IR強度比(E/A)之平均值,較佳為0.15以上,更佳為0.2以上,又更佳為0.25~3.0。
將聚醯胺粒子與環氧樹脂等進行加熱混練之溫度越高、時間越長,可更提高聚醯胺粒子之表層部之IR強度比(E/A)。又,藉由調整聚醯胺粒子之結晶化度也可調整。
本發明之預浸料係聚醯胺粒子之中心部中之IR強度比具有特定之關係為佳。具體而言,藉由紅外吸收光譜法所測量之在波數範圍1300±50cm-1 具有波峰頂部之吸收波峰之波峰面積的積分值設為E(但是以波數範圍2150~1950cm-1 作為基線),在波數範圍3300±50cm-1 具有波峰頂部之吸收波峰之波峰面積的積分值設為A(但是以波數範圍3480~3150cm-1 作為基線)時,滿足下述式(2)為佳。
E/A≦0.3 ・・・式(2)
亦即,本發明之預浸料所調配之聚醯胺粒子係以其表層部之狀態與其中心部之狀態不同較佳。具體而言,聚醯胺粒子之表層部,必須有環氧樹脂、胺系硬化劑、及前述環氧樹脂可溶性熱塑性樹脂之至少任一種之一部分滲透,在聚醯胺粒子之中心部,此等樹脂不太滲透為佳。藉此,提高環氧樹脂與聚醯胺粒子之界面接著性,可發揮作為層間粒子的功能。
聚醯胺粒子之中心部中之IR強度比(E/A)的積分值為0.3以下時,可提高所得之纖維強化複合材料之Mode I層間韌性(GIc)。聚醯胺粒子之中心部中之IR強度比(E/A)的積分值,更佳為0~0.20之範圍,又更佳為0~0.15之範圍。
聚醯胺粒子之中心部中之IR強度比(E/A)的積分值,對聚醯胺粒子,藉由預先進行均質化處理,可降低。均質化處理的方法,可列舉對聚醯胺粒子進行熱處理的方法等。藉由進行均質化處理,可減少聚醯胺粒子表層及/或內部的空隙,故可抑制環氧樹脂等之過多的滲透。
表示如聚醯胺粒子之粒子的表層及/或內部之空隙之有無或其多寡的指標,有各種的指標已為人知。可列舉例如,比表面積、疏充填體積密度(Aerated Bulk Density)、包裝體積密度(Packed Bulk Density)、表觀密度(Apparent density)、真密度、氣孔率、空隙率、多孔度等。其中,疏充填體積密度為使粒子自由落下填充於一定容積的容器時,其內容積為體積時之粒子的密度,粒子表層及內部之空隙也包含於體積中。又,表觀密度及真密度,可以比重瓶(pycnometer)法、水中浸漬法、水銀壓入法、定容積膨脹法等任意方法測量。其中,定容積膨脹法為使用氣體的乾式測量,不需要考慮濕式測量中之溶解或潤濕性的影響,可高精度測量,故較適合使用。真密度係不包含與粒子外部連接之空隙(開細孔)及未與粒子外部連接之空隙(閉細孔)作為粒子體積所計算的密度。相對於此,表觀密度係開細孔不包含於體積中,但是閉細孔為包含於體積中而計算的密度。又,定容積膨脹法中,因氣體無法到達由粒子之外部閉鎖的內部空間(閉細孔),故在此測量之值為表觀密度。
本發明之聚醯胺粒子係聚醯胺粒子之疏充填體積密度(D1)與藉由定容積膨脹法之乾式密度測量所得之表觀密度(D2),滿足下述式(3)為佳。
D1/D2≧0.30 ・・・式(3)
疏充填體積密度與表觀密度之比(D1/D2)越大,表示聚醯胺粒子表層及/或內部之空隙越少,粒子形狀越均勻。因此,疏充填體積密度與表觀密度之比(D1/D2)為0.30以上時,有提高所得之預浸料之成形性或纖維強化複合材料之韌性或品質安定性的傾向,故較佳。疏充填體積密度與表觀密度之比(D1/D2)係以0.35以上為佳。
藉由熱處理進行均質化處理時,在液體或氣體等之流體中進行熱處理為佳,在氣體中進行更佳。藉由在流體中進行熱處理,可使聚醯胺粒子全體均等進行熱處理。
在氣體中進行熱處理時,使用的氣體無特別限制,例如可使用空氣、氧、臭氧、二氧化氮等之氧化性氣體;一氧化碳、一氧化氮等之還原性氣體;氮、氦、氬等之惰性氣體。熱處理溫度係依據使用之聚醯胺粒子的種類適宜調節。具體而言,聚醯胺粒子之熔點以上的溫度為佳,更佳為100~800℃,又更佳為250~600℃。
熱處理的方法係將聚醯胺粒子分散噴霧至經加熱至處理溫度之流體中為佳。藉由將聚醯胺粒子分散噴霧流體中,可使聚醯胺粒子全體進行均勻地熱處理。將聚醯胺粒子分散噴霧流體中時,流體的流量(氣體時為風量)係以0.1~10m3 /min為佳,更佳為0.5~5m3 /min。又,分散噴霧之聚醯胺粒子的供給量係對於流體1m3 ,較佳為1~100g/min。
聚醯胺粒子,可列舉尼龍6(註冊商標)(PA6、藉由ε-己內醯胺之開環聚合反應所得的聚醯胺)、尼龍12(PA12、藉由月桂基內醯胺之開環聚合反應、或12-胺基十二烷酸之聚縮合反應所得的聚醯胺)、尼龍1010(PA1010、癸二酸與十亞甲基二胺之聚縮合反應所得的聚醯胺)、尼龍11(PA11、藉由十一烷內醯胺之開環聚合反應、或11-胺基十一烷酸之聚縮合反應所得的聚醯胺)等之由結晶性聚醯胺所成的聚醯胺粒子或如非晶性之尼龍(也稱為透明尼龍,聚合物之結晶化未發生,或聚合物之結晶化速度極慢的尼龍)的聚醯胺粒子。就所得之複合材料之耐衝撃性或韌性的觀點或容易調整環氧樹脂或硬化劑之滲透性的觀點,更佳為結晶性聚醯胺。
環氧樹脂組成物中之聚醯胺粒子之含量係依據環氧樹脂組成物之黏度適宜調整。就預浸料之加工性的觀點,相對於環氧樹脂組成物所含有之環氧樹脂100質量份,較佳為1~50質量份,更佳為2~45質量份,又更佳為5~40質量份。未達1質量份時,所得之纖維強化複合材料之耐衝撃性有變得不足的情形。超過50質量份時,對強化纖維基材之環氧樹脂組成物之含浸性或所得之預浸料之懸垂性等有降低的情形。
就所得之複合材料之物性等的觀點,聚醯胺粒子之藉由X光繞射法測量的結晶化度為未達43%較佳,更佳為42%以下。結晶化度之下限,無特別限制,以25%以上為佳。
又,藉由在聚醯胺粒子中導入與環氧基之親和性高之官能基的化學處理。也可提高界面接著性。具體而言,可列舉環氧化處理的方法。
具體而言,作為聚醯胺粒子,以使用在表面導入環氧基之表面修飾聚醯胺粒子為佳。這種表面修飾聚醯胺粒子係使藉由與聚醯胺之反應,在粒子表面可導入環氧基之化合物與聚醯胺粒子反應,可藉由在聚醯胺粒子表面導入環氧基(環氧化)而得。此表面修飾聚醯胺粒子為與基質樹脂的環氧樹脂之界面接著性優異。
可藉由與聚醯胺之反應,在粒子表面可導入環氧基之化合物,無特別限定,可列舉環氧氯丙烷、2-(氯甲基)-1,2-環氧基丙烷、1-氯-2,3-環氧基丁烷、環氧溴丙烷、環氧碘丙烷等之具有環氧鹵丙烷骨架的化合物或、多官能環氧化合物。多官能環氧化合物可使用以往公知的環氧樹脂。具體而言,可列舉雙酚A型環氧樹脂、雙酚F型環氧樹脂、雙酚S型環氧樹脂、苯酚酚醛清漆型環氧樹脂、甲酚醛清漆型環氧樹脂、及間苯二酚型環氧樹脂等之含有環氧丙醚結構的芳香族環氧樹脂;四環氧丙基二胺基二苯基甲烷、N,N,O-三環氧丙基-p-胺基苯酚、N,N,O-三環氧丙基-m-胺基苯酚、N,N,O-三環氧丙基-3-甲基-4-胺基苯酚、及三環氧丙基胺基甲酚之各種異構物等所例示之含有環氧丙基胺結構的芳香族環氧樹脂。此外,也可使用乙二醇或丙三醇等之脂肪族多元醇、聚乙二醇或聚丙二醇等之聚醚多元醇、及山梨醣醇等之糖醇等所衍生之脂肪族環氧樹脂或脂環族環氧樹脂。
在此,在表面導入環氧基之表面修飾聚醯胺粒子,例如可藉由以下方法製造。
首先,使在表面未導入環氧基之聚醯胺粒子與環氧氯丙烷,以四甲氯化及水作為觸媒,在80℃水中反應48小時,得到聚醯胺粒子之表面經氯丙烷化之氯丙烷體。其次,藉由將此氯丙烷體在氫氧化鈉水溶液中,使閉環反應進行環氧化,在聚醯胺粒子表面被導入環氧基。
聚醯胺粒子之環氧基導入率係大於0為佳,更佳為0.1以上,又更佳為0.5以上,特佳為1.0以上。在此,環氧基導入率係指被導入於聚醯胺粒子表面之環氧基,相對於環氧基未導入部分之聚醯胺之量的比率。本發明中,環氧基導入率係意味藉由後述實施例說明之ToF-SIMS(飛行時間型二次離子質量分析法)所測量之值。
使用這種表面修飾後之聚醯胺粒子時,可降低最終所得之複合材料之GIc值之變動係數(CV),故較佳。此外,即使改變製作纖維強化複合材料時之硬化中的升溫速度,GIc之值也不易變動,故較佳。
聚醯胺粒子的形態,無特別限定,較佳為球狀,更佳為真球度為80%以上。球狀的聚醯胺粒子可均勻調配於樹脂組成物中。又,所得之預浸料之成形性高。得到這種聚醯胺粒子的方法無特別限定,可列舉將聚醯胺溶解於溶劑的聚醯胺溶液調節溶液或溶劑的濃度,在弱溶劑中使析出的方法或對非真球狀之聚醯胺粒子施加熱處理的方法。
又,對聚醯胺粒子預先進行熱處理等之均質化處理較佳。藉由進行均質化處理,如上述可將聚醯胺粒子中心部之IR強度比(E/A)之積分值設為所期望的範圍。又,將聚醯胺粒子形狀或構造進行均質化,可提高所得之纖維強化複合材料之韌性或品質安定性。
聚醯胺粒子之平均粒徑係以1~50μm為佳,特佳為3~30μm,又更佳為10~30μm。未達1μm時,環氧樹脂組成物之黏度明顯增加。因此,對環氧樹脂組成物添加充分量之聚醯胺粒子有困難的情形。超過50μm時,將環氧樹脂組成物加工成薄片狀時,變得不易得到均質厚度薄片的情形。
(1-5)熱塑性樹脂
本發明之預浸料,除了上述聚醯胺粒子外,也可包含熱塑性樹脂。熱塑性樹脂,可列舉環氧樹脂可溶性熱塑性樹脂與環氧樹脂不溶性熱塑性樹脂。
(1-5-1)環氧樹脂可溶性熱塑性樹脂
環氧樹脂組成物也可含有環氧樹脂可溶性熱塑性樹脂。此環氧樹脂可溶性熱塑性樹脂可調整環氧樹脂組成物的黏度及提高所得之纖維強化複合材料的耐衝撃性。
環氧樹脂可溶性熱塑性樹脂係指在纖維強化複合材料成形之溫度或其以下的溫度中,一部分或全部可溶解於環氧樹脂的熱塑性樹脂。在此,一部分溶解於環氧樹脂係指相對於環氧樹脂100質量份,混合平均粒徑為10~50μm的熱塑性樹脂10質量份,在190℃下攪拌1小時時,粒子會消失,或粒子之大小有10%以上變化。
另外,環氧樹脂不溶性熱塑性樹脂係指在纖維強化複合材料成形之溫度或其以下的溫度中,實質上不溶解於環氧樹脂的熱塑性樹脂。亦即,相對於環氧樹脂100質量份,混合平均粒徑為10~50μm的熱塑性樹脂10質量份,在190℃下攪拌1小時時,粒子會消失,或粒子之大小無10%以上變化的熱塑性樹脂。又,一般而言,纖維強化複合材料成形的溫度為100~190℃。又,粒徑係藉由顯微鏡以目視測量,平均粒徑係指任意選擇之100個粒子之粒徑的平均值。
環氧樹脂可溶性熱塑性樹脂完全不溶解時,在環氧樹脂之硬化過程藉由加熱而溶解於環氧樹脂中,可增加環氧樹脂組成物的黏度。藉此,可防止因硬化過程中之黏度降低所造成之環氧樹脂組成物之流動(樹脂組成物自預浸料內流出的現象)。
環氧樹脂可溶性熱塑性樹脂係以190℃下,80質量%以上溶解於環氧樹脂的樹脂為佳。
環氧樹脂可溶性熱塑性樹脂之具體例,可列舉聚醚碸、聚碸、聚醚醯亞胺、聚碳酸酯等。此等可單獨使用也可併用2種以上。環氧樹脂組成物所含有之環氧樹脂可溶性熱塑性樹脂,特佳為重量平均分子量(Mw)為8000~60000之範圍的聚醚碸、聚碸。重量平均分子量(Mw)小於8000時,所得之纖維強化複合材料的耐衝撃性不足,大於60000時,有黏度明顯增加,操作性明顯變差的情形。環氧樹脂可溶性熱塑性樹脂之分子量分布為均一較佳。特別是重量平均分子量(Mw)與數平均分子量(Mn)之比的多分散度(Mw/Mn)為1~10之範圍為佳,更佳為1.1~5之範圍。又,本發明中,重量平均分子量係指藉由凝膠滲透層析所測量的分子量。
環氧樹脂可溶性熱塑性樹脂係具有含有與環氧樹脂之反應性的反應基或與環氧樹脂形成氫鍵之官能基為佳。這種環氧樹脂可溶性熱塑性樹脂,可提高環氧樹脂之硬化過程中之溶解安定性。又,硬化後,對於所得之纖維強化複合材料,可賦予韌性、耐藥品性、耐熱性及耐濕熱性。
具有與環氧樹脂之反應性之反應基,較佳為羥基、羧酸基、亞胺基、胺基等。使用羥基末端之聚醚碸時,所得之纖維強化複合材料之耐衝撃性、破壞韌性及耐溶劑性特優,故更佳。
環氧樹脂組成物所含有之環氧樹脂可溶性熱塑性樹脂的含量,可依據黏度適宜調整。就預浸料之加工性的觀點,相對於環氧樹脂組成物所含有之環氧樹脂100質量份,較佳為5~90質量份,更佳為5~40質量份,又更佳為15~35質量份。未達5質量份時,所得之纖維強化複合材料之耐衝撃性有變得不足的情形。環氧樹脂可溶性熱塑性樹脂之含量變高時,有黏度明顯變高,預浸料之操作性明顯變差的情形。
環氧樹脂可溶性熱塑性樹脂中,包含具有胺末端基之反應性芳香族寡聚物(以下僅稱為「芳香族寡聚物」)較佳。
環氧樹脂組成物係在加熱硬化時,藉由環氧樹脂與硬化劑之硬化反應,進行高分子量化。藉由高分子量化,擴大兩相區間(Two Phase Region),溶解於環氧樹脂組成物之芳香族寡聚物,引起反應誘發相分離(Reaction-induced phase separation)。藉由此相分離,在基質樹脂內形成硬化後之環氧樹脂與芳香族寡聚物雙連續之樹脂的二相構造。又,芳香族寡聚物由於具有胺末端基,故也產生與環氧樹脂之反應。此雙連續之二相構造中之各相,因互相強固結合,故也提高耐溶劑性。
此雙連續的構造,藉由吸收來自對纖維強化複合材料之外部的衝撃,故抑制龜裂傳播。結果使用包含芳香族寡聚物之預浸料所製作的纖維強化複合材料,具有高的耐衝撃性及破壞韌性。
此芳香族寡聚物,可使用公知具有胺末端基的聚碸、具有胺末端基之聚醚碸。胺末端基係以第一級胺(-NH2 )末端基為佳。
調配於環氧樹脂組成物之芳香族寡聚物,藉由凝膠滲透層析所測量的重量平均分子量為8000~40000較佳。重量平均分子量為未達8000時,基質樹脂之韌性提升效果低。又,重量平均分子量為超過40000時,環氧樹脂組成物之黏度變得過高,而容易產生環氧樹脂組成物不易含浸於強化纖維層內等之加工上的問題點。
芳香族寡聚物可使用如「Virantage DAMS VW-30500 RP」(註冊商標、Solvay Specialty Polymers公司製)的市售品。
環氧樹脂可溶性熱塑性樹脂的形態,無特別限定,較佳為粒子狀。粒子狀之環氧樹脂可溶性熱塑性樹脂,可均勻調配於環氧樹脂組成物中。又,所得之預浸料的成形性高。
環氧樹脂可溶性熱塑性樹脂之平均粒徑,較佳為1~50μm,特佳為3~30μm。未達1μm時,環氧樹脂組成物之黏度顯著增黏。因此,對環氧樹脂組成物添加充分的量之環氧樹脂可溶性熱塑性樹脂有變得困難的情形。超過50μm時,將環氧樹脂組成物加工成薄片狀時,有不易得到均質厚度薄片的情形。又,對環氧樹脂之溶解速度變慢,所得之纖維強化複合材料變得不均一,故不佳。
(1-5-2)環氧樹脂不溶性熱塑性樹脂
環氧樹脂組成物中,除了環氧樹脂可溶性熱塑性樹脂外,也可含有環氧樹脂不溶性熱塑性樹脂。本發明中,環氧樹脂組成物係含有環氧樹脂可溶性熱塑性樹脂及環氧樹脂不溶性熱塑性樹脂之兩者較佳。
環氧樹脂不溶性熱塑性樹脂或環氧樹脂可溶性熱塑性樹脂之一部分(硬化後之基質樹脂中,未溶解而殘存之環氧樹脂可溶性熱塑性樹脂)成為其粒子分散於纖維強化複合材料之基質樹脂中的狀態(以下,此分散的粒子也稱為「層間粒子」)。此層間粒子抑制纖維強化複合材料所接受的衝撃傳播。結果提高纖維強化複合材料之耐衝撃性。
環氧樹脂不溶性熱塑性樹脂,可列舉聚醯胺、聚縮醛、聚苯醚、聚苯硫醚、聚酯、聚醯胺醯亞胺、聚醯亞胺、聚醚酮、聚醚醚酮、聚萘二甲酸乙二酯、聚醚腈、聚苯并咪唑。此等之中,聚醯胺、聚醯胺醯亞胺、聚醯亞胺係因韌性及耐熱性高,故較佳。聚醯胺或聚醯亞胺,對纖維強化複合材料之韌性提升效果特別優異。此等可單獨使用,也可併用2種以上。又,也可使用此等之共聚物。
特別是藉由使用如非晶性聚醯亞胺或、尼龍6(註冊商標)、尼龍12、尼龍1010、尼龍11等之結晶性聚醯胺所成之聚醯胺粒子;非晶性之尼龍的聚醯胺粒子,特別是可提高所得之纖維強化複合材料之耐熱性。
環氧樹脂組成物中之環氧樹脂不溶性熱塑性樹脂之含量係依據環氧樹脂組成物之黏度適宜調整。就預浸料之加工性的觀點,相對於環氧樹脂組成物所含有之環氧樹脂100質量份,較佳為5~50質量份,更佳為10~45質量份,又更佳為15~40質量份。未達5質量份時,所得之纖維強化複合材料之耐衝撃性有變得不足的情形。超過50質量份時,有使環氧樹脂組成物之含浸性或、所得之預浸料之懸垂性等降低的情形。
環氧樹脂不溶性熱塑性樹脂之較佳的平均粒徑或形態係與環氧樹脂可溶性熱塑性樹脂相同。
(1-6)其他的添加劑
本發明之環氧樹脂組成物中,也可添加導電性粒子或難燃劑、無機系填充劑、內部脫模劑。
導電性粒子可列舉聚乙炔粒子、聚苯胺粒子、聚吡咯粒子、聚噻吩粒子、聚異苯并噻吩(thionaphthene)粒子及聚乙烯二氧噻吩粒子等之導電性聚合物粒子;碳粒子;碳纖維粒子;金屬粒子;由無機材料或有機材料所成之核材以導電性物質被覆的粒子。
難燃劑可列舉磷系難燃劑。磷系難燃劑只要是分子中包含磷原子者即無特別限定,可列舉例如磷酸酯、縮合磷酸酯、磷腈(phosphazene)化合物、聚磷酸鹽等之有機磷化合物或紅磷。
無機系填充材可列舉例如硼酸鋁、碳酸鈣、碳酸矽、氮化矽、鈦酸鉀、鹼性硫酸鎂、氧化鋅、石墨、硫酸鈣、硼酸鎂、氧化鎂、矽酸鹽礦物。特別是使用矽酸鹽礦物較佳。矽酸鹽礦物之市售品,可列舉THIXOTROPIC AGENT DT 5039(HUNTSMAN・Japan股份公司 製)。
內部脫模劑可列舉例如金屬皂類、聚乙烯蠟或巴西棕櫚蠟(carnauba wax)等之植物蠟、脂肪酸酯系脫模劑、矽油、動物蠟、氟系非離子界面活性劑。此等內部脫模劑之調配量係相對於前述環氧樹脂100質量份,較佳為0.1~5質量份,又更佳為0.2~2質量份。在此範圍內,可發揮自模具的脫模效果。
內部脫模劑之市售品,可列舉“MOLD WIZ (註冊商標)” INT1846(AXEL PLASTICS RESEARCH LABORATORIES INC.製)、Licowax S、Licowax P、Licowax OP、Licowax PE190、Licowax PED(Clariant Japan公司製)、十八烷基硬脂酸酯(SL-900A;理研vitamin(股)製。
本發明所使用的環氧樹脂組成物,在100℃下的黏度,較佳為1~1000Pa・s,更佳為5~500Pa・s。未達1Pa・s時,樹脂容易自預浸料流出。超過1000Pa・s時,預浸料容易產生未含浸部分。結果所得之纖維強化複合材料中,容易形成空隙等。
(1-7)環氧樹脂組成物之製造方法
本發明所使用的環氧樹脂組成物,可藉由混合環氧樹脂、胺系硬化劑、聚醯胺粒子、及必要時熱塑性樹脂或其他的成分來製造。此等之混合順序不拘。
本發明中,將環氧樹脂與聚醯胺粒子在溫度70~150℃下混練10分鐘以上較佳。將環氧樹脂與聚醯胺粒子在加熱條件下,藉由混練一定時間以上,可使環氧樹脂滲透至聚醯胺粒子中。加熱條件下,藉由長時間混練,使環氧樹脂等滲透至聚醯胺粒子中之空隙。混練溫度,較佳為90~140℃,特佳為115~130℃。混練時間,較佳為20~300分鐘,特佳為30~150分鐘。
將環氧樹脂與聚醯胺粒子在溫度70~150℃下混練10分鐘以上時,混練後添加胺系硬化劑較佳。另外,添加環氧樹脂可溶性熱塑性樹脂時,在混練前添加較佳。
硬化劑添加後之混合溫度,較佳為10~150℃,更佳為20~130℃,又更佳為30~100℃。超過150℃時,局部進行硬化反應,有對強化纖維基材層內之含浸性降低,或所得之環氧樹脂組成物及使用該組成物所製造之預浸料的保存安定性降低的情形。未達10℃時,環氧樹脂組成物之黏度高,實質上有混合困難的情形。
混合機械裝置可使用以往公知者。具體例可列舉輥磨機、行星式混合機、捏合機、擠出機(extruder)、班伯里混合機、具備有攪拌葉片的混合容器、橫型混合槽等。各成分之混合可在大氣中或惰性氣體環境下或減壓下進行。大氣中進行混合時,溫度、濕度被管控的環境為佳。無特別限定,例如,在30℃以下之一定溫度被管控的溫度或、相對濕度50%RH以下的低濕度環境進行混合為佳。
必要時將聚醯胺粒子預先進行熱處理為佳。熱處理之條件係如前述。
(1-8)預浸料之製造方法
本發明之預浸料之製造方法,無特別限制,可採用以往公知的方法。具體而言,可適合採用熱熔法或溶劑法。
熱熔法係在脫模紙上,將樹脂組成物塗佈成薄的薄膜狀,形成樹脂組成物薄膜,將該樹脂組成物薄膜層合於強化纖維基材,藉由在加壓下加熱,使強化纖維基材層內含浸樹脂組成物的方法。
將樹脂組成物形成樹脂組成物薄膜的方法,無特別限定,可使用以往公知的方法。具體而言,使用模押出、塗佈器、逆輥塗佈機、缺角輪塗佈機等,藉由將樹脂組成物流延至脫模紙或薄膜等之支撐體上,進行鑄模可得到樹脂組成物薄膜。製造薄膜時之樹脂溫度,依據樹脂組成物之組成或黏度適宜決定。具體而言,適合使用與前述環氧樹脂組成物之製造方法中之混合溫度相同的溫度條件。樹脂組成物對強化纖維基材層內之含浸可進行1次,也可分開多次進行。
溶劑法係使用適當的溶劑使環氧樹脂組成物形成清漆狀,使此清漆含浸於強化纖維基材層內的方法。
本發明之預浸料,在此等之以往法中,可藉由未使用溶劑之熱熔法適合製造。
將環氧樹脂組成物薄膜以熱熔法使含浸於強化纖維基材層內時之含浸溫度,較佳為50~150℃之範圍。含浸溫度為未達50℃時,環氧樹脂之黏度高,對強化纖維基材層內有未充分地含浸的情形。含浸溫度超過150℃時,環氧樹脂組成物之硬化反應進行,所得之預浸料有保存安定性降低,或懸垂性降低的情形。含浸溫度更佳為60~145℃,特佳為70~140℃。
將環氧樹脂組成物薄膜以熱熔法使含浸於強化纖維基材層內時之含浸壓力係考慮環氧樹脂組成物之黏度或樹脂流動等,適宜決定。
具體的含浸壓力,較佳為1~50(kN/cm),更佳為2~40 (kN/cm)。
2. 纖維強化複合材料
藉由將本發明之預浸料在特定條件下進行加熱加壓使硬化,可得到纖維強化複合材料。
纖維強化複合材料中之聚醯胺粒子係以滿足前述式(1)中之E/A之關係為佳。又,滿足前述式(2)中之E/A之關係更佳。而預浸料中之聚醯胺粒子的結晶化度,在作為纖維強化複合材料後,產生變動。
使用本發明之預浸料,製造纖維強化複合材料的方法,可列舉高壓鍋成形或模壓成形等之公知的成形法。
(2-1)高壓鍋成形法
本發明之纖維強化複合材料之製造方法,較佳為使用高壓鍋成形法。高壓鍋成形法係在模具之下模依序敷設預浸料及薄膜袋(film bag),將該預浸料密封於下模與薄膜袋之間,將下模與薄膜袋形成的空間抽真空,同時,以高壓鍋成形裝置進行加熱與加壓的成形方法。成形時的條件係升溫速度為1~50℃/分鐘,0.2~0.7MPa、130~180℃下10~150分鐘進行加熱及加壓為佳。
(2-2)模壓成形法
本發明之纖維強化複合材料之製造方法,較佳為使用模壓成形法。藉由模壓成形法製造纖維強化複合材料之製造係將本發明之預浸料或層合本發明之預浸料形成之預成型,使用模具藉由加熱加壓進行。模具預先加熱至硬化溫度較佳。
模壓成形時之模具的溫度,較佳為150~210℃。成形溫度為150℃以上時,可充分地產生硬化反應,可以高的生產性得到纖維強化複合材料。又,成形溫度為210℃以下時,樹脂黏度不會過低,可抑制模具內之樹脂之過剩流動。結果可抑制樹脂自模具流出或纖維之彎曲( meandering),故可得到高品質的纖維強化複合材料。
成形時之壓力為0.2~2MPa。壓力為0.2MPa以上時,可得到樹脂之適度的流動,可防止外觀不良或空隙產生。又,因預浸料充分地密著於模具,可製造良好外觀的纖維強化複合材料。壓力為2MPa以下時,不會使樹脂產生必要以上之流動,故所得之纖維強化複合材料不易產生外觀不良。又,對模具不會施加必要以上的負載,故模具不易產生變形等。
成形時間為1~8小時較佳。
所得之纖維強化複合材料係以Mode I層間韌性(GIc)為350J/m2 以上較佳,更佳為525J/m2 以上。GIc小於350J/m2 時,各種用途所要求之耐衝撃性等之機械特性或耐久性有變得不足的情形,故不佳。
[實施例]
以下藉由實施例更具體說明本發明,但是本發明不限定於實施例者。本實施例、比較例中使用的成分或試驗方法如以下所記載。
[成分]
(環氧樹脂)
・環氧丙基胺型環氧樹脂(3官能基):araldite MY0600 (商品名、Huntsman Advanced Materials公司製、以下簡稱為「MY0600」)
・環氧丙基胺型環氧樹脂(4官能基):aralditeMY721 (商品名、Huntsman Advanced Materials公司製、以下簡稱為「MY721」)
・環氧丙醚型環氧樹脂(2官能基):Ex-201(商品名、nagase chemtex公司製)
(胺系硬化劑)
・芳香族胺系硬化劑:3,3’-二胺基二苯基碸(MITSUI FINE CHEMICAL股份公司製、以下簡稱為「3,3’-DDS」)
(聚醯胺粒子)
・PA12:VESTSINT2158(商品名、平均粒徑20μm之聚醯胺12樹脂粒子、daicel-evonik 股份公司製)
・PA12(A):ORGASOL 2002D NAT1(商品名、平均粒徑20μm之聚醯胺12樹脂粒子、arkema公司製)
・PA1010:VESTSINT9158(商品名、平均粒徑20μm之聚醯胺1010樹脂粒子、daicel-evonik股份公司製)
・PA11:RILSAN D30NAT(商品名、平均粒徑25μm之聚醯胺11樹脂粒子、arkema公司製)
(環氧樹脂可溶性熱塑性樹脂)
・聚醚碸:PES-5003P(商品名、住友化學工業股份公司製、平均粒徑20μm)
(碳纖維)
・碳纖維strand:Tenax(註冊商標) IMS65(商品名、拉伸強度6000MPa、拉伸彈性係數290GPa、東邦strand股份公司製)
[聚醯胺粒子之熱處理步驟]
處理A:
使用Nippon Pneumatic工業股份公司製之表面改質機(Meteor rainbow MR-10),將上述各聚醯胺粒子在加熱至550℃之空氣中(熱風風量:1.2m3 /min),以1.0kg/hr之供給速度噴射,進行熱處理,得到經熱處理的聚醯胺粒子。
處理B:
將聚醯胺粒子使用熱風循環乾燥器,在靜置條件下,空氣中140℃、進行乾燥處理5小時,得到經熱處理之聚醯胺粒子。
[聚醯胺粒子之表面修飾步驟]:對聚醯胺粒子表面導入環氧基
處理a:
將聚醯胺粒子(150g)、四氫呋喃(1000ml)、碳酸鉀(10g)投入燒瓶中,室溫下邊攪拌,邊滴下環氧氯丙烷(14g)。然後,迴流狀態下進行反應24小時。反應終了後,放置冷卻至室溫。將反應液過濾回收粒子後,回收的粒子以四氫呋喃(室溫)及水(70℃)洗淨。藉由將洗淨後的粒子乾燥,得到表面修飾後的聚醯胺粒子。
處理b:
聚醯胺粒子(150g)、環氧氯丙烷(300g)、離子交換水(1.4g)、四甲氯化銨(0.33g)投入燒瓶中,邊攪拌邊加熱至80℃,反應48小時。反應終了後,放置冷卻至室溫。放置冷卻後,投入48%氫氧化鈉水溶液(7.5g),室溫下攪拌2小時。將反應液過濾回收粒子後,回收的粒子以四氫呋喃(室溫)及水(70℃)洗淨。藉由將洗淨後的粒子乾燥,得到經表面修飾的聚醯胺粒子。
[評價方法]
(1)層間破壞韌性Mode I(GIc)
將所得之預浸料切割成一邊為360mm的正方形後,進行層合,製作在0°方向層合有10層之層合體2個。為了使發生初期龜裂,而將脫模薄片挾於2個層合體之間,組合兩者得到層合構成[0]20 之預浸料層合體。使用通常的真空高壓鍋成形法,在0.59MPa的壓力下,以升溫速度2.0℃/min升溫至180℃,然後在180℃之條件下進行成形2小時。將所得之成形物(纖維強化複合材料)切割成寬12.7mm×長度304.8mm的尺寸,得到層間破壞韌性Mode I(GIc)的試驗片。
GIc的試驗方法為使用雙懸臂(cantilever)層間破壞韌性試驗法(DCB法),使由脫模薄片之前端12.7mm之預裂(precrack、初期龜裂)發生後,再進行使龜裂進展的試驗。由預裂之前端,龜裂進展長度到達127mm之時點結束試驗。試驗片拉伸試驗機之衝頭速度(crosshead speed)為12.7mm/分鐘,以n=5進行測量。
龜裂進展長度為使用顯微鏡,由試驗片之兩端面測量,藉由計測荷重及龜裂開口變位,算出GIc。
又,藉由所得之n=5的數據,以下述式(4)算出變動係數(CV)。
[數1]
・・・式(4)
(2)IR測量
由所得之GIc試驗片切割成IR試驗用樣品,使用切片機(Microtome)進行表面展開(surface development)。將所得之樣品設置於試料台,對於分析對象之聚醯胺粒子,使用下述裝置、條件實施ATR影像(ATR Imaging)。
使用裝置:BRUKER公司VERTEX,HYPERION3000
測量條件:ATR結晶:Ge、
檢測器:FPA、
分解能:8cm-1
積算次數:512次、
測量範圍:4000~900cm-1
又,E/A使用下述式(5)算出。
[數2]

・・・式(5)
A 1300cm -1 :以波數範圍2150~1950cm-1 為基線、
在1300±50cm-1 所觀測到的波峰之最大高度
A 3300cm -1 :以波數範圍3480~3150cm-1 為基線、
在3300±50cm-1 所觀測到的波峰之最大高度
又,在波數範圍1300±50cm-1 存在波峰頂部之吸收波峰係歸因於(attribute)環氧樹脂、胺系硬化劑及環氧樹脂可溶性熱塑性樹脂。又,在波數範圍3300±50cm-1 存在波峰頂部之吸收波峰係歸因於聚醯胺。
(3)E/A積分值
以橫軸為粒子相對徑,縱軸為E/A,製作相對直徑E/A繪圖。關於粒子表層係由粒子相對直徑之表層30%,亦即,將-1.0~-0.7及0.7~1.0之範圍之相對直徑E/A繪圖,以決定係數R2 值成為0.98以上之2次~6次的多項式近似法(approximation),所得之近似曲線使用梯形法,對於-1.0~ -0.7及0.7~1.0之各自的區域進行積分,求彼等之最低值、最大值及平均值來算出。又,使用梯形法之積分值之算出係將每一區間之橫軸長度設定為特定之相對直徑範圍之100分之1,亦即,在此為0.003。
又,關於粒子中心部係由粒子中心,正負30%,亦即,對於-0.3~0.3之範圍之相對直徑E/A繪圖,進行線形近似法,所得之近似直線使用梯形法,對於-0.3~0.3之各自的區域進行積分來算出。又,積分值算出係與表層相同,將每一區間之橫軸長度設定為特定之相對直徑範圍之100分之1,亦即,在此為0.006。
(4)結晶化度
聚醯胺粒子之結晶化度(Xc)係藉由將廣角X光繞射測量中之繞射角2θ、4°~44°之範圍分離成結晶質與非晶質,由所得之各波峰之積分強度藉由次式(6)求得。
[數3]
・・・式(6)

Ia :來自非晶質之波峰之積分強度
Ic :來自結晶質之散射強度之積分強度
其他,測量條件如下述。
測量裝置:Nano-Viewer(rigaku公司製)
發生裝置:ultrax18
管電壓/管電流:45kV/60mA
靶:CuKα(λ=0.1542nm)
相機長:95mm
測量時間:10min
測量溫度:室溫
檢測器:影像板(Imaging Plate)
(5)環氧基導入率(表面修飾率)
實施表面修飾處理之聚醯胺粒子表面之環氧基導入率係藉由下述方法測量。又,本測量係使用在環氧樹脂組成物之製作前,亦即與環氧樹脂或硬化劑之混合前的聚醯胺粒子。
使表面修飾聚醯胺粒子與苄基胺反應,在被導入於聚醯胺粒子表面之環氧基導入苯環,以飛行時間型二次離子質量分析法(ToF-SIMS)進行解析。反應條件如下述。
聚醯胺粒子(300mg)中加入苄基胺(3ml),搖混後,將所得之分散液在室溫下靜置一晝夜。然後,由所得之分散液過濾取得聚醯胺粒子,此粒子使用丙酮進行多次洗淨,除去未反應之苄基胺。然後,將所得之聚醯胺粒子進行乾燥,得到在飛行時間型二次離子質量分析法(ToF-SIMS)中之標識官能基的苯環被導入的聚醯胺粒子樣品。
ToF-SIMS之測量條件如下述。
・裝置:ulvac-phi公司製 TRIFT-IV
・測量條件:聚束(bunching)模式(能量分解能重視)
・測量條件:一次離子:離子源 Au1+
加速電壓:30kV、
孔徑計(apertomete):20μm
・測量質量範圍:m/z=0.5~1850
・測量面積:50μm四方
・測量時間:5~10min
對於藉由上述前處理所得之聚醯胺粒子樣品,實施飛行時間型二次離子質量分析法(ToF-SIMS)之正離子二次光譜測量,由所得的結果依據次式(7)算出的值,作為表面處理粒子的環氧基導入率。
[數4]

・・・式(7)
I (m /z =91):m/z=91之波峰強度
I (m /z =81):m/z=81之波峰強度
(6)粒度分布、平均粒徑
聚醯胺粒子之粒度分布係使用日機裝股份公司製雷射繞射・散射式之粒度分析計(microtrac法)MT3300測量。由所得之粒度分布結果,其50%粒徑(D50)作為平均粒徑。
(7)疏充填體積密度
聚醯胺粒子之疏充填體積密度係使用Hosokawa Micron股份公司製粉體特性評價裝置「Powder Tester PT-X」測量。
(8)表觀密度
聚醯胺粒子之表觀密度係使用股份公司島津製作所製乾式自動密度計「ACCUPYC1330」,藉由定容積膨脹法測量。
(實施例1)
在環氧樹脂MY0600(100質量份)中,添加環氧樹脂可溶性熱塑性樹脂PES-5003P(30質量份),於120℃下使用行星式混合機攪拌60分鐘,使PES-5003P完全溶解於環氧樹脂,調製樹脂組成物A。
此外,在環氧樹脂MY721(62質量份)及MY0600(38質量份)中,添加環氧樹脂可溶性熱塑性樹脂PES-5003P(26質量份),於120℃下使用行星式混合機攪拌60分鐘,使PES-5003P完全溶解於環氧樹脂後,將樹脂溫度冷卻至80℃以下,調製環氧樹脂組成物。然後,使用輥磨機,在處理A的條件下,將熱處理後之聚醯胺1010粒子(40質量份)添加於上述環氧樹脂組成物中,混練60分鐘後,再將硬化劑(66質量份)進行混練,調製樹脂組成物B。
其次,使用薄膜塗佈機,將調製後之樹脂組成物A、B分別塗佈於脫模紙上,製作10g/m2 之樹脂薄膜A及40g/m2 之樹脂薄膜B各2片。其次,在使碳纖維束於一方向排列之碳纖維薄片上,於薄片兩面分別重疊1片上述製作之樹脂薄膜B。藉由加熱、加壓,使樹脂含浸於碳纖維薄片,得到一次預浸料。然後,在樹脂薄膜A2片之間供給前述一次預浸料,藉由加熱、加壓,製作碳纖維之單位面積重量為190g/m2 、基質樹脂之質量分率為35.0%的一方向預浸料。
使用製作的一方向預浸料,製造複合材料,評價其韌性。所得之複合材料為GIc:665J/m2 ,表示優異的韌性。此等結果如表1所示。
(實施例2)
與實施例1同樣調製樹脂組成物A。
此外,在環氧樹脂MY721(62質量份)及MY0600(38質量份)中,添加環氧樹脂可溶性熱塑性樹脂PES-5003P(26質量份)、及在處理A之條件經熱處理的聚醯胺1010粒子(40質量份),於120℃下使用行星式混合機攪拌60分鐘,使PES-5003P完全溶解於環氧樹脂後,將樹脂溫度冷卻至80℃以下,調製環氧樹脂組成物。然後,使用輥磨機,將硬化劑(66質量份)添加於上述環氧樹脂組成物中,混練調製樹脂組成物B。
其次,使用薄膜塗佈機,將調製後之樹脂組成物A、B分別塗佈於脫模紙上,製作10g/m2 之樹脂薄膜A及40g/m2 之樹脂薄膜B各2片。其次,在使碳纖維束於一方向排列之碳纖維薄片上,於薄片兩面分別重疊1片上述製作之樹脂薄膜B。藉由加熱、加壓,使樹脂含浸於碳纖維薄片,得到一次預浸料。然後,在樹脂薄膜A2片之間供給前述一次預浸料,藉由加熱、加壓,製作碳纖維之單位面積重量為190g/m2 、基質樹脂之質量分率為35.0%的一方向預浸料。
使用製作的一方向預浸料,製造複合材料,評價其韌性。所得之複合材料為GIc:700J/m2 ,表示優異的韌性。此等結果如表1所示。
(實施例3)
與實施例1同樣調製樹脂組成物A。
此外,在環氧樹脂MY721(80質量份)及EX-201(20質量份)中,添加環氧樹脂可溶性熱塑性樹脂PES-5003P(26質量份)、及以處理A之條件經熱處理的聚醯胺11粒子(40質量份),於120℃下使用行星式混合機攪拌60分鐘,使PES-5003P完全溶解於環氧樹脂後,將樹脂溫度冷卻至80℃以下,調製環氧樹脂組成物。然後,使用輥磨機,將硬化劑(66質量份)添加於上述環氧樹脂組成物中,混練調製樹脂組成物B。
其次,使用薄膜塗佈機,將調製後之樹脂組成物A、B分別塗佈於脫模紙上,製作10g/m2 之樹脂薄膜A及40g/m2 之樹脂薄膜B各2片。其次,在使碳纖維束於一方向排列之碳纖維薄片上,於薄片兩面分別重疊1片上述製作之樹脂薄膜B。藉由加熱、加壓,使樹脂含浸於碳纖維薄片,得到一次預浸料。然後,在樹脂薄膜A2片之間供給前述一次預浸料,藉由加熱、加壓,製作碳纖維之單位面積重量為190g/m2 、基質樹脂之質量分率為35.0%的一方向預浸料。
使用製作的一方向預浸料,製造複合材料,評價其韌性。所得之複合材料為GIc:648J/m2 ,表示優異的韌性。此等結果如表1所示。
(實施例4)
除了將聚醯胺粒子改為以處理A之條件進行熱處理的聚醯胺12粒子外,依據實施例3調製樹脂組成物A、B及一方向預浸料。
使用製作的一方向預浸料,製造複合材料,評價其韌性。所得之複合材料為GIc:718J/m2 ,表示優異的韌性。此等結果如表1所示。
(實施例5)
除了將實施例1使用的聚醯胺1010粒子改為以處理B之條件再進行熱處理外,依據實施例1調製樹脂組成物A、B及一方向預浸料。
使用製作的一方向預浸料,製造複合材料,評價其韌性。所得之複合材料為GIc:403J/m2 ,表示優異的韌性。此等結果如表1所示。
(比較例1)
除了將聚醯胺粒子改為未熱處理之聚醯胺1010粒子外,依據實施例1調製樹脂組成物A、B及一方向預浸料。
使用製作的一方向預浸料,製造複合材料,評價其韌性。所得之複合材料為GIc:333J/m2 ,相較於前述實施例,韌性較差的複合材料。此等結果如表1所示。
(比較例2)
除了將聚醯胺粒子改為未熱處理之arkema公司製之聚醯胺12粒子(PA12(A))外,依據實施例3調製樹脂組成物A、B及一方向預浸料。
使用製作的一方向預浸料,製造複合材料,評價其韌性。所得之複合材料為GIc:280J/m2 ,相較於前述實施例,韌性較差的複合材料。此等結果如表1所示。
(實施例6~7、12)
除了使用具有表2所記載之結晶化度的表面修飾聚醯胺1010粒子,取代實施例1使用之聚醯胺1010粒子外,依據實施例1調製樹脂組成物A、B及一方向預浸料。
使用製作的一方向預浸料,製造複合材料,評價其韌性。所得之複合材料為GIc:683J/m2 (實施例6)、GIc:683J/m2 (實施例7)、GIc:665J/m2 (實施例12),表示優異的韌性。又,實施例6中,硬化中之升溫速度設定為0.5℃/min及0.2℃/min,製作纖維強化複合材料,測量各自之GIc。所得之複合材料之GIc,分別為683J/m2 、560J/m2 ,表示優異的GIc保持率。此等結果如表2所示。
(實施例8)
除了使用具有表2所記載之結晶化度的表面修飾聚醯胺12粒子取代實施例4使用之聚醯胺12粒子外,依據實施例4調製樹脂組成物A、B及一方向預浸料。
使用製作的一方向預浸料,製造複合材料,評價其韌性。所得之複合材料為GIc:665J/m2 (實施例8),表示優異的韌性。又,硬化中之升溫速度設定為0.5℃/min及0.2℃/min,調製纖維強化複合材料,測量各自之GIc。所得之複合材料之GIc,分別為665J/m2 、525J/m2 ,表示優異的GIc保持率。此等結果如表2所示。
(實施例9)
除了使用具有表2所記載之結晶化度的聚醯胺12粒子取代實施例4使用之聚醯胺12粒子外,依據實施例4調製樹脂組成物A、B及一方向預浸料。
使用製作的一方向預浸料,製造複合材料,評價其韌性。所得之複合材料為GIc:665J/m2 (實施例9),表示優異的韌性。又,硬化中之升溫速度設定為0.5℃/min及0.2℃/min,調製纖維強化複合材料,測量各自之GIc。所得之複合材料之GIc,分別為613J/m2 、420J/m2 。此等結果如表2所示。
(實施例10)
除了使用具有表2所記載之結晶化度的聚醯胺1010粒子取代實施例1使用之聚醯胺1010粒子,同時以處理B之條件再進行熱處理外,依據實施例1調製樹脂組成物A、B及一方向預浸料。
使用製作的一方向預浸料,製造複合材料,評價其韌性。所得之複合材料為GIc:473J/m2 ,表示優異的韌性。此等結果如表2所示。
(實施例11)
除了使用具有表2所記載之結晶化度的聚醯胺1010粒子取代實施例1使用之聚醯胺1010粒子外,依據實施例1調製樹脂組成物A、B及一方向預浸料。
使用製作的一方向預浸料,製造複合材料,評價其韌性。所得之複合材料為GIc:700J/m2 ,表示優異的韌性。此等結果如表2所示。

Claims (15)

  1. 一種預浸料,其係由強化纖維所成之強化纖維基材與一部分或全部含浸於前述強化纖維基材的環氧樹脂組成物所成, 前述環氧樹脂組成物包含環氧樹脂、胺系硬化劑及聚醯胺粒子, 前述環氧樹脂及/或前述胺系硬化劑之一部分滲透至前述聚醯胺粒子而成。
  2. 一種預浸料,其係由強化纖維所成之強化纖維基材與一部分或全部含浸於前述強化纖維基材之環氧樹脂組成物所成, 前述環氧樹脂組成物包含環氧樹脂、胺系硬化劑、聚醯胺粒子及環氧樹脂可溶性熱塑性樹脂, 前述環氧樹脂、前述胺系硬化劑、及前述環氧樹脂可溶性熱塑性樹脂之至少任1種之一部分滲透至前述聚醯胺粒子而成。
  3. 如請求項1或請求項2之預浸料,其中前述聚醯胺粒子為在表面導入有環氧基之表面修飾聚醯胺粒子。
  4. 一種預浸料,其係由強化纖維所成之強化纖維基材與一部分或全部含浸於前述強化纖維基材之環氧樹脂組成物所成, 前述環氧樹脂組成物包含環氧樹脂、胺系硬化劑及聚醯胺粒子, 前述聚醯胺粒子為在表面導入有環氧基之表面修飾聚醯胺粒子。
  5. 如請求項4之預浸料,其係進一步包含環氧樹脂可溶性熱塑性樹脂。
  6. 如請求項1至請求項5之任一項的預浸料,其係藉由紅外吸收光譜法所測量之在波數範圍1300±50cm-1 具有波峰頂部之吸收波峰之波峰面積的積分值設為E(但是以波數範圍2150~1950cm-1 作為基線( base line)),在波數範圍3300±50cm-1 具有波峰頂部之吸收波峰之波峰面積的積分值設為A(但是以波數範圍3480~3150cm-1 作為基線)時,在前述聚醯胺粒子之表層部中,滿足下述式(1) 0.15≦E/A ・・・式(1)。
  7. 如請求項1至請求項6之任一項的預浸料,其係藉由紅外吸收光譜法所測量之在波數範圍1300±50cm-1 具有波峰頂部之吸收波峰之波峰面積的積分值設為E(但是以波數範圍2150~1950cm-1 作為基線),在波數範圍3300±50cm-1 具有波峰頂部之吸收波峰之波峰面積的積分值設為A(但是以波數範圍3480~3150cm-1 作為基線)時,在前述聚醯胺粒子之中心部中,滿足下述式(2) E/A≦0.3 ・・・式(2)。
  8. 如請求項1至請求項7之任一項的預浸料,其中前述聚醯胺粒子之藉由廣角X光繞射法所測量之結晶化度為未達43%。
  9. 如請求項8之預浸料,其中前述結晶化度為25%以上未達43%。
  10. 如請求項1至請求項9之任一項的預浸料,其中前述環氧樹脂可溶性熱塑性樹脂為聚醚碸。
  11. 如請求項1至請求項10之任一項的預浸料,其中前述聚醯胺粒子為預先施予環氧基導入處理之表面修飾聚醯胺粒子,藉由飛行時間型二次離子質量分析測量所測量之對表面修飾聚醯胺粒子表面之環氧基導入率為大於0。
  12. 如請求項1至請求項11之任一項的預浸料,其中前述聚醯胺粒子之疏充填體積密度(D1)與藉由定容積膨脹法之乾式密度測量所得之表觀密度(D2),滿足下述式(3) D1/D2≧0.30 ・・・式(3)。
  13. 一種預浸料之製造方法,其係如請求項1至請求項12之任一項的預浸料之製造方法,其係將環氧樹脂與聚醯胺粒子在溫度70~150℃下混練10分鐘以上,製作環氧樹脂組成物後,將前述環氧樹脂組成物含浸於強化纖維基材內。
  14. 一種預浸料之製造方法,其係如請求項1至請求項12之任一項的預浸料之製造方法,其係將表面修飾聚醯胺粒子與環氧樹脂進行混練,製作環氧樹脂組成物後,使前述環氧樹脂組成物含浸於強化纖維基材內。
  15. 一種纖維強化複合材料之製造方法,其係層合如請求項1至請求項12之任一項的預浸料,在壓力0.1~2MPa、溫度150~210℃下加熱1~8小時。
TW107142863A 2017-12-01 2018-11-30 預浸料及其製造方法及纖維強化複合材料之製造方法 TWI798298B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017231939 2017-12-01
JP2017-231939 2017-12-01
JP2018-056913 2018-03-23
JP2018056913 2018-03-23

Publications (2)

Publication Number Publication Date
TW201927873A true TW201927873A (zh) 2019-07-16
TWI798298B TWI798298B (zh) 2023-04-11

Family

ID=66665546

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107142863A TWI798298B (zh) 2017-12-01 2018-11-30 預浸料及其製造方法及纖維強化複合材料之製造方法

Country Status (5)

Country Link
US (2) US11820858B2 (zh)
EP (1) EP3719062A4 (zh)
JP (1) JP6970755B2 (zh)
TW (1) TWI798298B (zh)
WO (1) WO2019107457A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415926B2 (ja) 2019-07-05 2024-01-17 東レ株式会社 プリプレグおよび繊維強化複合材料
JP7251523B2 (ja) * 2020-06-15 2023-04-04 トヨタ自動車株式会社 積層状態算出方法、積層状態算出装置及び積層状態算出プログラム
JP2024508870A (ja) * 2021-03-01 2024-02-28 サイテック インダストリーズ インコーポレイテッド 複合材料を強化するための熱可塑性ポリアミド粒子
CN113549337A (zh) * 2021-08-19 2021-10-26 浙江迈利达集团有限公司 一种防霉变再生果实工艺品及其制备方法
CN113912983B (zh) * 2021-11-09 2023-06-02 珠海三臻新材料科技有限公司 一种改性MXene/碳纤维/环氧树脂复合材料及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243113A (ja) 1984-05-17 1985-12-03 Sumitomo Chem Co Ltd 強靭性に優れたエポキシ樹脂組成物
US5169710A (en) 1988-07-15 1992-12-08 Amoco Corporation Fiber-reinforced composites toughened with porous resin particles
JPH08861B2 (ja) * 1990-12-28 1996-01-10 東邦レーヨン株式会社 プリプレグ及びその製造方法
JP3312441B2 (ja) 1993-07-30 2002-08-05 東レ株式会社 プリプレグおよび繊維強化プラスチック
JPH0741575A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化複合材料
JPH0741576A (ja) 1993-07-30 1995-02-10 Toray Ind Inc プリプレグおよび繊維強化樹脂
CN102216394A (zh) * 2008-11-13 2011-10-12 东邦特耐克丝株式会社 热固性树脂组合物以及使用该热固性树脂组合物的预浸料坯
US9567426B2 (en) * 2009-05-29 2017-02-14 Cytec Technology Corp. Engineered crosslinked thermoplastic particles for interlaminar toughening
JP5592201B2 (ja) * 2010-08-30 2014-09-17 帝人株式会社 耐薬品性が向上した芳香族ポリアミド粒子及びその製造方法
WO2012124450A1 (ja) 2011-03-17 2012-09-20 東レ株式会社 プリプレグ、プリプレグの製造方法および炭素繊維強化複合材料
BR112014013489A2 (pt) * 2011-12-05 2017-06-13 Toray Industries matéria-prima moldadora de fibra de carbono, material moldador e material compósito reforçado por fibra de carbono
EP2878617B1 (en) * 2012-07-25 2017-03-01 Toray Industries, Inc. Prepreg and carbon-fiber-reinforced composite material
JP6213225B2 (ja) * 2012-12-26 2017-10-18 東レ株式会社 プリプレグおよび繊維強化複合材料
US9683072B2 (en) * 2013-01-15 2017-06-20 Toray Industries, Inc. Epoxy resin composition, prepreg, and carbon-fiber-reinforced composite material
GB201322093D0 (en) * 2013-12-13 2014-01-29 Cytec Ind Inc Compositive materials with electrically conductive and delamination resistant properties
KR101928255B1 (ko) 2015-10-07 2018-12-11 다이셀에보닉 주식회사 섬유 강화 수지 및 그의 제조 방법, 및 성형품
JPWO2017099194A1 (ja) * 2015-12-11 2018-09-27 日本化薬株式会社 エポキシ樹脂組成物、プリプレグ、エポキシ樹脂組成物成型体及びその硬化物

Also Published As

Publication number Publication date
JP6970755B2 (ja) 2021-11-24
US11820858B2 (en) 2023-11-21
EP3719062A1 (en) 2020-10-07
US20200291198A1 (en) 2020-09-17
WO2019107457A1 (ja) 2019-06-06
TWI798298B (zh) 2023-04-11
EP3719062A4 (en) 2020-12-23
US20230331906A1 (en) 2023-10-19
JPWO2019107457A1 (ja) 2021-01-14

Similar Documents

Publication Publication Date Title
TWI798298B (zh) 預浸料及其製造方法及纖維強化複合材料之製造方法
JP6777073B2 (ja) プリプレグおよびその製造方法
US20100222461A1 (en) Epoxy compositions with improved mechanical performance
EP2691199A1 (en) Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
EP3072918A1 (en) Production method for fibre-reinforced composite material, prepreg, particle-containing resin composition, and fibre-reinforced composite material
JP7003662B2 (ja) プリプレグおよびその製造方法
JP6670250B2 (ja) 複合材料
JP7448409B2 (ja) プリプレグ
CN113613878A (zh) 树脂组合物、硬化成形物、纤维强化塑料成形用材料、纤维强化塑料、纤维强化塑料层叠成形体及其制造方法
JP7041694B2 (ja) 反応性熱可塑性プレポリマーを含浸させた繊維材料
TW201942220A (zh) 預浸體及碳纖維強化複合材料
TWI815628B (zh) 碳纖維束、預浸體、纖維強化複合材料
JP2019156981A (ja) プリプレグ、繊維強化複合材料、及びそれらの製造方法
JP2019157095A (ja) エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
US20220267544A1 (en) Method for producing prepreg, and prepreg
EP3728390B1 (en) Curable epoxy system
JP7315304B2 (ja) エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料
JP5589972B2 (ja) 成形材料およびそれを用いた成形方法
JP2020176249A (ja) エポキシ樹脂組成物、プリプレグ、プリプレグの製造方法、及び繊維強化複合材料の製造方法
JP7481160B2 (ja) プリプレグ
TW201945462A (zh) 環氧樹脂組成物、預浸體及纖維強化複合材料,以及此等之製造方法
JP2021195473A (ja) プリプレグ
WO2024071090A1 (ja) プリプレグ、及び該プリプレグを用いる繊維強化複合材料の製造方法
WO2019177131A1 (ja) エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料、並びにこれらの製造方法
JP2023084198A (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料および製造方法