TW201907792A - 農園藝用土壤覆蓋薄膜及其製造方法 - Google Patents

農園藝用土壤覆蓋薄膜及其製造方法 Download PDF

Info

Publication number
TW201907792A
TW201907792A TW107121221A TW107121221A TW201907792A TW 201907792 A TW201907792 A TW 201907792A TW 107121221 A TW107121221 A TW 107121221A TW 107121221 A TW107121221 A TW 107121221A TW 201907792 A TW201907792 A TW 201907792A
Authority
TW
Taiwan
Prior art keywords
tungsten oxide
composite tungsten
ultrafine particles
agricultural
oxide ultrafine
Prior art date
Application number
TW107121221A
Other languages
English (en)
Other versions
TWI765059B (zh
Inventor
常松裕史
長南武
Original Assignee
日商住友金屬礦山股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友金屬礦山股份有限公司 filed Critical 日商住友金屬礦山股份有限公司
Publication of TW201907792A publication Critical patent/TW201907792A/zh
Application granted granted Critical
Publication of TWI765059B publication Critical patent/TWI765059B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • A01G13/02Protective coverings for plants; Coverings for the ground; Devices for laying-out or removing coverings
    • A01G13/0256Ground coverings
    • A01G13/0268Mats or sheets, e.g. nets or fabrics
    • A01G13/0275Films
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/14Greenhouses
    • A01G9/1438Covering materials therefor; Materials for protective coverings used for soil and plants, e.g. films, canopies, tunnels or cloches
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/006Compounds containing, besides tungsten, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Soil Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Greenhouses (AREA)
  • Laminated Bodies (AREA)
  • Protection Of Plants (AREA)

Abstract

本發明係提供一種農園藝用土壤覆蓋薄膜,係吸收來自太陽光的紅外光而溫暖土壤,另一方面,於將上述農園藝用土壤覆蓋薄膜使用於溫室內等的情況,該溫室內等的環境氣溫不會上升。本發明的農園藝用土壤覆蓋薄膜,係具有含紅外線吸收材料超微粒子之紅外光吸收層的農園藝用土壤覆蓋薄膜,其中,上述紅外線吸收材料超微粒子係複合鎢氧化物超微粒子;上述複合鎢氧化物超微粒子係將矽粉末標準試料(NIST製、640c)的(220)面之XRD尖峰強度值設為1時,XRD峰頂強度比值達0.13以上的複合鎢氧化物超微粒子。

Description

農園藝用土壤覆蓋薄膜及其製造方法
本發明係關於農園藝用土壤覆蓋薄膜及其製造方法。
作為促進植物生長的方法,已知有使用例如在:使用有鋁等金屬膜的反射片材、使用白色光反射材料膜反射白色光的片材、在上述反射片材上更進一步塗佈反射材料的片材等,進而被覆土壤表面的方法。另一方面,一般已知使土壤保溫的片材係例如有:聚乙烯、聚氯乙烯等合成樹脂片材。
但是,因為該等已塗佈反射材料的片材,會將到達地表的太陽光線無遺漏地反射,因而雖促進植物生長,但成為熱的紅外光亦被反射,當使用溫室內等情況,會出現導致該溫室內等的環境氣溫上升之問題。又,一般使用鋁等金屬膜的反射片材,係有因施行鋁蒸鍍加工,而導致成本提升等問題。另一方面,一般使土壤保溫的合成樹脂片材因為紅外線穿透率高,因而使土壤的保溫效果不足。
為解決該等問題,專利文獻1所提案的保溫片材,係將具紅外線反射性的帶狀薄膜與具紅外線吸收性的帶狀薄膜,分別使用為經 紗或緯紗形成編織物,並被覆地面。
再者,專利文獻2所提案的農作物栽培用薄膜,係使碳黑等黑色或藍色等顏料分散於黏結劑中,再印刷於全光線穿透率達3.0%以上、擴散反射率達40%以上的白化薄膜表面上。
專利文獻3所提案的農園藝用土壤覆蓋薄膜,係儘管可見光之反射率高,作為吸收紅外光的材料仍選擇鎢氧化物微粒子與複合鎢氧化物超微粒子,並將該等微粒子當作近紅外線吸收成分並含有。
[先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開平9-107815號公報
[專利文獻2]日本專利特開昭55-127946號公報
[專利文獻3]WO2006/100799號公報
然而,根據本發明者等的檢討,專利文獻1的保溫片材,因為具有紅外線反射性的薄膜係施行有鋁蒸鍍加工,因而會有製造成本高的課題。
再者,專利文獻2的農作物栽培用薄膜,係著色被膜層面積為1.0~60%,且並非效率佳地吸收會成為熱的紅外線之構成,因而會有加溫土壤的效果不足的課題。
再者,藉由使用專利文獻3的農園藝用土壤覆蓋薄膜,對植物供應植物生長所必須的光,並吸收紅外光而溫暖土壤,當使用於溫室內等的情況,能使該溫室內等的環境氣溫不會上升。然而,根據本發明者等更進一步的檢討,依照專利文獻3所提案方法製造的鎢氧化物微粒子或複合鎢氧化物超微粒子,得知因為其結晶性低,因而含有該微粒子的農園藝用土壤覆蓋薄膜之紅外線吸收特性不足。
本發明係為解決該等課題而完成,目的在於提供:吸收來自太陽光的紅外光而溫暖土壤,另一方面,於將上述農園藝用土壤覆蓋薄膜使用於溫室內等的情況,該溫室內等的環境氣溫不會上升之農園藝用土壤覆蓋薄膜及其製造方法。
本發明者等為達成上述目的進行深入鑽研。因而,發現在複合鎢氧化物超微粒子的X射線繞射(本發明亦稱「XRD」)圖案中,峰頂強度比值為既定值的複合鎢氧化物超微粒子。具體而言,構思到將矽粉末標準試料(NIST製、640c)的(220)面之XRD尖峰強度設為1時,上述複合鎢氧化物超微粒子的XRD峰頂強度比值達0.13以上的複合鎢氧化物超微粒子。
該複合鎢氧化物超微粒子係在可見光區域具透明性,藉由高結晶性而具有優異的紅外線吸收特性。且,屬於能依高生產性製造含有該複合鎢氧化物超微粒子之分散液的通用性複合鎢氧化物超微粒子。
再者,發現含有以該複合鎢氧化物超微粒子作為紅外線吸收成分的紅外線吸收膜,即便未使用光干涉效應,仍可效率佳地吸收太陽光線,特別係近紅外線區域之光,同時可使可見光區域之光穿透,遂完成本發明。
即,為解決上述課題的第1發明之農園藝用土壤覆蓋薄膜,係具有含紅外線吸收材料超微粒子之紅外光吸收層的農園藝用土壤覆蓋薄膜,其中,上述紅外線吸收材料超微粒子係複合鎢氧化物超微粒子;上述複合鎢氧化物超微粒子係在將矽粉末標準試料(NIST製、640c)的(220)面之XRD尖峰強度值設為1時,XRD峰頂強度比值達0.13以上的複合鎢氧化物超微粒子。
第2發明係如第1發明所記載的農園藝用土壤覆蓋薄膜,其中,在上述農園藝用土壤覆蓋薄膜之至少其中一面上,設有於樹脂黏結劑內分散而存在有上述紅外線吸收材料超微粒子的紅外光吸收層。
第3發明係如第1或第2發明所記載的農園藝用土壤覆蓋薄膜,其中,上述紅外線吸收材料超微粒子係分散而存在於上述農園藝用土壤覆蓋薄膜的薄膜內部。
第4發明係如第1至第3發明中任一項所記載的農園藝用土壤覆蓋薄膜,其中,上述複合鎢氧化物超微粒子的結晶粒徑係1nm以上且200nm以下。
第5發明係如第1至第4發明中任一項所記載的農園藝用土壤覆蓋薄膜,其中,上述複合鎢氧化物超微粒子係從一般式MxWyOz(其中,M係從H、He、鹼金屬、鹼土族金屬、稀土族元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Yb中選擇1種以上的元素;W係鎢,O係氧,0.001≦x/y≦1、2.0<z/y≦3.0)所示複合鎢氧化物超微粒子。
第6發明係如第1至第5發明中任一項所記載的農園藝用土壤覆蓋薄膜,其中,上述複合鎢氧化物超微粒子係含有六方晶結晶構造。
第7發明係如第1至第6發明中任一項所記載的農園藝用土壤覆蓋薄膜,其中,上述複合鎢氧化物超微粒子的揮發成分含有率係在2.5質量%以下。
第8發明係如第1至第7發明中任一項所記載的農園藝用土壤覆蓋薄膜,其中,上述複合鎢氧化物超微粒子的表面,係被含有從Si、Ti、Zr、Al中選擇之至少1種以上元素的氧化物被覆。
第9發明係如第1至第8發明中任一項所記載的農園藝用土壤覆蓋薄膜,其中,上述薄膜係從聚乙烯、聚丙烯、聚對苯二甲酸乙二酯、聚氟乙烯、聚偏氟乙烯、聚四氟乙烯、四氟乙烯-乙烯共聚合體、聚三氟 氯乙烯、三氟四氯乙烯、聚氯乙烯、聚偏二氯乙烯、聚乙烯醇、聚苯乙烯、乙烯-醋酸乙烯酯、聚酯樹脂中選擇至少1種以上。
第10發明係如第1至第9發明中任一項所記載的農園藝用土壤覆蓋薄膜,其中,上述農園藝用土壤覆蓋薄膜的薄膜內部,具備有分散著白色反射材料的白色光反射層。
第11發明係如第1至第9發明中任一項所記載的農園藝用土壤覆蓋薄膜,其中,在上述農園藝用土壤覆蓋薄膜其中一面上,具備有:經塗佈白色光反射材料的白色光反射層、以及更進一步在上述白色光反射層上塗佈紅外線吸收材料超微粒子的紅外光吸收層;或者,在上述農園藝用土壤覆蓋薄膜之其中一面上,具備有:經塗佈白色光反射材料的白色光反射層、並在上述農園藝用土壤覆蓋薄膜另一面上具有經塗佈紅外線吸收材料超微粒子的紅外光吸收層。
第12發明係如第10或第11發明所記載的農園藝用土壤覆蓋薄膜,其中,上述白色光反射材料係從TiO2、ZrO2、SiO2、Al2O3、MgO、ZnO、CaCO3、BaSO4、ZnS、PbCO3中選擇至少1種以上。
第13發明的農園藝用土壤覆蓋薄膜之製造方法,係具備有含紅外線吸收材料超微粒子之紅外光吸收層的農園藝用土壤覆蓋薄膜之製造方法,上述紅外線吸收材料超微粒子係複合鎢氧化物超微粒子,將上述複合鎢氧化物粒子,依在矽粉末標準試料(NIST製、640c) 的(220)面之XRD尖峰強度值設為1時,上述複合鎢氧化物粒子之XRD峰頂強度比值成為0.13以上的方式,施行煅燒而製造;一邊將上述XRD峰頂強度比值維持0.13以上,一邊將上述所製造複合鎢氧化物粒子添加於上述紅外光吸收層。
因為本發明的農園藝用土壤覆蓋薄膜會效率佳地吸收來自太陽光的紅外線,因而藉由將該農園藝用土壤覆蓋薄膜使用於栽培植物等用地之地面,便會提升所被覆地面的溫度而溫暖土壤。另一方面,當將上述農園藝用土壤覆蓋薄膜使用於溫室內等之時,具有不會使該溫室內等的環境之氣溫上升之效果。
1‧‧‧熱電漿
2‧‧‧高頻線圈
3‧‧‧鞘流氣供應噴嘴
4‧‧‧電漿氣體供應噴嘴
5‧‧‧原料粉末供應噴嘴
6‧‧‧反應容器
7‧‧‧抽吸管
8‧‧‧過濾器
圖1係本發明所使用之高頻電漿反應裝置的概念圖。
圖2係實施例1的超微粒子之X射線繞射圖案。
以下,針對本發明之實施形態,依照[a]複合鎢氧化物超微粒子、[b]複合鎢氧化物超微粒子之合成方法、[c]複合鎢氧化物超微粒子之揮發成分及其乾燥處理方法、[d]複合鎢氧化物超微粒子分散液、[e]農園藝用土壤覆蓋薄膜的順序進行說明。
[a]複合鎢氧化物超微粒子
本發明的農園藝用土壤覆蓋薄膜係設有:含白色光反射材料的 白色光反射層、以及含有屬於紅外線吸收材料超微粒子之複合鎢氧化物超微粒子的紅外光吸收層;之薄膜,屬於具有可見光區域之光的擴散反射率高、紅外區域之光的吸收率高之特性的薄膜。此處,首先,針對屬於紅外線吸收材料超微粒子的複合鎢氧化物超微粒子進行說明。
本發明的複合鎢氧化物超微粒子係具有近紅外線吸收特性,將矽粉末標準試料(NIST製、640c)之(220)面的XRD尖峰強度設為1時,上述複合鎢氧化物超微粒子的XRD峰頂強度比值達0.13以上。
以下,針對本發明的複合鎢氧化物超微粒子,依照(1)XRD峰頂強度比、(2)組成、(3)結晶構造、(4)BET比表面積、(5)揮發成分、(6)結論的順序進行說明。
(1)XRD峰頂強度比
在上述複合鎢氧化物超微粒子的XRD峰頂強度測定時,係使用粉末X射線繞射法。此時,為使複合鎢氧化物超微粒子的試料間的測定結果能具客觀定量性,便決定標準試料,並測定該標準試料的尖峰強度,將該超微粒子的XRD峰頂強度,相對於該標準試料的尖峰強度比值,記為「各超微粒子試料的XRD峰頂強度」。
此處,標準試料係使用該業界具普遍性的矽粉末標準試料(NIST製、640c),將未與複合鎢氧化物超微粒子的XRD尖峰重疊合致之上述矽粉末標準試料(220)面設為基準。
又為確保客觀定量性,其他測定條件亦經常設為一定。
具體係將超微粒子試料依照X射線繞射測定時的公知操作,填充於深度1.0mm試料支撐架中。具體而言,為避免在超微粒子試料中發生優先方位(結晶配向)情形,最好無規且徐緩填充,且儘可能不會出現不均地緻密填充。
X射線源係使用陽極靶材材質為Cu的X射線管球,且設定為45kV/40mA輸出,利用步進掃描模式(步進大小:0.0165°(2 θ)、計數時間:0.022m秒/步進)的θ-2 θ粉末X射線繞射法進行測定。
此時,因為依照X射線管球的使用時間,會導致XRD尖峰強度出現變化,因而X射線管球的使用時間較佳係於試料間幾乎相同。為確保客觀的定量性,X射線管球使用時間的試料間差異,最大亦必須收束於X射線管球預測壽命的20分之1以下。更佳的測定方法係可例如:在複合鎢氧化物超微粒子每次測定X射線繞射圖案時,便實施矽粉末標準試料的測定,並計算出上述XRD峰頂強度比的方法。本發明便使用此種測定方法。市售X射線裝置的X射線管球預測壽命幾乎係數千小時以上、且每1試料的測定時間在數小時以下,因而藉由實施上述較佳測定方法,便可縮小至能忽視因X射線管球使用時間所造成之對XRD峰頂強度比的影響。
再者,為將X射線管球的溫度設為一定,較佳為X射線管球用冷卻水的溫度亦設為一定。
另外,複合鎢氧化物超微粒子的X射線繞射圖案,係構成複合鎢氧化物粉體試料的多數複合鎢氧化物超微粒子之X射線繞射圖案。又,為能獲得複合鎢氧化物超微粒子分散液,便設為經後述破 碎、粉碎或分散後的複合鎢氧化物超微粒子之X射線繞射圖案。而,本發明複合鎢氧化物超微粒子、該分散液中所含複合鎢氧化物超微粒子的X射線繞射圖案,亦維持本發明複合鎢氧化物超微粒子分散體的X射線繞射圖案。
XRD峰頂強度係在X射線繞射圖案中最高峰值計數2 θ的尖峰強度。而,六方晶的Cs複合鎢氧化物、Rb複合鎢氧化物,在X射線繞射圖案的峰值計數2 θ會出現在25°~31°範圍內。
上述複合鎢氧化物超微粒子的XRD峰頂強度,係與該超微粒子的結晶性具有密切關係,更與該超微粒子的自由電子密度具密切關係。本發明者等發現該XRD峰頂強度會大幅影響該複合鎢氧化物超微粒子的近紅外線吸收特性。具體而言,發現藉由該XRD峰頂強度比值達0.13以上,便確保該超微粒子的自由電子密度,而可獲得所需的近紅外線吸收特性。又,該XRD峰頂強度比值係只要達0.13以上便可,較佳為0.7以下。
針對上述複合鎢氧化物超微粒子的XRD峰頂強度,亦從不同觀點說明。
上述複合鎢氧化物超微粒子的XRD峰頂強度比值達0.13以上,係表示能獲得幾乎未含異相的良好結晶性複合鎢氧化物超微粒子。即,可認為所獲得複合鎢氧化物超微粒子實質並未非晶(非晶質)化。結果,藉由在可見光可穿透的有機溶劑等液態介質、可見光可穿透的樹脂等固態介質中,分散該幾乎未含異相的複合鎢氧化 物超微粒子,判斷便可充分獲得近紅外線吸收特性。
再者,本發明中,所謂「異相」係指複合鎢氧化物以外的化合物相。又,藉由分析測定XRD峰頂強度時所獲得的X射線繞射圖案,便可求得複合鎢氧化物超微粒子的結晶構造、結晶粒徑。
(2)組成
再者,本發明的複合鎢氧化物超微粒子,較佳係一般式MxWyOz(其中,M係從H、He、鹼金屬、鹼土族金屬、稀土族元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Yb中選擇1種以上的元素;W係鎢,O係氧,0.001≦x/y≦1、2.0<z/y≦3.0)所示的複合鎢氧化物超微粒子。
針對該一般式MxWyOz所示複合鎢氧化物超微粒子進行說明。
一般式MxWyOz中的M元素、x、y、z及其結晶構造,係與複合鎢氧化物超微粒子的自由電子密度具密切關係,大幅影響近紅外線吸收特性。
一般因為三氧化鎢(WO3)中並沒有存在有效的自由電子,因而近紅外線吸收特性低。
此處,本發明者等發現藉由在該鎢氧化物中,添加M元素(其中,M元素係從H、He、鹼金屬、鹼土族金屬、稀土族元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、 Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Yb中選擇1種以上的元素),形成複合鎢氧化物,便在該複合鎢氧化物中生成自由電子,在近紅外線區域中顯現出源自自由電子的吸收特性,可有效成為波長1000nm附近的近紅外線吸收材料,且該複合鎢氧化物係保持化學性穩定之狀態,可有效成為耐候性優異的近紅外線吸收材料。又,M元素較佳係Cs、Rb、K、Tl、Ba、Cu、Al、Mn、In,尤其若M元素係Cs、Rb,則該複合鎢氧化物容易成六方晶構造。結果,可見光線會穿透,且會吸收近紅外線,因而就後述理由而言,發現其係屬特佳。
此處,針對本發明者等所發現表示M元素添加量的x值進行說明。
若x/y值達0.001以上,便可生成充分量的自由電子,能獲得目標之近紅外線吸收特性。而,M元素之添加量越多,則自由電子的供應量越增加,近紅外線吸收特性亦越獲提升,但x/y值在1左右時,該效果便亦達飽和。又,若x/y值在1以下,可避免在複合鎢超微粒子中生成雜質相,故屬較佳。
其次,針對本發明者等所發現表示氧量控制的z值進行說明。
一般式MxWyOz所示複合鎢氧化物超微粒子中,z/y值較佳係2.0<z/y≦3.0、更佳係2.2≦z/y≦3.0、特佳係2.6≦z/y≦3.0、最佳係2.7≦z/y≦3.0。理由係若該z/y值達2.0以上,便可避免在該複合鎢氧化物中出現目標以外之WO2結晶相,且可獲得作為材料的 化學安定性,因而可適用為有效的紅外線吸收材料。另一方面,若該z/y值在3.0以下,在該鎢氧化物中會生成必須量的自由電子,成為效率佳的紅外線吸收材料。
(3)結晶構造
本發明的複合鎢氧化物超微粒子除六方晶之外,尚可成為正方晶、立方晶的鎢青銅構造時,不管形成何種構造作為近紅外線吸收材料均有效。然而,依照該複合鎢氧化物超微粒子所形成之結晶構造,會有改變近紅外線區域的吸收位置之傾向,即,近紅外線區域的吸收位置係正方晶時較立方晶更會朝長波長側移動,又,六方晶時較正方晶時更會朝長波長側移動的傾向。又,隨該吸收位置的變動,可見光線區域的吸收情形係六方晶最少、其次係正方晶,而其中就屬立方晶最大。
由以上的發現,在更需要可見光區域光穿透、更吸收紅外線區域光的用途,較佳為使用六方晶的鎢青銅。當複合鎢氧化物超微粒子具有六方晶結晶構造時,該微粒子的可見光區域穿透獲提升、且近紅外區域吸收獲提升。
即,若複合鎢氧化物係XRD峰頂強度比值滿足上述既定值的六方晶之鎢青銅,便可發揮優異的光學特性。又,當複合鎢氧化物超微粒子設為斜方晶的結晶構造時、或設為通稱「馬格涅利(Magneli)相」的WO2.72同樣單斜晶結晶構造時,亦是紅外線吸收優異,能有效使用為近紅外線吸收材料。
當具六方晶結晶構造的複合鎢氧化物超微粒子係具有均勻的結晶構造時,添加元素M的添加量,依x/y值計較佳係0.2以上且0.5以下、更佳係0.29≦x/y≦0.39。理論當z/y=3時,可認為藉由x/y值成為0.33,添加元素M便會被配置於所有的六角形空隙中。典型之例係可舉例如:Cs0.33WO3、Cs0.03Rb0.30WO3、Rb0.33WO3、K0.33WO3、Ba0.33WO3等。
再者,本發明的複合鎢氧化物超微粒子較佳係非晶相的體積比率在50%以下之單結晶。
若複合鎢氧化物超微粒子係非晶相體積比率在50%以下的單結晶,則便可在維持XRD峰頂強度之狀態下,將結晶粒徑設為200nm以下。藉由將複合鎢氧化物超微粒子的結晶粒徑設在200nm以下,便可將分散粒徑設在從近紅外線吸收特性與可見光穿透特性的觀點,屬較佳範圍的10nm以上且200nm以下。
相對於此,複合鎢氧化物超微粒子的分散粒徑係1nm以上且200nm以下,但若非晶相依體積比率計存在超過50%的情況、或多結晶的情況,該複合鎢氧化物超微粒子的XRD峰頂強度比值便未滿0.13,結果會有近紅外線吸收特性不足、近紅外線吸收特性顯現不足的情況。
另一方面,就從近紅外線吸收特性的觀點,該複合鎢氧化物微粒子的結晶粒徑較佳係10nm以上。而,複合鎢氧化物超微粒子的結晶粒徑更佳係200nm以下且10nm以上。理由係若結晶粒徑在200nm以下且10nm以上的範圍內,則XRD峰頂強度比值會超過0.13,能發揮更優異的近紅外線吸收特性。
再者,經後述破碎、粉碎或分散後的複合鎢氧化物超微粒子分散液中,複合鎢氧化物超微粒子的X射線繞射圖案,亦維持至經除去本發明複合鎢氧化物超微粒子分散液中之揮發成分而獲得複合鎢氧化物超微粒子的X射線繞射圖案,以及由上述分散液所獲得分散體中含有的複合鎢氧化物超微粒子之X射線繞射圖案。
結果,若複合鎢氧化物超微粒子分散液、由該分散液所獲得之複合鎢超微粒子分散體中的複合鎢氧化物超微粒子之XRD圖案、XRD峰頂強度、結晶粒徑等結晶狀態,係屬於本發明可使用複合鎢氧化物超微粒子的結晶狀態,便可發揮本發明之效果。
再者,複合鎢氧化物超微粒子係單結晶之事,可藉由在穿透式電子顯微鏡等電子顯微鏡影像中,於各微粒子內部沒有觀察到結晶晶界,僅觀察到同樣晶格紋的情形進行確認。又,複合鎢氧化物超微粒子的非晶相體積比率在50%以下,同樣地藉由在穿透式電子顯微鏡影像中,粒子全體觀察到同樣的晶格紋,且晶格紋幾乎沒有觀察到不清晰地方的情形進行確認。因為非晶相多數情況係存在於粒子外周部,因而特別著眼於粒子外周部,多數情況均可計算出非晶相的體積比率。例如正球狀複合鎢氧化物超微粒子,當在粒子外周部有層狀存在晶格紋不清晰的非晶相時,若厚度在粒徑的10%以下,則複合鎢氧化物超微粒子的非晶相體積比率便成為50%以下。該複合鎢氧化物超微粒子係實質屬於單結晶。
另一方面,當複合鎢氧化物超微粒子分散於構成複合鎢氧化物超微粒子分散體的塗佈膜、對塗佈膜施行既定操作而使該塗佈膜的 樹脂硬化之膜(本發明亦稱「硬化膜」。相當於本發明的「紅外光吸收層」)、樹脂等內部時,若從該分散的複合鎢氧化物超微粒子平均粒徑扣減掉結晶粒徑的差在20%以下,便可謂該複合鎢氧化物超微粒子係非晶相體積比率50%以下的單結晶。
此處,複合鎢氧化物超微粒子的平均粒徑,係從複合鎢氧化物超微粒子分散體的穿透式電子顯微鏡影像中,使用影像處理裝置測定100個複合鎢氧化物超微粒子的粒徑,藉由計算出平均值便可求得。所以,依在複合鎢氧化物超微粒子分散體所分散之複合鎢氧化物超微粒子的平均粒徑與結晶粒徑的差在20%以下之方式,配合製造設備再行適當調整複合鎢氧化物超微粒子之合成步驟、粉碎步驟、分散步驟便可。
(4)BET比表面積
上述複合鎢氧化物超微粒子的BET比表面積,係與該超微粒子的粒度分佈具有密切關係,同時,此會大幅影響以該超微粒子為原料的近紅外線吸收分散液之生產性、該超微粒子自體的近紅外線吸收特性以及抑制光著色的耐光性。
該超微粒子的BET比表面積較小,係表示該超微粒子的結晶粒徑較大。所以,若該超微粒子的BET比表面積達既定值以上,在可見光區域便具透明性,在製造上述能抑制藍霾現象(blue haze)的近紅外線吸收分散液時,不需要利用介質攪拌研磨機進行長時間的超微粒子粉碎微細化,可實現上述近紅外線吸收分散液的生產性 提升。
另一方面,該超微粒子的BET比表面積在既定值以下(例如200m2/g以下),便表示粒子形狀假設為正球狀時的BET粒徑達2nm以上,意味著幾乎不存在對近紅外線吸收特性不具貢獻的結晶粒徑未滿1nm之超微粒子。所以,若超微粒子的BET比表面積在既定值以下,便可確保該超微粒子的近紅外線吸收特性與耐光性。
尤其,除超微粒子的BET比表面積在200m2/g以下之外,上述XRD峰頂強度值進而達既定值以上的情況,因為幾乎不存在對近紅外線吸收特性不具貢獻之結晶粒徑未滿1nm的超微粒子,而是存在結晶性佳的超微粒子,因而判斷可確保超微粒子的近紅外線吸收特性與耐光性。
於上述複合鎢氧化物超微粒子的BET比表面積之測定時,使用於吸附的氣體係例如使用:氮氣、氬氣、氪氣、氙氣等。尤其,如本發明的複合鎢氧化物超微粒子,其測定試料係粉體,於比表面積達0.1m2/g以上時,較佳為使用較容易操作且低成本的氮氣。複合鎢氧化物超微粒子的BET比表面積較佳係30.0m2/g以上且120.0m2/g以下、更佳係30.0m2/g以上且90.0m2/g以下、特佳係35.0m2/g以上且70.0m2/g以下。複合鎢氧化物超微粒子的BET比表面積,較佳為在獲得複合鎢氧化物超微粒子分散液時的粉碎分散前後均為上述值。
(5)揮發成分
上述複合鎢氧化物超微粒子會有含利用加熱便揮發的成分(本發明亦稱「揮發成分」)的情況。該揮發成分係指複合鎢氧化物超微粒子暴露於保存環境或大氣中之時,於合成步驟途中所吸附的成分。此處,該揮發成分的具體例係有如:水的情況、後述分散液之溶劑的情況,利用例如150℃或以下的加熱,便會從該複合鎢氧化物超微粒子中揮發的成分。
複合鎢氧化物超微粒子的揮發成分與含有率,係與該超微粒子暴露於大氣等之時所吸附的水分量、該超微粒子在乾燥步驟時的溶劑殘存量相關。而,該揮發成分與含有率會有大幅影響該超微粒子分散於樹脂等之時的分散性之情況。
例如當後述近紅外線吸收分散體所使用之樹脂、與吸附於該超微粒子之揮發成分的相溶性差之情況,若該超微粒子的該揮發成分含量偏多時,便會有成為所製造之近紅外線吸收分散體產生霧度(透明性惡化)原因的可能性。又,當所製造的該近紅外線吸收分散體長期間被設置於室外而暴露於太陽光、風雨時,會有複合鎢氧化物超微粒子向近紅外線吸收分散體外脫落、或發生膜剝離的可能性。即,該超微粒子與樹脂的相溶性惡化會成為所製造之該近紅外線吸收分散體劣化的原因。即,意味著大量含有揮發成分的複合鎢氧化物超微粒子,會依照與分散系統所使用之分散介質的相容性,左右該超微粒子的分散是否良好的可能性。所以,本發明的複合鎢氧化物超微粒子中,若揮發成分含有率在既定量以下,便可發揮廣泛的通用性。
根據本發明者等的檢討,發現複合鎢氧化物超微粒子中,若揮發成分含有率在2.5質量%以下,則該超微粒子幾乎對分散系統所使用的分散介質可幾乎完全分散,將成為具通用性的複合鎢氧化物超微粒子。
另一方面,發現該揮發成分含有率的下限並無特別的限制。
結果,若揮發成分含有率2.5質量%以下的超微粒子未過度進行二次凝聚時,使用例如:轉鼓、諾塔混合機(Nauta Mixer)、韓蘇攪拌機、快速混合造粒機、行星式攪拌機等混合機,以及班布瑞混合機、捏和機、滾筒、單軸擠出機、雙軸擠出機等混練機進行均勻混合(亦包括熔融混合在內)的方法,便可使該超微粒子分散於樹脂等之中。
複合鎢氧化物超微粒子的揮發成分含有率係利用熱分析便可測定。具體而言,只要將複合鎢氧化物超微粒子試料保持於較低於複合鎢氧化物超微粒子的熱分解溫度、且較高於揮發成分揮發的溫度中,並測定重量減少便可。又,當將揮發成分予以特定時,只要併用氣體質量分析便可。
(6)結論
以上所詳細說明之複合鎢氧化物超微粒子的XRD峰頂強度值與BET比表面積,係可利用既定的製造條件進行控制。具體而言,在熱電漿法、固相反應法等之中,藉由生成該超微粒子時的溫度(煅燒溫度)、生成時間(煅燒時間)、生成環境(煅燒環境)、先質原料形 態、生成後的退火處理、雜質元素摻植等製造條件的適當設定,便可進行控制。另一方面,複合鎢氧化物超微粒子的揮發成分含有率係藉由該超微粒子的保存方法與保存環境,以及使該超微粒子分散液乾燥時的溫度、乾燥時間、乾燥方法等製造條件的適當設定,便可進行控制。又,複合鎢氧化物超微粒子的揮發成分含有率並未依存於複合鎢氧化物超微粒子的結晶構造、後述熱電漿法或固相反應等合成方法。
[b]複合鎢氧化物超微粒子之合成方法
針對本發明之複合鎢氧化物超微粒子的合成方法進行說明。
本發明之複合鎢氧化物超微粒子的合成方法係可例如:將鎢化合物起始原料投入熱電漿中的熱電漿法、以及將鎢化合物起始原料在還原性氣體環境中施行熱處理的固相反應法。利用熱電漿法或固相反應法合成的複合鎢氧化物超微粒子,再施行分散處理或粉碎‧分散處理。
以下依照(1)熱電漿法、(2)固相反應法、(3)所合成的複合鎢氧化物超微粒子的順序進行說明。
(1)熱電漿法
針對熱電漿法,依照(i)熱電漿法所使用的原料、(ii)熱電漿法與其條件的順序進行說明。
(i)熱電漿法所使用的原料
利用熱電漿法合成本發明之複合鎢氧化物超微粒子時,可將鎢 化合物與M元素化合物的混合粉體使用為原料。
鎢化合物較佳係從鎢酸(H2WO4);鎢酸銨;六氯化鎢;以及在溶解於醇中的六氯化鎢中,添加水,經水解後,再使溶劑蒸發的鎢之水合物;中選擇1種以上。
再者,M元素化合物較佳係使用從M元素的氧化物、氫氧化物、硝酸鹽、硫酸鹽、氯化物、碳酸鹽中選擇1種以上。
將含有上述鎢化合物、與上述M元素化合物的水溶液,依M元素與W元素的比,成為MxWyOz(其中,M係上述M元素,W係鎢,O係氧,0.001≦x/y≦1.0、2.0<z/y≦3.0)之M元素與W元素比的方式,施行濕式混合。然後,藉由將所獲得之混合液施行乾燥,便獲得M元素化合物與鎢化合物的混合粉體,而該混合粉體便可使用為熱電漿法的原料。
再者,該混合粉體在單獨惰性氣體或惰性氣體與還原性氣體的混合氣體之環境下,亦可使用第1階段的煅燒所獲得的複合鎢氧化物作為熱電漿法的原料。另外,第1階段在惰性氣體與還原性氣體的混合氣體環境下施行煅燒,再將該第1階段的煅燒物,於第2階段在惰性氣體環境下施行煅燒,依此種2階段之煅燒所獲得的複合鎢氧化物,亦可使用為熱電漿法的原料。
(ii)熱電漿法與其條件
本發明所使用的熱電漿,係可適當使用例如:直流電弧電漿、高頻電漿、微波電漿、低頻交流電漿中之任一者;或由該等電漿重 疊者;或利用對直流電漿施加磁場的電氣式方法而生成的電漿;利用照射大輸出雷射而生成的電漿;利用大輸出電子束或離子束生成的電漿。尤其不管使用何種熱電漿,均係具有10000~15000K高溫部的熱電漿,特別較佳係可控制微粒子生成時間的電漿。
在該具高溫部的熱電漿中所供應的原料,會於該高溫部瞬間蒸發。而,該已蒸發的原料在到達電漿尾焰部的過程中會冷凝,並在電漿火焰外急冷凝固,而生成複合鎢氧化物超微粒子。
就使用高頻電漿反應裝置時的例子,參照圖1,針對合成方法進行說明。
首先,利用真空排氣裝置,將由水冷石英雙層管內與反應容器6內構成的反應系統內,抽真空至約0.1Pa(約0.001Torr)。在反應系統內抽真空後,此時便將該反應系統內充滿氬氣,形成1大氣壓的氬氣流通系統。
然後,在反應容器內依30~45L/min流量導入電漿氣體之從氬氣、氬與氦的混合氣體(Ar-He混合氣體)、或氬與氮的混合氣體(Ar-N2混合氣體)中選擇任一氣體。另一方面,流入於緊鄰電漿區域外側的鞘流氣係依60~70L/min流量導入Ar-He混合氣體。
然後,對高頻線圈2施加交流電流,利用高頻電磁場(頻率4MHZ)生成熱電漿。此時,高頻電力設為30~40kW。
利用原料粉末供應噴嘴5,將依上述合成方法所獲得的M元素 化合物與鎢化合物之混合粉體、或複合鎢氧化物,以從氣體供應裝置所供應的6~98L/min氬氣為載體氣體,依供應速度25~50g/min的比例導入於熱電漿中,而施行既定時間反應。待反應後,因為所生成的複合鎢氧化物超微粒子會累積於過濾器8上,因而可將其回收。
載體氣體流量與原料供應速度會大幅影響超微粒子的生成時間。此處較佳為將載體氣體流量設為6L/min以上且9L/min以下、原料供應速度設為25~50g/min。
再者,較佳為將電漿氣體流量設為30L/min以上且45L/min以下、鞘流氣流量設為60L/min以上且70L/min以下。電漿氣體係具有維持具有10000~15000K高溫部之熱電漿區域的機能,而鞘流氣係具有將反應容器內的石英噴燈內壁面予以冷卻,俾防止石英噴燈熔融的機能。與此同時,因為電漿氣體與鞘流氣會影響電漿區域的形狀,因而該等氣體的流量便成為電漿區域形狀控制的重要參數。電漿氣體與鞘流氣流量越高,則電漿區域的形狀越朝氣體流動方向延伸,電漿尾焰部的溫度斜率越緩和,因而所生成之超微粒子的生成時間越久,便可生成結晶性佳的超微粒子。藉此,本發明之複合鎢氧化物超微粒子的XRD峰頂強度比值便可成為所需值。反之,電漿氣體與鞘流氣流量越低,則電漿區域的形狀越朝氣體流方向壓縮,電漿尾焰部的溫度斜率越急遽,因而所生成之超微粒子的生成時間越短,便可生成BET比表面積較大的超微粒子。藉此,可將本發明複合鎢氧化物超微粒子的XRD峰頂強度比值設定為既定值。
當利用熱電漿法合成而獲得之複合鎢氧化物的結晶粒徑超過200nm時,或者由利用熱電漿法合成而獲得之複合鎢氧化物所製成的複合鎢氧化物超微粒子分散液中,當複合鎢氧化物的分散粒徑超過200nm時,可施行後述的粉碎‧分散處理。利用熱電漿法合成複合鎢氧化物時,適當選擇其電漿條件及後續的粉碎‧分散處理條件,依XRD峰頂強度比值達0.13以上的方式,使複合鎢氧化物超微粒子分散液被膜的複合鎢氧化物超微粒子分散體中,複合鎢氧化物超微粒子的平均粒徑與結晶粒徑差在20%以下,便可發揮本發明的效果。
(2)固相反應法
針對固相反應法,依照(i)固相反應法所使用的原料、(ii)固相反應法的煅燒及其條件的順序進行說明。
(i)固相反應法所使用的原料
本發明之複合鎢氧化物超微粒子係利用固相反應法合成時,原料係使用鎢化合物與M元素化合物。
鎢化合物較佳為從鎢酸(H2WO4)、鎢酸銨、六氯化鎢以及在溶解於醇中的六氯化鎢中添加水,經水解後再使溶劑蒸發的鎢之水合物中選擇1種以上。
再者,於更佳之實施形態的一般式MxWyOz(其中,M係從Cs、Rb、K、Tl、Ba中選擇1種以上的元素;0.001≦x/y≦1、2.0<z/y≦3.0)所示複合鎢氧化物超微粒子原料製造時,所使用的M元素化 合物較佳係從M元素的氧化物、氫氧化物、硝酸鹽、硫酸鹽、氯化物、碳酸鹽中選擇1種以上。
再者,亦可將含有從Si、Al、Zr中所選擇之1種以上之雜質元素的化合物(本發明中亦稱「雜質元素化合物」)使用為原料。該雜質元素化合物在後續的煅燒步驟中並不會與複合鎢化合物產生反應,而會抑制複合鎢氧化物的結晶成長,具有防止結晶粗大化的作用。含雜質元素的化合物較佳係從氧化物、氫氧化物、硝酸鹽、硫酸鹽、氯化物、碳酸鹽中選擇1種以上,更佳係粒徑500nm以下的膠態二氧化矽、膠態氧化鋁。
將上述鎢化合物與含有上述M元素化合物的水溶液,依M元素與W元素比成為MxWyOz(其中,M係上述M元素,W係鎢,O係氧,0.001≦x/y≦1.0、2.0<z/y≦3.0)的M元素與W元素比之方式進行濕式混合。於原料含有雜質元素化合物的情況,便依雜質元素化合物成為0.5質量%以下的方式進行濕式混合。然後,藉由將所獲得之混合液施行乾燥,便可獲得M元素化合物與鎢化合物的混合粉體、或者含有雜質元素化合物的M元素化合物與鎢化合物之混合粉體。
(ii)固相反應法的煅燒及其條件
將該利用濕式混合製造的M元素化合物與鎢化合物之混合粉體、或含有雜質元素化合物的M元素化合物與鎢化合物之混合粉體,在單獨惰性氣體或在惰性氣體與還原性氣體的混合氣體之環境下,依1階段進行煅燒。此時,煅燒溫度較佳為設為接近複合鎢氧 化物超微粒子開始結晶化的溫度,具體而言,較佳的煅燒溫度係1000℃以下、更佳係800℃以下、特佳係800℃以下且500℃以上的溫度範圍。藉由該煅燒溫度的控制,便可將本發明之複合鎢氧化物超微粒子的XRD峰頂強度比值設定於既定值。
尤其,在該複合鎢氧化物超微粒子的合成時,亦可取代上述鎢化合物,改為使用三氧化鎢。
(3)所合成的複合鎢氧化物超微粒子
當使用利用熱電漿法或固相反應法進行的合成法所獲得之複合鎢氧化物超微粒子,製作後述複合鎢氧化物超微粒子分散液時,若該分散液中所含有之超微粒子的分散粒徑超過200nm,只要在製造後述複合鎢氧化物超微粒子分散液的步驟中,施行粉碎‧分散處理便可。然後,經粉碎‧分散處理而獲得的複合鎢氧化物超微粒子,若其XRD峰頂強度比值能實現本發明範圍,則由本發明之複合鎢氧化物超微粒子或其分散液獲得的複合鎢氧化物超微粒子分散體,便可實現優異的近紅外線吸收特性。
[c]複合鎢氧化物超微粒子之揮發成分及其乾燥處理方法
如上述,本發明的複合鎢氧化物超微粒子會有含揮發成分的情況,而該揮發成分的含有率較佳為在2.5質量%以下。但是,若複合鎢氧化物超微粒子因暴露於大氣中等因素,導致揮發成分含有率超過2.5質量%時,利用乾燥處理便可降低該揮發成分的含有率。
具體而言,藉由經由:將依上述方法所合成的複合鎢氧化物施行粉碎‧分散處理而微粒化,而製造複合鎢氧化物超微粒子分散液 的步驟(粉碎‧分散處理步驟);以及對所製造的複合鎢氧化物超微粒子分散液施行乾燥處理,而除去溶劑的步驟(乾燥步驟),便可製造本發明的複合鎢氧化物超微粒子。
相關粉碎分散步驟因為在後述「[d]複合鎢氧化物超微粒子分散液」項目中會有詳細敘述,因而在此針對乾燥處理的步驟進行說明。
該乾燥處理的步驟係對經後述粉碎分散步驟所獲得的複合鎢氧化物超微粒子分散液施行乾燥處理並除去該分散液中的揮發成分,而獲得本發明之複合鎢氧化物超微粒子的步驟。
乾燥處理的設備,就從可施行加熱及/或減壓,且容易進行該超微粒子的混合、回收之觀點,較佳係例如:大氣乾燥機、萬能混合機、帶式混合機、真空流動乾燥機、振動流動乾燥機、冷凍乾燥機、圓錐形螺旋混合乾燥機(RIBOCONE)、迴轉窯、噴霧乾燥機、PALCON乾燥機等,惟並不僅侷限於該等。
以下,作為其中一例,針對(1)利用大氣乾燥機進行的乾燥處理、(2)利用真空流動乾燥機進行的乾燥處理、(3)利用噴霧乾燥機進行的乾燥處理進行說明。以下,針對各項乾燥處理依序進行說明。
(1)利用大氣乾燥機進行的乾燥處理
將依後述方法所獲得之複合鎢氧化物超微粒子分散液,利用大氣乾燥機施行乾燥處理,而除去該分散液中之揮發成分的處理方法。此情況,較佳為依較該揮發成分會從複合鎢氧化物超微粒子中揮發的溫度高,且元素M不會脫離的溫度濕行乾燥處理,較佳係 150℃以下。
利用該大氣乾燥機施行乾燥處理而製造的複合鎢氧化物超微粒子,會成為弱二次凝聚體。在此狀態下,雖仍可使該複合鎢氧化物超微粒子分散於樹脂等之中,但為能更容易分散,因而將該超微粒子利用搗碎機等施行破碎亦屬較佳之一例。
(2)利用真空流動乾燥機進行的乾燥處理
藉由利用真空流動乾燥機施行乾燥處理,而除去複合鎢氧化物超微粒子分散液中之揮發成分的處理方法。因為該真空流動乾燥機係在減壓環境下同時施行乾燥與破碎的處理,因而除乾燥速度快之外,並不會形成如上述大氣乾燥機之乾燥處理品所出現的凝聚體。又,因為在減壓環境下施行乾燥,因而即便於較低溫仍可除去揮發成分,亦可無限制地減少殘存之揮發成分量。
乾燥溫度較佳為依元素M不會從複合鎢氧化物超微粒子脫離的溫度施行乾燥處理,較佳係較該揮發成分會揮發的溫度高且為150℃以下。
(3)利用噴霧乾燥機進行的乾燥處理
藉由利用噴霧乾燥機施行乾燥處理,而除去複合鎢氧化物超微粒子分散液之揮發成分的處理方法。該噴霧乾燥機在施行乾燥處理的揮發成分除去時,不易發生因揮發成分表面力所造成的二次凝聚,即便未施行破碎處理,仍可獲得比較不會有二次凝聚的複合鎢氧化物超微粒子。
經施行上述(1)~(3)項乾燥處理的複合鎢氧化物超微粒子,利用適當方法分散於樹脂等之中,藉此便可形成具有高可見光穿透率、以及由近紅外線吸收機能顯現造成的低日光穿透穿透率,並具有低霧度值光學特性,屬於近紅外線吸收材料超微粒子分散體的複合鎢氧化物超微粒子分散體。
[d]複合鎢氧化物超微粒子分散液
針對供製造本發明之農園藝用土壤覆蓋薄膜用的複合鎢氧化物超微粒子分散液進行說明。
複合鎢氧化物超微粒子分散液係將依上述合成方法所獲得之複合鎢氧化物超微粒子;從水、有機溶劑、液狀樹脂、塑膠用液狀可塑劑、高分子單體或該等的混合物中所選擇之混合漿料的液狀介質;以及適量的分散劑、偶合劑、界面活性劑等,利用介質攪拌研磨機施行粉碎、分散者。
而,特徵在於:該溶劑中的該微粒子分散狀態良好,且其分散粒徑係1~200nm。又,該複合鎢氧化物超微粒子分散液中所含有複合鎢氧化物超微粒子的含量,較佳係0.01質量%以上且80質量%以下。
以下,針對本發明的複合鎢氧化物超微粒子分散液,依照(1)溶劑、(2)分散劑、(3)分散方法、(4)分散粒徑、(5)黏結劑、其他添加劑的順序進行說明。
(1)溶劑
複合鎢氧化物超微粒子分散液所使用的液狀溶劑並無特別的 限定,只要配合複合鎢氧化物超微粒子分散液的塗佈條件、塗佈環境及適當添加的無機黏結劑、樹脂黏結劑等,再行適當選擇便可。例如液狀溶劑係可舉例如:水、有機溶劑、油脂、液狀樹脂、介質樹脂用液狀可塑劑、高分子單體、或該等的混合物等。
此處,有機溶劑係可選擇例如:醇系、酮系、烴系、二醇系、水系等各種。具體係可使用例如:甲醇、乙醇、1-丙醇、異丙醇、丁醇、戊醇、苄醇、二丙酮醇等醇系溶劑;丙酮、甲乙酮、甲基丙酮、甲基異丁酮、環己酮、異佛爾酮等酮系溶劑;3-甲基-甲氧基-丙酸酯等酯系溶劑;乙二醇單甲醚、乙二醇單乙醚、乙二醇異丙醚、丙二醇單甲醚、丙二醇單乙醚、丙二醇甲醚醋酸酯、丙二醇乙醚醋酸酯等二醇衍生物;甲醯胺、N-甲基甲醯胺、二甲基甲醯胺、二甲基乙醯胺、N-甲基-2-吡咯啶酮等醯胺類;甲苯、二甲苯等芳香族烴類;二氯乙烷、氯苯等。而,該等有機溶劑中,特別較佳係例如:二甲酮、甲乙酮、甲基異丁酮、甲苯、丙二醇單甲醚醋酸酯、醋酸正丁酯等。
油脂較佳係植物油脂或源自植物的油脂。植物油係可使用例如:亞麻仁油、葵花油、桐油、紫蘇油等乾性油;芝麻油、棉籽油、菜籽油、大豆油、米糠油、芥子油等半乾性油;橄欖油、椰子油、棕櫚油、脫水蓖麻油等不乾性油。源自植物油的化合物係可使用使植物油的脂肪酸與單醇直接進行酯反應的脂肪酸單酯、醚類等。又,市售的石油系溶劑亦可作為油脂使用,可舉例如:ISOPER E、EXXSOL Hexane、EXXSOL Heptane、EXXSOL E、EXXSOL D30、 EXXSOL D40、EXXSOL D60、EXXSOL D80、EXXSOL D95、EXXSOL D110、EXXSOL D130(以上均係「Exxon Mobil」製)等。
介質樹脂用液狀可塑劑係可使用以有機酸酯系、磷酸酯系等為代表的公知液狀可塑劑。
理由為製造具備可塑性近紅外線吸收超微粒子分散體而使用的複合鎢氧化物超微粒子分散液,藉由將上述液狀可塑劑設為液狀介質,便可提升近紅外線吸收超微粒子分散體可塑性。
此處,液狀可塑劑係可舉例如:一元醇與有機酸酯的化合物之可塑劑;多元醇有機酸酯化合物等屬於酯系的可塑劑;有機磷酸系可塑劑等屬於磷酸系的可塑劑,均係較佳為在室溫下呈液狀。其中,較佳係由多元醇與脂肪酸合成,屬於酯化合物的可塑劑。
由多元醇與脂肪酸合成的酯化合物並無特別的限定,可舉例如:由例如:三乙二醇、四乙二醇、三丙二醇等二醇,與例如:丁酸、異丁酸、己酸、2-乙基丁酸、庚酸、正辛酸、2-乙基己酸、正壬酸(pelargonic acid)、癸酸等一元有機酸,進行反應而獲得的二醇系酯化合物。又,亦可例如:四乙二醇、三丙二醇、與上述一元有機的酯化合物等。
其中,較佳係例如:三乙二醇二己酸酯、三乙二醇二-2-乙基丁酸酯、三乙二醇二辛酸酯、三乙二醇二-2-乙基己酸酯等三乙二醇的脂肪酸酯。
再者,所謂「高分子單體」係指利用聚合等形成高分子的單體,本發明所使用的較佳高分子單體係可舉例如:甲基丙烯酸甲酯單體、丙烯酸酯單體、苯乙烯樹脂單體等。
以上所說明的液狀溶劑係可單獨使用1種或組合使用2種以上。又,視需要亦可在該等液狀溶劑中添加酸或鹼施行pH調整。
(2)分散劑
再者,為更加提升該複合鎢氧化物超微粒子分散液中的複合鎢氧化物超微粒子之分散安定性,避免因再凝聚而導致分散粒徑粗大化,較佳係添加各種分散劑、界面活性劑、偶合劑等。該分散劑、偶合劑、界面活性劑係可配合用途再行選定,較佳係具有官能基為例如:含胺之基、羥基、羧基或環氧基者。該等官能基具有防止吸附並凝聚於複合鎢氧化物超微粒子的表面上,即便在紅外線吸收膜中仍可使本發明之複合鎢氧化物超微粒子呈均勻分散的效果。更佳係分子中具有該等官能基中之任一者的高分子系分散劑。
市售分散劑的較佳具體例,係可舉例如:日本Lubrizol(股)製SOLSPERSE3000、SOLSPERSE9000、SOLSPERSE11200、SOLSPERSE13000、SOLSPERSE13240、SOLSPERSE13650、SOLSPERSE13940、SOLSPERSE16000、SOLSPERSE17000、SOLSPERSE18000、SOLSPERSE20000、SOLSPERSE21000、SOLSPERSE24000SC、SOLSPERSE24000GR、SOLSPERSE26000、SOLSPERSE27000、SOLSPERSE28000、SOLSPERSE31845、 SOLSPERSE32000、SOLSPERSE32500、SOLSPERSE32550、SOLSPERSE32600、SOLSPERSE33000、SOLSPERSE33500、SOLSPERSE34750、SOLSPERSE35100、SOLSPERSE35200、SOLSPERSE36600、SOLSPERSE37500、SOLSPERSE38500、SOLSPERSE39000、SOLSPERSE41000、SOLSPERSE41090、SOLSPERSE53095、SOLSPERSE55000、SOLSPERSE56000、SOLSPERSE76500等;BYK-Chemie‧Japan(股)製Disperbyk-101、Disperbyk-103、Disperbyk-107、Disperbyk-108、Disperbyk-109、Disperbyk-110、Disperbyk-111、Disperbyk-112、Disperbyk-116、Disperbyk-130、Disperbyk-140、Disperbyk-142、Disperbyk-145、Disperbyk-154、Disperbyk-161、Disperbyk-162、Disperbyk-163、Disperbyk-164、Disperbyk-165、Disperbyk-166、Disperbyk-167、Disperbyk-168、Disperbyk-170、Disperbyk-171、Disperbyk-174、Disperbyk-180、Disperbyk-181、Disperbyk-182、Disperbyk-183、Disperbyk-184、Disperbyk-185、Disperbyk-190、Disperbyk-2000、Disperbyk-2001、Disperbyk-2020、Disperbyk-2025、Disperbyk-2050、Disperbyk-2070、Disperbyk-2095、Disperbyk-2150、Disperbyk-2155、Anti-Terra-U、Anti-Terra-203、Anti-Terra-204、BYK-P104、BYK-P104S、BYK-220S、BYK-6919等;BASF Japan(股)公司製EFKA4008、EFKA4046、EFKA4047、EFKA4015、EFKA4020、EFKA4050、EFKA4055、EFKA4060、EFKA4080、EFKA4300、EFKA4330、EFKA4400、EFKA4401、EFKA4402、EFKA4403、EFKA4500、EFKA4510、EFKA4530、 EFKA4550、EFKA4560、EFKA4585、EFKA4800、EFKA5220、EFKA6230、JONCRYL67、JONCRYL678、JONCRYL586、JONCRYL611、JONCRYL680、JONCRYL682、JONCRYL690、JONCRYL819、JONCRYL-JDX5050等;Ajinomoto Fine-Techno(股)製AJISPER PB-711、AJISPER PB-821、AJISPER PB-822等。
(3)分散方法
藉由將該複合鎢氧化物超微粒子,利用適當方法塗佈於基材上、或捏和入基材中,便可形成具有高可見光穿透率與低日光穿透率,且低霧度值之屬於具近紅外線吸收特性複合鎢氧化物超微粒子之分散體的近紅外線吸收超微粒子分散體。
複合鎢氧化物超微粒子分散於分散液中的分散方法,係在使該微粒子能在分散液中呈無凝聚地均勻分散之方法前提下,其餘並無特別的限定。該分散方法係可舉例如使用珠磨機、球磨機、砂磨機、塗料振盪機、超音波均質機等裝置的粉碎‧分散處理方法。其中,較佳為使用球珠、磨球、渥太華砂等介質媒介的珠磨機、球磨機、砂磨機、塗料振盪機等介質攪拌研磨機,原因在於其所施行的粉碎、分散直到成為所需分散粒徑的所需時間較短,故較佳。
藉由使用介質攪拌研磨機施行粉碎‧分散處理,便在使複合鎢氧化物超微粒子分散於分散液中之同時,亦利用複合鎢氧化物超微粒子彼此間的碰撞、介質媒介碰撞該超微粒子等進行微粒子化,可使複合鎢氧化物超微粒子更微粒子化而分散(即,被施行粉碎‧分 散處理)。
而,該複合鎢氧化物超微粒子進行粉碎‧分散時,若將矽粉末標準試料(NIST製、640c)之(220)面的XRD尖峰強度值設為1時,便依能確保該複合鎢氧化物超微粒子的XRD峰頂強度比值達0.13以上的方式,設定粉碎‧分散的步驟條件。藉由該設定,含有該複合鎢氧化物超微粒子的農園藝用土壤覆蓋薄膜便可發揮優異的光學特性。
使複合鎢氧化物超微粒子分散於可塑劑時,視所需,更進一步添加具有120℃以下沸點的有機溶劑,亦屬較佳構成。
具120℃以下沸點的有機溶劑,具體係可舉例如:甲苯、甲乙酮、甲基異丁酮、醋酸丁酯、異丙醇、乙醇。尤其係沸點在120℃以下、能使發揮近紅外線吸收機能的微粒子可均勻分散之前提下,均可任意選擇使用。但,有添加該有機溶劑時,待分散完成後再實施乾燥步驟,在近紅外線吸收超微粒子分散體一例的後述紅外光吸收層中,所殘留有機溶劑較佳係在5質量%以下。理由係若紅外光吸收層的殘留溶劑在5質量%以下,則後述農園藝用土壤覆蓋薄膜便不會產生氣泡,便可保持良好的外觀與光學特性。
(4)分散粒徑
複合鎢氧化物超微粒子的分散粒徑較佳係200nm以下、更佳的分散粒徑係200nm以下且10nm以上。
理由係若農園藝用土壤覆蓋薄膜設有白色光反射層時,便必須考慮目視紅外光吸收層時的可見光線透明性,故對紅外光吸收層要 求在保持可見光線之透明性的狀態下,效率佳地進行近紅外線吸收。
因為含有本發明複合鎢氧化物超微粒子的近紅外線吸收成分,會大幅吸收近紅外線區域、特別係波長900~2200nm附近的光,因而在可見光線下的穿透色調會有從藍色系轉變為綠色系的情況。另一方面,若紅外線光吸收層所含之複合鎢氧化物超微粒子的分散粒徑係1~200nm,便不會因幾何散射或米氏散射而將波長380nm~780nm的可見光線區域光予以散射,因此減少紅外線光吸收層因光散射而造成的呈色,便可達成使可見光穿透率增加之目的。又,因為在瑞立(Rayleigh)散射區域中,散射光係與粒徑的六次方呈比例減少,因而隨分散粒徑之減少,會降低散射、提升透明性。所以,若將分散粒徑設在200nm以下,則散射光非常少,能更增加透明性,故較佳。
由上述,若該超微粒子的分散粒徑小於200nm,便可確保透明性,當重視該透明性的情況,分散粒徑較佳係設為150nm以下、更佳係100nm以下。另一方面,若分散粒徑達1nm以上,則工業性製造容易。
此處,針對複合鎢氧化物超微粒子分散液中,該複合鎢氧化物超微粒子的分散粒徑進行簡單說明。複合鎢氧化物超微粒子的「分散粒徑」係指分散於溶劑中的複合鎢氧化物超微粒子之單體粒子粒徑、或由該複合鎢氧化物超微粒子凝聚的凝聚粒子之粒徑,可利用市售各種粒度分佈計進行測定。例如採取該複合鎢氧化物超微粒子分散液的樣品,針對該樣品使用原理為動態光散射法的大塚電子股 份有限公司製ELS-8000,便可測定。
再者,依上述合成方法所獲得之複合鎢氧化物超微粒子之含量,為0.01質量%以上且80質量%以下的複合鎢氧化物超微粒子分散液,係液安定性優異。當選擇適當之液狀介質、分散劑、偶合劑、界面活性劑時,即便放入溫度40℃之恆溫槽,仍可維持6個月以上不會發生分散液之凝膠化與粒子沉澱之情形,可使分散粒徑維持於1~200nm之範圍內。
再者,複合鎢氧化物超微粒子分散液的分散粒徑,與在近紅外線吸收材料超微粒子分散體中所分散之複合鎢氧化物超微粒子的平均粒徑會有不同的情況。此現象係因為即便在複合鎢氧化物超微粒子分散液中出現複合鎢氧化物超微粒子凝聚,但當從複合鎢氧化物超微粒子分散液加工為近紅外線吸收材料超微粒子分散體時,複合鎢氧化物超微粒子的凝聚會被解散。
(5)黏結劑、其他添加劑
在該複合鎢氧化物超微粒子分散液中,亦可適當含有從樹脂黏結劑中選擇1種以上。該複合鎢氧化物超微粒子分散液中所含有樹脂黏結劑的種類並無特別的限定,樹脂黏結劑係可適當使用例如:丙烯酸樹脂等熱可塑性樹脂;環氧樹脂等熱硬化性樹脂等等。
再者,為提升本發明之複合鎢氧化物超微粒子分散體的近紅外線吸收特性,在本發明之分散液中,視所需適當添加:一般式 XBm(其中,X係鹼土族元素、或從包含釔在內的稀土族元素中選擇的金屬元素;4≦m≦6.3)所示之硼化物;ATO及ITO等近紅外線吸收超微粒子,此亦屬較佳構成。另外,此時的添加比例係只要配合所需的近紅外線吸收特性再行適當選擇便可。
再者,為調整複合鎢氧化物超微粒子分散體的色調,亦可添加例如:碳黑、孟加拉紅等公知之無機顏料、公知之有機顏料。
在複合鎢氧化物超微粒子分散液中,亦可添加公知之紫外線吸收劑、有機物的公知之紅外線吸收材、磷系抗著色劑。
[e]農園藝用土壤覆蓋薄膜
針對本發明的農園藝用土壤覆蓋薄膜進行說明。
一般到達地表的太陽光線係約290~2100nm之波長域,其中波長約380~780nm之可見光波長區域的光係植物生長所必要的光。所以,藉由將波長約380~780nm可見光波長區域之光予以反射,效率佳地選擇性吸收波長約780~2100nm近紅外光,將植物生長所必要的光反射於植物,並吸收會成為熱的紅外光而溫暖土壤。而,若將上述農園藝用土壤覆蓋薄膜使用於溫室內等之時,較佳為構成該溫室內等的環境氣溫不會上升。
具體而言,本發明的農園藝用土壤覆蓋薄膜較佳為構成在該農園藝用土壤覆蓋薄膜之至少其中一面上,設有經塗佈紅外線吸收材料超微粒子所形成之紅外光吸收層的構成,亦可具備在該農園藝用土壤覆蓋薄膜的薄膜內部,分散存在紅外線吸收材料超微粒子的構 成。
再者,本發明的農園藝用土壤覆蓋薄膜亦可設有內部分散有白色光反射材料的白色光反射層,亦可在該設有白色反射層的薄膜之至少其中一面上,設置藉由塗佈紅外線吸收材料超微粒子所形成的紅外光吸收層。
再者,亦可使白色光反射材料與紅外線吸收材料超微粒子分散於薄膜內部,構成白色光反射層與紅外光吸收層。
再者,亦可在薄膜之單面上,設置藉由塗佈白色光反射材料所形成的白色光反射層,更在該白色光反射層上設置藉由塗佈紅外線吸收材料超微粒子所形成之紅外光吸收層的構成。
再者,亦可在薄膜之單面上,設置藉由塗佈白色光反射材料所形成之白色光反射層,並在薄膜之另一面上,設置藉由塗佈紅外線吸收材料超微粒子所形成之紅外光吸收層的構成。
再者,本發明的農園藝用土壤覆蓋薄膜係紅外光吸收層不會有因紅外線吸收材料超微粒子所造成的著色,因而即便設置有白色反射層,但白色反射層仍不會因紅外光吸收層而著色。
上述農園藝用土壤覆蓋薄膜係藉由紅外線吸收材料超微粒子吸收由日照形成的太陽熱,由薄膜吸收紅外線使薄膜溫度上升,隨此亦會增加輻射熱,則所被覆的土壤內部溫度便會迅速上升。又,若上述農園藝用土壤覆蓋薄膜使用溫室內等的情況,該溫室內等的環境氣溫不會上升。又,當上述農園藝用土壤覆蓋薄膜設有上述白色光反射層的情況,因為可見光線會被該白色光反射材料所反射,因而照到植物的光量增加,而增加光合成量,便可促進植物生長。
作為本發明之紅外線吸收材料超微粒子的適用方法,係有如在所需基材表面上,形成藉由塗佈上述微粒子所形成之分散於適當介質中之紅外光吸收層的方法。因為該方法可將預先依高溫施行煅燒獲得的紅外線吸收材料超微粒子捏和入薄膜基材中,或者利用黏結劑黏結於基材表面,因而可應用於樹脂材料等低耐熱溫度的基材材料,且形成時不需要大型裝置,具有價廉的優點。
依如上述,當薄膜內部有分散著白色光反射材料的薄膜,在其單面上塗佈紅外線吸收材料超微粒子而形成紅外光吸收層的情況,或者在薄膜基材之單面上塗佈白色光反射材料形成白色光反射層,更在該白色光反射層上塗佈紅外線吸收材料超微粒子形成紅外光吸收層的情況,或者在薄膜基材之單面上塗佈白色光反射材料形成白色光反射層,並在另一單面上塗佈紅外線吸收材料超微粒子形成紅外光吸收層的情況,例如若使紅外線吸收材料超微粒子分散於適當溶劑中,於其中添加樹脂黏結劑後,塗佈於薄膜基材表面,使溶劑蒸發,再依既定方法使樹脂硬化,便可形成該紅外線吸收材料超微粒子分散於介質中的薄膜。
對薄膜基材表面的塗佈方法,係只要能在薄膜基材表面上均勻塗佈含有紅外線吸收材料超微粒子之樹脂便可,並無特別的限定,可舉例如:棒塗法、凹版塗佈法、噴霧塗佈法、浸塗法、流動式塗佈法、旋塗法、輥塗佈法、網版印刷法、刮刀塗佈法等。又,將紅外線吸收材料超微粒子直接分散於黏結劑樹脂中之時,因為經塗佈 於薄膜基材表面後,不需要使溶劑蒸發,故就環保性、工業性而言屬較佳。
上述樹脂黏結劑係可配合目的,選擇使用例如:UV硬化樹脂、熱硬化樹脂、電子束硬化樹脂、常溫硬化樹脂、熱可塑性樹脂等。
該樹脂黏結劑具體係可舉例如:聚乙烯樹脂、聚氯乙烯樹脂、聚偏二氯乙烯樹脂、聚乙烯醇樹脂、聚苯乙烯樹脂、聚丙烯樹脂、乙烯-醋酸乙烯酯共聚合體、聚酯樹脂、聚對苯二甲酸乙二酯樹脂、氟樹脂、聚碳酸酯樹脂、丙烯酸樹脂、聚乙烯丁醛樹脂。又,亦可利用使用金屬烷氧化物的黏結劑。上述金屬烷氧化物係以Si、Ti、Al、Zr等的烷氧化物為代表。使用該等金屬烷氧化物的黏結劑係藉由進行水解並施行加熱便可形成氧化膜。
再者,如上述,亦可使紅外線吸收材料超微粒子分散於已分散有白色光反射材料的薄膜基材之內部。為使該超微粒子分散於基材中,可從基材表面滲透,又亦可將溫度提升至基材熔融溫度以上而使之熔融後,再將紅外線吸收材料超微粒子與基材樹脂予以混合。又,亦可預先製造基材原料樹脂中高濃度含有上述超微粒子的母料,再將其稀釋調整為既定濃度。依此,所獲得之含紅外線吸收材料超微粒子的樹脂係依既定方法成形為薄膜狀,便可應用為紅外線吸收材料。
上述母料的製造方法並無特別的限定,例如將複合鎢氧化物超微粒子分散液、熱可塑性樹脂的粉粒體或顆粒以及視需要的其他添 加劑,使用例如:帶式摻合機(ribbon blender)、轉鼓、諾塔混合機(Nauta Mixer)、亨歇爾(Henschel)攪拌機、快速混合造粒機、行星式攪拌機等混合機、及例如:班布瑞混合機、捏合機、滾筒、舵捏合機、單軸擠出機、雙軸擠出機等混練機,一邊除去溶劑,一邊進行均勻熔融混合,便可製得在熱可塑性樹脂中上述超微粒子均勻分散的混合物。
再者,利用公知方法除去複合鎢氧化物超微粒子分散液的溶劑,再將所獲得之粉末、熱可塑性樹脂的粉粒體或顆粒以及視需要的其他添加劑進行均勻熔融混合的方法,亦可製得在熱可塑性樹脂中均勻分散上述超微粒子的混合物。此外,亦可採用直接將複合鎢氧化物超微粒子的粉末添加於熱可塑性樹脂中,並均勻熔融混合的方法。
將依上述方法所獲得的混合物,利用排氣式單軸或二軸擠出機進行混練,藉由加工呈顆粒狀,便可獲得含有熱線吸收成分的母料。
使上述紅外線吸收材料超微粒子分散於樹脂中的方法,並無特別的限定,可使用例如:超音波分散、介質攪拌研磨機、球磨機、砂磨機等。
上述紅外線吸收材料超微粒子的分散介質並無特別的限定,可配合所摻合的介質樹脂黏結劑進行選擇,可使用例如:水、醇、醚、酯、酮、芳香族化合物等一般的各種有機溶劑。又,視需要亦可添加酸、鹼而調整pH。又,為更加提升紅外線吸收材料超微粒子的分散安定性,亦可添加各種界面活性劑、偶合劑等。
本發明農園藝用土壤覆蓋薄膜所使用的白色光反射材料並無特別的限定,較佳係例如:TiO2、ZrO2、SiO2、Al2O3、MgO、ZnO、CaCO3、BaSO4、ZnS、PbCO3等。該等白色光反射材料係可單獨使用、亦可併用2種以上。
再者,就從提升該紅外線吸收材料耐候性的觀點,構成本發明農園藝用土壤覆蓋薄膜所使用之紅外線吸收材料的超微粒子表面,較佳為利用含有從Si、Ti、Zr、Al中選擇之至少1種以上的氧化物進行被覆。該等氧化物係基本上透明,並不會因添加而使可見光穿透率降低。被覆方法並無特別的限定,藉由在已分散有該紅外線吸收材料超微粒子的溶液中,添加上述金屬的烷氧化物,便可被覆紅外線吸收材料超微粒子的表面。
本發明之農園藝用土壤覆蓋薄膜所使用的薄膜並無特別的限定,係可舉例如:聚乙烯、聚丙烯、聚對苯二甲酸乙二酯、聚氟乙烯、聚偏氟乙烯、聚四氟乙烯、四氟乙烯-乙烯共聚合體、聚三氟氯乙烯、三氟四氯乙烯、聚氯乙烯、聚偏二氯乙烯、聚乙烯醇、聚苯乙烯、乙烯-醋酸乙烯酯、聚酯樹脂等。在該等樹脂中,亦可添加例如:安定劑、安定化助劑、抗氧化劑、可塑劑、滑劑、紫外線吸收劑等添加劑。
依此,本發明的農園藝用土壤覆蓋薄膜係設有:含白色光反射材料的白色光反射層,以及含紅外線吸收材料超微粒子的紅外光吸 收層之薄膜,藉由簡便之方法,形成含有紅外線吸收材料超微粒子、較佳係複合鎢氧化物超微粒子的紅外光吸收層,便可提供耐候性佳、低成本,且利用較少的超微粒子量便可效率佳地吸收來自太陽光的近紅外線、並將可見光線反射的農園藝用土壤覆蓋薄膜。
藉由將該薄膜使用於栽培植物等的地面,所被覆之地面的溫度會上升而溫暖土壤,當上述農園藝用土壤覆蓋薄膜使用於溫室內等的情況,具有該溫室內等的環境氣溫不會上升的效果。
再者,當在上述農園藝用土壤覆蓋薄膜上設有上述白色光反射層的情況,因為可見光線會因該白色光反射材料而被反射,因此照到植物的光量增加,藉此增加光合成量,便可促進植物生長。
[實施例]
以下,參照實施例,針對本發明進行更具體之說明。惟,本發明並不僅侷限於以下實施例。
再者,實施例及比較例的分散液與塗佈膜光學特性,係使用分光光度計(日立製作所股份有限公司製U-4100)測定,而可見光穿透率與日光穿透率係依據JIS R 3106計算。又,分散粒徑係根據動態光散射法,利用粒徑測定裝置(大塚電子股份有限公司製ELS-8000)所測定的平均值表示。
再者,實施例與比較例的揮發成分含有率,係使用島津製作所股份有限公司製、水分計:MOC63u,在從測定試料開始進行測定起1分鐘內,從室溫升溫至溫度125℃,並在溫度125℃下保持9 分鐘。然後,將從開始測定起經10分鐘後的測定試料重量減少率,設為揮發成分含有率。在紅外線吸收膜中分散的複合鎢氧化物超微粒子平均粒徑,係藉由觀察該吸收膜截面的穿透式電子顯微鏡影像而進行測定。
穿透式電子顯微鏡影像係使用穿透式電子顯微鏡(日立高科技股份有限公司製HF-2200)進行觀察。該穿透式電子顯微鏡影像利用影像處理裝置進行處理,測定100個複合鎢氧化物粒子的粒徑,並將平均值設為平均粒徑。
X射線繞射圖案係使用粉末X射線繞射裝置(Spectris股份有限公司PANalytical製X'Pert-PRO/MPD),依照粉末X射線繞射法(θ-2 θ法)進行測定。又,為確保客觀的定量性,在複合鎢氧化物超微粒子每次測定X射線繞射圖案時,均實施矽粉末標準試料的X射線繞射圖案測定,並計算出該次的尖峰強度比。
[實施例1]
在水0.330kg中溶解Cs2CO3:0.216kg,將其添加於H2WO4:1.000kg中,經充分攪拌後,施行乾燥,便獲得目標組成Cs0.33WO3的混合粉體。
其次,使用上述圖1所說明的高頻電漿反應裝置,利用真空排氣裝置將反應系統內抽真空至約0.1Pa(約0.001Torr)後,利用氬氣完全取代而形成1氣壓的流通系統。然後,依30L/min流量將電漿 氣體之氬氣導入於反應容器內,並從鞘流氣供應口呈螺旋狀依氬氣55L/min與氦氣5L/min流量導入鞘流氣。然後,對高頻電漿生成用水冷銅線圈施加高頻電力,使高頻電漿生成。此時,為使能生成具有10000~15000K高溫部的熱電漿,便將高頻電力設為40kW。
依此在使高頻電漿生成後,便一邊從氣體供應裝置11,依9L/min流量供應載體氣體之氬氣,一邊將上述混合粉體依50g/min比例供應至熱電漿中。
結果,混合粉體在熱電漿中瞬間蒸發,並在到達電漿尾焰部的過程中急冷凝固而超微粒化。該生成的超微粒子累積於回收過濾器上。
該製造條件係如表1所示。又,表1中亦合併記載下述實施例2~13的製造條件。
回收該累積的超微粒子,使用粉末X射線繞射裝置(Spectris股份有限公司PANalytical製X' Pert-PRO/MPD),利用粉末X射線繞射法(θ-2 θ法)測定X射線繞射圖案。
所獲得之超微粒子的X射線繞射圖案係如圖2所示。經施行相鑑定,結果所獲得之超微粒子鑑定為六方晶Cs0.33WO3單相。又,使用該X射線繞射圖案,利用Rietveld分析法施行結晶構造解析,結果所獲得之超微粒子的結晶粒徑係18.8nm。又,所獲得超微粒子的X射線繞射圖案之峰頂強度值係4200計數。
利用ICP發光分析法調查所獲得之超微粒子的組成。結果,Cs濃度係13.6質量%,W濃度係65.3質量%,Cs/W莫耳比係0.29。除Cs與W以外其餘均係氧,確認到並未存在含有1質量%以上的其他雜質元素。
利用BET比表面積測定裝置(Mountech股份有限公司製HMmodel-1208),所獲得之超微粒子的BET比表面積經測定之結果為60.0m2/g。又,BET比表面積測定時係使用純度99.9%氮氣。
再者,實施例1的複合鎢氧化物超微粒子之揮發成分含有率經測定之結果係1.6質量%。
將所獲得之複合鎢氧化物超微粒子10重量份、甲苯80重量份及具有官能基為含胺之基之丙烯酸系高分子分散劑(胺值48mgKOH/g、分解溫度250℃的丙烯酸系分散劑)(以下稱「分散劑a」)10重量份予以混合,製備得3kg漿料。將該漿料與球珠一起投入介質攪拌研磨機中,施行0.5小時粉碎分散處理。又,介質攪拌研磨機係使用臥式圓筒形環狀式(Ashizawa Finetech股份有限公司製),容器內壁與轉子(旋轉攪拌部)的材質係設為二氧化鋯。又,球珠係使用直徑0.1mm的YSZ(Yttria-Stabilized Zirconia:釓安定氧化鋯)製球珠。轉子的旋轉速度設為14rpm/秒,依漿料流量0.5kg/min施行粉碎分散處理,實施例1的複合鎢氧化物超微粒子分散液。
實施例1的複合鎢氧化物超微粒子分散液中,所含複合鎢氧化 物超微粒子(即經粉碎分散處理後的複合鎢氧化物超微粒子),X射線繞射圖案之峰頂強度值係3000計數,尖峰位置係2 θ=27.8°。
另一方面,準備矽粉末標準試料(NIST製640c),測定以該矽粉末標準試料之(220)面為基準的尖峰強度值,結果為19800計數。
所以,得知將該標準試料的尖峰強度值設為1時,實施例1的經粉碎分散處理後的複合鎢氧化物超微粒子之XRD尖峰強度比值係0.15。
再者,實施例1經粉碎分散處理後的複合鎢氧化物超微粒子之結晶粒徑係16.9nm。
再者,使用根據動態光散射法的粒徑測定裝置,實施例1的複合鎢氧化物超微粒子分散液之分散粒徑經測定之結果為70nm。又,粒徑測定的設定係將粒子折射率設為1.81,粒子形狀設為非球形。又,背景係使用甲苯進行測定,溶劑折射率設為1.50。
該結果係如表3所示。又,表3中亦合併記載下述實施例2~13所獲得的結果。
將實施例1的複合鎢氧化物超微粒子分散液50重量份、與硬塗用紫外線硬化樹脂(固形份100%)30重量份予以混合,形成紅外線吸收材料超微粒子分散體液。將該紅外線吸收材料超微粒子分散體液,使用棒塗機在含有白色光反射材料之TiO2微粒子的聚乙烯薄膜上施行塗佈而成膜。該膜經60℃施行30秒鐘乾燥而使溶劑蒸發後,利用高壓水銀燈使之硬化,便獲得可見光區域之擴散反射率高的實施例1之紅外線吸收膜。
所製作之實施例1在紅外線吸收膜中分散的複合鎢氧化物超微粒子之平均粒徑,經使用穿透式電子顯微鏡影像的影像處理裝置而進行計算之結果為17nm,呈現與上述結晶粒徑16.9nm大致相同之值。
再者,所製作之膜的分光特性,係使用日立製作所製分光光度計,利用波長200~2600nm之光的穿透率進行測定,根據JIS A 5759計算出可見光穿透率、日光穿透率、可見光反射率、日光反射率及日光吸收率。(其中,日光吸收率係由日光吸收率(%)=100%-日光穿透率(%)-日光反射率(%)計算出)。
該結果係如表5所示。又,表5中亦合併記載下述實施例2~13所獲得之結果。
[實施例2~6]
除變更載體氣體流量、電漿氣體流量、鞘流氣流量、原料供應速度之外,其餘均依照與實施例1同樣的操作,製造實施例2~6的複合鎢氧化物超微粒子與複合鎢氧化物超微粒子分散液。所變更的載體氣體流量條件、原料供應速度條件及其他條件,如表1所記載。針對實施例2~6的複合鎢氧化物超微粒子與複合鎢氧化物超微粒子分散液,施行與實施例1同樣的評價。
該評價結果係如表2所示。
再者,除使用實施例2~6的複合鎢氧化物超微粒子分散液之外,其餘均與實施例1同樣地獲得實施例2~6的紅外線吸收膜,並施行評價。
結果係如表1、3、5所示。
[實施例7]
將實施例1所記載之Cs2CO3與H2WO4的混合粉體,在氮氣與氫氣混合氣體環境下,依800℃施行煅燒而轉變為Cs0.33WO3所示之複合鎢氧化物,並將其使用為投入高頻電漿反應裝置中的原料。除此之外其餘均依照與實施例1同樣的方法,製造實施例7的複合鎢氧化物超微粒子與複合鎢氧化物超微粒子分散液。針對所獲得之超微粒子與其分散液,施行與實施例1同樣的評價。該製造條件與評價結果係如表1、2所示
再者,除使用實施例7的複合鎢氧化物超微粒子分散液之外,其餘均與實施例1同樣地獲得實施例7的紅外線吸收膜,並施行評價。
結果係如表1、3、5所示。
[實施例8]
除變更載體氣體流量與原料供應速度之外,其餘均依照與實施例7同樣的操作,製造實施例8的複合鎢氧化物超微粒子與複合鎢氧化物超微粒子分散液。針對所獲得之超微粒子與其分散液,施行與實施例1同樣的評價。該製造條件與評價結果係如表1、2所示。
再者,除使用實施例8的複合鎢氧化物超微粒子分散液之外,其餘均與實施例1同樣地獲得實施例8的紅外線吸收膜,並施行評價。
結果係如表1、3、5所示。
[實施例9~13]
在水0.330kg中溶解Rb2CO3:0.148kg,將其添加於H2WO4:1.000kg中,經充分攪拌後,施行乾燥,便獲得目標組成Rb0.32WO3的實施例9之混合粉體。
在水0.330kg中溶解K2CO3:0.375kg,將其添加於H2WO4:1.000kg中,經充分攪拌後,施行乾燥,便獲得目標組成K0.27WO3的實施例10之混合粉體。
在水0.330kg中溶解TlNO3:0.320kg,將其添加於H2WO4:1.000kg中,經充分攪拌後,施行乾燥,便獲得目標組成Tl0.19WO3的實施例11之混合粉體。
在水0.330kg中溶解BaCO3:0.111kg,將其添加於H2WO4:1.000kg中,經充分攪拌後,施行乾燥,便獲得目標組成Ba0.14WO3的實施例12之混合粉體。
在水0.330kg中溶解K2CO3:0.0663kg與Cs2CO3:0.0978kg,將其添加於H2WO4:1.000kg中,經充分攪拌後,施行乾燥,便獲得目標組成K0.24Cs0.15WO3的實施例13之混合粉體。
除將上述實施例9~13的混合粉體,使用為投入高頻熱電漿反應裝置中的原料之外,其餘均依照與實施例1同樣的方法,製造實施例9~13的複合鎢氧化物超微粒子與複合鎢氧化物超微粒子分散液。針對所獲得之超微粒子與其分散液,施行與實施例1同樣的評價。該製造條件與評價結果係如表1、2所示。
再者,除使用實施例9~13的複合鎢氧化物超微粒子分散液之外,其餘均與實施例1同樣地獲得實施例9~13的紅外線吸收膜, 並施行評價。
結果係如表1、3、5所示。
[實施例14]
在水16.5g中溶解Cs2CO3:10.8g,將該溶液添加於H2WO4:50g中,經充分攪拌後,施行乾燥。一邊供應以N2氣體為載體氣體的2%H2氣體,一邊加熱該乾燥物,依800℃溫度施行30分鐘煅燒。然後,利用在N2氣體環境下,依800℃施行90分鐘煅燒之固相法,獲得實施例14的複合鎢氧化物。
除此之外,其餘均與實施例1同樣地製造實施例14的複合鎢氧化物超微粒子分散液。但,利用介質攪拌研磨機進行的粉碎‧分散處理時間係設為2小時。針對所獲得超微粒子與其分散液,施行與實施例1同樣的評價。
測定所獲得之超微粒子的X射線繞射圖案,經施行相鑑定之結果係所獲得之超微粒子鑑定為六方晶Cs0.33WO3單相。
該製造條件係如表2所示。又,表2中亦合併記載下述實施例15~26、比較例1~4的製造條件。
該評價結果係如表4所示。又,表4中亦合併記載下述實施例15~26、比較例1~4所獲得的結果。
再者,除使用實施例14的複合鎢氧化物超微粒子分散液之外,其餘均與實施例1同樣地獲得實施例14的紅外線吸收膜,並施行評價。
該評價結果係如表6所示。又表6中亦合併記載下述實施例15~26、比較例1~5所獲得的結果。
[實施例15]
在水0.330kg中溶解Cs2CO3:0.216kg,將所獲得之溶液添加於H2WO4:1.000kg中,經充分攪拌後,施行乾燥而獲得乾燥物。一邊供應以N2氣體為載體氣體的5%H2氣體,一邊加熱該乾燥物,依800℃溫度施行1小時煅燒。然後,更進一步利用在N2氣體環境下,依800℃施行2小時煅燒的固相法,獲得實施例15的複合鎢氧化物。
將所獲得之實施例15的複合鎢氧化物10重量份與水90重量份予以混合,而製備約3kg漿料。又,在該漿料中並未添加分散劑。將該漿料與球珠一起投入介質攪拌研磨機中,施行2小時粉碎分散處理。又,介質攪拌研磨機係使用臥式圓筒形環狀式(Ashizawa Finetech股份有限公司製),容器內壁與轉子(旋轉攪拌部)的材質係設為二氧化鋯。又,球珠係使用直徑0.1mm的YSZ(Yttria-Stabilized Zirconia:釓安定氧化鋯)製球珠。轉子的旋轉速度設為14rpm/秒,依漿料流量0.5kg/min施行粉碎分散處理,實施例15的複合鎢氧化物超微粒子水分散液。
實施例15的複合鎢氧化物超微粒子水分散液之分散粒徑經測定之結果為70nm。又,分散粒徑測定的設定係將粒子折射率設為1.81,粒子形狀設為非球形。又,背景係使用水進行測定,溶劑折射率設為1.33。
其次,所獲得複合鎢氧化物超微粒子分散液約3kg利用大氣乾 燥機施行乾燥處理,獲得實施例15的複合鎢氧化物超微粒子。又,大氣乾燥機係使用恆溫烤箱SPH-201型(ESPEC股份有限公司製),乾燥溫度設為70℃,乾燥時間設為96小時。
測定實施例15的複合鎢氧化物超微粒子之X射線繞射圖案,經施行相鑑定之結果係所獲得之超微粒子鑑定為六方晶Cs0.33WO3單相。又,所獲得之超微粒子的X射線繞射圖案之峰頂強度值係4200計數,尖峰位置係2 θ=27.8°,結晶粒徑係23.7nm。另一方面,準備矽粉末標準試料(NIST製640c),測定以該矽粉末標準試料之(220)面為基準的尖峰強度值,結果為19800計數。所以,得知將該標準試料的尖峰強度值設為1時,實施例15的經粉碎分散處理後的複合鎢氧化物超微粒子之XRD尖峰強度比值係0.21。
利用ICP發光分析法調查所獲得實施例15的複合鎢氧化物超微粒子組成。結果,Cs濃度係15.2質量%,W濃度係64.6質量%,Cs/W莫耳比係0.33。除Cs與W以外其餘均係氧。且,確認到並沒有其他雜質元素含有達1質量%以上者。
經粉碎而獲得之實施例15的複合鎢氧化物超微粒子之BET比表面積經測定之結果為42.6m2/g。
再者,實施例15的複合鎢氧化物超微粒子之揮發成分含有率經測定之結果係2.2質量%。
使所獲得之複合鎢氧化物超微粒子10重量份,分散於溶劑的甲苯80重量份與分散劑a:10重量份中,製作50g的分散液,該分散液的分散粒徑經測定之結果為80nm。又,分散粒徑測定的設定係將粒子折射率設為1.81,粒子形狀設為非球形。又,利用甲苯稀釋後施行測定,溶劑折射率設為1.50。
將實施例15的複合鎢氧化物超微粒子分散液50重量份、與硬塗用紫外線硬化樹脂(固形份100%)30重量份予以混合,形成紅外線吸收材料超微粒子分散體液。將該紅外線吸收材料超微粒子分散體液,使用棒塗機在含有白色光反射材料之TiO2微粒子的聚乙烯薄膜上施行塗佈而成膜。該膜經60℃施行30秒鐘乾燥而使溶劑蒸發後,利用高壓水銀燈使之硬化,便獲得可見光區域擴散反射率高的實施例15之紅外線吸收膜。
於所製作之實施例15之紅外線吸收膜中分散的複合鎢氧化物超微粒子,其平均粒徑係使用穿透式電子顯微鏡影像的影像處理裝置進行計算,結果為23nm,呈現與上述結晶粒徑23.7nm大致相同之值。
所製作之膜的分光特性,係使用日立製作所製分光光度計,利用波長200~2100nm之光的穿透率進行測定,根據JIS A 5759計算出可見光穿透率、日光穿透率、可見光反射率、日光反射率、日光吸收率。(其中,日光吸收率係由日光吸收率(%)=100%-日光穿透率(%)-日光反射率(%)計算出)。
結果係如表2、4、6所示。
[實施例16]
除將利用大氣乾燥機施行的乾燥處理,變更為利用真空攪拌搗碎機施行真空乾燥處理之外,其餘均與實施例15同樣地獲得實施例16的紅外線吸收膜,並施行評價。
結果係如表2、4、6所示。
又,真空攪拌搗碎機係使用石川式攪拌搗碎機24P型(田島化學機械股份有限公司製),且真空乾燥處理時,乾燥溫度係設為80℃,乾燥時間係設為32小時,混練攪拌機的旋轉頻率係設為40Hz,真空容器內的壓力係設為0.001MPa以下。
[實施例17]
除將利用大氣乾燥機施行的乾燥處理,變更為利用噴霧乾燥機施行噴霧乾燥處理之外,其餘均與實施例15同樣地獲得實施例17的紅外線吸收膜,並施行評價。
結果係如表2、4、6所示。
又,噴霧乾燥機係使用噴霧乾燥機ODL-20型(大川原化工機股份有限公司製)。
[實施例18~20]
除將利用介質攪拌研磨機施行的粉碎分散處理時間變更為1小時之外,其餘均依照與實施例15~17同樣的方法獲得實施例18~20的紅外線吸收膜,並施行評價。
結果係如表2、4、6所示。
[實施例21~23]
除在製備複合鎢氧化物超微粒子分散液時,將複合鎢氧化物10重量份與作為溶劑的丙二醇單乙醚90重量份予以混合之外,其餘均依照與上述實施例15~17同樣的合成製造方法,獲得實施例21~23的紅外線吸收膜,並施行評價。
結果係如表2、4、6所示。
[實施例24]
依照與實施例1的方法同樣的獲得複合鎢氧化物超微粒子。然後,將所獲得之超微粒子10重量、甲苯80重量份及分散劑a:10重量份予以混合,而製得50g漿料。對該漿料利用超音波均質機(日本精機製作所股份有限公司製US-600TCVP)施行0.5小時分散處理,獲得實施例24的複合鎢氧化物超微粒子分散液,更依照與實施例1同樣的方法獲得實施例24的紅外線吸收膜,並施行評價。
結果係如表2、4、6所示。
[實施例25]
使用噴霧乾燥機,從實施例1的複合鎢氧化物超微粒子分散液中除去甲苯,獲得實施例25的複合鎢氧化物超微粒子分散粉。
將所獲得之複合鎢氧化物超微粒子分散粉,添加於聚乙烯樹脂顆粒中,經利用摻合機均勻混合後,再利用雙軸擠出機施行熔融混練,將所擠出的股條切斷呈顆粒狀,便獲得含有複合鎢氧化物超微 粒子的母料。
依照同樣的方法,獲得含有TiO2的母料。
將含有該複合鎢氧化物超微粒子的母料及含有TiO2的母料,與依照相同方法所製備未添加無機微粒子的母料予以混合。將該混合母料施行擠出成形,而形成厚50μm薄膜。
結果係如表2、4、6所示。
[實施例26]
將實施例1的複合鎢氧化物超微粒子分散液50重量份、與硬塗用紫外線硬化樹脂(固形份100%)30重量份予以混合,形成紅外線吸收材料超微粒子分散體液。依照同樣方法,獲得含有TiO2微粒子的白色光反射材料微粒子分散體液。將該紅外線吸收材料超微粒子分散體液,使用棒塗機在聚乙烯薄膜上施行塗佈而成膜。該膜經60℃施行30秒鐘乾燥而使溶劑蒸發後,利用高壓水銀燈使之硬化。然後,在聚乙烯薄膜之另一單面上,依照同樣方法塗佈白色光反射材料微粒子而成膜,經硬化,便獲得可見光區域擴散反射率高的紅外線吸收膜
結果係如表2、4、6所示。
[比較例1~2]
除變更載體氣體流量、電漿氣體流量、鞘流氣流量、原料供應速度之外,其餘均依照與實施例1同樣的方法,獲得比較例1、2的紅外線吸收膜,並施行評價。
結果係如表2、4、6所示。
[比較例3]
除為使生成具有5000~10000K高溫部的熱電漿,而將高頻電力設為15KW之外,其餘均依照與實施例1同樣方法,獲得比較例3的紅外線吸收膜,並施行評價。
結果係如表2、4、6所示。
[比較例4]
除將對實施例15的複合鎢氧化物超微粒子水分散液施行2小時粉碎分散處理的時間,設為20小時粉碎分散處理之外,其餘均施行與實施例15同樣的操作,獲得比較例4的複合鎢氧化物超微粒子水分散液。比較例4的複合鎢氧化物超微粒子水分散液之分散粒徑經測定之結果為120nm。又,分散粒徑測定的設定係將粒子折射率設為1.81,粒子形狀設為非球形。又,背景係使用水進行測定,溶劑折射率設為1.33。
測定比較例4的複合鎢氧化物超微粒子之X射線繞射圖案,經施行相鑑定之結果所獲得之超微粒子鑑定為六方晶Cs0.33WO3單相。又,所獲得之超微粒子的X射線繞射圖案之峰頂強度值係1300計數,尖峰位置係2 θ=27.8°,結晶粒徑係8.1nm。另一方面,準備矽粉末標準試料(NIST製640c),測定以該矽粉末標準試料之(220)面為基準的尖峰強度值,結果為19800計數。所以,得知將該標準試料的尖峰強度值設為1時,實施例1的經粉碎分散處理後的複合鎢氧化物超微粒子之XRD尖峰強度比值係0.07。
經粉碎而獲得之比較例4的複合鎢氧化物超微粒子之BET比表面積經測定之結果為102.8m2/g。
再者,比較例4的複合鎢氧化物超微粒子之揮發成分含有率經測定之結果係2.2質量%。
使所獲得之複合鎢氧化物超微粒子10重量份,分散於甲苯80重量份與分散劑a:10重量份中,獲得比較例4的50g複合鎢氧化物超微粒子分散液。然後,經測定該複合鎢氧化物超微粒子分散液的分散粒徑,結果為120nm。又,分散粒徑測定的設定係將粒子折射率設為1.81,粒子形狀設為非球形。又,背景係使用甲苯進行測定,溶劑折射率設為1.50。
將比較例4的複合鎢氧化物超微粒子分散液50重量份、與硬塗用紫外線硬化樹脂(固形份100%)30重量份予以混合,形成紅外線吸收材料超微粒子分散體液。將該紅外線吸收材料超微粒子分散體液,使用棒塗機在含有白色光反射材料之TiO2微粒子的聚乙烯薄膜上施行塗佈而成膜。該膜經60℃施行30秒鐘乾燥而使溶劑蒸發後,利用高壓水銀燈使之硬化,便獲得比較例4之紅外線吸收膜。
所製作之比較例4在紅外線吸收膜中分散的複合鎢氧化物超微粒子之平均粒徑,經使用穿透式電子顯微鏡影像的影像處理裝置進行計算,結果為120nm,呈現不同於上述結晶粒徑8.1nm的值。
所製作之膜的分光特性,係使用日立製作所製分光光度計,利用波長200~2100nm之光的穿透率進行測定,根據JIS A 5759計算 出可見光穿透率、日光穿透率、可見光反射率、日光反射率、日光吸收率(其中,日光吸收率係由日光吸收率(%)=100%-日光穿透率(%)-日光反射率(%)計算出)。
結果係如表2、4、6所示。
[比較例5]
測定未塗佈紅外線吸收材料超微粒子分散體液,且含有白色光反射材料為TiO2微粒子的聚乙烯薄膜之分光特性。
結果係如表6所示。
[結論]
由表2得知,實施例1~27的紅外線吸收膜中所含之複合鎢氧化物超微粒子,係上述複合鎢氧化物超微粒子的XRD峰頂強度相對於矽粉末標準試料(NIST製、640c)(220)面的XRD尖峰強度值之比係0.13以上,結晶粒徑達1nm以上的複合鎢氧化物超微粒子。
此處,因為實施例的紅外線吸收膜中之複合鎢氧化物超微粒子平均粒徑與結晶粒徑大致相同,因而可認為所使用之複合鎢氧化物超微粒子係屬於非晶相體積比率50%以下的單結晶複合鎢氧化物超微粒子。
另一方面,比較例1、2、4的紅外線吸收膜中之複合鎢氧化物超微粒子平均粒徑,較結晶粒徑大,可認為並非單結晶。又,比較例3有產生異相(WO2與W)。
由表3得知,若將實施例1~26與比較例1~4進行比較,藉由在薄膜中分散有白色光反射材料的薄膜上,形成由塗佈複合鎢氧化 物超微粒子所形成的紅外光吸收層,便可大幅增加薄膜的紅外光吸收率、反射可見光線、蓄熱性優異。即,實施例1~26可將可見光線的反射率維持於接近6~7成,且可提升日光穿透吸收率至4~6成左右。
本發明的農園藝用土壤覆蓋薄膜係設有:含白色光反射材料的白色光反射層及含紅外線吸收材料超微粒子的紅外光吸收層之薄膜,具體而言,白色光反射層係內部分散著白色光反射材料的薄膜。所以,可例如:在該薄膜的單面上,設有具有由塗佈紅外線吸收材料超微粒子所形成之紅外光吸收層的薄膜;或使白色光反射材料與紅外線吸收材料超微粒子分散於薄膜內部,而形成白色光反射層與紅外光吸收層構成的薄膜;或在薄膜單面上,設有由塗佈白色光反射材料所形成的白色光反射層、與更進一步在該白色光反射層上塗佈紅外線吸收材料超微粒子而形成的紅外光吸收層;或由在薄膜單面上塗佈白色光反射材料而形成的白色光反射層,以及在薄膜另一面上塗佈紅外線吸收材料超微粒子而形成的紅外光吸收層所構成之薄膜等。
藉由依照此種簡便之方法,形成含有紅外線吸收材料超微粒子為複合鎢氧化物超微粒子的紅外光吸收層,便可提供耐候性佳、低成本且依較少微粒子量便可效率佳吸收來自太陽光的近紅外線之農園藝用土壤覆蓋薄膜。

Claims (13)

  1. 一種農園藝用土壤覆蓋薄膜,係具有含紅外線吸收材料超微粒子之紅外光吸收層的農園藝用土壤覆蓋薄膜;上述紅外線吸收材料超微粒子係複合鎢氧化物超微粒子;上述複合鎢氧化物超微粒子係在將矽粉末標準試料(NIST製、640c)的(220)面之XRD尖峰強度值設為1時,XRD峰頂強度比值達0.13以上的複合鎢氧化物超微粒子。
  2. 如請求項1之農園藝用土壤覆蓋薄膜,其中,在上述農園藝用土壤覆蓋薄膜之至少其中一面上,設有於樹脂黏結劑內分散存在有上述紅外線吸收材料超微粒子的紅外光吸收層。
  3. 如請求項1或2之農園藝用土壤覆蓋薄膜,其中,在上述農園藝用土壤覆蓋薄膜的薄膜內部,分散存在有上述紅外線吸收材料超微粒子。
  4. 如請求項1至3中任一項之農園藝用土壤覆蓋薄膜,其中,上述複合鎢氧化物超微粒子的結晶粒徑係1nm以上且200nm以下。
  5. 如請求項1至4中任一項之農園藝用土壤覆蓋薄膜,其中,上述複合鎢氧化物超微粒子係一般式M xW yO z(其中,M係從H、He、鹼金屬、鹼土族金屬、稀土族元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Yb中選擇之1種以上的元素;W係鎢,O係氧,0.001≦x/y≦1、2.0<z/y≦3.0)所示複合鎢氧化物超微粒子。
  6. 如請求項1至5中任一項之農園藝用土壤覆蓋薄膜,其中,上 述複合鎢氧化物超微粒子含有六方晶結晶構造。
  7. 如請求項1至6中任一項之農園藝用土壤覆蓋薄膜,其中,上述複合鎢氧化物超微粒子的揮發成分含有率係在2.5質量%以下。
  8. 如請求項1至7中任一項之農園藝用土壤覆蓋薄膜,其中,上述複合鎢氧化物超微粒子的表面,係被含有從Si、Ti、Zr、Al中選擇之至少1種以上元素的氧化物被覆。
  9. 如請求項1至8中任一項之農園藝用土壤覆蓋薄膜,其中,上述薄膜係從聚乙烯、聚丙烯、聚對苯二甲酸乙二酯、聚氟乙烯、聚偏二氟乙烯、聚四氟乙烯、四氟乙烯-乙烯共聚合體、聚三氟氯乙烯、三氟四氯乙烯、聚氯乙烯、聚偏二氯乙烯、聚乙烯醇、聚苯乙烯、乙烯-醋酸乙烯酯、聚酯樹脂中選擇之至少1種以上。
  10. 如請求項1至9中任一項之農園藝用土壤覆蓋薄膜,其中,上述農園藝用土壤覆蓋薄膜的薄膜內部,具備分散有白色反射材料的白色光反射層。
  11. 如請求項1至9中任一項之農園藝用土壤覆蓋薄膜,其中,在上述農園藝用土壤覆蓋薄膜之其中一面上,具備有:經塗佈白色光反射材料的白色光反射層,以及更進一步在上述白色光反射層上經塗佈紅外線吸收材料超微粒子的紅外光吸收層;或者,在上述農園藝用土壤覆蓋薄膜之其中一面上,具備有:經塗佈白色光反射材料的白色光反射層,並在上述農園藝用土壤覆蓋薄膜之另一面上具有經塗佈紅外線吸收材料超微粒子的紅外光吸收層。
  12. 如請求項10或11之農園藝用土壤覆蓋薄膜,其中,上述白色光反射材料係從TiO 2、ZrO 2、SiO 2、Al 2O 3、MgO、ZnO、CaCO 3、 BaSO 4、ZnS、PbCO 3中選擇之至少1種以上。
  13. 一種農園藝用土壤覆蓋薄膜之製造方法,係具備含紅外線吸收材料超微粒子之紅外光吸收層的農園藝用土壤覆蓋薄膜之製造方法,上述紅外線吸收材料超微粒子係複合鎢氧化物超微粒子;將上述複合鎢氧化物粒子施行鍛燒並進行製造,使得在將矽粉末標準試料(NIST製、640c)的(220)面之XRD尖峰強度值設為1時,上述複合鎢氧化物粒子之XRD峰頂強度比值成為0.13以上;一邊將上述XRD峰頂強度比值維持於0.13以上,一邊將上述所製造之複合鎢氧化物粒子添加至上述紅外光吸收層。
TW107121221A 2017-06-19 2018-06-19 農園藝用土壤覆蓋薄膜及其製造方法 TWI765059B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
??PCT/JP2017/022528 2017-06-19
WOPCT/JP2017/022528 2017-06-19
JP2017022528 2017-06-19

Publications (2)

Publication Number Publication Date
TW201907792A true TW201907792A (zh) 2019-03-01
TWI765059B TWI765059B (zh) 2022-05-21

Family

ID=64737061

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107121221A TWI765059B (zh) 2017-06-19 2018-06-19 農園藝用土壤覆蓋薄膜及其製造方法

Country Status (8)

Country Link
US (1) US11895952B2 (zh)
EP (1) EP3643161B1 (zh)
JP (1) JP7067557B2 (zh)
KR (1) KR102622209B1 (zh)
CN (1) CN110769685B (zh)
AU (1) AU2018289676B2 (zh)
TW (1) TWI765059B (zh)
WO (1) WO2018235840A1 (zh)

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127946A (en) 1979-03-23 1980-10-03 Asahi Dow Ltd Film for cultivating agricultural crop
JPH09107815A (ja) 1995-10-16 1997-04-28 Kanebo Ltd 保温用シート
KR100458230B1 (ko) * 2002-09-03 2004-11-26 에스케이케미칼주식회사 분해성 멀칭매트
CN100590154C (zh) * 2003-10-20 2010-02-17 住友金属矿山株式会社 红外线遮蔽材料微粒分散体、红外线遮蔽体、红外线遮蔽材料微粒的制法及红外线遮蔽材料微粒
JP2005226008A (ja) * 2004-02-13 2005-08-25 Sumitomo Metal Mining Co Ltd 日射遮蔽体形成用分散液及び日射遮蔽体並びにその製造方法
CN100368331C (zh) * 2004-03-16 2008-02-13 住友金属矿山株式会社 日照遮蔽用层合结构体
WO2006100799A1 (ja) 2005-03-18 2006-09-28 Sumitomo Metal Mining Co., Ltd. 農園芸用覆土フィルム
EP2360220B1 (en) * 2008-11-13 2015-03-18 Sumitomo Metal Mining Co., Ltd. Infrared blocking particle, method for producing the same, infrared blocking particle dispersion using the same, and infrared blocking base
JP5343697B2 (ja) * 2009-05-15 2013-11-13 住友金属鉱山株式会社 複合タングステン酸化物超微粒子の製造方法
WO2011005631A2 (en) * 2009-07-07 2011-01-13 Basf Se Potassium cesium tungsten bronze particles
JP2011050307A (ja) * 2009-09-01 2011-03-17 Sumitomo Metal Mining Co Ltd 作物用高温障害防止シート
JP5493225B2 (ja) * 2009-11-02 2014-05-14 平岡織染株式会社 近赤外線遮蔽性シート及びその製造方法
JP5942466B2 (ja) * 2012-02-22 2016-06-29 住友金属鉱山株式会社 複合タングステン酸化物微粒子分散ポリカーボネート樹脂組成物およびそれを用いた熱線遮蔽成形体並びに熱線遮蔽積層体
JP6041161B2 (ja) * 2012-07-11 2016-12-07 住友金属鉱山株式会社 熱線遮蔽分散体の製造方法および熱線遮蔽体の製造方法
JP2014113139A (ja) * 2012-11-15 2014-06-26 Takaharu Futaeda 植物栽培システム
JP6086261B2 (ja) * 2012-11-30 2017-03-01 住友金属鉱山株式会社 近赤外線吸収フィルタおよび撮像素子
WO2015186663A1 (ja) * 2014-06-05 2015-12-10 日清エンジニアリング株式会社 タングステン複合酸化物粒子の製造方法
JP6287627B2 (ja) * 2014-06-25 2018-03-07 住友金属鉱山株式会社 光熱変換層、ドナーシート
JP6187540B2 (ja) * 2015-05-18 2017-08-30 住友金属鉱山株式会社 日射遮蔽体形成用複合タングステン酸化物微粒子、その分散液、並びに、日射遮蔽体
KR102344135B1 (ko) * 2015-06-30 2021-12-29 스미토모 긴조쿠 고잔 가부시키가이샤 열선 차폐막, 열선 차폐를 구비한 투명 기재, 자동차, 건조물, 분산체, 혼합 조성물, 분산체 제조방법, 분산액, 분산액 제조방법
EP3392199B1 (en) * 2015-12-18 2024-02-07 Sumitomo Metal Mining Co., Ltd. Ultrafine particles of complex tungsten oxide, and fluid dispersion thereof

Also Published As

Publication number Publication date
JPWO2018235840A1 (ja) 2020-04-16
US20200267913A1 (en) 2020-08-27
WO2018235840A1 (ja) 2018-12-27
AU2018289676B2 (en) 2024-05-30
EP3643161A1 (en) 2020-04-29
KR102622209B1 (ko) 2024-01-09
AU2018289676A1 (en) 2020-02-06
JP7067557B2 (ja) 2022-05-16
CN110769685B (zh) 2022-02-18
KR20200020694A (ko) 2020-02-26
US11895952B2 (en) 2024-02-13
EP3643161B1 (en) 2024-02-21
TWI765059B (zh) 2022-05-21
CN110769685A (zh) 2020-02-07
EP3643161A4 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP6825577B2 (ja) 複合タングステン酸化物超微粒子およびその分散液
KR102620283B1 (ko) 근적외선 차폐 초미립자 분산체, 일사 차폐용 중간막, 적외선 차폐 적층 구조체, 및 근적외선 차폐 초미립자 분산체의 제조 방법
TWI758518B (zh) 含有紅外線吸收微粒子之母料粉碎物、包含含有紅外線吸收微粒子之母料粉碎物的分散液、含有紅外線吸收材料之油墨、使用該等之防偽油墨、防偽用印刷膜、暨含有紅外線吸收微粒子之母料粉碎物之製造方法
TWI745592B (zh) 近紅外線遮蔽超微粒子分散體、近紅外線遮蔽中間膜、近紅外線遮蔽夾層構造體及近紅外線遮蔽超微粒子分散體之製造方法
TWI775942B (zh) 農園藝用土壤覆蓋薄膜及其製造方法
KR102553348B1 (ko) 적외선 흡수 미립자 및 이를 사용한 분산액, 분산체, 적층된 투명 기재, 필름, 유리, 및 이의 제조 방법
TWI765059B (zh) 農園藝用土壤覆蓋薄膜及其製造方法
WO2023190758A1 (ja) 複合タングステン酸化物粒子、近赤外線吸収粒子分散液、および近赤外線吸収粒子分散体
JP7494465B2 (ja) 混和複合タングステン酸化物微粒子粉末、混和複合タングステン酸化物微粒子分散液、および、混和複合タングステン酸化物微粒子分散体
JPWO2018235138A1 (ja) 熱線吸収成分含有マスターバッチおよびその製造方法、熱線吸収透明樹脂成形体、並びに熱線吸収透明積層体
JP2021042101A (ja) 複合タングステン酸化物微粒子の製造方法、複合タングステン酸化物微粒子分散液の製造方法、および複合タングステン酸化物微粒子分散体の製造方法