TW201903822A - 強健型離子源 - Google Patents

強健型離子源 Download PDF

Info

Publication number
TW201903822A
TW201903822A TW107118649A TW107118649A TW201903822A TW 201903822 A TW201903822 A TW 201903822A TW 107118649 A TW107118649 A TW 107118649A TW 107118649 A TW107118649 A TW 107118649A TW 201903822 A TW201903822 A TW 201903822A
Authority
TW
Taiwan
Prior art keywords
electrode
gas
ionization
nozzle
ionization region
Prior art date
Application number
TW107118649A
Other languages
English (en)
Other versions
TWI776904B (zh
Inventor
詹姆士 布雷西
喬納森 萊斯里
喬納森 貝悌
Original Assignee
美商Mks儀器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Mks儀器股份有限公司 filed Critical 美商Mks儀器股份有限公司
Publication of TW201903822A publication Critical patent/TW201903822A/zh
Application granted granted Critical
Publication of TWI776904B publication Critical patent/TWI776904B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • H01J49/147Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers with electrons, e.g. electron impact ionisation, electron attachment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/08Electron sources, e.g. for generating photo-electrons, secondary electrons or Auger electrons

Abstract

設備(例如,離子源)、系統(例如,殘餘氣體分析器)以及方法在存在污染氣體的情況下提供質譜儀之延長的壽命與提高的分析穩定度,同時在內部背景氣體上達成樣本氣體的大量優先電離。一個實施例為一種離子源,其包括氣體源、噴嘴、電子源及電極。氣體源經由噴嘴將氣體傳遞到真空的電離體積,且處於較真空的電離體積的壓力更高的壓力下。通過噴嘴的氣體在電離體積的電離區域中自由地擴展。電子源發射電子通過電離區域中之擴展的氣體,以使擴展的氣體的至少一部分電離。電極建立用於從電離區域到濾質器的離子流的電場,且電極被定位在距離噴嘴的距離處,以及被定向來限制其對於氣體的暴露。

Description

強健型離子源
本發明關於一種用於質譜儀的離子源、一種質譜儀系統以及一種產生用於質譜儀的離子的方法。
質譜儀測量分子樣本中的質量,以分析此樣本的組成。殘餘氣體分析器(residual gas analyzer)(RGA)為相對小的質譜儀,其藉由使氣體的組成電離以產生電荷來測量氣體的成分,並判斷這些成分的質荷比(mass-to-charge ratio)。RGA通常被用來檢查氣體成分及污染,且能夠在比要被分析的氣體的來源更低的壓力下在真空的環境中運作。殘餘氣體分析器的主要部件為離子源、質量分析器(濾質器)、檢測器及相關的電子裝置。離子源使氣體的分子電離,質量分析器藉由其質荷比來選擇離子,且檢測器判斷被選擇的離子的量。
RGA離子源通常為以下兩種類型之一:開放或封閉。開放離子源通常被安裝在真空室中,且其部件直接地暴露於來自處理環境的樣氣(sample gas)中。真空室中的樣氣分子可從許多方向移動通過離子源,亦即,在離子源及其周圍並無壓力差異。當對於RGA的適當運作而言氣體的壓力過高時,使用減壓氣體採樣真空系統來使要被分析的氣體樣本下降到能夠接受的壓力。在這種應用中,開放離子源存在以下缺點,例如,來自採樣系統的殘餘真空中的氣體的干擾(例如,氫氣、水、一氧化碳、油)。
當使用RGA來以減壓氣體採樣真空系統分析氣體時,封閉離子源通常為較佳的。封閉離子源提供電離室,其以樣氣的壓力或低於樣氣的壓力運作,但高於整個RGA所能容忍的壓力。此種室具有受限的氣體出口傳導性(conductance),僅藉由小的開口來用於氣體、電子及離子的進入及離開。電子被引導到室中,以在室中的相對高的壓力下形成樣氣的離子。樣氣處於較開放離子源所能容忍的壓力更高的壓力下,故來自樣氣的信號對應地高於來自減壓系統的殘餘真空(residual vacuum)的壓力,提供樣氣之較高的保真度分析(fidelity analysis)。因為封閉離子源之臨界電極表面在較開放離子源更高的壓力下被暴露於樣氣,由於樣氣可能污染這些表面,封閉離子源易更快地受到劣化的影響。此外,電子源通常位在靠近電子在此被導入電離室的孔附近,且因此在較質譜儀的平均壓力高出許多的壓力下被暴露於樣氣。因此,封閉離子源具有較高的分析保真度但易受到較高的劣化率(degradation rate)的影響,而開放離子源具有較低的劣化率但提供較低的分析保真度。
使用在其他系統(非RGA)中對於此劣化問題的現有方法包括交叉束離化器(cross beam ionizer)以及具有額外的控制表面之動態調整的離子源。然而,額外的控制表面使成本及複雜度增加,經常需要頻繁的調整程序,且在極端污染的情況下效果有限。由於交叉束離子源使用多階泵系統來使大部份的樣氣剝離以分析來自樣氣的一小部分之被準直的氣流,其對於被消耗氣體的量具有低敏感度。這會導致小的樣氣信號、或需要消耗高流量的樣氣之大且昂貴的泵系統。
所揭露的實施例提供良好的樣氣分析保真度,以及在存在污染氣體的情況下質譜儀之延長的壽命與提高的分析穩定度。一個範例實施例為一種離子源,其包括氣體源、噴嘴、電子源及電極。如同本文中所使用的,詞語噴嘴意指具有相對小的出口之氣流傳遞元件。噴嘴可為任何長度(甚至是零)的管或類似的結構。若噴嘴的長度為零,則噴嘴可為表面中的孔口的形式。氣體源經由噴嘴將氣體傳遞到真空的電離體積,且實質上處於較真空的電離體積的壓力更高的壓力下。來自氣體源之通過噴嘴的氣體在電離體積的電離區域中自由地擴展,隨著氣體從噴嘴的出口擴展開來,氣體壓力快速地下降。電子源發射電子,其在噴嘴的附近通過電離區域中之擴展的氣體,以使擴展的氣體的至少一部分電離。電極建立用於從電離區域到濾質器的離子流的電場,且電極被定位在距離噴嘴的距離處以及相對於噴嘴的方向上,以限制電極對氣體的直接暴露。
另一個範例實施例為質譜儀系統,其包括真空泵、濾質器、檢測器及離子源。離子源包括如上所述的氣體源、噴嘴、電子源及電極,其中,離子源的電極建立用於從電離區域到濾質器的離子流的電場。離子源的噴嘴可被定向來朝向真空泵引導來自氣體源的氣體。
在多數實施例中,來自噴嘴之至少20%的氣體分子通過電離區域。在某些實施例中,電子源可為加熱的燈絲。在這種(或其他)實施例中,電子源可相對於電離區域被佈置在第一電極的相反側上。在這種實施例中,由電子源所產生的電子行進通過第一電極的孔口且朝向電離區域,造成行進通過電離區域中之擴展的氣體的電子束。在這種實施例中,第二電極可被佈置為與第一電極相反。第二電極可包括孔口。電子行進通過電離區域並朝向第二電極,若包含孔口,當中的許多電子可行進通過此孔口。
阱電極(trap electrode)可被佈置為相對於電離區域相反於第一電極,且可測量流經電離區域的至少一部分的電子束電流。在包括具有孔口的第二電極的實施例中,阱電極可相對於電離區域被佈置在第二電極外部。在某些實施例中可配置來作用為阱電極的第二電子源可被佈置在第二電極中的孔口的外部。在某些實施例中,例如,當運作第二電子源時,第一電子源可被使用來作為阱電極。
在多數實施例中,電極包括第一電極與第二電極,其被佈置在電離區域的相反側上,其中,第一電極與第二電極的表面為實質上平行於來自噴嘴之通過電離區域的氣流的主要方向。在這種(或其他)實施例中,排斥電極可朝向濾質器排斥來自電離區域的離子,且在這種(或其他)實施例中,具有孔口的離子出口電極可將離子流從電離區域引導到濾質器。被施加到各電極的電壓可為可獨立地控制的。
在某些實施例中,噴嘴的出口開口可具有小於五平方毫米的面積。噴嘴的出口開口的面積可與理想氣流的氣體源的壓力成反比,使得若氣體源壓力非常高的話,噴嘴的出口開口的面積可為更小許多。在這種(或其他)實施例中,在電離區域之電子束的的截面面積可為小於二十平方毫米。在這種(或其他)實施例中,電極可被定位在距離噴嘴中心至少五毫米處。
另一個範例實施例為產生用於具有濾質器的質譜儀的離子的方法。此方法包括將氣體從氣體源經由噴嘴傳遞到真空的電離體積。氣體源處於實質上較真空的電離體積的壓力更高的壓力下,且氣體通過噴嘴自由地在電離體積的電離區域中擴展。方法還包括在噴嘴附近發射電子,且電子通過電離區域中之擴展的氣體以使擴展的氣體的至少一部分電離,並將形成在電離區域中的離子引導到濾質器。
在某些實施例中,可使用由電極所建立的電場來達成引導離子,其中,將氣體傳遞到真空的電離體積的情況包括在距離電極的距離處傳遞氣體,以限制電極對氣體的直接暴露。在這種(或其他)實施例中,引導離子可包括朝向濾質器排斥來自電離區域的離子,且可包括使來自電離區域的離子通過孔口聚焦到濾質器。在這種(或其他)實施例中,發射電子可包括從加熱的燈絲發射電子,且可包括經由在電離區域的第一側上的第一電極的孔口、經由電離區域中之擴展的氣體、以及經由在電離區域的相反側上的第二電極的孔口來發射電子。
範例實施例的說明如下。
所揭露的設備(例如,離子源)、系統(例如,殘餘氣體分析器)以及方法在存在污染氣體(尤其是沉積在表面塗層的氣體)的情況下提供延長的壽命與提高的分析穩定度,同時在內部背景氣體上達成樣本氣體的大量優先電離。所揭露的設備、系統以及方法提供類似封閉離子源的效能,但不會有因為離子源污染及表面充電所造成的縮短壽命及不穩定的氣體種類敏感度。因此,達成了提高的保養間隔與運作成本以及更好的結果,而不需過多的重新校準(recalibration)。
根據範例實施例,樣氣經由噴嘴(例如,小直徑管,其長度可為任意長度到零(孔口))被直接地導入到在其真空室中的質譜儀(例如,殘餘氣體分析器)的離化器區域。樣氣自由地擴展到真空室中。噴嘴的末端被定位為靠近(例如,鄰接或接近鄰接)電子束,在此處,樣氣的離子在濾質器(例如,四極)的入口孔口附近被形成。噴嘴的端部可為相對小的,以限制與電子束的相互作用。臨界離化器電極表面並未直接地位在擴展的氣體的主路徑(dominant path)中;因此,這些表面最小地暴露於氣體及其可能含有的任何污染物中。任何確實受到直接氣體暴露的表面充分地偏離氣體路徑的軸及/或相對地遠離氣體擴展的點,使得在這些表面處的氣體密度少於,例如,當在噴嘴中時之氣體密度的1/30。這降低了任何表面膜形成的速率以及可能使離子源的有效性劣化之任何後續表面充電。為了進一步減少到達任何臨界表面(critical surface)之樣氣的量,樣氣可沿著朝向室的真空泵的方向被導入。
圖1為根據範例實施例之用於質譜儀的離子源100的立體圖。範例離子源100包括氣體源105、噴嘴110、電子源115及電極120a到120d。噴嘴110其本身亦可為電極。氣體源105將氣體傳遞到真空的電離體積125,且處於較真空的電離體積125的壓力更高的壓力下。噴嘴110介於氣體源105及電離體積125之間。通過噴嘴110的氣體在電離體積125的電離區域130中自由地擴展。電子源115發射電子135通過電離區域130中之擴展的氣體(靠近噴嘴的端部),以使擴展的氣體的至少一部分電離。電極120a到120d及任選的噴嘴110建立電場,其判斷所形成的離子的能量並提供來用於從電離區域130到濾質器(圖1中未顯示)之離子(離子流140)的提取。電極120a到120d被定位為遠離擴展的氣體的主要路徑,且位在距離噴嘴110的距離處,以限制電極120a到120d與擴展的氣體的直接接觸。被佈置在電極120b的另一側上的阱電極170可測量流經第二電極120b的孔口145b之電子束電流135。
在範例離子源100中,電子源115為加熱的燈絲,其在電極120a的另一側上位在電離區域130外部且被連接到電引線155a、155b。燈絲可為如同所示的筆直的、捲繞的或具有其他適當的形式,用於理想的電子聚焦(electron focusing)。由燈絲115所產生的電子135行進通過電極120a中的孔口145a、通過電離區域130,且在電離區域130的另一側上行進到電極120b上,並通過電極120b的孔口145b。電極120a及120b被佈置為使得其表面實質上平行於從噴嘴通過電離區域的氣流160的主要方向,這減少了可能沉積在電極120a、120b上的氣體量。雖然氣流160的主要方向被繪示於圖1中,應理解的是,由於氣體的擴展天性,氣流為一種分佈(例如,餘弦分佈(cosine distribution)),大部分沿氣流160的方向行進且減少向側面的量,接近零的流動直接向側面朝向145a和145b。範例離子源100還包括相反於離子出口電極120d的排斥電極120c,其朝向濾質器經由孔口150排斥來自電離區域的離子。藉由電極120d及孔口150,電極165聚焦並提取通過孔口150的離子,並經由孔口175將這些離子傳送到濾質器。
被施加到電極120a到120d、165、170及噴嘴110的電壓可被獨立地控制,以調整離子源的效能。下面說明離子源100的各部件的範例值以及值的範圍。電極120a(電子入口)可具有+10V的電壓(在–20V到+25V的範例範圍內)。電極120b(電子出口)可具有+10V的電壓(在0V到+25V的範例範圍內)。排斥電極120c可具有+12V的電壓(在+5 V到+30V的範例範圍內)。離子出口電極120d可具有+10V的電壓(在0V到+25V的範例範圍內)。噴嘴110可具有+6V的電壓(在1V到+20V的範例範圍內)。提取透鏡電極165可具有–37V的電壓(在–20V到–90V的範例範圍內)。阱電極170可具有+10V的電壓(在–110V到+30V的範例範圍內)。燈絲115可具有–60V的電壓(在–10V到–110V的範例範圍內),造成0.5mA的範例電子電流135(在0.005mA到3mA的範例範圍內)。這些範例值及範圍僅被提供用於說明目的,且並非以限制性的方式。
圖2為圖1之範例離子源100的另一個立體圖。圖2的立體圖為相較於圖1繞離子源100約180度。圖2顯示根據範例離子源100之氣體源105的配置以及通過氣體源105的樣氣的流動。應理解的是,能夠以不同的方式來配置氣體源。
圖3為圖1之範例離子源100的另一個立體圖。圖3的立體圖為相較於圖1從較高的角度觀之,且提供離子出口孔口150的另一個視角。如範例離子源100之具體實施例中所示,可能有超過離子出口電極120d之額外的部件(例如,提取透鏡165及孔口175)。
圖4為圖1之範例離子源100的剖視立體圖。圖4的立體圖為類似於圖3的立體圖,且被切開以提供燈絲115及氣體源105的內部的另一個視圖。
圖5為圖1之範例離子源100的另一個剖視立體圖。圖5被切開以提供離子出口孔口150、額外的聚焦電極部件165、以及範例離子源100的氣體源105之內部的另一個視圖。
圖6為根據範例實施例之質譜儀系統600的示意圖。質譜儀系統600包括真空泵605、濾質器610、檢測器615及離子源(例如,圖1到5中所顯示的離子源100)。離子源100從樣氣產生離子,且來自離子源100的離子流140流動到濾質器610。在範例質譜儀系統600中,離子源的噴嘴110朝向真空泵605引導氣流160。
圖7為顯示根據範例實施例之產生用於質譜儀的離子的方法700的流程圖。範例方法700包括從氣體源將氣體傳遞到真空的電離體積的傳遞步驟705。氣體源處於較真空的電離體積的壓力更高的壓力下,且進入電離體積的氣體在電離體積的電離區域中自由地擴展。方法700還包括發射電子通過電離區域中之擴展的氣體的發射步驟710,以使擴展的氣體的至少一部分電離,以及將形成在電離區域中的離子引導到濾質器的引導步驟715。可使用由電極所建立的電場來達成離子的引導步驟715,其中,將氣體傳遞到真空的電離體積的傳遞步驟705包括在距離電極的距離處傳遞氣體以限制電極對氣體的直接暴露。離子的引導步驟715可包括朝向濾質器排斥來自電離區域的離子,且可包括經由孔口使來自電離區域的離子聚焦到濾質器。電子的發射步驟710可包括從加熱的燈絲發射電子,且可包括經由在電離區域的第一側上之第一電極的孔口、經由電離區域中之擴展的氣體、並經由在電離區域的相反側上之第二電極的孔口來發射電子。
電離區域可被視為電子通過自由地擴展到電離體積中的樣氣的體積,不受限於電極或其他結構,並所產生的離子從電離區域被引導到濾質器中。因此,電離區域的形狀實質上藉由電子束的截面高度及寬度而被界定成兩個維度。在第三維度中,沿著電子束的長度,電離區域可受限於由電極所建立之繞噴嘴的聚焦電場的作動,使得僅被形成在噴嘴附近的這些離子經由孔口150及175而被有效地傳遞。電子將遭遇到由電極所決定的區域外部的氣體並使其電離,但所產生的離子為來自低密度氣體,且為濾質器中所不需要的。在一個實施例中,樣氣的濃度為電離區域外部的所有氣體的平均濃度的至少兩倍(較佳地為更多倍)。
當樣氣在高於電離體積中的壓力(通常小於2E-5托)之壓力(通常小於1E-4托)下流動到電離體積中時,可優化離子源用於樣氣的電離。一般而言,電離體積中的壓力將少於在噴嘴的出口處的壓力的1/5,且較佳地為更少的,例如,少於在噴嘴的出口處的壓力的1/100。離子源可優化在相對小的電離區域中的離子形成以及從相對小的電離區域之離子提取,電離區域為在樣氣從對電離體積的電離區域傳遞較高壓力的樣氣之孔口(噴嘴)或其附近自由地擴展時,電子束通過樣氣之處。較佳的是,電子束在不接觸噴嘴的情況下盡可能靠近噴嘴通過。由於電離區域的最靠近邊緣為非常地靠近噴嘴,例如,較佳地在五毫米之內,且更佳地為較接近一毫米,電離區域中的樣氣的體積密度高於電離體積中的平均壓力,且大致應為高出至少兩倍,且在許多環境中較佳地大於十倍以上,從而在電離區域中產生更多樣氣分子的離子,相對於在電離體積的其他區域中的氣體分子的離子化。界定離子形成及提取的電壓場(voltage field)之離子源的臨界表面(例如,電極)可被佈署為離開氣體擴展的主軸線,從而減少對樣氣的直接暴露。最小化與大部分的擴展樣氣的這種直接接觸減少了來自樣氣的電極污染,來自樣氣的電極污染可能隨著時間使離子源效能劣化。此配置亦提供用於質譜儀的離子流,其主要來自樣本氣體,在這之前其已與任何離子源表面相互作用,且因此已因為表面作用具有小的變化。此外,當樣氣正從較高的壓力到較低的壓力自由地擴展時,會少量地形成將在較高的壓力下發生電離之離子分子種類,例如,在傳導性受限的電離室中。因此,所揭露的離子源的顯著優點為產生代表具有高保真度的樣氣之離子流,同時使因為來自樣氣的污染所導致的效能劣化最小化。這對於分析不安定且可能在離子源表面上形成沉積的氣體而言為有價值的。
不同於傳統的開放離子源,電子束在樣氣導入點處以相對小的選擇體積提供離子化。所揭露的離子源不同於傳統的開放離子源,其被設計用於從離子源中的所有氣體中的離子形成及提取,而不偏好用於在其已與離子源中的表面相互作用之前的來自較高壓力的樣氣。在低壓力下運作,傳統的離子源可從樣本相互作用獲得相對低的劣化速率,但對樣氣提供具有相對低的保真度的離子流。
不同於封閉離子源,大幅地減少到達臨界表面之樣氣的量。封閉離子源具有電離室,其具有受限的出口傳導性,以將樣氣保持在較質譜儀系統中的平均壓力更高的壓力下。所揭露的離子源不同於封閉離子源,其被優化用於從處在高壓下之相對封閉的體積中(而非自由地擴展)的樣氣之離子形成與提取,且具有與離子源表面之高程度的相互作用,以及離子分子形成。所揭露的離子源不具有用於將樣氣保持在升高的壓力下之傳導性受限的電離室,而是允許樣氣不受限制地擴展。來自封閉離子源的離子流可提供樣氣較來自開放離子源的保真度更高的保真度表現,但封閉離子源易受到來自樣氣相互作用之較高的劣化率的影響。
不同於交叉束離子源,整個樣氣流經由噴嘴而被接受,用於在較高的壓力下的離子化,電子束從中通過的自由擴展區域靠近噴嘴。此離子源不同於交叉束離子源,其使來自位在遠離噴嘴及較高氣體壓力的區域之樣氣流的準直部分電離,且其需要額外的泵送及準直階段。來自交叉束離子源的離子流可具有良好的樣氣保真度以及減少的表面污染,但僅為具有高氣體泵送速度(pumping speed)之較大且更複雜的分析系統中的一部分。相反地,所揭露的離子源在不需準直的情況下使用更小的樣氣流中的大部分,且因此為更簡單、更緊湊且具有較低的成本。
在特定範例實施例中,樣氣能夠以大約與用於封閉源系統(例如,約5E-4托公升/秒)相同的質量流率被接受,且真空室壓力可為少於2E-5托。樣氣在,例如,距離噴嘴的末端一毫米處的壓力可為約三毫托(通常介於0.1及30毫托之間),隨著樣氣擴展離開噴嘴而下降。電子發射可被準直為聚焦束,使得更大分量的電流參與有用的電離,且主要在接近噴嘴之相對高的樣氣壓力的點處。在電離區域的中心處之擴展的氣體的壓力可為至少5E-5托,且當氣體到達臨界表面時之氣體的壓力可為此壓力的最多20%。可使用一般的濾質器(例如,四極)、檢測器以及電子裝置。在某些實施例中,有效表面可被獨立地控制,以允許優化離子源的調整,以延長其相對於長期污染的運作壽命。為了以能夠由使用來提供離化器抽空(通常少於1E-2托公升/秒)之常用的小渦輪分子真空泵(turbomolecular vacuum pump)所容納的總氣流來在電離區域中提供相對高的局部壓力,氣體發射器孔口(噴嘴)可具有,例如,少於五平方毫米的面積,且較小的值對應到高的噴嘴氣體壓力。為了最小化整個離化器的樣氣壓力,樣氣流可被引導朝向被使用於離化器抽空的真空泵。在採樣污染氣體時,為了達成有效的運作壽命延長,從氣體噴嘴的中心到電極(或其他)表面之最靠近的點的距離可為,例如,至少五毫米。為了提供與殘餘背景氣體成反比之提高的樣氣離子化,電子束的截面面積可在電極的孔口之間被良好地對齊,且少於氣體噴嘴的面積的五倍。為了從來自氣體源之樣氣的最低壓力提供提高的效能,氣體源中的氣體路徑的流動傳導性可為大於氣體噴嘴的面積的流動傳導性。為了允許在採樣污染氣體時在最大操作壽命內優化性能,電極上的電壓可為可獨立且動態地控制的,儘管通常能夠藉由電性預置及/或共用某些電極來達成相對於封閉離子源之提高的效能。
雖然本發明已參照其範例實施例被具體地顯示及說明,本領域技術人士應理解的是,在不偏離所附申請專利範圍所涵蓋的實施例的範圍的情況下,可作成各種形式及細節上的變化。例如,可採用與本文中所揭露的形式不同形式的氣體源,且相較於本文中所顯示及說明的噴嘴,噴嘴可為不同的形狀或尺寸。電子源可為任何適合的電子源,用於產生電子以行進通過包含自由地擴展的樣氣之靠近噴嘴的電離區域。相較於本文中所顯示及說明的電極,電極可為不同的數量、形狀或佈置,只要大部分的電極位在擴展的樣氣的路徑之外且將形成在電離區域中的離子引導到濾質器部件即可。本領域技術人士將理解的是,各種部件的尺寸、面積、流量及壓力可能落在本文所提供的具體範例範圍之外,且可取決於離子源的特定應用。
100‧‧‧離子源
105‧‧‧氣體源
110‧‧‧噴嘴
115‧‧‧電子源(燈絲)
120a‧‧‧電極
120b‧‧‧(第二)電極
120c‧‧‧(排斥)電極
120d‧‧‧(離子出口)電極
125‧‧‧電離體積
130‧‧‧電離區域
135‧‧‧電子(電子束電流)
140‧‧‧離子流
145a‧‧‧孔口
145b‧‧‧孔口
150‧‧‧孔口(離子出口孔口)
155a‧‧‧電引線
155b‧‧‧電引線
160‧‧‧氣流
165‧‧‧電極(提取透鏡電極)(提取透鏡)(聚焦電極部件)
170‧‧‧阱電極
175‧‧‧孔口
600‧‧‧質譜儀系統
605‧‧‧真空泵
610‧‧‧濾質器
615‧‧‧檢測器
700‧‧‧方法
705‧‧‧傳遞步驟
710‧‧‧發射步驟
715‧‧‧引導步驟
如同附圖所顯示,從下文中對範例實施例的更具體說明,前述內容將變得顯而易見,其中,同樣的標號在不同的圖式之間表示相同零件。圖式不一定按比例繪製,而是將重點放在說明實施例上。
圖1為根據範例實施例之用於質譜儀的離子源的立體圖。
圖2為圖1的範例離子源的另一個立體圖。
圖3為圖1的範例離子源的另一個立體圖。
圖4為圖1的範例離子源的剖視立體圖。
圖5為圖1的範例離子源的另一個剖視立體圖。
圖6為根據範例實施例之質譜儀系統的示意圖。
圖7為顯示根據範例實施例之產生用於質譜儀的離子的方法的流程圖。

Claims (30)

  1. 一種離子源,用於具有濾質器的質譜儀,該離子源包括:   氣體源,用於將氣體傳遞到真空的電離體積,該氣體源實質上處於較該真空的電離體積的壓力更高的壓力下;   噴嘴,位於該氣體源與該電離體積之間,氣體通過該噴嘴自由地在該電離體積的電離區域中擴展;   電子源,配置來發射電子,該等電子在該噴嘴附近通過該電離區域中之擴展的該氣體,以使擴展的該氣體的至少一部分電離;以及   電極,配置來建立用於從該電離區域到該濾質器的離子流的電場,該等電極被定位在距離該噴嘴的距離處,且被定向來限制該等電極對該氣體的直接暴露。
  2. 如申請專利範圍第1項之離子源,其中,該噴嘴為小直徑管。
  3. 如申請專利範圍第1項之離子源,其中,來自該噴嘴的至少百分之二十的該氣體分子通過該電離區域。
  4. 如申請專利範圍第1項之離子源,其中,該電子源為加熱的燈絲。
  5. 如申請專利範圍第1項之離子源,其中:   該電子源相對於該電離區域被佈置在第一電極的相反側上;並且   由該電子源所產生的電子行進通過該第一電極的孔口並朝向該電離區域,造成行進通過該電離區域中之擴展的該氣體的電子束。
  6. 如申請專利範圍第5項之離子源,還包括第二電極,該第二電極被佈置為相反於該第一電極且包括孔口,其中,由該電子源所產生的該等電子行進通過該第二電極的該孔口。
  7. 如申請專利範圍第5項之離子源,還包括阱電極,該阱電極相對於該電離區域被佈置為相反於該第一電極。
  8. 如申請專利範圍第1項之離子源,其中,該等電極包括第一電極和第二電極,該第一電極和該第二電極被佈置在該電離區域的相反側上,該第一電極和該第二電極的表面為實質上平行於來自該噴嘴之通過該電離區域的氣流的主要方向。
  9. 如申請專利範圍第8項之離子源,還包括排斥電極,其配置來朝向該濾質器排斥來自該電離區域的離子。
  10. 如申請專利範圍第8項之離子源,還包括離子出口電極,其具有孔口,用於將該離子流從該電離區域引導到該濾質器。
  11. 如申請專利範圍第1項之離子源,其中:   該等電極包括:   第一電極和第二電極,該第一電極和該第二電極被佈置在該電離區域的相反側上,該第一電極和該第二電極的表面為實質上平行於來自該噴嘴之通過該電離區域的氣流的主要方向;   阱電極,其相對於該電離區域被佈置為相反於該第一電極且在該第二電極外部;   排斥電極,其配置來朝向該濾質器排斥來自該電離區域的離子;以及   離子出口電極,其具有孔口,用於將該離子流從該電離區域引導到該濾質器;   該電子源包括相對於該電離區域被佈置在該第一電極的相反側上的燈絲;並且   由該燈絲所產生的電子朝向該電離區域行進通過該第一電極的孔口,並通過該第二電極的孔口,造成電子束,該電子束在該第一電極和該第二電極之間行進並通過該電離區域中之擴展的該氣體。
  12. 如申請專利範圍第11項之離子源,其中,該等電極的電壓為可獨立地控制的。
  13. 如申請專利範圍第1項之離子源,其中,該噴嘴的出口開口具有少於五平方毫米的面積,在該電離區域中之被發射的該等電子的截面面積少於該噴嘴的該出口開口的該面積的五倍,且該等電極被定位在距離該噴嘴中心的至少五毫米處。
  14. 如申請專利範圍第1項之離子源,其中,該等電子在該噴嘴的五毫米內通過。
  15. 一種質譜儀系統,包括:   真空泵;   濾質器;   檢測器;以及   離子源,其包括:     氣體源,用於將氣體傳遞到真空的電離體積,該氣體源實質上處於較該真空的電離體積的壓力更高的壓力下;     噴嘴,位於該氣體源與該電離體積之間,氣體通過該噴嘴自由地在該電離體積的電離區域中擴展;     電子源,配置來發射電子,該等電子在該噴嘴附近通過該電離區域中之擴展的該氣體,以使擴展的該氣體的至少一部分電離;以及     電極,配置來建立用於從該電離區域到該濾質器的離子流的電場,該等電極被定位在距離該噴嘴的距離處,且被定向來限制該等電極對該氣體的直接暴露。
  16. 如申請專利範圍第15項之質譜儀系統,其中,該噴嘴被配置來朝向該真空泵引導該氣體。
  17. 如申請專利範圍第15項之質譜儀系統,其中,該電子源為加熱的燈絲。
  18. 如申請專利範圍第15項之質譜儀系統,其中:   該電子源相對於該電離區域被佈置在第一電極的相反側上;   由該電子源所產生的電子行進通過該第一電極的孔口並朝向該電離區域,造成行進通過該電離區域中之擴展的該氣體的電子束;並且   第二電極被佈置為相反於該第一電極且包括孔口,該等電子行進通過該電離區域及該第二電極的該孔口。
  19. 如申請專利範圍第15項之質譜儀系統,其中,該等電極包括第一電極和第二電極,該第一電極和該第二電極被佈置在該電離區域的相反側上,該第一電極和該第二電極的表面為實質上平行於來自該噴嘴之通過該電離區域的氣流的主要方向。
  20. 如申請專利範圍第19項之質譜儀系統,還包括排斥電極,其被配置來朝向該濾質器排斥來自該電離區域的離子。
  21. 如申請專利範圍第19項之質譜儀系統,還包括離子出口電極,其具有孔口,用於將該離子流從該電離區域引導到該濾質器。
  22. 如申請專利範圍第15項之質譜儀系統,其中:   該等電極包括:     第一電極和第二電極,該第一電極和該第二電極被佈置在該電離區域的相反側上,該第一電極和該第二電極的表面為實質上平行於來自該噴嘴之通過該電離區域的氣流的主要方向;     阱電極,其相對於該電離區域被佈置為相反於該第一電極且在該第二電極外部;     排斥電極,其配置來朝向該濾質器排斥來自該電離區域的離子;以及     離子出口電極,其具有孔口,用於將該離子流從該電離區域引導到該濾質器;   該電子源包括相對於該電離區域被佈置在該第一電極的相反側上的燈絲;並且   由該燈絲所產生的電子朝向該電離區域行進通過該第一電極的孔口,並通過該第二電極的孔口,造成電子束,該電子束在該第一電極和該第二電極之間行進並通過該電離區域中之擴展的該氣體。
  23. 如申請專利範圍第22項之質譜儀系統,其中,該等電極的電壓為可獨立地控制的。
  24. 一種產生用於具有濾質器的質譜儀的離子的方法,該方法包括:   將氣體從氣體源經由噴嘴傳遞到真空的電離體積,該氣體源處於實質上較該真空的電離體積的壓力更高的壓力下,且氣體通過該噴嘴自由地在該電離體積的電離區域中擴展;   發射電子,該等電子在該噴嘴附近通過該電離區域中之擴展的該氣體,以使擴展的該氣體的至少一部分電離;以及   將形成在該電離區域中的離子引導到該濾質器。
  25. 如申請專利範圍第24項之方法,其中,引導該等離子包括使用由電極所建立的電場引導該等離子,且其中,將該氣體傳遞到該真空的電離體積包括在距離電極的距離處傳遞該氣體,以限制該等電極對該氣體的直接暴露。
  26. 如申請專利範圍第24項之方法,其中,發射電子包括從加熱的燈絲發射電子。
  27. 如申請專利範圍第24項之方法,其中,發射電子包括經由第一電極的孔口以及經由該電離區域中之擴展的該氣體來發射電子。
  28. 如申請專利範圍第27項之方法,其中,發射電子包括經由在該電離區域的相反側上之第二電極的孔口來發射電子。
  29. 如申請專利範圍第24項之方法,其中,引導該等離子包括朝向該濾質器排斥來自該電離區域的該等離子。
  30. 如申請專利範圍第24項之方法,其中,引導該等離子包括使來自該電離區域的該等離子通過孔口聚焦到該濾質器。
TW107118649A 2017-06-13 2018-05-31 強健型離子源、質譜儀系統及使用離子源以產生用於質譜儀的離子的方法 TWI776904B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/621,241 US10541122B2 (en) 2017-06-13 2017-06-13 Robust ion source
US15/621,241 2017-06-13

Publications (2)

Publication Number Publication Date
TW201903822A true TW201903822A (zh) 2019-01-16
TWI776904B TWI776904B (zh) 2022-09-11

Family

ID=62779059

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107118649A TWI776904B (zh) 2017-06-13 2018-05-31 強健型離子源、質譜儀系統及使用離子源以產生用於質譜儀的離子的方法

Country Status (7)

Country Link
US (2) US10541122B2 (zh)
EP (1) EP3639290A1 (zh)
JP (1) JP7195284B2 (zh)
KR (1) KR20200018570A (zh)
CN (1) CN110770876B (zh)
TW (1) TWI776904B (zh)
WO (1) WO2018231631A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10541122B2 (en) 2017-06-13 2020-01-21 Mks Instruments, Inc. Robust ion source
US11532525B2 (en) 2021-03-03 2022-12-20 Applied Materials, Inc. Controlling concentration profiles for deposited films using machine learning
US11768176B2 (en) 2022-01-06 2023-09-26 Mks Instruments, Inc. Ion source with gas delivery for high-fidelity analysis

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2938116A (en) 1956-04-02 1960-05-24 Vard Products Inc Molecular mass spectrometer
US3505518A (en) * 1965-12-27 1970-04-07 Hitachi Ltd Ion sources for mass spectrometers
DE2361955A1 (de) 1973-12-13 1975-06-19 Uranit Gmbh Quadrupol-massenspektrometer
US4016421A (en) * 1975-02-13 1977-04-05 E. I. Du Pont De Nemours And Company Analytical apparatus with variable energy ion beam source
US4135094A (en) * 1977-07-27 1979-01-16 E. I. Du Pont De Nemours And Company Method and apparatus for rejuvenating ion sources
US4166952A (en) * 1978-02-24 1979-09-04 E. I. Du Pont De Nemours And Company Method and apparatus for the elemental analysis of solids
DE2942386C2 (de) 1979-10-19 1984-01-12 Ulrich Dr. 8000 München Boesl Ionenquelle
US4960991A (en) * 1989-10-17 1990-10-02 Hewlett-Packard Company Multimode ionization source
US6794644B2 (en) 2000-02-18 2004-09-21 Melvin A. Park Method and apparatus for automating an atmospheric pressure ionization (API) source for mass spectrometry
EP1364387B1 (en) 2001-02-23 2016-01-20 Bruker Daltonics, Inc. Method and apparatus for a multiple part capillary device for use in mass spectrometry
US6777671B2 (en) 2001-04-10 2004-08-17 Science & Engineering Services, Inc. Time-of-flight/ion trap mass spectrometer, a method, and a computer program product to use the same
US6891157B2 (en) 2002-05-31 2005-05-10 Micromass Uk Limited Mass spectrometer
US7034292B1 (en) 2002-05-31 2006-04-25 Analytica Of Branford, Inc. Mass spectrometry with segmented RF multiple ion guides in various pressure regions
US20040195503A1 (en) 2003-04-04 2004-10-07 Taeman Kim Ion guide for mass spectrometers
US7091477B2 (en) 2003-06-09 2006-08-15 Ionica Mass Spectrometry Group, Inc. Mass spectrometer interface
JP2005085512A (ja) * 2003-09-05 2005-03-31 Hitachi High-Technologies Corp イオントラップ質量分析装置
JP4232662B2 (ja) * 2004-03-11 2009-03-04 株式会社島津製作所 イオン化装置
US7075067B2 (en) * 2004-10-15 2006-07-11 Agilent Technologies, Inc. Ionization chambers for mass spectrometry
US7750312B2 (en) 2006-03-07 2010-07-06 Dh Technologies Development Pte. Ltd. Method and apparatus for generating ions for mass analysis
EP1855306B1 (en) 2006-05-11 2019-11-13 ISB - Ion Source & Biotechnologies S.R.L. Ionization source and method for mass spectrometry
US20090283674A1 (en) 2006-11-07 2009-11-19 Reinhold Pesch Efficient Atmospheric Pressure Interface for Mass Spectrometers and Method
US20080116370A1 (en) 2006-11-17 2008-05-22 Maurizio Splendore Apparatus and method for a multi-stage ion transfer tube assembly for use with mass spectrometry
EP2141494A4 (en) 2007-04-13 2012-10-24 Horiba Stec Co Ltd GAS ANALYZER
GB2466156B8 (en) 2007-09-07 2015-10-14 Ionics Mass Spectrometry Group Multi-pressure stage mass spectrometer and methods
US8084736B2 (en) 2008-05-30 2011-12-27 Mds Analytical Technologies, A Business Unit Of Mds Inc. Method and system for vacuum driven differential mobility spectrometer/mass spectrometer interface with adjustable resolution and selectivity
DE102008041592A1 (de) 2008-08-27 2010-03-04 Carl Zeiss Smt Ag Detektion von kontaminierenden Stoffen in einer EUV-Lithographieanlage
WO2010042303A1 (en) 2008-10-06 2010-04-15 Shimadzu Corporation Curtain gas filter for mass- and mobility-analyzers that excludes ion-source gases and ions of high mobility
WO2011056515A2 (en) * 2009-10-27 2011-05-12 Advanced Technology Materials, Inc. Ion implantation system and method
JP5985989B2 (ja) 2010-01-28 2016-09-06 エムディーエス アナリティカル テクノロジーズ, ア ビジネス ユニット オブ エムディーエス インコーポレイテッド 低圧微分移動度分光計を備えた質量分析システム
DE112011102743T5 (de) 2010-08-19 2013-07-04 Leco Corporation Laufzeit-Massenspektrometer mit akkumulierender Elektronenstoss-Ionenquelle
WO2012031082A2 (en) 2010-09-02 2012-03-08 University Of The Sciences In Philadelphia System and method for ionization of molecules for mass spectrometry and ion mobility spectrometry
US8450681B2 (en) 2011-06-08 2013-05-28 Mks Instruments, Inc. Mass spectrometry for gas analysis in which both a charged particle source and a charged particle analyzer are offset from an axis of a deflector lens, resulting in reduced baseline signal offsets
US8536518B2 (en) 2011-06-27 2013-09-17 U.S. Department of Homeland Security Ion mobility spectrometer to mass spectrometer interface
US9305759B2 (en) 2012-01-26 2016-04-05 University Of The Sciences In Philadelphia Ionization at intermediate pressure for atmospheric pressure ionization mass spectrometers
CN104160474A (zh) 2012-02-01 2014-11-19 Dh科技发展私人贸易有限公司 用于提高质谱仪中的灵敏度的方法及设备
US9123521B2 (en) * 2012-04-26 2015-09-01 Leco Corporation Electron impact ion source with fast response
JP6025406B2 (ja) 2012-06-04 2016-11-16 株式会社日立ハイテクノロジーズ 質量分析装置
US9117617B2 (en) * 2013-06-24 2015-08-25 Agilent Technologies, Inc. Axial magnetic ion source and related ionization methods
JP6231308B2 (ja) * 2013-06-28 2017-11-15 シャープ株式会社 イオン化装置および質量分析装置
US9842728B2 (en) 2013-07-19 2017-12-12 Smiths Detection Ion transfer tube with intermittent inlet
WO2015108969A1 (en) 2014-01-14 2015-07-23 908 Devices Inc. Sample collection in compact mass spectrometry systems
US20160163528A1 (en) 2014-12-03 2016-06-09 Bruker Daltonics, Inc. Interface for an atmospheric pressure ion source in a mass spectrometer
JP6323362B2 (ja) 2015-02-23 2018-05-16 株式会社島津製作所 イオン化装置
US10541122B2 (en) 2017-06-13 2020-01-21 Mks Instruments, Inc. Robust ion source

Also Published As

Publication number Publication date
KR20200018570A (ko) 2020-02-19
US10541122B2 (en) 2020-01-21
CN110770876B (zh) 2022-02-11
US20200118806A1 (en) 2020-04-16
US10892153B2 (en) 2021-01-12
US20180358217A1 (en) 2018-12-13
EP3639290A1 (en) 2020-04-22
WO2018231631A1 (en) 2018-12-20
JP2020526869A (ja) 2020-08-31
TWI776904B (zh) 2022-09-11
JP7195284B2 (ja) 2022-12-23
CN110770876A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
JP6323362B2 (ja) イオン化装置
US10236169B2 (en) Ionization device with mass spectrometer therewith
US20110147575A1 (en) Ion funnel for mass spectrometry
US7459677B2 (en) Mass spectrometer for trace gas leak detection with suppression of undesired ions
US10892153B2 (en) Robust ion source
CN110870042B (zh) 多极离子导向器
US9177775B2 (en) Mass spectrometer
US10930487B2 (en) Double bend ion guides and devices using them
US20240063004A1 (en) Particle detector having improved performance and service life
US9035244B2 (en) Automatic gain control with defocusing lens
US20090200459A1 (en) Analytic spectrometers with non-radioactive electron sources
JP5426571B2 (ja) イオン電荷蓄積装置の電荷制御
CN110612595B (zh) 离子检测装置及质谱分析装置
US11410839B2 (en) Electron multipliers internal regions
JP4172561B2 (ja) ガス分析装置
Blantocas et al. An investigation as to the cause of beam asymmetry in a compact gas discharge ion source: A focus on beam-wall interaction
RU2634926C2 (ru) Способ масс-спектрометрического анализа газообразных веществ
JP2023124544A (ja) Ims分析装置
JP2019061829A (ja) 質量分析装置及び質量分析方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent