TW201902146A - 增強偏振權重以實現極性碼位元分佈中之可擴展性 - Google Patents

增強偏振權重以實現極性碼位元分佈中之可擴展性 Download PDF

Info

Publication number
TW201902146A
TW201902146A TW107115632A TW107115632A TW201902146A TW 201902146 A TW201902146 A TW 201902146A TW 107115632 A TW107115632 A TW 107115632A TW 107115632 A TW107115632 A TW 107115632A TW 201902146 A TW201902146 A TW 201902146A
Authority
TW
Taiwan
Prior art keywords
bit
polar
exponential
code
factor
Prior art date
Application number
TW107115632A
Other languages
English (en)
Other versions
TWI750372B (zh
Inventor
凱文 A 榭爾比
Original Assignee
美商卡赫倫特羅吉克斯公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商卡赫倫特羅吉克斯公司 filed Critical 美商卡赫倫特羅吉克斯公司
Publication of TW201902146A publication Critical patent/TW201902146A/zh
Application granted granted Critical
Publication of TWI750372B publication Critical patent/TWI750372B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/033Theoretical methods to calculate these checking codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/007Unequal error protection

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Dc Digital Transmission (AREA)
  • Error Detection And Correction (AREA)

Abstract

本發明描述用於判定一位元序列中之位元位置之可靠性用於使用極性碼之資訊位元分配之方法及器件。使用一加權總和在各位元位置之一二進制擴展上計算該等可靠性,其中該總和由至少部分基於該極性碼之編碼率選擇之一指數因數加權。基於該等經判定可靠性將資訊位元及凍結位元分配至該等位元位置,且將資料極性編碼為資訊位元。接著將該極性編碼資料傳輸至一遠端器件。

Description

增強偏振權重以實現極性碼位元分佈中之可擴展性
本發明之領域大體上係關於極性碼建構。
在廣泛多種技術應用中使用極性碼。當建構一極性碼時,將凍結位元及資訊位元分配至極性碼內之特定位元位置。用於極性碼建構之現有演算法在計算上可係效率低的,或可以其他方式將非所要特徵引入至極性碼中。因此,期望該領域中之改良。
描述用於在一極性碼之建構中判定位元位置之可靠性之系統及方法之各項實施例。舉例而言,一些實施例可係關於一使用者設備(UE)或一基地台(BS),其包括至少一個無線電、一記憶體及一或多個處理元件且經組態以執行本文中描述之操作之一子集或全部。
在一些實施例中,一UE建構且傳輸極性編碼資料。可儲存待極性編碼之資料,且可判定用於極性編碼之一編碼率。與一位元序列中之各位元位置相關聯之一可靠性可藉由計算對應於該等位元位置之各者之一序列加權總和而判定。各位元位置之該可靠性可自其各自加權總和判定,其中對應於各各自位元位置之該加權總和係該各自位元位置之一二進制擴展上之一加權總和。該加權總和可由一第一相乘性因數加權,且可至少部分基於該編碼率選擇該第一相乘性因數。
可基於該等位元位置之各自可靠性對該等位元位置進行排序,且可基於該排序將該資料作為資訊位元分配於一極性碼之最可靠位元位置中。可將位元位置之剩餘部分分配為該極性碼之凍結位元。可極性編碼該等資訊位元及該等凍結位元,且該UE可接著傳輸該等極性編碼資訊位元及凍結位元。
此發明內容旨在提供此文獻中描述之一些標的物之一簡要概述。因此,將瞭解,上述特徵僅係實例且不應理解為以任何方式窄化本文中描述之標的物之範疇或精神。自以下詳細描述、圖及發明申請專利範圍,本文中描述之標的物之其他特徵、態樣及優點將變得顯而易見。
優先權主張 本申請案主張2017年5月8日申請之標題為「Implementation Considerations for Polar Code Construction」之美國臨時申請案第62/503,172號之優先權之權利,該案之全文藉此以宛如全文闡述引用之方式併入本文中。 以參考的方式併入
以下參考案之全文藉此以宛如全文闡述引用之方式併入本文中:
1. R1-1701702,「Construction schemes for polar codes」,Huawei,HiSilicon,TSG RAN WG1 #88,2017年2月。
2. R1-1706130,「FRANK polar construction: nested extension design of polar codes based on mutual information」,Qualcomm Inc.,TSG RAN WG1 #88bis,2017年4月。
3. R1-1613006,「A Dynamically Configurable Multi-mode NR Decoder Implementation」,Coherent Logix Inc.,3GPP TSG RAN WG1 Meeting #87,2016年11月。
4. 「b-expansion: A Theoretical Framework for Fast and Recursive Construction of Polar Codes」,Cornell University Library,2017年4月19日。 術語
以下為本申請案中使用之術語之一術語表:
記憶體媒體 -各種類型之記憶體器件或儲存器件之任何者。術語「記憶體媒體」旨在包含:一安裝媒體,例如,一CD-ROM、軟碟或磁帶器件;一電腦系統記憶體或隨機存取記憶體,諸如DRAM、DDR RAM、SRAM、EDO RAM、Rambus RAM等;或一非揮發性記憶體,諸如一磁性媒體(例如,一硬碟)、光學儲存器或ROM、EPROM、FLASH等。記憶體媒體亦可包括其他類型之記憶體或其等之組合。另外,記憶體媒體可定位於其中執行程式之一第一電腦中及/或可定位於經由一網路(諸如網際網路)連接至第一電腦之一第二不同電腦中。在後一種例項中,第二電腦可將程式指令提供至第一電腦以供執行。術語「記憶體媒體」可包含可駐存在不同位置中(例如,經由一網路連接之不同電腦中)之兩個或兩個以上記憶體媒體。
載體媒體 -如上文描述之一記憶體媒體,以及一實體傳輸媒體,諸如一匯流排、網路及/或傳送信號(諸如電或光學信號)之其他實體傳輸媒體。
可程式化硬體元件 -包含各種硬體器件,包括經由一可程式化或固線式互連件連接之多個可程式化功能區塊。實例包含FPGA (場可程式化閘陣列)、PLD (可程式化邏輯器件)、FPOA (場可程式化物件陣列)及CPLD (複雜PLD)。可程式化功能區塊之範圍可自細粒性(組合邏輯或查找表)至粗粒性(算數邏輯單元或處理器核心)。一可程式化硬體元件亦可稱為「可重新組態邏輯」。
特定應用積體電路 (ASIC) -此術語旨在具有其普通意義之完整範圍。術語ASIC旨在包含針對一特定應用客製化之一積體電路,而非一通用可程式化器件,但一ASIC可含有可程式化處理器核心作為建置區塊。行動電話晶片、MP3播放器晶片及許多其他單功能IC係ASIC之實例。通常以一硬體描述語言(諸如Verilog或VHDL)描述一ASIC。
程式 -術語「程式」旨在具有其普通意義之完整範圍。術語「程式」包含1)可儲存於一記憶體中且可由一處理器執行之一軟體程式;或2)可用於組態一可程式化硬體元件或ASIC之一硬體組態程式。
軟體程式 -術語「軟體程式」旨在具有其普通意義之完整範圍,且包含可儲存於一記憶體媒體中且可由一處理器執行之任何類型之程式指令、程式碼、指令檔及/或資料或其等之組合。例示性軟體程式包含以基於文字之可程式化語言(例如,命令式語言或程序式語言,諸如C、C++、PASCAL、FORTRAN、COBOL、JAVA、組合語言等)寫入之程式;圖形程式(以圖形程式化語言寫入之程式);組合語言程式;已被編譯成機器語言之程式;指令檔;及其他類型之可執行軟體。一軟體程式可包括以某一方式交互操作之兩個或兩個以上軟體程式。
硬體組態程式 -可用於程式化或組態一可程式化硬體元件或ASIC之一程式,例如,一網路連線表或位元檔案。
電腦系統 -各種類型之計算或處理系統之任何者,包含一個人電腦系統(PC)、主機電腦系統、工作站、網路設備、網際網路設備、個人數位助理(PDA)、網格計算系統或其他器件或器件之組合。一般言之,術語「電腦系統」可經廣泛定義以涵蓋具有執行來自一記憶體媒體之指令之至少一個處理器之任何器件(或器件之組合)。
自動地 -係指藉由一電腦系統(例如,藉由電腦系統執行之軟體)或器件(例如,電路、可程式化硬體元件、ASIC等)執行一動作或操作而不使用直接指定或執行動作或操作之使用者輸入。因此,術語「自動地」與藉由使用者手動地執行或指定一操作(其中使用者提供輸入以直接執行操作)形成對比。一自動程序可藉由憑藉使用者提供之輸入起始,但「自動地」執行之後續動作不由使用者指定(即,不「手動地」執行(其中使用者指定待執行之各動作))。舉例而言,藉由選擇各欄位且提供指定資訊之輸入(例如,藉由鍵入資訊、選擇核取方塊、無線電選擇等)而填寫一電子表格之一使用者在手動地填寫表格,即使電腦系統必須回應於使用者動作而更新表格。表格可藉由電腦系統自動地填寫,其中電腦系統(例如,在電腦系統上執行之軟體)分析表格之欄位且填寫表格而不使用指定對欄位之應答之任何使用者輸入。如上文指示,使用者可調用表格之自動填寫,但不參與表格之實際填寫(例如,使用者未自動地指定對欄位之應答而係其等被自動地完成)。本說明書提供回應於使用者已採取之動作而自動地執行之操作之各種實例。 縮寫字之定義:
3GPP -第三代合作夥伴計畫
5G -第五代(3GPP)蜂巢式標準
BMS -二進制無記憶對稱
FEC -正向誤差校正
FRANK -碎形增強核心
PW -偏振權重
RAN -無線電存取網路
TSG -技術標準組
UPO -通用部分有序
WG -工作群組詳細描述 圖1-無線通信環境
圖1繪示包含多個通信系統之一例示性(及簡化)無線環境。圖1展示涉及與複數個使用者設備器件(UE) 106A至106C通信之一基地台(BS) 102之一例示性通信系統。基地台102可係執行與複數個無線通信器件之蜂巢式通信之一蜂巢式基地台。替代地,基地台102可係用於諸如根據802.11標準或相關標準執行Wi-Fi通信之一無線存取點。UE 106可係各種器件之任何者,諸如一智慧型電話、平板器件、電腦系統等。基地台102及無線通信器件106之一者或兩者可包含極性編碼邏輯,如本文中描述。
在所繪示實施例中,不同UE及基地台經組態以經由一廣播網路及/或一封包交換蜂巢式網路通信。應注意,圖1之系統僅係可能系統之一個實例,且實施例可視需要實施於各種系統之任何者中。
蜂巢式基地台102可係一基地收發器台(BTS)或小區站點,且可包含實現與UE 106A至106C之無線通信之硬體。基地台102亦可經組態以與一核心網路通信。核心網路可耦合至一或多個外部網路,該一或多個外部網路可包含網際網路、一公共交換電話網路(PSTN)及/或任何其他網路。因此,基地台102可促進UE器件106A至106C與一網路之間之通信。
基地台102及根據相同或不同無線電存取技術(RAT)或蜂巢式通信標準操作之其他基地台可被提供為一小區網路,其可經由一或多個RAT在一廣地理區域內將連續或幾乎連續重疊服務提供至UE 106A至106C及類似器件。
基地台102可經組態以將通信廣播至UE 106A至106C。本文中之術語「廣播」可指針對一廣播區域中之接收器件傳輸之一對多傳輸而非經定址至一特定器件。此外,廣播傳輸通常係單向的(自傳輸器至接收器)。在一些情境中,可將控制傳訊(例如,評定資訊)自接收器傳遞回至一廣播傳輸器,但僅在一個方向上傳輸內容資料。相比之下,蜂巢式通信通常係雙向的。「蜂巢式」通信亦可涉及小區之間之交遞。舉例而言,當UE 106A (及/或UE 106B至106C)移動出由蜂巢式基地台102伺服之小區時,其可被交遞至另一蜂巢式基地台(且交遞可由網路處置,包含藉由基地台102及其他蜂巢式基地台執行之操作)。相比之下,當一使用者自由一第一廣播基地台涵蓋之範圍移動至由一第二廣播基地台涵蓋之範圍時,其可切換至自第二廣播基地台接收內容,但基地台不需要促進交遞(例如,其等僅持續廣播且不關心一特定UE正在使用哪一基地台)。
傳統地,使用與蜂巢式傳輸不同之頻率資源執行廣播傳輸。然而,在一些實施例中,在此等不同類型之傳輸之間共用頻率資源。舉例而言,在一些實施例中,一廣播基地台經組態以在經排程時間間隔期間放棄一或多個頻帶以供一蜂巢式基地台使用用於封包交換通信。
在一些實施例中,藉由一廣播或蜂巢式基地台傳輸之控制傳訊可容許終端使用者器件維持完整傳訊連接能力(其可消除網路攪動)、延長電池壽命(例如,藉由在一基地台不在傳輸時判定何時保持在一低功率模式中)及/或主動管理涵蓋範圍偵測(例如,而非將頻譜共用週期感知為多點涵蓋範圍或一臨時網路中斷)。
基地台102及UE 106A、106B及106C可經組態以使用諸如以下項之各種RAT (亦稱為無線通信技術或電信標準)經由傳輸媒體通信:LTE、5G新無線電(NR)、下一代廣播平台(NGBP)、W-CDMA、TD-SCDMA及GSM以及可能其他RAT (諸如UMTS、LTE-A、CDMA2000 (例如,1xRTT、1xEV-DO、HRPD、eHRPD)、先進電視系統委員會(ATSC)標準、數位視訊廣播(DVB)等)。一般言之,基地台102與UE 106A、106B及106C之間之任何傳輸可利用根據本文中描述之實施例之用於極性碼建構以極性編碼經傳輸資料之增強PW之方法。
本文中論述廣播及蜂巢式網路以促進圖解,但此等技術不旨在限制本發明之範疇且在其他實施例中,可在各種類型之無線網路之任何者之間使用所揭示之頻譜共用技術。 圖2-具有多個基地台之無線通信環境
圖2繪示包含經由一傳輸媒體與一或多個使用者設備(UE)器件(表示為UE 106A至106C)通信之基地台102A及102B之一例示性無線通信系統。圖2中之通信環境可類似於上文在圖1中描述之通信環境起作用。然而,圖2繪示中心UE 106B可在基地台102A及102B之兩者之範圍內操作。在此等實施例中,UE 106B可在其意欲自基地台102A接收通信時錯誤地自基地台102B接收一通信。 圖3-基地台
圖3繪示一基地台102之一例示性方塊圖。在一些實施例中,基地台102可係一廣播基地台(諸如圖2之基地台102A)及/或一蜂巢式基地台(諸如圖2之基地台102B)。應注意,圖3之基地台僅係一可能基地台之一個實例。如展示,基地台102可包含可執行基地台102之程式指令之(若干)處理器304。(若干)處理器304亦可耦合至記憶體管理單元(MMU) 340,該MMU 340可經組態以自(若干)處理器304接收位址且將該等位址轉譯至記憶體(例如,記憶體360及唯讀記憶體(ROM) 350)中之位置或至其他電路或器件。
基地台102可包含至少一個網路埠370。網路埠370可經組態以耦合至一電話網路且將複數個器件(諸如UE器件106)存取提供至電話網路,如上文描述。在一些實施例中,網路埠370 (或一額外網路埠)可耦合至一電話網路且經組態以接收用於廣播之內容。網路埠370 (或一額外網路埠)亦可或替代地經組態以耦合至一蜂巢式網路(例如,一蜂巢式服務提供者之一核心網路)。核心網路可將行動性相關服務及/或其他服務提供至複數個器件(諸如UE器件106)。在一些情況中,網路埠370可經由核心網路耦合至一電話網路及/或核心網路可提供一電話網路(例如,在藉由蜂巢式服務提供者伺服之其他UE器件106當中)。
基地台102可包含至少一個天線334。至少一個天線334可經組態以操作為一無線收發器且可進一步經組態以經由無線電330與UE器件106通信。在所繪示實施例中,天線334經由通信鏈332與無線電330通信。通信鏈332可係一接收鏈、一傳輸鏈或兩者。無線電330可經組態以經由各種RAT通信。
基地台102之(若干)處理器304可經組態以(例如)藉由執行儲存於一記憶體媒體(例如,一非暫時性電腦可讀記憶體媒體)上之程式指令而實施本文中描述之方法之部分或全部。替代地,處理器304可經組態為一可程式化硬體元件(諸如一FPGA (場可程式化閘陣列))或為一ASIC (特定應用積體電路)或其等之一組合。在一些實施例中,處理器、MMU及記憶體可係一分散式多處理器系統。舉例而言,處理器系統可包括複數個散置處理器及記憶體,其中處理元件(亦稱為功能元件)各連接至複數個記憶體(亦稱為資料記憶體路由器)。處理器系統可經程式化以實施本文中描述之方法。
在一些實施例中,基地台102經組態以執行廣播及雙向封包交換通信兩者。在此等實施例中,基地台102可包含(例如)多個無線電330、通信鏈332及/或天線334。在其他實施例中,所揭示頻譜共用技術可藉由經組態以僅執行廣播傳輸或僅執行封包交換通信之不同基地台執行。 圖4-使用者設備(UE)
圖4繪示一UE 106之一例示性簡化方塊圖。UE 106可係如上文定義之各種器件之任何者。UE器件106可包含可由各種材料之任何者構造之一外殼。
如展示,UE 106可包含一系統單晶片(SOC) 400,該SOC 400可包含用於各種目的之部分。SOC 400可耦合至UE 106之各種其他電路。舉例而言,UE 106可包含各種類型之記憶體(例如,包含NAND快閃記憶體410)、一連接器介面420 (例如,用於耦合至一電腦系統、對接器、充電站等)、顯示器460、無線通信電路430 (諸如用於LTE、5G新無線電(NR)、GSM、藍芽(BT)、WLAN及/或廣播等)。UE 106可進一步包括實施SIM (用戶識別模組)功能性之一或多個智慧型卡。無線通信電路430可耦合至一或多個天線(諸如天線435)。
如展示,SOC 400可包含可執行UE 106之程式指令之(若干)處理器402及可執行圖形處理且將顯示信號提供至顯示器460之顯示電路404。(若干)處理器402亦可耦合至記憶體管理單元(MMU) 440,該MMU 440可經組態以自(若干)處理器402接收位址且將該等位址轉譯至記憶體(例如,記憶體(例如,唯讀記憶體(ROM)或另一類型之記憶體) 406、NAND快閃記憶體410)中之位置及/或至其他電路或器件(諸如顯示電路404、無線通信電路430、連接器介面420及/或顯示器460)。MMU 440可經組態以執行記憶體保護及頁表轉譯或設置。在一些實施例中,MMU 440可包含為(若干)處理器402之一部分。在一些實施例中,處理器、MMU及記憶體可係一分散式多處理器系統。舉例而言,處理器系統可包括複數個散置處理器及記憶體,其中處理元件(亦稱為功能元件)各連接至複數個記憶體(亦稱為資料記憶體路由器)。處理器系統可經程式化以實施本文中描述之方法。
在一些實施例(未展示)中,UE 106經組態以(例如)自圖2之廣播基地台102A接收無線廣播。在此等實施例中,UE 106可包含一廣播無線電接收器。在一些實施例中,UE 106經組態以接收廣播資料且使用不同頻帶同時及/或使用相同頻率資源在不同時間片段期間執行封包交換蜂巢式通信(例如,LTE)。此可容許使用者觀看TV廣播同時執行其他任務,諸如使用網頁應用程式瀏覽網際網路(例如,在一分割螢幕模式中)或收聽串流音訊。在其他實施例中,所揭示技術可用於具有經組態為廣播接收器或用於蜂巢式通信但非兩者之器件之系統中。
UE器件106之(若干)處理器402可經組態以(例如)藉由執行儲存於一記憶體媒體(例如,一非暫時性電腦可讀記憶體媒體)上之程式指令而實施本文中描述之特徵之部分或全部。在一些實施例中,(若干)處理器402可包括複數個並行處理元件之一多處理器陣列。舉例而言,可根據在參考案6中詳細描述之HyperX架構或另一平行處理器架構設計(若干)處理器402。在此等實施例中,並行處理元件之單獨者可經組態以對一連續取消清單(SCL)解碼程序之單獨各自位元路徑執行解碼程序,或其等可經組態以(例如)對單獨經編碼訊息並行執行解碼程序。替代地(或另外),(若干)處理器402可經組態為一可程式化硬體元件(諸如一FPGA (場可程式化閘陣列))或為一ASIC (特定應用積體電路)。替代地(或另外),UE器件106之(若干)處理器402結合其他組件400、404、406、410、420、430、435、440、460之一或多者可經組態以實施本文中描述之特徵之部分或全部。
UE 106可具有一顯示器406,該顯示器406可係併入電容式觸控電極之一觸控螢幕。顯示器460可係基於各種顯示技術之任何者。UE 106之外殼可含有或包括用於各種元件(諸如按鈕、揚聲器埠及其他元件(未展示)(諸如麥克風、資料埠及可能各種類型之按鈕,例如,音量按鈕、響鈴按鈕等))之任何者之開口。
UE 106可支援多個無線電存取技術(RAT)。舉例而言,UE 106可經組態以使用各種RAT之任何者通信,諸如全球行動通信系統(GSM)、通用行動電信系統(UMTS)、分碼多重存取(CDMA)(例如,CDMA2000 1XRTT或其他CDMA無線電存取技術)、長期演進(LTE)、進階LTE (LTE-A)、5G NR及/或其他RAT之兩者或兩者以上。舉例而言,UE 106可支援至少兩個無線電存取技術,諸如LTE及GSM。可視需要支援各種不同或其他RAT。
在一些實施例中,UE 106亦經組態以接收可傳達音訊及/或視訊內容之廣播無線電傳輸。在又其他實施例中,一UE 106可經組態以接收廣播無線電傳輸且可不經組態以執行與一基地台之雙向通信(例如,UE 106可係一媒體播放器件)。 極性碼
極性碼愈來愈多地用於各種技術應用中。舉例而言,預期一UE (諸如UE 106)與一基地台(諸如BS 102)之間之5G NR通信可採用極性碼。極性碼係一特定類型之正向誤差校正(FEC)碼。
在此項技術中已知用於建構無記憶二進制對稱頻道之容量達成碼之方法。圖5繪示透過極性碼利用之稱為頻道偏振之一現象,其中透過極性編碼之n = 11階編碼具有長度N = 2048位元之一極性碼。如圖1中描述,所得極性碼利用稱為頻道偏振之一現象,其將一實體頻道W轉換為合成頻道之一配置,其等之各自容量(即,頻道輸入與輸出之間之最大相互資訊)趨於朝向1 (高度可靠)或0 (高度不可靠)。當碼長度N = 2n 隨著正非零整數值n增加時,對應位元概率分別對應地接近1及0.5。
可藉由將資訊放置於最可靠頻道上之位元上而傳送資料,且此等位元可稱為資訊位元。放置於最不可靠頻道上之位元可被設定為一固定值(例如,0或為傳輸器及接收器兩者已知之另一已知值或值集),且此等位元可被稱為凍結位元。凍結位元及其等至程式碼矩陣之映射可由傳輸器及接收器兩者已知。因此,藉由一解碼演算法在一接收器處作為解碼程序之部分將凍結位元位置設定為其等已知值。建構具有區塊長度N之一極性碼可需要識別反映合成頻道可靠性之一有序序列、將使用者資訊指派於最可靠頻道位置中且將凍結位元型樣(不排除全零資料集)指派於最不可靠頻道位置中。
極性碼形成由一生成矩陣G描述之一類線性區塊碼。具有區塊長度N之極性碼可根據以下項產生:
其中表示之克羅內克(Kronecker)積以及其他概率。
一極性碼由在具有長度N之一區塊中之k個資訊位元及(N-k)個凍結位元之位置定義。編碼率被表達為非凍結位元對區塊長度之比率。可藉由變動每一區塊之非凍結位元之數目而線性地調整編碼率。通常言之,區塊長度N被選擇為2的冪次,使得N = 2n ,其中n係一自然數。
在一些實施例中,頻道偏振將一二進制無記憶對稱(BMS)頻道分割成一對合成頻道,其中:
此處Å指示一互斥或(XOR)運算。此分割可應用n次以獲得N = 2n 個合成頻道(例如,見上文之參考案[0033])。
可如下計算對應相互資訊(MI):
各具有二進制擴展(b0 , b1 ,…, bn-1 ), bi ∈{0, 1}之合成頻道集可被定義為:
若相互資訊,則可判定,合成頻道更可靠(表示為),其中
可被定義為之相互資訊提供一對隨機變量共用之一資訊量測,即,知道一個變量之程度降低知道另一變量之不確定性,其中p(x,y)係X及Y之聯合概率函數,且p(x)及p(y)分別係X及Y之裕度概率分佈函數。若X及Y係獨立地,則產生,即,隨機變量X與Y之間之相互資訊係0。 圖6-例示性極性編碼器
圖6展示針對區塊長度N = 23 之一樣本極性碼建構。編碼器以輸入ui 開始,該等輸入被編碼為輸出xi 。資訊位元以粗體展示。剩餘輸入可被指派凍結位元值0。在各階s處,編碼器根據在右側展示之編碼樹組合位元對。 極性碼建構
極性碼建構涉及位元位置之一排列以反映合成頻道可靠性之一排序。為了建構具有長度N之一碼,將資訊位元集映射至K個最可靠頻道位置同時將凍結位元集放置於剩餘N-K個頻道位置。將編碼率計算為R = K/N,即,資訊位元之數目對碼區塊長度之比率。
計算一給定區塊大小N之精確合成頻道可靠性所需之遞迴表示大量計算負荷。因此,已提出數個計算上較不昂貴的方法來到達以逼近精確頻道可靠性之一方式對位元位置進行排序。換言之,為了減少計算負荷及時間要求,已開發在一極性碼中分配資訊位元之逼近方法。
在此項技術中已知用於極性碼建構之各種方法,諸如偏振權重(PW)(見上文之參考案[1])及碎形增強核心(FRANK)極性碼建構(見上文之參考案[2])。雖然PW及FRANK兩者能夠以合理準確度在一極性碼中分配資訊位元,但其兩者展現關於其等準確度(例如,其等相對於精確合成頻道可靠性之準確度)、計算延時及有限精確度效應之限制。
本文中之實施例藉由實施一增強PW極性碼建構以改良計算效率及資訊位元分配來改良舊型PW及FRANK極性碼建構。本文中之一些實施例表示用於有效率的計算有序序列及指派位元位置之新穎構件,如在諸如上文之參考案[3]中描述之一有限精確度網路處理器中記憶體(MiNP)架構中實施。 增強偏振權重(PW)
本文中之實施例描述用於在一極性碼中分配資訊位元之一增強PW方法論。增強PW利用稱為β擴展之一技術,其提供一理論架構以實現極性碼建構中使用之有序序列之快速判定。增強PW利用一一般化β擴展,其之程序可如下概括:
視為合成頻道指數之二進制擴展i = 0, 1, …, N-1,其中
計算偏振權重,
,其中
其中整數值m>0,判定擴展率,即,
排序使得,接著將所得指數保存為有序序列
傳統PW實施方案在β擴展中使用m = 4之一固定值。本文中之實施例藉由將β擴展一般化為m之其他值而改良舊型PW實施方案。有利地且如下文進一步詳細描述,基於極性碼之編碼率及/或區塊大小而策略性地選擇m可改良所得資訊區塊分配之準確度。
另外,雖然如針對3GPP 5G極性碼建構提出之PW方法係基於β擴展( 錯誤!未發現參考源 ) ,但一競爭框架FRANK (碎形增強核心)( 錯誤!未發現參考源 ) 主張隨著編碼率(即,資訊位元之數目K對一給定區塊大小N)之可擴展性作為優於舊型PW方法之其主要優點。擴展PW方法以包含一可變擴展因數(例如,b = 21/m )之本文中之實施例可產生以相當於使用FRANK展現之方式之一方式隨著編碼率擴展之位元分佈,但無與FRANK相關聯之一些計算缺點,如下文更詳細描述。舉例而言,可以改良與經計算頻道可靠性之所得匹配之一方式基於區塊大小及編碼率調諧β。 圖7-增強PW極性碼建構
圖7係繪示根據一些實施例之用於傳輸極性編碼資料之一方法之一流程圖,其中已使用增強PW建構極性碼。圖7中展示之方法可結合上圖中展示之任何系統或器件以及其他器件使用。舉例而言,圖7中展示之方法可由與另一UE或一基地台102通信之一UE 106,或由與一UE或另一基地台通信之一基地台使用。更一般言之,方法可由自一個器件至另一器件之任何有線或無線極性編碼傳輸採用。在各項實施例中,所展示之一些方法元素可同時、以不同於所展示之一順序執行或可省略。亦可視需要執行額外方法元素。如展示,此方法可如下操作。
在702處,可儲存待極性編碼之資料。資料可儲存於一UE器件或經組態以傳輸極性編碼資料之另一類型之器件之一記憶體中。
在704處,可判定用於極性編碼資料之一編碼率。可基於各種因數(包含信號強度、頻道條件、傳輸功率、器件之電池電量等)判定編碼率K。舉例而言,在良好頻道條件下,可使用一較高編碼率來以一更有效率的輸送量傳輸資料。相比之下,在不良頻道條件下,可使用一較低編碼率以確保僅在非常可靠位元上傳輸資料以降低傳輸誤差之可能性。
在706處,可判定與一位元序列中之各位元位置相關聯之一可靠性。可藉由計算對應於各位元位置之一序列加權總和而判定可靠性。各位元位置之可靠性可自其各自加權總和判定,其中對應於各各自位元位置之加權總和係各自位元位置之一二進制擴展上之一加權總和。舉例而言,可根據利用一一般化β擴展之增強PW執行加權總和,如上文各方面描述。
可基於經判定之用於極性編碼資料之編碼率加權總和。舉例而言,加權總和可由一第一相乘性因數加權,其中至少部分基於編碼率選擇第一相乘性因數。在一些實施例中,相乘性因數可係一指數量(例如,針對x之某一值之2x ,或另一指數量),且指數量可包括一第一指數因數,其中第一指數因數係被加總之二進制擴展中之各項之指數冪次。舉例而言,如上文更詳細描述,在對應於8 = 23 之一二進制擴展中之項可與一第一指數因數3相關聯。在一些實施例中,指數量可進一步包括一第二指數因數1/m,其中第二指數因數包括可至少部分基於編碼率調諧之一可調整參數。
如下文更詳細描述,若使用m之較大值,則按較高編碼率之精確頻道可靠性可藉由增強PW更接近地逼近。舉例而言,如下文之圖18至圖19中繪示,針對K = 16之一低編碼率(圖18之左上側),精確頻道可靠性(圖18中之「IDX」)藉由m = 2比藉由m = 14更接近地逼近。相比之下,按K = 64及K = 128之較高編碼率(圖18之左下側及右下側),精確頻道可靠性藉由m = 14比藉由m = 2更接近地逼近。如圖16中繪示,m之較大值比m之較小值產生具有更多在較早位元位置處之資訊位元之一資訊位元分配。類似地,較大編碼率導致促進具有較早位元位置之資訊位元分配之精確頻道可靠性。傳統PW實施方案之一個限制係其在針對較高編碼率將資訊位元分配至較早位元位置方面效率低。藉由針對較高編碼率使用m之一較大值,且針對較小編碼率使用m之一較小值,增強PW能夠更接近地逼近精確頻道可靠性。
在一些實施例中,進一步選擇第二指數因數以相對於自選擇為¼之一第一指數因數獲得之分佈將極性碼之資訊位元之一分佈散佈至較早位元位置。舉例而言,如圖16中繪示,m之較大值比m之較小值產生遍及位元序列之位元位置更廣散佈之一資訊位元分配。由於對應於精確頻道可靠性之資訊位元分配針對較大編碼率遍及位元序列更廣地分佈,故將m之值增大至大於m = 4可更接近地逼近對應於針對較大編碼率之精確頻道可靠性之資訊位元分配。
在一些實施例中,可基於極性碼之一區塊大小進一步加權總和(例如,可基於極性碼之區塊大小進一步選擇相乘性因數)。舉例而言,如下文參考表4更詳細描述,可針對m之各個值針對由極性碼採用之區塊大小及編碼率之各值判定一誤差量值。可選擇最小化經判定可靠性與精確頻道可靠性之間之差異之m之一值。
在一些實施例中,進一步選擇相乘性因數使得極性碼逼近一對應極性碼,其中對應極性碼實施經判定編碼率且係使用一替代極性碼建構方法論建構。舉例而言,極性碼可根據一增強偏振權重方法論建構,且替代極性碼建構方法論可包括一FRANK極性碼建構方法論。如下文參考表3更詳細解釋,取決於編碼率K之值更改m之值可導致針對增強PW及FRANK極性碼建構之在K011[192,255]區塊中之相同資訊位元分配。
在一些情境中,FRANK可導致一更可期望資訊位元分配(例如,FRANK趨於在極性碼中更早地分配更多資訊位元,導致資訊位元藉由接收器之更快接收且導致對精確頻道可靠性之一更接近逼近)。然而,如下文進一步詳細解釋,FRANK可經受不利有限精確度效應,而使用PW之有限精確度效應係可忽略的。因此,可用於逼近FRANK之資訊位元分配同時避免FRANK之有限精確度效應之增強PW可提供優於用於極性碼建構之現有方法之實質改良。
返回參考圖7,在708處,可基於位元位置之各自可靠性對位元位置進行排序。舉例而言,可以位元位置之各自經判定可靠性之升序對位元位置進行排序。
在710處,可基於排序將資料作為資訊位元分配於極性碼之最可靠位元位置中。可將剩餘位元位置分配為極性碼之凍結位元。
在712處,可編碼資訊位元及凍結位元。舉例而言,可透過一極性編碼演算法處理資訊位元及凍結位元以獲得極性編碼資訊位元及凍結位元。
在714處,可傳輸極性編碼資訊位元及凍結位元。舉例而言,一UE可將極性編碼資訊位元及凍結位元作為一極性編碼訊息無線地傳輸至另一遠端UE或至一基地台。
在一些實施例中,可根據一第二編碼率針對待極性編碼之第二資料重複參考步驟702至714描述之方法。舉例而言,可儲存待極性編碼之第二資料,且可判定用於極性編碼第二資料之一第二編碼率。若第二編碼率不同於第一編碼率,則可使用加權總和判定第二可靠性,其中加權總和由基於第二編碼率選擇之一第二相乘性因數加權。換言之,在資料傳輸之後續回合中,UE可基於用於各特定資料傳輸之編碼率採用可靠性判定。舉例而言,UE可基於位元位置之各自第二可靠性對應地執行位元位置之第二排序;基於第二排序將最可靠位元位置中之第二資料編碼為一第二極性碼之資訊位元;將位元位置之剩餘部分分配為第二極性碼之凍結位元;且傳輸第二極性碼之資訊位元及凍結位元。 FRANK、PW及增強PW之詳細分析
以下段落呈現針對FRANK、PW及增強PW方法論之各者之資訊位元分配結果之一更詳細分析。此等段落提供對於由圖7之所述方法招致之優點之額外細節及支援。 通用部分有序(UPO)
存在針對任何二進制對稱頻道之可靠性量測之一部分有序。此可靠性量測可不足以在N個位元位置(各對應於合成頻道之一指數)上形成一完全有序序列,且因此被視為部分。
加法: 給定其指數CA 具有一二進制表示(b3 , b2 , 1, b0 )之一合成頻道,其比其二進制指數CB 具有一二進制表示(b3 , b2 , 0, b0 )之合成頻道更不可靠。考量「1 > 0」在一個或多個位元位置中之出現:
左交換: 給定一所謂的左交換使得「0..1 < 1..0」,其中型樣可出現多次且位元位置不需要相鄰:
上文之性質用於評估頻道指數對(x, y)之間之相對可靠性,其等之一子集無法由加法或左交換或其等之組合判定。此等順序因此不為UPO已知(因此術語部分有序)。
UPO被稱為「通用」係因為方法適用於任何二進制對稱頻道。 偏振權重(PW)
PW極性碼建構係基於二進制擴展(BE)之一方法,且目的在於解決可靠性順序問題。用於使用PW極性碼建構導出有序序列及資訊/凍結位元位置之程序可如下概括:
藉由計算各子頻道之可靠性(離線操作),且針對具有最大碼長度Nmax 之極性碼儲存有序指數序列。子頻道之可靠性順序係透過一權重序列估計,其如下計算:
假定其中,則,
,其中。 PW之設計分析-計算負荷
碼建構之PW方法涉及兩個計算集:(i)累積各x域指數之加權總和;(ii)對加權總和進行排序以判定u域映射。
在計算PW中之加權總和中,可使用方程式離線計算bj 之級數。加權總和計算總計為形式之一序列總和,需要針對整個加權集之n×N真實相乘性累積運算。可視需要沿著維度i或j並行化此計算以減少延時。
在執行排序時,可以N×log2 N複雜性對加權總和進行排序。給定n = log2 N,此複雜性降低至n×N。無法容易地並行化此計算。然而,給定適度的區塊大小,此計算可線上執行。 圖8:延時分析-PW有序序列產生
圖8係針對碼大小N之各個值之依據時脈速度而變化之PW有序序列延時之一曲線圖。如繪示,給定一1 GHz時脈之一最小值且假定無並行性,針對有序序列計算之延時小於20 ms。使用500 MHz時脈之一最小值,針對甚至最大區塊大小,延時保持低於50 ms。考量並行化加權總和計算之機會,延時可進一步降低至低於圖8中繪示之延時。 圖9:量化誤差分析-PW有序序列產生
圖9係依據總位元數而變化之使用PW之信號之功率(|W|2 )及誤差(|W-Wq |2 )之一曲線圖。加權總和計算之動態範圍由0針對i = 0 = [000…0]2針對i = N-1=[111…1]2 定界。給定,加權總和之最大值可展示為Wmax = 19.8556。在圖9中展示針對一系列位元表示之相對均方誤差,假定小數點之左側有5個位元,其中剩餘位元用於表示分數部分。針對最適度位元寬度,將量化雜訊功率降低至低於75 dB。用於圖9中繪示之評估之MiNP架構係基於16位元資料。如繪示,PW方法之量化誤差可忽略。 碎形增強核心(FRANK)
引入FRANK極性碼建構以提供具有低描述複雜性之可擴展極性碼序列建構之一理論上合理架構以實現線上建構。用於使用FRANK導出有序序列及資訊/凍結位元位置之程序可如下概括:
1)基於嵌套式相互資訊(MI)密度演進(DE)或其他方案建構一短參考序列。
2)針對各(N, K)碼,將一長碼字遞迴地分區成具有小長度之群組(最短長度等於經建構短參考序列之長度)且根據MI比率公式基於資訊對位元比率將數個資訊(資訊(info))位元Ki分配至各群組,且考量收縮位元及/或縮短位元。
3)當到達具有長度Nref之區塊時,基於短參考序列及具有長度Nref之群組中之數個資訊位元產生該群組之資訊位元位置。 圖10:FRANK MI遞迴
圖10繪示根據FRANK極性碼建構採用之一典型相互資訊(MI)遞迴方法。
在其中碼大小係2之冪次(N=2m )之情況中,資訊位元分佈係基於一MI計算,其中至遞迴之輸入MI被設定為容量MI = R = K/N (即,一頻道碼可支援之最大速率)。如圖10中描繪般實行針對各群組(例如,R0、R1及隨後,R00、R01、R10、R11等)之速率分配之遞迴計算。 針對FRANK之設計分析-計算負荷
FRANK中之計算負荷通常由R2 及2R-R2 計算對主宰。Nref之M個片段各需要m = log2 M階,招致21 +22 +23 +…計算對。各對需要針對每對、每階總共兩個運算之一個乘法及一個乘法累積。運算之總數目由給定。N = 1024Nref = 64 M = 16 需要m = 4 階。總運算計數係26200。如圖11 (其係針對N之不同值之使用FRANK之依據時脈速度而變化之遞迴延時的一曲線圖)中繪示,針對任何時脈速度,對應延時可忽略。 FRANK-有限精確度效應
使用FRANK建構之極性碼之精確度要求由R-RM 項判定,其等針對低碼速率及長區塊大小可引起固定點表示中之一下溢,從而導致比選定編碼率所需之經指派位元指數更少之經指派位元指數。然而,考量與將K個資訊位元分佈至M個子區塊相關聯之粗粒性,可放寬精確度要求。一啟發學習方法建議13或14個固定點位元可足以用於準確計算。
具有長度Nref之各自群組當中之資訊位元分佈之選擇在參考案[2]中被建立為有助於設想達成容量之一碼。下文之表1列舉FRANK之K分佈連同針對增強PW之K分佈。應注意,可調諧增強PW K分佈以逼近FRANK碼序列之上部分中之資訊位元之稀疏性。已考量此考量以促進一公平並排比較。舊型PW之基線情況m4 = 4以粗體突顯。 表1:增強PW及FRANK中之位元分佈
本文中之實施例分析PW碼建構連同FRANK碼建構以獲得提供極性碼建構之經改良效率之一經修改PW碼。檢驗兩個方法以自一實施方案觀點識別任何實質差異。雖然高於FRANK之延時,但PW延時係小的(< 50 ms),其相當於針對NR之預期槽時間。因此,可在先前區塊解碼時段中隱藏碼建構之延時。
使用PW建構之有限精確度效應可忽略(> 75 dB低於所關注信號),建議線上計算甚至針對適度位元寬度可行。相比之下,使用FRANK之有限精確度要求可獲益於仔細處理以實現編碼器及解碼器到達位元之相同K分佈。此對於長區塊大小及低編碼率尤其真實,其中RM 項開始主宰。
鑑於線上計算之潛力,可調諧針對增強PW之K分佈以逼近針對FRANK之K分佈,從而提供速率匹配考量之一類似起始點,但無對FRANK之有限精確度效應之限制。 增強PW:數值實例
以下清單描述針對N = 16、m = 4、之特定情況在實施增強PW中使用β擴展之數值結果,假定加法高斯(Gaussian)白雜訊(AWGN)上之傳輸。
偏振權重:
[0 1.0000 1.1892 2.1892 1.4142 2.4142 2.6034 3.6034 1.6818 2.6818 2.8710 3.8710 3.0960 4.0960 4.2852 5.2852]
有序序列:
針對K = 6之以下樣本頻道指派結果假定一全零凍結位元欄位:
。 圖11:嵌套式β擴展,N = 512 (n = 9),m = 4
圖12係繪示針對m之一特定值之β擴展中之項之一有序序列之一樹形圖。應注意,有序序列可藉由更改β (即,藉由更改m)而調諧以類似於UPO可靠性。
假若滿足某些條件,則保持關於頻道可靠性之UPO。舉例而言:
;等效地
;等效地
舉例而言,錯誤!未發現參考源 繪示針對m < 2.5未滿足此等基本條件之一或多者之情況。m之經選擇值可由包含資訊位元至較低K位置之分佈以及所得誤差效能之其他考量控管。 圖12:β擴展,N = 512 (n = 9),m = 4
圖14繪示針對N = 512及m = 4之資訊位元分配之一例示性有序序列。如繪示,經計算可靠性通常隨著合成頻道指數增加,隨著指數增加而具有交錯下降。 圖13:遞迴資訊位元分配
圖15係繪示由FRANK採用之遞迴位元分配程序之一示意圖。如繪示,FRANK保持一遞迴程序,該程序用於根據經指派編碼率分佈資訊位元使得:
分配至W0 頻道例項之資訊位元之比例:K0 = R0/R*K/2。
分配至W1 頻道例項之資訊位元之比例:K1 = R1/R*K/2。
編碼率分別反映平均W1 及W0 相互資訊:R = (R0+R1)/2。
在多個階段中實行,FRANK目的在於將位元指派分成固定長度子區塊。使用圖15作為一實例,可將較低K位置定義為在一給定階中具有一較低指數之K位置。鑑於此定義,K000表示相較於K001之一更低K位置,K000至K001佔用低於K010至K011之K位置等。
方法可導致與預期編碼率成比例之至較低K位置之資訊位元分佈。編碼率愈高,分配至較低K位置之資訊位元之數目愈大。藉由比較,PW位元分佈在依據編碼率而變化之較低K位置中相對平坦錯誤!未發現參考源 。舉例而言,見K011[192, 255],在下文之表2中以粗體突顯。 表2:N = 512 PDCCH碼之K分佈
根據本文中描述之實施例,使用變量實施增強PW可實現調諧位元排序以使用逼近藉由FRANK遞送之資訊位元分佈之增強PW方法遞送一資訊位元分佈。舉例而言,表3繪示使用增強PW使用β擴展調諧K011[192, 255]中之位元之分配以匹配由FRANK遞送之位元之分配。 表3:使用變量β之K分佈 圖14:位元位置之排列
圖16係針對m之各個值之使用增強PW之資訊位元分配之一散點圖。有序序列可被解譯為一排列之結果,將輸入指數轉譯至經指派位元位置。習知二進制擴展對應於m = 1,即,,從而產生與輸入序列指數化相同之排序而不使用排列(圖16中之對角線)。排列展示隨著m之值增加(即,β減小),資訊位元分配之可變性更大。換言之,增加m至高於m = 1導致自圖16中展示之對角線更大幅偏離之資訊位元分配。
應注意,隨著β減小(即,m增大),資訊位元指派探索在位元指數中較早之較低K位置,自指數N = 512開始且向下繼續。頻道偏置之較大可變性可導致在位元位置中更廣地分佈資訊位元,更接近類似於一給定編碼率之平均相互資訊。 圖15a至圖17b:位元分佈
圖17a至圖17b繪示針對N = 512及m = 4 (左側)以及m = 14 (右側)之資訊位元分配之有序序列之一並排比較。隨著m之值增大(即,β減小),所得頻道指派展示按較高頻道指數之大量更多空白,指示資訊位元至較低K位置之一更廣泛分佈。舉例而言,m=14之較大值經展示導致大量更多「空白」,指示資訊位元分配之一更廣(即,更少單調)分佈。圖17a至圖17b繪示m之較大值可如何導致極性碼中較早之資訊位元分配,其可取決於方塊大小及編碼率之值而更準確地逼近精確頻道可靠性。 頻道排序
碼效能之一重要量測係頻道指派多良好地符合經計算頻道可靠性(在圖16中列舉為「IDX」,其依據編碼率R = K/N而變化)。有序序列在位元指數中愈接近由經計算頻道可靠性指示之有序序列,碼效能愈佳。 圖16:頻道排序
圖18繪示相較於精確頻道可靠性(「IDX」)之針對編碼率K之四個不同值且針對m之各個值之經指派位元位置(即,資訊位元分配)。通常存在碼指派之大量不匹配,此係因為β擴展(且就此而言FRANK)最多逼近給定經計算頻道可靠性達成之排序。然而,針對低編碼率(例如,K = 16),頻道指派中之誤差相對小而無關於經指派β值顯而易見。誤差率隨著K穩定地攀升。然而,存在多個交越點,其中β之一些值產生平均在經指派位元位置中比其他值更接近之一匹配。舉例而言,在錯誤!未發現參考源 中繪示經確證頻道可靠性中之平均誤差,其中最小誤差指示針對一給定區塊大小及編碼率之β之最佳選擇。
下文之表4列舉針對編碼率及各種區塊大小之各個值產生經指派頻道可靠性之最小平均誤差之值m。在一些實施例中,可實施一經修訂方法,藉此基於針對一給定編碼率及區塊大小組態最小化頻道可靠性中之誤差之值離線判定m。β擴展可接著在運行時間繼續,將β=21⁄m 視為針對選定編碼率及區塊大小組態之一輸入參數。 表4-基於最小頻道指派誤差之β選擇 經修改β擴展程序
在一些實施例中,可如下執行一經修改β擴展程序:
i.將Bi ≜ bn-1 bn-2 …b0 視為合成頻道指數i = 0, 1, …, N-1之二進制擴展,藉此bj ∈ {0,1}, j = [0,1,…,n-1],
ii.將參數m視為輸入,所見最小化針對編碼率及區塊大小之一給定組合之頻道可靠性指派中之誤差。
iii.計算偏振權重,,其中其中整數值m > 0,判定擴展率,即,
iv.排序使得,接著將所得指數保存為有序序列
在步驟ii中插入之m之選擇可涉及離線計算以判定針對經指派編碼率/區塊大小組合之m之一所要值。給定選定值,線上計算可隨後繼續。此經修改方法可保持在於運行時間評估頻道可靠性中之β擴展之計算效率同時併入一構件以為了依據編碼率而變化之頻道可靠性之一較佳匹配調諧位元指派。
本發明之實施例可以各種形式之任何者實現。舉例而言,在一些實施例中,本發明可實現為一電腦實施方法、一電腦可讀儲存媒體或一電腦系統。在其他實施例中,本發明可使用一或多個客製化設計硬體器件(諸如ASIC)實現。在其他實施例中,本發明可使用一或多個可程式化硬體元件(諸如FPGA)實現。
在一些實施例中,一非暫時性電腦可讀記憶體媒體可經組態使得其儲存程式指令及/或資料,其中程式指令若由一電腦系統執行則引起電腦系統執行一方法(例如,本文中描述之方法實施例之任何者,或本文中描述之方法實施例之任何組合,或本文中描述之方法實施例之任何者之任何子集,或此等子集之任何組合)。
在一些實施例中,一計算器件可經組態以包含一處理器(或一組處理器)及一記憶體媒體,其中記憶體媒體儲存程式指令,其中處理器經組態以讀取且執行來自記憶體媒體之程式指令,其中程式指令可執行以實施本文中描述之各項方法實施例之任何者(或本文中描述之方法實施例之任何組合,或本文中描述之方法實施例之任何者之任何子集,或此等子集之任何組合)。器件可以各種形式之任何者實現。
雖然上文已描述特定實施例,但此等實施例不旨在限制本發明之範疇,即使其中僅關於一特定特徵描述一單一實施例。在本發明中提供之特徵之實例旨在為闡釋性而非限制性,除非另外闡述。上文之描述旨在涵蓋此等替代例、修改及等效物,如獲益於本發明之熟習此項技術者將明白。
本發明之範疇包含本文中揭示之任何特徵或特徵之組合(明確或隱含地),或其等之任何概括,無論其是否緩解本文中解決之問題之任何者或全部。因此,可在本申請案(或主張其優先權之一申請案)之起訴期間制定對特徵之任何此組合之新發明申請專利範圍。特定言之,參考隨附發明申請專利範圍,來自附屬請求項之特徵可與獨立請求項之特徵組合,且來自各自獨立請求項之特徵可以任何適當方式且非以在隨附發明申請專利範圍中列舉之特定組合進行組合。
102‧‧‧基地台(BS)
102A‧‧‧基地台(BS)
102B‧‧‧基地台(BS)
106‧‧‧使用者設備(UE)器件
106A‧‧‧使用者設備(UE)器件/無線通信器件
106B‧‧‧使用者設備(UE)器件/無線通信器件
106C‧‧‧使用者設備(UE)器件/無線通信器件
304‧‧‧處理器
330‧‧‧無線電
332‧‧‧通信鏈
334‧‧‧天線
340‧‧‧記憶體管理單元(MMU)
350‧‧‧唯讀記憶體(ROM)
360‧‧‧記憶體
370‧‧‧網路埠
400‧‧‧系統單晶片(SOC)
402‧‧‧處理器
404‧‧‧顯示電路
406‧‧‧記憶體
410‧‧‧NAND快閃記憶體
420‧‧‧連接器介面
430‧‧‧無線通信電路
435‧‧‧天線
440‧‧‧記憶體管理單元(MMU)
460‧‧‧顯示器
702‧‧‧步驟
704‧‧‧步驟
706‧‧‧步驟
708‧‧‧步驟
710‧‧‧步驟
712‧‧‧步驟
714‧‧‧步驟
當結合以下圖式考量較佳實施例之以下詳細描述時,可獲得本發明之一較佳理解,其中:
圖1係繪示根據一些實施例之一無線通信環境之一圖式;
圖2係繪示根據一些實施例之具有基地台涵蓋範圍重疊之一無線通信環境之一圖式;
圖3係繪示根據一些實施例之一例示性基地台之一方塊圖;
圖4係繪示根據一些實施例之一例示性UE之一方塊圖;
圖5繪示頻道偏振之一實例,其中n = 11;
圖6繪示一例示性極性編碼器,其中n = 3;
圖7係繪示根據一些實施例之用於使一傳輸器使用極性碼使用增強偏振權重(PW)碼架構編碼一訊息之一例示性方法之一流程圖;
圖8係根據一些實施例之針對碼大小之各個值之依據時脈速度而變化之PW有序序列延時之一曲線圖;
圖9係根據一些實施例之依據總位元數目而變化之使用PW之信號之功率及誤差之一圖表;
圖10繪示根據一些實施例之根據碎形增強核心(FRANK)極性碼建構採用之一典型相互資訊(MI)遞迴方法;
圖11係根據一些實施例之針對N之不同值之使用FRANK之依據時脈速度而變化之遞迴延時的一曲線圖;
圖12係根據一些實施例之一4位元嵌套式β擴展之一圖表;
圖13係根據一些實施例之一β擴展中之不同項如何依據m而變化之一圖表;
圖14係根據一些實施例之依據合成頻道指數而變化之正規化偏振權重之一圖表;
圖15係繪示根據一些實施例之用於使用FRANK來分佈資訊位元之一方法之一示意圖;
圖16係根據一些實施例之根據m之各個值之使用增強PW之依據位元指數而變化之位元位置之一散點圖;
圖17a及圖17b係根據一些實施例之針對m之兩個值之依據合成頻道指數而變化之經指派位元位置之散點圖;
圖18繪示針對四個不同編碼率,比較來自經計算頻道可靠性之實際經指派位元位置與使用增強PW使用m之各個值獲得之結果之四個散點圖;及
圖19係繪示根據一些實施例之相對於依據編碼率而變化之經計算頻道可靠性之使用增強PW獲得之經指派頻道可靠性中之平均誤差。
雖然本發明易於以各種修改及替代形式呈現,但本發明之特定實施例藉由圖式中之實例展示且在本文中經詳細描述。然而,應理解,圖式及其詳細描述不旨在將本發明限於所揭示之特定形式,而相反,本發明欲涵蓋落於如由隨附發明申請專利範圍界定之本發明之精神及範疇內之全部修改、等效物及替代物。

Claims (20)

  1. 一種用於傳輸極性編碼資料之方法,該方法包括: 儲存待極性編碼之資料; 判定用於極性編碼該資料之一編碼率; 藉由以下項判定與一位元序列中之各位元位置相關聯之一可靠性: 計算對應於該等位元位置之各者之一序列加權總和,其中各位元位置之該可靠性係自其各自加權總和判定,其中對應於各各自位元位置之該加權總和係該各自位元位置之一二進制擴展上之一加權總和,其中該加權總和由一第一相乘性因數加權,且其中至少部分基於該編碼率選擇該第一相乘性因數; 基於該等位元位置之各自可靠性對該等位元位置進行排序; 基於該排序將該資料作為資訊位元分配於一極性碼之最可靠位元位置中; 將位元位置之剩餘部分分配為該極性碼之凍結位元; 極性編碼該等資訊位元及該等凍結位元;及 傳輸該等極性編碼資訊位元及凍結位元。
  2. 如請求項1之方法, 其中至少部分基於該極性碼之一區塊大小進一步選擇該相乘性因數。
  3. 如請求項1之方法, 其中該相乘性因數包括一指數量,該指數量包括一第一指數因數; 其中該第一指數因數包括被加總之該二進制擴展中之各項之指數冪次。
  4. 如請求項3之方法, 其中該指數量進一步包括一第二指數因數;及 其中該第二指數因數包括可至少部分基於該編碼率調諧之一可調整參數。
  5. 如請求項4之方法, 其中選擇該第二指數因數以相對於自將該第二指數因數選擇為¼獲得之一分佈將該極性碼之該等資訊位元之一分佈散佈至更早位元位置。
  6. 如請求項1之方法,其中進一步選擇該相乘性因數使得該極性碼逼近一對應極性碼,其中該對應極性碼實施該經判定編碼率且係使用一替代極性碼建構方法論建構。
  7. 如請求項6之方法, 其中該極性碼係根據一增強偏振權重方法論建構,且其中該替代極性碼建構方法論包括一碎形增強核心(FRANK)極性碼建構方法論。
  8. 如請求項1之方法,該方法進一步包括: 儲存待極性編碼之第二資料; 判定用於極性編碼該第二資料之一第二編碼率; 判定與該位元序列中之各位元位置相關聯之一第二可靠性,其中該第二可靠性係使用對應於該等位元位置之各者之一序列第二加權總和判定,且其中該加權總和由至少部分基於該第二編碼率選擇之一第二相乘性因數加權,其中該第二相乘性因數不同於該第一相乘性因數; 基於該等位元位置之各自第二可靠性執行該等位元位置之第二排序; 基於該第二排序將該第二資料作為第二資訊位元分配於一第二極性碼之最可靠位元位置中; 將位元位置之剩餘部分分配為該第二極性碼之第二凍結位元; 極性編碼該等第二資訊位元及該等第二凍結位元;及 傳輸該等極性編碼第二資訊位元及第二凍結位元。
  9. 一種使用者設備器件(UE),其包括: 一無線電; 一記憶體;及 一或多個處理元件,其等可操作地耦合至該無線電及該記憶體; 其中該無線電、該記憶體及該一或多個處理元件經組態以: 將待極性編碼之資料儲存於該記憶體中; 判定與該極性編碼相關聯之一編碼率; 判定與一位元序列中之各位元位置相關聯之一可靠性,其中藉由計算該各自位元位置之一二進制擴展上之一加權總和而判定各各自位元位置之該可靠性,且其中基於該編碼率加權該總和; 基於該等位元位置之各自可靠性對該等位元位置進行排序;及 基於該排序將該資料作為資訊位元分配於一極性碼之最可靠位元位置中; 將位元位置之剩餘部分分配為該極性碼之凍結位元; 極性編碼該等資訊位元及該等凍結位元;及 經由該無線電傳輸該等極性編碼資訊位元及凍結位元。
  10. 如請求項9之UE, 其中至少部分基於該極性碼之一區塊大小進一步加權該總和。
  11. 如請求項9之UE, 其中該加權總和由一第一相乘性因數加權,且其中基於該編碼率加權該總和包括基於該編碼率選擇該第一相乘性因數。
  12. 如請求項11之UE, 其中該第一相乘性因數包括一指數量,該指數量包括一第一指數因數; 其中該第一指數因數包括被加總之該二進制擴展中之各項之指數冪次。
  13. 如請求項12之UE, 其中該指數量進一步包括一第二指數因數;且 其中該第二指數因數包括可至少部分基於該編碼率調諧之一可調整參數。
  14. 如請求項13之UE, 其中選擇該第二指數因數以相對於自將該第二指數因數選擇為¼獲得之一分佈將該極性碼之該等資訊位元之一分佈散佈至更早位元位置。
  15. 如請求項11之UE,其中進一步選擇該第一相乘性因數使得該極性碼逼近一對應極性碼,其中該對應極性碼實施該經判定編碼率且係使用一替代極性碼建構方法論建構。
  16. 如請求項15之UE, 其中該極性碼係根據一增強偏振權重方法論建構,且其中該替代極性碼建構方法論包括一碎形增強核心(FRANK)極性碼建構方法論。
  17. 一種裝置,其包括: 一或多個處理元件,其等經組態以引起一無線器件完成以下項: 儲存待極性編碼之資料; 判定用於極性編碼該資料之一編碼率; 判定與一位元序列中之各位元位置相關聯之一可靠性,其中在判定與該位元序列中之各位元位置相關聯之該可靠性中,該處理元件經組態以: 計算對應於該等位元位置之各者之一序列加權總和,其中各位元位置之該可靠性係自其各自加權總和判定,其中對應於各各自位元位置之該加權總和係該各自位元位置之一二進制擴展上之一加權總和,其中該加權總和由一第一相乘性因數加權,且其中至少部分基於該編碼率選擇該第一相乘性因數; 基於該等位元位置之各自可靠性對該等位元位置進行排序; 基於該排序將該資料作為資訊位元分配於一極性碼之最可靠位元位置中; 將位元位置之剩餘部分分配為該極性碼之凍結位元; 極性編碼該等資訊位元及該等凍結位元;及 傳輸該等極性編碼資訊位元及凍結位元。
  18. 如請求項17之裝置, 其中至少部分基於該極性碼之一區塊大小進一步選擇該相乘性因數。
  19. 如請求項17之裝置, 其中該相乘性因數包括一指數量,該指數量包括一第一指數因數及一第二指數因數; 其中該第一指數因數包括被加總之該二進制擴展中之各項之指數冪次,且其中該第二指數因數包括可至少部分基於該編碼率調諧之一可調整參數。
  20. 如請求項19之裝置, 其中進一步選擇該第二指數因數以相對於自將該第二指數因數選擇為¼獲得之一分佈將該極性碼之該等資訊位元之一分佈散佈至更早位元位置。
TW107115632A 2017-05-08 2018-05-08 用於傳輸極性編碼資料之方法、使用者設備器件及通信裝置 TWI750372B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762503172P 2017-05-08 2017-05-08
US62/503,172 2017-05-08

Publications (2)

Publication Number Publication Date
TW201902146A true TW201902146A (zh) 2019-01-01
TWI750372B TWI750372B (zh) 2021-12-21

Family

ID=62705651

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107115632A TWI750372B (zh) 2017-05-08 2018-05-08 用於傳輸極性編碼資料之方法、使用者設備器件及通信裝置

Country Status (6)

Country Link
US (3) US10594438B2 (zh)
EP (1) EP3622646B1 (zh)
JP (1) JP7210079B2 (zh)
CN (1) CN110612681B (zh)
TW (1) TWI750372B (zh)
WO (1) WO2018208672A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10686556B2 (en) * 2017-01-17 2020-06-16 Qualcomm Incorporated Robust and universal polar codes
CN109391343B (zh) * 2017-08-02 2021-09-03 华为技术有限公司 一种Polar码编码方法及装置
WO2019061338A1 (en) * 2017-09-29 2019-04-04 Zte Corporation METHOD AND SYSTEM FOR POLAR CODE CODING
KR102438982B1 (ko) * 2017-11-16 2022-09-01 삼성전자주식회사 무선 통신 시스템에서 부호화 및 복호화를 위한 방법 및 장치
US10651972B2 (en) * 2017-12-11 2020-05-12 Qualcomm Incorporated Adjusted fractally enhanced kernel polar codes for achievable signal-to-noise ratio spike mitigation
US10873345B2 (en) * 2018-02-05 2020-12-22 Qualcomm Incorporated Enhanced polar code construction
US10447436B2 (en) * 2018-02-07 2019-10-15 Macronix International Co., Ltd. Polar code generating method, and electronic device and non-transitory computer-readable storage medium therefor
US20190356418A1 (en) * 2018-05-17 2019-11-21 Industrial Technology Research Institute Method of transmitting data encoded in polar code and electronic device using the same
US11057051B2 (en) * 2018-08-13 2021-07-06 Qualcomm Incorporated Fractally enhanced kernel polar coding
CN111200439B (zh) * 2018-11-16 2022-05-06 华为技术有限公司 译码方法、装置及设备
CN109361495B (zh) * 2018-12-07 2020-05-08 北京邮电大学 一种极化码构造方法、装置、电子设备及可读存储介质
CN114499743B (zh) * 2020-10-26 2024-05-28 深圳市中兴微电子技术有限公司 通信数据的处理方法、装置、设备及存储介质
WO2023204328A1 (ko) * 2022-04-22 2023-10-26 엘지전자 주식회사 채널 인코딩을 수행하는 방법, 통신 기기, 프로세싱 장치, 및 저장 매체, 그리고 채널 디코딩을 수행하는 방법, 통신 기기, 프로세싱 장치, 및 저장 매체
CN114884520A (zh) * 2022-05-07 2022-08-09 重庆邮电大学 一种基于普适偏序的松弛极化编码方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080073624A (ko) * 2007-02-06 2008-08-11 삼성전자주식회사 다중 편파 다중 입출력 시스템을 위한 코드북 생성 방법 및그 장치
US8345794B2 (en) * 2008-04-29 2013-01-01 Qualcomm Incorporated Encoded control channel information interleaving
KR101481435B1 (ko) 2008-12-18 2015-01-12 삼성전자주식회사 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서 신호매핑 방법 및 이를 위한 장치
CN106899311B (zh) * 2012-09-24 2023-11-03 华为技术有限公司 混合极性码的生成方法和生成装置
CN109361402B (zh) * 2013-05-31 2019-09-20 华为技术有限公司 编码方法及编码设备
CA2935256A1 (en) * 2014-02-21 2015-08-27 Huawei Technologies Co., Ltd. Rate matching method and apparatus for polar code
EP3119020B1 (en) * 2014-03-31 2020-01-01 Huawei Technologies Co. Ltd. Polar code hybrid automatic repeat request method and device, and radio communication device
US10461779B2 (en) * 2015-08-12 2019-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Rate-compatible polar codes
EP3247042B1 (en) * 2016-05-13 2020-09-30 Mediatek Inc. Bit puncturing for polar codes
US10432234B2 (en) * 2016-07-19 2019-10-01 Mediatek Inc. Low complexity rate matching for polar codes
CN107666370B (zh) * 2016-07-29 2023-09-22 华为技术有限公司 编码方法和设备
US10637607B2 (en) * 2016-09-15 2020-04-28 Huawei Technologies Co., Ltd. Method and apparatus for encoding data using a polar code
US10327235B2 (en) * 2017-01-04 2019-06-18 Coherent Logix, Incorporated Scrambling sequence design for multi-mode block discrimination on DCI blind detection

Also Published As

Publication number Publication date
US10594438B2 (en) 2020-03-17
JP7210079B2 (ja) 2023-01-23
US20210306096A1 (en) 2021-09-30
EP3622646B1 (en) 2020-10-21
US20180323905A1 (en) 2018-11-08
TWI750372B (zh) 2021-12-21
WO2018208672A1 (en) 2018-11-15
US11063697B2 (en) 2021-07-13
US11356200B2 (en) 2022-06-07
EP3622646A1 (en) 2020-03-18
CN110612681A (zh) 2019-12-24
US20200195378A1 (en) 2020-06-18
JP2020521364A (ja) 2020-07-16
CN110612681B (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
TWI750372B (zh) 用於傳輸極性編碼資料之方法、使用者設備器件及通信裝置
WO2016172940A1 (zh) 极性码的译码方法和译码装置
WO2019158031A1 (zh) 编码的方法、译码的方法、编码设备和译码设备
CN114070330A (zh) 一种Polar码编码方法及装置
CN108347301B (zh) 数据的传输方法和装置
RU2682017C1 (ru) Способ и устройство связи для передачи информации
CN108365850B (zh) 编码方法、编码装置和通信装置
CN108599891B (zh) 编码方法、编码装置和通信装置
WO2018166416A1 (zh) 传输控制信息的方法和装置
WO2016191996A1 (zh) 极化码的路径合并方法、装置以及译码装置
CN111970752A (zh) 一种节能控制方法及装置
US11228321B2 (en) System and method for processing polar code
WO2019024815A1 (zh) 分段编码方法及装置
CN110868245A (zh) 信息传输方法及设备
CN110622426A (zh) 用互补序列打孔极性码
WO2019029748A1 (zh) 极化码编码的方法和装置
WO2018161946A1 (zh) 数据处理的方法和装置
CN113938954B (zh) 负荷均衡优化方法、装置及存储介质
CN111865487B (zh) 一种编码方法及通信设备
WO2023226690A1 (zh) 一种编码、译码方法及装置
CN112867030B (zh) 小区多波束配置方法及装置
WO2023093411A1 (zh) 一种信息处理方法及设备
CN114599063A (zh) 负载均衡方法和装置及存储介质
WO2018157795A1 (zh) 数据处理的方法和装置
CN115529108A (zh) 数据传输方法及相关装置