WO2019024815A1 - 分段编码方法及装置 - Google Patents

分段编码方法及装置 Download PDF

Info

Publication number
WO2019024815A1
WO2019024815A1 PCT/CN2018/097614 CN2018097614W WO2019024815A1 WO 2019024815 A1 WO2019024815 A1 WO 2019024815A1 CN 2018097614 W CN2018097614 W CN 2018097614W WO 2019024815 A1 WO2019024815 A1 WO 2019024815A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
reliability
sequence
codes
determining
Prior art date
Application number
PCT/CN2018/097614
Other languages
English (en)
French (fr)
Inventor
王坚
皇甫幼睿
李榕
乔云飞
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019024815A1 publication Critical patent/WO2019024815A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a segment encoding method and apparatus.
  • the fifth-generation mobile communication technology As the next-generation wireless communication technology, the fifth-generation mobile communication technology (5th-generation, 5G) has received extensive attention and research in 3GPP and various other international standardization organizations, and the application scenarios of 5G mobile communication systems (such as ultra-low time) Ultra-reliable and low-latency communications (uRLLC) have higher requirements, such as high reliability and low latency.
  • Communication systems usually use channel coding to improve the reliability of data transmission and ensure the quality of communication.
  • the Polar code is the first channel coding method that can be strictly proved to "reach" the channel capacity.
  • the Polar code is a linear block code whose generating matrix is G N and its encoding process is Is a binary line vector of length N (ie code length);
  • B N is an N ⁇ N transposed matrix, such as a bit reverse transposed matrix;
  • the multiplied by the generator matrix G N gives the encoded bits, and the process of multiplication is the process of encoding.
  • a part of the bits are used to carry information, called information bits, and the set of index bits of information bits is recorded as
  • the other part of the bit is set to a fixed value pre-agreed by the transceiver, which is called a frozen bit, and the index is used as a set.
  • the freeze bit is usually set to 0, and only needs to be pre-agreed by the transceiver.
  • the freeze bit sequence can be arbitrarily set.
  • the construction process of the Polar code is a collection The selection process determines the performance of the Polar code.
  • the Polar code is based on a Successive Cancellation (SC) decoding algorithm, that is, sequential decoding starting from the first bit.
  • SC Successive Cancellation
  • the serial offset list (SC List, SCL) decoding algorithm is an improvement of the SC decoding algorithm. Multiple candidate decoding results are reserved in each bit, and all the bits are decoded, and all decodings in the list are performed according to certain criteria. The result is selected to obtain the final decoded result.
  • the criterion may be that the path penalty value of each list is sorted, and the list with the smallest path penalty value is selected; or the list passed by the Cyclic Redundancy Check (CRC) may be used as the final output.
  • CRC Cyclic Redundancy Check
  • the Polar code is more in line with the high reliability requirements of the URLLC.
  • the decoding operation of the Polar code is serial and the delay is relatively high. In order to meet the requirements of low latency, it is usually necessary to limit the maximum code length of the Polar code.
  • a long sequence to be encoded is split into a plurality of short sequences to be coded, and then each of the short sequences to be coded is separately subjected to independent Polar coding, so that each short is short.
  • the code length of the coded sequence to be encoded is less than the maximum code length required to meet the delay requirement.
  • the present application provides a segmentation coding method and apparatus, which can make the decoding delay meet the requirements of the system, and the performance is not lost due to the splitting of the code.
  • the present application provides a segmentation coding method, including: acquiring a number K of information bits to be encoded, a number of bits M of the coded bit sequence that can be carried by the system, and a number L of internal codes, K, M, and L.
  • the encoded bit sequence is a bit sequence obtained by encoding the information bits to be encoded, each inner code has a length of M/L, and L inner codes are associated with each other by M/L outer codes; according to K, M And L determines the number and position of the information bits carried by each outer code, and performs encoding of the code length L for each outer code to obtain an encoded bit sequence corresponding to the M/L outer codes; according to the M/L outer codes
  • the corresponding coded bit sequence performs polarization coding with a code length of M/L for each inner code, and obtains a coded bit sequence corresponding to L inner codes, and obtains coded bits according to the coded bit sequence corresponding to the L inner codes. Sequence, M/L is less than the maximum code length supported by the system.
  • the coding may be performed by performing polarization coding with a code length of M/L for each inner code, instead of performing code length M for the K information bits to be coded.
  • Polarization coding M/L is smaller than the maximum code length supported by the system, so the decoding delay can be made to meet the system requirements.
  • multiple external codes are associated together, so that performance is not greatly lost.
  • determining the number and location of information bits carried by each outer code according to K, M, and L is simple to implement, and the system does not need to store a construct sequence that is too long.
  • the segmentation coding method provided by the embodiment may be such that the coding may be performed by performing polarization coding with a code length of M/L for each inner code, instead of performing code length M for the K information bits to be coded.
  • Polarization coding, M/L is smaller than the maximum code length supported by the system, so the decoding delay can be made to meet the system requirements.
  • multiple external codes are associated together, so that performance is not greatly lost.
  • the number and position of information bits carried by different outer codes are allocated according to the proportion of occurrence times of different outer code rate. Simple, the system does not need to store too long a sequence of constructs.
  • determining the L first scale coefficients ⁇ i and the second scale coefficients ⁇ i corresponding to the target code rate includes: according to the pre-stored code rate and the first scale coefficient ⁇ i , the second ratio
  • the mapping relationship table of the coefficient ⁇ i determines the values of ⁇ i and ⁇ i corresponding to the target code rate; or, according to the mapping relationship between the pre-stored modulation coding mode level and the first proportional coefficient ⁇ i and the second proportional coefficient ⁇ i
  • the values of ⁇ i and ⁇ i corresponding to the target code rate are determined, and one modulation coding mode level corresponds to one code rate.
  • determining the number and location of information bits carried by each outer code according to K, M, and L including: obtaining a reliability sequence required to construct a polarization code having a code length of M/L;
  • the mapping relationship between the pre-stored code rate and the reliability threshold set determines a reliability threshold set corresponding to the target code rate, and the reliability threshold set includes L-1 thresholds a 1 , a 2 , ...
  • the sequence number of the L subchannels is O L ; the number of subchannels whose reliability is between a 1 and a 2 is determined to be x L-1 , and the sequence number of x L-1 subchannels is O L-1 ;
  • the number of subchannels between a L-2 and a L-1 is x 2 , and the sequence number of x 2 subchannels is O 2 ; in the subchannel where the remaining reliability is less than a L-1 , the reliability is from High to select x 1 subchannel, the sequence number of x 1 subchannel is O 1 , where
  • the sequence numbers of the M/L outer codes are sequentially labeled as 1 to M/L numbers, and the number of information bits carried by the outer code having the same sequence number as the subchannel
  • the segmentation coding method provided by the embodiment may be such that the coding may be performed by performing polarization coding with a code length of M/L for each inner code, instead of performing code length M for the K information bits to be coded.
  • Polarization coding, M/L is smaller than the maximum code length supported by the system, so the decoding delay can be made to meet the system requirements.
  • multiple external codes are associated together, so that performance is not greatly lost.
  • the pre-stored reliability threshold set allocates the number and position of information bits carried by each outer code, which is simple to implement. There is no need to store too long a sequence of constructs.
  • L-1 thresholds a 1 , a 2 , ... a L-2 , a L-1 are determined as follows:
  • the polarization code structure is performed according to the number of information bits being K and the code length of the mother code being M.
  • the vector sequence number set of the vector set including the L information bits is denoted as W L , and W 1 , W 2 , . . .
  • W L are obtained ; the minimum value of the reliability of the subchannel corresponding to the sequence number in the W L is determined as the threshold a 1
  • the minimum value of the reliability of the subchannel corresponding to the sequence number in W L-1 is determined as the threshold a 2 , . . .
  • the minimum value of the reliability of the subchannel corresponding to the sequence number in W 1 is determined to be a L-1 .
  • L-1 thresholds a 1 , a 2 , ... a L-2 , a L-1 are determined as follows:
  • the number of outer codes whose code rates are ⁇ 1/L, 2/L, ..., (L-1)/L, L/L ⁇ are determined by solving the following equations ⁇ x 1 , x 2 , ..., x L- 1 , x L ⁇ :
  • determining the minimum value of the reliability of the subchannel corresponding to the sequence number in the O L is the threshold a 1
  • the minimum value of the reliability of the subchannel corresponding to the sequence number in the O L-1 is determined as the threshold a 2 , . . . , and the minimum value of the reliability of the subchannel corresponding to the sequence number in O 1 is determined to be a L-1 .
  • each of the inner codes is subjected to polarization coding with a code length of M/L according to the coded bit sequence corresponding to the M/L outer codes, and the coded bit sequences corresponding to the L inner codes are obtained.
  • the method includes: for the encoded bit sequence corresponding to the M/L outer codes, sequentially extracting the pth bit, p ⁇ 1, 2, . . . , L ⁇ from the encoded bit sequence corresponding to each outer code, to obtain L numbers.
  • a bit sequence including M/L bits; each bit sequence containing M/L bits is sequentially polarized and encoded as a code sequence of an inner code to obtain a coded bit sequence corresponding to L inner codes.
  • the present application provides a segment encoding apparatus, including: an obtaining module, configured to acquire a number K of information bits to be encoded, a bit number M of the encoded bit sequence that the system can carry, and an inner code number L, K.
  • M, L are positive integers
  • the encoded bit sequence is a bit sequence obtained by encoding the information bits to be encoded.
  • the length of each inner code is M/L
  • the L inner codes are correlated by M/L outer codes.
  • a determining module configured to determine, according to K, M, and L, the number and location of information bits carried by each outer code; the first encoding module, configured to encode each outer code with a code length of L, to obtain an M/L a coded bit sequence corresponding to the outer code; a second coding module, configured to perform polarization coding with a code length of M/L for each inner code according to the coded bit sequence corresponding to the M/L outer codes, to obtain L codes
  • the encoded bit sequence corresponding to the inner code obtains the encoded bit sequence according to the encoded bit sequence corresponding to the L inner codes, and the M/L is smaller than the maximum code length supported by the system.
  • the determining module is configured to: ⁇ i stored in advance rate of the first scale factor, mapping relationship table of a second proportional coefficient ⁇ i is determined that the target code rate corresponding to ⁇ i and ⁇ i Or the value of ⁇ i and ⁇ i corresponding to the target code rate according to a mapping relationship between the pre-stored modulation coding mode level and the first proportional coefficient ⁇ i and the second proportional coefficient ⁇ i , and a modulation and coding method The level corresponds to a bit rate.
  • the determining module is configured to: obtain a reliability sequence required to construct a polarization code with a code length of M/L; determine a target according to a mapping relationship between a pre-stored code rate and a reliability threshold set.
  • a set of reliability thresholds corresponding to the code rate, the set of reliability thresholds includes L-1 thresholds a 1 , a 2 , ...
  • L-1 thresholds a 1 , a 2 , ... a L-2 , a L-1 are determined as follows:
  • the polarization code structure is performed according to the number of information bits being K and the code length of the mother code being M.
  • the vector sequence number set of the vector set including the L information bits is denoted as W L , and W 1 , W 2 , . . .
  • W L are obtained ; the minimum value of the reliability of the subchannel corresponding to the sequence number in the W L is determined as the threshold a 1
  • the minimum value of the reliability of the subchannel corresponding to the sequence number in W L-1 is determined as the threshold a 2 , . . .
  • the minimum value of the reliability of the subchannel corresponding to the sequence number in W 1 is determined to be a L-1 .
  • L-1 thresholds a 1 , a 2 , ... a L-2 , a L-1 are determined as follows:
  • the number of outer codes whose code rates are ⁇ 1/L, 2/L, ..., (L-1)/L, L/L ⁇ are determined by solving the following equations ⁇ x 1 , x 2 , ..., x L- 1 , x L ⁇ :
  • determining the minimum value of the reliability of the subchannel corresponding to the sequence number in the O L is the threshold a 1
  • the minimum value of the reliability of the subchannel corresponding to the sequence number in the O L-1 is determined as the threshold a 2 , . . . , and the minimum value of the reliability of the subchannel corresponding to the sequence number in O 1 is determined to be a L-1 .
  • each of the inner codes is subjected to polarization coding with a code length of M/L according to the coded bit sequence corresponding to the M/L outer codes, and the coded bit sequences corresponding to the L inner codes are obtained.
  • the method includes: for the encoded bit sequence corresponding to the M/L outer codes, sequentially extracting the pth bit, p ⁇ 1, 2, . . . , L ⁇ from the encoded bit sequence corresponding to each outer code, to obtain L numbers.
  • a bit sequence including M/L bits; each bit sequence containing M/L bits is sequentially polarized and encoded as a code sequence of an inner code to obtain a coded bit sequence corresponding to L inner codes.
  • the present application provides a segment encoding entity device, including: a memory and a processor;
  • the memory is used to store program instructions
  • the processor is configured to invoke program instructions in the memory to perform the first aspect and the segmentation encoding method in any of the possible designs of the first aspect.
  • the present application provides a readable storage medium, where an execution instruction is stored, and when at least one processor of the segment encoding apparatus executes the execution instruction, the segment encoding apparatus performs the first aspect and the On the one hand, any of the possible methods in the design.
  • the present application provides a program product comprising an execution instruction stored in a readable storage medium.
  • At least one processor of the segment encoding apparatus may read the execution instruction from a readable storage medium, the at least one processor executing the execution instruction such that the segment encoding apparatus implements the first aspect and any one of the possible aspects of the first aspect method.
  • FIG. 1 is a schematic structural diagram of a system of a transmitting end and a receiving end provided by the present application;
  • FIG. 2 is a schematic flow chart of a communication system
  • FIG. 3 is a schematic diagram showing the composition of an outer code and an inner code
  • Figure 4 is a schematic diagram of a split based on GCC
  • FIG. 5 is a flowchart of an embodiment of a segment encoding method provided by the present application.
  • 6 is a schematic diagram of splitting when the number of bits of the coded bit sequence that can be carried by the system is M and the number of inner codes is L;
  • FIG. 7 is a flowchart of an embodiment of a segment encoding method provided by the present application.
  • FIG. 8 is a flowchart of an embodiment of a segment encoding method according to the present application.
  • FIG. 9 is a flowchart of an embodiment of a segment encoding method provided by the present application.
  • FIG. 10 is a schematic diagram of performance simulation of different encoding methods
  • FIG. 11 is a schematic structural diagram of an embodiment of a segment encoding apparatus according to the present application.
  • FIG. 12 is a schematic diagram of a segment coding entity device provided by the present application.
  • FIG. 13 is a schematic diagram of a segment coding entity device provided by the present application.
  • the embodiments of the present application can be applied to a wireless communication system.
  • the wireless communication system mentioned in the embodiments of the present application includes but is not limited to: Narrow Band-Internet of Things (NB-IoT), global mobile Global System for Mobile Communications (GSM), Enhanced Data Rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access (CDMA) 2000 System (Code Division Multiple Access, CDMA2000), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), and Next Generation 5G Mobile Communication System
  • eMBB Enhanced Mobile Broad Band
  • URLLC Massive Machine-Type Communications
  • mMTC Massive Machine-Type Communications
  • the communication device involved in the present application mainly includes a network device or a terminal device.
  • the transmitting end is a network device
  • the receiving end is a terminal device; in this application, the transmitting end is a terminal device, and the receiving end is a network device.
  • the terminal device includes, but is not limited to, a mobile station (MS, Mobile Station), a mobile terminal (Mobile Terminal), a mobile telephone (Mobile Telephone), a mobile phone (handset), and a portable device (portable equipment). And so on, the terminal device can communicate with one or more core networks via a Radio Access Network (RAN), for example, the terminal device can be a mobile phone (or "cellular" phone), with wireless communication Functional computers, etc., terminal devices can also be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices or devices.
  • RAN Radio Access Network
  • terminal devices can also be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices or devices.
  • the present application describes various embodiments in connection with a network device.
  • the network device may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA, or may be a base station (NodeB, NB) in the WCDMA system, or may be An evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network side device in a future 5G network or a public land that is to be evolved in the future Network devices in the Public Network Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB base station
  • eNodeB evolved base station
  • PLMN Public Network Mobile Network
  • FIG. 1 is a schematic diagram of a system architecture of a transmitting end and a receiving end provided by the present application, as shown in FIG. 1 , where the sending end is an encoding side, which may be used for coding and coding. Output coding information, the coding information is transmitted to the decoding side on the channel; the receiving end is the decoding side, and can be used to receive the encoded information sent by the transmitting end, and decode the encoded information.
  • FIG. 2 is a schematic flow chart of a communication system.
  • the source is sequentially sent after source coding, channel coding, rate matching, and digital modulation.
  • the destination is outputted by digital demodulation, de-rate matching, channel decoding, and source decoding.
  • the channel coding code may use a Polar code, and the segment coding method provided by the present application may be further adopted.
  • the bit sequence to be encoded is split into a plurality of bit sequences of the same length, and the polarization code (Polar code) is used.
  • the polarization code (Polar code)
  • GCC generalized concatenated codes
  • the concept of inner code and outer code is explained below with reference to the drawings.
  • the code length is 2.
  • [u 0 u 1 ] is the bit to be encoded of an outer code
  • [u 2 u 3 ] is the bit to be encoded of an outer code
  • [u 4 u 5 ] is an outer code.
  • the coded bit, [u 6 u 7 ] is the bit to be coded of an outer code
  • the bit to be coded of one inner code shown in Fig. 3 is [c 0 c 1 c 2 c 3 ]
  • the bit to be coded of the other inner code is [c 4 c 5 c 6 c 7 ].
  • the encoding process is: first, the bit sequence to be encoded is outer code encoded, that is, u 0 and u 1 are encoded by an outer code having a code length of 2, and the outer code encoded code words c 0 and c 4 are obtained ; u 2 and u are 3 After the outer code encoding with the code length of 2, the outer code encoded code words c 1 and c 5 are obtained ; u 4 and u 5 are encoded by the outer code with the code length of 2, and the outer code encoded code word c 2 and c 6 ; u 6 and u 7 are coded by an outer code having a code length of 2 to obtain outer code coded code words c 3 and c 7 .
  • the coded bits of the same position of each outer code are taken out, and the inner code is encoded, that is, the first coded bit of each outer code is taken out to obtain [c 0 c 1 c 2 c 3 ], and the inner code is encoded to obtain the coded code.
  • the inner coded bit sequence is sequentially spliced to obtain the final encoded bit sequence.
  • FIG. 4 is a schematic diagram of splitting based on GCC.
  • the bit sequence to be encoded is polar-encoded at the transmitting end to obtain a polar code codeword (coded bit sequence) having a length of 4N, on the decoding side.
  • the polar code codeword of length 4N can be regarded as composed of 4 inner codes (polar codes of length N), and the bits of the same bit position of 4 inner codes are encoded by outer codes (polar codes of length 4).
  • outer codes polar codes of length 4
  • the specific coding it can be regarded as encoding the code length of 4 (the number of inner codes) for each outer code, and obtaining the coded bit sequence corresponding to the N outer codes, according to the coded bit sequence corresponding to the N outer codes.
  • An inner code performs polarization coding with a code length of N.
  • the number and position of information bits carried by each outer code are determined (that is, the allocation of the outer code rate) is by the storage length.
  • the 4N polar code construction sequence is determined, but for the system, such a long construction sequence cannot be stored.
  • the present application provides a segmentation coding method and apparatus, where the number and location of information bits carried by each outer code are determined by a ratio of occurrence times of different outer code rate occurrences, or according to a pre-stored reliability threshold set. Assignment, so that the decoding delay can meet the requirements of the system, the performance is not lost due to the splitting of the code, and the system does not need to store the construct sequence that is too long.
  • the segment coding method provided by the present application is described in detail below with reference to the accompanying drawings. And equipment.
  • FIG. 5 is a flowchart of an embodiment of a segment encoding method according to the present application. As shown in FIG. 5, the method in this embodiment may include:
  • each inner code has a length of M/L, and L inner codes are associated with each other by M/L outer codes.
  • K, M, and L are both (encoder's) inputs.
  • the code length of the inner code is determined to be M/L
  • the number is L
  • the code length of the outer code is L.
  • the number is M/L.
  • the number of inner codes is the number of segments of the segment, and the length of the inner code is M/L, that is, the number of bits included in the encoded bit sequence of the inner code is M/L.
  • 6 is a schematic diagram of splitting when the number of bits of the coded bit sequence that can be carried by the system is M and the number of inner codes is L. As shown in FIG. 6, the number of bits of the encoded bit sequence that the system can carry is M.
  • Split into L inner codes each inner code has a length of M/L, M/L outer codes, and L inner codes are associated with each other by M/L outer codes.
  • S102 Determine, according to K, M, and L, the number and location of information bits carried by each outer code, and perform coding of a code length L for each outer code to obtain an encoded bit sequence corresponding to the M/L outer codes.
  • each code rate corresponds to L first proportional coefficients ⁇ i and second proportional coefficients ⁇ i .
  • S1021 may determine a value of ⁇ i and ⁇ i corresponding to the target code rate according to a mapping relationship between the pre-stored code rate and the first proportional coefficient ⁇ i and the second proportional coefficient ⁇ i .
  • Table 1 shows an example of a mapping relationship between n code rates (R 0 to R n ) and corresponding first scale coefficients ⁇ i and second scale coefficients ⁇ i .
  • S1021 may further determine, according to a mapping relationship between a pre-stored Modulation and Coding Scheme (MCS) and a first proportional coefficient ⁇ i and a second proportional coefficient ⁇ i , the ⁇ corresponding to the target code rate.
  • MCS Modulation and Coding Scheme
  • the values of i and ⁇ i , one modulation coding mode level corresponds to one code rate, and the correspondence between the modulation coding mode level and the code rate is also pre-stored.
  • Table 2 below shows an example of a mapping relationship between the n modulation coding mode levels and the corresponding first and third proportional coefficients ⁇ i and ⁇ i .
  • S1022 Determine the number of outer codes whose code rates are ⁇ 1/L, 2/L, ..., (L-1)/L, L/L ⁇ by solving the following equations ⁇ x 1 , x 2 , . . . , x L-1 , x L ⁇ :
  • the code rates are external codes of ⁇ 1/L, 2/L, ..., (L-1)/L, L/L ⁇ , that is, the number of information bits carried by the outer code is ⁇ 1, 2, respectively. ..., (L-1), L ⁇ , the number of information bits carried by the outer code can also be 0. Therefore, the code rate of the outer code has a total of L+1 kinds of possibilities: ⁇ 0, 1/L, 2/L,... , (L-1)/L, L/L ⁇ , the number of outer codes having a code rate of 0 does not need to be determined.
  • ⁇ i is a smaller integer such as (1, 2, 7), and ⁇ i may also be 0.
  • the code rates are determined according to K, M, and L and the above equations by online calculation, respectively, ⁇ 1/L, 2/L, ..., (L-1)/L, L/L ⁇ .
  • the number of outer codes ⁇ x 1 , x 2 , ..., x L-1 , x L ⁇ may be calculated according to the above calculation method corresponding to ⁇ x 1 , x 2 at different code rates.
  • S1021 to S1022 may be replaced by the number of outer codes of ⁇ 1/L, 2/L, ..., (L-1)/L, L/L ⁇ according to the previously stored code rate and the corresponding code rate, respectively.
  • the mapping table of 1 , x 2 ,..., x L-1 , x L ⁇ determines ⁇ x 1 , x 2 ,..., x L-1 , x L ⁇ at the target code rate, which can reduce the calculation time and improve System efficiency, as shown in Table 3 below, is an example of a mapping representation of n code rates (R 0 to R n ) and corresponding ⁇ x 1 , x 2 , . . . , x L-1 , x L ⁇ .
  • one modulation coding mode level corresponds to one code rate
  • the storage modulation coding mode level and the corresponding code rate are respectively ⁇ 1/L, 2/L, ..., (L-1)/L, L/
  • the polarization code is constructed according to ⁇ x 1 , x 2 , . . . , x L-1 , x L ⁇ , and the L sets corresponding to the polarization code ⁇ O 1 , O 2 , O are determined. 3 , ..., O L-1 , O L ⁇ , the sequence number contained in each set indicates the number of information bits carried by the corresponding outer code, for example, the set O i contains the sequence number ⁇ i 1 , i 2 , ..., i p ⁇
  • the outer code corresponding to the sequence numbers needs to carry i information bits, that is, the code rate of these outer codes is i/L. Therefore, the L sets ⁇ O 1 , O 2 , O 3 , . . . , O L-1 , O L ⁇ are determined, and the positions of the information bits carried by the outer code are also determined accordingly.
  • S1024 Mark the serial numbers of the M/L outer codes as 1 to M/L numbers, and determine that the number of information bits carried by the outer code with the same sequence number as the subchannel number included in O i is i.
  • the set O 3 includes the subchannel number (4, 6, 7, 9), and the outer code having the same serial number as the subchannel number included in O 3 is 4, 6, 7, 9 and the serial number is 4, 6.
  • the number of information bits carried by the outer code of 7,9 is three.
  • the above reliability sequence may be pre-stored, or may be calculated online according to a code length of M/L using a polarization weight or the like.
  • the determination of the L-1 threshold values a 1 , a 2 , ... a L-2 , a L-1 has the following two modes that can be implemented.
  • L-1 thresholds a 1 , a 2 , ... a L-2 , a L-1 are determined as follows:
  • the polarization code structure is performed according to the number of information bits being K and the code length of the mother code being M.
  • a vector sequence number set of a vector set including one information bit is denoted as W 1
  • a vector sequence number set of a vector set including two information bits is denoted as W 2 , . . .
  • W L a vector sequence number of a vector set including L information bits
  • the set is denoted as W L and W 1 , W 2 ,..., W L are obtained .
  • Reliability determining the minimum number contained W L subchannels corresponding threshold is a 1, W L-1 to determine the reliability of the serial number contained in the subchannels corresponding to the minimum threshold a 2, ..., W 1 contains determined
  • the minimum value of the reliability of the subchannel corresponding to the serial number is a L-1 .
  • L-1 threshold values a 1 , a 2 , ... a L-2 , a L-1 can be determined.
  • the method is an offline calculation and storage method.
  • the length of the polarization code construction sequence and the reliability sequence is not limited by the maximum code length supported by the system.
  • L-1 thresholds a 1 , a 2 , ... a L-2 , a L-1 are determined as follows:
  • the values of the first proportional coefficient ⁇ i and the second proportional coefficient ⁇ i in and in S1021 can be obtained by: similar to the above-mentioned L-1 threshold values a 1 , a 2 , ... a L -2 , a L-1 is determined in the first way, the set W 1 , W 2 , ..., W L is obtained , and the number of elements included in each set is x 1 , x 2 , ..., x L , by fitting (above The inverse calculation process of the system of equations) obtains a first proportional coefficient ⁇ i and a second proportional coefficient ⁇ i .
  • the reliability threshold set corresponding to each code rate is determined as follows:
  • the number of outer codes whose code rates are ⁇ 1/L, 2/L, ..., (L-1)/L, L/L ⁇ are determined by solving the following equations ⁇ x 1 , x 2 , ..., x L- 1 , x L ⁇ :
  • the sequence numbers of the x L subchannels with the highest reliability are determined as O L
  • the sequence numbers of the x L-1 subchannels with the second highest reliability are O L-1 ,... until the determination
  • the L sets ⁇ O 1 , O 2 , O 3 , ..., O L-1 , O L ⁇ corresponding to the polarization code.
  • Determining the minimum value of the reliability of the subchannel corresponding to the sequence number in the O L is the threshold a 1 , determining that the reliability minimum value of the subchannel corresponding to the sequence number in the O L-1 is the threshold a 2 , ..., determining that the O 1 is included
  • the minimum value of the reliability of the subchannel corresponding to the serial number is a L-1 .
  • L-1 threshold values a 1 , a 2 , ... a L-2 , a L-1 can be determined.
  • a determined number of subchannels is greater than the reliability of a set number x L, x L sub-channels is O L; reliability of determining the number of subchannels between a 1 and a 2 x L-1 for , the sequence number of x L-1 subchannels is O L-1 ; the number of subchannels determining reliability between a L-2 and a L-1 is x 2 , and the sequence number of x 2 subchannels is O 2 ; reliability in the remaining less than a L-1 subchannel, from the high reliability by selecting x 1 sub-channel in the end, the collection number of subchannels x 1 O 1, wherein
  • the M / L of the outer code sequence number is labeled 1 to M / L number, determined number of information bits the same as outer code number and a subchannel number O i are contained in the bearer i.
  • S103 Perform, according to the coded bit sequence corresponding to the M/L outer codes, a polarization code with a code length of M/L for each inner code, and obtain a coded bit sequence corresponding to the L inner codes, and corresponding to the L inner codes.
  • the encoded bit sequence results in an encoded bit sequence, M/L being less than the maximum code length supported by the system.
  • the coded bit sequence of each code is M/L according to the coded bit sequence corresponding to the M/L outer codes, and the coded bit sequence corresponding to the L inner codes is obtained, which may be:
  • the pth bit, p ⁇ 1, 2, . . . , L ⁇ is sequentially extracted from the encoded bit sequence corresponding to each outer code, to obtain L containing Ms. /L bit sequence of bits. That is, the first bit is taken out from the coded bit sequence corresponding to each outer code, and the first bit sequence containing M/L bits is obtained, and the second bit is obtained from the coded bit sequence corresponding to each outer code.
  • Bits obtain a second bit sequence containing M/L bits, ..., take the Lth bit from the coded bit sequence corresponding to each outer code, and obtain the Lth bit sequence containing M/L bits Finally, a total of L bit sequences containing M/L bits are obtained. Then, each bit sequence containing M/L bits is sequentially polarized and encoded as a code sequence of an inner code to obtain a coded bit sequence corresponding to L inner codes.
  • the coded bit sequence is obtained according to the coded bit sequence corresponding to the L inner codes, and after the coded bit sequence corresponding to the L inner codes is obtained, the coded bit sequences corresponding to the L inner codes are cascaded or The interleaving obtains the encoded bit sequence, that is, the bit sequence obtained by encoding the information bits to be encoded.
  • the encoded bit sequence is modulated onto the time-frequency resource for transmission.
  • the existing decoding method can be used for decoding, and the difference is that the coded bit sequence corresponding to the L inner codes can be respectively subjected to polarization decoding with a code length of M/L to obtain a final
  • the decoding result is not the polarization decoding of the K information bits to be encoded with a code length of M. Since the M/L is smaller than the maximum code length supported by the system, the decoding delay can be made to meet the system requirements.
  • the segment coding method provided in this embodiment determines the number of information bits carried by each outer code according to the number K of information bits to be encoded, the number of bits M of the coded bit sequence that can be carried by the system, and the number L of inner codes. And position, and then code each L code with a code length of L, obtain a coded bit sequence corresponding to M/L outer codes, and finally, for each inner code according to the coded bit sequence corresponding to the M/L outer codes Performing polarization coding with a code length of M/L, obtaining a coded bit sequence corresponding to L inner codes, and obtaining a coded bit sequence according to the coded bit sequence corresponding to the L inner codes, wherein M/L is smaller than the system supports The maximum code length.
  • the decoding may be performed by performing polarization decoding with a code length of M/L for each inner code, instead of performing polarization decoding with a code length of M for the K information bits to be encoded, and the M/L is smaller than the system.
  • the maximum code length supported so that the decoding delay can meet the system requirements, and multiple internal codes are associated with each other when encoding, so that performance is not greatly lost, and it is determined according to K, M, and L.
  • the number and location of information bits carried by each outer code is simple to implement, and the system does not need to store too long a structural sequence.
  • FIG. 7 is a flowchart of an embodiment of a segment encoding method according to the present application.
  • a code rate is determined in the process of determining the number and location of information bits carried by each outer code according to K, M, and L.
  • the number of outer codes ⁇ x 1 , x 2 ,..., x L-1 , x L ⁇ of ⁇ 1/L, 2/L, ..., (L-1)/L, L/L ⁇ are calculated online
  • the method is determined as an example. As shown in FIG. 7, the method in this embodiment may include:
  • S201 is the same as S101 shown in FIG. 5. For details, refer to S101.
  • ⁇ i is a smaller integer such as (1, 2, 7), and ⁇ i may also be 0.
  • S206 Perform coding of a code length L for each outer code according to the determined number and position of information bits carried by each outer code, perform polarization coding on each outer code, or perform other block coding, convolution. Encoding, or performing Low Density Parity Check (LDPC) encoding, etc., in this embodiment, the encoding mode of the outer code is not limited, and the encoded bit sequence corresponding to the M/L outer codes is obtained.
  • LDPC Low Density Parity Check
  • the decoding may be performed by performing polarization decoding with a code length of M/L for each inner code, instead of performing polarization decoding with a code length of M for the K information bits to be encoded.
  • M/L is smaller than the maximum code length supported by the system, so the decoding delay can be made to meet the system requirements.
  • the encoding is associated with multiple internal codes, the performance will not be greatly lost.
  • M and L allocate the number and position of information bits carried by different outer codes according to the proportion of occurrence times of different outer code rate, which is simple and the system does not need Store a construct sequence that is too long.
  • FIG. 8 is a flowchart of an embodiment of a segment encoding method provided by the present application.
  • information bits carried by each outer code are determined according to K, M, and L.
  • the code rate is ⁇ 1/L, 2/L, ..., (L-1) / L, L / L ⁇
  • the number of outer codes ⁇ x 1 , x 2 , ..., x L-1 , x L ⁇ is determined by means of a pre-stored mapping table, which can reduce the calculation time and improve the system efficiency.
  • the method in this embodiment may include:
  • S301 is the same as S101 shown in FIG. 5. For details, refer to S101.
  • the number of outer codes ⁇ x 1 , x 2 according to the pre-stored code rate and the corresponding code rate are ⁇ 1/L, 2/L, . . . , (L-1)/L, L/L ⁇ , respectively.
  • the mapping table of ..., x L-1 , x L ⁇ determines ⁇ x 1 , x 2 , ..., x L-1 , x L ⁇ at the target code rate.
  • the number of outer codes of ⁇ 1/L, 2/L, ..., (L-1)/L, L/L ⁇ are respectively ⁇ x 1 , x
  • S303 to S306 are the same as S204 to S207. For details, refer to the content of S204 to S207, and details are not described herein again.
  • the calculation time can be further reduced, and the system efficiency can be improved.
  • FIG. 9 is a flowchart of an embodiment of a segment encoding method according to the present application.
  • the method of the present embodiment may include:
  • the above reliability sequence may be pre-stored, or may be calculated online according to a code length of M/L using a polarization weight or the like.
  • L-1 threshold values a 1 , a 2 , ... a L-2 , a L-1 has two implementation manners. For details, refer to the description of the corresponding part in the embodiment shown in FIG. 5 . I will not repeat them here.
  • determining a reliability greater than the number of subchannels is 1 x L, x L number of sub-channels is set O L; reliability of determining the number of subchannels between a 1 and a 2 for x L-1, The sequence number of x L-1 subchannels is O L-1 ; the number of subchannels with reliability between a L-2 and a L-1 is determined to be x 2 , and the sequence number of x 2 subchannels is O 2 ; the remaining L-1 is less than the reliability of a subchannel according to a high reliability in the end from the selected subchannel x 1, x 1 subchannel number set to O 1, wherein
  • S404 Mark the sequence numbers of the M/L outer codes as 1 to M/L numbers, and determine that the number of information bits carried by the outer code with the same sequence number as the subchannel number included in O i is i.
  • S405 to S406 are the same as S206 to S207 in the embodiment shown in FIG. 7.
  • S204 to S207 are the contents of S204 to S207, and details are not described herein again.
  • the decoding may be performed by performing polarization decoding with a code length of M/L for each inner code, instead of performing polarization decoding with a code length of M for the K information bits to be encoded.
  • M/L is smaller than the maximum code length supported by the system, so the decoding delay can be made to meet the system requirements.
  • the encoding is associated with multiple internal codes, the performance will not be greatly lost.
  • the pre-stored reliability threshold set allocates the number and position of information bits carried by each outer code, which is simple to implement, and the system does not need to be stored too long. Construction sequence.
  • the code splitting example shown in FIG. 4 is used as an example.
  • the outer code of 2/4 code rate cannot bring performance gain, and the number of outer codes of 1/4 code rate and 3/4 code rate is the same.
  • the encoding method of this embodiment may include:
  • the information bit length K_seg is a polar code structure sequence of x 1 + x 2 + x 3 + x 4 , and the most reliable x 4 bits are put into the set O 4 , O
  • the outer code rate of the corresponding position of the sequence number included in 4 is set to 4/4, and the x 3 bits of the second highest reliability are placed in the set O 3 , and the outer code rate of the corresponding position of the sequence number included in O 3 is set to 3 /4, the x 1 bit of the reliability is again placed in the set O 1 , and the outer code rate of the corresponding position of the sequence number included in O 1 is set to 1/4.
  • the value of ⁇ is not limited to an integer.
  • the maximum code length of the Polar code is not limited, the performance is shown as line one, but the code length is 7200, which exceeds the maximum code length supported by the system, and the decoding delay cannot meet the requirement.
  • the performance of the method mentioned in the background art is shown in line 2. It can be seen that performance is lost due to the splitting of the long code to the short code.
  • the performance of the method for determining the outer code rate by storing the polar code structure sequence of 4N length is shown in line 3, and the performance is not degraded, but the allocation of the outer code rate needs to be 8192 (the mother code length)
  • a sequence of 2 n ) polar codes is constructed, and the maximum code length supported by the system is 2048, and the 8192 long construction sequence is not stored.
  • Line 4 is the performance of the solution provided by the application, and it can be seen that the performance can be achieved without loss, and only the polar code construction sequence with a length of 2048 is used.
  • the application may divide the function module by the sending end according to the above method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 11 is a schematic structural diagram of an embodiment of a segment encoding apparatus according to the present application.
  • the apparatus in this embodiment may include: an obtaining module 11, a determining module 12, a first encoding module 13, and a second encoding.
  • Module 14 wherein
  • the obtaining module 11 is configured to obtain the number K of information bits to be encoded, the number of bits M of the encoded bit sequence that the system can carry, and the number L of internal codes, K, M, and L are positive integers, and the encoded bit sequence is information to be encoded.
  • the bit sequence obtained by encoding the bits, each inner code has a length of M/L, and the L inner codes are associated with each other by M/L outer codes.
  • the determining module 12 is configured to determine the number and location of information bits carried by each outer code based on K, M, and L.
  • the first encoding module 13 is configured to perform encoding with a code length of L for each outer code, and obtain an encoded bit sequence corresponding to the M/L outer codes.
  • the second encoding module 14 is configured to perform polarization coding with a code length of M/L for each inner code according to the encoded bit sequence corresponding to the M/L outer codes, to obtain a coded bit sequence corresponding to the L inner codes, according to The encoded bit sequence corresponding to the L inner codes obtains the encoded bit sequence, and the M/L is smaller than the maximum code length supported by the system.
  • the determination module 12 is specifically configured to: ⁇ i stored in advance rate of the first scale factor, mapping relationship table of a second proportional coefficient ⁇ i is determined that the value of the target code rate corresponding to ⁇ i and ⁇ i, or the modulation and coding scheme level stored in advance to the first scaling factor ⁇ i, the second mapping table to determine the proportionality coefficient ⁇ i the value of ⁇ i and ⁇ i corresponding to the target code rate, a modulation and coding scheme level corresponding one yard rate.
  • the determining module 12 is configured to: obtain a reliability sequence required to construct a polarization code with a code length of M/L, and determine a target code rate according to a mapping relationship between the pre-stored code rate and the reliability threshold set.
  • the reliability threshold set, the reliability threshold set includes L-1 thresholds a 1 , a 2 , ...
  • the target bit rate R K/M
  • the number of subchannels whose reliability is greater than a 1 is determined to be x L
  • the sequence number set of x L subchannels is O L
  • the reliability is determined to be a 1 and a 2
  • the number of subchannels is x L-1
  • the sequence number of x L-1 subchannels is O L-1
  • the number of subchannels determining reliability between a L-2 and a L-1 is x 2 , set number of subchannels x 2 O 2
  • the sequence numbers of the M/L outer codes are sequentially labeled as 1 to M/L numbers, and the number of information bits carried by the outer code having the same sequence number as the subchannel number included in O i
  • L-1 thresholds a 1 , a 2 , ... a L-2 , a L-1 are determined as follows:
  • the polarization code structure is performed according to the number of information bits being K and the code length of the mother code being M.
  • the vector sequence number set of the vector set including the L information bits is denoted as W L , and W 1 , W 2 , . . .
  • W L are obtained , and the minimum value of the reliability of the subchannel corresponding to the sequence number in the W L is determined as the threshold a 1 .
  • the minimum value of the reliability of the subchannel corresponding to the sequence number in W L-1 is determined as the threshold a 2 , . . . , and the minimum value of the reliability of the subchannel corresponding to the sequence number in W 1 is determined to be a L-1 .
  • L-1 thresholds a 1 , a 2 , ... a L-2 , a L-1 are determined as follows:
  • the sequence numbers of the x L subchannels with the highest reliability are determined as O L
  • the sequence numbers of the x L-1 subchannels with the second highest reliability are O L-1 ,... until the determination
  • the L sets ⁇ O 1 , O 2 , O 3 , . . .
  • O L-1 , O L ⁇ corresponding to the polarization code are determined, and the minimum value of the reliability of the subchannel corresponding to the sequence number in the O L is determined as the threshold a 1
  • the minimum value of the reliability of the subchannel corresponding to the sequence number in the O L-1 is determined as the threshold a 2 , . . . , and the minimum value of the reliability of the subchannel corresponding to the sequence number in O 1 is determined to be a L-1 .
  • the second encoding module 14 is configured to: for the encoded bit sequence corresponding to the M/L outer codes, sequentially extract the p-th bit from the encoded bit sequence corresponding to each outer code, p ⁇ 1, 2,...,L ⁇ , obtain L bit sequences containing M/L bits, and sequentially perform polarization coding on each bit sequence containing M/L bits as an inner code to be encoded to obtain L numbers The encoded bit sequence corresponding to the inner code.
  • the device of this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 5 to FIG. 9 , and the implementation principle and technical effects thereof are similar, and details are not described herein again.
  • FIG. 12 is a schematic diagram of a segment coding entity device provided by the present application, where the device 1100 includes:
  • the memory 1101 is configured to store program instructions, and the memory may also be a flash memory.
  • the processor 1102 is configured to call and execute program instructions in the memory to implement various steps in the segment encoding method shown in FIG. 5. For details, refer to the related description in the foregoing method embodiments.
  • FIG. 13 is a schematic diagram of a segment coding entity device provided by the present application.
  • the memory 1101 is integrated with the processor 1102.
  • the apparatus may be used to perform various steps and/or processes corresponding to the sender (sending device) in the foregoing method embodiment.
  • the present application also provides a readable storage medium having stored therein an execution instruction, and when at least one processor of the segment encoding apparatus executes the execution instruction, the segment encoding apparatus performs the various embodiments provided above. Segmentation coding method.
  • the application also provides a program product comprising an execution instruction stored in a readable storage medium.
  • At least one processor of the segmentation encoding device can read the execution instructions from a readable storage medium, and the at least one processor executes the execution instructions such that the segmentation encoding device implements the segmentation encoding method provided by the various embodiments described above.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Error Detection And Correction (AREA)

Abstract

本申请提供一种分段编码方法及装置。该方法包括:获取待编码信息比特的数目K、系统可承载的编码后比特序列的比特数目M和内码个数L,编码后比特序列为对待编码信息比特进行编码后得到的比特序列,每一个内码的长度为M/L,L个内码由M/L个外码进行相互关联,根据K、M和L确定每一个外码承载的信息比特的数量和位置,对每一个外码进行码长为L的编码,得到M/L个外码对应的编码后比特序列,根据M/L个外码对应的编码后比特序列对每一个内码进行码长为M/L的极化编码,得到L个内码对应的编码后比特序列,根据L个内码对应的编码后比特序列得到编码后比特序列。由于内码由外码进行相互关联,性能不会因为码的拆分而损失。

Description

分段编码方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种分段编码方法及装置。
背景技术
第五代移动通信技术(5th-generation,5G)作为下一代无线通信技术,目前在3GPP和其他各种国际标准化组织得到了广泛的重视和研究,5G移动通信系统的应用场景(如超低时延超高可靠通信(Ultra-reliable and low-latency communications,uRLLC)有着更高的需求,如高可靠度和低时延。通信系统通常采用信道编码提高数据传输的可靠性,保证通信的质量,Polar(极化)码是第一种能够被严格证明“达到”信道容量的信道编码方法。Polar码是一种线性块码,其生成矩阵为G N,其编码过程为
Figure PCTCN2018097614-appb-000001
是一个二进制的行矢量,长度为N(即码长);且
Figure PCTCN2018097614-appb-000002
这里
Figure PCTCN2018097614-appb-000003
B N是一个N×N的转置矩阵,例如比特逆序转置矩阵;
Figure PCTCN2018097614-appb-000004
定义为log 2N个矩阵F 2的克罗内克(Kronecker)乘积,x 1 N是编码后的比特(也叫码字),
Figure PCTCN2018097614-appb-000005
与生成矩阵G N相乘后就得到编码后的比特,相乘的过程就是编码的过程。在Polar码的编码过程中,
Figure PCTCN2018097614-appb-000006
中的一部分比特用来携带信息,称为信息比特,信息比特的索引的集合记作
Figure PCTCN2018097614-appb-000007
Figure PCTCN2018097614-appb-000008
中另外的一部分比特置为收发端预先约定的固定值,称之为冻结比特,其索引的集合用
Figure PCTCN2018097614-appb-000009
的补集
Figure PCTCN2018097614-appb-000010
表示。冻结比特通常被设为0,只需要收发端预先约定,冻结比特序列可以被任意设置。Polar码的构造过程即集合
Figure PCTCN2018097614-appb-000011
的选取过程,决定了Polar码的性能。
Polar码基于串行抵消(Successive Cancellation,SC)译码算法,即从第1个比特开始顺序译码。串行抵消列表(SC List,SCL)译码算法是对SC译码算法的改进,在每个比特保留多个候选译码结果,完成全部比特的译码后根据一定准则对列表中所有译码结果进行选择,得到最终译码结果。所述准则可以是根据各列表的路径惩罚值进行排序,选择路径惩罚值最小的列表;也可以是循环冗余校验(Cyclic Redundancy Check,CRC)通过的列表作为最终输出。相比较Turbo码和低密度奇偶校验(Low Density Parity Check,LDPC)码,Polar码更加符合URLLC的高可靠度的要求,但是,Polar码的译码操作是串行的,时延相对较高,为符合低时延的需求,通常需要限制Polar码的最大码长。
为降低译码时延,相关技术中,将一段较长的待编码序列拆分为多个短的待编码序列,然后对每个短的待编码序列分别进行独立的Polar编码,使每个短的待编码序列编码后的码长都小于给定的符合时延要求的最大码长。上述方法虽然可以降低译码时延,但是,码长与编码增益成正比,由于码长变短导致编码增益减小,从而导致性 能变差,如误包率变大。
发明内容
本申请提供一种分段编码方法及装置,可使得译码时延符合系统要求的同时,性能不会因为码的拆分而损失。
第一方面,本申请提供一种分段编码方法,包括:获取待编码信息比特的数目K、系统可承载的编码后比特序列的比特数目M和内码个数L,K、M、L为正整数,编码后比特序列为对待编码信息比特进行编码后得到的比特序列,每一个内码的长度为M/L,L个内码由M/L个外码进行相互关联;根据K、M和L确定每一个外码承载的信息比特的数量和位置,对每一个外码进行码长为L的编码,得到M/L个外码对应的编码后比特序列;根据M/L个外码对应的编码后比特序列对每一个内码进行码长为M/L的极化编码,得到L个内码对应的编码后比特序列,根据L个内码对应的编码后比特序列得到编码后比特序列,M/L小于系统所支持的最大码长。
通过第一方面提供的分段编码方法,可使得译码时可以是对每一个内码进行码长为M/L的极化编码,而不是对K个待编码信息比特进行码长为M的极化编码,M/L小于系统所支持的最大码长,因此可使得译码时延符合系统要求,编码时由于外码将多个内码关联在一起,使得性能不会有很大损失,而且,根据K、M和L确定每一个外码承载的信息比特的数量和位置,实现简单,系统无需存储太长的构造序列。
在一种可能的设计中,根据K、M和L确定每一个外码承载的信息比特的数量和位置,包括:确定出目标码率对应的L个第一比例系数α i、第二比例系数β i,i∈{1,2,3,…,L-1,L},目标码率R=K/M;通过求解如下方程组确定码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}:
Figure PCTCN2018097614-appb-000012
2<i<=L时,x i向上取整,
Figure PCTCN2018097614-appb-000013
构造一个信息比特数目为K_seg、冻结比特数目为M/L-K_seg的极化码,
Figure PCTCN2018097614-appb-000014
在构造极化码的过程中,依次将可靠度最高的x L个子信道的序号放入集合O L,可靠度次高的x L-1个子信道的序号放入集合O L-1,…,直至确定出极化码对应的L个集合{O 1,O 2,O 3,…,O L-1,O L};将M/L个外码的序号依次标记为1至M/L号,确定与O i所含子信道序号相同序号的外码承载的信息比特的数量均为i。
通过该实施方式提供的分段编码方法,可使得译码时可以是对每一个内码进行码长为M/L的极化编码,而不是对K个待编码信息比特进行码长为M的极化编码,M/L小于系统所支持的最大码长,因此可使得译码时延符合系统要求,编码时由于外码将多个内码关联在一起,使得性能不会有很大损失,而且,根据K、M和L确定每一个外码承载的信息比特的数量和位置的过程中,是根据不同外码码率出现次数的比例分配不同外码承载的信息比特的数量和位置,实现简单,系统无需存储太长的构造序列。
在一种可能的设计中,确定出目标码率对应的L个第一比例系数α i、第二比例系 数β i,包括:根据预先存储的码率与第一比例系数α i、第二比例系数β i的映射关系表确定出目标码率对应的α i和β i的值;或者,根据预先存储的调制编码方式等级与第一比例系数α i、第二比例系数β i的映射关系表确定出目标码率对应的α i和β i的值,一个调制编码方式等级对应一个码率。
在一种可能的设计中,根据K、M和L确定每一个外码承载的信息比特的数量和位置,包括:获取构造码长为M/L的极化码所需的可靠度序列;根据预先存储的码率与可靠度门限集合的映射关系表确定出目标码率对应的可靠度门限集合,可靠度门限集合包含L-1个门限值a 1、a 2、…a L-2、a L-1,其中,a 1>a 2>…>a L-2>a L-1,目标码率R=K/M;确定可靠度大于a 1的子信道的数量为x L,x L个子信道的序号集合为O L;确定可靠度在a 1和a 2之间的子信道的数量为x L-1,x L-1个子信道的序号集合为O L-1;确定可靠度在a L-2和a L-1之间的子信道的数量为x 2,x 2个子信道的序号集合为O 2;在剩余可靠度小于a L-1的子信道中,按可靠度从高到底选择x 1个子信道,x 1个子信道的序号集合为O 1,其中
Figure PCTCN2018097614-appb-000015
将M/L个外码的序号依次标记为1至M/L号,确定与O i所含子信道序号相同序号的外码承载的信息比特的数量均为i。
通过该实施方式提供的分段编码方法,可使得译码时可以是对每一个内码进行码长为M/L的极化编码,而不是对K个待编码信息比特进行码长为M的极化编码,M/L小于系统所支持的最大码长,因此可使得译码时延符合系统要求,编码时由于外码将多个内码关联在一起,使得性能不会有很大损失,而且,根据K、M和L确定每一个外码承载的信息比特的数量和位置的过程中,是预存的可靠度门限集合分配每一个外码承载的信息比特的数量和位置,实现简单,系统无需存储太长的构造序列。
在一种可能的设计中,L-1个门限值a 1、a 2、…a L-2、a L-1通过如下方式确定:
根据信息比特数目为K、母码码长为M进行极化码构造,确定M个子信道中K个信息比特的位置和M-K个冻结比特的位置,得到待编码向量u=[u 0,u 1,u 2,…,u M-1];将待编码向量分为M/L个向量集合{Q 1,Q 2,…,Q M/L},每个向量集合包含L个元素,Q 1=[u 0,u 1,…,u L-1],Q 2=[u L,u L+1,…,u 2L-1],…,Q M/L=[u M-L,u M-L+1,…,u M-1];将包含1个信息比特的向量集合的向量序号集合记为W 1,将包含2个信息比特的向量集合的向量序号集合记为W 2,…,将包含L个信息比特的向量集合的向量序号集合记为W L,得到W 1,W 2,…,W L;确定W L中包含序号对应的子信道的可靠度的最小值为门限a 1,确定W L-1中包含序号对应的子信道的可靠度最小值为门限a 2,…,确定W 1中包含序号对应的子信道的可靠度的最小值为a L-1
在一种可能的设计中,L-1个门限值a 1、a 2、…a L-2、a L-1通过如下方式确定:
确定不同码率分别对应的L个第一比例系数α i、第二比例系数β i,i∈{1,2,3,…,L-1,L};对于每一码率,通过如下方式确定每一码率对应的可靠度门限集合;
通过求解如下方程组确定码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}:
Figure PCTCN2018097614-appb-000016
2<i<=L时,x i向上取整,
Figure PCTCN2018097614-appb-000017
构造一个信息比特数目为K_seg、冻结比特数目为M/L-K_seg的极化码,
Figure PCTCN2018097614-appb-000018
在构造极化码的过程中,依次确定可靠度最高的x L个子信道的序号集合为O L,可靠度次高的x L-1个子信道的序号集合为O L-1,…,直至确定出极化码对应的L个集合{O 1,O 2,O 3,…,O L-1,O L};确定O L中包含序号对应的子信道的可靠度的最小值为门限a 1,确定O L-1中包含序号对应的子信道的可靠度最小值为门限a 2,…,确定O 1中包含序号对应的子信道的可靠度的最小值为a L-1
在一种可能的设计中,根据M/L个外码对应的编码后比特序列对每一个内码进行码长为M/L的极化编码,得到L个内码对应的编码后比特序列,包括:对于M/L个外码对应的编码后比特序列,依次从每一个外码对应的编码后比特序列中取出第p个比特,p∈{1,2,…,L},得到L个包含M/L个比特的比特序列;依次将每一个包含M/L个比特的比特序列作为一个内码的待编码比特序列进行极化编码,得到L个内码对应的编码后比特序列。
第二方面,本申请提供一种分段编码装置,包括:获取模块,用于获取待编码信息比特的数目K、系统可承载的编码后比特序列的比特数目M和内码个数L,K、M、L为正整数,编码后比特序列为对待编码信息比特进行编码后得到的比特序列,每一个内码的长度为M/L,L个内码由M/L个外码进行相互关联;确定模块,用于根据K、M和L确定每一个外码承载的信息比特的数量和位置;第一编码模块,用于对每一个外码进行码长为L的编码,得到M/L个外码对应的编码后比特序列;第二编码模块,用于根据M/L个外码对应的编码后比特序列对每一个内码进行码长为M/L的极化编码,得到L个内码对应的编码后比特序列,根据L个内码对应的编码后比特序列得到编码后比特序列,M/L小于系统所支持的最大码长。
在一种可能的设计中,确定模块用于:确定出目标码率对应的L个第一比例系数α i、第二比例系数β i,i∈{1,2,3,…,L-1,L},目标码率R=K/M;通过求解如下方程组确定码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}:
Figure PCTCN2018097614-appb-000019
2<i<=L时,x i向上取整,
Figure PCTCN2018097614-appb-000020
构造一个信息比特数目为K_seg、冻结比特数目为M/L-K_seg的极化码,
Figure PCTCN2018097614-appb-000021
在构造极化码的过程中,依次将可靠度最高的x L个子信道的序号放入集合O L,可靠度次高的x L-1个子信道的序号放入集合O L-1,…,直至确定出极化码对应的L个集合{O 1,O 2,O 3,…,O L-1,O L};将M/L个外码的序号依次标记为1至M/L号,确定与O i所含子信道序号相同序号的外码承载的信息比特的数量均为i。
在一种可能的设计中,确定模块具体用于:根据预先存储的码率与第一比例系数α i、第二比例系数β i的映射关系表确定出目标码率对应的α i和β i的值;或者,根据预先存储的调制编码方式等级与第一比例系数α i、第二比例系数β i的映射关系表确定出目标码率对应的α i和β i的值,一个调制编码方式等级对应一个码率。
在一种可能的设计中,确定模块用于:获取构造码长为M/L的极化码所需的可靠度序列;根据预先存储的码率与可靠度门限集合的映射关系表确定出目标码率对应的可靠度门限集合,可靠度门限集合包含L-1个门限值a 1、a 2、…a L-2、a L-1,其中, a 1>a 2>…>a L-2>a L-1,目标码率R=K/M;确定可靠度大于a 1的子信道的数量为x L,x L个子信道的序号集合为O L;确定可靠度在a 1和a 2之间的子信道的数量为x L-1,x L-1个子信道的序号集合为O L-1;确定可靠度在a L-2和a L-1之间的子信道的数量为x 2,x 2个子信道的序号集合为O 2;在剩余可靠度小于a L-1的子信道中,按可靠度从高到底选择x 1个子信道,x 1个子信道的序号集合为O 1,其中
Figure PCTCN2018097614-appb-000022
将M/L个外码的序号依次标记为1至M/L号,确定与O i所含子信道序号相同序号的外码承载的信息比特的数量均为i。
在一种可能的设计中,L-1个门限值a 1、a 2、…a L-2、a L-1通过如下方式确定:
根据信息比特数目为K、母码码长为M进行极化码构造,确定M个子信道中K个信息比特的位置和M-K个冻结比特的位置,得到待编码向量u=[u 0,u 1,u 2,…,u M-1];将待编码向量分为M/L个向量集合{Q 1,Q 2,…,Q M/L},每个向量集合包含L个元素,Q 1=[u 0,u 1,…,u L-1],Q 2=[u L,u L+1,…,u 2L-1],…,Q M/L=[u M-L,u M-L+1,…,u M-1];将包含1个信息比特的向量集合的向量序号集合记为W 1,将包含2个信息比特的向量集合的向量序号集合记为W 2,…,将包含L个信息比特的向量集合的向量序号集合记为W L,得到W 1,W 2,…,W L;确定W L中包含序号对应的子信道的可靠度的最小值为门限a 1,确定W L-1中包含序号对应的子信道的可靠度最小值为门限a 2,…,确定W 1中包含序号对应的子信道的可靠度的最小值为a L-1
在一种可能的设计中,L-1个门限值a 1、a 2、…a L-2、a L-1通过如下方式确定:
确定不同码率分别对应的L个第一比例系数α i、第二比例系数β i,i∈{1,2,3,…,L-1,L};对于每一码率,通过如下方式确定每一码率对应的可靠度门限集合;
通过求解如下方程组确定码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}:
Figure PCTCN2018097614-appb-000023
2<i<=L时,x i向上取整,
Figure PCTCN2018097614-appb-000024
构造一个信息比特数目为K_seg、冻结比特数目为M/L-K_seg的极化码,
Figure PCTCN2018097614-appb-000025
在构造极化码的过程中,依次确定可靠度最高的x L个子信道的序号集合为O L,可靠度次高的x L-1个子信道的序号集合为O L-1,…,直至确定出极化码对应的L个集合{O 1,O 2,O 3,…,O L-1,O L};确定O L中包含序号对应的子信道的可靠度的最小值为门限a 1,确定O L-1中包含序号对应的子信道的可靠度最小值为门限a 2,…,确定O 1中包含序号对应的子信道的可靠度的最小值为a L-1
在一种可能的设计中,根据M/L个外码对应的编码后比特序列对每一个内码进行码长为M/L的极化编码,得到L个内码对应的编码后比特序列,包括:对于M/L个外码对应的编码后比特序列,依次从每一个外码对应的编码后比特序列中取出第p个比特,p∈{1,2,…,L},得到L个包含M/L个比特的比特序列;依次将每一个包含M/L个比特的比特序列作为一个内码的待编码比特序列进行极化编码,得到L个内码对应的编码后比特序列。
上述第二方面以及上述第二方面的各可能的设计中所提供的分段编码装置,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在 此不再赘述。
第三方面,本申请提供一种分段编码实体装置,包括:存储器和处理器;
存储器用于存储程序指令;
处理器用于调用存储器中的程序指令执行第一方面及第一方面任一种可能的设计中的分段编码方法。
第四方面,本申请提供一种可读存储介质,可读存储介质中存储有执行指令,当分段编码装置的至少一个处理器执行该执行指令时,分段编码装置执行第一方面及第一方面任一种可能的设计中的方法。
第五方面,本申请提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。分段编码装置的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得分段编码装置实施第一方面及第一方面任一种可能的设计中的方法。
附图说明
图1为本申请提供的一种发送端和接收端的系统架构示意图;
图2为一种通信系统的流程示意图;
图3为外码与内码的组成示意图;
图4为一种基于GCC的拆分示意图;
图5为本申请提供的一种分段编码方法实施例的流程图;
图6为系统可承载的编码后比特序列的比特数目为M、内码个数为L时的拆分示意图;
图7为本申请提供的一种分段编码方法实施例的流程图;
图8为本申请提供的一种分段编码方法实施例的流程图;
图9为本申请提供的一种分段编码方法实施例的流程图;
图10为不同编码方法的性能仿真示意图;
图11为本申请提供的一种分段编码装置实施例的结构示意图;
图12为本申请提供的一种分段编码实体装置示意图;
图13为本申请提供的一种分段编码实体装置示意图。
具体实施方式
本申请实施例可以应用于无线通信系统,需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)以及下一代5G移动通信系统的三大应用场景增强型移 动宽带(Enhanced Mobile Broad Band,eMBB)、URLLC以及大规模机器通信(Massive Machine-Type Communications,mMTC)。
本申请涉及的通信装置主要包括网络设备或者终端设备。本申请中的发送端为网路设备,则接收端为终端设备;本申请中的发送端为终端设备,则接收端为网络设备。
在本申请实施例中,终端设备(terminal device)包括但不限于移动台(MS,Mobile Station)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该终端设备可以经无线接入网(RAN,Radio Access Network)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置或设备。
本申请结合网络设备描述了各个实施例。网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备或未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
本申请的通信系统可以包括发送端和接收端,图1为本申请提供的一种发送端和接收端的系统架构示意图,如图1所示,其中,发送端为编码侧,可以用于编码和输出编码信息,编码信息在信道上传输至译码侧;接收端为译码侧,可以用于接收发送端发送的编码信息,并对该编码信息译码。
图2为一种通信系统的流程示意图,如图2所示,在发送端,信源依次经过信源编码、信道编码、速率匹配和数字调制后发出。在接收端,依次通过数字解调、解速率匹配、信道译码和信源译码输出信宿。信道编译码可以采用Polar码,进一步可以采用本申请提供的分段编码方法。
相关技术中,为解决由于码长变短导致编码增益减小,从而导致性能变差的问题,将待编码比特序列拆分为多个相同长度的比特序列,并将极化码(Polar码)视为广义级联码(generalized concatenated codes,GCC),由外码和内码组成,下面结合附图解释内码与外码的概念。图3为外码与内码的组成示意图,以M=8,L=2为例,即实际码长为8,内码数量为2,内码码长为4,外码数量为4,外码码长为2。图3所示右边方框中[u 0 u 1]是一个外码的待编码比特,[u 2 u 3]是一个外码的待编码比特,[u 4 u 5]是一个外码的待编码比特,[u 6 u 7]是一个外码的待编码比特,图3所示一个内码的待编码比特是[c 0 c 1 c 2 c 3],另一个内码的待编码比特是[c 4 c 5 c 6 c 7]。编码过程为:首先将待编码的比特序列进行外码编码,即将u 0和u 1经过码长为2的外码编码,得到外码编码后码字c 0和c 4;将u 2和u 3经过码长为2的外码编码,得到外码编码后码字c 1和c 5;将u 4和u 5经过码长为2的外码编码,得到外码编码后码字c 2和c 6;将u 6和u 7经过码长为2的外码编码,得到外码编码后码字c 3和c 7。然后,将各外码相同位置的编码后比特取出,进行内码编码,即将各外码第一个编码后比特取出得到[c 0 c 1 c 2 c 3],进行内码编码,得到编码后比特[y 0 y 2 y 4 y 6];将各外码第二个编码后比特取出得到[c 4c 5c 6c 7],进行内码编码,得到编码后比特[y 1 y 3 y 5 y 7]。最后将内码编码后比特序列按序拼接, 即可得到最终的编码后比特序列。
图4为一种基于GCC的拆分示意图,如图4所示,在发送端将待编码比特序列进行polar编码,得到长度为4N的polar码码字(编码后比特序列),在译码侧,可以将长度为4N的polar码码字看做由4个内码(长度为N的polar码)组成,4个内码相同比特位置的比特由外码(长度为4的polar码)进行编码,从而实现了通过外码将多个内码关联在一起。由于外码将多个内码关联在一起,使得性能不会有很大损失。具体编码时,可以看作对每个外码进行码长为4(内码个数)的编码,得到N个外码对应的编码后比特序列,根据N个外码对应的编码后比特序列对每一个内码进行码长为N的极化编码,对每个外码进行编码时每一个外码承载的信息比特的数量和位置的确定(即就是外码码率的分配)是通过存储长度为4N的polar码构造序列确定的,但是对于系统而言,无法存储这么长的构造序列。
本申请提供一种分段编码方法及装置,每一个外码承载的信息比特的数量和位置的确定是通过不同外码码率出现次数的比例进行分配,或者是按照预存的可靠度门限集合进行分配,从而可使得译码时延符合系统要求的同时,性能不会因为码的拆分而损失,且系统无需存储太长的构造序列,下面结合附图详细说明本申请提供的分段编码方法及装置。
图5为本申请提供的一种分段编码方法实施例的流程图,如图5所示,本实施例的方法可以包括:
S101、获取待编码信息比特的数目K、系统可承载的编码后比特序列的比特数目M和内码个数L,K、M、L为正整数,编码后比特序列为对待编码信息比特进行编码后得到的比特序列,每一个内码的长度为M/L,L个内码由M/L个外码进行相互关联。
具体地,K、M、L都为(编码器的)输入,获取到K、M、L后,可确定内码的码长为M/L,数量为L个,外码的码长为L,数量为M/L个。内码的个数即为分段的段数,内码的长度为M/L即内码的编码后比特序列包含的比特数目为M/L。图6为系统可承载的编码后比特序列的比特数目为M、内码个数为L时的拆分示意图,如图6所示,系统可承载的编码后比特序列的比特数目为M,经拆分为L个内码,每一个内码的长度为M/L,M/L个外码,L个内码由M/L个外码进行相互关联。
S102、根据K、M和L确定每一个外码承载的信息比特的数量和位置,对每一个外码进行码长为L的编码,得到M/L个外码对应的编码后比特序列。
具体地,根据K、M和L确定每一个外码承载的信息比特的数量和位置,有两种可实施的方式:
方式一:
S1021、确定出目标码率对应的L个第一比例系数α i、第二比例系数β i,i∈{1,2,3,…,L-1,L},目标码率R=K/M。
其中,每一码率均对应L个第一比例系数α i和第二比例系数β i
可选的,S1021可以是根据预先存储的码率与第一比例系数α i、第二比例系数β i的映射关系表确定出目标码率对应的α i和β i的值。如下表一为n个码率(R 0至R n)与对应的第一比例系数α i、第二比例系数β i的映射关系表示例。
表一
码率 α 11 α 22 …… α L-1L-1 α LL
R 0 A 1,B 1 A 2,B 2 …… A L-1,B L-1 A L,B L
…… …… …… …… …… ……
R n C 1,D 1 C 2,D 2   C L-1,D L-1 C L,D L
可选的,S1021还可以是根据预先存储的调制编码方式等级(Modulation and Coding Scheme,MCS)与第一比例系数α i、第二比例系数β i的映射关系表确定出目标码率对应的α i和β i的值,一个调制编码方式等级对应一个码率,其中的调制编码方式等级与码率的对应关系也是预先存储的。如下表二为n个调制编码方式等级与对应的第一比例系数α i、第二比例系数β i的映射关系表示例。
表二
MCS等级 α 11 α 22 …… α L-1L-1 α LL
0 A 1,B 1 A 2,B 2 …… A L-1,B L-1 A L,B L
…… …… …… …… …… ……
n C 1,D 1 C 2,D 2   C L-1,D L-1 C L,D L
S1022、通过求解如下方程组确定码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}:
其中,码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码,也就是外码承载的信息比特的数量分别为{1,2,…,(L-1),L},外码承载的信息比特的数量还可以为0,因此,外码的码率共有L+1种可能:{0,1/L,2/L,…,(L-1)/L,L/L},码率为0的外码的数量不需要确定。
Figure PCTCN2018097614-appb-000026
2<i<=L时,x i向上取整,
Figure PCTCN2018097614-appb-000027
其中,β i为较小的整数如(1,2,…),β i还可以为0。
在本实施方式中,根据K、M和L以及上述方程组采用在线计算的方式确定出码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L},可选的,还可以是预先根据上述计算方式计算出不同码率下对应的{x 1,x 2,…,x L-1,x L},然后将码率与对应的{x 1,x 2,…,x L-1,x L}的映射表存储,在获取到K、M和L时,可通过查表直接得到码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}。S1021~S1022可替换为:根据预先存储的码率与对应的码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}的映射表确定出目标码率下的{x 1,x 2,…,x L-1,x L},这样可以减少计算时间,提高系统效率,如下表三为n个码率(R 0至R n)与对应的{x 1,x 2,…,x L-1,x L}的映射表示例。
表三
码率 x 1 x 2   x L-1 x L
R 0 E 1 E 2 …… E L-1 E L
…… …… …… …… …… ……
R n F 1 F 2 …… F L-1 F L
表中E i,F i,1<=i<=L均为已知数值。
可选的,一个调制编码方式等级对应一个码率,还可以是存储调制编码方式等级与对应的码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}的映射表,此时S1021~S1022可替换为:根据预先存储的调制编码方式等级与对应的码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}的映射表确定出目标码率下的{x 1,x 2,…,x L-1,x L},如下表四为n个调制编码方式等级与对应的{x 1,x 2,…,x L-1,x L}的映射表示例。
表四
MCS等级 x 1 x 2   x L-1 x L
0 E 1 E 2 …… E L-1 E L
…… …… …… …… …… ……
n F 1 F 2 …… F L-1 F L
S1023、构造一个信息比特数目为K_seg、冻结比特数目为M/L-K_seg的极化码,
Figure PCTCN2018097614-appb-000028
在构造该极化码的过程中,依次将可靠度最高的x L个子信道的序号放入集合O L,可靠度次高的x L-1个子信道的序号放入集合O L-1,…,直至确定出该极化码对应的L个集合{O 1,O 2,O 3,…,O L-1,O L}。
需要说明的是,在S1023中,根据{x 1,x 2,…,x L-1,x L}构造极化码,确定出极化码对应的L个集合{O 1,O 2,O 3,…,O L-1,O L},各集合中包含的序号即指示了相应外码承载的信息比特数,例如集合O i中包含序号{i 1,i 2,…,i p},则这些序号对应的外码需要承载i个信息比特,即这些外码的码率为i/L。因此,确定出L个集合{O 1,O 2,O 3,…,O L-1,O L},外码承载的信息比特的位置也相应确定。
S1024、将M/L个外码的序号依次标记为1至M/L号,确定与O i所含子信道序号相同序号的外码承载的信息比特的数量均为i。
例如,集合O 3包含子信道的序号为(4,6,7,9),确定与O 3所含子信道序号相同序号的外码为4,6,7,9,序号为4,6,7,9的外码承载的信息比特的数量均为3。
方式二:
S1021′、获取构造码长为M/L的极化码所需的可靠度序列。
上述的可靠度序列可以是预存的,也可以根据码长为M/L用极化权重等方法在线计算。
S1022′、根据预先存储的码率与可靠度门限集合的映射关系表确定出目标码率对 应的可靠度门限集合,可靠度门限集合包含L-1个门限值a 1、a 2、…a L-2、a L-1,其中,a 1>a 2>…>a L-2>a L-1,目标码率R=K/M。
其中,L-1个门限值a 1、a 2、…a L-2、a L-1的确定有以下两种可实施的方式。
方式一:
L-1个门限值a 1、a 2、…a L-2、a L-1通过如下方式确定:
根据信息比特数目为K、母码码长为M进行极化码构造,确定M个子信道中K个信息比特的位置和M-K个冻结比特的位置,得到待编码向量u=[u 0,u 1,u 2,…,u M-1]。
将待编码向量分为M/L个向量集合{Q 1,Q 2,…,Q M/L},每个向量集合包含L个元素,Q 1=[u 0,u 1,…,u L-1],Q 2=[u L,u L+1,…,u 2L-1],…,Q M/L=[u M-L,u M-L+1,…,u M-1]。
将包含1个信息比特的向量集合的向量序号集合记为W 1,将包含2个信息比特的向量集合的向量序号集合记为W 2,…,将包含L个信息比特的向量集合的向量序号集合记为W L,得到W 1,W 2,…,W L
确定W L中包含序号对应的子信道的可靠度的最小值为门限a 1,确定W L-1中包含序号对应的子信道的可靠度最小值为门限a 2,…,确定W 1中包含序号对应的子信道的可靠度的最小值为a L-1
通过上述方式即可确定出L-1个门限值a 1、a 2、…a L-2、a L-1
需要说明的是,该方法为离线计算并存储的方法,离线计算时,极化码构造序列和可靠度序列的长度不受系统支持最大码长的限制。
方式二:
L-1个门限值a 1、a 2、…a L-2、a L-1通过如下方式确定:
确定不同码率分别对应的L个第一比例系数α i、第二比例系数β i,i∈{1,2,3,…,L-1,L}。
需要说明的是,S1021中和此处的第一比例系数α i和第二比例系数β i的值可通过如下方式获得:类似上述L-1个门限值a 1、a 2、…a L-2、a L-1的确定方式一,获得集合W 1,W 2,…,W L,各集合所包含的元素数即为x 1,x 2,…,x L,通过拟合(上述方程组的逆向计算过程)获得第一比例系数α i和第二比例系数β i
对于每一码率,通过如下方式确定每一码率对应的可靠度门限集合:
通过求解如下方程组确定码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}:
Figure PCTCN2018097614-appb-000029
2<i<=L时,x i向上取整,
Figure PCTCN2018097614-appb-000030
构造一个信息比特数目为K_seg、冻结比特数目为M/L-K_seg的极化码,
Figure PCTCN2018097614-appb-000031
在构造极化码的过程中,依次确定可靠度最高的x L个子信道的序号集合为O L,可靠度次高的x L-1个子信道的序号集合为O L-1,…,直至确定出极化码对应的L个集合{O 1,O 2,O 3,…,O L-1,O L}。
确定O L中包含序号对应的子信道的可靠度的最小值为门限a 1,确定O L-1中包含序号对应的子信道的可靠度最小值为门限a 2,…,确定O 1中包含序号对应的子信道的可靠度的最 小值为a L-1
通过上述方式即可确定出L-1个门限值a 1、a 2、…a L-2、a L-1
S1023′、确定可靠度大于a 1的子信道的数量为x L,x L个子信道的序号集合为O L;确定可靠度在a 1和a 2之间的子信道的数量为x L-1,x L-1个子信道的序号集合为O L-1;确定可靠度在a L-2和a L-1之间的子信道的数量为x 2,x 2个子信道的序号集合为O 2;在剩余可靠度小于a L-1的子信道中,按可靠度从高到底选择x 1个子信道,x 1个子信道的序号集合为O 1,其中
Figure PCTCN2018097614-appb-000032
S1024′、将M/L个外码的序号依次标记为1至M/L号,确定与O i所含子信道序号相同序号的外码承载的信息比特的数量均为i。
S103、根据M/L个外码对应的编码后比特序列对每一个内码进行码长为M/L的极化编码,得到L个内码对应的编码后比特序列,根据L个内码对应的编码后比特序列得到编码后比特序列,M/L小于系统所支持的最大码长。
其中,根据M/L个外码对应的编码后比特序列对每一个内码进行码长为M/L的极化编码,得到L个内码对应的编码后比特序列,具体可以为:
对于M/L个外码对应的编码后比特序列,依次从每一个外码对应的编码后比特序列中取出第p个比特,p∈{1,2,…,L},得到L个包含M/L个比特的比特序列。即就是:从每一个外码对应的编码后比特序列中取出第1个比特,得到第一个包含M/L个比特的比特序列,从每一个外码对应的编码后比特序列中取出第2个比特,得到第二个包含M/L个比特的比特序列,…,从每一个外码对应的编码后比特序列中取出第L个比特,得到第L个包含M/L个比特的比特序列,最后共得到L个包含M/L个比特的比特序列。接着依次将每一个包含M/L个比特的比特序列作为一个内码的待编码比特序列进行极化编码,得到L个内码对应的编码后比特序列。
其中,根据L个内码对应的编码后比特序列得到编码后比特序列,可以是在得到L个内码对应的编码后比特序列之后,将L个内码对应的编码后比特序列进行级联或者交织,得到编码后比特序列,即得到对待编码信息比特进行编码后得到的比特序列。编码后比特序列经过调制映射到时频资源上进行发送。
对于译码端而言,可采用现有的译码方法进行译码,区别在于,可以分别对L个内码对应的编码后比特序列进行码长为M/L的极化译码,得到最终的译码结果,而不是对K个待编码信息比特进行码长为M的极化译码,由于M/L小于系统所支持的最大码长,因此可使得译码时延符合系统要求。
本实施例提供的分段编码方法,通过根据待编码信息比特的数目K、系统可承载的编码后比特序列的比特数目M和内码个数L确定出每一个外码承载的信息比特的数量和位置,接着对每一个外码进行码长为L的编码,得到M/L个外码对应的编码后比特序列,最后根据M/L个外码对应的编码后比特序列对每一个内码进行码长为M/L的极化编码,得到L个内码对应的编码后比特序列,根据L个内码对应的编码后比特序列得到编码后比特序列,其中,M/L小于系统所支持的最大码长。从而使得译码时可以是对每一个内码进行码长为M/L的极化译码,而不是对K个待编码信息比特进行码长为M的极化译码,M/L小于系统所支持的最大码长,因此可使得译码时延符合系统要求,编码时由于外码将多个内码关联在一起,使得性能不会有很大损失,而且,根 据K、M和L确定每一个外码承载的信息比特的数量和位置,实现简单,系统无需存储太长的构造序列。
下面采用几个具体的实施例,对图5所示方法实施例的技术方案进行详细说明。
图7为本申请提供的一种分段编码方法实施例的流程图,本实施例中以在根据K、M和L确定每一个外码承载的信息比特的数量和位置的过程中,码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}通过在线计算的方式确定为例进行说明,如图7所示,本实施例的方法可以包括:
S201、与图5所示S101相同,具体可参见S101。
S202、根据预先存储的码率与第一比例系数α i、第二比例系数β i的映射关系表确定出目标码率对应的α i和β i的值。
或者,根据预先存储的调制编码方式等级与第一比例系数α i、第二比例系数β i的映射关系表确定出目标码率对应的α i和β i的值,一个调制编码方式等级对应一个码率,目标码率R=K/M。
详细的存表方式可参见上述表一和表二。
S203、通过求解如下方程组,确定码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}:
Figure PCTCN2018097614-appb-000033
2<i<=L时,x i向上取整,
Figure PCTCN2018097614-appb-000034
其中,β i为较小的整数如(1,2,…),β i还可以为0。
S204、构造一个信息比特数目为K_seg、冻结比特数目为M/L-K_seg的极化码,
Figure PCTCN2018097614-appb-000035
在构造该极化码的过程中,依次将可靠度最高的x L个子信道的序号放入集合O L,可靠度次高的x L-1个子信道的序号放入集合O L-1,…,直至确定出该极化码对应的L个集合{O 1,O 2,O 3,…,O L-1,O L}。
S205、将M/L个外码的序号依次标记为1至M/L号,确定与O i所含子信道序号相同序号的外码承载的信息比特的数量均为i。
S206、根据所确定的每一个外码承载的信息比特的数量和位置对每一个外码进行码长为L的编码,对每一个外码可进行极化编码,或者进行其他分组编码,卷积编码,或者进行低密度奇偶校验码(Low Density Parity Check,LDPC)编码等,本实施例对外码的编码方式不做限定,得到M/L个外码对应的编码后比特序列。
S207、对于M/L个外码对应的编码后比特序列,依次从每一个外码对应的编码后比特序列中取出第p个比特,p∈{1,2,…,L},得到L个包含M/L个比特的比特序列,根据L个内码对应的编码后比特序列得到编码后比特序列。
本实施例中,可使得译码时可以是对每一个内码进行码长为M/L的极化译码,而不是对K个待编码信息比特进行码长为M的极化译码,M/L小于系统所支持的最大码长,因此可使得译码时延符合系统要求,编码时由于外码将多个内码关联在一起,使得性能不会有很大损失,而且,根据K、M和L确定每一个外码承载的信息比特的数量和位置的过程中,是根据不同外码码率出现次数的比例分配不同外码承载的信息比 特的数量和位置,实现简单,系统无需存储太长的构造序列。
图8为本申请提供的一种分段编码方法实施例的流程图,与图7所示实施例的区别是,本实施例中在根据K、M和L确定每一个外码承载的信息比特的数量和位置的过程中,码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}通过预先存储的映射表的方式确定,这样可以减少计算时间,提高系统效率,如图7所示,本实施例的方法可以包括:
S301、与图5所示S101相同,具体可参见S101。
S302、根据预先存储的码率与对应的码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}的映射表确定出目标码率下的{x 1,x 2,…,x L-1,x L}。
或者,根据预先存储的调制编码方式等级与对应的码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}的映射表确定出目标码率下的{x 1,x 2,…,x L-1,x L},目标码率R=K/M。
S303~S306与S204~S207相同,具体可参见S204~S207的内容,此处不再赘述。
本实施例中,相比较图7所示的分段编码方法,可以进一步减少计算时间,提高系统效率。
图9为本申请提供的一种分段编码方法实施例的流程图,本实施例中以在根据K、M和L确定每一个外码承载的信息比特的数量和位置的过程中,按照预存的可靠度门限集合分配每一个外码承载的信息比特的数量和位置为例进行说明,如图9所示,本实施例的方法可以包括:
S401、获取构造码长为M/L的极化码所需的可靠度序列。
其中,上述的可靠度序列可以是预存的,也可以根据码长为M/L用极化权重等方法在线计算。
S402、根据预先存储的码率与可靠度门限集合的映射关系表确定出目标码率对应的可靠度门限集合,可靠度门限集合包含L-1个门限值a 1、a 2、…a L-2、a L-1,其中,a 1>a 2>…>a L-2>a L-1,目标码率R=K/M。
其中,L-1个门限值a 1、a 2、…a L-2、a L-1的确定有两种可实施的方式,具体可参见图5所示实施例中相应部分的描述,此处不再赘述。
S403、确定可靠度大于a 1的子信道的数量为x L,x L个子信道的序号集合为O L;确定可靠度在a 1和a 2之间的子信道的数量为x L-1,x L-1个子信道的序号集合为O L-1;确定可靠度在a L-2和a L-1之间的子信道的数量为x 2,x 2个子信道的序号集合为O 2;在剩余可靠度小于a L-1的子信道中,按可靠度从高到底选择x 1个子信道,x 1个子信道的序号集合为O 1,其中
Figure PCTCN2018097614-appb-000036
S404、将M/L个外码的序号依次标记为1至M/L号,确定与O i所含子信道序号相同序号的外码承载的信息比特的数量均为i。
S405~S406与图7所示实施例中S206~S207相同,具体可参见S204~S207的内容,此处不再赘述。
本实施例中,可使得译码时可以是对每一个内码进行码长为M/L的极化译码,而不是对K个待编码信息比特进行码长为M的极化译码,M/L小于系统所支持的最大码 长,因此可使得译码时延符合系统要求,编码时由于外码将多个内码关联在一起,使得性能不会有很大损失,而且,根据K、M和L确定每一个外码承载的信息比特的数量和位置的过程中,是预存的可靠度门限集合分配每一个外码承载的信息比特的数量和位置,实现简单,系统无需存储太长的构造序列。
下面采用一具体的实施例,本实施例中以图4所示的码的拆分为例进行说明,M=4N,L=4,外码的码率共有五种可能:{0,1/4,2/4,3/4,4/4}。其中,由仿真发现2/4码率的外码无法带来性能增益,1/4码率和3/4码率的外码数量相同。则给定待编码信息比特数量为K时,本实施例的编码方法可以包括:
S501、获取待编码信息比特的数目K、系统可承载的编码后比特序列的比特数目4N和内码个数L,L=4,目标码率R=K/4N。
S502、确定出目标码率对应的α i、β i,i=1,2,3,4,β i=0,α 1=α 3=1,α 2=0,α 4=α。
S503、通过求解如下方程组确定码率分别为{1/4,2/4,3/4,4/4}的外码的数量{x 1,x 2,x 3,x 4}:
x 1=x 3
x 4=α*x 1
x 2=0
x 1+2x 2+3x 3+4x 4=K。
解得x 4=ceil(K/(4/α+4)),x 3=ceil(K/4-x 4),x 1=K-4x 4-3x 3,x 2=0,ceil为向上取整。
S504、根据码长为N,信息比特长度K_seg为x 1+x 2+x 3+x 4的极化(polar)码构造序列,可靠度最高的x 4个比特位放入集合O 4,O 4中包含的序号对应位置的外码码率设置为4/4,可靠度次高的x 3个比特位放入集合O 3,O 3中包含的序号对应位置的外码码率设置为3/4,可靠度再次的x 1个比特位放入集合O 1,O 1中包含的序号对应位置的外码码率设置为1/4。
其中,α由实际目标码率确定,例如,对于码率R=1/3,1/6,1/12,α值分别可以取4,3,2。α的值不限定于整数。
S505、确定各外码的码率后,依次从待编码的K个比特中取比特,进行N个外码的编码。将N个外码编码后比特序列的第1个比特取出,得到长为N的比特序列,进行内码编码;将N个外码编码后比特序列的第2个比特取出,得到长为N的比特序列,进行内码编码;将N个外码编码后比特序列的第3个比特取出,得到长为N的比特序列,进行内码编码;将N个外码编码后比特序列的第4个比特取出,得到长为N的比特序列,进行内码编码。将上述过程得到的4个内码编码后比特序列按序组合成长为4N的编码后比特序列。
下面采用一性能仿真对比图来说明本申请提供的分段编码方法的性能,图10为不同编码方法的性能仿真示意图,取K=600,M=4N=7200,设系统所支持的最大码长Nmax=2048。不限制Polar码的最大码长时,性能为线一所示,但此时码长为7200,超出系统所支持的最大码长,译码时延将无法满足要求。背景技术中提到的方法的性能为线二所示,可以看到,由于长码到短码的拆分,性能产生损失。相关技术中通过存储长度为4N的polar码构造序列确定外码码率的方法的性能为线三所示,性能无损,但其外码码率的分配需要用到长为8192(母码码长为2 n)的polar码构造序列,而系统所支持的最大码长为2048,不会存储8192长的构造序列。线四为本申请提供的方案的性能,可以看到同样可以做到性能无损,同时只需使用长为2048的polar码构造序列。
本申请可以根据上述方法示例对发送端进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请各实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图11为本申请提供的一种分段编码装置实施例的结构示意图,如图11所示,本实施例的装置可以包括:获取模块11、确定模块12、第一编码模块13和第二编码模块14,其中,
获取模块11用于获取待编码信息比特的数目K、系统可承载的编码后比特序列的比特数目M和内码个数L,K、M、L为正整数,编码后比特序列为对待编码信息比特进行编码后得到的比特序列,每一个内码的长度为M/L,L个内码由M/L个外码进行相互关联。确定模块12用于根据K、M和L确定每一个外码承载的信息比特的数量和位置。第一编码模块13用于对每一个外码进行码长为L的编码,得到M/L个外码对应的编码后比特序列。第二编码模块14用于根据M/L个外码对应的编码后比特序列对每一个内码进行码长为M/L的极化编码,得到L个内码对应的编码后比特序列,根据L个内码对应的编码后比特序列得到编码后比特序列,M/L小于系统所支持的最大码长。
可选的,确定模块12用于:确定出目标码率对应的L个第一比例系数α i、第二比例系数β i,i∈{1,2,3,…,L-1,L},目标码率R=K/M,通过求解如下方程组确定码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}:
Figure PCTCN2018097614-appb-000037
2<i<=L时,x i向上取整,
Figure PCTCN2018097614-appb-000038
构造一个信息比特数目为K_seg、冻结比特数目为M/L-K_seg的极化码,
Figure PCTCN2018097614-appb-000039
在构造极化码的过程中,依次将可靠度最高的x L个子信道的序号放入集合O L,可靠度次高的x L-1个子信道的序号放入集合O L-1,…,直至确定出极化码对应的L个集合{O 1,O 2,O 3,…,O L-1,O L},将M/L个外码的序号依次标记为1至M/L号,确定与O i所含子信道序号相同序号的外码承载的信息比特的数量均为i。
进一步地,确定模块12具体用于:根据预先存储的码率与第一比例系数α i、第二比例系数β i的映射关系表确定出目标码率对应的α i和β i的值,或者,根据预先存储的调制编码方式等级与第一比例系数α i、第二比例系数β i的映射关系表确定出目标码率对应的α i和β i的值,一个调制编码方式等级对应一个码率。
可选的,确定模块12用于:获取构造码长为M/L的极化码所需的可靠度序列,根据预先存储的码率与可靠度门限集合的映射关系表确定出目标码率对应的可靠度门限集合,可靠度门限集合包含L-1个门限值a 1、a 2、…a L-2、a L-1,其中,a 1>a 2>…>a L-2>a L-1,目标码率R=K/M,确定可靠度大于a 1的子信道的数量为x L,x L个子信道的序号集合为O L;确定可靠度在a 1和a 2之间的子信道的数量为x L-1,x L-1个子信道的序号集合为O L-1;确定可靠度在a L-2和a L-1之间的子信道的数量为x 2,x 2个子信道的序号集合为O 2;在剩余可靠度小于a L-1的子信道中,按可靠度从高到底选择x 1个子信道,x 1个子 信道的序号集合为O 1,其中
Figure PCTCN2018097614-appb-000040
将M/L个外码的序号依次标记为1至M/L号,确定与O i所含子信道序号相同序号的外码承载的信息比特的数量均为i。
可选的,L-1个门限值a 1、a 2、…a L-2、a L-1通过如下方式确定:
根据信息比特数目为K、母码码长为M进行极化码构造,确定M个子信道中K个信息比特的位置和M-K个冻结比特的位置,得到待编码向量u=[u 0,u 1,u 2,…,u M-1],将待编码向量分为M/L个向量集合{Q 1,Q 2,…,Q M/L},每个向量集合包含L个元素,Q 1=[u 0,u 1,…,u L-1],Q 2=[u L,u L+1,…,u 2L-1],…,Q M/L=[u M-L,u M-L+1,…,u M-1],将包含1个信息比特的向量集合的向量序号集合记为W 1,将包含2个信息比特的向量集合的向量序号集合记为W 2,…,将包含L个信息比特的向量集合的向量序号集合记为W L,得到W 1,W 2,…,W L,确定W L中包含序号对应的子信道的可靠度的最小值为门限a 1,确定W L-1中包含序号对应的子信道的可靠度最小值为门限a 2,…,确定W 1中包含序号对应的子信道的可靠度的最小值为a L-1
可选的,L-1个门限值a 1、a 2、…a L-2、a L-1通过如下方式确定:
确定不同码率分别对应的L个第一比例系数α i、第二比例系数β i,i∈{1,2,3,…,L-1,L},对于每一码率,通过如下方式确定每一码率对应的可靠度门限集合,通过求解如下方程组确定码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}:
Figure PCTCN2018097614-appb-000041
2<i<=L时,x i向上取整,
Figure PCTCN2018097614-appb-000042
构造一个信息比特数目为K_seg、冻结比特数目为M/L-K_seg的极化码,
Figure PCTCN2018097614-appb-000043
在构造极化码的过程中,依次确定可靠度最高的x L个子信道的序号集合为O L,可靠度次高的x L-1个子信道的序号集合为O L-1,…,直至确定出极化码对应的L个集合{O 1,O 2,O 3,…,O L-1,O L},确定O L中包含序号对应的子信道的可靠度的最小值为门限a 1,确定O L-1中包含序号对应的子信道的可靠度最小值为门限a 2,…,确定O 1中包含序号对应的子信道的可靠度的最小值为a L-1
可选的,第二编码模块14用于:对于M/L个外码对应的编码后比特序列,依次从每一个外码对应的编码后比特序列中取出第p个比特,p∈{1,2,…,L},得到L个包含M/L个比特的比特序列,依次将每一个包含M/L个比特的比特序列作为一个内码的待编码比特序列进行极化编码,得到L个内码对应的编码后比特序列。
本实施例的装置,可以用于执行图5~图9所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图12为本申请提供的一种分段编码实体装置示意图,该装置1100包括:
存储器1101,用于存储程序指令,该存储器还可以是flash(闪存)。
处理器1102,用于调用并执行存储器中的程序指令,以实现图5所示的分段编码方法中的各个步骤。具体可以参见前面方法实施例中的相关描述。
可选地,存储器1101既可以是独立的,也可以如图13所示,图13为本申请提供的一种分段编码实体装置示意图,存储器1101跟处理器1102集成在一起。
该装置可以用于执行上述方法实施例中发送端(发送设备)对应的各个步骤和/或流程。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当分段编码装置的至少一个处理器执行该执行指令时,分段编码装置执行上述的各种实施方式提供的分段编码方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。分段编码装置的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得分段编码装置实施上述的各种实施方式提供的分段编码方法。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (16)

  1. 一种分段编码方法,其特征在于,包括:
    获取待编码信息比特的数目K、系统可承载的编码后比特序列的比特数目M和内码个数L,K、M、L为正整数,所述编码后比特序列为对所述待编码信息比特进行编码后得到的比特序列,每一个内码的长度为M/L,L个内码由M/L个外码进行相互关联;
    根据K、M和L确定每一个外码承载的信息比特的数量和位置,对每一个外码进行码长为L的编码,得到M/L个外码对应的编码后比特序列;
    根据所述M/L个外码对应的编码后比特序列对每一个内码进行码长为M/L的极化编码,得到L个内码对应的编码后比特序列,根据所述L个内码对应的编码后比特序列得到所述编码后比特序列,M/L小于系统所支持的最大码长。
  2. 根据权利要求1所述的方法,其特征在于,所述根据K、M和L确定每一个外码承载的信息比特的数量和位置,包括:
    确定出目标码率对应的L个第一比例系数α i、第二比例系数β i,i∈{1,2,3,…,L-1,L},所述目标码率R=K/M;
    通过求解如下方程组确定码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}:
    Figure PCTCN2018097614-appb-100001
    2<i<=L时,x i向上取整,
    Figure PCTCN2018097614-appb-100002
    构造一个信息比特数目为K_seg、冻结比特数目为M/L-K_seg的极化码,
    Figure PCTCN2018097614-appb-100003
    在构造所述极化码的过程中,依次将可靠度最高的x L个子信道的序号放入集合O L,可靠度次高的x L-1个子信道的序号放入集合O L-1,…,直至确定出所述极化码对应的L个集合{O 1,O 2,O 3,…,O L-1,O L};
    将M/L个外码的序号依次标记为1至M/L号,确定与O i所含子信道序号相同序号的外码承载的信息比特的数量均为i。
  3. 根据权利要求2所述的方法,其特征在于,所述确定出目标码率对应的L个第一比例系数α i、第二比例系数β i,包括:
    根据预先存储的码率与第一比例系数α i、第二比例系数β i的映射关系表确定出所述目标码率对应的α i和β i的值;或者,
    根据预先存储的调制编码方式等级与第一比例系数α i、第二比例系数β i的映射关系表确定出所述目标码率对应的α i和β i的值,一个调制编码方式等级对应一个码率。
  4. 根据权利要求1所述的方法,其特征在于,所述根据K、M和L确定每一个外码承载的信息比特的数量和位置,包括:
    获取构造码长为M/L的极化码所需的可靠度序列;
    根据预先存储的码率与可靠度门限集合的映射关系表确定出目标码率对应的可靠度门限集合,所述可靠度门限集合包含L-1个门限值a 1、a 2、…a L-2、a L-1,其中, a 1>a 2>…>a L-2>a L-1,所述目标码率R=K/M;
    确定可靠度大于a 1的子信道的数量为x L,x L个子信道的序号集合为O L;确定可靠度在a 1和a 2之间的子信道的数量为x L-1,x L-1个子信道的序号集合为O L-1;确定可靠度在a L-2和a L-1之间的子信道的数量为x 2,x 2个子信道的序号集合为O 2;在剩余可靠度小于a L-1的子信道中,按可靠度从高到底选择x 1个子信道,x 1个子信道的序号集合为O 1,其中
    Figure PCTCN2018097614-appb-100004
    将M/L个外码的序号依次标记为1至M/L号,确定与O i所含子信道序号相同序号的外码承载的信息比特的数量均为i。
  5. 根据权利要求4所述的方法,其特征在于,所述L-1个门限值a 1、a 2、…a L-2、a L-1通过如下方式确定:
    根据信息比特数目为K、母码码长为M进行极化码构造,确定M个子信道中K个信息比特的位置和M-K个冻结比特的位置,得到待编码向量u=[u 0,u 1,u 2,…,u M-1];
    将所述待编码向量分为M/L个向量集合{Q 1,Q 2,…,Q M/L},每个向量集合包含L个元素,Q 1=[u 0,u 1,…,u L-1],Q 2=[u L,u L+1,…,u 2L-1],…,Q M/L=[u M-L,u M-L+1,…,u M-1];
    将包含1个信息比特的向量集合的向量序号集合记为W 1,将包含2个信息比特的向量集合的向量序号集合记为W 2,…,将包含L个信息比特的向量集合的向量序号集合记为W L,得到W 1,W 2,…,W L
    确定W L中包含序号对应的子信道的可靠度的最小值为门限a 1,确定W L-1中包含序号对应的子信道的可靠度最小值为门限a 2,…,确定W 1中包含序号对应的子信道的可靠度的最小值为a L-1
  6. 根据权利要求4所述的方法,其特征在于,所述L-1个门限值a 1、a 2、…a L-2、a L-1通过如下方式确定:
    确定不同码率分别对应的L个第一比例系数α i、第二比例系数β i,i∈{1,2,3,…,L-1,L};
    对于每一码率,通过如下方式确定每一码率对应的可靠度门限集合;
    通过求解如下方程组确定码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}:
    Figure PCTCN2018097614-appb-100005
    2<i<=L时,x i向上取整,
    Figure PCTCN2018097614-appb-100006
    构造一个信息比特数目为K_seg、冻结比特数目为M/L-K_seg的极化码,
    Figure PCTCN2018097614-appb-100007
    在构造所述极化码的过程中,依次确定可靠度最高的x L个子信道的序号集合为O L,可靠度次高的x L-1个子信道的序号集合为O L-1,…,直至确定出所述极化码对应的L个集合{O 1,O 2,O 3,…,O L-1,O L};
    确定O L中包含序号对应的子信道的可靠度的最小值为门限a 1,确定O L-1中包含序号对应的子信道的可靠度最小值为门限a 2,…,确定O 1中包含序号对应的子信道的可靠度的最小值为a L-1
  7. 根据权利要求1~6任一项所述的方法,其特征在于,所述根据所述M/L个外 码对应的编码后比特序列对每一个内码进行码长为M/L的极化编码,得到L个内码对应的编码后比特序列,包括:
    对于所述M/L个外码对应的编码后比特序列,依次从每一个外码对应的编码后比特序列中取出第p个比特,p∈{1,2,…,L},得到L个包含M/L个比特的比特序列;
    依次将每一个所述包含M/L个比特的比特序列作为一个内码的待编码比特序列进行极化编码,得到所述L个内码对应的编码后比特序列。
  8. 一种分段编码装置,其特征在于,包括:
    获取模块,用于获取待编码信息比特的数目K、系统可承载的编码后比特序列的比特数目M和内码个数L,K、M、L为正整数,所述编码后比特序列为对所述待编码信息比特进行编码后得到的比特序列,每一个内码的长度为M/L,L个内码由M/L个外码进行相互关联;
    确定模块,用于根据K、M和L确定每一个外码承载的信息比特的数量和位置;
    第一编码模块,用于对每一个外码进行码长为L的编码,得到M/L个外码对应的编码后比特序列;
    第二编码模块,用于根据所述M/L个外码对应的编码后比特序列对每一个内码进行码长为M/L的极化编码,得到L个内码对应的编码后比特序列,根据所述L个内码对应的编码后比特序列得到所述编码后比特序列,M/L小于系统所支持的最大码长。
  9. 根据权利要求8所述的装置,其特征在于,所述确定模块用于:
    确定出目标码率对应的L个第一比例系数α i、第二比例系数β i,i∈{1,2,3,…,L-1,L},所述目标码率R=K/M;
    通过求解如下方程组确定码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}:
    Figure PCTCN2018097614-appb-100008
    2<i<=L时,x i向上取整,
    Figure PCTCN2018097614-appb-100009
    构造一个信息比特数目为K_seg、冻结比特数目为M/L-K_seg的极化码,
    Figure PCTCN2018097614-appb-100010
    在构造所述极化码的过程中,依次将可靠度最高的x L个子信道的序号放入集合O L,可靠度次高的x L-1个子信道的序号放入集合O L-1,…,直至确定出所述极化码对应的L个集合{O 1,O 2,O 3,…,O L-1,O L};
    将M/L个外码的序号依次标记为1至M/L号,确定与O i所含子信道序号相同序号的外码承载的信息比特的数量均为i。
  10. 根据权利要求9所述的装置,其特征在于,所述确定模块具体用于:
    根据预先存储的码率与第一比例系数α i、第二比例系数β i的映射关系表确定出所述目标码率对应的α i和β i的值;或者,
    根据预先存储的调制编码方式等级与第一比例系数α i、第二比例系数β i的映射关系表确定出所述目标码率对应的α i和β i的值,一个调制编码方式等级对应一个码率。
  11. 根据权利要求8所述的装置,其特征在于,所述确定模块用于:
    获取构造码长为M/L的极化码所需的可靠度序列;
    根据预先存储的码率与可靠度门限集合的映射关系表确定出目标码率对应的可靠度门限集合,所述可靠度门限集合包含L-1个门限值a 1、a 2、…a L-2、a L-1,其中,a 1>a 2>…>a L-2>a L-1,所述目标码率R=K/M;
    确定可靠度大于a 1的子信道的数量为x L,x L个子信道的序号集合为O L;确定可靠度在a 1和a 2之间的子信道的数量为x L-1,x L-1个子信道的序号集合为O L-1;确定可靠度在a L-2和a L-1之间的子信道的数量为x 2,x 2个子信道的序号集合为O 2;在剩余可靠度小于a L-1的子信道中,按可靠度从高到底选择x 1个子信道,x 1个子信道的序号集合为O 1,其中
    Figure PCTCN2018097614-appb-100011
    将M/L个外码的序号依次标记为1至M/L号,确定与O i所含子信道序号相同序号的外码承载的信息比特的数量均为i。
  12. 根据权利要求11所述的装置,其特征在于,所述L-1个门限值a 1、a 2、…a L-2、a L-1通过如下方式确定:
    根据信息比特数目为K、母码码长为M进行极化码构造,确定M个子信道中K个信息比特的位置和M-K个冻结比特的位置,得到待编码向量u=[u 0,u 1,u 2,…,u M-1];
    将所述待编码向量分为M/L个向量集合{Q 1,Q 2,…,Q M/L},每个向量集合包含L个元素,Q 1=[u 0,u 1,…,u L-1],Q 2=[u L,u L+1,…,u 2L-1],…,Q M/L=[u M-L,u M-L+1,…,u M-1];
    将包含1个信息比特的向量集合的向量序号集合记为W 1,将包含2个信息比特的向量集合的向量序号集合记为W 2,…,将包含L个信息比特的向量集合的向量序号集合记为W L,得到W 1,W 2,…,W L
    确定W L中包含序号对应的子信道的可靠度的最小值为门限a 1,确定W L-1中包含序号对应的子信道的可靠度最小值为门限a 2,…,确定W 1中包含序号对应的子信道的可靠度的最小值为a L-1
  13. 根据权利要求11所述的装置,其特征在于,所述L-1个门限值a 1、a 2、…a L-2、a L-1通过如下方式确定:
    确定不同码率分别对应的L个第一比例系数α i、第二比例系数β i,i∈{1,2,3,…,L-1,L};
    对于每一码率,通过如下方式确定每一码率对应的可靠度门限集合;
    通过求解如下方程组确定码率分别为{1/L,2/L,…,(L-1)/L,L/L}的外码的数量{x 1,x 2,…,x L-1,x L}:
    Figure PCTCN2018097614-appb-100012
    2<i<=L时,x i向上取整,
    Figure PCTCN2018097614-appb-100013
    构造一个信息比特数目为K_seg、冻结比特数目为M/L-K_seg的极化码,
    Figure PCTCN2018097614-appb-100014
    在构造所述极化码的过程中,依次确定可靠度最高的x L个子信道的序号集合为O L,可靠度次高的x L-1个子信道的序号集合为O L-1,…,直至确定出所述极化码对应的L个集合{O 1,O 2,O 3,…,O L-1,O L};
    确定O L中包含序号对应的子信道的可靠度的最小值为门限a 1,确定O L-1中包含序号对应的子信道的可靠度最小值为门限a 2,…,确定O 1中包含序号对应的子信道的可靠度的最 小值为a L-1
  14. 根据权利要求8~13任一项所述的装置,其特征在于,所述第二编码模块用于:
    对于所述M/L个外码对应的编码后比特序列,依次从每一个外码对应的编码后比特序列中取出第p个比特,p∈{1,2,…,L},得到L个包含M/L个比特的比特序列;
    依次将每一个所述包含M/L个比特的比特序列作为一个内码的待编码比特序列进行极化编码,得到所述L个内码对应的编码后比特序列。
  15. 一种分段编码装置,其特征在于,包括:
    存储器,用于存储程序指令;
    处理器,用于当调用并执行存储器中的程序指令时,执行如权利要求1-7任意一项分段编码方法。
  16. 一种可读存储介质,其特征在于,所述可读存储介质中存储有执行指令,当分段编码装置的至少一个处理器执行该执行指令时,所述分段编码装置执行如权利要求1-7任意一项分段编码方法。
PCT/CN2018/097614 2017-08-01 2018-07-27 分段编码方法及装置 WO2019024815A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710648558.4A CN109327280B (zh) 2017-08-01 2017-08-01 分段编码方法及装置
CN201710648558.4 2017-08-01

Publications (1)

Publication Number Publication Date
WO2019024815A1 true WO2019024815A1 (zh) 2019-02-07

Family

ID=65233472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097614 WO2019024815A1 (zh) 2017-08-01 2018-07-27 分段编码方法及装置

Country Status (2)

Country Link
CN (1) CN109327280B (zh)
WO (1) WO2019024815A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023215058A1 (en) * 2022-05-04 2023-11-09 Qualcomm Incorporated Polarization adjusted channel coding design for complexity reduction

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079530A (zh) * 2020-08-19 2022-02-22 华为技术有限公司 编码方法及装置
CN115567151A (zh) * 2021-07-02 2023-01-03 华为技术有限公司 一种编码、译码方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516476A (zh) * 2012-06-29 2014-01-15 华为技术有限公司 编码方法和设备
WO2014116041A1 (en) * 2013-01-23 2014-07-31 Samsung Electronics Co., Ltd. Method and system for encoding and decoding data using concatenated polar codes
CN104124979A (zh) * 2013-04-27 2014-10-29 华为技术有限公司 极性码的译码方法和译码装置
CN105680883A (zh) * 2015-12-23 2016-06-15 华中科技大学 一种极化码和多比特偶校验码级联的纠错编码方法
WO2016154968A1 (zh) * 2015-04-01 2016-10-06 华为技术有限公司 编码方法、装置、基站和用户设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106817195B (zh) * 2015-12-02 2020-04-21 华为技术有限公司 用于极化码的速率匹配的方法和装置
CN106877973B (zh) * 2015-12-10 2020-04-14 华为技术有限公司 极化码处理的方法及通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516476A (zh) * 2012-06-29 2014-01-15 华为技术有限公司 编码方法和设备
WO2014116041A1 (en) * 2013-01-23 2014-07-31 Samsung Electronics Co., Ltd. Method and system for encoding and decoding data using concatenated polar codes
CN104124979A (zh) * 2013-04-27 2014-10-29 华为技术有限公司 极性码的译码方法和译码装置
WO2016154968A1 (zh) * 2015-04-01 2016-10-06 华为技术有限公司 编码方法、装置、基站和用户设备
CN105680883A (zh) * 2015-12-23 2016-06-15 华中科技大学 一种极化码和多比特偶校验码级联的纠错编码方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Details of the Polar Code Design", RL-1611254, 3GPP TSG RAN WG1 MEETING #87, 3 November 2016 (2016-11-03), XP051189033 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023215058A1 (en) * 2022-05-04 2023-11-09 Qualcomm Incorporated Polarization adjusted channel coding design for complexity reduction

Also Published As

Publication number Publication date
CN109327280B (zh) 2021-01-15
CN109327280A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
JP7026763B2 (ja) レートマッチング方法、符号化装置、および通信装置
US20220123766A1 (en) Method And Device For Interleaving Data
JP6642814B2 (ja) Polar符号処理方法および通信装置
CN109039344B (zh) 编码输入数据为极性码的方法及设备、解码方法及其设备
CN108365848B (zh) 一种极性码的译码方法和装置
WO2017124844A1 (zh) 确定极化码传输块大小的方法和通信设备
CN108631937B (zh) 一种信息处理方法、装置及设备
CN108347301B (zh) 数据的传输方法和装置
CN109547034B (zh) 译码方法及设备、译码器
JP7216011B2 (ja) ポーラーコードレートマッチング方法および装置
WO2020147526A1 (zh) 一种级联crc码的极化码编码方法及装置
WO2018166416A1 (zh) 传输控制信息的方法和装置
WO2018202080A1 (zh) Polar码编译码方法及装置
WO2019024815A1 (zh) 分段编码方法及装置
WO2019170113A1 (zh) 通信系统中基于极化码的盲检测方法及设备
WO2019154340A1 (zh) 编码方式的指示方法及设备
KR20200029578A (ko) 코딩 방법 및 디바이스
WO2016000197A1 (zh) 用于译码的方法和装置
CN114079530A (zh) 编码方法及装置
TWI791023B (zh) 編碼輸入資料為極性碼的方法及設備、解碼方法及用以解碼碼字的設備
CN111447042B (zh) 一种极化编译码方法及装置
EP3592074B1 (en) Resource mapping method and apparatus thereof
WO2018210216A1 (zh) 传输数据的方法、芯片、收发机和计算机可读存储介质
WO2018161946A1 (zh) 数据处理的方法和装置
WO2018141271A1 (zh) 数据处理的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841666

Country of ref document: EP

Kind code of ref document: A1