WO2018202080A1 - Polar码编译码方法及装置 - Google Patents
Polar码编译码方法及装置 Download PDFInfo
- Publication number
- WO2018202080A1 WO2018202080A1 PCT/CN2018/085457 CN2018085457W WO2018202080A1 WO 2018202080 A1 WO2018202080 A1 WO 2018202080A1 CN 2018085457 W CN2018085457 W CN 2018085457W WO 2018202080 A1 WO2018202080 A1 WO 2018202080A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- length
- sequence
- code length
- information
- information bit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0009—Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/13—Linear codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/61—Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
- H03M13/611—Specific encoding aspects, e.g. encoding by means of decoding
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/63—Joint error correction and other techniques
- H03M13/6312—Error control coding in combination with data compression
- H03M13/6318—Error control coding in combination with data compression using variable length codes
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/63—Joint error correction and other techniques
- H03M13/635—Error control coding in combination with rate matching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0015—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
- H04L1/0016—Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0033—Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0036—Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0041—Arrangements at the transmitter end
- H04L1/0043—Realisations of complexity reduction techniques, e.g. use of look-up tables
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0045—Arrangements at the receiver end
- H04L1/0052—Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0067—Rate matching
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0072—Error control for data other than payload data, e.g. control data
Definitions
- the relative ordering (sorting sequence) or the relative size (quantized sequence) of the polarization channel reliability can be obtained by the Polar code construction.
- the obtained sorting sequence is called a construction sequence, and finally Selecting a set of corresponding information bit indexes of polarized channels with higher reliability
- the construction sequence can be determined by online calculation or by depositing a table.
- the coding parameter includes at least one of an aggregation level, a target code length, and a mother code length, or the coding parameter is a maximum mother code, by storing a mapping relationship between the coding parameter and the configuration sequence corresponding to the coding parameter in the Polar code construction sequence table. Long, compared with different information bit lengths and mother code lengths, a construction sequence is stored. The structure sequence stored in this embodiment is independent of the information bit length, which greatly reduces the storage overhead of the Polar code construction sequence table.
- the aggregation level characterizes the number of bits that the control channel can carry, and the aggregation level has a one-to-one correspondence with the target code length.
- the coding parameter is the maximum mother code length
- the third code sequence corresponding to the maximum mother code length is stored in the Polar code construction sequence table.
- the information bit set is obtained from the Polar code construction sequence table according to the information bit length of the information to be encoded and the target code length, including: determining the mother code length N according to the information bit length K and the target code length, The information bits corresponding to the K polarized channels with the highest reliability among the N polarized channels are selected as the information bit set, and N and K are positive integers.
- the construction sequence is to calculate the polarization channel reliability or the polarization channel error probability according to the Gaussian approximation method or the density evolution method, and arrange in ascending or descending order according to the polarization channel reliability or the normalized reliability.
- the embodiment of the present application provides a Polar code encoding apparatus, including: an acquiring module, configured to obtain an information bit set from a Polar code construction sequence table according to an information bit length and a target code length of the information to be encoded, and a Polar code structure.
- the sequence table stores a mapping relationship between the coding parameter and the structure sequence corresponding to the coding parameter, and the structure sequence is a sequence for characterizing the reliability of the polarization channel, and the coding parameter includes at least one of an aggregation level, a target code length, and a mother code length.
- the encoding parameter is a maximum mother code length; the encoding module is configured to perform polarization encoding on the information to be encoded according to the information to be encoded and the information bit set.
- the coding parameter includes at least one of an aggregation level, a target code length, and a mother code length, or the coding parameter is a maximum mother code, by storing a mapping relationship between the coding parameter and the configuration sequence corresponding to the coding parameter in the Polar code construction sequence table. Long, compared with different information bit lengths and mother code lengths, a construction sequence is stored. The structure sequence stored in this embodiment is independent of the information bit length, which greatly reduces the storage overhead of the Polar code construction sequence table.
- the coding parameter includes at least one of an aggregation level, a target code length, and a mother code length.
- the coding parameter value that is less than or equal to the preset coding parameter threshold corresponds to the same one.
- the second constructed sequence is greater than the encoding parameter value of the preset encoding parameter threshold, and one encoding parameter value correspondingly stores a constructed sequence.
- the coding parameter is the maximum mother code length
- the third code sequence corresponding to the maximum mother code length is stored in the Polar code construction sequence table.
- the obtaining module is configured to: determine a mother code length N according to the information bit length K and the target code length, and select K polarizations with the most reliability among the N polarization channels from the third structure sequence.
- the information bits corresponding to the channel are used as a set of information bits, and N and K are positive integers.
- the construction sequence is to calculate the polarization channel reliability or the polarization channel error probability according to the Gaussian approximation method or the density evolution method, and arrange in ascending or descending order according to the polarization channel reliability or the normalized reliability.
- the processor is used to:
- the information bit set is obtained from the Polar code construction sequence table according to the information bit length and the target code length of the information to be encoded, and the mapping relationship between the coding parameter and the coding sequence corresponding to the coding parameter is stored in the Polar code construction sequence table, and the structural sequence is characterized by polarization a sequence of reliability ranking of the channel, the coding parameter includes at least one of an aggregation level, a target code length, and a mother code length, or the coding parameter is a maximum mother code length; and the to-be-coded information and the information bit set are to be encoded.
- the information is polar coded.
- the coding parameter includes at least one of an aggregation level, a target code length, and a mother code length, or the coding parameter is a maximum mother code, by storing a mapping relationship between the coding parameter and the configuration sequence corresponding to the coding parameter in the Polar code construction sequence table. Long, compared with different information bit lengths and mother code lengths, a construction sequence is stored. The structure sequence stored in this embodiment is independent of the information bit length, which greatly reduces the storage overhead of the Polar code construction sequence table.
- the processor is configured to: determine a corresponding first encoding parameter according to the target code length, and obtain a first configuration sequence corresponding to the first encoding parameter from the Polar code construction sequence table, according to the information bit length from the first A first set of information bits is determined in the constructed sequence.
- the coding parameter is the maximum mother code length
- the third code sequence corresponding to the maximum mother code length is stored in the Polar code construction sequence table.
- the processor is configured to: determine a mother code length N according to the information bit length K and the target code length, and select K most polarized channels with the most reliability among the N polarization channels from the third structure sequence.
- Corresponding information bits are used as information bit sets, and N and K are positive integers.
- the construction sequence is to calculate the polarization channel reliability or the polarization channel error probability according to the Gaussian approximation method or the density evolution method, and arrange in ascending or descending order according to the polarization channel reliability or the normalized reliability.
- the constructed sequence is a sequence in which the polarization channel reliability is calculated according to the polarization weight of the polarized channel, and the polarization channel reliability or the normalized reliability is arranged in ascending or descending order.
- the coding parameter includes at least one of an aggregation level, a target code length, and a mother code length.
- one coding parameter value correspondingly stores one construction sequence.
- obtaining the information bit set from the Polar code construction sequence table according to the information bit length of the information to be decoded and the target code length including: determining a corresponding first coding parameter according to the target code length; from the Polar code And acquiring a first configuration sequence corresponding to the first coding parameter in the sequence table; determining the first information bit set from the first configuration sequence according to the information bit length.
- the coding parameter includes at least one of an aggregation level, a target code length, and a mother code length.
- the coding parameter value that is less than or equal to the preset coding parameter threshold corresponds to the same one.
- the second constructed sequence is greater than the encoding parameter value of the preset encoding parameter threshold, and one encoding parameter value correspondingly stores a constructed sequence.
- the information bit set is obtained from the Polar code construction sequence table according to the information bit length and the target code length of the information to be decoded, including: determining the mother code length N according to the information bit length K and the target code length, The information bits corresponding to the K most polarized channels of the N polarized channels are selected as the information bit set, and N and K are positive integers.
- the construction sequence is to calculate the polarization channel reliability or the polarization channel error probability according to the Gaussian approximation method or the density evolution method, and arrange in ascending or descending order according to the polarization channel reliability or the normalized reliability.
- the constructed sequence is a sequence in which the polarization channel reliability is calculated according to the polarization weight of the polarized channel, and the polarization channel reliability or the normalized reliability is arranged in ascending or descending order.
- An obtaining module configured to obtain an information bit set from a Polar code construction sequence table according to an information bit length and a target code length of the information to be decoded, and store a mapping relationship between the coding parameter and the structure sequence corresponding to the coding parameter in the Polar code construction sequence table,
- the constructing sequence is a sequence for characterizing the reliability order of the polarized channel, and the encoding parameter includes at least one of an aggregation level, a target code length, and a mother code length, or the encoding parameter is a maximum mother code length;
- the decoding module is configured to: The information to be decoded is decoded according to the information to be decoded and the set of information bits.
- the coding parameter includes at least one of an aggregation level, a target code length, and a mother code length, or the coding parameter is a maximum mother code, by storing a mapping relationship between the coding parameter and the configuration sequence corresponding to the coding parameter in the Polar code construction sequence table. Long, compared with different information bit lengths and mother code lengths, a construction sequence is stored. The structure sequence stored in this embodiment is independent of the information bit length, which greatly reduces the storage overhead of the Polar code construction sequence table.
- the coding parameter includes at least one of an aggregation level, a target code length, and a mother code length.
- one coding parameter value correspondingly stores one construction sequence.
- the acquiring module is configured to: determine a corresponding first encoding parameter according to the target code length; obtain a first structural sequence corresponding to the first encoding parameter from the Polar code construction sequence table; A first set of information bits is determined in a constructed sequence.
- the coding parameter includes at least one of an aggregation level, a target code length, and a mother code length.
- the coding parameter value that is less than or equal to the preset coding parameter threshold corresponds to the same one.
- the second constructed sequence is greater than the encoding parameter value of the preset encoding parameter threshold, and one encoding parameter value correspondingly stores a constructed sequence.
- the acquiring module is configured to: determine a corresponding second encoding parameter according to the target code length, and if the second encoding parameter is less than or equal to the encoding parameter threshold, according to the information bit length K and the target code length from the second The K information bits with the highest reliability are selected as the information bit set, and K is a positive integer. If the second coding parameter is greater than the coding parameter threshold, the third corresponding to the second coding parameter is obtained from the Polar code construction sequence table. Constructing a sequence; determining a set of information bits from the third constructed sequence based on the length of the information bits.
- the construction sequence is to calculate the polarization channel reliability or the polarization channel error probability according to the Gaussian approximation method or the density evolution method, and arrange in ascending or descending order according to the polarization channel reliability or the normalized reliability.
- the constructed sequence is a sequence in which the polarization channel reliability is calculated according to the polarization weight of the polarized channel, and the polarization channel reliability or the normalized reliability is arranged in ascending or descending order.
- the embodiment of the present application provides a Polar code decoding apparatus, including:
- the memory is used to store program instructions
- the processor is used to:
- the information bit set is obtained from the Polar code construction sequence table according to the information bit length and the target code length of the information to be decoded, and the mapping relationship between the coding parameter and the coding sequence corresponding to the coding parameter is stored in the Polar code construction sequence table, and the structural sequence is characterized.
- a sequence of reliability ordering of the channel the coding parameter includes at least one of an aggregation level, a target code length, and a mother code length, or the coding parameter is a maximum mother code length; according to the information to be decoded and the information bit set The information to be decoded is decoded.
- the coding parameter includes at least one of an aggregation level, a target code length, and a mother code length, or the coding parameter is a maximum mother code, by storing a mapping relationship between the coding parameter and the configuration sequence corresponding to the coding parameter in the Polar code construction sequence table. Long, compared with different information bit lengths and mother code lengths, a construction sequence is stored. The structure sequence stored in this embodiment is independent of the information bit length, which greatly reduces the storage overhead of the Polar code construction sequence table.
- the coding parameter includes at least one of an aggregation level, a target code length, and a mother code length.
- one coding parameter value correspondingly stores one construction sequence.
- the processor is configured to: determine a corresponding first encoding parameter according to the target code length, and obtain a first configuration sequence corresponding to the first encoding parameter from the Polar code construction sequence table, according to the information bit length from the first A first set of information bits is determined in the constructed sequence.
- the embodiment of the present application provides a readable storage medium, where an execution instruction is stored, and when at least one processor of the encoding apparatus executes the execution instruction, the encoding apparatus performs the first aspect and the first aspect. Any possible coding method in the design.
- the embodiment of the present application provides a readable storage medium, where an execution instruction is stored, and when at least one processor of the decoding apparatus executes the execution instruction, the decoding apparatus performs the fourth aspect and the A decoding method in any of the possible designs in four aspects.
- an embodiment of the present application provides a program product, where the program product includes an execution instruction, where the execution instruction is stored in a readable storage medium.
- At least one processor of the encoding device can read the execution instructions from a readable storage medium, the at least one processor executing the execution instructions such that the encoding device implements the encoding method in the first aspect and any of the possible aspects of the first aspect.
- FIG. 2 is a schematic diagram of a coding process of a Polar code
- FIG. 3 is a flowchart of a method for encoding a Polar code according to an embodiment of the present application
- FIG. 4 is a flowchart of an embodiment of a method for decoding a Polar code according to an embodiment of the present application
- FIG. 5 is a schematic structural diagram of an embodiment of a Polar code encoding apparatus according to an embodiment of the present disclosure
- FIG. 6 is a schematic structural diagram of an embodiment of a device for decoding a Polar code according to an embodiment of the present disclosure
- the channel coding technology for improving information transmission reliability and ensuring communication quality in a 5G communication scenario may be applied to a scenario in which information is Polar encoded and decoded, for example, may be applied to enhanced mobile broadband (Enhanced Mobile Broad Band (eMBB) scenarios in which uplink control information and downlink control information are used for Polar encoding and decoding, and can also be applied to other scenarios, for example, channel coding (Channel Coding) and uplink of 5.1.3 of the communication standard TS 36.212.
- eMBB Enhanced Mobile Broad Band
- FIG. 1 is a schematic flow chart of a communication system.
- the structure of channel coding in a communication system is as shown in FIG. 1.
- information to be transmitted source
- channel coded channel coded
- transmitting end After the rate matching is the encoded bit, the encoded bit is digitally modulated and then sent out from the channel, and the information to be decoded at the receiving end is digitally demodulated into a sequence to be decoded, and then the sequence to be decoded is subjected to de-rate matching, channel decoding,
- the source decoding obtains the decoded information (sink), in which channel coding and rate matching play a vital role in the reliability of information transmission in the entire communication system.
- Polar code construction sequence table in the related art, different information bit lengths and mother code lengths are stored in one configuration sequence, and the storage overhead is large.
- the embodiment of the present application proposes a Polar code construction sequence table. The storage method and the storage overhead can be reduced. The method and device for compiling the Polar code provided by the embodiment of the present application are described in detail below with reference to the accompanying drawings.
- the embodiments of the present application are mainly applied to various wireless communication systems.
- the network element involved in the embodiments of the present application relates to a base station and a terminal device, and can implement communication between the base station and the terminal device.
- the technical solution of the embodiment of the present application can be applied to a 5G communication system, and can also be applied to other various communication systems, for example, a Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA). System, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE frequency division duplex (Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD) system, Universal Mobile Telecommunication System (UMTS), and the like.
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- FDD Frequency Division Duplex
- FIG. 3 is a flowchart of a method for encoding a Polar code according to an embodiment of the present disclosure. As shown in FIG. 3, the embodiment is described by using a sending end as an executing body. The method in this embodiment may include:
- S101 Obtain an information bit set from a Polar code construction sequence table according to an information bit length and a target code length of the information to be encoded, and store a mapping relationship between the coding parameter and the coding sequence corresponding to the coding parameter in the Polar code construction sequence table, and construct the sequence as a representation.
- a sequence of reliability ordering of the polarized channels, the encoding parameters including at least one of an aggregation level, a target code length, and a mother code length, or the encoding parameter is a maximum mother code length.
- the Polar code encoding method provided in this embodiment stores a mapping relationship between a coding parameter and a structure sequence corresponding to the coding parameter in a sequence code list of the Polar code, and the coding parameter includes at least one of an aggregation level, a target code length, and a mother code length.
- the coding parameter is the maximum mother code length
- a structure sequence is stored compared to different information bit lengths and mother code lengths.
- the structure sequence stored in this embodiment is independent of the information bit length, and the Polar code structure sequence table is greatly reduced. Storage overhead.
- the code length of the mother code is the code length used when performing the Polar code
- the target code length is the bit length M of the coded and rate matched.
- the aggregation level characterizes the number of bits that the control channel can carry. The larger the aggregation level, the more bits that can be carried. Generally, the aggregation level has a one-to-one correspondence with the target code length. One aggregation level corresponds to one target code length. Under the same number of information bits, the higher the aggregation level, the longer the code length and the lower the code rate. For example, four communication levels are specified in the communication system: 1-4, and the corresponding target code lengths are 72, 144, 288, and 576, respectively. Assuming that the length of the information to be encoded is 80, then any one of the aggregation levels 2-4 can be used for transmission.
- the constructing sequence is a sequence for characterizing the reliability of the polarized channel.
- the encoding parameter includes at least one of an aggregation level, a target code length, and a mother code length
- the constructed sequence is evolved according to a Gaussian approximation method or density.
- the method calculates the polarization channel reliability or the polarization channel error probability, according to the sequence of the polarization channel reliability or the normalized reliability in ascending or descending order, or according to the polarization channel error probability or the normalized error probability in ascending order Or a sequence of descending order.
- one coding parameter value correspondingly stores one construction sequence.
- the method may include: determining a corresponding first coding parameter according to the target code length, and obtaining the sequence code from the Polar code structure sequence table.
- the first configuration sequence corresponding to the first coding parameter determines a first information bit set from the first configuration sequence according to the information bit length.
- the same configuration sequence (second configuration sequence) may be correspondingly stored;
- the encoding parameter value of the threshold, and one encoding parameter value correspondingly stores a construction sequence.
- the information bit set is obtained from the Polar code structure sequence table according to the information bit length of the information to be encoded and the target code length, which may include: determining a corresponding second coding parameter according to the target code length, if the second coding parameter is less than or equal to
- the K information bits with the highest reliability are selected from the second structure sequence as the information bit set according to the information bit length K and the target code length, where K is a positive integer, and if the second coding parameter is greater than the coding parameter threshold
- the construction sequence is a sequence in which the polarization channel reliability is calculated according to the polarization weight of the polarization channel, and the polarization channel reliability or the normalization reliability is arranged in ascending or descending order.
- the third code sequence corresponding to the maximum mother code length is stored in the Polar code construction sequence table.
- obtaining the information bit set from the Polar code construction sequence table according to the information bit length of the information to be encoded and the target code length may specifically include: determining the mother code length N according to the information bit length K and the target code length, from the third structure sequence.
- the information bits corresponding to the K most polarized channels of the N polarized channels are selected as the information bit set, and N and K are positive integers.
- the storage contents of the Polar code construction sequence table can be specifically as follows:
- mapping relationship between the aggregation level and the construction sequence corresponding to the aggregation level is stored in the Polar code construction sequence table.
- the transmitting end acquires the information bit set from the Polar code construction sequence table according to the information bit length of the information to be encoded and the target code length. Since an aggregation level corresponds to a target code length, the corresponding aggregation level can be determined according to the target code length, and the structure sequence corresponding to the aggregation level is obtained from the Polar code construction sequence table shown in Table 1, and the structure sequence is determined.
- the arranged sequence selects the last (highly high) K bits from the constructed sequence as the information bit set.
- the Polar code construction sequence table stores the mapping relationship between the target code length and the structure sequence corresponding to the target code length.
- an aggregation level includes a plurality of target code lengths, and an aggregation level is not used to represent a construction sequence at different target code lengths.
- the target code length and the aggregation level do not necessarily have a one-to-one correspondence.
- the target code length in Table 2 may be the target code length and the corresponding structure sequence set according to actual application requirements.
- the sending end obtains the information bit set from the Polar code construction sequence table according to the information bit length of the information to be encoded and the target code length, and specifically includes: firstly, obtaining the structure sequence corresponding to the target code length from the Polar code construction sequence table shown in Table 2. After determining the constructed sequence, the information bit set is determined from the constructed sequence according to the information bit length of the information to be encoded. For example, if the information bit length of the information to be encoded is K, and the constructed sequence is a sequence arranged in descending order according to the polarization channel reliability or the normalized reliability, the top K bits are selected as the information from the constructed sequence. Bit set.
- the coding parameter value that is less than or equal to the preset coding parameter threshold corresponds to storing the same construction sequence (second configuration sequence), the coding parameter value greater than the preset coding parameter threshold, and one coding parameter.
- the value corresponds to storing a constructed sequence. That is to say, the encoding parameter value less than or equal to the preset encoding parameter threshold may store a construction sequence correspondingly, as shown in Table 3 below.
- Table 3 is a Polar code construction sequence table stored according to the target code length or the aggregation level. The target code length is 12 or less corresponding to the same structure sequence, and the target code lengths are 24, 48, etc.
- the transmitting end obtains the information bit set from the Polar code construction sequence table according to the information bit length and the target code length of the information to be encoded, and specifically includes: if the target code length of the information to be encoded is equal to 12, to be encoded
- the information bit length of the information is 6, according to the information bit length 6 and the target code length 12 from the construction sequence (1, 2, 3, 5, 9, 4, 6, 7, 10, 11, 13, 8, 12, 14, 15,15), the six information bits (13, 8, 12, 14, 15, 16) having the highest reliability are selected as the information bit set, and if the target code length of the information to be encoded is equal to 8, the information to be encoded is
- the information bit length is 4, and 4 information bits with the highest reliability are selected from the construction sequence (1, 2, 3, 5, 4, 6, 7, 8) according to the information bit length 4 and the target code length 8 (4) , 6, 7, 8) as a set of information
- the structural sequence corresponding to the target code length 24 is obtained from the Polar code construction sequence table (1, 2, 3, 5, 9, 17, 4, 6, 7) ,10,11,18,13,19,21,8,25,12,14,20,15,22,23,26,27,29,16,24,28,30,31,32), based on information
- the bit length determines a set of information bits from the constructed sequence.
- the Polar code construction sequence table stores the mapping relationship between the aggregation level, the target code length, and the construction sequence.
- mapping relationship between the aggregation level and the target code length, the structure sequence corresponding to the aggregation level and the target code length, and the mapping between the storage aggregation level, the target code length, and the structure sequence may be used.
- the Polar code construction sequence table of the relationship as shown in Table 4, has a one-to-one relationship between the target code length and the aggregation level and the construction sequence.
- the transmitting end when determining the configuration sequence, it may be determined according to the target code length, or may be determined according to the aggregation level, and the transmitting end acquires information bits from the Polar code construction sequence table according to the information bit length of the information to be encoded and the target code length.
- the manner of collection is the same as that shown in Table 1 or Table 2, and will not be described here.
- Table 5 below is another Polar code construction sequence table storing the mapping relationship between the aggregation level, the target code length, and the construction sequence.
- Table 5 As shown in Table 5, as shown in Table 5, the coding parameters whose target code length is less than or equal to 12 and whose aggregation level is less than or equal to 3 correspond to a structure sequence, and the coding parameters whose target code length is greater than 12 and whose aggregation level is greater than 3 respectively correspond.
- a construction sequence is stored, for example, a sequence arranged in ascending order according to the reliability of the polarization channel.
- the mapping relationship between the code length of the mother code and the structure sequence corresponding to the code length of the mother code is stored in the Polar code construction sequence table.
- the mapping relationship between the mother code code length and the structure sequence corresponding to the mother code length may be stored.
- one mother code length corresponds to store one structure sequence.
- the constructed sequence may be a sequence arranged in ascending or descending order according to polarization channel reliability or normalized reliability, or a sequence arranged in ascending or descending order according to a polarization channel error probability or a normalized error probability.
- the manner in which the sending end obtains the information bit set from the Polar code structure sequence table is the same as that shown in Table 1 or Table 2, and is not described here.
- Mother code length Construction sequence 4 1,2,3,4 8 1,2,3,5,4,6,7,8 16 1,2,3,5,9,4,6,7,10,11,13,8,12,14,15,16 ... ... 1024
- Table 7 stores the mapping relationship between the code length of the mother code and the structure sequence corresponding to the code length of the mother code.
- the mother code length is 32 and 64 corresponding to store a structure sequence, and the mother code length is less than 32, greater than or
- the mother code length equal to 64 respectively stores a structure sequence, for example, a sequence in which the polarization channel reliability is in ascending order.
- the manner in which the sending end obtains the information bit set from the Polar code structure sequence table is the same as that shown in Table 3, and is not described here.
- the mapping relationship between the maximum mother code length and the structure sequence corresponding to the maximum mother code length is stored in the Polar code construction sequence table.
- the maximum mother code length is the maximum mother code length that the communication system can support.
- the sending end acquires the information bit set from the Polar code construction sequence table according to the information bit length of the information to be encoded and the target code length, and specifically includes: if the mother code length of the information to be encoded is equal to 16, the information bit length of the information to be encoded 6, according to the information bit length 6 and the target code length 12, from the construction sequence (1, 2, 3, 5, 9, 4, 6, 7, 10, 11, 13, 8, 12, 14, 15, 16) The six information bits (13, 8, 12, 14, 15, 16) with the highest reliability are selected as the information bit set.
- the information bit length of the information to be encoded is 4 According to the information bit length 4 and the target code length 8, 4 information bits with the highest reliability are selected from the structure sequence (1, 2, 3, 5, 4, 6, 7, 8) (4, 6, 7, 8) ) as a collection of information bits. In this embodiment, only one construction sequence needs to be stored, which greatly reduces the storage overhead of the Polar code construction sequence table.
- FIG. 4 is a flowchart of a method for decoding a Polar code according to an embodiment of the present disclosure. As shown in FIG. 4, the method in this embodiment may include:
- S201 Obtain an information bit set from a Polar code construction sequence table according to information bit length and target code length of the code information to be compiled, and store a mapping relationship between the coding parameter and the structure sequence corresponding to the coding parameter in the Polar code construction sequence table, where the structure sequence is A sequence of reliability ordering of the polarized channel, the encoding parameter including at least one of an aggregation level, a target code length, and a mother code length, or the encoding parameter is a maximum mother code length.
- the information to be decoded may be mapped to the polarization channel corresponding to the information bit set, and the bits corresponding to the remaining polarization channels are set to a fixed value, and the Polar decoding is performed.
- the mapping relationship between the coding parameter and the coding sequence corresponding to the coding parameter is stored in the Polar code construction sequence table, and the coding parameter includes at least an aggregation level, a target code length, and a mother code length.
- One, or the encoding parameter is the maximum mother code length, and a structure sequence is stored compared with different information bit lengths and mother code lengths in the prior art.
- the structure sequence stored in this embodiment is independent of the information bit length, and is greatly reduced.
- the storage overhead of the Polar code construction sequence table is described in the Polar code construction sequence table.
- the code length of the mother code is the code length used when performing the Polar code
- the target code length is the bit length M of the coded and rate matched.
- the aggregation level characterizes the number of bits that the control channel can carry. The larger the aggregation level, the more bits that can be carried. Generally, the aggregation level has a one-to-one correspondence with the target code length. One aggregation level corresponds to one target code length. Under the same number of information bits, the higher the aggregation level, the longer the code length and the lower the code rate.
- the constructing sequence is a sequence for characterizing the reliability of the polarized channel.
- the encoding parameter includes at least one of an aggregation level, a target code length, and a mother code length
- the constructed sequence is evolved according to a Gaussian approximation method or density.
- the method calculates the polarization channel reliability or the polarization channel error probability, according to the sequence of the polarization channel reliability or the normalized reliability in ascending or descending order, or according to the polarization channel error probability or the normalized error probability in ascending order Or a sequence of descending order.
- one coding parameter value correspondingly stores one construction sequence.
- the same configuration sequence (second configuration sequence) may be correspondingly stored;
- the encoding parameter value of the threshold, and one encoding parameter value correspondingly stores a construction sequence.
- the construction sequence is a sequence in which the polarization channel reliability is calculated according to the polarization weight of the polarization channel, and the polarization channel reliability or the normalization reliability is arranged in ascending or descending order.
- the third code sequence corresponding to the maximum mother code length is stored in the Polar code construction sequence table.
- obtaining the information bit set from the Polar code construction sequence table according to the information bit length of the information to be encoded and the target code length may specifically include: determining the mother code length N according to the information bit length K and the target code length, from the third structure sequence.
- the information bits corresponding to the K most polarized channels of the N polarized channels are selected as the information bit set, and N and K are positive integers.
- the embodiment of the present application may divide the function module by the sending device and the receiving device according to the foregoing method example.
- each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
- the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and may be further divided in actual implementation.
- FIG. 5 is a schematic structural diagram of an embodiment of a Polar code encoding apparatus according to an embodiment of the present disclosure.
- the apparatus in this embodiment may include: an obtaining module 11 and an encoding module 12, where the obtaining module 11 is used.
- the information bit set is obtained from the Polar code construction sequence table according to the information bit length and the target code length of the information to be encoded, and the mapping relationship between the coding parameter and the coding sequence corresponding to the coding parameter is stored in the Polar code construction sequence table, and the structural sequence is characterized by polarization
- a sequence of reliability ordering of channels, the coding parameters including at least one of an aggregation level, a target code length, and a mother code length, or the coding parameter is a maximum mother code length.
- the encoding module 12 is configured to perform polarization coding on the information to be encoded according to the information to be encoded and the information bit set.
- the aggregation level represents the number of bits that the control channel can carry, and the aggregation level has a one-to-one correspondence with the target code length.
- the coding parameter value is less than or equal to a preset coding parameter threshold.
- the same construction sequence may be stored correspondingly; for the coding parameter value greater than the preset coding parameter threshold, one coding parameter value correspondingly stores one construction sequence.
- the structure sequence may be configured to calculate a polarization channel reliability or a polarization channel error probability according to a Gaussian approximation method or a density evolution method.
- the construction sequence is a sequence in which the polarization channel reliability is calculated according to the polarization weight of the polarization channel, and the polarization channel reliability or the normalization reliability is arranged in ascending or descending order.
- the aggregation level represents the number of bits that the control channel can carry, and the aggregation level has a one-to-one correspondence with the target code length.
- the obtaining module 21 is configured to: determine a corresponding first coding parameter according to the target code length, obtain a first configuration sequence corresponding to the first coding parameter from the Polar code configuration sequence table, and determine the first from the first configuration sequence according to the information bit length Information bit set.
- the obtaining module 21 is configured to: determine a corresponding second encoding parameter according to the target code length; if the second encoding parameter is less than or equal to the encoding parameter threshold, select reliability from the second structural sequence according to the information bit length K and the target code length
- K is a positive integer
- the second coding parameter is greater than the coding parameter threshold, the third structure sequence corresponding to the second coding parameter is obtained from the Polar code construction sequence table; A set of information bits is determined from the third constructed sequence.
- the third structure sequence corresponding to the maximum mother code length is stored in the Polar code construction sequence table.
- the obtaining module 21 is configured to: select, according to the information bit length K and the target code length, the K information bits with the highest reliability from the third structure sequence as the information bit set, where K is a positive integer.
- the structure sequence may be configured to calculate a polarization channel reliability or a polarization channel error probability according to a Gaussian approximation method or a density evolution method.
- the construction sequence is a sequence in which the polarization channel reliability is calculated according to the polarization weight of the polarization channel, and the polarization channel reliability or the normalization reliability is arranged in ascending or descending order.
- the decoding device of this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 4, and the implementation principle and technical effects are similar, and details are not described herein again.
- the memory 1101 is configured to store a stored program instruction, and the memory may also be a flash (flash memory).
- the processor 1102 is configured to call and execute program instructions in the memory to implement various steps in the encoding method shown in FIG. 3. For details, refer to the related description in the foregoing method embodiments.
- the memory 1101 can be either independent or integrated with the processor 1102.
- the bus 1103 is used to connect the memory and the processor.
- the encoding apparatus of FIG. 7 may further include a transmitter (not shown) for transmitting the encoded sequence of the processor 1102 for Polar encoding.
- FIG. 8 is a schematic diagram of another apparatus for decoding a Polar code according to an embodiment of the present disclosure.
- the apparatus 1200 includes:
- the memory 1201 is configured to store execution instructions, and the memory may also be flash (flash memory).
- the processor 1202 is configured to execute an execution instruction of the memory storage for implementing each step in the decoding method shown in FIG. 4. For details, refer to the related description in the foregoing method embodiments.
- the memory 1201 may be separate or integrated with the processor 1202.
- the device 1200 may further include:
- the decoding apparatus of FIG. 8 may further include a receiver (not shown) for receiving the signal to be decoded and transmitting the signal to be decoded to the processor 1202.
- the communication device can be configured as a general purpose processing system, such as generally referred to as a chip, the general purpose processing system comprising: one or more microprocessors providing processor functionality; and external memory providing at least a portion of a storage medium, all of which can be passed
- the external bus architecture is connected to other support circuits.
- the embodiment of the present application further provides a readable storage medium.
- the readable storage medium stores execution instructions.
- the encoding apparatus executes the encoding method provided by the various embodiments described above. .
- the embodiment of the present application further provides a readable storage medium.
- the readable storage medium stores execution instructions.
- the decoding apparatus executes the execution instruction, the decoding apparatus performs the foregoing various embodiments. Decoding method.
- the embodiment of the present application further provides a program product, where the program product includes an execution instruction, where the execution instruction is stored in a readable storage medium.
- At least one processor of the decoding device can read the execution instructions from a readable storage medium, and the at least one processor executes the execution instructions such that the decoding device implements the decoding methods provided by the various embodiments described above.
- the computer instructions can be from a website site, computer, server or data center to another website site by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) Transfer from a computer, server, or data center.
- wire eg, coaxial cable, fiber optic, digital subscriber line (DSL)
- wireless eg, infrared, wireless, microwave, etc.
- the computer readable storage medium can be any available media that can be accessed by a computer or a server, data center, or equivalent data storage device that includes one or more available media.
- the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape, a USB flash drive, a ROM, a RAM, etc.), an optical medium (eg, a CD, a DVD, etc.), or a semiconductor medium (eg, a solid state hard disk Solid State Disk (SSD) ))Wait.
- a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape, a USB flash drive, a ROM, a RAM, etc.
- an optical medium eg, a CD, a DVD, etc.
- a semiconductor medium eg, a solid state hard disk Solid State Disk (SSD)
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
Abstract
本申请实施例提供一种Polar码编译码方法及装置。该方法包括:根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,构造序列为表征极化信道的可靠度排序的序列,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长。根据待编码信息和信息比特集合对所待编码信息进行极化编码。从而,存储的构造序列与信息比特长度无关,大大降低了Polar码构造序列表的存储开销。
Description
本申请要求于2017年05月03日提交中国专利局、申请号为201710302992.7、申请名称为“Polar码编译码方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及一种Polar码编译码方法及装置。
通信系统通常采用信道编码提高数据传输的可靠性,保证通信的质量,第五代移动通信技术(5th-generation,5G)需要未来信道编码能够以较低的复杂度支持更大范围的码率。Polar(极化)码是第一种能够被严格证明“达到”信道容量的信道编码方法。Polar码是一种线性块码,其生成矩阵为G
N,其编码过程为
是一个二进制的行矢量,长度为N(即码长);且
这里
B
N是一个N×N的转置矩阵,例如比特逆序转置矩阵;
定义为log
2N个矩阵F
2的克罗内克(Kronecker)乘积。
在Polar码的编码过程中,
中的一部分比特用来携带信息,称为信息比特,信息比特的索引的集合记作
另外的一部分比特置为收发端预先约定的固定值,称之为固定比特,其索引的集合用
的补集
表示。固定比特通常被设为0,只需要收发端预先约定,固定比特序列可以被任意设置。Polar码的构造过程即集合
的选取过程,决定了Polar码的性能。选取
的过程一般称为Polar码的构造过程,通过Polar码构造可以得到极化信道可靠度的相对排序(排序序列)或者相对大小(量化序列)的排序,得到的排序序列称为构造序列,最终可以选择可靠度较高的极化信道对应信息比特索引的集合
其中,构造序列可通过在线计算或者存表的方式确定。
现有的存表方式中,在Polar码构造序列表中不同的信息比特长度和母码长度都存储一个构造序列,存储的开销很大。
发明内容
本申请实施例提供一种Polar码编译码方法及装置,以降低Polar码构造序列表的存储开销。
第一方面,本申请实施例提供一种Polar码编码方法,包括:根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,构造序列为表征极化信道的可靠度排序的序列,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长;根据待编码信息和信息比特集合对所待编码信息进行极化编码。通过在Polar码构造序列表中存储编码参数和编码参数对应的构造序列 的映射关系,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长,相比较不同的信息比特长度和母码长度都存储一个构造序列,本实施例存储的构造序列与信息比特长度无关,大大降低了Polar码构造序列表的存储开销。
在一种可能的设计中,聚合等级表征控制信道所能承载的比特数,聚合等级与目标码长是一一对应的关系。
在一种可能的设计中,编码参数包括聚合等级、目标码长和母码码长中的至少一个,Polar码构造序列表中,一个编码参数值对应存储一个构造序列。
其中,针对Polar码控制信道的聚合等级对构造序列进行划分,需要存储的构造序列有限,可以减少存储开销。
在一种可能的设计中,根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,包括:根据目标码长确定对应的第一编码参数,从Polar码构造序列表中获取第一编码参数对应的第一构造序列,根据信息比特长度从第一构造序列中确定第一信息比特集合。
在一种可能的设计中,编码参数包括聚合等级、目标码长和母码码长中的至少一个,Polar码构造序列表中,小于或等于预设编码参数阈值的编码参数值对应同一个第二构造序列,大于预设编码参数阈值的编码参数值,一个编码参数值对应存储一个构造序列。
在一种可能的设计中,根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,包括:根据目标码长确定对应的第二编码参数,若第二编码参数小于或等于编码参数阈值时,根据信息比特长度K和目标码长从第二构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数,若第二编码参数大于编码参数阈值时,从Polar码构造序列表中获取第二编码参数对应的第三构造序列;根据信息比特长度从第三构造序列中确定出信息比特集合。
在一种可能的设计中,编码参数为最大母码码长,Polar码构造序列表中存储最大母码码长对应的第三构造序列。
在一种可能的设计中,根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,包括:根据信息比特长度K和目标码长确定母码长度N,从第三构造序列中选取出N个极化信道中可靠度最大的K个极化信道对应的信息比特作为信息比特集合,N、K为正整数。
在一种可能的设计中,构造序列为根据高斯近似方法或密度进化方法计算极化信道可靠度或极化信道错误概率,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列,或者,根据极化信道错误概率或归一化错误概率按照升序或降序排列的序列。
在一种可能的设计中,构造序列为根据极化信道的极化权重计算出极化信道可靠度,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列。
第二方面,本申请实施例提供一种Polar码编码装置,包括:获取模块,用于根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,构造序列 为表征极化信道的可靠度排序的序列,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长;编码模块,用于根据待编码信息和信息比特集合对所待编码信息进行极化编码。通过在Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长,相比较不同的信息比特长度和母码长度都存储一个构造序列,本实施例存储的构造序列与信息比特长度无关,大大降低了Polar码构造序列表的存储开销。
在一种可能的设计中,聚合等级表征控制信道所能承载的比特数,聚合等级与目标码长是一一对应的关系。
在一种可能的设计中,编码参数包括聚合等级、目标码长和母码码长中的至少一个,Polar码构造序列表中,一个编码参数值对应存储一个构造序列。
在一种可能的设计中,获取模块用于:根据目标码长确定对应的第一编码参数,从Polar码构造序列表中获取第一编码参数对应的第一构造序列,根据信息比特长度从第一构造序列中确定第一信息比特集合。
在一种可能的设计中,编码参数包括聚合等级、目标码长和母码码长中的至少一个,Polar码构造序列表中,小于或等于预设编码参数阈值的编码参数值对应同一个第二构造序列,大于预设编码参数阈值的编码参数值,一个编码参数值对应存储一个构造序列。
在一种可能的设计中,获取模块用于:根据目标码长确定对应的第二编码参数,若第二编码参数小于或等于编码参数阈值时,根据信息比特长度K和目标码长从第二构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数,若第二编码参数大于编码参数阈值时,从Polar码构造序列表中获取第二编码参数对应的第三构造序列;根据信息比特长度从第三构造序列中确定出信息比特集合。
在一种可能的设计中,编码参数为最大母码码长,Polar码构造序列表中存储最大母码码长对应的第三构造序列。
在一种可能的设计中,获取模块用于:根据信息比特长度K和目标码长确定母码长度N,从第三构造序列中选取出N个极化信道中可靠度最大的K个极化信道对应的信息比特作为信息比特集合,N、K为正整数。
在一种可能的设计中,构造序列为根据高斯近似方法或密度进化方法计算极化信道可靠度或极化信道错误概率,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列,或者,根据极化信道错误概率或归一化错误概率按照升序或降序排列的序列。
在一种可能的设计中,构造序列为根据极化信道的极化权重计算出极化信道可靠度,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列。
第三方面,本申请实施例提供一种Polar码编码装置,包括:
存储器和处理器;
存储器用于存储程序指令;
处理器用于:
根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比 特集合,Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,构造序列为表征极化信道的可靠度排序的序列,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长;根据待编码信息和信息比特集合对所待编码信息进行极化编码。通过在Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长,相比较不同的信息比特长度和母码长度都存储一个构造序列,本实施例存储的构造序列与信息比特长度无关,大大降低了Polar码构造序列表的存储开销。
在一种可能的设计中,聚合等级表征控制信道所能承载的比特数,聚合等级与目标码长是一一对应的关系。
在一种可能的设计中,编码参数包括聚合等级、目标码长和母码码长中的至少一个,Polar码构造序列表中,一个编码参数值对应存储一个构造序列。
在一种可能的设计中,处理器用于:根据目标码长确定对应的第一编码参数,从Polar码构造序列表中获取第一编码参数对应的第一构造序列,根据信息比特长度从第一构造序列中确定第一信息比特集合。
在一种可能的设计中,编码参数包括聚合等级、目标码长和母码码长中的至少一个,Polar码构造序列表中,小于或等于预设编码参数阈值的编码参数值对应同一个第二构造序列,大于预设编码参数阈值的编码参数值,一个编码参数值对应存储一个构造序列。
在一种可能的设计中,处理器用于:根据目标码长确定对应的第二编码参数,若第二编码参数小于或等于编码参数阈值时,根据信息比特长度K和目标码长从第二构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数,若第二编码参数大于编码参数阈值时,从Polar码构造序列表中获取第二编码参数对应的第三构造序列;根据信息比特长度从第三构造序列中确定出信息比特集合。
在一种可能的设计中,编码参数为最大母码码长,Polar码构造序列表中存储最大母码码长对应的第三构造序列。
在一种可能的设计中,处理器用于:根据信息比特长度K和目标码长确定母码长度N,从第三构造序列中选取出N个极化信道中可靠度最大的K个极化信道对应的信息比特作为信息比特集合,N、K为正整数。
在一种可能的设计中,构造序列为根据高斯近似方法或密度进化方法计算极化信道可靠度或极化信道错误概率,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列,或者,根据极化信道错误概率或归一化错误概率按照升序或降序排列的序列。
在一种可能的设计中,构造序列为根据极化信道的极化权重计算出极化信道可靠度,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列。
第四方面,本申请实施例提供一种Polar码译码方法,包括:根据待编译码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,构造序列为表征极化信道的可靠度排序的序列,编码参数包括聚合等级、目标码长和母码码长中的至少一 个,或者,编码参数为最大母码码长;根据待译码信息和信息比特集合对所待译码信息进行译码。通过在Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长,相比较不同的信息比特长度和母码长度都存储一个构造序列,本实施例存储的构造序列与信息比特长度无关,大大降低了Polar码构造序列表的存储开销。
在一种可能的设计中,聚合等级表征控制信道所能承载的比特数,聚合等级与目标码长是一一对应的关系。
在一种可能的设计中,编码参数包括聚合等级、目标码长和母码码长中的至少一个,Polar码构造序列表中,一个编码参数值对应存储一个构造序列。
在一种可能的设计中,根据待译码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,包括:根据目标码长确定对应的第一编码参数;从Polar码构造序列表中获取第一编码参数对应的第一构造序列;根据信息比特长度从第一构造序列中确定第一信息比特集合。
在一种可能的设计中,编码参数包括聚合等级、目标码长和母码码长中的至少一个,Polar码构造序列表中,小于或等于预设编码参数阈值的编码参数值对应同一个第二构造序列,大于预设编码参数阈值的编码参数值,一个编码参数值对应存储一个构造序列。
在一种可能的设计中,根据待译码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,包括:根据目标码长确定对应的第二编码参数,若第二编码参数小于或等于编码参数阈值时,根据信息比特长度K和目标码长从第二构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数,若第二编码参数大于编码参数阈值时,从Polar码构造序列表中获取第二编码参数对应的第三构造序列;根据信息比特长度从第三构造序列中确定出信息比特集合。
在一种可能的设计中,编码参数为最大母码码长,Polar码构造序列表中存储最大母码码长对应的第三构造序列。
在一种可能的设计中,根据待译码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,包括:根据信息比特长度K和目标码长确定母码长度N,从第三构造序列中选取出N个极化信道中可靠度最大的K个极化信道对应的信息比特作为信息比特集合,N、K为正整数。
在一种可能的设计中,构造序列为根据高斯近似方法或密度进化方法计算极化信道可靠度或极化信道错误概率,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列,或者,根据极化信道错误概率或归一化错误概率按照升序或降序排列的序列。
在一种可能的设计中,构造序列为根据极化信道的极化权重计算出极化信道可靠度,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列。
第五方面,本申请实施例提供一种Polar码译码装置,包括:
获取模块,用于根据待译码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,Polar码构造序列表中存储编码参数和编码参数对应的构造序 列的映射关系,构造序列为表征极化信道的可靠度排序的序列,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长;译码模块,用于根据待译码信息和信息比特集合对所待译码信息进行译码。通过在Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长,相比较不同的信息比特长度和母码长度都存储一个构造序列,本实施例存储的构造序列与信息比特长度无关,大大降低了Polar码构造序列表的存储开销。
在一种可能的设计中,编码参数包括聚合等级、目标码长和母码码长中的至少一个,Polar码构造序列表中,一个编码参数值对应存储一个构造序列。
在一种可能的设计中,获取模块用于:根据目标码长确定对应的第一编码参数;从Polar码构造序列表中获取第一编码参数对应的第一构造序列;根据信息比特长度从第一构造序列中确定第一信息比特集合。
在一种可能的设计中,编码参数包括聚合等级、目标码长和母码码长中的至少一个,Polar码构造序列表中,小于或等于预设编码参数阈值的编码参数值对应同一个第二构造序列,大于预设编码参数阈值的编码参数值,一个编码参数值对应存储一个构造序列。
在一种可能的设计中,获取模块用于:根据目标码长确定对应的第二编码参数,若第二编码参数小于或等于编码参数阈值时,根据信息比特长度K和目标码长从第二构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数,若第二编码参数大于编码参数阈值时,从Polar码构造序列表中获取第二编码参数对应的第三构造序列;根据信息比特长度从第三构造序列中确定出信息比特集合。
在一种可能的设计中,编码参数为最大母码码长,Polar码构造序列表中存储最大母码码长对应的第三构造序列。
在一种可能的设计中,获取模块用于:根据信息比特长度K和目标码长确定母码长度N,从第三构造序列中选取出N个极化信道中可靠度最大的K个极化信道对应的信息比特作为信息比特集合,N、K为正整数。
在一种可能的设计中,构造序列为根据高斯近似方法或密度进化方法计算极化信道可靠度或极化信道错误概率,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列,或者,根据极化信道错误概率或归一化错误概率按照升序或降序排列的序列。
在一种可能的设计中,构造序列为根据极化信道的极化权重计算出极化信道可靠度,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列。
第六方面,本申请实施例提供一种Polar码译码装置,包括:
存储器和处理器;
存储器用于存储程序指令;
处理器用于:
根据待译码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,构造序列为表征极化信道的可靠度排序的序列,编码参数包括聚合等级、目标码长和 母码码长中的至少一个,或者,编码参数为最大母码码长;根据待译码信息和信息比特集合对所待译码信息进行译码。通过在Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长,相比较不同的信息比特长度和母码长度都存储一个构造序列,本实施例存储的构造序列与信息比特长度无关,大大降低了Polar码构造序列表的存储开销。
在一种可能的设计中,编码参数包括聚合等级、目标码长和母码码长中的至少一个,Polar码构造序列表中,一个编码参数值对应存储一个构造序列。
在一种可能的设计中,处理器用于:根据目标码长确定对应的第一编码参数,从Polar码构造序列表中获取第一编码参数对应的第一构造序列,根据信息比特长度从第一构造序列中确定第一信息比特集合。
在一种可能的设计中,编码参数包括聚合等级、目标码长和母码码长中的至少一个,Polar码构造序列表中,小于或等于预设编码参数阈值的编码参数值对应同一个第二构造序列,大于预设编码参数阈值的编码参数值,一个编码参数值对应存储一个构造序列。
在一种可能的设计中,处理器用于:根据目标码长确定对应的第二编码参数,若第二编码参数小于或等于编码参数阈值时,根据信息比特长度K和目标码长从第二构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数,若第二编码参数大于编码参数阈值时,从Polar码构造序列表中获取第二编码参数对应的第三构造序列;根据信息比特长度从第三构造序列中确定出信息比特集合。
在一种可能的设计中,构造序列为根据高斯近似方法或密度进化方法计算极化信道可靠度或极化信道错误概率,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列,或者,根据极化信道错误概率或归一化错误概率按照升序或降序排列的序列。
在一种可能的设计中,构造序列为根据极化信道的极化权重计算出极化信道可靠度,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列。
第七方面,本申请实施例提供一种可读存储介质,可读存储介质中存储有执行指令,当编码装置的至少一个处理器执行该执行指令时,编码装置执行第一方面及第一方面任一种可能的设计中的编码方法。
第八方面,本申请实施例提供一种可读存储介质,可读存储介质中存储有执行指令,当译码装置的至少一个处理器执行该执行指令时,译码装置执行第四方面及第四方面任一种可能的设计中的译码方法。
第九方面,本申请实施例提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。编码装置的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得编码装置实施第一方面及第一方面任一种可能的设计中的编码方法。
第十方面,本申请实施例提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。译码装置的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得译码装置实施第四方面及第四方面任 一种可能的设计中的译码方法。
图1为一种通信系统的流程示意图;
图2为Polar码的编码过程示意图;
图3为本申请实施例提供的一种Polar码编码方法实施例的流程图;
图4为本申请实施例提供的一种Polar码译码方法实施例的流程图;
图5为本申请实施例提供的一种Polar码编码装置实施例的结构示意图;
图6为本申请实施例提供的一种Polar码译码装置实施例的结构示意图;
图7为本申请实施例提供的另一种Polar码编码装置示意图;
图8为本申请实施例提供的另一种Polar码译码装置示意图。
本申请实施例涉及5G通信场景下,用于提高信息传输可靠性,保证通信质量的信道编码技术,可以应用于对信息进行Polar编码和译码的场景,例如可以应用于对增强型移动宽带(Enhanced Mobile Broad Band,eMBB)上行控制信息和下行控制信息进行Polar编码和译码的场景,也可应用于其他场景,例如应用于通信标准TS 36.212的5.1.3的信道编码(Channel Coding)、上行控制信息、下行控制信息以及Sidelink信道的信道编码部分,本申请实施例不做限定。
图1为一种通信系统的流程示意图,信道编码位于通信系统中的结构如图1所示,在信息传输的过程中,待发送信息(信源)在发送端经过信源编码、信道编码、速率匹配后为编码后比特,编码后比特经数字调制后从信道发出,在接收端待译码信息经数字解调为待译码序列,接着,待译码序列经解速率匹配、信道解码、信源解码得到译码后的信息(信宿),其中信道编码及速率匹配在整个通信系统中对信息传输的可靠度起到至关重要的作用。
图2为Polar码的编码过程示意图,Polar码的编码由发送端执行,如图2所示,Polar码的编码过程包括构造、编码和速率匹配三个处理过程。Polar码在编码前首先根据输入的待编码信息的信息比特长度K与母码长度N从Polar码构造序列表中获取信息比特集合。得到信息比特集合后,根据待编码信息和信息比特集合对待编码信息进行极化编码,得到编码后的比特,最后根据目标码长M进行速率匹配,得到速率匹配后的比特,速率匹配后比特经数字调制后从信道发出。相关技术中的Polar码构造序列表中,不同的信息比特长度和母码长度都存储一个构造序列,存储的开销很大,为解决这一问题,本申请实施例提出一种Polar码构造序列表的存储方式,可降低存储的开销,下面结合附图详细说明本申请实施例提供的Polar码编译码方法及装置。
本申请实施例主要应用于各种无线通信系统,本申请实施例涉及的网元涉及基站和终端设备,可以实现基站与终端设备之间的通信。本申请实施例的技术方案可以应用5G通信系统,也可以用于其他各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA) 系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
图3为本申请实施例提供的一种Polar码编码方法实施例的流程图,如图3所示,本实施例以发送端为执行主体进行说明,本实施例的方法可以包括:
S101、根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,构造序列为表征极化信道的可靠度排序的序列,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长。
S102、根据待编码信息和信息比特集合对待编码信息进行极化编码。具体地,可以将待编码信息映射到信息比特集合对应的极化信道,将剩余的极化信道对应的比特设置为固定的值,进行Polar编码。
本实施例提供的Polar码编码方法,通过在Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长,相比较不同的信息比特长度和母码长度都存储一个构造序列,本实施例存储的构造序列与信息比特长度无关,大大降低了Polar码构造序列表的存储开销。
本申请实施例中,母码码长是进行Polar编码时采用的码长,目标码长是编码和速率匹配后的比特序列长度M。聚合等级表征控制信道所能承载的比特数,聚合等级越大所能承载的比特数越多。通常,聚合等级与目标码长是一一对应的关系,一个聚合等级对应了一个目标码长,在相同的信息比特数目下,聚合等级越高码长越长,码率越低。例如,通信系统里规定4种聚合等级:1-4,对应的目标码长分别为72、144、288和576。假设待编码信息长度为80,那么可以用聚合等级2-4中的任意一个目标码长去传输。
本申请实施例中,构造序列为表征极化信道的可靠度排序的序列,编码参数包括聚合等级、目标码长和母码码长中的至少一个时,构造序列为根据高斯近似方法或密度进化方法计算极化信道可靠度或极化信道错误概率,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列,或者,根据极化信道错误概率或归一化错误概率按照升序或降序排列的序列。作为一种可实施的方式,Polar码构造序列表中,一个编码参数值对应存储一个构造序列。此时根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,具体可以包括:根据目标码长确定对应的第一编码参数,从Polar码构造序列表中获取第一编码参数对应的第一构造序列,根据信息比特长度从第一构造序列中确定第一信息比特集合。
作为另一种可实施的方式,Polar码构造序列表中,对于小于或等于预设编码参数阈值的编码参数值,可以对应存储同一个构造序列(第二构造序列);对于大于预设编码参数阈值的编码参数值,一个编码参数值对应存储一个构造序列。此时根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,具体可以包括:根据目标码长确定对应的第二编码参数,若第二编码参数小于或等于编码 参数阈值时,根据信息比特长度K和目标码长从第二构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数,若第二编码参数大于编码参数阈值时,从Polar码构造序列表中获取第二编码参数对应的第三构造序列,根据信息比特长度从第三构造序列中确定出信息比特集合。
编码参数为最大母码码长时,构造序列为根据极化信道的极化权重计算出极化信道可靠度,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列。Polar码构造序列表中存储最大母码码长对应的第三构造序列。此时根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,具体可以包括:根据信息比特长度K和目标码长确定母码长度N,从第三构造序列中选取出N个极化信道中可靠度最大的K个极化信道对应的信息比特作为信息比特集合,N、K为正整数。
Polar码构造序列表的存储内容具体可以有以下五种:
一、Polar码构造序列表中存储聚合等级与聚合等级对应的构造序列的映射关系。
在该方式中,具体地可以将Polar码构造序列表按聚合等级进行划分,相同聚合等级下,不同的信息比特长度共用一个构造序列。聚合等级数目一般是有限的,比如长期演进(Long Term Evolution,LTE)中的控制信道根据资源块的大小划分为四个聚合等级,通过该聚合等级存储不会增加过多的复杂度。如有L个聚合等级,则所存的构造序列为L个,聚合等级与构造序列是一对一的关系,如下表一所示。构造序列的内容和形式不做限定,例如可以是根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列,或者,根据极化信道错误概率或归一化错误概率按照升序或降序排列的序列。
表一 按聚合等级存储的Polar码构造序列表
聚合等级 | 构造序列 |
1 | 构造序列1 |
2 | 构造序列2 |
3 | 构造序列3 |
… | … |
L | 构造序列L |
发送端根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合。由于一个聚合等级对应了一个目标码长,首先根据目标码长可以确定出对应的聚合等级,从表一所示的Polar码构造序列表中获取该聚合等级对应的构造序列,确定出构造序列后,根据待编码信息的信息比特长度从该构造序列中确定出信息比特集合,例如,待编码信息的信息比特长度为K,该构造序列是根据极化信道可靠度或归一化可靠度按照升序排列的序列,则从该构造序列中选取排在最后(可高度较高)的K个比特作为信息比特集合。针对Polar码控制信道的聚合等级对构造序列进行划分,需要存储的构造序列有限,可以减少存储开销。
二、Polar码构造序列表中存储目标码长与目标码长对应的构造序列的映射关系。
如下表二为根据具体的一个或多个聚合等级对应的目标码长,设计对应的Polar码构造序列表。相同目标码长下,不同的信息比特长度共用一个序列。不同目标码长 之间的关系,可以是倍数关系,可以是线性或非线性增加且与聚合等级有一一对应的关系。例如M为聚合等级1对应的码长,Kn*M为聚合等级为n对应的码长。该方式以具体的目标码长作为划分,更加灵活。例如某些情况下控制信息可能会通过数据信道进行传输,可以采用规定的目标码长,而没有聚合等级的概念。又例如,一个聚合等级包含了多种目标码长,就不采用一个聚合等级来表示不同目标码长下的构造序列。目标码长与聚合等级也不一定要有一一对应的关系,表二中的目标码长可以是根据实际应用需要设置的目标码长及对应的构造序列。
表二 按目标码长存储的Polar码构造序列表
目标码长 | 构造序列 |
M | 构造序列1 |
K1*M | 构造序列2 |
K2*M | 构造序列3 |
… | … |
Kn*M | 构造序列n |
发送端根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,具体包括:首先从表二所示的Polar码构造序列表中获取目标码长对应的构造序列,确定出构造序列后,根据待编码信息的信息比特长度从该构造序列中确定出信息比特集合。例如,待编码信息的信息比特长度为K,该构造序列是根据极化信道可靠度或归一化可靠度按照降序排列的序列,则从该构造序列中选取排在最前的K个比特作为信息比特集合。
可选的,Polar码构造序列表中,小于或等于预设编码参数阈值的编码参数值对应存储同一个构造序列(第二构造序列),大于预设编码参数阈值的编码参数值,一个编码参数值对应存储一个构造序列。即就是说,小于或等于预设编码参数阈值的编码参数值,可以对应存储一个构造序列,如下表三所示,表三为根据目标码长或聚合等级存储的Polar码构造序列表。其中,目标码长为12以下的对应存储同一个构造序列,目标码长为24、48等等分别对应存储一个构造序列,构造序列例如为极化信道可靠度升序排列的序列。以目标码长为例,发送端根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,具体包括:若待编码信息的目标码长等于12时,待编码信息的信息比特长度为6,根据信息比特长度6和目标码长12从构造序列(1,2,3,5,9,4,6,7,10,11,13,8,12,14,15,16)中,选取出可靠度最大的6个信息比特(13,8,12,14,15,16)作为信息比特集合,若待编码信息的目标码长等于8时,待编码信息的信息比特长度为4,根据信息比特长度4和目标码长8从构造序列(1,2,3,5,4,6,7,8)中,选取出可靠度最大的4个信息比特(4,6,7,8)作为信息比特集合。
表三 按目标码长或聚合等级存储的Polar码构造序列表
若待编码信息的目标码长大于12时,例如为24,从Polar码构造序列表中获取目标码长24对应的构造序列(1,2,3,5,9,17,4,6,7,10,11,18,13,19,21,8,25,12,14,20,15,22,23,26,27,29,16,24,28,30,31,32),根据信息比特长度从该构造序列中确定出信息比特集合。
三、Polar码构造序列表中存储聚合等级、目标码长及构造序列之间的映射关系。
在该实施例中,可以是存储聚合等级和目标码长、与聚合等级和目标码长对应的构造序列的映射关系,表四为一种存储聚合等级、目标码长及构造序列之间的映射关系的Polar码构造序列表,如表四所示,目标码长和聚合等级与构造序列是一对一的关系。
表四 按目标码长和聚合等级存储的Polar码构造序列表
在该实施例中,确定构造序列时,可以根据目标码长确定,也可以根据聚合等级确定,发送端根据待编码信息的信息比特长度和目标码长,从Polar码构造序列表中获取信息比特集合的方式与表一或表二所示的方式相同,此处不再赘述。
如下表五为另一种存储聚合等级、目标码长及构造序列之间的映射关系的Polar码构造序列表。如表五所示,如表五所示,目标码长小于或等于12、聚合等级小于或等于3的编码参数对应存储一个构造序列,目标码长大于12、聚合等级大于3的编码参数分别对应存储一个构造序列,构造序列例如为根据极化信道可靠度升序排列的序列。确定构造序列时,可以根据目标码长确定,也可以根据聚合等级确定,发送端根据待编码信息的信息比特长度和目标码长,从Polar码构造序列表中获取信息比特集合的方式与表三所示的方式相同,此处不再赘述。
表五 按目标码长和聚合等级存储的Polar码构造序列表
四、Polar码构造序列表中存储母码码长与母码码长对应的构造序列的映射关系。
在该实施例中,可以是存储母码码长与母码码长对应的构造序列的映射关系,如下表六所示,一个母码码长对应存储一个构造序列。构造序列可以是根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列,或者,根据极化信道错误概率或归一化错误概率按照升序或降序排列的序列。发送端根据待编码信息的信息比特长度和目标码长,从Polar码构造序列表中获取信息比特集合的方式与表一或表二所示的方式相同,此处不再赘述。
表六 按母码码长存储的Polar码构造序列表
母码码长 | 构造序列 |
4 | 1,2,3,4 |
8 | 1,2,3,5,4,6,7,8 |
16 | 1,2,3,5,9,4,6,7,10,11,13,8,12,14,15,16 |
… | … |
1024 |
如下表七所示,表七存储母码码长与母码码长对应的构造序列的映射关系,母码码长为32和64对应存储一个构造序列,母码码长为小于32、大于或等于64的母码码长分别对应存储一个构造序列,构造序列例如为极化信道可靠度升序排列的序列。发送端根据待编码信息的信息比特长度和目标码长,从Polar码构造序列表中获取信息比特集合的方式与表三所示的方式相同,此处不再赘述。
表七 按母码码长存储的Polar码构造序列表
五、Polar码构造序列表中存储最大母码码长与最大母码码长对应的构造序列的映射关系。其中的最大母码码长是通信系统约定所能支持的最大母码码长。
在该实施例中,存储最大母码码长与最大母码码长对应的构造序列,构造序列为根据极化信道的极化权重计算出极化信道可靠度,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列,如下表八所示,如最大母码码长等于16,存储的构造序列为(1,2,3,5,9,4,6,7,10,11,13,8,12,14,15,16),构造序列为根据极化信道可靠度升序排列的序列。发送端根据待编码信息的信息比特长度和目标码长,从Polar码构造序列表中获取信息比特集合,具体包括:若待编码信息的母码码长等于16时,待编码信息的信息比特长度为6,根据信息比特长度6和目标码长12,从构造序列(1,2,3,5,9,4,6,7,10,11,13,8,12,14,15,16)中选取出可靠度最大的6个信息比特(13,8,12,14,15,16)作为信息比特集合,若待编码信息的目标码长等于8时,待编码信息的信息比特长度为4,根据信息比特长度4和目标码长8从构造序列(1,2,3,5,4,6,7,8)中选取出可靠度最大的4个信息比特(4,6,7,8)作为信息比特集合。在该实施例下,只需要存储一个构造序列,大大降低了Polar码构造序列表的存储开销。
表八 按最大母码码长存储的Polar码构造序列表
最大母码码长 | 构造序列 |
Nmax=16 | 1,2,3,5,9,4,6,7,10,11,13,8,12,14,15,16 |
图4为本申请实施例提供的一种Polar码译码方法实施例的流程图,如图4所示,本实施例的方法可以包括:
S201、根据待编译码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,构造序列为表征极化信道的可靠度排序的序列,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长。
S202、根据待译码信息和信息比特集合对所待译码信息进行译码。
具体地,确定出信息比特集合后,可以将待译码信息映射到信息比特集合对应的极化信道,将剩余的极化信道对应的比特设置为固定的值,进行Polar译码。
本实施例提供的Polar码译码方法,通过在Polar码构造序列表中存储编码参数和 编码参数对应的构造序列的映射关系,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长,相比较现有技术中不同的信息比特长度和母码长度都存储一个构造序列,本实施例存储的构造序列与信息比特长度无关,大大降低了Polar码构造序列表的存储开销。
本申请实施例中,母码码长是进行Polar编码时采用的码长,目标码长是编码和速率匹配后的比特序列长度M。聚合等级表征控制信道所能承载的比特数,聚合等级越大所能承载的比特数越多。通常,聚合等级与目标码长是一一对应的关系,一个聚合等级对应了一个目标码长,在相同的信息比特数目下,聚合等级越高码长越长,码率越低。
本申请实施例中,构造序列为表征极化信道的可靠度排序的序列,编码参数包括聚合等级、目标码长和母码码长中的至少一个时,构造序列为根据高斯近似方法或密度进化方法计算极化信道可靠度或极化信道错误概率,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列,或者,根据极化信道错误概率或归一化错误概率按照升序或降序排列的序列。作为一种可实施的方式,Polar码构造序列表中,一个编码参数值对应存储一个构造序列。此时根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,具体可以包括:根据目标码长确定对应的第一编码参数,从Polar码构造序列表中获取第一编码参数对应的第一构造序列,根据信息比特长度从第一构造序列中确定第一信息比特集合。
作为另一种可实施的方式,Polar码构造序列表中,对于小于或等于预设编码参数阈值的编码参数值,可以对应存储同一个构造序列(第二构造序列);对于大于预设编码参数阈值的编码参数值,一个编码参数值对应存储一个构造序列。此时根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,具体可以包括:根据目标码长确定对应的第二编码参数,若第二编码参数小于或等于编码参数阈值时,根据信息比特长度K和目标码长从第二构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数,若第二编码参数大于编码参数阈值时,从Polar码构造序列表中获取第二编码参数对应的第三构造序列,根据信息比特长度从第三构造序列中确定出信息比特集合。
编码参数为最大母码码长时,构造序列为根据极化信道的极化权重计算出极化信道可靠度,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列。Polar码构造序列表中存储最大母码码长对应的第三构造序列。此时根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,具体可以包括:根据信息比特长度K和目标码长确定母码长度N,从第三构造序列中选取出N个极化信道中可靠度最大的K个极化信道对应的信息比特作为信息比特集合,N、K为正整数。
其中,Polar码构造序列表的存储内容详细可参见图3所示的编码侧的具体举例,此处不再赘述。
本申请实施例可以根据上述方法示例对发送设备和接收设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请各实施例中对模块的划分是示意性的,仅仅 为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图5为本申请实施例提供的一种Polar码编码装置实施例的结构示意图,如图5所示,本实施例的装置可以包括:获取模块11和编码模块12,其中,获取模块11用于根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,构造序列为表征极化信道的可靠度排序的序列,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长。编码模块12用于根据待编码信息和信息比特集合对所待编码信息进行极化编码。
其中,聚合等级表征控制信道所能承载的比特数,聚合等级与目标码长是一一对应的关系。
当编码参数包括聚合等级、目标码长和母码码长中的至少一个时,作为一种可实施的方式,Polar码构造序列表中,一个编码参数值对应存储一个构造序列。获取模块11用于:根据目标码长确定对应的第一编码参数,从Polar码构造序列表中获取第一编码参数对应的第一构造序列,根据信息比特长度从第一构造序列中确定第一信息比特集合。
当编码参数包括聚合等级、目标码长和母码码长中的至少一个时,作为另一种可实施的方式,Polar码构造序列表中,对于小于或等于预设编码参数阈值的编码参数值,可以对应存储同一个构造序列(第二构造序列);对于大于预设编码参数阈值的编码参数值,一个编码参数值对应存储一个构造序列。获取模块11用于:根据目标码长确定对应的第二编码参数;若第二编码参数小于或等于编码参数阈值时,根据信息比特长度K和目标码长从第二构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数;若第二编码参数大于编码参数阈值时,从Polar码构造序列表中获取第二编码参数对应的第三构造序列;根据信息比特长度从第三构造序列中确定出信息比特集合。
可选的,编码参数为最大母码码长时,Polar码构造序列表中存储最大母码码长对应的第三构造序列。则获取模块11用于:根据信息比特长度K和目标码长从第三构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数。
本实施例中,当编码参数包括聚合等级、目标码长和母码码长中的至少一个时,构造序列可以为根据高斯近似方法或密度进化方法计算极化信道可靠度或极化信道错误概率,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列,或者,根据极化信道错误概率或归一化错误概率按照升序或降序排列的序列。
编码参数为最大母码码长时,构造序列为根据极化信道的极化权重计算出极化信道可靠度,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列。
本实施例的编码装置,可以用于执行图3所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图6为本申请实施例提供的一种Polar码译码装置实施例的结构示意图,如图6所示,本实施例的装置可以包括:获取模块21和译码模块22,其中,获取模块21用于根据待译码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,构 造序列为表征极化信道的可靠度排序的序列,编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长。译码模块22用于根据待译码信息和信息比特集合对所待译码信息进行译码。
其中,聚合等级表征控制信道所能承载的比特数,聚合等级与目标码长是一一对应的关系。
当编码参数包括聚合等级、目标码长和母码码长中的至少一个时,作为一种可实施的方式,Polar码构造序列表中,一个编码参数值对应存储一个构造序列。获取模块21用于:根据目标码长确定对应的第一编码参数,从Polar码构造序列表中获取第一编码参数对应的第一构造序列,根据信息比特长度从第一构造序列中确定第一信息比特集合。
当编码参数包括聚合等级、目标码长和母码码长中的至少一个时,作为另一种可实施的方式,Polar码构造序列表中,对于小于或等于预设编码参数阈值的编码参数值,可以对应存储同一个构造序列(第二构造序列);对于大于预设编码参数阈值的编码参数值,一个编码参数值对应存储一个构造序列。获取模块21用于:根据目标码长确定对应的第二编码参数;若第二编码参数小于或等于编码参数阈值时,根据信息比特长度K和目标码长从第二构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数;若第二编码参数大于编码参数阈值时,从Polar码构造序列表中获取第二编码参数对应的第三构造序列;根据信息比特长度从第三构造序列中确定出信息比特集合。
可选的,编码参数为最大母码码长时,Polar码构造序列表中存储最大母码码长对应的第三构造序列。则获取模块21用于:根据信息比特长度K和目标码长从第三构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数。
本实施例中,当编码参数包括聚合等级、目标码长和母码码长中的至少一个时,构造序列可以为根据高斯近似方法或密度进化方法计算极化信道可靠度或极化信道错误概率,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列,或者,根据极化信道错误概率或归一化错误概率按照升序或降序排列的序列。
编码参数为最大母码码长时,构造序列为根据极化信道的极化权重计算出极化信道可靠度,根据极化信道可靠度或归一化可靠度按照升序或降序排列的序列。
本实施例的译码装置,可以用于执行图4所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
图7为本申请实施例提供的另一种Polar码编码装置示意图,该装置1100包括:
存储器1101,用于存储存储程序指令,该存储器还可以是flash(闪存)。
处理器1102,用于调用并执行存储器中的程序指令,以实现图3所示的编码方法中的各个步骤。具体可以参见前面方法实施例中的相关描述。
可选地,存储器1101既可以是独立的,也可以跟处理器1102集成在一起。
当存储器1101是独立于处理器1102之外的器件时,装置1100还可以包括:
总线1103,用于连接存储器和处理器。图7的编码装置还可以进一步包括发送器(图中未画出),用于发送处理器1102进行Polar编码后的编码序列。
图8为本申请实施例提供的另一种Polar码译码装置示意图,该装置1200包括:
存储器1201,用于存储执行指令,该存储器还可以是flash(闪存)。
处理器1202,用于执行存储器存储的执行指令,用于实现图4所示的译码方法中的各个步骤。具体可以参见前面方法实施例中的相关描述。
可选地,存储器1201可以是独立的,也可以跟处理器1202集成在一起。
当存储器1201是独立于处理器1202之外的器件时,装置1200还可以包括:
总线1203,用于连接存储器1201和处理器1202。
图8的译码装置还可以进一步包括接收器(图中未画出),用于接收待译码信号,并将待译码的信号发送给处理器1202。
本申请实施例的编码装置或译码装置可以是任何具有无线通信功能的通信装置,例如接入点、站点、用户设备、基站等。
本领域技术人员可以理解,本申请实施例的编码方法或译码方法可以硬件或者软硬件结合的方式实现。许多情况下,通信系统中的通信装置同时具有收发功能,既能作为发送端给接收端发送信息,又能作为接收端接收发送端发送的信息。因此该通信装置具有编码功能,也有解码功能。该通信装置可配置成通用处理系统,例如通称为芯片,该通用处理系统包括:提供处理器功能的一个或多个微处理器;以及提供存储介质的至少一部分的外部存储器,所有这些都可以通过外部总线体系结构与其它支持电路连接在一起。
通信装置可以包括具有处理器、总线接口、用户接口的ASIC(专用集成电路);以及集成在单个芯片中的存储介质的至少一部分。或者,通信装置由一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请实施例通篇所描述的各种功能的电路的任意组合。
本申请实施例还提供一种可读存储介质,可读存储介质中存储有执行指令,当编码装置的至少一个处理器执行该执行指令时,编码装置执行上述的各种实施方式提供的编码方法。
本申请实施例还提供一种可读存储介质,可读存储介质中存储有执行指令,当译码装置的至少一个处理器执行该执行指令时,译码装置执行上述的各种实施方式提供的译码方法。
本申请实施例还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。编码装置的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得编码装置实施上述的各种实施方式提供的编码方法。
本申请实施例还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。译码装置的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得译码装置实施上述的各种实施方式提供的译码方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时, 全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心、等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带、U盘、ROM、RAM等)、光介质(例如,CD、DVD等)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
Claims (31)
- 一种Polar码编码方法,其特征在于,包括:根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,所述Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,所述构造序列为表征极化信道的可靠度排序的序列,所述编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,所述编码参数为最大母码码长;根据所述待编码信息和所述信息比特集合对所待编码信息进行极化编码。
- 根据权利要求1所述的方法,其特征在于,所述编码参数包括聚合等级、目标码长和母码码长中的至少一个,所述Polar码构造序列表中,一个编码参数值对应存储一个构造序列。
- 根据权利要求2所述的方法,其特征在于,所述根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,包括:根据目标码长确定对应的第一编码参数;从所述Polar码构造序列表中获取所述第一编码参数对应的第一构造序列;根据所述信息比特长度从所述第一构造序列中确定第一信息比特集合。
- 根据权利要求1所述的方法,其特征在于,所述编码参数包括聚合等级、目标码长和母码码长中的至少一个,所述Polar码构造序列表中,小于或等于预设编码参数阈值的编码参数值对应同一个第二构造序列,大于预设编码参数阈值的编码参数值,一个编码参数值对应存储一个构造序列。
- 根据权利要求4所述的方法,其特征在于,所述根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,包括:根据目标码长确定对应的第二编码参数;若所述第二编码参数小于或等于所述编码参数阈值时,根据信息比特长度K和目标码长从所述第二构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数;若所述第二编码参数大于所述编码参数阈值时,从所述Polar码构造序列表中获取所述第二编码参数对应的第三构造序列;根据所述信息比特长度从所述第三构造序列中确定出信息比特集合。
- 根据权利要求1所述的方法,其特征在于,所述编码参数为最大母码码长,所述Polar码构造序列表中存储最大母码码长对应的第三构造序列。
- 根据权利要求6所述的方法,其特征在于,所述根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,包括:根据信息比特长度K和目标码长确定母码长度N,从所述第三构造序列中选取出N个极化信道中可靠度最大的K个极化信道对应的信息比特作为信息比特集合,N、K为正整数。
- 一种Polar码编码装置,其特征在于,包括:获取模块,用于根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,所述Polar码构造序列表中存储编码参数和编码参数对应的构 造序列的映射关系,所述构造序列为表征极化信道的可靠度排序的序列,所述编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,所述编码参数为最大母码码长;编码模块,用于根据所述待编码信息和所述信息比特集合对所待编码信息进行极化编码。
- 根据权利要求8所述的装置,其特征在于,所述编码参数包括聚合等级、目标码长和母码码长中的至少一个,所述Polar码构造序列表中,一个编码参数值对应存储一个构造序列。
- 根据权利要求9所述的装置,其特征在于,所述获取模块用于:根据目标码长确定对应的第一编码参数;从所述Polar码构造序列表中获取所述第一编码参数对应的第一构造序列;根据所述信息比特长度从所述第一构造序列中确定第一信息比特集合。
- 根据权利要求8所述的装置,其特征在于,所述编码参数包括聚合等级、目标码长和母码码长中的至少一个,所述Polar码构造序列表中,小于或等于预设编码参数阈值的编码参数值对应同一个第二构造序列,大于预设编码参数阈值的编码参数值,一个编码参数值对应存储一个构造序列。
- 根据权利要求11所述的装置,其特征在于,所述获取模块用于:根据目标码长确定对应的第二编码参数;若所述第二编码参数小于或等于所述编码参数阈值时,根据信息比特长度K和目标码长从所述第二构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数;若所述第二编码参数大于所述编码参数阈值时,从所述Polar码构造序列表中获取所述第二编码参数对应的第三构造序列;根据所述信息比特长度从所述第三构造序列中确定出信息比特集合。
- 根据权利要求8所述的装置,其特征在于,所述编码参数为最大母码码长,所述Polar码构造序列表中存储最大母码码长对应的第三构造序列。
- 根据权利要求13所述的装置,其特征在于,所述获取模块用于:根据信息比特长度K和目标码长确定母码长度N,从所述第三构造序列中选取出N个极化信道中可靠度最大的K个极化信道对应的信息比特作为信息比特集合,N、K为正整数。
- 一种Polar码编码装置,其特征在于,包括:存储器和处理器;所述存储器用于存储程序指令;所述处理器用于:根据待编码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,所述Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,所述构造序列为表征极化信道的可靠度排序的序列,所述编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,所述编码参数为最大母码码长;根据所述待编码信息和所述信息比特集合对所待编码信息进行极化编码。
- 根据权利要求15所述的装置,其特征在于,所述编码参数包括聚合等级、目标码长和母码码长中的至少一个,所述Polar码构造序列表中,一个编码参数值对应存储一个构造序列。
- 根据权利要求16所述的装置,其特征在于,所述处理器用于:根据目标码长确定对应的第一编码参数;从所述Polar码构造序列表中获取所述第一编码参数对应的第一构造序列;根据所述信息比特长度从所述第一构造序列中确定第一信息比特集合。
- 根据权利要求15所述的装置,其特征在于,所述编码参数包括聚合等级、目标码长和母码码长中的至少一个,所述Polar码构造序列表中,小于或等于预设编码参数阈值的编码参数值对应同一个第二构造序列,大于预设编码参数阈值的编码参数值,一个编码参数值对应存储一个构造序列。
- 根据权利要求18所述的装置,其特征在于,所述处理器用于:根据目标码长确定对应的第二编码参数;若所述第二编码参数小于或等于所述编码参数阈值时,根据信息比特长度K和目标码长从所述第二构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数;若所述第二编码参数大于所述编码参数阈值时,从所述Polar码构造序列表中获取所述第二编码参数对应的第三构造序列;根据所述信息比特长度从所述第三构造序列中确定出信息比特集合。
- 一种Polar码译码方法,其特征在于,包括:根据待译码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,所述Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,所述构造序列为表征极化信道的可靠度排序的序列,所述编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,编码参数为最大母码码长;根据所述待译码信息和所述信息比特集合对待译码信息进行译码。
- 根据权利要求20所述的方法,其特征在于,所述编码参数包括聚合等级、目标码长和母码码长中的至少一个,所述Polar码构造序列表中,一个编码参数值对应存储一个构造序列。
- 根据权利要求21所述的方法,其特征在于,所述根据待译码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,包括:根据目标码长确定对应的第一编码参数;从所述Polar码构造序列表中获取第一编码参数对应的第一构造序列;根据所述信息比特长度从所述第一构造序列中确定第一信息比特集合。
- 根据权利要求20所述的方法,其特征在于,所述编码参数包括聚合等级、目标码长和母码码长中的至少一个,所述Polar码构造序列表中,小于或等于预设编码参数阈值的编码参数值对应同一个第二构造序列,大于预设编码参数阈值的编码参数值,一个编码参数值对应存储一个构造序列。
- 根据权利要求23所述的方法,其特征在于,所述根据待译码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,包括:根据目标码长确定对应的第二编码参数;若所述第二编码参数小于或等于所述编码参数阈值时,根据信息比特长度K和目标码长从所述第二构造序列中选取出可靠度最大的K个信息比特作为信息比特集合,K为正整数;若第二编码参数大于所述编码参数阈值时,从所述Polar码构造序列表中获取所述第二编码参数对应的第三构造序列;根据所述信息比特长度从所述第三构造序列中确定出信息比特集合。
- 根据权利要求20所述的方法,其特征在于,所述编码参数为最大母码码长,所述Polar码构造序列表中存储最大母码码长对应的第三构造序列。
- 根据权利要求25所述的方法,其特征在于,所述根据待译码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,包括:根据信息比特长度K和目标码长确定母码长度N,从所述第三构造序列中选取出N个极化信道中可靠度最大的K个极化信道对应的信息比特作为信息比特集合,N、K为正整数。
- 一种Polar码译码装置,其特征在于,包括:获取模块,用于根据待译码信息的信息比特长度和目标码长从Polar码构造序列表中获取信息比特集合,Polar码构造序列表中存储编码参数和编码参数对应的构造序列的映射关系,所述构造序列为表征极化信道的可靠度排序的序列,所述编码参数包括聚合等级、目标码长和母码码长中的至少一个,或者,所述编码参数为最大母码码长;译码模块,用于根据所述待译码信息和所述信息比特集合对所待译码信息进行译码。
- 一种Polar码译码装置,其特征在于,包括:存储器和处理器;所述存储器用于存储程序指令;所述处理器用于执行所述程序指令,以实现如上权利要求20至26任一项所述的Polar码译码方法。
- 一种可读存储介质,其特征在于,所述可读存储介质中存储有执行指令,所述执行指令用于实现如权利要求1至7任一项所述的Polar码编码方法;或者所述执行指令用于实现如权利要求20至26任一项所述的Polar码译码方法。
- 一种程序产品,其特征在于,所述程序产品包括执行指令,当所述编码装置的处理器执行所述执行指令时,用于实现如权利要求1至7任一项所述的Polar码编码方法;或者用于实现如权利要求20至26任一项所述的Polar码译码方法。
- 一种芯片,其特征在于,包括存储器和处理器,所述存储器用于存储执行指令,所述处理器用于从所述存储器中调用并运行所述执行指令,使得所述处理器执行如权利要求1至7任一项所述的Polar码编码方法;或者使得所述处理器执行如权利要求20至26任一项所述的Polar码译码方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18794194.3A EP3641173A4 (en) | 2017-05-03 | 2018-05-03 | METHOD AND DEVICE FOR CODING AND DECODING POLAR CODES |
US16/671,763 US11075653B2 (en) | 2017-05-03 | 2019-11-01 | Polar code encoding and decoding method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710302992.7A CN108809486B (zh) | 2017-05-03 | 2017-05-03 | Polar码编译码方法及装置 |
CN201710302992.7 | 2017-05-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/671,763 Continuation US11075653B2 (en) | 2017-05-03 | 2019-11-01 | Polar code encoding and decoding method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018202080A1 true WO2018202080A1 (zh) | 2018-11-08 |
Family
ID=64015782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/085457 WO2018202080A1 (zh) | 2017-05-03 | 2018-05-03 | Polar码编译码方法及装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11075653B2 (zh) |
EP (1) | EP3641173A4 (zh) |
CN (1) | CN108809486B (zh) |
WO (1) | WO2018202080A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111200476A (zh) * | 2018-11-16 | 2020-05-26 | 华为技术有限公司 | Polar码编码方法及装置 |
WO2020198976A1 (en) * | 2019-03-29 | 2020-10-08 | Zte Corporation | Methods, apparatus and systems for transmitting data based on polar code |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018165843A1 (en) * | 2017-03-14 | 2018-09-20 | Qualcomm Incorporated | Mutual information based polar code construction |
US11039425B2 (en) * | 2017-06-23 | 2021-06-15 | Qualcomm Incorporated | Polar codes with a cross-referenceable nested structure for hierarchical signaling |
CN111698060B (zh) * | 2020-06-24 | 2023-10-20 | 京信网络系统股份有限公司 | 编码方法、装置、设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102694625A (zh) * | 2012-06-15 | 2012-09-26 | 北京邮电大学 | 一种循环冗余校验辅助的极化码译码方法 |
US20160013810A1 (en) * | 2014-07-10 | 2016-01-14 | The Royal Institution For The Advancement Of Learning / Mcgill University | Flexible polar encoders and decoders |
CN105684316A (zh) * | 2013-11-11 | 2016-06-15 | 华为技术有限公司 | 一种Polar码编码方法、装置 |
CN107342846A (zh) * | 2017-06-27 | 2017-11-10 | 华为技术有限公司 | 一种编码方法、无线设备和芯片 |
CN107800510A (zh) * | 2016-09-05 | 2018-03-13 | 华为技术有限公司 | 极化Polar码编码的方法及装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4732203B2 (ja) * | 2006-03-17 | 2011-07-27 | キヤノン株式会社 | 画像符号化装置及び復号装置及びそれらの制御方法、並びに、コンピュータプログラム及びコンピュータ可読記憶媒体 |
CN103684477B (zh) | 2012-09-24 | 2017-02-01 | 华为技术有限公司 | 混合极性码的生成方法和生成装置 |
CN103023618B (zh) * | 2013-01-11 | 2015-04-22 | 北京邮电大学 | 一种任意码长的极化编码方法 |
CN106100794B (zh) * | 2016-06-17 | 2020-04-21 | 哈尔滨工业大学深圳研究生院 | 一种基于打孔的极化码的编码协作方法 |
WO2018008739A1 (ja) * | 2016-07-08 | 2018-01-11 | シャープ株式会社 | 基地局装置、端末装置、通信方法、および、集積回路 |
US10432234B2 (en) * | 2016-07-19 | 2019-10-01 | Mediatek Inc. | Low complexity rate matching for polar codes |
WO2018018370A1 (en) * | 2016-07-25 | 2018-02-01 | Qualcomm Incorporated | Methods and apparatus for constructing polar codes |
CN107666370B (zh) * | 2016-07-29 | 2023-09-22 | 华为技术有限公司 | 编码方法和设备 |
KR102155145B1 (ko) * | 2016-08-12 | 2020-09-11 | 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) | 소프트 출력 폴라 코드 디코더들에 기초한 harq-ir 송신들의 반복 디코딩 |
US10644829B2 (en) * | 2016-09-15 | 2020-05-05 | Huawei Technologies Co., Ltd. | Method and apparatus for encoding data using a polar code |
CN117375765A (zh) * | 2017-01-05 | 2024-01-09 | 华为技术有限公司 | 速率匹配方法、编码装置和通信装置 |
CN108631942B (zh) * | 2017-03-24 | 2024-08-27 | 华为技术有限公司 | 编码方法、译码方法、装置和设备 |
CN109412608B (zh) * | 2017-03-24 | 2019-11-05 | 华为技术有限公司 | Polar编码方法和编码装置、译码方法和译码装置 |
CN108631916B (zh) * | 2017-03-24 | 2020-03-31 | 华为技术有限公司 | 极化Polar码的速率匹配方法和装置、通信装置 |
CN108696333B (zh) * | 2017-04-05 | 2021-10-01 | 华为技术有限公司 | Polar码编解码的方法、装置和设备 |
CN107342774B (zh) * | 2017-04-25 | 2024-04-12 | 华为技术有限公司 | 编码方法、译码方法、装置和设备 |
CN110690941B (zh) * | 2017-04-28 | 2020-07-24 | 华为技术有限公司 | Polar码的速率匹配方法及装置 |
-
2017
- 2017-05-03 CN CN201710302992.7A patent/CN108809486B/zh active Active
-
2018
- 2018-05-03 EP EP18794194.3A patent/EP3641173A4/en active Pending
- 2018-05-03 WO PCT/CN2018/085457 patent/WO2018202080A1/zh unknown
-
2019
- 2019-11-01 US US16/671,763 patent/US11075653B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102694625A (zh) * | 2012-06-15 | 2012-09-26 | 北京邮电大学 | 一种循环冗余校验辅助的极化码译码方法 |
CN105684316A (zh) * | 2013-11-11 | 2016-06-15 | 华为技术有限公司 | 一种Polar码编码方法、装置 |
US20160013810A1 (en) * | 2014-07-10 | 2016-01-14 | The Royal Institution For The Advancement Of Learning / Mcgill University | Flexible polar encoders and decoders |
CN107800510A (zh) * | 2016-09-05 | 2018-03-13 | 华为技术有限公司 | 极化Polar码编码的方法及装置 |
CN107342846A (zh) * | 2017-06-27 | 2017-11-10 | 华为技术有限公司 | 一种编码方法、无线设备和芯片 |
Non-Patent Citations (2)
Title |
---|
CHRISTOPHER SCHNELLING ET AL.: "Construction of Polar Codes Exploiting Channel Transformation Structure", IEEE COMMUNICATIONS LETTERS, vol. 12, no. 19, 31 December 2015 (2015-12-31), pages 2058 - 2061, XP011593053 * |
See also references of EP3641173A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111200476A (zh) * | 2018-11-16 | 2020-05-26 | 华为技术有限公司 | Polar码编码方法及装置 |
CN111200476B (zh) * | 2018-11-16 | 2021-12-14 | 华为技术有限公司 | Polar码编码方法及装置 |
US11502704B2 (en) | 2018-11-16 | 2022-11-15 | Huawei Technologies Co., Ltd. | Polar coding method and apparatus |
US11750217B2 (en) | 2018-11-16 | 2023-09-05 | Huawei Technologies Co., Ltd. | Polar coding method and apparatus |
WO2020198976A1 (en) * | 2019-03-29 | 2020-10-08 | Zte Corporation | Methods, apparatus and systems for transmitting data based on polar code |
US12034532B2 (en) | 2019-03-29 | 2024-07-09 | Zte Corporation | Methods, apparatus and systems for transmitting data based on polar code |
Also Published As
Publication number | Publication date |
---|---|
EP3641173A4 (en) | 2020-05-20 |
CN108809486B (zh) | 2020-09-04 |
US11075653B2 (en) | 2021-07-27 |
US20200067531A1 (en) | 2020-02-27 |
CN108809486A (zh) | 2018-11-13 |
EP3641173A1 (en) | 2020-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018202080A1 (zh) | Polar码编译码方法及装置 | |
US10341044B2 (en) | Method for encoding information in communication network | |
CN106899379B (zh) | 用于处理极化码的方法和通信设备 | |
KR102014918B1 (ko) | 상향링크 데이터 전송 방법 및 장치 | |
KR102260943B1 (ko) | 데이터 전송 방법, 기지국 및 단말 디바이스 | |
CN107819545B (zh) | 极化码的重传方法及装置 | |
CN110572245B (zh) | 通信方法和装置 | |
KR102056746B1 (ko) | 지시 정보를 전송하는 방법 및 장치 | |
CN106982172B (zh) | 确定极化码传输块大小的方法和通信设备 | |
WO2018171788A1 (zh) | 一种编码方法和装置 | |
TWI794260B (zh) | 確定傳輸塊大小的方法、裝置及設備 | |
US10419161B2 (en) | Method and communications device for transmitting information | |
CN108365850B (zh) | 编码方法、编码装置和通信装置 | |
KR102520788B1 (ko) | 채널 상태 정보 인코딩 방법 및 장치, 저장 매체 및 프로세서 | |
WO2019080071A1 (zh) | 上行控制信道传输方法、终端设备和网络设备 | |
WO2019024815A1 (zh) | 分段编码方法及装置 | |
US11139917B2 (en) | Communication method and apparatus using segmented bit sequences | |
WO2020147527A1 (zh) | 一种极化编译码方法及装置 | |
TWI791023B (zh) | 編碼輸入資料為極性碼的方法及設備、解碼方法及用以解碼碼字的設備 | |
WO2018202151A1 (zh) | 通信方法和通信装置 | |
JP2020113990A (ja) | アップリンクデータ伝送の方法および装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18794194 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018794194 Country of ref document: EP Effective date: 20191202 |