TW201900545A - 半導體結構及半導體器件 - Google Patents

半導體結構及半導體器件 Download PDF

Info

Publication number
TW201900545A
TW201900545A TW106121848A TW106121848A TW201900545A TW 201900545 A TW201900545 A TW 201900545A TW 106121848 A TW106121848 A TW 106121848A TW 106121848 A TW106121848 A TW 106121848A TW 201900545 A TW201900545 A TW 201900545A
Authority
TW
Taiwan
Prior art keywords
semiconductor
electrode
semiconductor layer
conductive film
carbon tube
Prior art date
Application number
TW106121848A
Other languages
English (en)
Other versions
TWI667192B (zh
Inventor
張金
魏洋
姜開利
范守善
Original Assignee
鴻海精密工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鴻海精密工業股份有限公司 filed Critical 鴻海精密工業股份有限公司
Publication of TW201900545A publication Critical patent/TW201900545A/zh
Application granted granted Critical
Publication of TWI667192B publication Critical patent/TWI667192B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一種半導體結構,其包括一半導體層,該半導體層的厚度為1~100奈米,所述半導體層包括一第一表面及與第一表面相對的第二表面;一奈米碳管,該奈米碳管設置於半導體層的第一表面;一導電膜,該導電膜通過沉積方法形成於所述半導體層的第二表面,使半導體層設置于奈米碳管和導電膜之間,奈米碳管、半導體層與導電膜相互層疊形成一多層立體結構。本發明進一步提供一種採用所述半導體結構的半導體器件。

Description

半導體結構及半導體器件
本發明涉及一種半導體結構及一種半導體器件。
近年來,范德華異質結是最近兩年的新興研究領域。范德華異質結通過將具有不同性質(電學以及光學等)的二維材料堆到一起,可以實現對組合而成的“新”材料的性質進行人工調控;由於層間弱的范德華作用力,相鄰的層間不再受晶格必須相匹配的限制;並且,由於沒有成分過渡,所形成的異質結具有原子級陡峭的載流子(勢場)梯度;由於以過渡金屬雙硫族化物為代表的非石墨烯二維層狀材料通常可以形成二類能帶關係,因此以它們為基礎搭建的異質結具有非常強的載流子分離能力;此外,由於超薄的厚度以及特殊的二維結構,使其具有強的柵極回應能力,以及與傳統微電子加工工藝和柔性基底相相容的特性。
本發明提供了新型的含有范德華異質結的半導體結構以及其相關應用。
一種半導體結構,其包括一半導體層,該半導體層的厚度為1~100奈米,所述半導體層包括一第一表面及與第一表面相對的第二表面;一奈米碳管,該奈米碳管設置於半導體層的第一表面;一導電膜,該導電膜通過沉積方法形成於所述半導體層的第二表面,使半導體層設置于奈米碳管和導電膜之間,奈米碳管、半導體層與導電膜相互層疊形成一多層立體結構。
一半導體器件,該半導體器件包括一第一電極、一第二電極、一第三電極及一半導體結構;該半導體結構與該第一電極和第二電極電連接,該第三電極通過一絕緣層與該半導體結構、第一電極及第二電極絕緣設置;所述半導體結構包括:一半導體層,該半導體層的厚度為1~100奈米,所述半導體層包括一第一表面及與第一表面相對的第二表面;一奈米碳管,該奈米碳管設置於半導體層的第一表面;一導電膜,該導電膜通過沉積方法形成於所述半導體層的第二表面,使半導體層設置于奈米碳管和導電膜之間,奈米碳管、半導體層與導電膜相互層疊形成一多層立體結構;其中,所述第一電極與所述奈米碳管電連接,所述第二電極與所述導電膜電連接。
相較于現有技術,本發明提供了一種新型的半導體結構及其半導體器件,該半導體結構及半導體器件在未來的奈米電子學和奈米光電子學領域具有巨大的應用潛力。
以下將結合附圖及具體實施例對本發明的半導體結構及半導體器件作進一步的詳細說明。
請參閱圖1及圖2,本發明第一實施例提供一種半導體結構100。該半導體結構100包括一奈米碳管102、一半導體層104及一導電膜106。所述奈米碳管102朝一第一方向延伸。所述半導體層104的厚度為1~100奈米。所述導電膜106設置於所述半導體層104的表面,使半導體層104設置于奈米碳管102和導電膜106之間。所述半導體層104包括一第一表面1042及一第二表面1044,第一表面1042和第二表面1044相對設置。所述奈米碳管102設置在半導體層104的第一表面1042,並與第一表面1042直接接觸。所述半導體結構可以僅包括一根奈米碳管102設置於半導體層104的第一表面。
所述奈米碳管102為金屬型奈米碳管。奈米碳管102的直徑不限,可以為0.5奈米~150奈米,在某些實施例中,奈米碳管102的直徑可以為1奈米~10奈米。優選地,奈米碳管102為單壁奈米碳管,其直徑為1奈米~5奈米。本實施例中,奈米碳管102為金屬型單壁奈米碳管,其直徑為1奈米。
所述半導體層104為一二維結構的半導體層。所述二維結構即半導體層104的厚度較小,半導體層的厚度為1奈米~200奈米,優選地,其厚度為1奈米~100奈米。所述半導體層104可以僅包括一層半導體材料,即半導體層104為一個單層的結構。所述半導體層104的可以為N型半導體,也可以為P型半導體。所述半導體層104的材料不限,可以為無機化合物半導體、元素半導體或有機半導體材料,如:砷化鎵、碳化矽、多晶矽、單晶矽或萘等。在一些實施例中,半導體層104的材料為過渡金屬硫化物材料。本實施例中,半導體層104的材料為硫化鉬(MoS2 ),為N型半導體材料,其厚度為18奈米。在別的實施例中,半導體層104的材料為硒化鎢(WSe2 ),其厚度為22奈米。
所述導電膜106的材料為導電材料,可以為金屬、導電聚合物或ITO。導電膜106直接沉積在半導體層104的第二表面1044。導電膜106沉積在半導體層104的第一表面1044的具體方法不限,可以為離子濺射、磁控濺射或其他鍍膜方法。所述導電膜106的厚度不限,可以為5奈米~100微米。在一些實施例中,導電膜106的厚度為5奈米~100奈米;在另一些實施例中,導電膜106的厚度為5奈米~20奈米。所述導電膜106的形狀不限,可以為長條形、線性、方形等形狀。本實施例中,所述導電膜106為長條形。
所述奈米碳管102、半導體層104和導電膜106相互層疊形成一多層立體結構110。由於奈米碳管102相對於半導體層104和導電膜106的尺寸較小,該多層立體結構110的橫截面的面積由奈米碳管102的直徑和長度決定。由於奈米碳管102為奈米材料,該多層立體結構110的橫截面面積也是奈米級。所述多層立體結構110定義一橫向截面及一豎向截面,所述橫向截面即平行於半導體層104表面的方向的截面,所述縱向截面即垂直於半導體層104的表面的方向的截面。所述橫向截面的面積由奈米碳管102的直徑和長度決定。所述縱向截面的面積由奈米碳管102的長度和多層立體結構110的厚度決定。由於奈米碳管102相對於半導體層104和導電膜106的尺寸較小,該多層立體結構110的橫向截面和縱向截面的面積均較小,多層立體結構110的體積也很小。優選地,該多層立體結構110的橫截面的面積為0.25nm2 ~1000nm2 。更優選地,該多層立體結構110的橫截面的面積為1nm2 ~100nm2
奈米碳管102和導電膜106與二維半導體層104在多層立體結構110處形成范德華異質結構。在應用時,奈米碳管102和導電膜106可以看作設置在半導體結構104的兩個相對表面上的電極,當在奈米碳管102和導電膜106上施加偏壓實現導通時,電流的流動路徑為穿過多層立體結構110的橫截面,所述半導體元件100的有效部分為多層立體結構110。所述半導體元件100的整體尺寸只需確保大於多層立體結構110的體積即可,因此,半導體元件100可以具有較小的尺寸,只需確保其包括多層立體結構110。所述半導體元件100可以為一奈米級的半導體元件。該半導體元件具有較低的能耗、奈米級的尺寸以及更高的集成度。
本發明的半導體結構為一基於奈米碳管不對稱范德華異質結構(CCVH),其中半導體層為一二維結構,其被不對稱地夾在奈米碳管102和導電膜106之間。所述半導體層104可以僅包括一種半導體材料。 該半導體結構在用作電晶體時,具有較高的開/關比(大於105 )和較大電流密度(大於105 A / cm2 ),可滿足邏輯電路的要求。 本發明中,奈米碳管與半導體層的第一表面接觸,導電膜與半導體層的第二表面接觸,奈米碳管和導電膜對2D半導體層的不對稱接觸使范德華異質結構具有更優異的輸運性能。當半導體結構用在電晶體上時,范德華異質結構在相對的源極-漏極偏置處顯示出不對稱的輸出特性。運輸特性的多樣性主要歸因於奈米碳管費米能級易被調製和器件的不對稱接觸,同時奈米碳管電極適用於電子型或者空穴型導電。可調節器件功能以及側向器件尺寸的限制使得這種包括奈米碳管的不對稱范德華異質結構的半導體結構具有獨特性,在未來的奈米電子學和奈米光電子學領域具有巨大的潛力。
請參見圖3,本發明第二實施例提供一種半導體器件200。該半導體器件200包括一第一電極202、一第二電極204、一半導體結構100及一第三電極208。該半導體結構100與該第一電極202和第二電極204電連接,該第三電極208通過一絕緣層210與該半導體結構100、第一電極202及第二電極204絕緣設置。所述半導體結構100的具體結構與第一實施例提供的半導體結構100相同,在此不再重複做詳述。
所述半導體器件200中,第三電極208與絕緣層210層疊設置,所述半導體結構100設置在絕緣層210的表面,使絕緣層210位於第三電極208和半導體結構100之間。所述半導體結構100中,奈米碳管102直接設置於絕緣層210的表面,半導體層104設置于奈米碳管102的上方,使奈米碳管102位於半導體層104和絕緣層210之間,導電膜106位於半導體層104的上方。
所述第一電極202和第二電極204均由導電材料組成,該導電材料可選擇為金屬、ITO、ATO、導電銀膠、導電聚合物以及導電奈米碳管等。該金屬材料可以為鋁、銅、鎢、鉬、金、鈦、鈀或任意組合的合金。所述第一電極202和第二電極204也可以均為一層導電薄膜,該導電薄膜的厚度為2微米-100微米。本實施例中,所述第一電極202、第二電極204為金屬Au,其厚度為50奈米。本實施例中,所述第一電極202與奈米碳管102電連接,設置于奈米碳管102的一端並貼合于奈米碳管102的表面,即Au層設置于奈米碳管102表面;所述第二電極204與導電膜106電連接,並設置於導電膜106的一端並貼合於導電膜106的表面,即Au層設置於導電膜106表面。
所述絕緣層210的材料為絕緣材料,其厚度為1奈米~100微米。絕緣層210使奈米碳管102與第三電極208間隔絕緣設置。本實施例中,絕緣層的材料為氧化矽。
所述第三電極208由導電材料組成,該導電材料可選擇為金屬、ITO、ATO、導電銀膠、導電聚合物以及導電奈米碳管等。該金屬材料可以為鋁、銅、鎢、鉬、金、鈦、鈀或任意組合的合金。本實施例中,所述第三電極208為一層狀結構,絕緣層210設置於第三電極208的表面,所述第一電極202、第二電極204、以及半導體結構100設置於絕緣層210上,並由第三電極208和絕緣層210支撐。本發明中,奈米碳管102直接設置在絕緣層210表面,奈米碳管102靠近第三電極208,導電膜106遠離第三電極208,導電膜106不會在半導體層104和第三電極208產生遮罩效應,因此,半導體器件200在應用時,第三電極208可以控制半導體結構100。
所述半導體器件200中,由於奈米碳管102和導電膜106與半導體層104之間形成異質結,即多層立體結構110內部形成異質結。本實施例所提供的半導體器件200,可以為一電晶體,其中,第一電極202為漏極,第二電極204為源極,第三電極208為柵極。通過在第三電極208上施加不同偏壓來改變所述異質結勢壘的高度,從而控制第一電極202和第二電極204之間電流的大小。本實施例中,半導體層104的材料為硫化鉬,其為n型半導體,第一電極202和第二電極204的偏壓一定時,當第三電極208的電壓為正時,多層立體結構110內部形成肖特基結勢壘降低,第一電極202和第二電極204之間導通產生電流,實現開狀態,電流的流動路徑為從第一電極202、奈米碳管102、多層立體結構110、導電膜106及第二電極204;當第三電極208的電壓為負時,異質結的勢壘增高,第一電極202和第二電極204之間幾乎沒有電流通過,實現關的狀態。請參見圖4,該電晶體的開關比可達106 ;請參見圖5,該電晶體的電流輸出也較大(電流密度可以達到(大於105 A / cm2 );該電晶體可以滿足邏輯電路的要求。
另外,本領域技術人員還可以在本發明精神內做其他變化,這些依據本發明精神所做的變化,都應包含在本發明所要求保護的範圍內。綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。
100‧‧‧半導體結構
102‧‧‧奈米碳管
104‧‧‧半導體層
106‧‧‧導電膜
110‧‧‧多層立體結構
200‧‧‧半導體器件
202‧‧‧第一電極
204‧‧‧第二電極
208‧‧‧第三電極
210‧‧‧絕緣層
圖1為本發明第一實施例提供的半導體結構的結構示意圖。
圖2為本發明第一實施例提供的半導體結構的側視示意圖。
圖3為本發明第二實施例提供的半導體器件的立體結構示意圖。
圖4為本發明第二實施例提供的半導體器件在用作電晶體時,在柵極電壓不同時,電晶體的傳輸特徵曲線圖。
圖5為本發明第二實施例提供的半導體器件在用作電晶體時,在柵極電壓不同時,電晶體的輸出特徵曲線圖。

Claims (10)

  1. 一種半導體結構,其包括: 一半導體層,該半導體層的厚度為1~100奈米,所述半導體層包括一第一表面及與第一表面相對的第二表面; 一奈米碳管,該奈米碳管設置於半導體層的第一表面; 一導電膜,該導電膜通過沉積方法形成於所述半導體層的第二表面,使半導體層設置于奈米碳管和導電膜之間,所述奈米碳管、半導體層與導電膜相互層疊形成一多層立體結構。
  2. 如請求項第1項所述之半導體結構,其中,所述奈米碳管為金屬型奈米碳管。
  3. 如請求項第2項所述之半導體結構,其中,所述奈米碳管為單壁奈米碳管。
  4. 如請求項第1項所述之半導體結構,其中,所述多層立體結構的橫截面面積在1nm2 ~100nm2 之間。
  5. 如請求項第1項所述之半導體結構,其中,所述半導體層的厚度為1奈米~200奈米。
  6. 如請求項第1項所述之半導體結構,其中,所述半導體材料為砷化鎵、碳化矽、多晶矽、單晶矽、萘或硫化鉬。
  7. 如請求項第1項所述之半導體結構,其中,所述導電膜的沉積方法包括離子濺射、磁控濺射或其它鍍膜方法。
  8. 如請求項第7項所述之半導體結構,其中,所述導電膜的厚度為5奈米~100奈米。
  9. 一半導體器件,該半導體器件包括一第一電極、一第二電極、一第三電極及一半導體結構;該半導體結構與該第一電極和第二電極電連接,該第三電極通過一絕緣層與該半導體結構、第一電極及第二電極絕緣設置;所述半導體結構包括: 一半導體層,該半導體層的厚度為1~100奈米,所述半導體層包括一第一表面及與第一表面相對的第二表面; 一奈米碳管,該奈米碳管設置於半導體層的第一表面; 一導電膜,該導電膜通過沉積方法形成於所述半導體層的第二表面,使半導體層設置于奈米碳管和導電膜之間,奈米碳管、半導體層與導電膜相互層疊形成一多層立體結構; 其中,所述奈米碳管設置於絕緣層的表面,使絕緣層位於奈米碳管和第三電極之間。
  10. 如請求項第9項所述之半導體器件,其中,所述第一電極與奈米碳管電連接,所述第二電極與所述導電膜電連接。
TW106121848A 2017-05-24 2017-06-29 半導體結構及半導體器件 TWI667192B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710375318.1A CN108933171B (zh) 2017-05-24 2017-05-24 半导体结构及半导体器件
??201710375318.1 2017-05-24

Publications (2)

Publication Number Publication Date
TW201900545A true TW201900545A (zh) 2019-01-01
TWI667192B TWI667192B (zh) 2019-08-01

Family

ID=64401016

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106121848A TWI667192B (zh) 2017-05-24 2017-06-29 半導體結構及半導體器件

Country Status (4)

Country Link
US (1) US10205098B2 (zh)
JP (1) JP6621498B2 (zh)
CN (1) CN108933171B (zh)
TW (1) TWI667192B (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2868201B1 (fr) * 2004-03-23 2007-06-29 Ecole Polytechnique Dgar Procede de fabrication de composants electroniques et composants electroniques obtenus par ce procede
US20080289685A1 (en) * 2007-05-22 2008-11-27 Chii-Chang Chen Thin Film Solar Cell with Rough Surface Layer Formed by Nano/Micro Particle Conductor Balls
WO2012093360A1 (en) * 2011-01-04 2012-07-12 Ecole Polytechnique Federale De Lausanne (Epfl) Semiconductor device
CN102354668B (zh) * 2011-10-12 2013-03-06 北京大学 一种碳基纳米材料晶体管的制备方法
US9472686B2 (en) * 2013-08-02 2016-10-18 Northwestern University Gate-tunable P-N heterojunction diode, and fabrication method and application of same
US9318439B2 (en) * 2014-03-21 2016-04-19 Taiwan Semiconductor Manufacturing Company Ltd. Interconnect structure and manufacturing method thereof
CN104979468A (zh) * 2014-04-10 2015-10-14 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法
CN105810748B (zh) * 2014-12-31 2018-12-21 清华大学 N型薄膜晶体管
CN107923867B (zh) * 2015-08-11 2021-04-09 东丽株式会社 半导体元件、其制造方法及使用其的传感器
CN107564979B (zh) * 2016-07-01 2019-08-13 清华大学 光探测器
CN107564910B (zh) * 2016-07-01 2020-08-11 清华大学 半导体器件

Also Published As

Publication number Publication date
JP6621498B2 (ja) 2019-12-18
JP2018198311A (ja) 2018-12-13
CN108933171B (zh) 2020-06-09
TWI667192B (zh) 2019-08-01
US20180342679A1 (en) 2018-11-29
US10205098B2 (en) 2019-02-12
CN108933171A (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
TWI650808B (zh) 半導體元件
TWI667191B (zh) 半導體器件
Jeon et al. Enhanced device performances of WSe 2–MoS 2 van der Waals junction p–n diode by fluoropolymer encapsulation
JP6621499B2 (ja) 半導体素子及び半導体部品
JP6730367B2 (ja) 太陽電池
TWI668181B (zh) 半導體器件
TWI653749B (zh) 光探測器
TWI667192B (zh) 半導體結構及半導體器件
CN112786678B (zh) 半导体结构及半导体器件
Moriya et al. Vertical field effect transistor based on graphene/transition metal dichalcogenide van der Waals heterostructure
TWI658598B (zh) N型薄膜電晶體的製備方法
Hwang et al. Graphene and Atom‐Thick 2D Materials: Device Application Prospects
Jeon et al. Dipole-containing encapsulation on WSe2/MoS2 nanoflake pn diode with glass substrate toward an ideal performance