TW201831989A - 調諧製程模型之方法 - Google Patents

調諧製程模型之方法 Download PDF

Info

Publication number
TW201831989A
TW201831989A TW107102699A TW107102699A TW201831989A TW 201831989 A TW201831989 A TW 201831989A TW 107102699 A TW107102699 A TW 107102699A TW 107102699 A TW107102699 A TW 107102699A TW 201831989 A TW201831989 A TW 201831989A
Authority
TW
Taiwan
Prior art keywords
process model
simulated
processing conditions
measured
characteristic
Prior art date
Application number
TW107102699A
Other languages
English (en)
Other versions
TWI661264B (zh
Inventor
馮牧
梭雷克 米爾 法洛克 沙亞岡
朱典文
鄭雷武
羅福 C 何威爾
王禎祥
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW201831989A publication Critical patent/TW201831989A/zh
Application granted granted Critical
Publication of TWI661264B publication Critical patent/TWI661264B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70433Layout for increasing efficiency or for compensating imaging errors, e.g. layout of exposure fields for reducing focus errors; Use of mask features for increasing efficiency or for compensating imaging errors
    • G03F7/70441Optical proximity correction [OPC]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70516Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33286Test, simulation analysator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45028Lithography
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49087Adjust parameter to compensate path deviation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本文中揭示建構一製程模型之方法,該製程模型用於自在不同處理條件下產生之圖案模擬一微影產品之一特性。該等方法使用該經模擬特性之變化與經量測特性之變化之間的一偏差以調整該製程模型之參數。

Description

調諧製程模型之方法
本文中之描述係關於用於製程模型化之方法及系統。
微影投影設備可用於例如積體電路(integrated circuit;IC)製造中。在此狀況下,圖案化裝置(例如光罩)可含有或提供對應於IC之個別層的電路圖案(「設計佈局」),且可將此電路圖案轉印至已被塗佈有輻射敏感材料(「抗蝕劑」)層的基板(例如矽晶圓)上之目標部分(例如包含一或多個晶粒)上,此係藉由諸如通過圖案化裝置上之電路圖案輻照該目標部分的方法。一般而言,單一基板含有複數個鄰近目標部分,電路圖案由微影投影設備順次地轉印至該複數個鄰近目標部分,一次一個目標部分。在一種類型之微影投影設備中,將整個圖案化裝置上之電路圖案一次性轉印至一個目標部分上;此設備通常被稱作步進器。在通常被稱作步進掃描設備(step-and-scan apparatus)之替代設備中,投影光束在給定參考方向(「掃描」方向)上遍及圖案化裝置進行掃描,同時平行或反平行於此參考方向而同步地移動基板。將圖案化裝置上之電路圖案之不同部分漸進地轉印至一個目標部分。一般而言,因為微影投影設備將具有縮減比率M (例如4),所以移動基板之速度F將為投影光束掃描圖案化裝置之速度的1/M倍。可例如自以引用之方式併入本文中的US 6,046,792搜集到關於如本文中所描述之微影裝置的更多資訊。 在將電路圖案自圖案化裝置轉印至基板之前,基板可經歷各種程序,諸如上底漆、抗蝕劑塗佈及軟烘烤。在曝光之後,基板可經受其他程序,諸如曝光後烘烤(post-exposure bake;PEB)、顯影、硬烘烤,及經轉印電路圖案之量測/檢測。此程序陣列用作製成例如IC之裝置之個別層的基礎。基板接著可經歷各種製程,諸如蝕刻、離子植入(摻雜)、金屬化、氧化、化學機械拋光等等,該等製程皆意欲精整裝置之個別層。若在裝置中需要若干層,則針對每一層重複整個程序或其變體。最終,在基板上之每一目標部分中將存在一裝置。接著藉由諸如切塊或鋸切之技術來使此等裝置彼此分離,據此可將個別裝置安裝於載體上、連接至銷釘等等。 如所提及,微影為IC製造之中心步驟,其中形成於基板上之圖案界定IC之功能元件,諸如微處理器、記憶體晶片等等。相似微影技術亦用於形成平板顯示器、微機電系統(micro-electro mechanical system;MEMS)及其他裝置。 隨著半導體製造製程不斷地進步,幾十年來,功能元件之尺寸已不斷地縮減,同時每裝置的諸如電晶體之功能元件之量已在穩定地增加,此遵循通常被稱作「莫耳定律(Moore's law)」之趨勢。在當前先進技術下,使用微影投影設備來製造裝置層,微影投影設備使用來自照明源(例如深紫外線(DUV)或紫外線(EUV))之照明將設計佈局投影至基板上,從而產生尺寸充分地低於100 nm—亦即,小於來自照明源(例如193 nm照明源)之輻射之波長之一半—的個別功能元件。 供印刷尺寸小於微影投影設備之經典解析度極限之特徵的此製程根據解析度公式CD = k1 ×λ/NA而通常被稱為低k1 微影,其中λ為所使用輻射之波長(當前在大多數狀況下為248 nm或193 nm),NA為微影投影設備中之投影光學件之數值孔徑,CD為「臨界尺寸」—通常為所印刷之最小特徵大小—且k1 為經驗解析度因數。一般而言,k1 愈小,則在基板上再生類似於由電路設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,將複雜微調步驟應用於微影投影設備、設計佈局或圖案化裝置。此等步驟包括例如但不限於NA及光學相干設定之最佳化、自訂照明方案、相移圖案化裝置之使用、多重圖案化、設計佈局中之光學近接校正(OPC,有時亦被稱作「光學及製程校正」),或通常被定義為「解析度增強技術」(resolution enhancement technique;RET)之其他方法。如本文中所使用之術語「投影光學件」應被廣泛地解譯為涵蓋各種類型之光學系統,包括例如折射光學件、反射光學件、孔徑及反射折射光學件。術語「投影光學件」亦可包括用於集體地或單個地導向、塑形或控制投影輻射光束的根據此等設計類型中之任一者而操作之組件。術語「投影光學件」可包括微影投影設備中之任何光學組件,而不管該光學組件在微影投影設備之光學路徑上位於何處。投影光學件可包括用於在來自源之輻射通過圖案化裝置之前塑形、調整及/或投影該輻射的光學組件,及/或用於在該輻射通過圖案化裝置之後塑形、調整及/或投影該輻射的光學組件。投影光學件通常排除源及圖案化裝置。
本文中揭示一種方法,其包含:藉由在複數個處理條件下使用包含一參數之一製程模型來模擬一微影產品之特性而獲得經模擬特性;判定該等經模擬特性之一變化;藉由自在該複數個處理條件下產生之圖案量測該產品之該等特性而獲得經量測特性;判定該等經量測特性之一變化;判定該等經模擬特性之該變化與該等經量測特性之該變化之間的一第一偏差;及基於該第一偏差而調整該參數。 根據一實施例,該方法進一步包含基於由該製程模型進行之模擬而調整一處理條件。 根據一實施例,該方法進一步包含基於由該製程模型進行之模擬而在由該微影產生之一基板上選擇一群部位以供檢測。 根據一實施例,隨機地選擇該複數個處理條件。 根據一實施例,該複數個處理條件包含一標稱處理條件。 根據一實施例,該等經量測特性之該變化係選自由以下各者組成之一群:該等經量測特性之一標準偏差、該等經量測特性之一方差,及該等經量測特性之一範圍。 根據一實施例,該等經模擬特性之該變化係選自由以下各者組成之一群:該等經量測特性之一標準偏差、該等經量測特性之一方差,及該等經量測特性之一範圍。 根據一實施例,調整該等參數包含判定致使該第一偏差之一函數處於一局域極值或全域極值的該等參數之值。 根據一實施例,調整該參數係基於以下各者之一組合:該第一偏差,及在一相同處理條件下之該等經模擬特性與該等經量測特性之間的一第二偏差。 根據一實施例,該複數個處理條件包含一微影設備之一源之一特性、一微影設備之投影光學件之一特性,及一圖案化裝置之一特性,該圖案化裝置上具有表示一設計佈局之一特徵配置。 根據一實施例,該產品之該等特性包含一影像之一特性。 根據一實施例,該影像為一空中影像、一抗蝕劑影像或一經蝕刻影像。 根據一實施例,該產品之該等特性包含一設計佈局之一特徵之一製程窗。 根據一實施例,該產品之該等特性包含複數個部位處之一特徵之一統計參數。 本文中揭示一種方法,其包含:獲得複數個第一偏差,該複數個第一偏差中之每一者介於一微影產品之經模擬特性之一變化與該微影產品之經量測特性之一變化之間,其中藉由使用包含一參數之一製程模型來模擬該產品之特性而獲得該等經模擬特性;建構複數個成本函數,該等成本函數為該複數個第一偏差之組合;及藉由使用該等成本函數來調整該製程模型之該參數。 根據一實施例,該方法進一步包含基於由該製程模型進行之模擬而調整一處理條件。 根據一實施例,該方法進一步包含基於由該製程模型進行之模擬而在由該微影產生之一基板上選擇一群部位以供檢測。 根據一實施例,該等變化係橫越同一組處理條件。 根據一實施例,該方法進一步包含在一相同處理條件下獲得該等經模擬特性與該等經量測特性之間的一第二偏差,其中該等成本函數為該複數個第一偏差及該第二偏差之組合。 根據一實施例,該等成本函數中之至少一者不受到所有該等參數影響。 根據一實施例,調整該等參數包含判定致使該等成本函數處於局域極值或全域極值的該等參數之值。 根據一實施例,該產品之該等特性包含一影像之一特性。 根據一實施例,該影像為一空中影像、一抗蝕劑影像或一經蝕刻影像。 根據一實施例,該產品之該等特性包含一設計佈局之一特徵之一製程窗。 根據一實施例,該產品之該等特性包含複數個部位處之一特徵之一統計參數。 本文中揭示一種電腦程式產品,其包含一非暫時性電腦可讀媒體,該非暫時性電腦可讀媒體上被記錄有指令,該等指令在由一電腦執行時實施上述方法中之任一者。
儘管在本文中可特定地參考IC製造,但應明確地理解,本文中之描述具有許多其他可能應用。舉例而言,其可用於製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、液晶顯示面板、薄膜磁頭等等。熟習此項技術者應瞭解,在此等替代應用之內容背景中,本文中對術語「倍縮光罩」、「晶圓」或「晶粒」之任何使用應被認為分別與更一般的術語「光罩」、「基板」及「目標部分」可互換。 在本文件中,術語「輻射」及「光束」用以涵蓋所有類型之電磁輻射,包括紫外線輻射(例如具有365、248、193、157或126 nm之波長)及極紫外線輻射(EUV,例如具有在約5至100 nm之範圍內之波長)。 圖案化裝置可包含或可形成一或多個設計佈局。可利用電腦輔助設計(computer-aided design;CAD)程式來產生設計佈局,此製程常常被稱作電子設計自動化(electronic design automation;EDA)。大多數CAD程式遵循一組預定設計規則,以便產生功能設計佈局/圖案化裝置。此等規則係藉由處理及設計限制而設定。舉例而言,設計規則定義電路裝置(諸如閘、電容器等等)或互連線之間的空間容許度,以便確保該等電路裝置或線彼此不會以不合意方式相互作用。設計規則限制中之一或多者可被稱作「臨界尺寸」(CD)。電路之臨界尺寸可被定義為一線或孔之最小寬度,或兩個線或兩個孔之間的最小空間。因此,CD判定經設計電路之總大小及密度。當然,積體電路製作中之目標中之一者係在基板上如實地再生原始電路設計(經由圖案化裝置)。 如本文中所使用之術語「光罩」或「圖案化裝置」可被廣泛地解譯為係指可用以賦予經圖案化橫截面給入射輻射光束之通用圖案化裝置,經圖案化橫截面對應於將在基板之目標部分中產生之圖案;術語「光閥」亦可用於此內容背景中。除了經典光罩(透射的或反射的;二元、相移、混合式等等)以外,其他此等圖案化裝置之實例亦包括: -可程式化鏡面陣列。此裝置之實例為具有黏彈性控制層及反射表面之矩陣可定址表面。此設備所隱含之基本原理為(例如):反射表面之經定址區域將入射輻射反射為繞射輻射,而未經定址區域將入射輻射反射為非繞射輻射。在使用適當濾光器之情況下,可自反射光束濾出該非繞射輻射,從而僅留下繞射輻射;以此方式,光束根據矩陣可定址表面之定址圖案而變得圖案化。可使用合適電子構件來執行所需矩陣定址。可例如自以引用之方式併入本文中的美國專利第5,296,891號及第5,523,193號搜集到關於此等鏡面陣列之更多資訊。 -可程式化LCD陣列。以引用之方式併入本文中的美國專利第5,229,872號中給出此構造之實例。作為簡要介紹,圖1繪示例示性微影投影設備10A。主要組件為:輻射源12A,其可為深紫外線準分子雷射源或包括極紫外線(EUV)源的其他類型之源(如上文所論述,微影投影設備自身無需具有輻射源);照明光學件,其界定部分相干(被表示為西格瑪(sigma))且可包括塑形來自源12A之輻射的光學件14A、16Aa及16Ab;圖案化裝置14A;及透射光學件16Ac,其將圖案化裝置圖案之影像投影至基板平面22A上。投影光學件之光瞳平面處之可調整式濾光器或孔徑20A可限定照射於基板平面22A上之光束角度之範圍,其中最大可能角度界定投影光學件之數值孔徑NA= n sin(Θmax ),n為投影光學件之最後元件與基板之間的介質之折射率,且Θmax 為自投影光學件射出的仍可照射於基板平面22A上之光束的最大角度。 在微影投影設備中,源提供照明(亦即,輻射)給圖案化裝置,且投影光學件經由圖案化裝置將照明導向及塑形至基板上。投影光學件可包括組件14A、16Aa、16Ab及16Ac中之至少一些。空中影像(aerial image;AI)為基板位階處之輻射強度分佈(例如在抗蝕劑之表面上或在抗蝕劑內部;亦即,2D或3D強度分佈)。曝光基板上之抗蝕劑層,且將空中影像轉印至抗蝕劑層以在其中作為潛伏「抗蝕劑影像」(resist image;RI)。抗蝕劑影像(RI)可被定義為抗蝕劑層中之抗蝕劑之空間(2D或3D)溶解度分佈。可使用抗蝕劑模型以自空中影像計算抗蝕劑影像,可在全文以引用之方式併入本文中的美國專利申請公開案第US 2009-0157360號中找到此情形之實例。抗蝕劑模型僅與抗蝕劑層之屬性(例如在曝光、PEB及顯影期間發生之化學製程之效應)相關。微影投影設備之光學屬性(例如源、圖案化裝置及投影光學件之屬性)規定空中影像。因為可改變用於微影投影設備中之圖案化裝置,所以可能需要將圖案化裝置之光學屬性與至少包括源及投影光學件的微影投影設備之其餘部分之光學屬性分離。 圖2中繪示用於模擬微影投影設備中之微影的例示性流程圖。將源之特性31 (例如輻射強度分佈及相位分佈)、投影光學件之特性32 (例如由投影光學件造成的對輻射強度分佈及對相位分佈之改變)及圖案化裝置之特性33 (例如由表示給定設計佈局的在圖案化裝置上或由圖案化裝置形成之特徵配置造成的對輻射強度分佈及對相位分佈之改變)提供至製程模型34作為至製程模型34之輸入。製程模型34可具有其他輸入,諸如包括劑量及聚焦之曝光程序之特性,或諸如包括顯影、PEB及蝕刻之曝光後程序之特性。製程模型34使用此等輸入來模擬微影產品(例如空中影像、抗蝕劑影像或經蝕刻影像)之特性35 (例如輪廓及CD)。特性35之實例可包括設計佈局之特徵之製程窗、諸如多個部位處之特徵之標準偏差的統計參數。 更具體言之,應注意,特性31可包括源之光學特性,包括但不限於數值孔徑設定、照明西格瑪(σ)設定,以及任何特定照明形狀(例如離軸輻射源,諸如環形、四極、偶極等等)。特性32可包括投影光學件之光學特性,包括像差、失真、一或多個折射率、一或多個實體大小、一或多個實體尺寸等等。特性33可包括如例如美國專利第7,587,704號中所描述之實體圖案化裝置之一或多個實體屬性,該美國專利之全文以引用之方式併入本文中。模擬可預測例如邊緣置放、空中影像強度斜率及/或CD,接著可比較邊緣置放、空中影像強度斜率及/或CD與預期設計。預期設計通常被定義為可以諸如GDSII或OASIS或其他檔案格式之標準化數位檔案格式而提供之預OPC設計佈局。 製程模型34可具有許多可能形式中之一者。在每一形式中,製程模型34可具有一或多個參數。可自由製程模型34模擬之特性35 (「經模擬特性」)與在相同處理條件(例如由製程模型34之輸入之多組值表示)下自實體基板量測之特性35 (「經量測特性」)之間的偏差判定參數之值。舉例而言,偏差可為由製程模型34模擬之CD與在如模擬中所使用之相同處理條件下產生之實體基板上實際上量測之CD之間的差。在一實例中,判定參數之值可簡化為找到致使成本函數 處於局域極值或全域極值的製程模型34之參數{p }之值。C 為一處理條件,其可由製程模型34之輸入之一組值表示;{c }為一組處理條件;M ({p },C )為在處理條件C 下之經模擬特性;O (C )為自在處理條件C 下產生之基板量測之經量測特性;F 為在處理條件C 下之經模擬特性與經量測特性之間的偏差。F 之實例可為。圖3示意性地展示:對於為組{c }之成員的處理條件315A、315B及315C…中之每一者,判定偏差F ,且使用偏差F 來判定製程模型34之參數{p }之值。 輸入之值之任何改變(亦即,由輸入表示之處理條件之任何改變)可影響經模擬特性及經量測特性。此等改變之實例可包括設計佈局中之圖案尺寸之改變、源之改變、投影光學件之改變,及曝光後程序(例如顯影及PEB)之改變。若該組處理條件{c }不具代表性(例如該組處理條件{c }具有極少成員),則使用該組處理條件{c }而建構之製程模型34可具有大誤差,尤其是當製程模型34與{c }中未充分地表示之輸入一起使用時。 增加該組處理條件{c }之大小無疑將會改良其代表性,但亦將會增加建構製程模型34所需要之計算量。 在一實施例中,處理條件當中(例如在處理條件之諸如±10%的附近)的經模擬特性之變化與經量測特性之變化之間的偏差單獨地或結合在相同處理條件下之經模擬特性與經量測特性之間的偏差可用以判定製程條件34之參數之值。此係因為良好製程模型34不僅應在若干處理條件下準確地模型化特性35,而且在此等處理條件周圍準確地模型化特性35之變化。舉例而言,偏差可為針對一群處理條件由製程模型34模擬之CD之標準偏差與在同一群處理條件下產生之實體基板上實際上量測之CD之標準偏差之間的差。在一實例中,判定參數之值可簡化為找到致使成本函數處於局域極值或全域極值的製程模型34之參數{p }之值C 為一處理條件(例如標稱處理條件),其可由製程模型34之輸入之一組值表示;{c }為一組處理條件;為在處理條件C 下之經模擬特性;O (C )為自在處理條件C 下產生之基板量測之經量測特性;分別為在處理條件C 附近之處理條件當中的經模擬特性之變化及經量測特性之變化。G 為變化之間的偏差。G 之實例可為。在另一實例中,變化V 可為兩個柏桑(Bossung)曲線之曲率,且偏差G 可為此等曲率之間的差。圖4示意性地展示:對於為組{c }之成員的處理條件(315A、315B及315C…)中之每一者,在彼處理條件附近(316A、316B或316C…)判定偏差G ,且使用偏差G 來判定製程模型34之參數之值。 在一實例中,判定參數之值可簡化為找到致使CF 1及CF 2之組合處於局域極值或全域極值的製程模型34之參數{p }之值。 可使用諸如高斯-牛頓演算法(Gauss-Newton algorithm)、雷文柏格-馬括特演算法(Levenberg-Marquardt algorithm)、布洛伊登-費萊雪-高德法伯-香農演算法(Broyden-Fletcher-Goldfarb-Shanno algorithm)、梯度下降演算法(gradient descent algorithm)、模擬退火演算法(simulated annealing algorithm)、內點演算法(interior point algorithm)及基因演算法(genetic algorithm)之演算法來判定製程模型34之參數{p }之值。 圖5A示意性地展示在處理條件C 附近的經量測特性(被標註為「O」之曲線)及由製程模型M1進行之經模擬特性(被標註為「M1」之曲線)。在此實例中,在相同處理條件下之經模擬特性與經量測特性之間的偏差大;在處理條件之相同變化下的經模擬特性之變化與經量測特性之變化之間的偏差小。亦即,成本函數CF1將大,但成本函數CF2將小。圖5B示意性地展示在處理條件C 附近的經量測特性(被標註為「O」之曲線)及由製程模型M2進行之經模擬特性(被標註為「M2」之曲線)。在此實例中,在相同處理條件下之經模擬特性與經量測特性之間的偏差小;在處理條件之相同變化下的經模擬特性之變化與經量測特性之變化之間的偏差大。亦即,成本函數CF1將小,但成本函數CF2將大。製程模型M1或製程模型M2皆並非極準確。當使用成本函數CF1及CF2之組合來判定製程模型之參數時,可縮減兩種類型之偏差。 製程模型34可具有許多參數{p }。使用一個成本函數(例如CF1、CF2或CF1及CF2之組合)來判定此等許多參數{p }可使該等參數陷入局域極值。在一實施例中,可使用許多成本函數來判定製程模型34之參數{p }。舉例而言,此等成本函數可為在多個處理條件C 下之經模擬特性與經量測特性之間的多個偏差F 及經模擬特性之變化與經量測特性之變化(例如在處理條件C 附近之處理條件當中)之間的多個偏差G 之組合。此等偏差F 及偏差G 可處於複數個不同處理條件。偏差F 及偏差G 中之一些可被選擇為僅對參數{p }之子集敏感。 圖6A示意性地展示根據一實施例的用於建構製程模型之流程圖。在程序6010中,藉由使用具有複數個參數之製程模型34在複數個處理條件下模擬特性35而獲得經模擬特性。可隨機地選擇複數個處理條件。複數個處理條件可在包括標稱處理條件之範圍內。在程序6020中,判定經模擬特性之變化。在程序6030中,藉由例如藉由使用度量衡工具自在複數個處理條件下產生之圖案量測特性35而獲得經量測特性。在程序6040中,判定經量測特性之變化。在程序6050中,判定變化之間的偏差。變化之實例可包括標準偏差、方差、範圍,或描述經模擬或經量測特性之間的差之任何其他量。在程序6060中,至少部分地基於偏差而調整製程模型34之參數。基於偏差而調整參數可包含判定致使偏差之函數處於局域極值或全域極值的參數之值。可基於在程序6050中判定之偏差及在相同處理條件下之經模擬特性與經量測特性之間的偏差之組合而調整製程模型34之參數。在選用程序6070中,可基於在經調整參數下由製程模型34進行之模擬而調整處理條件(例如源、投影光學件、圖案化裝置或其組合之特性)。在選用程序6080中,可基於在經調整參數下由製程模型34進行之模擬而在基板上選擇一群部位以供檢測。 圖6B示意性地展示根據一實施例的用於建構製程模型之流程圖。在程序7010中,例如使用圖6之流程圖中之程序6010至6050來獲得複數個偏差,該等偏差中之每一者介於橫越同一組處理條件的經模擬特性之變化與經量測特性之變化之間。在選用程序7020中,獲得在相同處理條件下之經模擬特性與經量測特性之間的一或多個偏差。在程序7030中,建構複數個成本函數。成本函數為經模擬特性之變化與經量測特性之變化之間的複數個偏差之組合,且視情況為在相同處理條件下之經模擬特性與經量測特性之間的一或多個偏差。在一實施例中,成本函數中之至少一者不受到製程模型34之所有參數影響。在程序7040中,藉由使用成本函數來調整製程模型34之參數。舉例而言,調整參數可包含判定致使複數個成本函數處於局域極值或全域極值的參數之值。在選用程序7050中,可基於在經調整參數下由製程模型34進行之模擬而調整處理條件(例如源、投影光學件、圖案化裝置或其組合之特性)。在選用程序7060中,可基於在經調整參數下由製程模型34進行之模擬而在基板上選擇一群部位以供檢測。 圖7為繪示可輔助實施本文中所揭示之方法、流程、設備或系統之電腦系統100的方塊圖。電腦系統100包括用於傳達資訊之匯流排102或其他通信機構,及與匯流排102耦接以用於處理資訊之處理器104 (或多個處理器104及105)。電腦系統100亦包括主記憶體106,諸如隨機存取記憶體(random access memory;RAM)或其他動態儲存裝置,其耦接至匯流排102以用於儲存待由處理器104執行之資訊及指令。主記憶體106亦可用於在執行待由處理器104執行之指令期間儲存暫時變數或其他中間資訊。電腦系統100進一步包括耦接至匯流排102以用於儲存用於處理器104之靜態資訊及指令之唯讀記憶體(read only memory;ROM) 108或其他靜態儲存裝置。提供諸如磁碟或光碟之儲存裝置110且將其耦接至匯流排102以用於儲存資訊及指令。 電腦系統100可經由匯流排102而耦接至用於顯示資訊給電腦使用者之顯示器112,諸如陰極射線管(CRT)或平板顯示器或觸控面板顯示器。包括文數字按鍵及其他按鍵之輸入裝置114耦接至匯流排102以用於將資訊及命令選擇傳達至處理器104。另一類型之使用者輸入裝置為用於將方向資訊及命令選擇傳達至處理器104且用於控制顯示器112上之游標移動的游標控制件116,諸如滑鼠、軌跡球或游標方向按鍵。此輸入裝置通常在兩個軸線—第一軸線(例如x)及第二軸線(例如y)—上具有兩個自由度,其允許該裝置在平面中指定位置。觸控面板(螢幕)顯示器亦可用作輸入裝置。 根據一個實施例,可由電腦系統100回應於處理器104執行主記憶體106中所含有之一或多個指令之一或多個序列而執行最佳化製程之部分。可將此等指令自諸如儲存裝置110之另一電腦可讀媒體讀取至主記憶體106中。主記憶體106中所含有之指令序列之執行會致使處理器104執行本文中所描述之製程步驟。亦可使用呈多處理配置之一或多個處理器以執行主記憶體106中所含有之指令序列。在一替代實施例中,可代替或結合軟體指令來使用硬連線電路系統。因此,本文中之描述並不限於硬體電路系統及軟體之任何特定組合。 如本文中所使用之術語「電腦可讀媒體」係指參與將指令提供至處理器104以供執行之任何媒體。此媒體可呈許多形式,包括但不限於非揮發性媒體、揮發性媒體及傳輸媒體。非揮發性媒體包括例如光碟或磁碟,諸如儲存裝置110。揮發性媒體包括動態記憶體,諸如主記憶體106。傳輸媒體包括同軸電纜、銅線及光纖,包括包含匯流排102之連線。傳輸媒體亦可呈聲波或光波之形式,諸如在射頻(radio frequency;RF)及紅外線(infrared;IR)資料通信期間所產生之聲波或光波。電腦可讀媒體之常見形式包括例如軟碟、可撓性磁碟、硬碟、磁帶、任何其他磁性媒體、CD-ROM、DVD、任何其他光學媒體、打孔卡、紙帶、具有孔圖案之任何其他實體媒體、RAM、PROM及EPROM、FLASH-EPROM、任何其他記憶體晶片或卡匣、如下文中所描述之載波,或可供電腦讀取之任何其他媒體。 各種形式之電腦可讀媒體可涉及到將一或多個指令之一或多個序列攜載至處理器104以供執行。舉例而言,最初可將該等指令承載於遠端電腦之磁碟上。遠端電腦可將指令載入至其動態記憶體中,且使用數據機經由電話線而發送指令。在電腦系統100本端之數據機可接收電話線上之資料,且使用紅外線傳輸器以將資料轉換為紅外線信號。耦接至匯流排102之紅外線偵測器可接收紅外線信號中所攜載之資料且將該資料置放於匯流排102上。匯流排102將資料攜載至主記憶體106,處理器104自主記憶體106擷取及執行指令。由主記憶體106接收之指令可視情況在由處理器104執行之前或之後儲存於儲存裝置110上。 電腦系統100亦可包括耦接至匯流排102之通信介面118。通信介面118提供對網路鏈路120之雙向資料通信耦接,網路鏈路120連接至區域網路122。舉例而言,通信介面118可為整合式服務數位網路(integrated services digital network;ISDN)卡或數據機以提供對對應類型之電話線之資料通信連接。作為另一實例,通信介面118可為區域網路(local area network;LAN)卡以提供對相容LAN之資料通信連接。亦可實施無線鏈路。在任何此類實施方案中,通信介面118發送及接收攜載表示各種類型之資訊之數位資料串流的電信號、電磁信號或光學信號。 網路鏈路120通常經由一或多個網路將資料通信提供至其他資料裝置。舉例而言,網路鏈路120可將經由區域網路122之連接提供至主機電腦124或提供至由網際網路服務提供者(Internet Service Provider;ISP) 126操作之資料裝備。ISP 126又經由全球封包資料通信網路—現在通常被稱作「網際網路」128—來提供資料通信服務。區域網路122及網際網路128兩者使用攜載數位資料串流之電信號、電磁信號或光學信號。經由各種網路之信號及在網路鏈路120上且經由通信介面118之信號為輸送資訊之載波之例示性形式,該等信號將數位資料攜載至電腦系統100及自電腦系統100攜載數位資料。 電腦系統100可經由網路、網路鏈路120及通信介面118來發送訊息且接收資料,包括程式碼。在網際網路實例中,伺服器130可能經由網際網路128、ISP 126、區域網路122及通信介面118來傳輸用於應用程式之經請求程式碼。一種此類經下載應用程式可實現例如實施例之照明最佳化。經接收程式碼可在其被接收時由處理器104執行,及/或儲存於儲存裝置110或其他非揮發性儲存體中以供稍後執行。以此方式,電腦系統100可獲得呈載波形式之應用程式碼。 圖8示意性地描繪例示性微影投影設備,其照明可利用本文中所描述之方法被最佳化。該設備包含: -照明系統IL,其用以調節輻射光束B。在此特定狀況下,照明系統亦包含輻射源SO; -第一物件台(例如圖案化裝置台) MT,其具備用以固持圖案化裝置MA (例如倍縮光罩)之圖案化裝置固持器,且連接至用以相對於項目PS來準確地定位該圖案化裝置之第一定位器; -第二物件台(基板台) WT,其具備用以固持基板W (例如抗蝕劑塗佈矽晶圓)之基板固持器,且連接至用以相對於項目PS來準確地定位該基板之第二定位器; -投影系統(「透鏡」) PS (例如折射、反射或反射折射光學系統),其用以將圖案化裝置MA之經輻照部分成像至基板W之目標部分C (例如包含一或多個晶粒)上。 如本文中所描繪,該設備屬於透射類型(亦即,具有透射圖案化裝置)。然而,一般而言,其亦可屬於反射類型,例如(具有反射圖案化裝置)。該設備可使用種類與典型光罩不同之圖案化裝置;實例包括可程式化鏡面陣列或LCD矩陣。 源SO (例如水銀燈或準分子雷射、雷射產生電漿(laser produced plasma;LPP) EUV源)產生輻射光束。舉例而言,此光束直接或在已橫穿諸如光束擴展器Ex之調節構件之後饋送至照明系統(照明器) IL中。照明器IL可包含用於設定光束中之強度分佈之外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)的調整構件AD。另外,照明器IL通常將包含各種其他組件,諸如積光器IN及聚光器CO。以此方式,照射於圖案化裝置MA上之光束B在其橫截面中具有所要均一性及強度分佈。 關於圖8應注意,源SO可在微影投影設備之外殼內(此常常係源SO為例如水銀燈時之狀況),但其亦可遠離微影投影設備,源SO產生之輻射光束被導向至該設備中(例如憑藉合適導向鏡面);此後一情境常常係源SO為準分子雷射(例如基於KrF、ArF或F2 雷射作用)時之狀況。 光束PB隨後截取被固持於圖案化裝置台MT上之圖案化裝置MA。在已橫穿圖案化裝置MA之情況下,光束B傳遞通過透鏡PL,透鏡PL將光束B聚焦至基板W之目標部分C上。憑藉第二定位構件(及干涉量測構件IF),可準確地移動基板台WT,例如以便將不同目標部分C定位於光束PB之路徑中。相似地,第一定位構件可用以例如在自圖案化裝置庫機械地擷取圖案化裝置MA之後或在掃描期間相對於光束B之路徑來準確地定位圖案化裝置MA。一般而言,將憑藉未在圖8中明確地描繪之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現物件台MT、WT之移動。然而,在步進器(相對於步進掃描工具)之狀況下,圖案化裝置台MT可僅連接至短衝程致動器,或可固定。 可在兩種不同模式下使用所描繪工具: -在步進模式下,使圖案化裝置台MT保持基本上靜止,且將整個圖案化裝置影像一次性投影(亦即,單次「閃光」)至目標部分C上。接著使基板台WT在x方向及/或y方向上移位,使得可由光束PB輻照不同目標部分C; -在掃描模式下,基本上相同情境適用,惟單次「閃光」中不曝光給定目標部分C除外。代替地,圖案化裝置台MT可在給定方向(所謂的「掃描方向」,例如y方向)上以速度v移動,使得投影光束B被致使遍及圖案化裝置影像進行掃描;同時,基板台WT以速度V = Mv在相同或相對方向上同時地移動,其中M為透鏡PL之放大率(通常,M = 1/4或1/5)。以此方式,可在不必損害解析度之情況下曝光相對大目標部分C。 圖9示意性地描繪另一例示性微影投影設備1000,其照明可利用本文中所描述之方法被最佳化。 微影投影設備1000包含: -源收集器模組SO; -照明系統(照明器) IL,其經組態以調節輻射光束B (例如EUV輻射); -支撐結構(例如圖案化裝置台) MT,其經建構以支撐圖案化裝置(例如光罩或倍縮光罩) MA,且連接至經組態以準確地定位該圖案化裝置之第一定位器PM; -基板台(例如晶圓台) WT,其經建構以固持基板(例如抗蝕劑塗佈晶圓) W,且連接至經組態以準確地定位該基板之第二定位器PW;及 -投影系統(例如反射投影系統) PS,其經組態以將由圖案化裝置MA賦予至輻射光束B之圖案投影至基板W之目標部分C (例如包含一或多個晶粒)上。 如此處所描繪,設備1000屬於反射類型(例如使用反射圖案化裝置)。應注意,因為大多數材料在EUV波長範圍內具吸收性,所以圖案化裝置可具有包含例如鉬與矽之多堆疊的多層反射器。在一個實例中,多堆疊反射器具有鉬與矽之40個層對,其中每一層之厚度為四分之一波長。可運用X射線微影來產生甚至更小的波長。因為大多數材料在EUV及x射線波長下具吸收性,所以圖案化裝置構形上之經圖案化吸收材料薄件(例如多層反射器之頂部上的TaN吸收體)界定特徵將在何處印刷(正型抗蝕劑)或不印刷(負型抗蝕劑)。 參看圖9,照明器IL自源收集器模組SO接收極紫外線輻射光束。用以產生EUV輻射之方法包括但未必限於運用在EUV範圍內之一或多個發射譜線將具有例如氙、鋰或錫之至少一種元素的材料轉換成電漿狀態。在常常被稱為雷射產生電漿(「LPP」)之一種此類方法中,可藉由運用雷射光束來輻照諸如具有譜線發射元素之材料小滴、串流或叢集的燃料而產生電漿。源收集器模組SO可為包括圖9中未展示之雷射之EUV輻射系統之部分,該雷射用於提供激發燃料之雷射光束。所得電漿發射輸出輻射,例如EUV輻射,該輸出輻射係使用安置於源收集器模組中之輻射收集器予以收集。舉例而言,當使用CO2雷射以提供用於燃料激發之雷射光束時,雷射及源收集器模組可為單獨實體。 在此等狀況下,雷射不被視為形成微影設備之部分,且輻射光束係憑藉包含例如合適導向鏡面及/或光束擴展器之光束遞送系統而自雷射傳遞至源收集器模組。在其他狀況下,舉例而言,當源為常常被稱為DPP源之放電產生電漿EUV產生器時,源可為源收集器模組之整體部分。 照明器IL可包含用於調整輻射光束之角強度分佈的調整器。通常,可調整照明器之光瞳平面中之強度分佈之至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL可包含各種其他組件,諸如琢面化場鏡面裝置及琢面化光瞳鏡面裝置。照明器可用以調節輻射光束,以在其橫截面中具有所要均一性及強度分佈。 輻射光束B入射於被固持於支撐結構(例如圖案化裝置台) MT上之圖案化裝置(例如光罩) MA上,且由該圖案化裝置圖案化。在自圖案化裝置(例如光罩) MA反射之後,輻射光束B傳遞通過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器PS2 (例如干涉量測裝置、線性編碼器或電容式感測器),可準確地移動基板台WT,例如以便將不同目標部分C定位於輻射光束B之路徑中。相似地,第一定位器PM及另一位置感測器PS1可用以相對於輻射光束B之路徑來準確地定位圖案化裝置(例如光罩) MA。可使用圖案化裝置對準標記M1、M2及基板對準標記P1、P2來對準圖案化裝置(例如光罩) MA及基板W。 可在以下模式中之至少一者下使用所描繪設備1000: 1. 在步進模式下,使支撐結構(例如圖案化裝置台) MT及基板台WT保持基本上靜止,同時將賦予至輻射光束之整個圖案一次性投影至目標部分C上(亦即,單次靜態曝光)。接著使基板台WT在X方向及/或Y方向上移位,使得可曝光不同目標部分C。 2. 在掃描模式下,同步地掃描支撐結構(例如圖案化裝置台) MT及基板台WT,同時將賦予至輻射光束之圖案投影至目標部分C上(亦即,單次動態曝光)。可藉由投影系統PS之(縮小率)放大率及影像反轉特性來判定基板台WT相對於支撐結構(例如圖案化裝置台) MT之速度及方向。 3. 在另一模式下,使支撐結構(例如圖案化裝置台) MT保持基本上靜止,從而固持可程式化圖案化裝置,且移動或掃描基板台WT,同時將賦予至輻射光束之圖案投影至目標部分C上。在此模式下,通常使用脈衝式輻射源,且在基板台WT之每一移動之後或在一掃描期間之順次輻射脈衝之間視需要而更新可程式化圖案化裝置。此操作模式可易於應用於利用諸如上文所提及之類型之可程式化鏡面陣列之可程式化圖案化裝置的無光罩微影。 圖10更詳細地展示設備1000,其包括源收集器模組SO、照明系統IL及投影系統PS。源收集器模組SO經建構及配置使得可將真空環境維持於源收集器模組SO之圍封結構220中。可藉由放電產生電漿源而形成EUV輻射發射電漿210。可藉由例如Xe氣體、Li蒸汽或Sn蒸汽之氣體或蒸汽而產生EUV輻射,其中產生極熱電漿210以發射在電磁光譜之EUV範圍內之輻射。舉例而言,藉由產生至少部分離子化電漿之放電來產生極熱電漿210。為了輻射之高效產生,可能需要為例如10 Pa之分壓之Xe、Li、Sn蒸汽或任何其他合適氣體或蒸汽。在一實施例中,提供經激發錫(Sn)電漿以產生EUV輻射。 由熱電漿210發射之輻射係經由定位於源腔室211中之開口中或後方的選用氣體障壁或污染物截留器230 (在一些狀況下亦被稱作污染物障壁或箔片截留器)而自源腔室211傳遞至收集器腔室212中。污染物截留器230可包括通道結構。污染截留器230亦可包括氣體障壁,或氣體障壁及通道結構之組合。如在此項技術中所知,本文中進一步所指示之污染物截留器或污染物障壁230至少包括通道結構。 收集器腔室211可包括可為所謂的掠入射收集器之輻射收集器CO。輻射收集器CO具有上游輻射收集器側251及下游輻射收集器側252。橫穿收集器CO之輻射可自光柵光譜濾光器240反射以沿著由點虛線「O」指示之光軸聚焦於虛擬源點IF中。虛擬源點IF通常被稱作中間焦點,且源收集器模組經配置使得中間焦點IF位於圍封結構220中之開口221處或附近。虛擬源點IF為輻射發射電漿210之影像。 隨後,輻射橫穿照明系統IL,照明系統IL可包括琢面化場鏡面裝置22及琢面化光瞳鏡面裝置24,琢面化場鏡面裝置22及琢面化光瞳鏡面裝置24經配置以提供在圖案化裝置MA處的輻射光束21之所要角分佈,以及在圖案化裝置MA處的輻射強度之所要均一性。在由支撐結構MT固持之圖案化裝置MA處反射輻射光束21後,就形成經圖案化光束26,且由投影系統PS將經圖案化光束26經由反射元件28、30成像至由基板台WT固持之基板W上。 比所展示元件更多的元件通常可存在於照明光學件單元IL及投影系統PS中。取決於微影設備之類型,可視情況存在光柵光譜濾光器240。另外,可存在比諸圖所展示之鏡面更多的鏡面,例如在投影系統PS中可存在比圖10所展示之反射元件多1至6個的額外反射元件。 如圖10所繪示之收集器光學件CO被描繪為具有掠入射反射器253、254及255之巢套式收集器,僅僅作為收集器(或收集器鏡面)之實例。掠入射反射器253、254及255經安置為圍繞光軸O軸向地對稱,且此類型之收集器光學件CO可結合常常被稱為DPP源之放電產生電漿源而使用。 替代地,源收集器模組SO可為如圖11所展示之LPP輻射系統之部分。雷射LA經配置以將雷射能量沈積至諸如氙(Xe)、錫(Sn)或鋰(Li)之燃料中,從而產生具有數十eV之電子溫度之高度離子化電漿210。在此等離子之去激發及再結合期間產生之高能輻射係自電漿發射、由近正入射收集器光學件CO收集,且聚焦至圍封結構220中之開口221上。 美國專利申請公開案第US 2013-0179847號的全部內容特此以引用之方式併入。 可使用以下條項來進一步描述實施例: 1. 一種方法,其包含: 藉由在複數個處理條件下使用包含一參數之一製程模型來模擬一微影產品之特性而獲得經模擬特性; 判定該等經模擬特性之一變化; 藉由自在該複數個處理條件下產生之圖案量測該產品之該等特性而獲得經量測特性; 判定該等經量測特性之一變化; 判定該等經模擬特性之該變化與該等經量測特性之該變化之間的一第一偏差;及 基於該第一偏差而調整該參數。 2. 如條項1之方法,其進一步包含基於由該製程模型進行之模擬而調整一處理條件。 3. 如條項1之方法,其進一步包含基於由該製程模型進行之模擬而在由該微影產生之一基板上選擇一群部位以供檢測。 4. 如條項1至3中任一項之方法,其中隨機地選擇該複數個處理條件。 5. 如條項1至3中任一項之方法,其中該複數個處理條件包含一標稱處理條件。 6. 如條項1至5中任一項之方法,其中該等經量測特性之該變化係選自由以下各者組成之一群:該等經量測特性之一標準偏差、該等經量測特性之一方差,及該等經量測特性之一範圍。 7. 如條項1至6中任一項之方法,其中該等經模擬特性之該變化係選自由以下各者組成之一群:該等經量測特性之一標準偏差、該等經量測特性之一方差,及該等經量測特性之一範圍。 8. 如條項1至7中任一項之方法,其中調整該等參數包含判定致使該第一偏差之一函數處於一局域極值或全域極值的該等參數之值。 9. 如條項1至8中任一項之方法,其中調整該參數係基於以下各者之一組合:該第一偏差,及在一相同處理條件下之該等經模擬特性與該等經量測特性之間的一第二偏差。 10. 如條項1至9中任一項之方法,其中該複數個處理條件包含一微影設備之一源之一特性、一微影設備之投影光學件之一特性,及一圖案化裝置之一特性,該圖案化裝置上具有表示一設計佈局之一特徵配置。 11. 如條項1至10中任一項之方法,其中該產品之該等特性包含一影像之一特性。 12. 如條項11之方法,其中該影像為一空中影像、一抗蝕劑影像或一經蝕刻影像。 13. 如條項1至12中任一項之方法,其中該產品之該等特性包含一設計佈局之一特徵之一製程窗。 14. 如條項1至13中任一項之方法,其中該產品之該等特性包含複數個部位處之一特徵之一統計參數。 15. 一種方法,其包含: 獲得複數個第一偏差,該複數個第一偏差中之每一者介於一微影產品之經模擬特性之一變化與該微影產品之經量測特性之一變化之間,其中藉由使用包含一參數之一製程模型來模擬該產品之特性而獲得該等經模擬特性; 建構複數個成本函數,該等成本函數為該複數個第一偏差之組合;及 藉由使用該等成本函數來調整該製程模型之該參數。 16. 如條項15之方法,其進一步包含基於由該製程模型進行之模擬而調整一處理條件。 17. 如條項15之方法,其進一步包含基於由該製程模型進行之模擬而在由該微影產生之一基板上選擇一群部位以供檢測。 18. 如條項15至17中任一項之方法,其中該等變化係橫越同一組處理條件。 19. 如條項15至18中任一項之方法,其進一步包含在一相同處理條件下獲得該等經模擬特性與該等經量測特性之間的一第二偏差,其中該等成本函數為該複數個第一偏差及該第二偏差之組合。 20. 如條項15至19中任一項之方法,其中該等成本函數中之至少一者不受到所有該等參數影響。 21. 如條項15至20中任一項之方法,其中調整該等參數包含判定致使該等成本函數處於局域極值或全域極值的該等參數之值。 22. 如條項15至21中任一項之方法,其中該產品之該等特性包含一影像之一特性。 23. 如條項22之方法,其中該影像為一空中影像、一抗蝕劑影像或一經蝕刻影像。 24. 如條項15至23中任一項之方法,其中該產品之該等特性包含一設計佈局之一特徵之一製程窗。 25. 如條項15至24中任一項之方法,其中該產品之該等特性包含複數個部位處之一特徵之一統計參數。 26. 一種電腦程式產品,其包含一非暫時性電腦可讀媒體,該非暫時性電腦可讀媒體上被記錄有指令,該等指令在由一電腦執行時實施一如條項1至25中任一項之方法。 本文中所揭示之概念可模擬或數學上模型化用於使子波長特徵成像之任何通用成像系統,且可尤其可用於能夠產生愈來愈短的波長之新興成像技術。已經在使用中之新興技術包括能夠藉由使用ArF雷射來產生193 nm波長且甚至能夠藉由使用氟雷射來產生157 nm波長之極紫外線(EUV)、DUV微影。此外,EUV微影能夠藉由使用同步加速器或藉由運用高能電子來撞擊材料(固體或電漿)而產生在20至5 nm之範圍內之波長,以便產生在此範圍內之光子。 雖然本文中所揭示之概念可用於在諸如矽晶圓之基板上之成像,但應理解,所揭示之概念可用於任何類型之微影成像系統,例如用於在除了矽晶圓以外之基板上之成像的微影成像系統。 以上描述意欲為說明性而非限制性的。因此,對於熟習此項技術者而言將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下如所描述而進行修改。
10A‧‧‧微影投影設備
12A‧‧‧輻射源
14A‧‧‧光學件
16Aa‧‧‧光學件
16Ab‧‧‧光學件
16Ac‧‧‧透射光學件
18A‧‧‧圖案化裝置
21‧‧‧射輻射光束
22‧‧‧琢面化場鏡面裝置
24‧‧‧琢面化光瞳鏡面裝置
26‧‧‧經圖案化光束
28‧‧‧反射元件
30‧‧‧反射元件
31‧‧‧源之特性
32‧‧‧投影光學件之特性
33‧‧‧圖案化裝置之特性
34‧‧‧製程模型
35‧‧‧微影產品之特性
100‧‧‧電腦系統
102‧‧‧匯流排
104‧‧‧處理器
105‧‧‧處理器
106‧‧‧主記憶體
108‧‧‧唯讀記憶體(ROM)
110‧‧‧儲存裝置
112‧‧‧顯示器
114‧‧‧輸入裝置
116‧‧‧游標控制件
122‧‧‧區域網路
124‧‧‧主機電腦
126‧‧‧網際網路服務提供者(ISP)
128‧‧‧全球封包資料通信網路/網際網路
130‧‧‧伺服器
210‧‧‧極熱電漿/極紫外線(EUV)輻射發射電漿
211‧‧‧源腔室
212‧‧‧收集器腔室
220‧‧‧圍封結構
221‧‧‧開口
230‧‧‧污染物截留器/污染物障壁
240‧‧‧光柵光譜濾光器
251‧‧‧上游輻射收集器側
252‧‧‧下游輻射收集器側
253‧‧‧掠入射反射器
254‧‧‧掠入射反射器
255‧‧‧掠入射反射器
315A‧‧‧處理條件
315B‧‧‧處理條件
315C‧‧‧處理條件
316A‧‧‧處理條件
316B‧‧‧處理條件
1000‧‧‧微影投影設備
6010‧‧‧程序
6020‧‧‧程序
6030‧‧‧程序
6040‧‧‧程序
6050‧‧‧程序
6060‧‧‧程序
6070‧‧‧選用程序
6080‧‧‧選用程序
7010‧‧‧程序
7020‧‧‧選用程序
7030‧‧‧程序
7040‧‧‧程序
7050‧‧‧選用程序
7060‧‧‧選用程序
AD‧‧‧調整器
B‧‧‧輻射光束/投影光束/光束
C‧‧‧目標部分
CO‧‧‧聚光器/輻射收集器
IF‧‧‧干涉量測構件(圖8)/虛擬源點(圖10/11)/中間焦點(圖10/11)
IL‧‧‧照明系統/照明器
IN‧‧‧積光器
LA‧‧‧微影設備
M1‧‧‧製程模型(圖5A)/圖案化裝置對準標記(圖8/9)
M2‧‧‧製程模型(圖5B)/圖案化裝置對準標記(圖8/9)
MA‧‧‧圖案化裝置/光罩
MT‧‧‧第一物件台/圖案化裝置台/支撐結構
O‧‧‧光軸
P1‧‧‧基板對準標記
P2‧‧‧基板對準標記
PS1‧‧‧位置感測器
PS2‧‧‧位置感測器
PM‧‧‧第一定位器
PS‧‧‧投影系統
PW‧‧‧第二定位器
SO‧‧‧源/源收集器模組
W‧‧‧基板
WT‧‧‧第二物件台/基板台
圖1展示微影系統之各種子系統的方塊圖。 圖2展示用於模擬微影投影設備中之微影的流程圖。 圖3示意性地展示:對於一組中之處理條件中之每一者,判定在彼處理條件下之經模擬特性與經量測特性之間的偏差,且使用該偏差來判定製程模型之參數之值。 圖4示意性地展示:對於一組中之處理條件中之每一者,在彼處理條件附近判定經模擬特性之變化與經量測特性之變化之間的偏差,且使用該偏差來判定製程模型之參數之值。 圖5A示意性地展示在處理條件附近的經量測特性(被標註為「O」之曲線)及由製程模型M1進行之經模擬特性(被標註為「M1」之曲線)。 圖5B示意性地展示在處理條件附近的經量測特性(被標註為「O」之曲線)及由製程模型M2進行之經模擬特性(被標註為「M2」之曲線)。 圖6A示意性地展示根據一實施例的用於建構製程模型之流程圖。 圖6B示意性地展示根據一實施例的用於建構製程模型之流程圖。 圖7為實例電腦系統之方塊圖。 圖8為微影投影設備之示意圖。 圖9為另一微影投影設備之示意圖。 圖10為圖9中之設備的更詳細視圖。 圖11為圖9及圖10之設備之源收集器模組SO的更詳細視圖。

Claims (15)

  1. 一種方法,其包含: 藉由在複數個處理條件下使用包含一參數之一製程模型來模擬一微影產品之特性而獲得經模擬特性; 判定該等經模擬特性之一變化; 藉由自在該複數個處理條件下產生之圖案量測該產品之該等特性而獲得經量測特性; 判定該等經量測特性之一變化; 判定該等經模擬特性之該變化與該等經量測特性之該變化之間的一第一偏差;及 基於該第一偏差而調整該參數。
  2. 如請求項1之方法,其進一步包含基於由該製程模型進行之模擬而調整一處理條件。
  3. 如請求項1之方法,其進一步包含基於由該製程模型進行之模擬而在由該微影產生之一基板上選擇一群部位以供檢測。
  4. 如請求項1之方法,其中隨機地選擇該複數個處理條件。
  5. 如請求項1之方法,其中該複數個處理條件包含一標稱處理條件。
  6. 如請求項1之方法,其中該等經量測特性之該變化係選自由以下各者組成之一群:該等經量測特性之一標準偏差、該等經量測特性之一方差,及該等經量測特性之一範圍。
  7. 如請求項1之方法,其中該等經模擬特性之該變化係選自由以下各者組成之一群:該等經量測特性之一標準偏差、該等經量測特性之一方差,及該等經量測特性之一範圍。
  8. 如請求項1之方法,其中調整該等參數包含:判定致使該第一偏差之一函數處於一局域極值或全域極值的該等參數之值。
  9. 如請求項1之方法,其中調整該參數係基於以下各者之一組合:該第一偏差,及在一相同處理條件下之該等經模擬特性與該等經量測特性之間的一第二偏差。
  10. 如請求項1之方法,其中該複數個處理條件包含一微影設備之一源之一特性、一微影設備之投影光學件之一特性,及一圖案化裝置之一特性,該圖案化裝置上具有表示一設計佈局之一特徵配置。
  11. 如請求項1之方法,其中該產品之該等特性包含一影像之一特性,及/或 其中該影像為一空中影像、一抗蝕劑影像或一經蝕刻影像。
  12. 如請求項1之方法,其中該產品之該等特性包含一設計佈局之一特徵之一製程窗。
  13. 如請求項1之方法,其中該產品之該等特性包含複數個部位處之一特徵之一統計參數。
  14. 一種方法,其包含: 獲得複數個第一偏差,該複數個第一偏差中之每一者介於一微影產品之經模擬特性之一變化與該微影產品之經量測特性之一變化之間,其中藉由使用包含一參數之一製程模型來模擬該產品之特性而獲得該等經模擬特性; 建構複數個成本函數,該等成本函數為該複數個第一偏差之組合;及 藉由使用該等成本函數來調整該製程模型之該參數。
  15. 如請求項14之方法,其進一步包含基於由該製程模型進行之模擬而調整一處理條件。
TW107102699A 2017-01-26 2018-01-25 調諧製程模型之方法 TWI661264B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762451048P 2017-01-26 2017-01-26
US62/451,048 2017-01-26

Publications (2)

Publication Number Publication Date
TW201831989A true TW201831989A (zh) 2018-09-01
TWI661264B TWI661264B (zh) 2019-06-01

Family

ID=61148195

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107102699A TWI661264B (zh) 2017-01-26 2018-01-25 調諧製程模型之方法

Country Status (5)

Country Link
US (1) US11614690B2 (zh)
KR (1) KR102314622B1 (zh)
CN (2) CN114415478A (zh)
TW (1) TWI661264B (zh)
WO (1) WO2018138123A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI814653B (zh) * 2018-12-19 2023-09-01 荷蘭商Asml荷蘭公司 樣本方案產生及最佳化之方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523193A (en) 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
EP0527166B1 (de) 1990-05-02 1995-06-14 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Belichtungsvorrichtung
US5229872A (en) 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
EP0824722B1 (en) 1996-03-06 2001-07-25 Asm Lithography B.V. Differential interferometer system and lithographic step-and-scan apparatus provided with such a system
CN101135864A (zh) * 2000-12-28 2008-03-05 株式会社尼康 曝光方法及设备以及器件制造方法
WO2007019269A2 (en) 2005-08-08 2007-02-15 Brion Technologies, Inc. System and method for creating a focus-exposure model of a lithography process
US7695876B2 (en) * 2005-08-31 2010-04-13 Brion Technologies, Inc. Method for identifying and using process window signature patterns for lithography process control
CN101305320B (zh) 2005-09-09 2012-07-04 Asml荷兰有限公司 采用独立掩模误差模型的掩模验证系统和方法
NL1036189A1 (nl) 2007-12-05 2009-06-08 Brion Tech Inc Methods and System for Lithography Process Window Simulation.
JP4568341B2 (ja) * 2008-03-19 2010-10-27 株式会社東芝 シミュレーションモデル作成方法、マスクデータ作成方法、及び半導体装置の製造方法
KR101928938B1 (ko) 2008-06-03 2018-12-13 에이에스엠엘 네델란즈 비.브이. 모델-기반 공정 시뮬레이션 시스템들 및 방법들
DE102010030755B4 (de) * 2010-06-30 2016-06-16 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Verfahren und System zur Überwachung von Ausreißern in optischen Lithographieprozessen bei der Herstellung von Mikrostrukturbauelementen
NL2007579A (en) * 2010-11-10 2012-05-14 Asml Netherlands Bv Pattern-dependent proximity matching/tuning including light manipulation by projection optics.
US10295993B2 (en) 2011-09-01 2019-05-21 Kla-Tencor Corporation Method and system for detecting and correcting problematic advanced process control parameters
NL2009982A (en) * 2012-01-10 2013-07-15 Asml Netherlands Bv Source mask optimization to reduce stochastic effects.
US10013518B2 (en) 2012-07-10 2018-07-03 Kla-Tencor Corporation Model building and analysis engine for combined X-ray and optical metrology
CN104516206B (zh) 2013-09-27 2017-03-08 中芯国际集成电路制造(上海)有限公司 一种优化光学临近修正拟合结果的方法
US9026956B1 (en) * 2013-10-11 2015-05-05 Taiwan Semiconductor Manufacturing Co., Ltd. Method of lithographic process evaluation
US9772562B2 (en) 2013-12-05 2017-09-26 Asml Netherlands B.V. Method and apparatus for measuring a structure on a substrate, models for error correction, computer program products for implementing such methods and apparatus
JP6346297B2 (ja) * 2014-02-11 2018-06-20 エーエスエムエル ネザーランズ ビー.ブイ. 任意パターンにおける確率的変動を計算するためのモデル
WO2015139951A1 (en) * 2014-03-18 2015-09-24 Asml Netherlands B.V. Pattern placement error aware optimization

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI814653B (zh) * 2018-12-19 2023-09-01 荷蘭商Asml荷蘭公司 樣本方案產生及最佳化之方法

Also Published As

Publication number Publication date
KR20190108609A (ko) 2019-09-24
US20190369498A1 (en) 2019-12-05
CN110325921B (zh) 2022-02-18
CN110325921A (zh) 2019-10-11
CN114415478A (zh) 2022-04-29
WO2018138123A1 (en) 2018-08-02
TWI661264B (zh) 2019-06-01
US11614690B2 (en) 2023-03-28
KR102314622B1 (ko) 2021-10-20

Similar Documents

Publication Publication Date Title
TWI724279B (zh) 藉由機器學習來判定製程模型之方法
CN112384860A (zh) 基于机器学习的逆光学邻近效应校正和过程模型校准
TWI791357B (zh) 用於選擇與圖案化程序相關聯之資料之方法及相關的非暫時性電腦可讀媒體
TWI758810B (zh) 用於改善圖案化製程之訓練機器學習模型的方法
TWI714165B (zh) 用於改善製程模型之方法
TWI725325B (zh) 缺陷預測
TWI702467B (zh) 用於改進抗蝕劑模型預測的系統、方法及電腦程式產品
TWI687781B (zh) 用於減少光阻模型預測錯誤之系統及方法
TWI667553B (zh) 判定圖案之特性之方法
TWI672556B (zh) 判定輻射之散射的方法及電腦程式產品
TWI661264B (zh) 調諧製程模型之方法
TW202028859A (zh) 用於高數值孔徑穿縫源光罩最佳化之方法
TWI654497B (zh) 在製程中導引程序模型及檢測之方法
WO2023110346A1 (en) Methods, software, and systems for determination of constant-width sub-resolution assist features
WO2023016752A1 (en) Match the aberration sensitivity of the metrology mark and the device pattern