TWI672556B - 判定輻射之散射的方法及電腦程式產品 - Google Patents

判定輻射之散射的方法及電腦程式產品 Download PDF

Info

Publication number
TWI672556B
TWI672556B TW106145450A TW106145450A TWI672556B TW I672556 B TWI672556 B TW I672556B TW 106145450 A TW106145450 A TW 106145450A TW 106145450 A TW106145450 A TW 106145450A TW I672556 B TWI672556 B TW I672556B
Authority
TW
Taiwan
Prior art keywords
radiation
function
patterning device
transmission function
mask transmission
Prior art date
Application number
TW106145450A
Other languages
English (en)
Other versions
TW201841049A (zh
Inventor
宇 曹
彥文 盧
鵬 劉
羅福 C 何威爾
羅西尼 比斯瓦思
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW201841049A publication Critical patent/TW201841049A/zh
Application granted granted Critical
Publication of TWI672556B publication Critical patent/TWI672556B/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本發明揭示一種方法,其包括:獲得一圖案化裝置之一薄光罩透射函數及用於一微影程序之一M3D模型,其中該薄光罩透射函數為一連續透射光罩(CTM)且該M3D模型至少表示可歸因於該圖案化裝置上之結構之多個邊緣的M3D之一部分;藉由使用該薄光罩透射函數及該M3D模型而判定該圖案化裝置之一M3D光罩透射函數;及藉由使用該M3D光罩透射函數而判定藉由該圖案化裝置及該微影程序產生的一空中影像。

Description

判定輻射之散射的方法及電腦程式產品
本文中之描述大體而言係關於判定歸因於用於微影程序及微影投影設備之圖案化裝置上的有限厚度之圖案之輻射之散射的方法。
微影投影設備可用於例如積體電路(IC)之製造中。在此狀況下,圖案化裝置(例如光罩)可含有或提供對應於IC(「設計佈局」)之個別層之裝置圖案,且可藉由諸如經由圖案化裝置上之圖案來輻照已經塗佈有輻射敏感材料(「抗蝕劑」)層之基板(例如矽晶圓)上之目標部分(例如包含一或多個晶粒)而將此圖案轉印至該目標部分上。一般而言,單一基板含有複數個鄰近目標部分,圖案係由微影投影設備順次地轉印至該複數個鄰近目標部分,一次一個目標部分。在一種類型之微影投影設備中,將整個圖案化裝置上之圖案一次性轉印至一個目標部分上;此設備通常被稱作步進器。在通常被稱作步進掃描設備(step-and-scan apparatus)之替代設備中,投影光束在給定參考方向(「掃描」方向)上遍及圖案化裝置進行掃描,同時平行或反平行於此參考方向而同步地移動基板。圖案化裝置上之圖案之不同部分逐漸地轉印至一個目標部分。一般而言,由於微影投影設備將具有縮 減比率M(例如4),故基板被移動之速度F將為投影光束掃描圖案化裝置之速度的1/M倍。可例如自以引用方式併入本文中之US 6,046,792搜集到關於如本文中所描述之微影裝置的更多資訊。
在將裝置圖案自圖案化裝置轉印至基板之前,基板可經歷各種工序,諸如上底漆、抗蝕劑塗佈及軟烘烤。在曝光之後,基板可經受其他工序,諸如曝光後烘烤(PEB)、顯影、硬烘烤及經轉印圖案之量測/檢測。此工序陣列係用作製造一裝置(例如IC)之個別層的基礎。基板接著可經歷各種程序,諸如蝕刻、離子植入(摻雜)、金屬化、氧化、化學-機械拋光等,該等程序皆意欲精整裝置之個別層。若在裝置中需要若干層,則針對每一層來重複整個工序或其變體。最終,在基板上之每一目標部分中將存在一裝置。接著藉由諸如切塊或鋸切之技術來使此等裝置彼此分離,據此,可將個別裝置安裝於載體上、連接至銷釘等。
如所提及,微影為在諸如IC之裝置之製造時的中心步驟,其中形成於基板上之圖案界定裝置之功能元件,諸如微處理器、記憶體晶片等。相似微影技術亦用於形成平板顯示器、微機電系統(MEMS)及其他裝置。
隨著半導體製造程序繼續進步,幾十年來,功能元件之尺寸已不斷地縮減,而每裝置的諸如電晶體之功能元件之量已在穩固地增加,此遵循通常被稱作「莫耳定律(Moore's law)」之趨勢。在目前先進技術下,使用微影投影設備來製造裝置之層,該等微影投影設備使用來自深紫外線照明源之照明將設計佈局投影至基板上,從而產生尺寸充分地低於100奈米、亦即小於來自照明源(例如193奈米照明源)之輻射之波長之一半的個別功能元件。
供印刷尺寸小於微影投影設備之經典解析度極限之特徵的此程序根 據解析度公式CD=k1×λ/NA而通常被稱為低k1微影,其中λ為所使用輻射之波長(當前在大多數狀況下為248奈米或193奈米),NA為微影投影設備中之投影光學件之數值孔徑,CD為「臨界尺寸」(通常為所印刷之最小特徵大小),且k1為經驗解析度因數。一般而言,k1愈小,則在基板上再生類似於由電路設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,將複雜微調步驟應用至微影投影設備、設計佈局或圖案化裝置。此等步驟包括例如但不限於:NA及光學相干性設定之最佳化、自訂照明方案、使用相移圖案化裝置、設計佈局中之光學近接校正(OPC),或通常被定義為「解析度增強技術」(RET)之其他方法。如本文所使用之術語「投影光學件」應被廣泛地解譯為涵蓋各種類型之光學系統,包括例如折射光學件、反射光學件、孔徑及反射折射光學件。術語「投影光學件」亦可包括用於集體地或單個地導向、塑形或控制投影輻射光束的根據此等設計類型中之任一者而操作之組件。術語「投影光學件」可包括微影投影設備中之任何光學組件,而不論光學組件位於微影投影設備之光學路徑上之何處。投影光學件可包括用於在來自源之輻射通過圖案化裝置之前塑形、調整及/或投影該輻射的光學組件,及/或用於在輻射通過圖案化裝置之後塑形、調整及/或投影該輻射的光學組件。投影光學件通常排除源及圖案化裝置。
在一態樣中,提供一種方法,其包含:獲得一圖案化裝置之一薄光罩透射函數及用於一微影程序之一M3D模型;藉由使用該薄光罩透射函數及該M3D模型而判定該圖案化裝置之一M3D光罩透射函數;及藉由使用該M3D光罩透射函數而判定藉由該圖案化裝置及該微影程序產生的一 空中影像;其中該薄光罩透射函數為一連續透射光罩(CTM);其中該M3D模型至少表示可歸因於該圖案化裝置上之結構之多個邊緣的M3D效應之一部分。
根據一實施例,該M3D模型進一步表示可歸因於該圖案化裝置上之一結構之兩個側壁會合所在之一邊緣或該圖案化裝置上之一結構之一側壁與該結構之一周邊之外的一區域會合所在之一邊緣的M3D效應之一部分。
根據一實施例,該M3D模型進一步表示可歸因於沿著該圖案化裝置上之結構之周邊之區域的M3D效應之一部分。
根據一實施例,該M3D模型進一步表示可歸因於其中該薄光罩透射函數之變化低於一第一臨限值的區域之M3D效應之一部分,或表示可歸因於其中該薄光罩透射函數之變化高於一第二臨限值的區域之M3D效應之一部分。
根據一實施例,該M3D模型進一步表示可歸因於遠離該圖案化裝置上之結構之周邊的結構之區域的M3D效應之一部分。
根據一實施例,該方法進一步包含使用該空中影像判定一抗蝕劑影像。
根據一實施例,判定該抗蝕劑影像包含使用用於該微影程序中的一抗蝕劑之一模型。
根據一實施例,該方法進一步包含自該圖案化裝置上之結構判定該薄光罩透射函數。
根據一實施例,該方法進一步包含自一設計佈局判定該等結構。
根據一實施例,判定該空中影像包含使用用於該微影程序中的投影 光學件之一模型。
根據一實施例,判定該空中影像包含藉由使用該M3D光罩透射函數及在一輻射與該圖案化裝置相互作用之前的該輻射之一電磁場來判定在該輻射與該圖案化裝置相互作用之後的該輻射之一電磁場。
根據一實施例,該M3D光罩透射函數包含至少一第一項及一第二項,該第一項及該第二項分別特性化一輻射與該圖案化裝置之一第一區域及一第二區域的相互作用。
根據一實施例,該M3D模型包含複數個核心函數,且判定該M3D光罩透射函數包含使用該等核心函數來執行該薄光罩透射函數之一一體式變換。
根據一實施例,該M3D模型包含一第一核心函數及一第二核心函數,且該第一核心函數係線性的且該第二核心函數係多線性的。
根據一實施例,該第二核心函數係雙線性的。
根據一實施例,該第二核心函數係一四線性核心函數。
根據一實施例,該第二核心函數表示可歸因於該圖案化裝置上之結構之多個邊緣的M3D效應之該部分。
根據一實施例,該四線性核心函數表示可歸因於該圖案化裝置上之一結構之兩個側壁會合所在之一邊緣或該圖案化裝置上之一結構之一側壁與該結構之該周邊之外的一區域會合所在之邊緣的M3D效應之一部分。
根據一實施例,該第二核心函數表示可歸因於沿著該圖案化裝置上之結構之周邊之區域的M3D效應之一部分。
根據一實施例,該第一核心函數表示可歸因於其中該薄光罩透射函數之變化低於一第一臨限值的區域之M3D效應之該部分,且該第二核心 函數表示可歸因於其中該薄光罩透射函數之變化高於一第二臨限值的區域之M3D效應之該部分。
根據一實施例,該第一核心函數表示可歸因於遠離該圖案化裝置上之結構之周邊的該等結構之區域的M3D效應之一部分。
在一態樣中,提供一種電腦程式產品,其包含其上經記錄有指令之一非暫時性電腦可讀媒體,該等指令在由一電腦執行時實施上文之該等方法中之任一者。
10A‧‧‧微影投影設備
12A‧‧‧輻射源
14A‧‧‧光學件/組件
16Aa‧‧‧光學件/組件
16Ab‧‧‧光學件/組件
16Ac‧‧‧透射光學件/組件
18A‧‧‧圖案化裝置
20A‧‧‧可調整濾光器或孔徑
21‧‧‧輻射光束
22‧‧‧琢面化場鏡面裝置
22A‧‧‧基板平面
24‧‧‧琢面化光瞳鏡面裝置
26‧‧‧經圖案化光束
28‧‧‧反射元件
30‧‧‧反射元件
100‧‧‧電腦系統
102‧‧‧匯流排
104‧‧‧處理器
105‧‧‧處理器
106‧‧‧主記憶體
108‧‧‧唯讀記憶體(ROM)
110‧‧‧儲存裝置
112‧‧‧顯示器
114‧‧‧輸入裝置
116‧‧‧游標控制件
118‧‧‧通信介面
120‧‧‧網路鏈路
122‧‧‧區域網路
124‧‧‧主機電腦
126‧‧‧網際網路服務業者(ISP)
128‧‧‧網際網路
130‧‧‧伺服器
210‧‧‧極紫外線(EUV)輻射發射電漿/極熱電漿/高度離子化電漿
211‧‧‧源腔室
212‧‧‧收集器腔室
220‧‧‧圍封結構
221‧‧‧開口
230‧‧‧選用氣體障壁或污染物截留器/污染截留器/污染物障壁
240‧‧‧光柵光譜濾光器
251‧‧‧上游輻射收集器側
252‧‧‧下游輻射收集器側
253‧‧‧掠入射反射器
254‧‧‧掠入射反射器
255‧‧‧掠入射反射器
1000‧‧‧微影投影設備
2001‧‧‧設計佈局
2002‧‧‧結構
2003‧‧‧薄光罩透射函數
2004‧‧‧光罩3D(M3D)模型
2005‧‧‧工序
2006‧‧‧光罩3D(M3D)光罩透射函數
2007‧‧‧投影光學件模型
2008‧‧‧工序
2009‧‧‧空中影像
2010‧‧‧抗蝕劑模型
2011‧‧‧工序
2012‧‧‧抗蝕劑影像
3001‧‧‧電磁場
3002‧‧‧光罩透射函數
3002A‧‧‧項
3002B‧‧‧項
3003‧‧‧工序
3003A‧‧‧子工序
3003B‧‧‧子工序
3004‧‧‧電磁場
3004A‧‧‧電磁場之部分
3004B‧‧‧電磁場之部分
5000‧‧‧圖案
5001‧‧‧區域
5002‧‧‧區域
5003‧‧‧區域
5004‧‧‧區域
5005‧‧‧區域
5006‧‧‧區域
5010‧‧‧區域
5021‧‧‧區域
5022‧‧‧區域
5023‧‧‧區域
5024‧‧‧區域
5025‧‧‧區域
5026‧‧‧區域
6001‧‧‧微影程序
6002‧‧‧工序
6003‧‧‧光罩3D(M3D)模型
6004‧‧‧資料庫
6005‧‧‧工序
AD‧‧‧調整構件
B‧‧‧輻射光束
BD‧‧‧光束遞送系統
C‧‧‧目標部分
CO‧‧‧聚光器/近正入射收集器光學件
IF‧‧‧干涉量測構件(圖8)/虛擬源點/中間焦點(圖10/圖11)
IL‧‧‧照明系統/照明器/照明光學件單元
IN‧‧‧積光器
LA‧‧‧雷射
M1‧‧‧圖案化裝置對準標記
M2‧‧‧圖案化裝置對準標記
MA‧‧‧圖案化裝置
MT‧‧‧第一物件台/圖案化裝置台/支撐結構
O‧‧‧光軸
P1‧‧‧基板對準標記
P2‧‧‧基板對準標記
PM‧‧‧第一定位器
PS‧‧‧項目/投影系統/透鏡
PS1‧‧‧位置感測器
PS2‧‧‧位置感測器
PW‧‧‧第二定位器
SO‧‧‧輻射源/源收集器模組
W‧‧‧基板
WT‧‧‧第二物件台/基板台
圖1展示微影系統之各種子系統的方塊圖。
圖2展示根據一實施例的用於模擬空中影像或抗蝕劑影像之方法的流程圖,其中考量M3D。
圖3示意性地展示用於使用光罩透射函數之流程圖。
圖4示意性地展示圖3之流程圖的專門狀況。
圖5示意性地展示圖案化裝置上之圖案,而作為用以展示透射函數之小變化之區域及透射函數之大變化之區域的實例。
圖6A示意性地展示其中可針對數個微影程序導出M3D模型且將該等M3D模型儲存於資料庫中以供未來使用的流程圖。
圖6B示意性地展示其中可基於微影程序自資料庫擷取M3D模型的流程圖。
圖7為實例電腦系統之方塊圖。
圖8為微影投影設備之示意圖。
圖9為另一微影投影設備之示意圖。
圖10為圖9中之設備的更詳細視圖。
圖11為圖9及圖10之設備之源收集器模組SO的更詳細視圖。
儘管在本文中可特定地參考IC製造,但應明確理解,本文中之描述具有許多其他可能應用。舉例而言,本文中之描述可用於製造整合式光學系統、用於磁疇記憶體之導引及偵測圖案、液晶顯示面板、薄膜磁頭等。熟習此項技術者應瞭解,在此類替代應用之內容背景中,本文中對術語「倍縮光罩」、「晶圓」或「晶粒」之任何使用應被認為分別與更一般之術語「光罩」、「基板」及「目標部分」可互換。
在本文件中,術語「輻射」及「光束」用以涵蓋所有類型之電磁輻射,包括紫外線輻射(例如具有為365奈米、248奈米、193奈米、157奈米或126奈米之波長)及極紫外線(EUV輻射,其例如具有在約5奈米至100奈米之範圍內之波長)。
圖案化裝置可包含或可形成一或多個設計佈局。可利用電腦輔助設計(CAD)程式來產生設計佈局,此程序常常被稱作電子設計自動化(EDA)。大多數CAD程式遵循一預定設計規則集合,以便產生功能設計佈局/圖案化裝置。藉由處理及設計限制來設定此等規則。舉例而言,設計規則定義電路裝置(諸如閘、電容器等)或互連線之間的空間容許度,以便確保電路裝置或線彼此不會以非所要方式相互作用。設計規則限制中之一或多者可被稱作「臨界尺寸」(CD)。電路之臨界尺寸可被定義為線或孔之最小寬度或兩條線或兩個孔之間的最小空間。因此,CD判定經設計電路之總大小及密度。當然,積體電路製造中之目標中之一者係在基板上如實地再生原始電路設計(經由圖案化裝置)。
如本文中所使用之術語「光罩」或「圖案化裝置」可被廣泛地解譯 為係指可用以向入射輻射光束賦予經圖案化橫截面之通用圖案化裝置,經圖案化橫截面對應於待在基板之目標部分中產生之圖案;術語「光閥」亦可用於此內容背景中。除了經典光罩(透射或反射;二元、相移、混合式等)以外,其他此類圖案化裝置之實例亦包括:
- 可程式化鏡面陣列。此裝置之實例為具有黏彈性控制層及反射表面之矩陣可定址表面。此設備所隱含之基本原理為(例如):反射表面之經定址區域將入射輻射反射為繞射輻射,而未經定址區域將入射輻射反射為非繞射輻射。在使用適當濾光器的情況下,可自反射光束濾出該非繞射輻射,從而僅留下繞射輻射;以此方式,光束根據矩陣可定址表面之定址圖案而變得圖案化。可使用合適電子構件來執行所需矩陣定址。可例如自以引用方式併入本文中之美國專利第5,296,891號及第5,523,193號搜集到關於此類鏡面陣列之更多資訊。
- 可程式化LCD陣列。以引用方式併入本文中之美國專利第5,229,872號中給出此構造之實例。
作為簡要介紹,圖1說明例示性微影投影設備10A。主要組件為:輻射源12A,其可為深紫外線準分子雷射源或包括極紫外線(EUV)源的其他類型之源(如上文所論述,微影投影設備自身無需具有輻射源);照明光學件,其界定部分相干性(被表示為均方偏差)且可包括塑形來自源12A之輻射的光學件14A、16Aa及16Ab;圖案化裝置18A;及透射光學件16Ac,其將圖案化裝置圖案之影像投影至基板平面22A上。在投影光學件之光瞳平面處的可調整濾光器或孔徑20A可限定照射於基板平面22A上之光束角度之範圍,其中最大可能角度界定投影光學件之數值孔徑NA=n sin(Θmax),n為投影光學件之最後元件與基板之間的介質之折射率,且 Θmax為自投影光學件射出的仍可照射於基板平面22A上之光束的最大角度。
在微影投影設備中,源將照明(亦即輻射)提供至圖案化裝置,且投影光學件經由圖案化裝置將照明導向至基板上且塑形該照明。投影光學件可包括組件14A、16Aa、16Ab及16Ac中之至少一些。空中影像(AI)為基板位階處之輻射強度分佈。曝光基板上之抗蝕劑層,且將空中影像轉印至抗蝕劑層以在其中作為潛伏「抗蝕劑影像」(RI)。可將抗蝕劑影像(RI)定義為抗蝕劑層中之抗蝕劑之溶解度的空間分佈。可使用抗蝕劑模型以自空中影像計算抗蝕劑影像,可在全部揭示內容特此以引用方式併入之美國專利申請公開案第US 2009-0157360號中找到此情形之實例。抗蝕劑模型係僅與抗蝕劑層之屬性(例如在曝光、PEB及顯影期間發生之化學程序之效應)相關。微影投影設備之光學屬性(例如源、圖案化裝置及投影光學件之屬性)規定空中影像。由於可改變用於微影投影設備中之圖案化裝置,故可需要使圖案化裝置之光學屬性與至少包括源及投影光學件的微影投影設備之其餘部分之光學屬性分離。
理解微影程序之一種態樣係理解輻射與圖案化裝置之相互作用。在輻射通過圖案化裝置之後的輻射之電磁場可自在輻射到達圖案化裝置之前的輻射之電磁場及特性化該相互作用之函數予以判定。此函數可被稱作光罩透射函數。
光罩透射函數可具有多種不同形式。一種形式係二元的。二元光罩透射函數在圖案化裝置上之任何給定部位處具有兩個值(例如零及正常數)中之任一者。呈二元形式之光罩透射函數可被稱作二元光罩。另一形式係連續的。即,圖案化裝置之透射比之模數為圖案化裝置上之部位之連續函 數。透射比之相位亦可為圖案化裝置上之部位之連續函數。呈連續形式之光罩透射函數可被稱作連續透射光罩(CTM)。
薄光罩近似(亦被稱為克希霍夫(Kirchhoff)邊界條件)廣泛地用以簡化對輻射與圖案化裝置之相互作用之判定。薄光罩近似假定圖案化裝置上之結構之厚度相比於波長極小,且光罩上之結構之寬度相比於波長極大。因此,薄光罩近似假定在圖案化裝置之後的電磁場為入射電磁場與光罩透射函數之乘積。然而,由於微影程序使用愈來愈短波長之輻射且圖案化裝置上之結構(「光罩3D」或「M3D」)變得愈來愈小,故薄光罩近似之假定可分解。舉例而言,由於結構(例如頂部表面與側壁之間的邊緣)之有限厚度的輻射與該等結構之相互作用(「光罩3D效應」或「M3D效應」)可變得顯著。在光罩透射函數中涵蓋此散射可使得光罩透射函數在捕捉輻射與圖案化裝置之相互作用方面較佳。在薄光罩近似下之光罩透射函數可被稱作薄光罩透射函數。涵蓋M3D效應的光罩透射函數可被稱作M3D光罩透射函數。
可藉由諸如有限離散時域(FDTD)演算法或嚴密耦合波導分析(RCWA)演算法之嚴密模擬來獲得M3D光罩透射函數。然而,嚴密模擬在運算上可為代價大的。另一途徑為嚴密模擬傾向於具有大M3D效應的結構之某些部分之M3D效應,且將此等部分之M3D效應加至薄光罩透射函數。儘管此途徑在運算上具有較小代價,但其仍涉及嚴密模擬。
在本發明中,揭示自圖案化裝置之薄光罩透射函數判定該圖案化裝置上之結構之M3D效應的方法。
圖2為根據一實施例的用於判定空中影像或抗蝕劑影像之方法的流程圖,其中考量M3D。在工序2005中,使用圖案化裝置之薄光罩透射函數 2003以及M3D模型2004以判定該圖案化裝置之M3D光罩透射函數2006。M3D模型為自薄光罩透射函數模型化M3D之模型。可自圖案化裝置上之結構2002判定薄光罩透射函數2003。可自設計佈局2001判定結構2002。在工序2008中,使用M3D光罩透射函數2006及投影光學件模型2007以判定(例如模擬)空中影像2009。在選用工序2011中,可使用空中影像2009及抗蝕劑模型2010以判定(例如模擬)抗蝕劑影像2012。
圖案化裝置之光罩透射函數(例如薄光罩或M3D)為輻射在其與圖案化裝置相互作用之前的電磁場與輻射在其與圖案化裝置相互作用之後的電磁場連結之函數。圖3示意性地展示用於使用光罩透射函數之流程圖。在工序3003中使用輻射在其與圖案化裝置相互作用之前的電磁場3001及光罩透射函數3002以判定輻射在其與圖案化裝置相互作用之後的電磁場3004。光罩透射函數3002可為薄光罩透射函數。光罩透射函數3002可為M3D光罩透射函數。以通用數學形式,可將電磁場3001與電磁場3004之間的關係表達為E a (r)=T(E b (r)),其中E a (r)為電磁場3004之電分量、E b (r)為電磁場3001之電分量,且T為光罩透射函數。
圖4示意性地展示圖3之流程,其中光罩透射函數3002為M3D光罩透射函數且為至少兩個項3002A與3002B之和,其中項3002A及3002B分別特性化輻射與圖案化裝置之不同區域之相互作用。在工序3003之子工序3003A中,使用電磁場3001及項3002A以判定電磁場3004之部分3004A,其中該部分3004A為輻射(如由電磁場3001表示)與圖案化裝置之第一區域相互作用之結果。在工序3003之子工序3003B中,使用電磁場3001及項3002B以判定電磁場3004之部分3004B,其中該部分3004B為輻射(如由電磁場3001表示)與圖案化裝置之第二區域相互作用之結果。可由部分 3004A與3004B之和近似電磁場3004。
圖2中之M3D模型2004可包括一或多個核心函數。圖2中之工序2005可包括使用該一或多個核心函數來執行薄光罩透射函數2003之一體式變換。
根據一實施例,核心函數可包括線性核心函數及多線性(例如雙線性)核心函數。線性核心函數可表示可歸因於薄光罩透射函數之相對小變化之區域的M3D效應之一部分。舉例而言,當薄光罩透射函數為二元透射函數時,具有小變化之區域可包括圖案化裝置上之結構之扁平區域(亦即遠離具有厚度改變之區域)。當薄光罩透射函數為CTM時,具有小變化之區域可包括相位及模數相對於位置之導數低於臨限值的區域。多線性核心函數可表示可歸因於薄光罩透射函數之相對大變化之區域的M3D效應之部分。舉例而言,當薄光罩透射函數為二元透射函數時,具有大變化之區域可包括圖案化裝置上之結構之邊緣及隅角附近(亦即,厚度改變附近)的區域。當薄光罩透射函數為CTM時,具有大變化之區域可包括相位及模數相對於位置之導數高於臨限值的區域。多線性核心函數可表示可歸因於含有透射函數之兩個或多於兩個大變化的區域(例如包括接近於彼此之兩個邊緣的區域)之M3D效應之部分。
圖5示意性地展示圖案化裝置上之圖案5000,而作為用以展示透射函數之相對小變化之區域及透射函數之相對大變化之區域的實例。該圖案5000具有有限厚度。該圖案5000係由沿著其周邊之側壁界定,其中在周邊內,厚度為有限正常數且超出周邊的厚度為零。具有相對小變化之區域將包括圖案5000內部之區域5010,其遠離周邊。可歸因於區域5010之M3D效應之部分可由線性核心函數表示。具有相對大變化之區域將包括 沿著周邊之邊緣且遠離隅角之區域5001至5006,以及接近隅角之區域5021至5026。可歸因於此等區域5001至5006及5021至5026之M3D效應之部分可由多線性核心函數表示。
在一實例中,可使用以下公式自薄光罩透射函數導出M3D光罩透射函數:ʃ m(r 1)m *(r 2)T(r-r 1,r-r 2)dr 1 dr 2m(r 1)R(r-r 1)dr 1
其中m(r)為薄光罩透射函數,T為作為多線性核心函數之實例的雙線性核心函數,且R為線性核心函數。
在另一實例中,可使用以下公式自薄光罩透射函數導出M3D光罩透射函數:{ʃ[ʃ m(r 1)F(r 2-r 1)dr 1]2 G(r-r 2)dr 2}+ʃ m(r 1)R(r-r 1)dr 1
即,多線性核心可藉由偵測邊緣之核心函數F及導出該等邊緣之M3D效應之核心函數G近似。在此近似中,可歸因於含有透射函數之兩個或多於兩個大變化之區域(例如包括接近於彼此之兩個邊緣的區域)的M3D效應被忽略。
多線性核心函數可包括比雙線性核心函數更高階的核心函數。舉例而言,核心函數可包括四線性核心函數,其可表示可歸因於兩個側壁會合之邊緣或側壁與結構之周邊之外的區域會合之邊緣的M3D效應之部分。
M3D模型(例如如由核心函數表示)可隨微影程序(例如如由輻射之一或多個特性及圖案化裝置之一或多個特性表示)而變化。可針對特定微影程序導出M3D模型。可藉由模擬獲得M3D模型(例如如由核心函數表示)。
圖6A示意性地展示其中可針對數個微影程序導出M3D模型且將該等M3D模型儲存於資料庫中以供未來使用的流程圖。在工序6002中,使用 微影程序6001之一或多個特性以針對該微影程序6001導出M3D模型6003。可藉由模擬獲得M3D模型6003。將M3D模型6003儲存於資料庫6004中。
圖6B示意性地展示其中可基於微影程序自資料庫擷取M3D模型的流程圖。在工序6005中,使用微影程序6001之一或多個特性以查詢資料庫6004且針對該微影程序6001擷取M3D模型6003。
圖7為說明可輔助實施本文中所揭示之方法、流程或設備的電腦系統100之方塊圖。電腦系統100包括用於傳達資訊之匯流排102或其他通信機構,及與匯流排102耦接以用於處理資訊之一處理器104(或多個處理器104及105)。電腦系統100亦包括耦接至匯流排102以用於儲存待由處理器104執行之資訊及指令的主記憶體106,諸如隨機存取記憶體(RAM)或其他動態儲存裝置。主記憶體106亦可用於在待由處理器104執行之指令之執行期間儲存暫時性變數或其他中間資訊。電腦系統100進一步包括耦接至匯流排102以用於儲存用於處理器104之靜態資訊及指令的唯讀記憶體(ROM)108或其他靜態儲存裝置。提供諸如磁碟或光碟之儲存裝置110,且儲存裝置110耦接至匯流排102以用於儲存資訊及指令。
電腦系統100可經由匯流排102而耦接至用於向電腦使用者顯示資訊之顯示器112,諸如陰極射線管(CRT)或平板顯示器或觸控面板顯示器。包括文數字按鍵及其他按鍵之輸入裝置114耦接至匯流排102以用於將資訊及命令選擇傳達至處理器104。另一類型之使用者輸入裝置為用於將方向資訊及命令選擇傳達至處理器104且用於控制顯示器112上之游標移動的游標控制件116,諸如滑鼠、軌跡球或游標方向按鍵。此輸入裝置通常具有在兩個軸線(第一軸線(例如x)及第二軸線(例如y))中之兩個自由度, 其允許該裝置指定在平面中之位置。觸控面板(螢幕)顯示器亦可用作輸入裝置。
根據一項實施例,可由電腦系統100回應於處理器104執行主記憶體106中含有的一或多個指令之一或多個序列而執行本文中所描述之程序之部分。可將此類指令自另一電腦可讀媒體(諸如儲存裝置110)讀取至主記憶體106中。主記憶體106中含有之指令序列之執行引起處理器104執行本文中所描述之程序步驟中的一或多者。呈多處理配置之一或多個處理器亦可用以執行主記憶體106中含有之指令序列。在一替代實施例中,可代替或結合軟體指令而使用硬連線電路系統。因此,本文中之描述不限於硬體電路系統及軟體之任何特定組合。
本文中所使用之術語「電腦可讀媒體」係指參與將指令提供至處理器104以供執行之任何媒體。此媒體可採取許多形式,包括但不限於非揮發性媒體、揮發性媒體及傳輸媒體。非揮發性媒體包括例如光碟或磁碟,諸如儲存裝置110。揮發性媒體包括動態記憶體,諸如主記憶體106。傳輸媒體包括同軸纜線、銅線及光纖,包括包含匯流排102之電線。傳輸媒體亦可採取聲波或光波之形式,諸如在射頻(RF)及紅外線(IR)資料通信期間產生之聲波或光波。電腦可讀媒體之常見形式包括例如軟碟、可撓性磁碟、硬碟、磁帶、任何其他磁性媒體、CD-ROM、DVD、任何其他光學媒體、打孔卡、紙帶、具有孔圖案之任何其他實體媒體、RAM、PROM及EPROM、FLASH-EPROM、任何其他記憶體晶片或卡匣、如下文所描述之載波,或可供電腦讀取之任何其他媒體。
可在將一或多個指令之一或多個序列攜載至處理器104以供執行時涉及電腦可讀媒體之各種形式。舉例而言,最初可將該等指令承載於遠端電 腦之磁碟上。遠端電腦可將指令載入至其動態記憶體中,且使用數據機經由電話線而發送指令。在電腦系統100本端之數據機可接收電話線上之資料,且使用紅外線傳輸器以將資料轉換成紅外線信號。耦接至匯流排102之紅外線偵測器可接收紅外線信號中所攜載之資料且將資料置放於匯流排102上。匯流排102將資料攜載至主記憶體106,處理器104自該主記憶體106擷取及執行指令。由主記憶體106接收之指令可視情況在由處理器104執行之前或之後儲存於儲存裝置110上。
電腦系統100亦可包括耦接至匯流排102之通信介面118。通信介面118提供對網路鏈路120之雙向資料通信耦合,網路鏈路120連接至區域網路122。舉例而言,通信介面118可為整合式服務數位網路(ISDN)卡或數據機以提供至對應類型之電話線的資料通信連接。作為另一實例,通信介面118可為區域網路(LAN)卡以提供對相容LAN之資料通信連接。亦可實施無線鏈路。在任何此類實施中,通信介面118發送且接收攜載表示各種類型之資訊之數位資料串流的電信號、電磁信號或光信號。
網路鏈路120通常經由一或多個網路而向其他資料裝置提供資料通信。舉例而言,網路鏈路120可經由區域網路122而向主機電腦124或向由網際網路服務業者(ISP)126操作之資料設備提供連接。ISP 126又經由全球封包資料通信網路(現在通常被稱作「網際網路」)128而提供資料通信服務。區域網路122及網際網路128兩者皆使用攜載數位資料串流之電信號、電磁信號或光信號。經由各種網路之信號及在網路鏈路120上且經由通信介面118之信號(該等信號將數位資料攜載至電腦系統100及自電腦系統100攜載數位資料)為輸送資訊的載波之例示性形式。
電腦系統100可經由網路、網路鏈路120及通信介面118而發送訊息及 接收資料,包括程式碼。在網際網路實例中,伺服器130可能經由網際網路128、ISP 126、區域網路122及通信介面118而傳輸用於應用程式之經請求程式碼。舉例而言,一個此類經下載應用程式可提供本文中所描述之一或多個程序步驟。所接收程式碼可在其被接收時由處理器104執行,及/或儲存於儲存裝置110或其他非揮發性儲存器中以供稍後執行。以此方式,電腦系統100可獲得呈載波形式之應用程式碼。
圖8示意性地描繪可利用本文中所描述之方法而最佳化照明的例示性微影投影設備。該設備包含:- 照明系統IL,其用以調節輻射光束B。在此特定狀況下,照明系統亦包含輻射源SO;- 第一物件台(例如圖案化裝置台)MT,其具備用以固持圖案化裝置MA(例如倍縮光罩)之圖案化裝置固持器,且連接至用以相對於項目PS來準確地定位該圖案化裝置之第一定位器;- 第二物件台(基板台)WT,其具備用以固持基板W(例如抗蝕劑塗佈矽晶圓)之基板固持器,且連接至用以相對於項目PS來準確地定位該基板之第二定位器;- 投影系統(「透鏡」)PS(例如折射、反射或反射折射光學系統),其用以將圖案化裝置MA之經輻照部分成像至基板W之目標部分C(例如包含一或多個晶粒)上。
如本文中所描繪,設備屬於透射類型(亦即,具有透射圖案化裝置)。然而,一般而言,其亦可屬於反射類型,例如(具有反射圖案化裝置)。設備可使用與經典光罩不同種類之圖案化裝置;實例包括可程式化鏡面陣列或LCD矩陣。
源SO(例如水銀燈或準分子雷射、雷射產生電漿(LPP)EUV源)產生輻射光束。舉例而言,此光束係直接地或在已橫穿諸如光束擴展器Ex之調節構件之後饋入至照明系統(照明器)IL中。照明器IL可包含調整構件AD以用於設定光束中之強度分佈之外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL通常將包含各種其他組件,諸如積光器IN及聚光器CO。以此方式,照射於圖案化裝置MA上之光束B在其橫截面中具有所要均一性及強度分佈。
關於圖8應注意,源SO可在微影投影設備之外殼內(舉例而言,此常常為源SO為水銀燈時的狀況),但源SO亦可遠離微影投影設備,源SO所產生之輻射光束被導引至該設備中(例如憑藉合適導向鏡);此後一情境常常為源SO為準分子雷射(例如基於KrF、ArF或F2雷射作用)時之狀況。
光束B隨後截取被固持於圖案化裝置台MT上之圖案化裝置MA。在已橫穿圖案化裝置MA的情況下,光束B傳遞通過透鏡PS,該透鏡將該光束B聚焦至基板W之目標部分C上。憑藉第二定位構件(及干涉量測構件IF),可準確地移動基板台WT例如以便使不同目標部分C定位於光束B之路徑中。相似地,第一定位構件可用以例如在自圖案化裝置庫機械地擷取圖案化裝置MA之後或在掃描期間相對於光束B之路徑來準確地定位圖案化裝置MA。一般而言,將憑藉未在圖8中明確地描繪之長衝程模組(粗略定位)及短衝程模組(精細定位)來實現物件台MT、WT之移動。然而,在步進器(相對於步進掃描工具)之狀況下,圖案化裝置台MT可僅連接至短衝程致動器,或可固定。
可在兩種不同模式中使用所描繪工具:- 在步進模式中,將圖案化裝置台MT保持基本上靜止,且將整個圖 案化裝置影像一次性投影((亦即,單次「閃光」)至目標部分C上。接著使基板台WT在x方向及/或y方向上移位,使得可由光束B輻照不同目標部分C;- 在掃描模式中,基本上相同情境適用,惟單次「閃光」中不曝光給定目標部分C除外。替代地,圖案化裝置台MT可以速度v在給定方向(所謂的「掃描方向」,例如y方向)上移動,使得使投影光束B遍及圖案化裝置影像進行掃描;並行地,基板台WT以速度V=Mv在相同方向或相對方向上同時地移動,其中M為透鏡PS之放大率(通常,M=1/4或1/5)。以此方式,可在不必損害解析度的情況下曝光相對大目標部分C。
圖9示意性地描繪可利用本文中所描述之方法而最佳化照明的另一例示性微影投影設備1000。
該微影投影設備1000包含:- 源收集器模組SO;- 照明系統(照明器)IL,其經組態以調節輻射光束B(例如EUV輻射);- 支撐結構(例如,圖案化裝置台)MT,其經建構以支撐圖案化裝置(例如光罩或倍縮光罩)MA,且連接至經組態以準確地定位該圖案化裝置之第一定位器PM;- 基板台(例如晶圓台)WT,其經建構以固持基板(例如抗蝕劑塗佈晶圓)W,且連接至經組態以準確地定位該基板之第二定位器PW;及- 投影系統(例如反射投影系統)PS,其經組態以將由圖案化裝置MA賦予至輻射光束B之圖案投影至基板W之目標部分C(例如包含一或多個晶粒)上。
如此處所描繪,設備1000屬於反射類型(例如使用反射圖案化裝置)。應注意,因為大多數材料在EUV波長範圍內具吸收性,所以圖案化裝置可具有包含例如鉬與矽之多堆疊的多層反射器。在一項實例中,多堆疊反射器具有鉬與矽之40個層對,其中每一層之厚度為四分之一波長。可運用X射線微影來產生更小波長。由於大多數材料在EUV及x射線波長下具吸收性,故圖案化裝置構形上之經圖案化吸收材料之薄件(例如多層反射器之頂部上之TaN吸收器)界定特徵將印刷(正型抗蝕劑)或不印刷(負型抗蝕劑)之處。
參看圖9,照明器IL自源收集器模組SO接收極紫外線輻射光束。用以產生EUV輻射之方法包括但未必限於:運用在EUV範圍內之一或多個發射譜線將具有至少一個元素(例如氙、鋰或錫)之材料轉換成電漿狀態。在一種此類方法(常常被稱為雷射產生電漿「LPP」)中,可藉由運用雷射光束來輻照燃料(諸如,具有譜線發射元素之材料小滴、串流或叢集)而產生電漿。源收集器模組SO可為包括雷射(圖9中未繪示)之EUV輻射系統之部分,該雷射用於提供激發燃料之雷射光束。所得電漿發射輸出輻射,例如EUV輻射,該輻射係使用安置於源收集器模組中之輻射收集器來收集。舉例而言,當使用CO2雷射以提供用於燃料激發之雷射光束時,雷射與源收集器模組可為單獨實體。
在此類狀況下,不認為雷射形成微影設備之部分,且輻射光束係憑藉包含例如合適導向鏡及/或光束擴展器之光束遞送系統而自雷射傳遞至源收集器模組。在其他狀況下,舉例而言,當源為放電產生電漿EUV產生器(常常被稱為DPP源)時,源可為源收集器模組之整體部分。
照明器IL可包含用於調整輻射光束之角強度分佈之調整器。通常, 可調整照明器之光瞳平面中之強度分佈的至少外部徑向範圍及/或內部徑向範圍(通常分別被稱作σ外部及σ內部)。另外,照明器IL可包含各種其他組件,諸如琢面化場鏡面裝置及琢面化光瞳鏡面裝置。照明器可用以調節輻射光束,以在其橫截面中具有所要均一性及強度分佈。
輻射光束B入射於被固持於支撐結構(例如圖案化裝置台)MT上之圖案化裝置(例如光罩)MA上,且係由該圖案化裝置而圖案化。在自圖案化裝置(例如光罩)MA反射之後,輻射光束B傳遞通過投影系統PS,投影系統PS將該光束聚焦至基板W之目標部分C上。憑藉第二定位器PW及位置感測器PS2(例如干涉裝置、線性編碼器或電容式感測器),可準確地移動基板台WT,例如以便使不同目標部分C定位於輻射光束B之路徑中。相似地,第一定位器PM及另一位置感測器PS1可用以相對於輻射光束B之路徑來準確地定位圖案化裝置(例如光罩)MA。可使用圖案化裝置對準標記M1、M2及基板對準標記P1、P2來對準圖案化裝置(例如光罩)MA及基板W。
所描繪設備1000可用於以下模式中之至少一者中:
1.在步進模式中,在將被賦予至輻射光束之整個圖案一次性投影至目標部分C上時,使支撐結構(例如圖案化裝置台)MT及基板台WT保持基本上靜止(亦即,單次靜態曝光)。接著,使基板台WT在X及/或Y方向上移位,使得可曝光不同目標部分C。
2.在掃描模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,同步地掃描支撐結構(例如圖案化裝置台)MT及基板台WT(亦即,單次動態曝光)。可藉由投影系統PS之放大率(縮小率)及影像反轉特性來判定基板台WT相對於支撐結構(例如圖案化裝置台)MT之速度及方向。
3.在另一模式中,在將被賦予至輻射光束之圖案投影至目標部分C上時,使支撐結構(例如圖案化裝置台)MT保持基本上靜止,從而固持可程式化圖案化裝置,且移動或掃描基板台WT。在此模式中,通常使用脈衝式輻射源,且在基板台WT之每一移動之後或在掃描期間之順次輻射脈衝之間根據需要而更新可程式化圖案化裝置。此操作模式可易於應用於利用可程式化圖案化裝置(諸如上文所提及之類型之可程式化鏡面陣列)之無光罩微影。
圖10更詳細地展示設備1000,其包括源收集器模組SO、照明系統IL及投影系統PS。源收集器模組SO經建構及配置成使得可將真空環境維持於源收集器模組SO之圍封結構220中。可由放電產生電漿源形成EUV輻射發射電漿210。可藉由氣體或蒸氣(例如Xe氣體、Li蒸氣或Sn蒸氣)而產生EUV輻射,其中產生極熱電漿210以發射在電磁光譜之EUV範圍內之輻射。舉例而言,藉由造成至少部分離子化電漿之放電來產生極熱電漿210。為了輻射之有效率產生,可需要為例如10帕斯卡之分壓之Xe、Li、Sn蒸氣或任何其他合適氣體或蒸氣。在一實施例中,提供受激發錫(Sn)電漿以產生EUV輻射。
由熱電漿210發射之輻射係經由經定位於源腔室211中之開口中或後方的選用氣體障壁或污染物截留器230(在一些狀況下,亦被稱作污染物障壁或箔片截留器)而自源腔室211傳遞至收集器腔室212中。污染物截留器230可包括通道結構。污染截留器230亦可包括氣體障壁,或氣體障壁與通道結構之組合。如在此項技術中已知,本文中進一步所指示之污染物截留器或污染物障壁230至少包括通道結構。
收集器腔室212可包括可為所謂的掠入射收集器之輻射收集器CO。 輻射收集器CO具有上游輻射收集器側251及下游輻射收集器側252。橫穿收集器CO之輻射可自光柵光譜濾光器240反射以沿著由點虛線「O」指示之光軸而聚焦於虛擬源點IF中。虛擬源點IF通常被稱作中間焦點,且源收集器模組經配置以使得中間焦點IF位於圍封結構220中之開口221處或附近。虛擬源點IF為輻射發射電漿210之影像。
隨後,輻射橫穿照明系統IL,照明系統IL可包括琢面化場鏡面裝置22及琢面化光瞳鏡面裝置24,琢面化場鏡面裝置22及琢面化光瞳鏡面裝置24經配置以提供在圖案化裝置MA處輻射光束21之所要角度分佈,以及在圖案化裝置MA處之輻射強度之所要均一性。在由支撐結構MT固持之圖案化裝置MA處的輻射光束21之反射後,就形成經圖案化光束26,且由投影系統PS將經圖案化光束26經由反射元件28、30而成像至由基板台WT固持之基板W上。
比所展示之元件更多的元件通常可存在於照明光學件單元IL及投影系統PS中。取決於微影設備之類型,可視情況存在光柵光譜濾光器240。另外,可存在比諸圖所展示之鏡面多的鏡面,例如,在投影系統PS中可存在比圖10所展示之反射元件多1至6個的額外反射元件。
如圖10中所說明之收集器光學件CO被描繪為具有掠入射反射器253、254及255之巢套式收集器,僅僅作為收集器(或收集器鏡面)之實例。掠入射反射器253、254及255經安置為圍繞光軸O軸向對稱,且此類型之收集器光學件CO可與常常被稱為DPP源之放電產生電漿源組合使用。
替代地,源收集器模組SO可為如圖11中所展示之LPP輻射系統之部分。雷射LA經配置以將雷射能量沈積至諸如氙(Xe)、錫(Sn)或鋰(Li)之燃 料中,從而產生具有數十電子伏特之電子溫度之高度離子化電漿210。在此等離子之去激發及再結合期間產生之高能輻射係自電漿發射、由近正入射收集器光學件CO收集,且聚焦至圍封結構220中之開口221上。
美國專利申請公開案第US 2013-0179847號之全文特此係以引用方式併入。
可使用以下條項進一步描述實施例:
1.一種方法,其包含:獲得一圖案化裝置之一薄光罩透射函數及用於一微影程序之一M3D模型,其中該薄光罩透射函數為一連續透射光罩且該M3D模型至少表示可歸因於該圖案化裝置上之一結構之多個邊緣的M3D效應之一部分;藉由使用該薄光罩透射函數及該M3D模型而判定該圖案化裝置之一M3D光罩透射函數;及藉由使用該M3D光罩透射函數而判定藉由該圖案化裝置及該微影程序產生的一空中影像。
2.如條項1之方法,其中該M3D模型進一步表示可歸因於該圖案化裝置上之一結構之兩個側壁會合所在之一邊緣或可歸因於該圖案化裝置上之一結構之一側壁與該結構之一周邊之外的一區域會合所在之一邊緣的M3D效應之一部分。
3.如條項1或條項2之方法,其中該M3D模型進一步表示可歸因於沿著該圖案化裝置上之一結構之一周邊之一區域的M3D效應之一部分。
4.如條項1至3中任一項之方法,其中該M3D模型進一步表示可歸因於其中該薄光罩透射函數之一變化低於一第一臨限值的一區域之 M3D效應之一部分,或表示可歸因於其中該薄光罩透射函數之一變化高於一第二臨限值的一區域之M3D效應之一部分。
5.如條項1至4中任一項之方法,其中該M3D模型進一步表示可歸因於遠離該圖案化裝置上之該結構之一周邊的一結構之一區域的M3D效應之一部分。
6.如條項1至5中任一項之方法,其進一步包含使用該空中影像判定一抗蝕劑影像。
7.如條項6之方法,其中判定該抗蝕劑影像包含使用用於該微影程序中的一抗蝕劑之一模型。
8.如條項1至7中任一項之方法,其進一步包含自該圖案化裝置上之結構判定該薄光罩透射函數。
9.如條項8之方法,其進一步包含自一設計佈局判定該等結構。
10.如條項1至9中任一項之方法,其中判定該空中影像包含使用用於該微影程序中的投影光學件之一模型。
11.如條項1至10中任一項之方法,其中判定該空中影像包含藉由使用該M3D光罩透射函數及在輻射與該圖案化裝置相互作用之前的該輻射之一電磁場來判定在該輻射與該圖案化裝置相互作用之後的該輻射之一電磁場。
12.如條項1至11中任一項之方法,其中該M3D光罩透射函數包含至少一第一項及一第二項,該第一項及該第二項分別特性化一輻射與該圖案化裝置之一第一區域及一第二區域的相互作用。
13.如條項1至12中任一項之方法,其中該M3D模型包含複數個核心函數,且判定該M3D光罩透射函數包含使用該等核心函數來執行該薄 光罩透射函數之一一體式變換。
14.如條項1至13中任一項之方法,其中該M3D模型包含一第一核心函數及一第二核心函數,其中該第一核心函數係線性的且該第二核心函數係多線性的。
15.如條項14之方法,其中該第二核心函數係雙線性的。
16.如條項14之方法,其中該第二核心函數係一四線性核心函數。
17.如條項16之方法,其中該四線性核心函數表示可歸因於該圖案化裝置上之一結構之兩個側壁會合所在之一邊緣或可歸因於該圖案化裝置上之一結構之一側壁與該結構之該周邊之外的一區域會合所在之一邊緣的M3D效應之一部分。
18.如條項14至17中任一項之方法,其中該第二核心函數表示可歸因於該圖案化裝置上之結構之多個邊緣的M3D效應之該部分。
19.如條項14至18中任一項之方法,其中該第二核心函數表示可歸因於沿著該圖案化裝置上之一結構之一周邊的一區域之M3D效應之一部分。
20.如條項14至19中任一項之方法,其中該第一核心函數表示可歸因於其中該薄光罩透射函數之一變化低於一第一臨限值的一區域之M3D效應之該部分,且該第二核心函數表示可歸因於其中該薄光罩透射函數之一變化高於一第二臨限值的一區域之M3D效應之該部分。
21.如條項14至20中任一項之方法,其中該第一核心函數表示可歸因於遠離該圖案化裝置上之該結構之一周邊的一結構之一區域的M3D效應之該部分。
22.一種電腦程式產品,其包含其上經記錄有指令之一非暫時性電腦可讀媒體,該等指令在由一電腦執行時實施一如條項1至21中任一項之方法。
本文中所揭示之概念可模擬或數學上模型化用於使子波長特徵成像之任何通用成像系統,且可尤其供能夠產生愈來愈短波長之新興成像技術使用。已經在使用中之新興技術包括能夠藉由使用ArF雷射來產生193奈米波長且甚至能夠藉由使用氟雷射來產生157奈米波長之極紫外線(EUV)、DUV微影。此外,EUV微影能夠藉由使用同步加速器或藉由運用高能電子來撞擊材料(固體或電漿)而產生在20奈米至5奈米之範圍內的波長,以便產生在此範圍內之光子。
雖然本文中所揭示之概念可用於在諸如矽晶圓之基板上的成像,但應理解,所揭示之概念可與任何類型之微影成像系統一起使用,例如用於在不同於矽晶圓的基板上之成像的微影成像系統。
以上描述意欲為說明性,而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡明之申請專利範圍之範疇的情況下如所描述進行修改。

Claims (19)

  1. 一種判定輻射之散射的方法,其包含:獲得一圖案化裝置之一薄光罩透射函數及用於一微影程序之一M3D模型,其中該薄光罩透射函數為一連續透射光罩且該M3D模型至少表示可歸因於該圖案化裝置上之一結構之多個邊緣的M3D效應之一部分;藉由使用該薄光罩透射函數及該M3D模型而判定該圖案化裝置之一M3D光罩透射函數;及藉由使用該M3D光罩透射函數而判定藉由該圖案化裝置及該微影程序產生的一空中影像(aerial image)。
  2. 如請求項1之方法,其中該M3D模型進一步表示可歸因於該圖案化裝置上之一結構之兩個側壁會合所在之一邊緣或可歸因於該圖案化裝置上之一結構之一側壁與該結構之一周邊之外的一區域會合所在之一邊緣的M3D效應之一部分。
  3. 如請求項1之方法,其中該M3D模型進一步表示可歸因於沿著該圖案化裝置上之一結構之一周邊之一區域的M3D效應之一部分。
  4. 如請求項1之方法,其中該M3D模型進一步表示可歸因於其中該薄光罩透射函數之一變化低於一第一臨限值的一區域之M3D效應之一部分,或表示可歸因於其中該薄光罩透射函數之一變化高於一第二臨限值的一區域之M3D效應之一部分。
  5. 如請求項1之方法,其中該M3D模型進一步表示可歸因於遠離該圖案化裝置上之該結構之一周邊的一結構之一區域的M3D效應之一部分。
  6. 如請求項1之方法,其進一步包含使用該空中影像判定一抗蝕劑影像,及/或其中判定該抗蝕劑影像包含使用用於該微影程序中的一抗蝕劑之一模型。
  7. 如請求項1之方法,其進一步包含自該圖案化裝置上之結構判定該薄光罩透射函數,及/或其中該方法進一步包含自一設計佈局判定該等結構。
  8. 如請求項1之方法,其中判定該空中影像包含:使用用於該微影程序中的投影光學件之一模型。
  9. 如請求項1之方法,其中判定該空中影像包含:藉由使用該M3D光罩透射函數及在輻射與該圖案化裝置相互作用之前的該輻射之一電磁場來判定在該輻射與該圖案化裝置相互作用之後的該輻射之一電磁場。
  10. 如請求項1之方法,其中該M3D光罩透射函數包含至少一第一項及一第二項,該第一項及該第二項分別特性化一輻射與該圖案化裝置之一第一區域及一第二區域的相互作用。
  11. 如請求項1之方法,其中該M3D模型包含複數個核心函數,且判定該M3D光罩透射函數包含使用該等核心函數來執行該薄光罩透射函數之一一體式變換。
  12. 如請求項1之方法,其中該M3D模型包含一第一核心函數及一第二核心函數,其中該第一核心函數係線性的且該第二核心函數係多線性的。
  13. 如請求項12之方法,其中該第二核心函數係雙線性的。
  14. 如請求項12之方法,其中該第二核心函數係一四線性核心函數,及/或其中該四線性核心函數表示可歸因於該圖案化裝置上之一結構之兩個側壁會合所在之一邊緣或可歸因於該圖案化裝置上之一結構之一側壁與該結構之該周邊之外的一區域會合所在之一邊緣的M3D效應之一部分。
  15. 如請求項12之方法,其中該第二核心函數表示可歸因於該圖案化裝置上之結構之多個邊緣的M3D效應之該部分。
  16. 如請求項12之方法,其中該第二核心函數表示可歸因於沿著該圖案化裝置上之一結構之一周邊的一區域之M3D效應之一部分。
  17. 如請求項12之方法,其中該第一核心函數表示可歸因於其中該薄光罩透射函數之一變化低於一第一臨限值的一區域之M3D效應之該部分,且該第二核心函數表示可歸因於其中該薄光罩透射函數之一變化高於一第 二臨限值的一區域之M3D效應之該部分。
  18. 如請求項12之方法,其中該第一核心函數表示可歸因於遠離該圖案化裝置上之該結構之一周邊的一結構之一區域的M3D效應之該部分。
  19. 一種判定輻射之散射的電腦程式產品,其包含經記錄有指令之一非暫時性電腦可讀媒體,該等指令在由一電腦執行時實施一如請求項1之方法。
TW106145450A 2016-12-28 2017-12-25 判定輻射之散射的方法及電腦程式產品 TWI672556B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662439682P 2016-12-28 2016-12-28
US62/439,682 2016-12-28

Publications (2)

Publication Number Publication Date
TW201841049A TW201841049A (zh) 2018-11-16
TWI672556B true TWI672556B (zh) 2019-09-21

Family

ID=60582602

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106145450A TWI672556B (zh) 2016-12-28 2017-12-25 判定輻射之散射的方法及電腦程式產品

Country Status (5)

Country Link
US (3) US11016395B2 (zh)
KR (1) KR102283977B1 (zh)
CN (1) CN110114726B (zh)
TW (1) TWI672556B (zh)
WO (1) WO2018121967A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110337614B (zh) * 2017-02-22 2021-12-10 Asml荷兰有限公司 通过图案形成装置上的有限厚度的结构确定辐射的散射的方法
US11899374B2 (en) 2018-05-07 2024-02-13 Asml Netherlands B.V. Method for determining an electromagnetic field associated with a computational lithography mask model

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194893A (en) * 1991-03-06 1993-03-16 Nikon Corporation Exposure method and projection exposure apparatus
US6046792A (en) * 1996-03-06 2000-04-04 U.S. Philips Corporation Differential interferometer system and lithographic step-and-scan apparatus provided with such a system
US7703069B1 (en) * 2007-08-14 2010-04-20 Brion Technologies, Inc. Three-dimensional mask model for photolithography simulation
TW201539226A (zh) * 2014-04-14 2015-10-16 Asml Netherlands Bv 用於微影程序之最佳化流程

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523193A (en) 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
EP0527166B1 (de) 1990-05-02 1995-06-14 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Belichtungsvorrichtung
US5229872A (en) 1992-01-21 1993-07-20 Hughes Aircraft Company Exposure device including an electrically aligned electronic mask for micropatterning
NL1036189A1 (nl) 2007-12-05 2009-06-08 Brion Tech Inc Methods and System for Lithography Process Window Simulation.
US8073288B2 (en) * 2008-01-16 2011-12-06 International Business Machines Corporation Rendering a mask using coarse mask representation
JP5629691B2 (ja) 2008-11-21 2014-11-26 エーエスエムエル ネザーランズ ビー.ブイ. 高速自由形式ソース・マスク同時最適化方法
US8078995B2 (en) 2009-01-06 2011-12-13 International Business Machines Corporation Efficient isotropic modeling approach to incorporate electromagnetic effects into lithographic process simulations
NL2009982A (en) 2012-01-10 2013-07-15 Asml Netherlands Bv Source mask optimization to reduce stochastic effects.
KR101757777B1 (ko) * 2013-02-22 2017-07-14 에이에스엠엘 네델란즈 비.브이. 3­차원 패터닝 디바이스에 대한 리소그래피 모델
US8918743B1 (en) * 2013-08-12 2014-12-23 Synopsys, Inc. Edge-based full chip mask topography modeling
US9348964B2 (en) 2014-04-21 2016-05-24 Synopsys, Inc. MASK3D model accuracy enhancement for small feature coupling effect
JP6892214B2 (ja) * 2014-07-10 2021-06-23 アイエムエス ナノファブリケーション ゲーエムベーハー 畳み込みカーネルを使用する粒子ビーム描画機のカスタマイズ化
CN110337614B (zh) * 2017-02-22 2021-12-10 Asml荷兰有限公司 通过图案形成装置上的有限厚度的结构确定辐射的散射的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194893A (en) * 1991-03-06 1993-03-16 Nikon Corporation Exposure method and projection exposure apparatus
US6046792A (en) * 1996-03-06 2000-04-04 U.S. Philips Corporation Differential interferometer system and lithographic step-and-scan apparatus provided with such a system
US7703069B1 (en) * 2007-08-14 2010-04-20 Brion Technologies, Inc. Three-dimensional mask model for photolithography simulation
TW201539226A (zh) * 2014-04-14 2015-10-16 Asml Netherlands Bv 用於微影程序之最佳化流程

Also Published As

Publication number Publication date
CN110114726A (zh) 2019-08-09
US20220373892A1 (en) 2022-11-24
KR20190099514A (ko) 2019-08-27
US20210271173A1 (en) 2021-09-02
US11409203B2 (en) 2022-08-09
CN110114726B (zh) 2021-11-30
KR102283977B1 (ko) 2021-08-02
WO2018121967A1 (en) 2018-07-05
US11789371B2 (en) 2023-10-17
US11016395B2 (en) 2021-05-25
TW201841049A (zh) 2018-11-16
US20200073260A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
TWI545392B (zh) 用於模擬圖案化器件之散射輻射場的電腦實施方法及相關電腦程式產品
US11789371B2 (en) Methods of determining scattering of radiation by structures of finite thicknesses on a patterning device
TW202032255A (zh) 用於在嵌塊邊界處產生圖案化器件圖案之方法
TW202036169A (zh) 藉由源及遮罩最佳化以建立理想源光譜的方法
TW202210954A (zh) 用於選擇資訊模式以訓練機器學習模型之設備及方法
TWI667553B (zh) 判定圖案之特性之方法
TWI702467B (zh) 用於改進抗蝕劑模型預測的系統、方法及電腦程式產品
TWI661264B (zh) 調諧製程模型之方法
KR102646683B1 (ko) 고 개구수 스루-슬릿 소스 마스크 최적화 방법
TWI654497B (zh) 在製程中導引程序模型及檢測之方法
TW202409714A (zh) 用於最佳化微影程序之基於繞射的光瞳判定
WO2023110346A1 (en) Methods, software, and systems for determination of constant-width sub-resolution assist features