TW201812705A - 步階大小及鍍金屬厚度之光學量測 - Google Patents

步階大小及鍍金屬厚度之光學量測 Download PDF

Info

Publication number
TW201812705A
TW201812705A TW106127070A TW106127070A TW201812705A TW 201812705 A TW201812705 A TW 201812705A TW 106127070 A TW106127070 A TW 106127070A TW 106127070 A TW106127070 A TW 106127070A TW 201812705 A TW201812705 A TW 201812705A
Authority
TW
Taiwan
Prior art keywords
sample
thickness
captured image
image
determining
Prior art date
Application number
TW106127070A
Other languages
English (en)
Other versions
TWI733877B (zh
Inventor
詹姆士 建國 許
隆尼 索塔曼
布迪 哈朵諾
Original Assignee
美商澤塔儀器公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/233,812 external-priority patent/US20180045937A1/en
Priority claimed from US15/338,838 external-priority patent/US10157457B2/en
Application filed by 美商澤塔儀器公司 filed Critical 美商澤塔儀器公司
Publication of TW201812705A publication Critical patent/TW201812705A/zh
Application granted granted Critical
Publication of TWI733877B publication Critical patent/TWI733877B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/022Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/04Measuring microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/0016Technical microscopes, e.g. for inspection or measuring in industrial production processes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0007Image acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0006Industrial image inspection using a design-rule based approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/571Depth or shape recovery from multiple images from focus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10148Varying focus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Abstract

一種產生三維資訊之方法包含:按預定步階變更樣本與光學顯微鏡之一物鏡之間的距離;在各預定步階處擷取一影像;判定各經擷取影像中之各像素之一特性值;針對各經擷取影像判定跨該經擷取影像中之所有像素之最大特性值;比較各經擷取影像之該最大特性值以判定各預定步階處是否存在該樣本之一表面;基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第一表面上之一第一經擷取影像;基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第二表面上之一第二經擷取影像;及判定該第一表面與該第二表面之間的一第一距離。

Description

步階大小及鍍金屬厚度之光學量測
所描述實施例大體上係關於量測一樣本之三維資訊且更特定言之係關於按一快速且可靠方式自動量測三維資訊。
各種物件或樣本之三維(3-D)量測在許多不同應用中係有用的。一個此應用係在晶圓級封裝處理期間。在晶圓級製造之不同步驟期間之一晶圓之三維量測資訊可提供關於存在可存在於晶圓上之晶圓處理缺陷之洞察。在晶圓級製造期間之晶圓之三維量測資訊可在耗費額外資金來繼續處理晶圓之前提供關於不存在缺陷之洞察。當前藉由一顯微鏡之人類操縱來收集一樣本之三維量測資訊。人類使用者使用其眼睛使顯微鏡聚焦以判定顯微鏡何時聚焦在樣本之一表面上。需要收集三維量測資訊之一改良方法。
在一第一新穎態樣中,使用一光學顯微鏡藉由以下步驟產生一樣本之三維(3-D)資訊:按預定步階變更該樣本與該光學顯微鏡之一物鏡之間的距離;在各預定步階處擷取一影像;判定各經擷取影像中之各像素之一特性值;針對各經擷取影像判定跨該經擷取影像中之所有像素之最大特性值;比較各經擷取影像之該最大特性值以判定各預定步階處是否存在該樣本之一表面;基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第一表面上之一第一經擷取影像;基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第二表面上之一第二經擷取影像;及判定該第一表面與該第二表面之間的一第一距離。 在一第二新穎態樣中,一種三維(3-D)量測系統包含:判定樣本之一半透明層之一厚度;及判定該樣本之一金屬層之一厚度,其中該金屬層之該厚度等於該半透明層之該厚度與第一距離之間的差,其中第一表面係一光阻層之一頂表面,且其中第二表面係一金屬層之一頂表面。 在一第三新穎態樣中,使用一光學顯微鏡藉由以下步驟產生一樣本之三維(3-D)資訊:按預定步階變更該樣本與該光學顯微鏡之一物鏡之間的距離;在各預定步階處擷取一影像;判定各經擷取影像中之各像素之一特性值;針對各經擷取影像判定跨該經擷取影像中之一第一像素部分之最大特性值;比較各經擷取影像之該最大特性值以判定各預定步階處是否存在該樣本之一表面;判定聚焦在該樣本之一凸塊之一頂點上之一第一經擷取影像;基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第一表面上之一第二經擷取影像;及判定該凸塊之該頂點與該第一表面之間的一第一距離。 在一第四新穎態樣中,判定在跨所有經擷取影像之x-y像素位置之一第二部分內之各x-y像素位置之一最大特性值,其中x-y像素位置之該第二部分包含包含於各經擷取影像中之至少一些該等x-y像素位置;判定該經擷取影像之一子集,其中僅包含一x-y像素位置最大特性值之經擷取影像包含於該子集中;及判定在該經擷取影像子集內之所有經擷取影像當中,該第一經擷取影像相較於該經擷取影像子集內之所有其他經擷取影像聚焦在一最高z位置上。 在下文實施方式中描述進一步細節及實施例以及技術。本發明內容並不界定本發明。本發明係由發明申請專利範圍界定。
相關申請案之交叉參考 本申請案係2016年10月31日申請之標題為「OPTICAL MEASUREMENT OF OPENING DIMENSIONS IN A WAFER」之非臨時美國專利申請案第15/338,838號之一部分接續案且根據35 U.S.C. §120規定主張該案之優先權。該案之全部揭示內容以引用的方式併入本文中。申請案15/338,838係2016年8月10日申請之標題為「AUTOMATED 3-D MEASUREMENT」之非臨時美國專利申請案第15/233,812號之一部分接續案且根據35 U.S.C. §120規定主張該案之優先權。該案之全部揭示內容以引用的方式併入本文中。 現將詳細參考本發明之背景實例及一些實施例,其等之實例在隨附圖式中加以繪示。在下文描述及發明申請專利範圍中,諸如「頂部」、「下面」、「上」、「下」、「頂部」、「底部」、「左」及「右」之關係術語可用於描述所描述結構之不同部分之間的相對定向,且應理解,所描述之整體結構可實際上以任何方式定向在三維空間中。 圖1係一半自動化三維計量系統1之一圖。半自動化三維計量系統1包含一光學顯微鏡(未展示)、一開啟/關閉按鈕5、一電腦4及一載物台2。在操作中,將一晶圓3放置在載物台2上。半自動化三維計量系統1之功能係擷取一物件之多個影像且自動產生描述物件之各種表面之三維資訊。此亦稱為一物件之一「掃描」。晶圓3係由半自動化三維計量系統1分析之一物件之一實例。一物件亦可稱為一樣本。在操作中,將晶圓3放置在載物台2上且半自動化三維計量系統1開始自動產生描述晶圓3之表面之三維資訊之程序。在一個實例中,半自動化三維計量系統1開始於按壓連接至電腦4之一鍵盤(未展示)上之一指定鍵。在另一實例中,半自動化三維計量系統1開始於跨一網路(未展示)將一開始命令發送至電腦4。半自動化三維計量系統1亦可經組態以與一自動化晶圓處置系統(未展示)配接,該自動化晶圓處置系統在完成一晶圓之一掃描之後移除該晶圓且插入一新晶圓進行掃描。 一全自動化三維計量系統(未展示)類似於圖1之半自動化三維計量系統;然而,一全自動化三維計量系統亦包含一機器人處置器,其可在無人類干預的情況下自動拾取一晶圓且將晶圓放置在載物台上。以一類似方式,一全自動化三維計量系統亦可使用機器人處置器自載物台自動拾取一晶圓且自載物台移除晶圓。在生產許多晶圓期間可期望一全自動化三維計量系統,因為其避免一人類操作者之可能污染且改良時間效率及總成本。替代性地,當僅需量測少量晶圓時,在研究及開發活動期間可期望半自動化三維計量系統1。 圖2係包含多個物鏡11及一可調整載物台12之一三維成像顯微鏡10之一圖。三維成像顯微鏡可為一共焦顯微鏡、一結構化照明顯微鏡、一干涉儀顯微鏡或此項技術中熟知的任何其他類型之顯微鏡。一共焦顯微鏡將量測強度。一結構化照明顯微鏡將量測一經投影結構之對比度。一干涉儀顯微鏡將量測干涉條紋對比度。 在操作中,將一晶圓放置在可調整載物台12上且選擇一物鏡。三維成像顯微鏡10在調整載物台(晶圓擱置於其上)之高度時擷取晶圓之多個影像。此導致在晶圓定位於遠離選定透鏡之各種距離處時擷取晶圓之多個影像。在一個替代實例中,將晶圓放置在一固定載物台上且調整物鏡之位置,藉此在不移動載物台的情況下變更物鏡與樣本之間的距離。在另一實例中,可在x-y方向上調整載物台且可在z方向上調整物鏡。 經擷取影像可本地儲存在包含於三維成像顯微鏡10中之一記憶體中。替代性地,經擷取影像可儲存在包含於一電腦系統中之一資料儲存裝置中,其中三維顯微鏡10跨一資料通信鏈路將經擷取影像傳遞至電腦系統。一資料通信鏈路之實例包含:一通用串列匯流排(USB)介面、一乙太網路連接、一火線匯流排介面、一無線網路(諸如WiFi)。 圖3係包含一三維顯微鏡21、一樣本處置器22、一電腦23、一顯示器27 (選用)及輸入裝置28之一三維計量系統20之一圖。三維計量系統20係包含於半自動化三維計量系統1中之一系統之一實例。電腦23包含一處理器24、一儲存裝置25及一網路裝置26 (選用)。電腦經由顯示器27將資訊輸出至一使用者。若顯示器27係一觸控螢幕裝置,則該顯示器亦可用作一輸入裝置。輸入裝置28可包含一鍵盤及一滑鼠。電腦23控制三維顯微鏡21及樣本處置器/載物台22之操作。當由電腦23接收一開始掃描命令時,電腦發送一或多個命令以組態用於影像擷取之三維顯微鏡(「顯微鏡控制資料」)。例如,需選擇正確物鏡,需選擇待擷取影像之解析度,且需選擇儲存經擷取影像之模式。當由電腦23接收一開始掃描命令時,電腦發送一或多個命令以組態樣本處置器/載物台22 (「處置器控制資料」)。例如,需選擇正確高度(z方向)調整且需選擇正確水平(x-y方向)對準。 在操作期間,電腦23引起樣本處置器/載物台22調整至適當位置。一旦樣本處置器/載物台22經適當定位,電腦23將引起三維顯微鏡聚焦在一焦平面上且擷取至少一個影像。接著,電腦23將引起該載物台在z方向上移動,使得改變樣本與光學顯微鏡之物鏡之間的距離。一旦載物台移動至新位置,電腦23將引起光學顯微鏡擷取一第二影像。此程序繼續直至在光學顯微鏡之物鏡與樣本之間的各所要距離處擷取一影像。將在各距離處擷取之影像自三維顯微鏡21傳遞至電腦23 (「影像資料」)。將經擷取影像儲存在包含於電腦23中之儲存裝置25中。在一個實例中,電腦23分析經擷取影像且將三維資訊輸出至顯示器27。在另一實例中,電腦23分析經擷取影像且經由網路29將三維資訊輸出至一遠端裝置。在又另一實例中,電腦23並不分析經擷取影像,而是經由網路29將經擷取影像發送至另一裝置進行處理。三維資訊可包含基於經擷取影像呈現之一三維影像。三維資訊可不包含任何影像,而是包含基於各經擷取影像之各種特性之資料。 圖4係繪示在變更光學顯微鏡之物鏡與樣本之間的距離時擷取影像之一方法之一圖。在圖4中繪示之實施例中,各影像包含1000乘1000個像素。在其他實施例中,影像可包含各種像素組態。在一個實例中,將連續距離之間的間隔固定為一預定量。在另一實例中,連續距離之間的間隔可不固定。倘若僅樣本之z方向掃描之一部分需要額外z方向解析度,則在z方向上之影像之間的此不固定間隔可為有利的。z方向解析度係基於在z方向上按每單位長度擷取之影像數目,因此在z方向上按每單位長度擷取額外影像將增大所量測之z方向解析度。相反地,在z方向上按每單位長度擷取較少影像將減小所量測之z方向解析度。 如上文論述,首先調整光學顯微鏡以使其聚焦在定位於與光學顯微鏡之一物鏡相距距離1處之一焦平面上。接著,光學顯微鏡擷取一影像,該影像儲存在一儲存裝置(即,「記憶體」)中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離2。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離3。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離4。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離5。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。程序針對光學顯微鏡之物鏡與樣本之間的N個不同距離而繼續。指示哪一影像與各距離相關聯之資訊亦儲存在儲存裝置中以用於處理。 在一替代實施例中,光學顯微鏡之物鏡與樣本之間的距離係固定的。實情係,光學顯微鏡包含一變焦透鏡,其允許光學顯微鏡變更光學顯微鏡之焦平面。以此方式,當載物台及由載物台支撐之樣本固定時,光學顯微鏡之焦平面跨N個不同焦平面而變化。針對各焦平面擷取一影像且將影像儲存在一儲存裝置中。接著,處理跨所有各種焦平面之經擷取影像以判定樣本之三維資訊。此實施例需要一變焦透鏡,其可提供跨所有焦平面之足夠解析度且引入最小影像失真。另外,需要各變焦位置之間的校準及變焦透鏡之所得焦距。 圖5係繪示光學顯微鏡之物鏡與樣本之間的距離之一圖表,其中各x-y座標具有最大特性值。一旦針對各距離擷取及儲存影像,可分析各影像之各像素之特性。例如,可分析各影像之各像素之光強度。在另一實例中,可分析各影像之各像素之對比度。在又另一實例中,可分析各影像之各像素之條紋對比度。可藉由比較一像素之強度與預設數目個周圍像素之強度來判定一像素之對比度。針對關於如何產生對比度資訊之額外描述,參見由James Jianguo Xu等人於2010年2月3日申請之標題為「3-D Optical Microscope」之美國專利申請案第12/699,824號(該案之標的物以引用的方式併入本文中)。 圖6係使用在圖5中展示之各x-y座標之最大特性值呈現之一三維影像之一三維圖。具有介於1與19之間的一X位置之所有像素在z方向距離7處具有一最大特性值。具有介於20與29之間的一X位置之所有像素在z方向距離2處具有一最大特性值。具有介於30與49之間的一X位置之所有像素在z方向距離7處具有一最大特性值。具有介於50與59之間的一X位置之所有像素在z方向距離2處具有一最大特性值。具有介於60與79之間的一X位置之所有像素在z方向距離7處具有一最大特性值。以此方式,可使用跨所有經擷取影像之每x-y像素之最大特性值產生圖6中繪示之三維影像。另外,在已知距離2且已知距離7之情況下,可藉由自距離2減去距離7來計算圖6中繪示之井深度。 峰值模式操作 圖7係繪示使用在各種距離處擷取之影像之峰值模式操作之一圖。如上文關於圖4論述,首先調整光學顯微鏡以使其聚焦在定位於與光學顯微鏡之一物鏡相距距離1處之一平面上。接著,光學顯微鏡擷取一影像,該影像儲存在一儲存裝置(即,「記憶體」)中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離2。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離3。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離4。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離5。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。程序針對光學顯微鏡之物鏡與載物台之間的N個不同距離而繼續。指示哪一影像與各距離相關聯之資訊亦儲存在儲存裝置中以用於處理。 在峰值模式操作中判定跨在一個z距離處之一單一經擷取影像中之所有x-y位置之最大特性值,而不是判定跨在各種z距離處之所有經擷取影像之各x-y位置之最大特性值。換言之,針對各經擷取影像,選擇跨包含於經擷取影像中之所有像素之最大特性值。如在圖7中繪示,具有最大特性值之像素位置將可能在不同經擷取影像之間變化。特性可為強度、對比度或條紋對比度。 圖8係繪示當一光阻(PR)開口在光學顯微鏡之視場內時使用在各種距離處擷取之影像之峰值模式操作之一圖。物件之俯視圖展示PR開口在x-y平面中之橫截面積。PR開口亦具有z方向上之特定深度之一深度。在下文圖8中之俯視圖展示在各距離處擷取之影像。在距離1處,光學顯微鏡未聚焦在晶圓之頂表面或PR開口之底表面上。在距離2處,光學顯微鏡聚焦在PR開口之底表面上,但未聚焦在晶圓之頂表面上。此導致與接收自離焦之其他表面(晶圓之頂表面)反射之光之像素相比,接收自PR開口之底表面反射之光之像素中之一增大特性值(強度/對比度/條紋對比度)。在距離3處,光學顯微鏡未聚焦在晶圓之頂表面或PR開口之底表面上。因此,在距離3處,最大特性值將實質上低於在距離2處量測之特性值。在距離4處,光學顯微鏡未聚焦在樣本之任何表面上;然而,歸因於空氣之折射率與光阻層之折射率之差異,量測到最大特性值(強度/對比度/條紋對比度)之一增大。圖11及隨附文字更詳細描述此現象。在距離6處,光學顯微鏡聚焦在晶圓之頂表面上,但未聚焦在PR開口之底表面上。此導致與接收自離焦之其他表面(PR開口之底表面)反射之光之像素相比,接收自晶圓之頂表面反射之光之像素中之一增大特性值(強度/對比度/條紋對比度)。一旦判定來自各經擷取影像之最大特性值,便可利用結果來判定晶圓之一表面定位於哪些距離處。 圖9係繪示源自峰值模式操作之三維資訊之一圖表。如關於圖8論述,在距離1、3及5處擷取之影像之最大特性值具有小於在距離2、4及6處擷取之影像之最大特性值之一最大特性值。在各種z距離處之最大特性值之曲線可歸因於環境效應(諸如振動)而含有雜訊。為最小化此雜訊,可在進一步資料分析之前應用一標準平滑法,諸如具有某核心大小之高斯濾波(Gaussian filtering)。 由一峰值尋找演算法執行比較最大特性值之一個方法。在一個實例中,使用一導數法沿著z軸定位零交叉點以判定存在各「峰值」之距離。接著,比較在發現一峰值之各距離處之最大特性值以判定量測到最大特性值之距離。在圖9之情況中,將在距離2處發現一峰值,此用作晶圓之一表面定位於距離2處之一指示。 藉由比較各最大特性值與一預設定臨限值來執行比較最大特性值之另一方法。可基於晶圓材料、距離及光學顯微鏡之規格來計算臨限值。替代性地,可在自動化處理之前藉由經驗測試判定臨限值。在任一情況中,比較各經擷取影像之最大特性值與臨限值。若最大特性值大於臨限值,則判定最大特性值指示晶圓之一表面之存在。若最大特性值不大於臨限值,則判定最大特性值並不指示晶圓之一表面。 求和模式操作 圖10係繪示使用在各種距離處擷取之影像之求和模式操作之一圖。如上文關於圖4論述,首先調整光學顯微鏡以使其聚焦在定位於與光學顯微鏡之一物鏡相距距離1處之一平面上。接著,光學顯微鏡擷取一影像,該影像儲存在一儲存裝置(即,「記憶體」)中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離2。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離3。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離4。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離5。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。程序針對光學顯微鏡之物鏡與樣本之間的N個不同距離而繼續。指示哪一影像與各距離相關聯之資訊亦儲存在儲存裝置中以用於處理。 將各經擷取影像之所有x-y位置之特性值相加在一起,而不是判定跨在一個z距離處之一單一經擷取影像中之所有x-y位置之最大特性值。換言之,針對各經擷取影像,將包含於經擷取影像中之所有像素之特性值加總在一起。特性可為強度、對比度或條紋對比度。實質上大於相鄰z距離之平均經加總特性值之一經加總特性值指示在該距離處存在晶圓之一表面。然而,此方法亦可導致如在圖11中描述之假肯定(false positive)。 圖11係繪示在使用求和模式操作時之錯誤表面偵測之一圖。在圖11中繪示之晶圓包含一矽基板30及沈積在矽基板30之頂部上之一光阻層31。矽基板30之頂表面定位於距離2處。光阻層31之頂表面定位於距離6處。在距離2處擷取之影像將導致實質上大於在不存在晶圓之一表面之距離處擷取之其他影像之一特性值總和。在距離6處擷取之影像將導致實質上大於在不存在晶圓之一表面之距離處擷取之其他影像之一特性值總和。此時,求和模式操作看似係存在晶圓之一表面之一有效指示符。然而,在距離4處擷取之影像將導致實質上大於在不存在晶圓之一表面之距離處擷取之其他影像之一特性值總和。此係一問題,因為如在圖11中清晰展示,晶圓之一表面未定位於距離4處。實情係,距離4處之特性值總和之增大係定位於距離2及6處之表面之一假影。輻照光阻層之光之一主要部分並不反射,而是行進至光阻層中。此光行進之角度歸因於空氣及光阻之折射率差異而改變。新角度比輻照光阻之頂表面之光角度更接近於法線。光行進至在光阻層下方之矽基板之頂表面。接著,藉由高度反射矽基板層反射光。在反射光離開光阻層且進入空氣時,反射光之角度歸因於空氣與光阻層之間的折射率差異而再次改變。輻照光之此第一重導引、反射及第二重導引引起光學顯微鏡觀察到距離4處之特性值(強度/對比度/條紋對比度)之一增大。此實例繪示每當一樣本包含一透明材料時,求和模式操作將偵測不存在於樣本上之表面。 圖12係繪示源自求和模式操作之三維資訊之一圖表。此圖表繪示在圖11中繪示之現象之結果。距離4處之加總特性值之大值錯誤地指示距離4處存在一表面。需要不導致晶圓之表面之存在之假肯定指示之一方法。 範圍模式操作 圖13係繪示使用在各種距離處擷取之影像之範圍模式操作之一圖。如上文關於圖4論述,首先調整光學顯微鏡以使其聚焦在定位於與光學顯微鏡之一物鏡相距距離1處之一平面上。接著,光學顯微鏡擷取一影像,該影像儲存在一儲存裝置(即,「記憶體」)中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離2。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離3。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台,使得光學顯微鏡之物鏡與樣本之間的距離係距離4。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離5。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。程序針對光學顯微鏡之物鏡與樣本之間的N個不同距離而繼續。指示哪一影像與各距離相關聯之資訊亦儲存在儲存裝置中以用於處理。 判定包含於一個z距離處之一單一經擷取影像中之具有一特定範圍內之一特性值之像素之一計數,而不是判定跨該單一經擷取影像中之所有x-y位置之所有特性值之總和。換言之,針對各經擷取影像,判定具有一特定範圍內之一特性值之像素之一計數。特性可為強度、對比度或條紋對比度。實質上大於相鄰z距離處之平均像素計數之一個特定z距離處之一像素計數指示該距離處存在晶圓之一表面。此方法減少在圖11中描述之假肯定。 圖14係繪示源自範圍模式操作之三維資訊之一圖表。在知道存在於晶圓上之不同材料類型及光學顯微鏡組態之情況下,可針對各材料類型判定特性值之一預期範圍。例如,光阻層將反射輻照光阻層之頂表面之相對少量光(即,4%)。矽層將反射輻照矽層之頂表面之光(即,37%)。在距離4處觀察到的來自光阻層之頂表面之重導引反射(即,21%)將實質上大於在距離6處觀察到的反射;然而,在距離4處觀察到的來自矽基板之頂表面之重導引反射(即,21%)將實質上小於在距離2處觀察到的反射。因此,當尋找光阻層之頂表面時,以光阻之預期特性值為中心之一第一範圍可用於濾除具有在第一範圍以外的特性值之像素,藉此濾除具有並非源自光阻層之頂表面之反射之特性值之像素。在圖15中繪示藉由應用第一特性值範圍而產生之跨所有距離之像素計數。如在圖15中展示,藉由應用第一範圍濾除來自其他距離(表面)之一些但未必所有像素。此在多個距離處量測之特性值落入第一範圍內時發生。然而,在計數像素之前應用第一範圍仍用以使所要表面處之像素計數比其他距離處之其他像素計數更突出。此在圖15中繪示。在應用第一範圍之後,距離6處之像素計數大於距離2及4處之像素計數,而在應用第一範圍之前,距離6處之像素計數小於距離2及4處之像素計數(如在圖14中展示)。 以一類似方式,當尋找矽基板層之頂表面時,可使用以矽基板層之預期特性值為中心之一第二範圍來濾除具有第二範圍以外的特性值之像素,藉此濾除具有並非源自矽基板層之頂表面之反射之特性值之像素。在圖16中繪示藉由應用第二特性值範圍而產生之跨所有距離之像素計數。此範圍應用憑藉知道存在於所掃描晶圓上之所有材料的預期特性值而減少一晶圓表面定位於距離4處之錯誤指示。如關於圖15論述,藉由應用一範圍濾除來自其他距離(表面)之一些但未必所有像素。然而,當在多個距離處量測之特性值並不落入相同範圍內時,則應用範圍之結果將消除來自其他距離(表面)之所有像素計數。圖16繪示此案例。在圖16中,在產生各距離處之像素計數之前應用第二範圍。應用第二範圍之結果係僅計數距離2處之像素。此產生矽基板之表面定位於距離2處之一十分明確指示。 應注意,為減少由潛在雜訊(諸如環境振動)引起之影響,可在實行任何峰值搜尋操作之前將一標準平滑操作(諸如高斯濾波)應用至沿著z距離之總像素計數。 圖17係繪示包含於峰值模式操作中之各種步驟之一流程圖200。在步驟201中,按預定步階變更樣本與一光學顯微鏡之物鏡之間的距離。在步驟202中,在各預定步階處擷取一影像。在步驟203中,判定各經擷取影像中之各像素之一特性。在步驟204中,針對各經擷取影像,判定跨該經擷取影像中之所有像素之最大特性。在步驟205中,比較各經擷取影像之最大特性以判定各預定步階處是否存在樣本之一表面。 圖18係繪示包含於範圍模式操作中之各種步驟之一流程圖300。在步驟301中,按預定步階變更樣本與一光學顯微鏡之物鏡之間的距離。在步驟302中,在各預定步階處擷取一影像。在步驟303中,判定各經擷取影像中之各像素之一特性。在步驟304中,針對各經擷取影像,判定具有一第一範圍內之一特性值之像素之一計數。在步驟305中,基於各經擷取影像之像素計數判定各預定步階處是否存在樣本之一表面。 圖19係包含一單一特徵之一經擷取影像之一圖。一特徵之一個實例係光阻層中呈一圓形形狀之一開口。一特徵之另一實例係光阻層中呈溝槽形狀之一開口(諸如一未鍍重佈線(RDL)結構)。在晶圓製程期間,量測一晶圓層中之一光阻開口之各種特徵係有利的。一光阻開口之量測在金屬鍍覆至孔中之前提供結構中之瑕疵之偵測。例如,若一光阻開口不具有正確大小,則鍍RDL寬度將係錯誤的。偵測此類型之缺陷可防止一缺陷晶圓之進一步製造。防止一缺陷晶圓之進一步製造節省材料及處理費用。圖19繪示當經擷取影像聚焦在光阻層之頂表面上時,自光阻層之頂表面反射之光之經量測強度大於自光阻層中之開口反射之光之經量測強度。如下文更詳細論述,與經擷取影像中之各像素相關聯之資訊可用於產生經擷取影像中之各像素之一強度值。接著,可比較各像素之強度值與一強度臨限值以判定各像素是否與經擷取影像之一第一區域(諸如光阻層之頂表面)相關聯或與經擷取影像之一第二區域(諸如光阻開口區)相關聯。此可藉由以下步驟完成:(i)首先將一強度臨限值應用至經擷取影像中之各像素之經量測強度;(ii)將具有低於強度臨限值之一強度值之所有像素分類為與經擷取影像之一第一區域相關聯;(iii)將具有高於強度臨限值之一強度值之所有像素分類為與經擷取影像之一第二區域相關聯;及(iv)將一特徵界定為相同區域內鄰接與相同區域相關聯之其他像素之一像素群組。 在圖19中展示之經擷取影像可為一彩色影像。彩色影像之各像素包含紅色、藍色及綠色(RBG)通道值。此等色彩值之各者可經組合以產生各像素之一單一強度值。在下文描述用於將各像素之RBG值轉換為單一強度值之各種方法。 一第一方法係使用三個加權值將三個色彩通道轉換為一強度值。換言之,各色彩通道具有其自身加權值或轉換因數。吾人可使用在一系統配方中界定之三個轉換因數之一預設集合或基於其樣本量測需求修改三個轉換因數。一第二方法係自各色彩通道之一預設色彩通道值減去各像素之色彩通道,接著使用在第一方法中論述之轉換因數將此結果轉換為強度值。一第三方法係使用一「色差」方案將色彩轉換為強度值。在一色差方案中,藉由一像素之色彩相較於一預定義固定紅色、綠色及藍色色彩值之接近程度來定義所得像素強度。色差之一個實例係一像素之色彩值與固定色彩值之間的加權向量距離。「色差」之又另一方法係具有自影像自動導出之一固定色彩值之一色差法。在一個實例中,其中一影像之邊界區已知具有背景色彩。邊界區像素之色彩之加權平均值可用作色差方案之固定色彩值。 一旦彩色影像已轉換為一強度影像,便可比較一強度臨限值與各像素之強度以判定像素所屬之影像區域。換言之,具有高於強度臨限值之一強度值之一像素指示像素接收自樣本之一第一表面反射之光,且具有低於強度臨限值之一強度值之一像素指示像素未接收自樣本之第一表面反射之光。一旦將影像中之各像素映射至一區域,便可判定聚焦在影像中之特徵之近似形狀。 圖20、圖21及圖22繪示產生一強度臨限值之三個不同方法,該強度臨限值可用於區分量測自光阻層之頂表面反射之光之像素與量測未自光阻層之頂表面反射之光之像素。 圖20繪示產生用於分析經擷取影像之一強度臨限值之一第一方法。在此第一方法中,針對各經量測強度值產生一像素計數。此類型之圖亦稱為一直方圖。一旦產生每強度值之像素計數,便可判定源自從光阻層反射之經量測光之像素之峰值計數與源自未從光阻層反射之經量測光之像素之峰值計數之間的強度範圍。選擇該強度範圍內之一強度值作為強度臨限值。在一個實例中,選擇兩個峰值計數之間的中點作為臨限值強度。在落入本發明之揭示內容內之其他實例中,可使用兩個峰值計數之間的其他強度值。 圖21係產生用於分析經擷取影像之一強度臨限值之一第二方法。在步驟311中,作出關於表示光阻區域之經擷取影像之一第一百分比之判定。可藉由實體量測、光學檢測或基於生產規格作出此判定。在步驟312中,作出關於表示光阻開口區之經擷取影像之一第二百分比之判定。可藉由實體量測、光學檢測或基於生產規格作出此判定。在步驟313中,根據由各像素量測之強度對經擷取影像中之所有像素分類。在步驟314中,選擇具有所有像素強度之倒數第二百分比內之一強度之所有像素。在步驟315中,分析所有選定像素。 圖22繪示判定一強度臨限值之一第三方法。在步驟321中,將一預定強度臨限值儲存至記憶體中。在步驟322中,比較各像素之強度與經儲存強度臨限值。在步驟323中,選擇具有小於強度臨限值之一強度值之所有像素。在步驟324中,分析選定像素。 無關於如何產生強度臨限值,使用臨限強度值以大致判定經擷取影像中之特徵之邊界所處之位置。接著,將使用特徵之大致邊界以判定特徵之邊界之一更精確量測,如下文論述。 圖23係在圖19中展示之一光阻開口之一三維圖。在製程期間關注各種光阻開口量測,諸如頂部開口及底部開口之面積、頂部開口及底部開口之直徑、頂部開口及底部開口之圓周、頂部開口及底部開口之橫截面寬度及開口之深度。一第一量測係頂部表面開口面積。圖8 (及隨附文字)描述如何自在距樣本之不同距離處獲得之複數個影像選擇聚焦在光阻開口之頂表面上之一影像及聚焦在光阻開口之底表面上之一影像。一旦選擇聚焦在頂表面上之影像,便可使用聚焦在光阻開口之頂表面上之影像來判定上述頂部開口量測。同樣地,一旦選擇聚焦在光阻開口之底表面上之影像,便可使用聚焦在光阻開口之底表面上之影像來判定上述底部開口量測。如在上文及James Jianguo Xu等人之標題為「3-D Optical Microscope」之美國專利申請案第12/699,824號(該案之標的物以引用的方式併入本文中)中論述,在擷取多個影像時可將一圖案或網格投影至樣本之表面上。在一個實例中,包含經投影圖案或網格之一影像用於判定光阻開口量測。在另一實例中,在相同z距離處擷取之未包含圖案或網格之一新影像用於判定光阻開口量測。在後一實例中,不具有樣本上之一經投影圖案或網格之新影像提供一「更清晰」影像,其提供光阻開口之邊界之更容易偵測。 圖24係在圖23中展示之頂表面開口之一二維圖。二維圖清晰展示頂表面開口之邊界(實線) 40。使用一最佳擬合線(虛線41)追蹤邊界。一旦產生最佳擬合線追蹤,便可產生最佳擬合線41之直徑、面積及圓周。 圖25係在圖23中展示之底表面開口之二維圖。二維圖清晰展示底表面開口之邊界(實線42)。使用一最佳擬合線(虛線43)追蹤邊界。一旦產生最佳擬合線追蹤,可計算最佳擬合線之底表面開口直徑、面積及圓周。 在本實例中,由與光學顯微鏡通信之一電腦系統自動產生最佳擬合線。可藉由分析選定影像之暗部分及亮部分之間的轉變而產生最佳擬合線,如下文更詳細論述。 圖26係一光阻層中之一開口之一二維影像。將影像聚焦在光阻層之頂表面上。在此實例中,自光阻層之頂表面反射之光係亮的,因為顯微鏡聚焦在光阻層之頂表面上。自光阻開口量測之光強度係暗的,因為光阻開口中不存在反射表面。使用各像素之強度來判定像素是否屬於光阻之頂表面或光阻中之開口。來自光阻之頂表面與光阻中之開口之間的轉變之強度改變可跨越多個像素及多個強度位準。影像背景強度亦可不係均勻的。因此,需要進一步分析來判定光阻之邊界之確切像素位置。為判定一單一表面轉變點之像素位置,在轉變區外部之一相鄰亮區內獲得一強度平均值,且在轉變區外部之相鄰暗區內獲得一強度平均值。使用相鄰亮區之平均值與相鄰暗區之平均值之間的中間強度值作為區分一像素是否屬於光阻之頂表面或光阻中之開口之強度臨限值。此強度臨限值可不同於先前論述之用於選擇一單一經擷取影像內之特徵之強度臨限值。一旦判定中間強度臨限值,便比較中間強度臨限值與所有像素以區分屬於光阻之頂表面或光阻中之開口之像素。若像素強度高於強度臨限值,則將像素判定為一光阻像素。若像素強度低於強度臨限值,則將像素判定為一開口區像素。多個邊界點可以此方式判定且用於擬合一形狀。接著,使用擬合形狀以計算光阻之頂開口之所有所要尺寸。在一個實例中,擬合形狀可選自以下之群組:圓形、方形、矩形、三角形、橢圓形、六邊形、五邊形等。 圖27繪示跨圖26之亮度轉變周圍之相鄰區之經量測強度之變動。在相鄰區之最左部分處,經量測強度較高,因為顯微鏡聚焦在光阻層之頂表面上。經量測光強度透過相鄰區之亮度轉變而減小。經量測光強度在相鄰區之最右部分處下降至一最小範圍,因為在相鄰區之最右部分中不存在光阻層之頂表面。圖27繪製跨相鄰區之經量測強度之此變動。接著,可藉由應用一臨限值強度來判定指示光阻層之頂表面在何處結束之邊界點。光阻之頂表面結束之邊界點定位於經量測強度與臨限值強度之交叉點處。在沿著亮度轉變定位之不同相鄰區處重複此程序。針對各相鄰區判定一邊界點。接著,使用各相鄰區之邊界點來判定頂表面邊界之大小及形狀。 圖28係一光阻層中之一開口之一二維影像。將影像聚焦在光阻開口之底表面上。在此實例中,自光阻開口區之底表面反射之光係亮的,因為顯微鏡聚焦在光阻開口之底表面上。自光阻區反射之光亦相對亮,因為基板係具有高反射率之矽或金屬晶種層。歸因於由光阻邊界引起之光散射,自光阻層之邊界反射之光較暗。使用各像素之經量測強度以判定像素是否屬於光阻開口之底表面。來自光阻之底表面與光阻開口區之間的轉變之強度改變可跨越多個像素及多個強度位準。影像背景強度亦可不係均勻的。因此,需要進一步分析來判定光阻開口之確切像素位置。為判定一邊界點之像素位置,在相鄰像素內判定具有最小強度之一像素之位置。多個邊界點可以此方式判定且用於擬合一形狀。接著,使用擬合形狀來計算底部開口之所要尺寸。 圖29繪示跨圖28之亮度轉變周圍之相鄰區之經量測強度之變動。在相鄰區之最右部分處,經量測強度較高,因為顯微鏡聚焦在光阻開口之底表面上。經量測光強度減小至一最小強度且接著透過相鄰區之亮度轉變而減小。歸因於來自基板表面之光反射,經量測光強度在相鄰區之最右部分處升高至一相對高強度範圍。圖29繪製跨相鄰區之經量測強度之此變動。接著,可藉由尋找最小經量測強度之位置來判定指示光阻開口之邊界所處之位置之邊界點。邊界點定位於最小經量測強度所處之位置。在沿著亮度轉變定位之不同相鄰區處重複程序。針對各相鄰區判定一邊界點。接著,使用各相鄰區之邊界點來判定底表面邊界之大小及形狀。 圖30係一光阻層中之一溝槽結構(諸如一未鍍重佈線(RDL)結構)之一二維影像。將影像聚焦在光阻層之頂表面上。在此實例中,自光阻層之頂表面反射之光係亮的,因為顯微鏡聚焦在光阻層之頂表面上。自光阻層中之開口反射之光較暗,因為自開口溝槽區反射較少光。使用各像素之強度來判定像素是否屬於光阻之頂表面或光阻中之開口區。來自光阻之頂表面與光阻中之開口區之間的轉變之強度改變可跨越多個像素及多個強度位準。影像背景強度亦可不係均勻的。因此,需要進一步分析來判定光阻之邊界之確切像素位置。為判定一單一表面轉變點之像素位置,在轉變區外部之一相鄰亮區內獲得一強度平均值,且在轉變區外部之相鄰暗區內獲得一強度平均值。使用相鄰亮區之平均值與相鄰暗區之平均值之間的中間強度值作為區分頂表面光阻反射與非頂表面光阻反射之強度臨限值。一旦判定中間強度臨限值,便比較中間強度臨限值與所有相鄰像素以判定頂表面像素與光阻開口區之間的一邊界。若像素強度高於強度臨限值,則將像素判定為一頂表面光阻像素。若像素強度低於強度臨限值,則將像素判定為一光阻開口區像素。多個邊界點可以此方式判定且用於擬合一形狀。接著,使用擬合形狀來計算溝槽之光阻開口之所有所要尺寸,諸如溝槽寬度。 圖31繪示跨圖30之亮度轉變周圍之相鄰區之經量測強度之變動。在相鄰區之最左部分處,經量測強度較高,因為顯微鏡聚焦在光阻層之頂表面上。經量測光強度透過相鄰區之亮度轉變而減小。經量測光強度在相鄰區之最右部分處下降至一最小範圍,因為在相鄰區之最右部分中不存在光阻層之頂表面。圖31繪製跨相鄰區之經量測強度之此變動。接著,可藉由應用一臨限值強度來判定指示光阻層之頂表面結束之邊界點。光阻之頂表面結束之邊界點定位於經量測強度與臨限值強度之交叉點處。在沿著亮度轉變定位之不同相鄰區處重複此程序。針對各相鄰區判定一邊界點。接著,使用各相鄰區之邊界點來判定頂表面邊界之大小及形狀。 關於圖26至圖31,像素強度僅為可用於區分一影像中之不同區域之像素之像素特性之一個實例。例如,亦可使用各像素之波長或色彩而以一類似方式區分來自一影像中之不同區域之像素。一旦精確界定各區域之間的邊界,接著,使用該邊界來判定一PR開口之臨界尺寸(CD),諸如其直徑或寬度。通常,接著比較經量測CD值與在其他類型之工具(諸如一臨界尺寸掃描電子顯微鏡(CD-SEM))上量測之值。為確保生產監測工具中之量測精度,此種類的交叉校準係必要的。 圖32係部分填充有鍍金屬之一光阻開口之一三維圖。光阻層中之開口呈溝槽形狀,諸如一鍍重佈線(RDL)結構。在晶圓製程期間,在光阻仍完整時量測沈積至光阻開口中之鍍金屬之各種特徵係有利的。例如,若金屬之厚度不夠厚,則吾人可始終鍍覆額外金屬,只要光阻尚未被剝除。在晶圓仍處於一可工作階段時發現潛在問題之能力防止一缺陷晶圓之進一步製造且節省材料及處理費用。 圖33係部分填充有鍍金屬之一光阻開口之一橫截面圖。圖33清晰展示光阻(「PR」)區域之頂表面之高度大於鍍金屬之頂表面之高度。亦在圖33中繪示鍍金屬之頂表面之寬度。使用上文描述之各種方法,可判定光阻區域之頂表面之z位置及鍍金屬之頂表面之z位置。光阻區域之頂表面與鍍金屬之頂表面之間的距離(亦稱為「步階高度」)等於光阻區域之頂表面之高度與鍍金屬之頂表面之高度之間的差。為判定鍍金屬之厚度,需要光阻區域之厚度之另一量測。如上文關於圖11論述,光阻區域係半透明的且具有不同於露天之折射率之一折射率。因此,聚焦在自光阻區域之底表面反射之光上之經擷取影像之焦平面實際上未定位於光阻區域之底表面處。然而,此時,吾人之目標不同。吾人不希望濾除錯誤表面量測,而是現需要光阻區域之厚度。圖40繪示未自光阻區域之頂表面反射之入射光之一部分如何歸因於光阻材料之折射率而按不同於入射光之一角度行進通過光阻區域。若未解決此錯誤,則光阻區域之經量測厚度係D’ (聚焦在自光阻區域之頂表面反射之光上之經擷取影像之經量測z位置減去聚焦在自光阻區域之底表面反射之光上之經擷取影像之經量測z位置),圖40清晰繪示之經量測厚度D’不接近光阻區域之實際厚度D。然而,可藉由將一校正計算應用至光阻區域之經量測厚度而移除由光阻區域之折射率引入之錯誤。在圖40中展示一第一校正計算,其中光阻區域之實際厚度(D)等於光阻區域之經量測厚度(D’)乘以光阻區域之折射率。在圖40中展示一第二校正計算,其中光阻區域之實際厚度(D)等於光阻區域之經量測厚度(D’)乘以光阻區域之折射率加上一偏移值。第二校正計算更普遍且考慮以下事實:光阻之折射率依據波長而變化且當透過一透明介質成像時,一物鏡之球面像差可影響z位置量測。因此,只要遵循適當校準程序,便可使用聚焦在自光阻區域之底表面反射之光上之經擷取影像之焦平面之一z位置來計算光阻區域之實際厚度。 一旦將校正方程式應用至光阻區域之經量測厚度,便可獲得光阻區域之真實厚度。再次參考圖33,現在可計算鍍金屬之厚度。鍍金屬之厚度等於光阻區域之厚度減去光阻區域之頂表面之z位置與鍍金屬之頂表面之z位置之間的差。 圖34係具有鍍金屬之一圓形光阻開口之一三維圖。圖35係具有在圖34中展示之鍍金屬之圓形光阻開口之一橫截面圖。圖35之橫截面圖類似於圖33之橫截面圖。圖35清晰展示光阻(「PR」)區域之頂表面之高度大於鍍金屬之頂表面之高度。使用上文描述之各種方法,可判定光阻區域之頂表面之z位置及鍍金屬之頂表面之z位置。光阻區域之頂表面與鍍金屬之頂表面之間的距離(亦稱為「步階高度」)等於光阻區域之頂表面之高度與鍍金屬之頂表面之高度之間的差。為判定鍍金屬之厚度,需要光阻區域之厚度之另一量測。如上文關於圖11論述,光阻區域係半透明的且具有不同於露天之折射率之一折射率。因此,聚焦在自光阻區域之底表面反射之光上之經擷取影像之焦平面實際上未定位於光阻區域之底表面處。然而,此時,吾人之目標不同。現需要光阻區域之厚度。圖40繪示未自光阻區域之頂表面反射之入射光之一部分如何歸因於光阻材料之折射率而按不同於入射光之一角度行進通過光阻區域。若未解決此錯誤,則光阻區域之經量測厚度係D’ (聚焦在自光阻區域之頂表面反射之光上之經擷取影像之經量測z位置減去聚焦在自光阻區域之底表面反射之光上之經擷取影像之經量測z位置),圖40清晰繪示之經量測厚度D’不接近光阻區域之實際厚度D。然而,可藉由將一校正計算應用至光阻區域之經量測厚度而移除由光阻區域之折射率引入之錯誤。在圖40中展示一第一校正計算,其中光阻區域之實際厚度(D)等於光阻區域之經量測厚度(D’)乘以光阻區域之折射率。在圖40中展示一第二校正計算,其中光阻區域之實際厚度(D)等於光阻區域之經量測厚度(D’)乘以光阻區域之折射率加上一偏移值。第二校正計算更普遍且考慮以下事實:光阻之折射率依據波長而變化且當透過一透明介質成像時一物鏡之球面像差可影響z位置量測。因此,只要遵循適當校準程序,便可使用聚焦在自光阻區域之底表面反射之光上之經擷取影像之焦平面之一z位置來計算光阻區域之實際厚度。 一旦將校正方程式應用至光阻區域之經量測厚度,便可獲得光阻區域之真實厚度。再次參考圖35,現可計算鍍金屬之厚度。鍍金屬之厚度等於光阻區域之厚度減去光阻區域之頂表面之z位置與鍍金屬之頂表面之z位置之間的差。 圖36係鈍化層上方之一金屬柱之一三維圖。圖37係在圖36中展示之鈍化層上方之一金屬柱之一橫截面圖。圖37清晰展示鈍化層之頂表面之高度小於金屬層之頂表面之高度。亦在圖37中繪示鍍金屬之頂表面之直徑。使用上文描述之各種方法,可判定鈍化層之頂表面之z位置及金屬層之頂表面之z位置。鈍化層之頂表面與金屬層之頂表面之間的距離(亦稱為「步階高度」)等於金屬層之頂表面之高度與鈍化層之頂表面之高度之間的差。為判定金屬層之厚度,需要鈍化層之厚度之另一量測。如上文關於圖11論述,半透明材料(諸如一光阻區域或一鈍化層)具有不同於露天之折射率之一折射率。因此,聚焦在自鈍化層之底表面反射之光上之經擷取影像之焦平面實際上未定位於鈍化層之底表面處。然而,此時,吾人之目標不同。現需要鈍化層之厚度。圖47繪示未自鈍化層之頂表面反射之入射光之一部分如何歸因於鈍化材料之折射率而按不同於入射光之一角度行進通過鈍化層。若未解決此錯誤,則鈍化層之經量測厚度係D’ (聚焦在自鈍化區域之頂表面反射之光上之經擷取影像之經量測z位置減去聚焦在自鈍化區域之底表面反射之光上之經擷取影像之經量測z位置),圖47清晰繪示之經量測厚度D’不接近鈍化層之實際厚度D。然而,可藉由將一校正計算應用至鈍化層之經量測厚度而移除由鈍化層之折射率引入之錯誤。在圖47中展示一第一校正計算,其中鈍化層之實際厚度(D)等於鈍化層之經量測厚度(D’)乘以鈍化層之折射率。在圖47中展示一第二校正計算,其中鈍化層之實際厚度(D)等於鈍化層之經量測厚度(D’)乘以鈍化層之折射率加上一偏移值。第二校正計算更普遍且考慮以下事實:鈍化層之折射率依據波長而變化且當透過一透明介質成像時,一物鏡之球面像差可影響z位置量測。因此,只要遵循適當校準程序,便使用聚焦在自鈍化層之底表面反射之光上之擷取影像之焦平面之一z位置以計算鈍化層之實際厚度。 一旦將校正方程式應用至鈍化層之經量測厚度,便可獲得鈍化層之真實厚度。再次參考圖37,現可計算金屬層之厚度。金屬層之厚度等於鈍化層之厚度及鈍化層之頂表面之z位置與金屬層之頂表面之z位置之間的差之和。 圖38係鈍化層上方之金屬之一三維圖。在此特定情況中,所展示之金屬結構係重佈線(RDL)。圖39係在圖38中展示之鈍化層上方之金屬之一橫截面圖。圖39清晰展示鈍化層之頂表面之高度小於金屬層之頂表面之高度。使用上文描述之各種方法,可判定鈍化層之頂表面之z位置及金屬層之頂表面之z位置。鈍化層之頂表面與金屬層之頂表面之間的距離(亦稱為「步階高度」)等於金屬層之頂表面之高度與鈍化層之頂表面之高度之間的差。為判定金屬層之厚度,需要鈍化層之厚度之另一量測。如上文關於圖11論述,半透明材料(諸如一光阻區域或一鈍化層)具有不同於露天之折射率之一折射率。因此,聚焦在自鈍化層之底表面反射之光上之經擷取影像之焦平面實際上未定位於鈍化層之底表面處。然而,此時,吾人之目標不同。現需要鈍化層之厚度。圖40繪示未自鈍化層之頂表面反射之入射光之一部分如何歸因於鈍化材料之折射率而按不同於入射光之一角度行進通過鈍化層。若未解決此錯誤,則鈍化層之經量測厚度係D’ (聚焦在自鈍化區域之頂表面反射之光上之經擷取影像之經量測z位置減去聚焦在自鈍化區域之底表面反射之光上之經擷取影像之經量測z位置),圖40清晰繪示之經量測厚度D’不接近鈍化層之實際厚度D。然而,可藉由將一校正計算應用至鈍化層之經量測厚度而移除由鈍化層之折射率引入之錯誤。在圖40中展示一第一校正計算,其中鈍化層之實際厚度(D)等於鈍化層之經量測厚度(D’)乘以鈍化層之折射率。在圖40中展示一第二校正計算,其中鈍化層之實際厚度(D)等於鈍化層之經量測厚度(D’)乘以鈍化層之折射率加上一偏移值。第二校正計算更普遍且考慮以下事實:鈍化層之折射率依據波長而變化且當透過一透明介質成像時,一物鏡之球面像差可影響z位置量測。因此,只要遵循適當校準程序,便可使用聚焦在自鈍化層之底表面反射之光上之經擷取影像之焦平面之一z位置來計算鈍化層之實際厚度。 一旦將校正方程式應用至鈍化層之經量測厚度,可獲得鈍化層之真實厚度。再次參考圖39,現可計算金屬層之厚度。金屬層之厚度等於鈍化層之厚度及鈍化層之頂表面之z位置與金屬層之頂表面之z位置之間的差之和。 圖41係繪示當一光阻開口在光學顯微鏡之視場內時使用在各種距離處擷取之影像之峰值模式操作之一圖。自類似於在圖32中展示之樣本結構之一樣本獲得在圖41中繪示之經擷取影像。此結構係一鍍金屬溝槽結構。樣本之俯視圖展示光阻開口(一鍍金屬)在x-y平面中之面積。PR開口亦具有z方向上之特定深度之一深度(高於鍍金屬)。在下文圖41中之俯視圖展示在各距離處擷取之影像。在距離1處,光學顯微鏡未聚焦在光阻區域之頂表面或鍍金屬之頂表面上。在距離2處,光學顯微鏡聚焦在鍍金屬之頂表面上,但未聚焦在光阻區域之頂表面上。此導致與接收自離焦之其他表面(光阻區域之頂表面)反射之光之像素相比,接收自鍍金屬之頂表面反射之光之像素中之一增大特性值(強度/對比度/條紋對比度)。在距離3處,光學顯微鏡未聚焦在光阻區域之頂表面或鍍金屬之頂表面上。因此,在距離3處,最大特性值將實質上低於在距離2處量測之最大特性值。在距離4處,光學顯微鏡未聚焦在樣本之任何表面上;然而,歸因於空氣之折射率與光阻區域之折射率之差異,量測到最大特性值(強度/對比度/條紋對比度)之一增大。圖11、圖40及隨附文字更詳細描述此現象。在距離6處,光學顯微鏡聚焦在光阻區域之頂表面上,但未聚焦在鍍金屬之頂表面上。此導致與接收自離焦之其他表面(鍍金屬之頂表面)反射之光之像素相比,接收自光阻區域之頂表面反射之光之像素中之一增大特性值(強度/對比度/條紋對比度)。一旦判定來自各經擷取影像之最大特性值,便可利用結果來判定晶圓之各表面定位於哪些距離處。 圖42係繪示源自在圖41中繪示之峰值模式操作之三維資訊之一圖表。如關於圖41論述,在距離1、3及5處擷取之影像之最大特性值具有低於在距離2、4及6處擷取之影像之最大特性值之一最大特性值。在各種z距離處之最大特性值之曲線可含有歸因於環境效應(諸如振動)之雜訊。為最小化此雜訊,可在進一步資料分析之前應用一標準平滑法,諸如具有特定核心大小之高斯濾波(Gaussian filtering)。 由一峰值尋找演算法執行比較最大特性值之一個方法。在一個實例中,使用一導數法沿著z軸定位零交叉點以判定存在各「峰值」之距離。接著,比較在發現一峰值之各距離處之最大特性值以判定量測到最大特性值之距離。在圖42中展示之情況中,將在距離2處發現一峰值,此用作樣本之一表面定位於距離2處之一指示。 藉由比較各最大特性值與一預設定臨限值來執行比較最大特性值之另一方法。可基於晶圓材料、距離及光學顯微鏡之規格來計算臨限值。替代性地,可在自動化處理之前藉由經驗測試判定臨限值。在任一情況中,比較各經擷取影像之最大特性值與臨限值。若最大特性值大於臨限值,則判定最大特性值指示晶圓之一表面之存在。若最大特性值不大於臨限值,則判定最大特性值並不指示晶圓之一表面。 上文描述之峰值模式方法之一替代用途、圖13中描述之範圍模式方法及相關文字可用於判定一樣本之不同表面之z位置。 圖43係聚焦在一溝槽結構中之一光阻層之一頂表面上之一經擷取影像之一圖,包含一第一分析區域A及一第二分析區域B之一輪廓。如上文論述,各經擷取影像之一整個視場可用於產生三維資訊。然而,具有僅使用視場之一可選擇部分(區域A或區域B)產生三維資訊之選項係有利的。在一個實例中,一使用者使用與處理經擷取影像之一電腦通信之一滑鼠或觸控螢幕裝置選擇區域。一旦選擇,吾人可將不同臨限值應用至各區域以更有效地挑選出如在圖42中展示之一特定表面峰值。在圖43中繪示此案例。當期望獲取關於鍍金屬之頂表面之三維資訊時,設定視場之可選擇部分(區域A)以包含鍍金屬之多個區域,此係因為與一金屬表面相關聯之特性值通常大於與光阻相關聯之特性值,因此可將一高臨限值應用至區域A以濾除與光阻相關聯之特性值以改良金屬表面峰值之偵測。替代性地,當期望獲取關於一光阻區域之頂表面之三維資訊時,將視場之可選擇部分(區域B)設定為定位於一影像中心之一小區。相較於與金屬表面相關聯之特性值,與一光阻表面相關聯之特性值通常相對弱。用於判定特性值計算之原始信號之品質在圍封於區域B內之視場之中心周圍係最佳的。藉由設定區域B之一適當臨限值,吾人可更有效地偵測光阻表面之一弱特性值峰值。使用者可經由顯示樣本之俯視影像之圖形介面設定及調整區域A及區域B以及各區域內使用之臨限值且將其等保存在用於自動化量測之一配方中。 圖44係鈍化結構上方之一凸塊之一三維圖。圖45係在圖44中展示之鈍化結構上方之凸塊之一俯視圖,包含一第一分析區域A及一第二分析區域B之一輪廓。區域A可經設定,使得區域A在一自動化序列量測期間將始終包含金屬凸塊之頂點。區域B並不圍封金屬凸塊之任何部分且僅圍封鈍化層之一部分。僅分析所有經擷取影像之區域A提供像素過濾,使得所分析之大多數像素包含關於金屬凸塊之資訊。分析所有經擷取影像之區域B提供像素過濾,使得所分析之所有像素包含關於鈍化層之資訊。使用者可選擇分析區域之應用提供基於位置而非像素值之像素過濾。例如,當需要鈍化層之頂表面之位置時,可應用區域B且可自分析立即消除由金屬凸塊引起之所有效應。在另一實例中,當需要金屬凸塊之頂點之位置時,可應用區域A且可自分析立即消除由大鈍化層區引起之所有效應。 在一些實例中,固定區域A與區域B之間的空間關係亦係有用的。當量測一已知大小之一金屬凸塊時(諸如在圖44及圖45中繪示),固定區域A與區域B之間的空間關係以提供一致量測係有用的,因為區域A始終用於量測金屬凸塊之三維資訊且區域B始終用於量測鈍化層之三維資訊。再者,當區域A及區域B具有一固定空間關係時,一個區域之調整自動引起另一區域之一調整。在圖46中繪示此情境。圖46係繪示當整個凸塊未定位於原始分析區域A中時調整分析區域A及分析區域B之一俯視圖。此可由於多種原因而發生,諸如處置器對樣本之一不精確放置或樣本製造期間的程序變動。無論原因為何,區域A需經調整以適當地以金屬凸塊之頂點為中心。區域B亦需經調整以確保區域B並不包含金屬凸塊之任何部分。當區域A與區域B之間的空間關係固定時,則區域A之調整自動引起區域B之重新對準。 圖47係在圖44中繪示之鈍化結構上方之凸塊之一橫截面圖。當鈍化層之厚度實質上大於影像獲取期間光學顯微鏡之預定步階之間的距離時,可如上文論述般容易地偵測鈍化層之頂表面之z位置。然而,當鈍化層之厚度實質上不大於光學顯微鏡之預定步階之間的距離(即,鈍化層相對薄)時,可能無法容易地偵測及量測鈍化層之頂表面之z位置。難度歸因於相較於自鈍化層之底表面反射之光之大百分比之自鈍化層之頂表面反射之光之小百分比而產生。換言之,相較於與鈍化層之底表面相關聯之特性值峰值,與鈍化層之頂表面相關聯之特性值峰值十分弱。當聚焦在來自鈍化層之底表面之高強度反射上之一預定步階處之經擷取影像與聚焦在來自鈍化層之頂表面之低強度反射上之一預定步階處之經擷取影像相距小於幾個預定步階時,無法區分自鈍化層之底表面接收之反射與自鈍化層之頂表面接收之反射。可藉由不同方法之操作解決此問題。 在一第一方法中,可增大跨掃描之預定步階總數,以便提供跨整個掃描之額外解析度。例如,可使跨相同掃描距離之預定步階數目加倍,此將導致掃描之Z解析度加倍。此方法亦將導致在一單一掃描期間擷取之影像量加倍。可增大掃描之解析度直至可區分自頂表面反射量測之特性峰值與自底表面反射量測之特性峰值。圖49繪示其中在掃描中提供足夠解析度以區分來自鈍化層之頂表面及底表面之反射之一情境。 在一第二方法中,亦增大預定步階總數,然而,僅步階之一部分用於擷取影像且其餘部分被略過。 在一第三方法中,可變更預定步階之間的距離,使得步階之間的距離在鈍化層附近較小且步階之間的距離在鈍化層附近以外較大。此方法提供在鈍化層附近之較大解析度及在鈍化層附近以外之較小解析度。此方法無需將額外預定步階添加至掃描,而是按一非線性方式重新分佈預定步階以在無需高解析度之情況下犧牲較低解析度在需要之處提供額外解析度。 對於關於如何改良掃描解析度之額外描述,參見由James Jianguo Xu等人於2011年12月21日申請之標題為「3D Microscope Including Insertable Components To Provide Multiple Imaging and Measurement Capabilities」之美國專利申請案第13/333,938號(該案之標的物以引用的方式併入本文中)。 使用上文論述之方法之任一者,可判定鈍化層之頂表面之z位置。 金屬凸塊之頂點相對於鈍化層之頂表面之高度(「鈍化層上方之凸塊高度」)亦為一關注量測。鈍化層上方之凸塊高度等於凸塊之頂點之z位置減去鈍化層之頂表面之z位置。上文描述鈍化層之頂表面之z位置之判定。可使用不同方法執行凸塊之頂點之z位置之判定。 在一第一方法中,藉由判定跨所有經擷取影像之各x-y像素位置之峰值特性值之z位置來判定凸塊之頂點之z位置。換言之,針對各x-y像素位置,在每一z位置處跨所有經擷取影像比較經量測特性值且將含有最大特性值之z位置儲存在一陣列中。跨所有x-y像素位置執行此程序之結果係所有x-y像素位置之一陣列及每一x-y像素位置之相關聯峰值z位置。陣列中之最大z位置量測為凸塊之頂點之z位置。對於關於如何產生三維資訊之額外描述,參見由James Jianguo Xu等人於2010年2月3日申請之標題為「3-D Optical Microscope」之美國專利申請案第12/699,824號及美國專利第8,174,762號(該等案之標的物以引用的方式併入本文中)。 在一第二方法中,藉由產生凸塊之表面之一擬合三維模型且接著使用三維模型計算凸塊之表面之峰值來判定凸塊之頂點之z位置。在一個實例中,此可藉由產生上文關於第一方法描述之相同陣列來完成,然而,一旦完成陣列,便使用陣列來產生三維模型。可使用擬合至資料之一二階多項式函數產生三維模型。一旦產生三維模型,便判定凸塊之表面斜率之導數。凸塊之頂點經計算定位於凸塊之表面斜率之導數等於零之處。 一旦判定凸塊之頂點之z位置,便可藉由自凸塊之頂點之z位置減去鈍化層之頂表面之z位置來計算鈍化層上方之凸塊高度。 圖48係繪示當僅一鈍化層在光學顯微鏡之視場之區域B內時使用在各種距離處擷取之影像之峰值模式操作之一圖。藉由僅分析區域B (在圖45中展示)內之像素,排除關於金屬凸塊之所有像素資訊。因此,藉由分析區域B內之像素所產生之三維資訊將僅受存在於區域B中之鈍化層影響。自類似於在圖44中展示之樣本結構之一樣本獲得在圖48中繪示之經擷取影像。此結構係鈍化結構上方之一金屬凸塊。樣本之俯視圖展示鈍化層在x-y平面中之面積。在僅選擇區域B內之像素之情況下,在俯視圖中不可見金屬凸塊。在下文圖48中之俯視圖展示在各距離處擷取之影像。在距離1處,光學顯微鏡未聚焦在鈍化層之頂表面或鈍化層之頂表面上。在距離2處,光學顯微鏡未聚焦在樣本之任何表面上;然而,歸因於空氣之折射率與鈍化層之折射率之差異,量測到最大特定值(強度/對比度/條紋對比度)之一增大。圖11、圖40及隨附文字更詳細描述此現象。在距離3處,光學顯微鏡未聚焦在鈍化層之頂表面或鈍化層之底表面上。因此,在距離3處,最大特性值將實質上低於在距離2處量測之特性值。在距離4處,光學顯微鏡聚焦在鈍化層之頂表面上,此導致與接收自離焦之其他表面反射之光之像素相比,接收自鈍化層之頂表面反射之光之像素中之一增大特性值(強度/對比度/條紋對比度)。在距離5、6及7處,光學顯微鏡未聚焦在鈍化層之頂表面或鈍化層之底表面上。因此,在距離5、6及7處,最大特性值將實質上低於在距離2及4處量測之特性值。一旦判定來自各經擷取影像之最大特性值,便可利用結果來判定樣本之各表面定位於哪些距離處。 圖49係繪示源自圖48之峰值模式操作之三維資訊之一圖表。歸因於藉由僅分析所有經擷取影像之區域B內之像素而提供之像素過濾,峰值模式操作僅提供鈍化層在兩個z位置(2及4)處之一表面之一指示。鈍化層之頂表面定位在兩個經指示z位置位置之較高者處。兩個經指示z位置位置之最低者係一錯誤「偽影表面」,其中歸因於鈍化層之折射率而量測自鈍化層之底表面反射之光。僅使用定位於區域B內之像素量測鈍化層之頂表面之z位置簡化峰值模式操作且減小歸因於來自定位於相同樣本上之金屬凸塊之光反射之錯誤量測之可能性。 上文描述之峰值模式方法之一替代用途、圖13中描述之範圍模式方法及相關文字可用於判定一樣本之不同表面之z位置。 儘管為指導目的在上文描述某些特定實施例,然本專利文件之教示具有一般適用性且不限於上文描述之特定實施例。因此,在不脫離如在發明申請專利範圍中闡述之本發明之範疇的情況下可實踐所描述實施例之各種特徵之各種修改、調適及組合。
1‧‧‧半自動化三維計量系統
2‧‧‧載物台
3‧‧‧晶圓
4‧‧‧電腦
5‧‧‧開啟/關閉按鈕
10‧‧‧三維成像顯微鏡
11‧‧‧可調整物鏡
12‧‧‧可調整載物台
20‧‧‧三維計量系統
21‧‧‧三維顯微鏡
22‧‧‧樣本處置器/載物台
23‧‧‧電腦
24‧‧‧處理器
25‧‧‧儲存裝置
26‧‧‧網路裝置
27‧‧‧顯示器
28‧‧‧輸入裝置
29‧‧‧網路
30‧‧‧矽基板
31‧‧‧光阻層
40‧‧‧頂表面開口之邊界
41‧‧‧最佳擬合線
42‧‧‧底表面開口之邊界
43‧‧‧最佳擬合線
200‧‧‧流程圖
201‧‧‧步驟
202‧‧‧步驟
203‧‧‧步驟
204‧‧‧步驟
205‧‧‧步驟
300‧‧‧流程圖
301‧‧‧步驟
302‧‧‧步驟
303‧‧‧步驟
304‧‧‧步驟
305‧‧‧步驟
311‧‧‧步驟
312‧‧‧步驟
313‧‧‧步驟
314‧‧‧步驟
315‧‧‧步驟
321‧‧‧步驟
322‧‧‧步驟
323‧‧‧步驟
324‧‧‧步驟
隨附圖式(其中相同數字指示相同組件)繪示本發明之實施例。 圖1係執行一樣本之自動化三維量測之一半自動化三維計量系統1之一圖。 圖2係包含可調整物鏡11及一可調整載物台12之一三維成像顯微鏡10之一圖。 圖3係包含一三維顯微鏡、一樣本處置器、一電腦、一顯示器及輸入裝置之一三維計量系統20之一圖。 圖4係繪示在變更光學顯微鏡之物鏡與載物台之間的距離時擷取影像之一方法之一圖。 圖5係繪示光學顯微鏡之物鏡與樣本表面之間的距離之一圖表,其中各x-y座標具有最大特性值。 圖6係使用在圖5中展示之各x-y座標之最大特性值呈現之一影像之一三維圖。 圖7係繪示使用在各種距離處擷取之影像之峰值模式操作之一圖。 圖8係繪示當一光阻開口在光學顯微鏡之視場內時使用在各種距離處擷取之影像之峰值模式操作之一圖。 圖9係繪示源自峰值模式操作之三維資訊之一圖表。 圖10係繪示使用在各種距離處擷取之影像之求和模式操作之一圖。 圖11係繪示在使用求和模式操作時之錯誤表面偵測之一圖。 圖12係繪示源自求和模式操作之三維資訊之一圖表。 圖13係繪示使用在各種距離處擷取之影像之範圍模式操作之一圖。 圖14係繪示源自範圍模式操作之三維資訊之一圖表。 圖15係僅繪示具有一第一範圍內之一特性值之像素計數之一圖表。 圖16係僅繪示具有一第二範圍內之一特性值之像素計數之一圖表。 圖17係繪示包含於峰值模式操作中之各種步驟之一流程圖。 圖18係繪示包含於範圍模式操作中之各種步驟之一流程圖。 圖19係聚焦在一光阻層之頂表面上之一經擷取影像(包含一單一特徵)之一圖。 圖20係繪示產生一強度臨限值之一第一方法之一圖。 圖21係繪示產生一強度臨限值之一第二方法之一圖。 圖22係繪示產生一強度臨限值之一第三方法之一圖。 圖23係一樣本中之一光阻開口之一三維圖。 圖24係在圖23中展示之光阻之頂表面開口之一二維圖。 圖25係在圖23中展示之光阻之底表面開口之二維圖。 圖26係聚焦在一光阻層之一頂表面上之一經擷取影像。 圖27係繪示偵測在圖26中繪示之光阻層之一邊界之一圖。 圖28係聚焦在一光阻層之一底表面上之一經擷取影像。 圖29係繪示偵測在圖28中繪示之光阻層之一邊界之一圖。 圖30係聚焦在一溝槽結構中之一光阻層之一頂表面上之一經擷取影像。 圖31係繪示偵測在圖30中繪示之光阻層之一邊界之一圖。 圖32係部分填充有鍍金屬之一光阻開口之一三維圖。 圖33係部分填充有鍍金屬之一光阻開口之一橫截面圖。 圖34係具有鍍金屬之一光阻開口之一三維圖。 圖35係具有鍍金屬之一光阻開口之一橫截面圖。 圖36係鈍化層上方之一金屬柱之一三維圖。 圖37係鈍化層上方之一金屬柱之一橫截面圖。 圖38係鈍化層上方之金屬之一三維圖。 圖39係鈍化層上方之金屬之一橫截面圖。 圖40係繪示接近於一鍍金屬表面之一半透明材料之量測之一橫截面圖。 圖41係繪示當一光阻開口在光學顯微鏡之視場內時使用在各種距離處擷取之影像之峰值模式操作之一圖。 圖42係繪示源自在圖41中繪示之峰值模式操作之三維資訊之一圖表。 圖43係聚焦在一溝槽結構中之一光阻層之一頂表面上之一經擷取影像之一圖,包含一第一分析區域A及一第二分析區域B之一輪廓。 圖44係鈍化結構上方之一凸塊之一三維圖。 圖45係鈍化結構上方之凸塊之一俯視圖,包含一第一分析區域A及一第二分析區域B之一輪廓。 圖46係繪示當整個凸塊未定位於原始分析區域A中時調整分析區域A及分析區域B之一俯視圖。 圖47係鈍化結構上方之凸塊之一橫截面圖。 圖48係繪示當僅一光阻層在光學顯微鏡之視場之區域B內時使用在各種距離處擷取之影像之峰值模式操作之一圖。 圖49係繪示源自圖48之峰值模式操作之三維資訊之一圖表。

Claims (20)

  1. 一種使用一光學顯微鏡產生一樣本之三維(3-D)資訊之方法,該方法包括: 按預定步階變更該樣本與該光學顯微鏡之一物鏡之間的距離; 在各預定步階處擷取一影像,其中該樣本之一第一表面及該樣本之一第二表面在該等經擷取影像之各者之一視場內; 判定各經擷取影像中之各像素之一特性值; 針對各經擷取影像判定跨該經擷取影像中之所有像素之最大特性值; 比較各經擷取影像之該最大特性值以判定各預定步階處是否存在該樣本之一表面; 基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第一表面上之一第一經擷取影像; 基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第二表面上之一第二經擷取影像;及 判定該第一表面與該第二表面之間的一第一距離。
  2. 如請求項1之方法,其中該光學顯微鏡包含一載物台,其中該樣本由該載物台支撐,其中該光學顯微鏡經調適以與一電腦系統通信,其中該電腦系統包含經調適以儲存各經擷取影像之一記憶體裝置,其中該光學顯微鏡選自由一共焦顯微鏡、一結構化照明顯微鏡及一干涉儀構成之群組,且其中各像素之該特性值選自由強度、對比度及條紋對比度構成之群組。
  3. 如請求項1之方法,其進一步包括: 判定該樣本之一半透明層之一厚度;及 判定該樣本之一金屬層之一厚度,其中該金屬層之該厚度等於該半透明層之該厚度與該第一距離之間的差,其中該第一表面係一光阻層之一頂表面,且其中該第二表面係一金屬層之一頂表面。
  4. 如請求項1之方法,其進一步包括: 判定該樣本之一半透明層之該厚度;及 判定該樣本之一金屬層之該厚度,其中該金屬層之該厚度等於該半透明層之該厚度與該第一距離之和,其中該第一表面係一鈍化層之一頂表面,且其中該第二表面係一金屬層之一頂表面。
  5. 如請求項3之方法,其中僅使用各經擷取影像之一部分來判定該樣本之該半透明層之該厚度。
  6. 如請求項5之方法,其中可藉由一使用者輸入選擇各經擷取影像之該部分。
  7. 如請求項3之方法,其中該判定該半透明層之該厚度包括: 基於各經擷取影像中之各像素之該特性值判定聚焦在自該樣本之該半透明層之底表面反射之光上之一第三經擷取影像;及 基於擷取該第三影像之位置及該半透明層之折射率判定該半透明層之該底表面之位置。
  8. 一種使用一光學顯微鏡產生一樣本之三維(3-D)資訊之方法,該方法包括: 按預定步階變更該樣本與該光學顯微鏡之一物鏡之間的距離; 在各預定步階處擷取一影像,其中該樣本之一第一表面及該樣本之一第二表面在該等經擷取影像之各者之一視場內; 判定各經擷取影像中之各像素之一特性值; 針對各經擷取影像判定具有一第一範圍內之一特性值之像素之一計數,其中不具有該第一範圍內之一特性值之所有像素未包含於該像素計數中; 基於各經擷取影像之該像素計數判定各預定步階處是否存在該樣本之一表面; 基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第一表面上之一第一經擷取影像; 基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第二表面上之一第二經擷取影像;及 判定該第一表面與該第二表面之間的一第一距離。
  9. 如請求項8之方法,其中該光學顯微鏡包含一載物台,其中該樣本由該載物台支撐,其中該光學顯微鏡經調適以與一電腦系統通信,其中該電腦系統包含經調適以儲存各經擷取影像之一記憶體裝置,其中該光學顯微鏡選自由一共焦顯微鏡、一結構化照明顯微鏡及一干涉儀構成之群組,且其中各像素之該特性值選自由強度、對比度及條紋對比度構成之群組。
  10. 如請求項8之方法,其進一步包括: 判定該樣本之一半透明層之一厚度;及 判定該樣本之一金屬層之一厚度,其中該金屬層之該厚度等於該半透明層之該厚度與該第一距離之間的差,其中該第一表面係一光阻層之一頂表面,且其中該第二表面係一金屬層之一頂表面。
  11. 如請求項8之方法,其進一步包括: 判定該樣本之一半透明層之該厚度;及 判定該樣本之一金屬層之該厚度,其中該金屬層之該厚度等於該半透明層之該厚度與該第一距離之和,其中該第一表面係一鈍化層之一頂表面,且其中該第二表面係一金屬層之一頂表面。
  12. 如請求項11之方法,其中僅使用各經擷取影像之一部分以判定該樣本之該半透明層之該厚度。
  13. 如請求項12之方法,其中可藉由一使用者輸入選擇各經擷取影像之該部分。
  14. 如請求項10之方法,其中該判定該半透明層之該厚度包括: 基於各經擷取影像中之各像素之該特性值判定聚焦在自該樣本之該半透明層反射之光上之一第三經擷取影像;及 基於擷取該第三影像之位置及該半透明層之折射率判定該半透明層之底表面之位置。
  15. 一種三維(3-D)量測系統,其包括: 一光學顯微鏡,其包括一物鏡及一載物台,其中該光學顯微鏡經調適以按預定步階變更由該載物台支撐之一樣本與該光學顯微鏡之該物鏡之間的距離;及 一電腦系統,其包括一處理器及一儲存裝置,其中該電腦系統經調適以: 儲存在各預定步階處擷取之一影像,其中該樣本之一第一表面及該樣本之一第二表面在各影像之一視場內; 判定各經擷取影像中之各像素之一特性值,其中該特性值選自由強度、對比度及條紋對比度構成之群組; 基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第一表面上之一第一經擷取影像; 基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第二表面上之一第二經擷取影像;及 判定該第一表面與該第二表面之間的一第一距離。
  16. 如請求項15之三維(3-D)量測系統,其中該電腦系統進一步經調適以: 判定該樣本之一半透明層之一厚度;及 判定該樣本之一金屬層之一厚度,其中該金屬層之該厚度等於該半透明層之該厚度與該第一距離之間的差。
  17. 如請求項15之三維(3-D)量測系統,其中該電腦系統進一步經調適以: 判定該樣本之一半透明層之一厚度;及 判定該樣本之一金屬層之一厚度,其中該金屬層之該厚度等於該半透明層之該厚度與該第一距離之和。
  18. 如請求項15之三維(3-D)量測系統,其中僅使用各經擷取影像之一部分以判定該樣本之該半透明層之該厚度,其中可藉由一使用者輸入選擇各經擷取影像之該部分,且其中該光學顯微鏡選自由一雷射共焦顯微鏡、結構化照明顯微鏡及一干涉儀構成之群組。
  19. 如請求項15之三維(3-D)量測系統,其中該電腦進一步經調適以: 接收識別待分析之各經擷取影像之一部分之一使用者輸入。
  20. 如請求項16之三維(3-D)量測系統,其中僅使用各經擷取影像之一部分以判定該樣本之該半透明層之該厚度。
TW106127070A 2016-08-10 2017-08-10 步階大小及鍍金屬厚度之光學量測 TWI733877B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US15/233,812 2016-08-10
US15/233,812 US20180045937A1 (en) 2016-08-10 2016-08-10 Automated 3-d measurement
US15/338,838 US10157457B2 (en) 2016-08-10 2016-10-31 Optical measurement of opening dimensions in a wafer
US15/338,838 2016-10-31
US15/346,594 US10359613B2 (en) 2016-08-10 2016-11-08 Optical measurement of step size and plated metal thickness
US15/346,594 2016-11-08

Publications (2)

Publication Number Publication Date
TW201812705A true TW201812705A (zh) 2018-04-01
TWI733877B TWI733877B (zh) 2021-07-21

Family

ID=61160196

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106127070A TWI733877B (zh) 2016-08-10 2017-08-10 步階大小及鍍金屬厚度之光學量測

Country Status (6)

Country Link
US (1) US10359613B2 (zh)
KR (1) KR102226228B1 (zh)
CN (1) CN109791038B (zh)
SG (1) SG11201901047XA (zh)
TW (1) TWI733877B (zh)
WO (1) WO2018031567A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110610147A (zh) * 2019-08-30 2019-12-24 中国科学院深圳先进技术研究院 血管图像提取方法、相关装置及存储设备
KR102654133B1 (ko) * 2021-09-07 2024-04-04 조선대학교산학협력단 대상 금속 미세조직에 대한 3차원 이미지를 생성하는 방법 및 장치
CN115930787A (zh) * 2022-10-06 2023-04-07 山东申华光学科技有限公司 一种基于机器视觉的镀膜机镀膜质量的检测方法及系统

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063647A (en) * 1997-12-08 2000-05-16 3M Innovative Properties Company Method for making circuit elements for a z-axis interconnect
JP4183419B2 (ja) * 1999-08-31 2008-11-19 帝人株式会社 透明導電性積層体及びこれを用いたタッチパネル
US6319640B1 (en) * 2000-05-26 2001-11-20 Eastman Kodak Company Imaging element containing a blocked photographically useful compound
GB0216641D0 (en) * 2002-07-18 2002-08-28 Univ Nottingham Image analysis method, apparatus and software
AU2003294224A1 (en) * 2002-09-23 2004-05-04 Dmetrix, Inc. Multi-mode scanning imaging system
JP2004354469A (ja) * 2003-05-27 2004-12-16 Yokogawa Electric Corp 共焦点顕微鏡表示装置
US7512436B2 (en) * 2004-02-12 2009-03-31 The Regents Of The University Of Michigan Method of evaluating metabolism of the eye
JP4272121B2 (ja) * 2004-06-23 2009-06-03 株式会社日立ハイテクノロジーズ Semによる立体形状計測方法およびその装置
US7792338B2 (en) * 2004-08-16 2010-09-07 Olympus America Inc. Method and apparatus of mechanical stage positioning in virtual microscopy image capture
CN102759539B (zh) * 2006-02-17 2015-04-15 株式会社日立高新技术 扫描型电子显微镜装置以及使用它的摄影方法
WO2007125841A1 (en) * 2006-04-27 2007-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, and electronic appliance having the semiconductor device
US20140163664A1 (en) * 2006-11-21 2014-06-12 David S. Goldsmith Integrated system for the ballistic and nonballistic infixion and retrieval of implants with or without drug targeting
US7729049B2 (en) * 2007-05-26 2010-06-01 Zeta Instruments, Inc. 3-d optical microscope
US9389408B2 (en) * 2010-07-23 2016-07-12 Zeta Instruments, Inc. 3D microscope and methods of measuring patterned substrates
JP2012069739A (ja) * 2010-09-24 2012-04-05 Shinko Electric Ind Co Ltd 配線基板の製造方法
US9643184B2 (en) * 2010-10-26 2017-05-09 California Institute Of Technology e-Petri dishes, devices, and systems having a light detector for sampling a sequence of sub-pixel shifted projection images
WO2012094523A2 (en) * 2011-01-06 2012-07-12 The Regents Of The University Of California Lens-free tomographic imaging devices and methods
US10048480B2 (en) * 2011-01-07 2018-08-14 Zeta Instruments, Inc. 3D microscope including insertable components to provide multiple imaging and measurement capabilities
JP6179525B2 (ja) * 2012-12-07 2017-08-16 旭硝子株式会社 ガラス板および発光モジュール
US9557856B2 (en) * 2013-08-19 2017-01-31 Basf Se Optical detector
JP6223074B2 (ja) * 2013-09-02 2017-11-01 キヤノン株式会社 インクジェット記録ヘッドの混色検知方法、混色検知装置、および記録装置
JP2015082095A (ja) 2013-10-24 2015-04-27 株式会社キーエンス 画像処理装置、顕微鏡システム、画像処理方法およびプログラム
JP6488073B2 (ja) * 2014-02-28 2019-03-20 株式会社日立ハイテクノロジーズ ステージ装置およびそれを用いた荷電粒子線装置
EP3134850B1 (en) * 2014-04-22 2023-06-14 Snap-Aid Patents Ltd. Method for controlling a camera based on processing an image captured by other camera
US9460557B1 (en) * 2016-03-07 2016-10-04 Bao Tran Systems and methods for footwear fitting

Also Published As

Publication number Publication date
WO2018031567A1 (en) 2018-02-15
US10359613B2 (en) 2019-07-23
CN109791038B (zh) 2021-02-26
KR102226228B1 (ko) 2021-03-09
KR20190029765A (ko) 2019-03-20
US20180045946A1 (en) 2018-02-15
SG11201901047XA (en) 2019-03-28
CN109791038A (zh) 2019-05-21
TWI733877B (zh) 2021-07-21

Similar Documents

Publication Publication Date Title
TWI729186B (zh) 晶圓中開口尺寸之光學量測
KR101680558B1 (ko) 결함 관찰 방법 및 결함 관찰 장치
TWI551855B (zh) 檢測晶圓之系統與方法以及由該系統讀取的程式儲存裝置
JP4585876B2 (ja) 走査型電子顕微鏡を用いた試料の観察方法及びその装置
US8013299B2 (en) Review method and review device
TWI733877B (zh) 步階大小及鍍金屬厚度之光學量測
WO2014011182A1 (en) Convergence/divergence based depth determination techniques and uses with defocusing imaging
TW202004939A (zh) 設計為基礎之對準之效能監控
US10168524B2 (en) Optical measurement of bump hieght
TWI751184B (zh) 產生一樣本之三維(3-d)資訊之方法及三維(3-d)量測系統
TWI769172B (zh) 使用一光學顯微鏡產生一樣本之三維(3-d)資訊之方法
CN112197942A (zh) 一种超精密加工光学微透镜阵列成像性能分析方法和系统
JP5891717B2 (ja) 穴の内部検査装置、穴の内部検査方法、およびプログラム
US6787378B2 (en) Method for measuring height of sphere or hemisphere
JP2009198403A (ja) スポット特性測定における被検光学系位置調整方法および装置