TWI729186B - 晶圓中開口尺寸之光學量測 - Google Patents

晶圓中開口尺寸之光學量測 Download PDF

Info

Publication number
TWI729186B
TWI729186B TW106127075A TW106127075A TWI729186B TW I729186 B TWI729186 B TW I729186B TW 106127075 A TW106127075 A TW 106127075A TW 106127075 A TW106127075 A TW 106127075A TW I729186 B TWI729186 B TW I729186B
Authority
TW
Taiwan
Prior art keywords
sample
captured image
image
pixel
opening
Prior art date
Application number
TW106127075A
Other languages
English (en)
Other versions
TW201818064A (zh
Inventor
詹姆士 建國 許
隆尼 索塔曼
建新 李
尼太蓋 卡蘇里亞
Original Assignee
美商科磊股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/233,812 external-priority patent/US20180045937A1/en
Application filed by 美商科磊股份有限公司 filed Critical 美商科磊股份有限公司
Publication of TW201818064A publication Critical patent/TW201818064A/zh
Application granted granted Critical
Publication of TWI729186B publication Critical patent/TWI729186B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/12Measuring arrangements characterised by the use of optical techniques for measuring diameters internal diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • G01N21/9505Wafer internal defects, e.g. microcracks
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Abstract

一種使用一光學顯微鏡產生一樣本之三維資訊之方法包含:按預定步階變更該樣本與該光學顯微鏡之一物鏡之間的距離;在各預定步階處擷取一影像;判定各經擷取影像中之各像素之一特性值;基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第一表面上之一第一經擷取影像;及基於該第一經擷取影像判定該樣本之該第一表面中之一開口之一量測。該樣本之該第一表面及該樣本之第二表面在該等經擷取影像之各者之一視場內。該第一經擷取影像包含一圖案覆疊層。在另一實例中,使用不具有一圖案覆疊層之一第二經擷取影像判定該開口量測。

Description

晶圓中開口尺寸之光學量測
所描述實施例大體上係關於量測一樣本之三維資訊且更特定言之係關於按一快速且可靠方式自動量測三維資訊。
各種物件或樣本之三維(3-D)量測在許多不同應用中係有用的。一個此應用係在晶圓級封裝處理期間。在晶圓級製造之不同步驟期間之一晶圓之三維量測資訊可提供關於存在可存在於晶圓上之晶圓處理缺陷之洞察。在晶圓級製造期間之晶圓之三維量測資訊可在耗費額外資金來繼續處理晶圓之前提供關於不存在缺陷之洞察。當前藉由一顯微鏡之人類操縱來收集一樣本之三維量測資訊。人類使用者使用其眼睛使顯微鏡聚焦以判定顯微鏡何時聚焦在樣本之一表面上。需要收集三維量測資訊之一改良方法。
在一第一新穎態樣中,使用一光學顯微鏡藉由按預定步階變更一樣本與光學顯微鏡之一物鏡之間的距離而產生樣本之三維(3-D)資訊。在各預定步階處擷取一影像。該樣本之第一表面及該樣本之第二表面在該等經擷取影像之各者之一視場內。判定各經擷取影像中之各像素之一特性值。基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第一表面上之一第一經擷取影像。基於該第一經擷取影像判定該樣本之該第一表面中之一開口之一量測。 在一第二新穎態樣中,一種三維(3-D)量測系統包含:一光學顯微鏡,其包括一物鏡及一載物台,其中該光學顯微鏡經調適以按預定步階變更由該載物台支撐之一樣本與該光學顯微鏡之該物鏡之間的距離;及一電腦系統,其包含一處理器及一儲存裝置,其中該電腦系統經調適以:(i)儲存在各預定步階處擷取之一影像,其中在各影像中擷取該樣本之一第一表面及該樣本之一第二表面;(ii)判定各經擷取影像中之各像素之一特性;(iii)基於各經擷取影像中之各像素之該等特性判定聚焦在該樣本之該第一表面上之一第一經擷取影像;及(iv)基於該第一經擷取影像判定該樣本之該第一表面中之一開口之一量測。 在一第三新穎態樣中,使用一光學顯微鏡藉由以下步驟產生一樣本之三維(3-D)資訊:(i)按預定步階變更該樣本與該光學顯微鏡之一物鏡之間的距離;(ii)在各預定步階處擷取一影像,其中在擷取各影像時將一圖案投射至該樣本上,且其中該樣本之一第一表面及該樣本之一第二表面在該等經擷取影像之各者之一視場內;(iii)判定各經擷取影像中之各像素之一特性值;(iv)基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第一表面上之一第一經擷取影像,其中該第一經擷取影像聚焦在一焦距處;(v)擷取在該焦距處獲得之一第二影像,其中在擷取該第二影像時未將一圖案投射至該樣本上;及(vi)基於該第二經擷取影像判定該樣本之該第一表面中之一開口之一量測。 在下文實施方式中描述進一步細節及實施例以及技術。本發明內容不旨在界定本發明。本發明係由發明申請專利範圍界定。
相關申請案之交叉參考 本申請案係2016年8月10日申請之標題為「AUTOMATED 3-D MEASUREMENT」之非臨時美國專利申請案第15/233,812號之一部分接續案且根據35 U.S.C. §120規定主張該案之優先權。該案之全部揭示內容以引用的方式併入本文中。 現將詳細參考本發明之背景實例及一些實施例,其等之實例在隨附圖式中加以繪示。在下文描述及發明申請專利範圍中,諸如「頂部」、「下面」、「上」、「下」、「頂部」、「底部」、「左」及「右」之關係術語可用於描述所描述結構之不同部分之間的相對定向,且應理解,所描述之整體結構可實際上以任何方式定向在三維空間中。 圖1係一半自動化三維計量系統1之一圖。半自動化三維計量系統1包含一光學顯微鏡(未展示)、一開啟/關閉按鈕5、一電腦4及一載物台2。在操作中,將一晶圓3放置在載物台2上。半自動化三維計量系統1之功能係擷取一物件之多個影像且自動產生描述物件之各種表面之三維資訊。此亦稱為一物件之一「掃描」。晶圓3係由半自動化三維計量系統1分析之一物件之一實例。一物件亦可稱為一樣本。在操作中,將晶圓3放置在載物台2上且半自動化三維計量系統1開始自動產生描述晶圓3之表面之三維資訊之程序。在一個實例中,半自動化三維計量系統1開始於按壓連接至電腦4之一鍵盤(未展示)上之一指定鍵。在另一實例中,半自動化三維計量系統1開始於跨一網路(未展示)將一開始命令發送至電腦4。半自動化三維計量系統1亦可經組態以與一自動化晶圓處置系統(未展示)配接,該自動化晶圓處置系統在完成一晶圓之一掃描之後移除該晶圓且插入一新晶圓進行掃描。 一全自動化三維計量系統(未展示)類似於圖1之半自動化三維計量系統;然而,一全自動化三維計量系統亦包含一機器人處置器,其可在無人類干預的情況下自動拾取一晶圓且將晶圓放置在載物台上。以一類似方式,一全自動化三維計量系統亦可使用機器人處置器自載物台自動拾取一晶圓且自載物台移除晶圓。在生產許多晶圓期間可期望一全自動化三維計量系統,因為其避免一人類操作者之可能污染且改良時間效率及總成本。替代性地,當僅需量測少量晶圓時,在研究及開發活動期間可期望半自動化三維計量系統1。 圖2係包含多個物鏡11及一可調整載物台12之一三維成像顯微鏡10之一圖。三維成像顯微鏡可為一共焦顯微鏡、一結構化照明顯微鏡、一干涉儀顯微鏡或此項技術中熟知的任何其他類型之顯微鏡。一共焦顯微鏡將量測強度。一結構化照明顯微鏡將量測一經投影結構之對比度。一干涉儀顯微鏡將量測干涉條紋對比度。 在操作中,將一晶圓放置在可調整載物台12上且選擇一物鏡。三維成像顯微鏡10在調整載物台(晶圓擱置於其上)之高度時擷取晶圓之多個影像。此導致在晶圓定位於遠離選定透鏡之各種距離處時擷取晶圓之多個影像。在一個替代實例中,將晶圓放置在一固定載物台上且調整物鏡之位置,藉此在不移動載物台的情況下變更物鏡與樣本之間的距離。在另一實例中,可在x-y方向上調整載物台且可在z方向上調整物鏡。 經擷取影像可本地儲存在包含於三維成像顯微鏡10中之一記憶體中。替代性地,經擷取影像可儲存在包含於一電腦系統中之一資料儲存裝置中,其中三維顯微鏡10跨一資料通信鏈路將經擷取影像傳遞至電腦系統。一資料通信鏈路之實例包含:一通用串列匯流排(USB)介面、一乙太網路連接、一火線匯流排介面、一無線網路(諸如WiFi)。 圖3係包含一三維顯微鏡21、一樣本處置器22、一電腦23、一顯示器27 (選用)及輸入裝置28之一三維計量系統20之一圖。三維計量系統20係包含於半自動化三維計量系統1中之一系統之一實例。電腦23包含一處理器24、一儲存裝置25及一網路裝置26 (選用)。電腦經由顯示器27將資訊輸出至一使用者。若顯示器27係一觸控螢幕裝置,則該顯示器亦可用作一輸入裝置。輸入裝置28可包含一鍵盤及一滑鼠。電腦23控制三維顯微鏡21及樣本處置器/載物台22之操作。當由電腦23接收一開始掃描命令時,電腦發送一或多個命令以組態用於影像擷取之三維顯微鏡(「顯微鏡控制資料」)。例如,需選擇正確物鏡,需選擇待擷取影像之解析度,且需選擇儲存經擷取影像之模式。當由電腦23接收一開始掃描命令時,電腦發送一或多個命令以組態樣本處置器/載物台22 (「處置器控制資料」)。例如,需選擇正確高度(z方向)調整且需選擇正確水平(x-y方向)對準。 在操作期間,電腦23引起樣本處置器/載物台22調整至適當位置。一旦樣本處置器/載物台22經適當定位,電腦23將引起三維顯微鏡聚焦在一焦平面上且擷取至少一個影像。接著,電腦23將引起該載物台在z方向上移動,使得改變樣本與光學顯微鏡之物鏡之間的距離。一旦載物台移動至新位置,電腦23將引起光學顯微鏡擷取一第二影像。此程序繼續直至在光學顯微鏡之物鏡與樣本之間的各所要距離處擷取一影像。將在各距離處擷取之影像自三維顯微鏡21傳遞至電腦23 (「影像資料」)。將經擷取影像儲存在包含於電腦23中之儲存裝置25中。在一個實例中,電腦23分析經擷取影像且將三維資訊輸出至顯示器27。在另一實例中,電腦23分析經擷取影像且經由網路29將三維資訊輸出至一遠端裝置。在又另一實例中,電腦23並不分析經擷取影像,而是經由網路29將經擷取影像發送至另一裝置進行處理。三維資訊可包含基於經擷取影像呈現之一三維影像。三維資訊可不包含任何影像,而是包含基於各經擷取影像之各種特性之資料。 圖4係繪示在變更光學顯微鏡之物鏡與樣本之間的距離時擷取影像之一方法之一圖。在圖4中繪示之實施例中,各影像包含1000乘1000個像素。在其他實施例中,影像可包含各種像素組態。在一個實例中,將連續距離之間的間隔固定為一預定量。在另一實例中,連續距離之間的間隔可不固定。倘若僅樣本之z方向掃描之一部分需要額外z方向解析度,則在z方向上之影像之間的此不固定間隔可為有利的。z方向解析度係基於在z方向上按每單位長度擷取之影像數目,因此在z方向上按每單位長度擷取額外影像將增大所量測之z方向解析度。相反地,在z方向上按每單位長度擷取較少影像將減小所量測之z方向解析度。 如上文論述,首先調整光學顯微鏡以使其聚焦在定位於與光學顯微鏡之一物鏡相距距離1處之一焦平面上。接著,光學顯微鏡擷取一影像,該影像儲存在一儲存裝置(即,「記憶體」)中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離2。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離3。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離4。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離5。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。程序針對光學顯微鏡之物鏡與樣本之間的N個不同距離而繼續。指示哪一影像與各距離相關聯之資訊亦儲存在儲存裝置中以用於處理。 在一替代實施例中,光學顯微鏡之物鏡與樣本之間的距離係固定的。實情係,光學顯微鏡包含一變焦透鏡,其允許光學顯微鏡變更光學顯微鏡之焦平面。以此方式,當載物台及由載物台支撐之樣本固定時,光學顯微鏡之焦平面跨N個不同焦平面而變化。針對各焦平面擷取一影像且將影像儲存在一儲存裝置中。接著,處理跨所有各種焦平面之經擷取影像以判定樣本之三維資訊。此實施例需要一變焦透鏡,其可提供跨所有焦平面之足夠解析度且引入最小影像失真。另外,需要各變焦位置之間的校準及變焦透鏡之所得焦距。 圖5係繪示光學顯微鏡之物鏡與樣本之間的距離之一圖表,其中各x-y座標具有最大特性值。一旦針對各距離擷取及儲存影像,可分析各影像之各像素之特性。例如,可分析各影像之各像素之光強度。在另一實例中,可分析各影像之各像素之對比度。在又另一實例中,可分析各影像之各像素之條紋對比度。可藉由比較一像素之強度與預設定數目個周圍像素之強度來判定一像素之對比度。針對關於如何產生對比度資訊之額外描述,參見由James Jianguo Xu等人於2010年2月3日申請之標題為「3-D Optical Microscope」之美國專利申請案第12/699,824號(該案之標的物以引用的方式併入本文中)。 圖6係使用在圖5中展示之各x-y座標之最大特性值呈現之一三維影像之一三維圖。具有介於1與19之間的一X位置之所有像素在z方向距離7處具有一最大特性值。具有介於20與29之間的一X位置之所有像素在z方向距離2處具有一最大特性值。具有介於30與49之間的一X位置之所有像素在z方向距離7處具有一最大特性值。具有介於50與59之間的一X位置之所有像素在z方向距離2處具有一最大特性值。具有介於60與79之間的一X位置之所有像素在z方向距離7處具有一最大特性值。以此方式,可使用跨所有經擷取影像之每x-y像素之最大特性值產生圖6中繪示之三維影像。另外,在已知距離2且已知距離7之情況下,可藉由自距離2減去距離7來計算圖6中繪示之井深度。 峰值模式操作 圖7係繪示使用在各種距離處擷取之影像之峰值模式操作之一圖。如上文關於圖4論述,首先調整光學顯微鏡以使其聚焦在定位於與光學顯微鏡之一物鏡相距距離1處之一平面上。接著,光學顯微鏡擷取一影像,該影像儲存在一儲存裝置(即,「記憶體」)中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離2。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離3。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離4。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離5。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。程序針對光學顯微鏡之物鏡與載物台之間的N個不同距離而繼續。指示哪一影像與各距離相關聯之資訊亦儲存在儲存裝置中以用於處理。 在峰值模式操作中判定跨在一個z距離處之一單一經擷取影像中之所有x-y位置之最大特性值,而不是判定跨在各種z距離處之所有經擷取影像之各x-y位置之最大特性值。換言之,針對各經擷取影像,選擇跨包含於經擷取影像中之所有像素之最大特性值。如在圖7中繪示,具有最大特性值之像素位置將可能在不同經擷取影像之間變化。特性可為強度、對比度或條紋對比度。 圖8係繪示當一光阻(PR)開口在光學顯微鏡之視場內時使用在各種距離處擷取之影像之峰值模式操作之一圖。物件之俯視圖展示PR開口在x-y平面中之橫截面積。PR開口亦具有z方向上之特定深度之一深度。在下文圖8中之俯視圖展示在各距離處擷取之影像。在距離1處,光學顯微鏡未聚焦在晶圓之頂表面或PR開口之底表面上。在距離2處,光學顯微鏡聚焦在PR開口之底表面上,但未聚焦在晶圓之頂表面上。此導致與接收自離焦之其他表面(晶圓之頂表面)反射之光之像素相比,接收自PR開口之底表面反射之光之像素中之一增大特性值(強度/對比度/條紋對比度)。在距離3處,光學顯微鏡未聚焦在晶圓之頂表面或PR開口之底表面上。因此,在距離3處,最大特性值將實質上低於在距離2處量測之特性值。在距離4處,光學顯微鏡未聚焦在樣本之任何表面上;然而,歸因於空氣之折射率與光阻層之折射率之差異,量測到最大特定值(強度/對比度/條紋對比度)之一增大。圖11及隨附文字更詳細描述此現象。在距離6處,光學顯微鏡聚焦在晶圓之頂表面上,但未聚焦在PR開口之底表面上。此導致與接收自離焦之其他表面(PR開口之底表面)反射之光之像素相比,接收自晶圓之頂表面反射之光之像素中之一增大特性值(強度/對比度/條紋對比度)。一旦判定來自各經擷取影像之最大特性值,便可利用結果來判定晶圓之一表面定位於哪些距離處。 圖9係繪示源自峰值模式操作之三維資訊之一圖表。如關於圖8論述,在距離1、3及5處擷取之影像之最大特性值具有小於在距離2、4及6處擷取之影像之最大特定值之一最大特定值。在各種z距離處之最大特性值之曲線可歸因於環境效應(諸如振動)而含有雜訊。為最小化此雜訊,可在進一步資料分析之前應用一標準平滑法,諸如具有某核心大小之高斯濾波(Gaussian filtering)。 由一峰值尋找演算法執行比較最大特性值之一個方法。在一個實例中,使用一導數法沿著z軸定位零交叉點以判定存在各「峰值」之距離。接著,比較在發現一峰值之各距離處之最大特性值以判定量測到最大特性值之距離。在圖9之情況中,將在距離2處發現一峰值,此用作晶圓之一表面定位於距離2處之一指示。 藉由比較各最大特性值與一預設定臨限值來執行比較最大特性值之另一方法。可基於晶圓材料、距離及光學顯微鏡之規格來計算臨限值。替代性地,可在自動化處理之前藉由經驗測試判定臨限值。在任一情況中,比較各經擷取影像之最大特性值與臨限值。若最大特性值大於臨限值,則判定最大特性值指示晶圓之一表面之存在。若最大特性值不大於臨限值,則判定最大特性值並不指示晶圓之一表面。 求和模式操作 圖10係繪示使用在各種距離處擷取之影像之求和模式操作之一圖。如上文關於圖4論述,首先調整光學顯微鏡以使其聚焦在定位於與光學顯微鏡之一物鏡相距距離1處之一平面上。接著,光學顯微鏡擷取一影像,該影像儲存在一儲存裝置(即,「記憶體」)中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離2。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離3。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離4。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離5。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。程序針對光學顯微鏡之物鏡與樣本之間的N個不同距離而繼續。指示哪一影像與各距離相關聯之資訊亦儲存在儲存裝置中以用於處理。 將各經擷取影像之所有x-y位置之特性值相加在一起,而不是判定跨在一個z距離處之一單一經擷取影像中之所有x-y位置之最大特性值。換言之,針對各經擷取影像,將包含於經擷取影像中之所有像素之特性值加總在一起。特性可為強度、對比度或條紋對比度。實質上大於相鄰z距離之平均經加總特性值之一經加總特性值指示在該距離處存在晶圓之一表面。然而,此方法亦可導致如在圖11中描述之假肯定(false positive)。 圖11係繪示在使用求和模式操作時之錯誤表面偵測之一圖。在圖11中繪示之晶圓包含一矽基板30及沈積在矽基板30之頂部上之一光阻層31。矽基板30之頂表面定位於距離2處。光阻層31之頂表面定位於距離6處。在距離2處擷取之影像將導致實質上大於在不存在晶圓之一表面之距離處擷取之其他影像之一特性值總和。在距離6處擷取之影像將導致實質上大於在不存在晶圓之一表面之距離處擷取之其他影像之一特性值總和。此時,求和模式操作看似係存在晶圓之一表面之一有效指示符。然而,在距離4處擷取之影像將導致實質上大於在不存在晶圓之一表面之距離處擷取之其他影像之一特性值總和。此係一問題,因為如在圖11中清晰展示,晶圓之一表面未定位於距離4處。實情係,距離4處之特性值總和之增大係定位於距離2及6處之表面之一假影。輻照光阻層之光之一主要部分並不反射,而是行進至光阻層中。此光行進之角度歸因於空氣及光阻之折射率差異而改變。新角度比輻照光阻之頂表面之光角度更接近於法線。光行進至在光阻層下方之矽基板之頂表面。接著,藉由高度反射矽基板層反射光。在反射光離開光阻層且進入空氣時,反射光之角度歸因於空氣與光阻層之間的折射率差異而再次改變。輻照光之此第一重導引、反射及第二重導引引起光學顯微鏡觀察到距離4處之特性值(強度/對比度/條紋對比度)之一增大。此實例繪示每當一樣本包含一透明材料時,求和模式操作將偵測不存在於樣本上之表面。 圖12係繪示源自求和模式操作之三維資訊之一圖表。此圖表繪示在圖11中繪示之現象之結果。距離4處之加總特性值之大值錯誤地指示距離4處存在一表面。需要不導致晶圓之表面之存在之假肯定指示之一方法。 範圍模式操作 圖13係繪示使用在各種距離處擷取之影像之範圍模式操作之一圖。如上文關於圖4論述,首先調整光學顯微鏡以使其聚焦在定位於與光學顯微鏡之一物鏡相距距離1處之一平面上。接著,光學顯微鏡擷取一影像,該影像儲存在一儲存裝置(即,「記憶體」)中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離2。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離3。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台,使得光學顯微鏡之物鏡與樣本之間的距離係距離4。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。接著,調整載物台使得光學顯微鏡之物鏡與樣本之間的距離係距離5。接著,光學顯微鏡擷取一影像,該影像儲存在儲存裝置中。程序針對光學顯微鏡之物鏡與樣本之間的N個不同距離而繼續。指示哪一影像與各距離相關聯之資訊亦儲存在儲存裝置中以用於處理。 判定包含於一個z距離處之一單一經擷取影像中之具有一特定範圍內之一特性值之像素之一計數,而不是判定跨該單一經擷取影像中之所有x-y位置之所有特性值之總和。換言之,針對各經擷取影像,判定具有一特定範圍內之一特性值之像素之一計數。特性可為強度、對比度或條紋對比度。實質上大於相鄰z距離處之平均像素計數之一個特定z距離處之一像素計數指示該距離處存在晶圓之一表面。此方法減少在圖11中描述之假肯定。 圖14係繪示源自範圍模式操作之三維資訊之一圖表。在知道存在於晶圓上之不同材料類型及光學顯微鏡組態之情況下,可針對各材料類型判定特性值之一預期範圍。例如,光阻層將反射輻照光阻層之頂表面之相對少量光(即,4%)。矽層將反射輻照矽層之頂表面之光(即,37%)。在距離4處觀察到的來自光阻層之頂表面之重導引反射(即,21%)將實質上大於在距離6處觀察到的反射;然而,在距離4處觀察到的來自矽基板之頂表面之重導引反射(即,21%)將實質上小於在距離2處觀察到的反射。因此,當尋找光阻層之頂表面時,以光阻之預期特性值為中心之一第一範圍可用於濾除具有在第一範圍以外的特性值之像素,藉此濾除具有並非源自光阻層之頂表面之反射之特性值之像素。在圖15中繪示藉由應用第一特性值範圍而產生之跨所有距離之像素計數。如在圖15中展示,藉由應用第一範圍濾除來自其他距離(表面)之一些但未必所有像素。此在多個距離處量測之特性值落入第一範圍內時發生。然而,在計數像素之前應用第一範圍仍用以使所要表面處之像素計數比其他距離處之其他像素計數更突出。此在圖15中繪示。在應用第一範圍之後,距離6處之像素計數大於距離2及4處之像素計數,而在應用第一範圍之前,距離6處之像素計數小於距離2及4處之像素計數(如在圖14中展示)。 以一類似方式,當尋找矽基板層之頂表面時,可使用以矽基板層之預期特性值為中心之一第二範圍來濾除具有第二範圍以外的特性值之像素,藉此濾除具有並非源自矽基板層之頂表面之反射之特性值之像素。在圖16中繪示藉由應用第二特性值範圍而產生之跨所有距離之像素計數。此範圍應用憑藉知道存在於所掃描晶圓上之所有材料的預期特性值而減少一晶圓表面定位於距離4處之錯誤指示。如關於圖15論述,藉由應用一範圍濾除來自其他距離(表面)之一些但未必所有像素。然而,當在多個距離處量測之特性值並不落入相同範圍內時,則應用範圍之結果將消除來自其他距離(表面)之所有像素計數。圖16繪示此案例。在圖16中,在產生各距離處之像素計數之前應用第二範圍。應用第二範圍之結果係僅計數距離2處之像素。此產生矽基板之表面定位於距離2處之一十分明確指示。 應注意,為減少由潛在雜訊(諸如環境振動)引起之影響,可在實行任何峰值搜尋操作之前將一標準平滑操作(諸如高斯濾波)應用至沿著z距離之總像素計數。 圖17係繪示包含於峰值模式操作中之各種步驟之一流程圖200。在步驟201中,按預定步階變更樣本與一光學顯微鏡之物鏡之間的距離。在步驟202中,在各預定步階處擷取一影像。在步驟203中,判定各經擷取影像中之各像素之一特性。在步驟204中,針對各經擷取影像,判定跨該經擷取影像中之所有像素之最大特性。在步驟205中,比較各經擷取影像之最大特性以判定各預定步階處是否存在樣本之一表面。 圖18係繪示包含於範圍模式操作中之各種步驟之一流程圖300。在步驟301中,按預定步階變更樣本與一光學顯微鏡之物鏡之間的距離。在步驟302中,在各預定步階處擷取一影像。在步驟303中,判定各經擷取影像中之各像素之一特性。在步驟304中,針對各經擷取影像,判定具有一第一範圍內之一特性值之像素之一計數。在步驟305中,基於各經擷取影像之像素計數判定各預定步階處是否存在樣本之一表面。 圖19係包含一單一特徵之一經擷取影像之一圖。一特徵之一個實例係光阻層中呈一圓形形狀之一開口。一特徵之另一實例係光阻層中呈溝槽形狀之一開口(諸如一未鍍重佈線(RDL)結構)。在晶圓製程期間,量測一晶圓層中之一光阻開口之各種特徵係有利的。一光阻開口之量測在金屬鍍至孔中之前提供結構中之瑕疵之偵測。例如,若一光阻開口不具有正確大小,則鍍RDL寬度將係錯誤的。偵測此類型之缺陷可防止一缺陷晶圓之進一步製造。防止一缺陷晶圓之進一步製造節省材料及處理費用。圖19繪示當經擷取影像聚焦在光阻層之頂表面上時,自光阻層之頂表面反射之光之經量測強度大於自光阻層中之開口反射之光之經量測強度。如下文更詳細論述,與經擷取影像中之各像素相關聯之資訊可用於產生經擷取影像中之各像素之一強度值。接著,可比較各像素之強度值與一強度臨限值以判定各像素是否與經擷取影像之一第一區域(諸如光阻層之頂表面)相關聯或與經擷取影像之一第二區域(諸如光阻開口區)相關聯。此可藉由以下步驟完成:(i)首先將一強度臨限值應用至經擷取影像中之各像素之經量測強度;(ii)將具有低於強度臨限值之一強度值之所有像素分類為與經擷取影像之一第一區域相關聯;(iii)將具有高於強度臨限值之一強度值之所有像素分類為與經擷取影像之一第二區域相關聯;及(iv)將一特徵界定為相同區域內鄰接與相同區域相關聯之其他像素之一像素群組。 在圖19中展示之經擷取影像可為一彩色影像。彩色影像之各像素包含紅色、藍色及綠色(RBG)通道值。此等色彩值之各者可經組合以產生各像素之一單一強度值。在下文描述用於將各像素之RBG值轉換為單一強度值之各種方法。 一第一方法係使用三個加權值將三個色彩通道轉換為一強度值。換言之,各色彩通道具有其自身加權值或轉換因數。吾人可使用在一系統配方中界定之三個轉換因數之一預設集合或基於其樣本量測需求修改三個轉換因數。一第二方法係自各色彩通道之一預設色彩通道值減去各像素之色彩通道,接著使用在第一方法中論述之轉換因數將此結果轉換為強度值。一第三方法係使用一「色差」方案將色彩轉換為強度值。在一色差方案中,藉由一像素之色彩相較於一預定義固定紅色、綠色及藍色色彩值之接近程度來定義所得像素強度。色差之一個實例係一像素之色彩值與固定色彩值之間的加權向量距離。「色差」之又另一方法係具有自影像自動導出之一固定色彩值之一色差法。在一個實例中,其中一影像之邊界區已知具有背景色彩。邊界區像素之色彩之加權平均值可用作色差方案之固定色彩值。 一旦彩色影像已轉換為一強度影像,便可比較一強度臨限值與各像素之強度以判定像素所屬之影像區域。換言之,具有高於強度臨限值之一強度值之一像素指示像素接收自樣本之一第一表面反射之光,且具有低於強度臨限值之一強度值之一像素指示像素未接收自樣本之第一表面反射之光。一旦將影像中之各像素映射至一區域,便可判定聚焦在影像中之特徵之近似形狀。 圖20、圖21及圖22繪示產生一強度臨限值之三個不同方法,該強度臨限值可用於區分量測自光阻層之頂表面反射之光之像素與量測未自光阻層之頂表面反射之光之像素。 圖20繪示產生用於分析經擷取影像之一強度臨限值之一第一方法。在此第一方法中,針對各經量測強度值產生一像素計數。此類型之圖亦稱為一直方圖。一旦產生每強度值之像素計數,便可判定源自從光阻層反射之經量測光之像素之峰值計數與源自未從光阻層反射之經量測光之像素之峰值計數之間的強度範圍。選擇該強度範圍內之一強度值作為強度臨限值。在一個實例中,選擇兩個峰值計數之間的中點作為臨限值強度。在落入本發明之揭示內容內之其他實例中,可使用兩個峰值計數之間的其他強度值。 圖21係產生用於分析經擷取影像之一強度臨限值之一第二方法。在步驟311中,作出關於表示光阻區域之經擷取影像之一第一百分比之判定。可藉由實體量測、光學檢測或基於生產規格作出此判定。在步驟312中,作出關於表示光阻開口區之經擷取影像之一第二百分比之判定。可藉由實體量測、光學檢測或基於生產規格作出此判定。在步驟313中,根據由各像素量測之強度對經擷取影像中之所有像素分類。在步驟314中,選擇具有所有像素強度之倒數第二百分比內之一強度之所有像素。在步驟315中,分析所有選定像素。 圖22繪示判定一強度臨限值之一第三方法。在步驟321中,將一預定強度臨限值儲存至記憶體中。在步驟322中,比較各像素之強度與經儲存強度臨限值。在步驟323中,選擇具有小於強度臨限值之一強度值之所有像素。在步驟324中,分析選定像素。 無關於如何產生強度臨限值,使用臨限強度值以大致判定經擷取影像中之特徵之邊界所處之位置。接著,將使用特徵之大致邊界以判定特徵之邊界之一更精確量測,如下文論述。 圖23係在圖19中展示之一光阻開口之一三維圖。在製程期間關注各種光阻開口量測,諸如頂部開口及底部開口之面積、頂部開口及底部開口之直徑、頂部開口及底部開口之圓周、頂部開口及底部開口之橫截面寬度及開口之深度。一第一量測係頂部表面開口面積。圖8 (及隨附文字)描述如何自在距樣本之不同距離處獲得之複數個影像選擇聚焦在光阻開口之頂表面上之一影像及聚焦在光阻開口之底表面上之一影像。一旦選擇聚焦在頂表面上之影像,便可使用聚焦在光阻開口之頂表面上之影像來判定上述頂部開口量測。同樣地,一旦選擇聚焦在光阻開口之底表面上之影像,便可使用聚焦在光阻開口之底表面上之影像來判定上述底部開口量測。如在上文及James Jianguo Xu等人於2010年2月3日申請之標題為「3-D Optical Microscope」的美國專利申請案第12/699,824號(該案之標的物以引用的方式併入本文中)中論述,在擷取多個影像時可將一圖案或網格投影至樣本之表面上。在一個實例中,包含經投影圖案或網格之一影像用於判定光阻開口量測。在另一實例中,在相同z距離處擷取之未包含圖案或網格之一新影像用於判定光阻開口量測。在後一實例中,不具有樣本上之一經投影圖案或網格之新影像提供一「更清晰」影像,其提供光阻開口之邊界之更容易偵測。 圖24係在圖23中展示之頂表面開口之一二維圖。二維圖清晰展示頂表面開口之邊界(實線) 40。使用一最佳擬合線(虛線41)追蹤邊界。一旦產生最佳擬合線追蹤,便可產生最佳擬合線41之直徑、面積及圓周。 圖25係在圖23中展示之底表面開口之二維圖。二維圖清晰展示底表面開口之邊界(實線42)。使用一最佳擬合線(虛線43)追蹤邊界。一旦產生最佳擬合線追蹤,可計算最佳擬合線之底表面開口直徑、面積及圓周。 在本實例中,由與光學顯微鏡通信之一電腦系統自動產生最佳擬合線。可藉由分析選定影像之暗部分及亮部分之間的轉變而產生最佳擬合線,如下文更詳細論述。 圖26係一光阻層中之一開口之一二維影像。將影像聚焦在光阻層之頂表面上。在此實例中,自光阻層之頂表面反射之光係亮的,因為顯微鏡聚焦在光阻層之頂表面上。自光阻開口量測之光強度係暗的,因為光阻開口中不存在反射表面。使用各像素之強度來判定像素是否屬於光阻之頂表面或光阻中之開口。來自光阻之頂表面與光阻中之開口之間的轉變之強度改變可跨越多個像素及多個強度位準。影像背景強度亦可不係均勻的。因此,需要進一步分析來判定光阻之邊界之確切像素位置。為判定一單一表面轉變點之像素位置,在轉變區外部之一相鄰亮區內獲得一強度平均值,且在轉變區外部之相鄰暗區內獲得一強度平均值。使用相鄰亮區之平均值與相鄰暗區之平均值之間的中間強度值作為區分一像素是否屬於光阻之頂表面或光阻中之開口之強度臨限值。此強度臨限值可不同於先前論述之用於選擇一單一經擷取影像內之特徵之強度臨限值。一旦判定中間強度臨限值,便比較中間強度臨限值與所有像素以區分屬於光阻之頂表面或光阻中之開口之像素。若像素強度高於強度臨限值,則將像素判定為一光阻像素。若像素強度低於強度臨限值,則將像素判定為一開口區像素。多個邊界點可以此方式判定且用於擬合一形狀。接著,使用擬合形狀以計算光阻之頂開口之所有所要尺寸。在一個實例中,擬合形狀可選自以下之群組:圓形、方形、矩形、三角形、橢圓形、六邊形、五邊形等。 圖27繪示跨圖26之亮度轉變周圍之相鄰區之經量測強度之變動。在相鄰區之最左部分處,經量測強度較高,因為顯微鏡聚焦在光阻層之頂表面上。經量測光強度透過相鄰區之亮度轉變而減小。經量測光強度在相鄰區之最右部分處下降至一最小範圍,因為在相鄰區之最右部分中不存在光阻層之頂表面。圖27繪製跨相鄰區之經量測強度之此變動。接著,可藉由應用一臨限值強度來判定指示光阻層之頂表面在何處結束之邊界點。光阻之頂表面結束之邊界點定位於經量測強度與臨限值強度之交叉點處。在沿著亮度轉變定位之不同相鄰區處重複此程序。針對各相鄰區判定一邊界點。接著,使用各相鄰區之邊界點來判定頂表面邊界之大小及形狀。 圖28係一光阻層中之一開口之一二維影像。將影像聚焦在光阻開口之底表面上。在此實例中,自光阻開口區之底表面反射之光係亮的,因為顯微鏡聚焦在光阻開口之底表面上。自光阻區反射之光亦相對亮,因為基板係具有高反射率之矽或金屬晶種層。歸因於由光阻邊界引起之光散射,自光阻層之邊界反射之光較暗。使用各像素之經量測強度以判定像素是否屬於光阻開口之底表面。來自光阻之底表面與光阻開口區之間的轉變之強度改變可跨越多個像素及多個強度位準。影像背景強度亦可不係均勻的。因此,需要進一步分析來判定光阻開口之確切像素位置。為判定一邊界點之像素位置,在相鄰像素內判定具有最小強度之一像素之位置。多個邊界點可以此方式判定且用於擬合一形狀。接著,使用擬合形狀來計算底部開口之所要尺寸。 圖29繪示跨圖28之亮度轉變周圍之相鄰區之經量測強度之變動。在相鄰區之最右部分處,經量測強度較高,因為顯微鏡聚焦在光阻開口之底表面上。經量測光強度減小至一最小強度且接著透過相鄰區之亮度轉變而減小。歸因於來自基板表面之光反射,經量測光強度在相鄰區之最右部分處升高至一相對高強度範圍。圖29繪製跨相鄰區之經量測強度之此變動。接著,可藉由尋找最小經量測強度之位置來判定指示光阻開口之邊界所處之位置之邊界點。邊界點定位於最小經量測強度所處之位置。在沿著亮度轉變定位之不同相鄰區處重複程序。針對各相鄰區判定一邊界點。接著,使用各相鄰區之邊界點來判定底表面邊界之大小及形狀。 圖30係一光阻層中之一溝槽結構(諸如一未鍍重佈線(RDL)結構)之一二維影像。將影像聚焦在光阻層之頂表面上。在此實例中,自光阻層之頂表面反射之光係亮的,因為顯微鏡聚焦在光阻層之頂表面上。自光阻層中之開口反射之光較暗,因為自開口溝槽區反射較少光。使用各像素之強度來判定像素是否屬於光阻之頂表面或光阻中之開口區。來自光阻之頂表面與光阻中之開口區之間的轉變之強度改變可跨越多個像素及多個強度位準。影像背景強度亦可不係均勻的。因此,需要進一步分析來判定光阻之邊界之確切像素位置。為判定一單一表面轉變點之像素位置,在轉變區外部之一相鄰亮區內獲得一強度平均值,且在轉變區外部之相鄰暗區內獲得一強度平均值。使用相鄰亮區之平均值與相鄰暗區之平均值之間的中間強度值作為區分頂表面光阻反射與非頂表面光阻反射之強度臨限值。一旦判定中間強度臨限值,便比較中間強度臨限值與所有相鄰像素以判定頂表面像素與光阻開口區之間的一邊界。若像素強度高於強度臨限值,則將像素判定為一頂表面光阻像素。若像素強度低於強度臨限值,則將像素判定為一光阻開口區像素。多個邊界點可以此方式判定且用於擬合一形狀。接著,使用擬合形狀來計算溝槽之光阻開口之所有所要尺寸,諸如溝槽寬度。 圖31繪示跨圖30之亮度轉變周圍之相鄰區之經量測強度之變動。在相鄰區之最左部分處,經量測強度較高,因為顯微鏡聚焦在光阻層之頂表面上。經量測光強度透過相鄰區之亮度轉變而減小。經量測光強度在相鄰區之最右部分處下降至一最小範圍,因為在相鄰區之最右部分中不存在光阻層之頂表面。圖31繪製跨相鄰區之經量測強度之此變動。接著,可藉由應用一臨限值強度來判定指示光阻層之頂表面結束之邊界點。光阻之頂表面結束之邊界點定位於經量測強度與臨限值強度之交叉點處。在沿著亮度轉變定位之不同相鄰區處重複此程序。針對各相鄰區判定一邊界點。接著,使用各相鄰區之邊界點來判定頂表面邊界之大小及形狀。 關於圖26至圖31,像素強度僅為可用於區分一影像中之不同區域之像素之像素特性之一個實例。例如,亦可使用各像素之波長或色彩而以一類似方式區分來自一影像中之不同區域之像素。一旦精確界定各區域之間的邊界,接著,使用該邊界來判定一PR開口之臨界尺寸(CD),諸如其直徑或寬度。通常,接著比較經量測CD值與在其他類型之工具(諸如一臨界尺寸掃描電子顯微鏡(CD-SEM))上量測之值。為確保生產監測工具中之量測精度,此種類的交叉校準係必要的。 儘管為指導目的在上文描述某些特定實施例,然本專利文件之教示具有一般適用性且不限於上文描述之特定實施例。因此,在不脫離如在發明申請專利範圍中闡述之本發明之範疇的情況下可實踐所描述實施例之各種特徵之各種修改、調適及組合。
1‧‧‧半自動化三維計量系統2‧‧‧載物台3‧‧‧晶圓4‧‧‧電腦5‧‧‧開啟/關閉按鈕10‧‧‧三維成像顯微鏡11‧‧‧可調整物鏡12‧‧‧可調整載物台20‧‧‧三維計量系統21‧‧‧三維顯微鏡22‧‧‧樣本處置器/載物台23‧‧‧電腦24‧‧‧處理器25‧‧‧儲存裝置26‧‧‧網路裝置27‧‧‧顯示器28‧‧‧輸入裝置29‧‧‧網路30‧‧‧矽基板31‧‧‧光阻層40‧‧‧頂表面開口之邊界41‧‧‧最佳擬合線42‧‧‧底表面開口之邊界43‧‧‧最佳擬合線200‧‧‧流程圖201‧‧‧步驟202‧‧‧步驟203‧‧‧步驟204‧‧‧步驟205‧‧‧步驟300‧‧‧流程圖301‧‧‧步驟302‧‧‧步驟303‧‧‧步驟304‧‧‧步驟305‧‧‧步驟311‧‧‧步驟312‧‧‧步驟313‧‧‧步驟314‧‧‧步驟315‧‧‧步驟321‧‧‧步驟322‧‧‧步驟323‧‧‧步驟324‧‧‧步驟
隨附圖式(其中相同數字指示相同組件)繪示本發明之實施例。 圖1係執行一樣本之自動化三維量測之一半自動化三維計量系統1之一圖。 圖2係包含可調整物鏡11及一可調整載物台12之一三維成像顯微鏡10之一圖。 圖3係包含一三維顯微鏡、一樣本處置器、一電腦、一顯示器及輸入裝置之一三維計量系統20之一圖。 圖4係繪示在變更光學顯微鏡之物鏡與載物台之間的距離時擷取影像之一方法之一圖。 圖5係繪示光學顯微鏡之物鏡與樣本表面之間的距離之一圖表,其中各x-y座標具有最大特性值。 圖6係使用在圖5中展示之各x-y座標之最大特性值呈現之一影像之一三維圖。 圖7係繪示使用在各種距離處擷取之影像之峰值模式操作之一圖。 圖8係繪示當一光阻開口在光學顯微鏡之視場內時使用在各種距離處擷取之影像之峰值模式操作之一圖。 圖9係繪示源自峰值模式操作之三維資訊之一圖表。 圖10係繪示使用在各種距離處擷取之影像之求和模式操作之一圖。 圖11係繪示在使用求和模式操作時之錯誤表面偵測之一圖。 圖12係繪示源自求和模式操作之三維資訊之一圖表。 圖13係繪示使用在各種距離處擷取之影像之範圍模式操作之一圖。 圖14係繪示源自範圍模式操作之三維資訊之一圖表。 圖15係僅繪示具有一第一範圍內之一特性值之像素計數之一圖表。 圖16係僅繪示具有一第二範圍內之一特性值之像素計數之一圖表。 圖17係繪示包含於峰值模式操作中之各種步驟之一流程圖。 圖18係繪示包含於範圍模式操作中之各種步驟之一流程圖。 圖19係聚焦在一光阻層之頂表面上之一經擷取影像(包含一單一特徵)之一圖。 圖20係繪示產生一強度臨限值之一第一方法之一圖。 圖21係繪示產生一強度臨限值之一第二方法之一圖。 圖22係繪示產生一強度臨限值之一第三方法之一圖。 圖23係一樣本中之一光阻開口之一三維圖。 圖24係在圖23中展示之光阻之頂表面開口之一二維圖。 圖25係在圖23中展示之光阻之底表面開口之二維圖。 圖26係聚焦在一光阻層之一頂表面上之一經擷取影像。 圖27係繪示偵測在圖26中繪示之光阻層之一邊界之一圖。 圖28係聚焦在一光阻層之一底表面上之一經擷取影像。 圖29係繪示偵測在圖28中繪示之光阻層之一邊界之一圖。 圖30係聚焦在一溝槽結構中之一光阻層之一頂表面上之一經擷取影像。 圖31係繪示偵測在圖30中繪示之光阻層之一邊界之一圖。

Claims (19)

  1. 一種使用一光學顯微鏡產生一樣本之三維(3-D)資訊之方法,該方法包括:按預定步階變更該樣本與該光學顯微鏡之一物鏡之間的距離;在各預定步階處擷取一影像,其中該樣本之一第一表面及該樣本之一第二表面在該等經擷取影像之各者之一視場內;判定各經擷取影像中之各像素之一特性值;基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第一表面上之一第一經擷取影像;基於該第一經擷取影像判定該樣本之該第一表面中之一開口之一量測;基於各經擷取影像中之各像素之該等特性判定聚焦在該樣本之一第二表面上之一第二經擷取影像;基於該第二經擷取影像判定該樣本之該第二表面中之一開口之一量測;及判定該樣本之該第一表面與該樣本之該第二表面之間的一距離,其中該樣本之該第一表面與該樣本之該第二表面之間的該距離指示該樣本中之該開口之深度。
  2. 如請求項1之方法,其中該樣本之該第一表面中之該開口係該樣本中之一孔或溝槽之一底部之一開口區。
  3. 如請求項1之方法,其中該樣本之該第一表面中之該開口係該樣本中之一孔或溝槽之一頂部之一開口區。
  4. 如請求項1之方法,其中該量測之該判定包含:將一線擬合至在該第一經擷取影像中展示之該樣本之該第一表面中之該開口之一邊界。
  5. 如請求項1之方法,其中該量測係該樣本之該第一表面中之該開口之一直徑。
  6. 如請求項1之方法,其中該量測係該樣本之該第一表面中之該開口之一面積。
  7. 如請求項1之方法,其中該量測係該樣本之該第一表面中之該開口之一寬度。
  8. 如請求項1之方法,其中該量測係該樣本之該第一表面中之該開口之一形狀。
  9. 如請求項1之方法,其中各像素之該特性係強度。
  10. 如請求項1之方法,其中各像素之該特性係對比度。
  11. 如請求項1之方法,其中各像素之該特性係條紋對比度。
  12. 如請求項1之方法,其中該光學顯微鏡包含一載物台,其中該樣本由該載物台支撐,其中該光學顯微鏡經調適以與一電腦系統通信,且其中該電腦系統包含經調適以儲存各經擷取影像之一記憶體裝置。
  13. 如請求項1之方法,其中該光學顯微鏡係一共焦顯微鏡。
  14. 如請求項1之方法,其中該光學顯微鏡係一結構化照明顯微鏡。
  15. 如請求項1之方法,其中該光學顯微鏡係一干涉儀顯微鏡。
  16. 如請求項1之方法,其中該判定聚焦在該樣本之一第一表面上之一第一經擷取影像進一步包括:針對各經擷取影像判定跨該經擷取影像中之所有像素之最大特性;及比較各經擷取影像之該最大特性以判定各預定步階處是否存在該樣本之一表面。
  17. 如請求項1之方法,其中該判定聚焦在該樣本之一第一表面上之一第一經擷取影像進一步包括:針對各經擷取影像判定具有一第一範圍內之一特性值之像素之一計數,其中不具有該第一範圍內之一特性值之所有像素未包含於該像素計數中;及 基於各經擷取影像之該像素計數判定各預定步階處是否存在該樣本之一表面。
  18. 一種三維(3-D)量測系統,其包括:一光學顯微鏡,其包括一物鏡及一載物台,其中該光學顯微鏡經調適以按預定步階變更由該載物台支撐之一樣本與該光學顯微鏡之該物鏡之間的距離;及一電腦系統,其包括一處理器及一儲存裝置,其中該電腦系統經調適以:儲存在各預定步階處擷取之一影像,其中該樣本之一第一表面及該樣本之一第二表面在各影像之一視場內;判定各經擷取影像中之各像素之一特性;基於各經擷取影像中之各像素之該等特性判定聚焦在該樣本之該第一表面上之一第一經擷取影像;基於該第一經擷取影像判定該樣本之該第一表面中之一開口之一量測;基於各經擷取影像中之各像素之該等特性判定聚焦在該樣本之一第二表面上之一第二經擷取影像;基於該第二經擷取影像判定該樣本之該第二表面中之一開口之一量測;及判定該樣本之該第一表面與該樣本之該第二表面之間的一距離,其中該樣本之該第一表面與該樣本之該第二表面之間的該距離指示該樣本中之該開口之深度。
  19. 一種使用一光學顯微鏡產生一樣本之三維(3-D)資訊之方法,該方法包括:按預定步階變更該樣本與該光學顯微鏡之一物鏡之間的距離;在各預定步階處擷取一影像,其中在擷取各影像時將一圖案投影至該樣本上,且其中該樣本之一第一表面及該樣本之一第二表面在該等經擷取影像之各者之一視場內;判定各經擷取影像中之各像素之一特性值;基於各經擷取影像中之各像素之該特性值判定聚焦在該樣本之一第一表面上之一第一經擷取影像,其中該第一經擷取影像聚焦在一焦距處;擷取在該焦距處獲得之一第二影像,其中在擷取該第二影像時未將一圖案投影至該樣本上;基於該第二經擷取影像判定該樣本之該第一表面中之一開口之一量測;基於各經擷取影像中之各像素之該等特性判定聚焦在該樣本之一第二表面上之一第二經擷取影像;基於該第二經擷取影像判定該樣本之該第二表面中之一開口之一量測;及判定該樣本之該第一表面與該樣本之該第二表面之間的一距離,其中該樣本之該第一表面與該樣本之該第二表面之間的該距離指示該樣本中之該開口之深度。
TW106127075A 2016-08-10 2017-08-10 晶圓中開口尺寸之光學量測 TWI729186B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/233,812 2016-08-10
US15/233,812 US20180045937A1 (en) 2016-08-10 2016-08-10 Automated 3-d measurement
US15/338,838 US10157457B2 (en) 2016-08-10 2016-10-31 Optical measurement of opening dimensions in a wafer
US15/338,838 2016-10-31

Publications (2)

Publication Number Publication Date
TW201818064A TW201818064A (zh) 2018-05-16
TWI729186B true TWI729186B (zh) 2021-06-01

Family

ID=61159226

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106127075A TWI729186B (zh) 2016-08-10 2017-08-10 晶圓中開口尺寸之光學量測

Country Status (6)

Country Link
US (1) US10157457B2 (zh)
KR (1) KR102228029B1 (zh)
CN (1) CN109716495B (zh)
SG (1) SG11201901042YA (zh)
TW (1) TWI729186B (zh)
WO (1) WO2018031639A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10198647B2 (en) * 2015-09-25 2019-02-05 Datalogic IP Tech, S.r.l. Compact imaging module with range finder
EP3540514A1 (en) * 2018-03-13 2019-09-18 ASML Netherlands B.V. Inspection tool, lithographic apparatus, and inspection method
CN110491797B (zh) * 2019-09-29 2021-10-22 云谷(固安)科技有限公司 线宽测量方法及设备
TWI786455B (zh) * 2019-10-30 2022-12-11 德商卡爾蔡司Smt有限公司 確定積體半導體樣本中三維結構間的接觸區域尺寸的方法及其用途、電腦程式產品、以及半導體檢查裝置
CN110927947B (zh) * 2019-11-15 2022-03-18 上海安翰医疗技术有限公司 相衬显微成像系统及其成像方法
KR102577325B1 (ko) * 2023-03-02 2023-09-12 (주)오로스 테크놀로지 오버레이 계측 장치 및 오버레이 계측 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW475982B (en) * 2000-05-05 2002-02-11 Acoustical Tech Sg Pte Ltd Acoustic microscope
CN100565096C (zh) * 2007-06-06 2009-12-02 徐一华 一种全自动影像测量仪
TW201003056A (en) * 2008-05-28 2010-01-16 Lam Res Corp Method to create three-dimensional images of semiconductor structures using a focused ion beam device and a scanning electron microscope

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0216641D0 (en) * 2002-07-18 2002-08-28 Univ Nottingham Image analysis method, apparatus and software
AU2003294224A1 (en) * 2002-09-23 2004-05-04 Dmetrix, Inc. Multi-mode scanning imaging system
JP4272121B2 (ja) * 2004-06-23 2009-06-03 株式会社日立ハイテクノロジーズ Semによる立体形状計測方法およびその装置
US7792338B2 (en) * 2004-08-16 2010-09-07 Olympus America Inc. Method and apparatus of mechanical stage positioning in virtual microscopy image capture
US20140163664A1 (en) * 2006-11-21 2014-06-12 David S. Goldsmith Integrated system for the ballistic and nonballistic infixion and retrieval of implants with or without drug targeting
US7729049B2 (en) * 2007-05-26 2010-06-01 Zeta Instruments, Inc. 3-d optical microscope
US9389408B2 (en) * 2010-07-23 2016-07-12 Zeta Instruments, Inc. 3D microscope and methods of measuring patterned substrates
US9643184B2 (en) * 2010-10-26 2017-05-09 California Institute Of Technology e-Petri dishes, devices, and systems having a light detector for sampling a sequence of sub-pixel shifted projection images
KR20140039151A (ko) * 2011-01-06 2014-04-01 더 리전트 오브 더 유니버시티 오브 캘리포니아 무렌즈 단층 촬영 이미징 장치들 및 방법들
US10048480B2 (en) * 2011-01-07 2018-08-14 Zeta Instruments, Inc. 3D microscope including insertable components to provide multiple imaging and measurement capabilities
US8598527B2 (en) * 2011-11-22 2013-12-03 Mochii, Inc. Scanning transmission electron microscopy
JP6179525B2 (ja) * 2012-12-07 2017-08-16 旭硝子株式会社 ガラス板および発光モジュール
JP2015082095A (ja) 2013-10-24 2015-04-27 株式会社キーエンス 画像処理装置、顕微鏡システム、画像処理方法およびプログラム
CN106030614A (zh) * 2014-04-22 2016-10-12 史內普艾德有限公司 基于对一台摄像机所拍摄的图像的处理来控制另一台摄像机的系统和方法
US9460557B1 (en) * 2016-03-07 2016-10-04 Bao Tran Systems and methods for footwear fitting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW475982B (en) * 2000-05-05 2002-02-11 Acoustical Tech Sg Pte Ltd Acoustic microscope
CN100565096C (zh) * 2007-06-06 2009-12-02 徐一华 一种全自动影像测量仪
TW201003056A (en) * 2008-05-28 2010-01-16 Lam Res Corp Method to create three-dimensional images of semiconductor structures using a focused ion beam device and a scanning electron microscope

Also Published As

Publication number Publication date
CN109716495A (zh) 2019-05-03
CN109716495B (zh) 2020-08-21
SG11201901042YA (en) 2019-03-28
US20180047148A1 (en) 2018-02-15
WO2018031639A1 (en) 2018-02-15
KR102228029B1 (ko) 2021-03-12
TW201818064A (zh) 2018-05-16
KR20190029764A (ko) 2019-03-20
US10157457B2 (en) 2018-12-18

Similar Documents

Publication Publication Date Title
TWI729186B (zh) 晶圓中開口尺寸之光學量測
TWI805857B (zh) 用於特性化一樣品之系統及方法
KR101680558B1 (ko) 결함 관찰 방법 및 결함 관찰 장치
TWI600897B (zh) 用於偵測晶圓上之缺陷之電腦實施方法、非暫時性電腦可讀媒體及系統
JPWO2007074770A1 (ja) 画像解析によって欠陥検査を行う欠陥検査装置
JP2005285746A (ja) 走査型電子顕微鏡を用いた試料の観察方法及びその装置
KR20120131203A (ko) 검사 방법 및 그 장치
JP2019194670A (ja) 光学撮像システムのオートフォーカス用レンジ弁別化装置
TWI733877B (zh) 步階大小及鍍金屬厚度之光學量測
US10168524B2 (en) Optical measurement of bump hieght
TWI751184B (zh) 產生一樣本之三維(3-d)資訊之方法及三維(3-d)量測系統
TWI769172B (zh) 使用一光學顯微鏡產生一樣本之三維(3-d)資訊之方法
JP5891717B2 (ja) 穴の内部検査装置、穴の内部検査方法、およびプログラム
TWI790758B (zh) 應用軸向色差的對焦方法及使用該方法的光學檢測架構
JP3566625B2 (ja) プローブ痕深さ測定装置
CN117252915A (zh) 一种基于改进梯度加权的零件图像高精度聚焦方法及装置