TW201812297A - 用以檢測病原性微生物之方法及套組 - Google Patents

用以檢測病原性微生物之方法及套組 Download PDF

Info

Publication number
TW201812297A
TW201812297A TW106130237A TW106130237A TW201812297A TW 201812297 A TW201812297 A TW 201812297A TW 106130237 A TW106130237 A TW 106130237A TW 106130237 A TW106130237 A TW 106130237A TW 201812297 A TW201812297 A TW 201812297A
Authority
TW
Taiwan
Prior art keywords
virus
enzyme
pathogenic microorganism
reaction product
substance
Prior art date
Application number
TW106130237A
Other languages
English (en)
Inventor
野地博行
田端和仁
Original Assignee
國立硏究開發法人科學技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立硏究開發法人科學技術振興機構 filed Critical 國立硏究開發法人科學技術振興機構
Publication of TW201812297A publication Critical patent/TW201812297A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2334/00O-linked chromogens for determinations of hydrolase enzymes, e.g. glycosidases, phosphatases, esterases
    • C12Q2334/20Coumarin derivatives
    • C12Q2334/224-Methylumbelliferyl, i.e. beta-methylumbelliferone, 4MU
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/924Hydrolases (3) acting on glycosyl compounds (3.2)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

提供一種病原性微生物之檢測方法,其係作為可利用於為了高敏感度地檢測流感病毒等之病原性微生物的技術,而檢測生物樣品中之病原性微生物的方法,其包含:導入步驟,其係於形成有可收容該病原性微生物的複數個收容部的下層部、及與該下層部中之形成有該收容部的面對向的上層部之間的空間中,導入親水性溶媒的步驟,而該親水性溶媒含有該生物樣品及會成為利用存在於該病原性微生物之表面或內部的酵素的反應之基質的物質;封入步驟,其係於該空間中導入疏水性溶媒,而於該收容部內,形成經疏水性溶媒被覆且包含該病原性微生物及該物質的親水性溶媒之液滴的步驟;及檢測步驟,其係光學性地檢測該液滴中的藉由該酵素與該物質之反應所生成的反應生成物的步驟,其中該親水性溶媒具有較該反應生成物之酸解離常數(pKa)還大的pH值。

Description

用以檢測病原性微生物之方法及套組
本發明係關於用以檢測病原性微生物之方法及套組。更詳言之,係關於在經疏水性溶媒被覆的親水性溶媒之極小容積中,藉由光學性地檢測利用病原性微生物之表面或內部之酵素的反應的結果生成的反應生成物,而進行病原性微生物的檢測的方法等。
近年來,已開發使用免疫層析法(Immunochromatography)的簡易流感病毒(Influenza virus)檢査套組(參照專利文獻1)。使用免疫層析法的方法由於可於數分鐘至數十分鐘間檢測出流感病毒,而被活用於感染的診斷或治療等。
又,歷來,已知有基於為流感病毒具有的酵素的神經胺糖酸酶(neuraminidase)與顯色基質的反應,而進行光學性地檢測流感病毒的技術(參照專利文獻2、3)。就顯色基質而言,已使用例如,4-甲基繖形基-α-D-神經胺糖酸(4-Methylumbelliferyl-N-acetyl-α-D-neuraminic acid:4MU-NANA,參照專利文獻2)、或4-烷氧基-N-乙醯基神經胺糖酸或4,7-二烷氧基-N-乙醯基神經胺糖酸之衍生物(參照專利文獻3)等。例如,於使用4MU-NANA作為顯色基質的方法,係藉由利用神經胺糖 酸酶的4MU-NANA之分解,而有為螢光物質的4-甲基傘形花內酯(4-methylumbelliferon)的生成。可基於所生成的4-甲基傘形花內酯之量,而算出神經胺糖酸酶之酵素活性值,且可進一步基於酵素活性值,而定量流感病毒之粒子數。
與本發明相關,而非專利文獻1已記載使用液滴係經油包覆,且可自外部直接接觸液滴的飛升(femtoliter)級數之液滴的陣列,而進行一分子酵素試驗的方法。
先前技術文獻 專利文獻
專利文獻1 日本特開2008-275511號
專利文獻2 日本特開2011-139656號
專利文獻3 日本特表2002-541858號
非專利文獻
非專利文獻1 S. Sakakihara等人,Lab Chip, 2010, 10, 3355-3362
發明概要
基於上述之免疫層析法的流感病毒之檢測方法雖為簡便,但為了檢測,需要有103~104pfu/ml左右的病毒,有所謂檢測敏感度低的問題。
於是,本發明之主要目的為提供可利用於為了高敏感度地檢測流感病毒等之病毒的技術。
為了解決上述課題,本發明提供以下之[1]~[25]。
[1]一種方法,其係檢測自感染病原性微生物的對象或有懷疑感染的對象所分離的生物樣品中之該病原性微生物的方法,其包含:導入步驟,其係於可收容該病原性微生物的複數個收容部藉由具有疏水性的表面的側壁彼此被間隔所形成的下層部、及與該下層部中之形成有該收容部的面對向的上層部之間的空間中,導入親水性溶媒的步驟,而該親水性溶媒含有該生物樣品及會成為利用存在於該病原性微生物之表面或內部的酵素的反應之基質的物質;封入步驟,其係於該空間中導入疏水性溶媒,而於該收容部內,形成經疏水性溶媒被覆且包含該病原性微生物及該物質的親水性溶媒之液滴的步驟;及檢測步驟,其係光學性地檢測該液滴中的藉由該酵素與該物質之反應所生成的反應生成物的步驟;其中該親水性溶媒具有較該反應生成物之酸解離常數(pKa)還大的pH值。
[2]如[1]之方法,其進一步包含基於該反應生成物之檢測強度,而決定該病原性微生物的數目及/或亞型的步驟。
[3]如[1]或[2]之方法,其中該病原性微生物為流感病毒,該酵素為神經胺糖酸酶,該物質為4-甲基繖形基-α-D-神經胺糖酸(4-Methylumbelliferyl-N-acetyl-α-D-neuraminic acid),該反應生成物為4-甲基傘形花內酯。
[4]如[1]或[2]之方法,其中該病原性微生物為選自包含冠狀病毒(Coronavirus)、嚴重急性呼吸道症候群(SARS)冠狀病毒、中東呼吸道症候群(MERS)病毒、腮腺炎病毒(mumps virus)、麻疹病毒、立百病毒(Nipah virus)、犬瘟熱病毒(Canine distemper virus)、人類免疫不全病毒(HIV)、B型肝炎病毒、人類T細胞白血病病毒(HTLV)、伊波拉病毒(Ebola virus)、C型肝炎病毒、拉薩熱病毒(Lassa virus)、漢他病毒(Hantavirus)、狂犬病病毒、日本腦炎病毒、黃熱病毒、登革熱病毒(Dengue virus)、德國麻疹病毒(Rubella virus)、輪狀病毒(Rotavirus)及諾羅病毒(Norovirus)之群組的一種以上,該酵素為選自包含紅血球凝集素酯酶(Hemagglutinin esterase)、神經胺糖酸酶、反轉錄酶及RNA依賴性RNA聚合酶之群組的一種以上。
[5]如[1]或[2]之方法,其中該物質為選自包含含4-甲基傘形花內酯(4-Methylumbelliferone)的衍生物、含螢光素(Fluorescein)的衍生物、含試鹵靈(Resorufin)的衍生物及含玫瑰紅(Rhodamine)的衍生物之群組的一種以上。
[6]一種方法,其係診斷有無病原性微生物感染的方法,其包含: 分離步驟,其係自有懷疑感染的對象分離生物樣品的步驟;導入步驟,其係於可收容該病原性微生物的複數個收容部藉由具有疏水性的表面的側壁彼此被間隔所形成的下層部、及與該下層部中之形成有該收容部的面對向的上層部之間的空間,導入親水性溶媒的步驟,而該親水性溶媒含有該生物樣品及會成為利用存在於該病原性微生物之表面或內部的酵素的反應之基質的物質;封入步驟,其係於該空間中導入疏水性溶媒,而於該收容部內,形成經疏水性溶媒被覆且包含該病原性微生物及該物質的親水性溶媒之液滴的步驟;及檢測步驟,其係光學性地檢測該液滴中的藉由該酵素與該物質之反應所生成的反應生成物的步驟,(其中,該反應生成物之檢測係表示該述病原性微生物之感染)。
[7]如[6]之方法,其中該親水性溶媒具有較該反應生成物之酸解離常數(pKa)還大的pH值。
[8]如[6]或[7]之方法,其進一步包含基於該反應生成物之檢測強度,而決定該病原性微生物的數目及/或亞型的步驟。
[9]如[6]至[8]中任一項之方法,其中該病原性微生物為流感病毒,該酵素為神經胺糖酸酶,該物質為4-甲基繖形基-α-D-神經胺糖酸(4-Methylumbelliferyl-N-acetyl-α-D-neuraminic acid),該反應生成物為4-甲基傘形花內酯。
[10]如[6]至[8]中任一項之方法,其中該病原性微生物為選自包含冠狀病毒、嚴重急性呼吸道症候群(SARS)冠狀病毒、中東呼吸道症候群(MERS)病毒、腮腺炎病毒、麻疹病毒、立百病毒、犬瘟熱病毒、人類免疫不全病毒(HIV)、B型肝炎病毒、人類T細胞白血病病毒(HTLV)、伊波拉病毒、C型肝炎病毒、拉薩熱病毒、漢他病毒、狂犬病病毒、日本腦炎病毒、黃熱病毒、登革熱病毒、德國麻疹病毒、輪狀病毒及諾羅病毒之群組的一種以上,該酵素為選自包含紅血球凝集素酯酶、神經胺糖酸酶、反轉錄酶及RNA依賴性RNA聚合酶之群組的一種以上。
[11]如[6]至[8]中任一項之方法,其中該物質為選自包含含4-甲基傘形花內酯(4-Methylumbelliferone)的衍生物、含螢光素(Fluorescein)的衍生物、含試鹵靈(Resorufin)的衍生物及含玫瑰紅(Rhodamine)的衍生物之群組的一種以上。
[12]一種方法,其係檢測自感染病原性微生物的對象或有懷疑感染的對象所分離的生物樣品中之該病原性微生物之藥劑感受性的方法,其包含:導入步驟,其係於可收容該病原性微生物的複數個收容部藉由具有疏水性的表面的側壁彼此被間隔所形成的下層部、及與該下層部中之形成有該收容部的面對向的上層部之間的空間,導入親水性溶媒的步驟,而該親水性溶媒含有該生物樣品、會成為利用存在於該病原性 微生物之表面或內部的酵素的反應之基質的物質、及該酵素之抑制劑;封入步驟,其係於該空間中導入疏水性溶媒,而於該收容部內,形成經疏水性溶媒被覆且包含該病原性微生物、該物質及該抑制劑的親水性溶媒之液滴的步驟;檢測步驟,其係光學性地檢測該液滴中的藉由該酵素與該物質之反應所生成的反應生成物的步驟,(其中,該抑制劑之存在下的該反應生成物之檢測強度較該抑制劑之非存在下的該反應生成物之檢測強度還減少的情形,表示該病原性微生物對該抑制劑具有感受性)。
[13]如[12]之方法,其中該親水性溶媒具有較該反應生成物之酸解離常數(pKa)還大的pH值。
[14]如[12]或[13]之方法,其中該病原性微生物為流感病毒,該酵素為神經胺糖酸酶,該物質為4-甲基繖形基-α-D-神經胺糖酸(4-Methylumbelliferyl-N-acetyl-α-D-neuraminic acid),該反應生成物為4-甲基傘形花內酯,該抑制劑為神經胺糖酸酶抑制劑。
[15]一種方法,其係篩選抗病原性微生物藥劑之方法,其包含:導入步驟,其係於可收容病原性微生物的複數個收容部藉由具有疏水性的表面的側壁彼此被間隔所形成的下層部、及與該下層部中之形成有該收容部的面對向的上層部之間的空間,導入親水性溶媒的步驟,而該親水性溶媒含有該病原性微生物、會成為利用存在於該病原 性微生物之表面或內部的酵素的反應之基質的物質、及候補化合物;封入步驟,其係於該空間中導入疏水性溶媒,而於該收容部內,形成經疏水性溶媒被覆且包含該病原性微生物、該物質及該候補化合物的親水性溶媒之液滴的步驟;檢測步驟,其係光學性地檢測該液滴中的藉由該酵素與該物質之反應所生成的反應生成物的步驟,(其中,該候補化合物之存在下的該反應生成物之檢測強度較該候補化合物之非存在下的該反應生成物之檢測強度還減少的情形,表示該候補化合物具有抗病原性微生物活性)。
[16]如[15]之方法,其中該親水性溶媒具有較該反應生成物之酸解離常數(pKa)還大的pH值。
[17]如[15]或[16]之方法,其中該病原性微生物為流感病毒,該酵素為神經胺糖酸酶,該物質為4-甲基繖形基-α-D-神經胺糖酸(4-Methylumbelliferyl-N-acetyl-α-D-neuraminic acid),該反應生成物為4-甲基傘形花內酯,神經胺糖酸酶抑制劑被篩選作為該候補化合物。
[18]一種套組,其係用以檢測自感染病原性微生物的對象或有懷疑感染的對象所分離的生物樣品中之該病原性微生物的套組,其包含:陣列,其具備可收容該病原性微生物的複數個收容部藉由具有疏水性的表面的側壁彼此被間隔所形成的下 層部、及對該下層部中之形成有該收容部的面間隔空間而對向的上層部;會成為利用存在於該病原性微生物之表面或內部的酵素的反應之基質的物質;具有較利用該酵素與該物質之反應所生成的反應生成物之酸解離常數(pKa)還大的pH值的親水性溶媒;及疏水性溶媒。
[19]如[18]之套組,其中該病原性微生物為流感病毒,該酵素為神經胺糖酸酶,該物質為4-甲基繖形基-α-D-神經胺糖酸(4-Methylumbelliferyl-N-acetyl-α-D-neuraminic acid),該反應生成物為4-甲基傘形花內酯。
[20]如[18]之套組,其中該病原性微生物為選自包含冠狀病毒、嚴重急性呼吸道症候群(SARS)冠狀病毒、中東呼吸道症候群(MERS)病毒、腮腺炎病毒、麻疹病毒、立百病毒、犬瘟熱病毒、人類免疫不全病毒(HIV)、B型肝炎病毒、人類T細胞白血病病毒(HTLV)、伊波拉病毒、C型肝炎病毒、拉薩熱病毒、漢他病毒、狂犬病病毒、日本腦炎病毒、黃熱病毒、登革熱病毒、德國麻疹病毒、輪狀病毒及諾羅病毒之群組的一種以上,該酵素為選自包含紅血球凝集素酯酶、神經胺糖酸酶、反轉錄酶及RNA依賴性RNA聚合酶之群組的一種以上。
[21]如[18]之套組,其中該物質為選自包含含4-甲基傘形花內酯(4-Methylumbelliferone)的衍生物、含螢光素(Fluorescein)的衍生物、含試鹵靈(Resorufin)的衍生物及含玫瑰紅(Rhodamine)的衍生物之群組的一種以上。
[22]一種方法,其係於與疏水性溶媒界面接觸的親水性溶媒中,使酵素、與會成為利用該酵素的反應之基質的物質反應,而檢測反應生成物的方法, 其中該親水性溶媒具有較該反應生成物之酸解離常數(pKa)還大的pH值。
[23]如[22]之方法,其中該親水性溶媒含有病原性微生物,其中該酵素為存在於該病原性微生物之表面或內部之具有基質切斷活性的酵素,該物質為顯色基質,光學性地檢測藉由利用該酵素的該顯色基質之切斷而生成的反應生成物。
[24]如[23]之方法,其中該病原性微生物為流感病毒,該酵素為神經胺糖酸酶,該顯色基質為4-甲基繖形基-α-D-神經胺糖酸(4-Methylumbelliferyl-N-acetyl-α-D-neuraminic acid),該反應生成物為4-甲基傘形花內酯。
[25]如[23]之方法,其中該病原性微生物為選自包含冠狀病毒、嚴重急性呼吸道症候群(SARS)冠狀病毒、中東呼吸道症候群(MERS)病毒、腮腺炎病毒、麻疹病毒、立百病毒、犬瘟熱病毒、人類免疫不全病毒(HIV)、B型肝炎病毒、人類T細胞白血病病毒(HTLV)、伊波拉病毒、C型肝炎病毒、拉薩熱病毒、漢他病毒、狂犬病病毒、日本腦炎病毒、黃熱病毒、登革熱病毒、德國麻疹病毒、輪狀病毒及諾羅病毒之群組的一種以上,該酵素為選自 包含紅血球凝集素酯酶、神經胺糖酸酶、反轉錄酶及RNA依賴性RNA聚合酶之群組的一種以上。
[26]如[23]之方法,其中該顯色基質選自包含含4-甲基傘形花內酯(4-Methylumbelliferone)的衍生物、含螢光素(Fluorescein)的衍生物、含試鹵靈(Resorufin)的衍生物及含玫瑰紅(Rhodamine)的衍生物之群組的一種以上。
[27]如[23]至[26]中任一項之方法,其中該親水性溶媒含有自感染該病原性微生物的對象或有懷疑感染的對象所分離的生物樣品。
於本發明中,「病原性微生物」應包含細菌及病毒。就細菌而言,雖未特別限定,但可列舉例如大腸菌群或腸炎弧菌(Vibrio parahaemolyticus)、彎曲桿菌(Campylobacter)、腸桿菌(Enterobacter)、芽孢桿菌(Bacillus)屬細菌。又,就病毒而言,雖未特別限定,但可列舉例如,冠狀病毒、SARS病毒、MARS病毒、流感病毒、腮腺炎病毒、麻疹病毒、立百病毒、犬瘟熱病毒、HIV、B型肝炎病毒、HTLV、伊波拉病毒、C型肝炎病毒、拉薩熱病毒、漢他病毒、狂犬病病毒、黃熱病毒、登革熱病毒、德國麻疹病毒、輪狀病毒及諾羅病毒等。
依據本發明,而提供可利用於為了高敏感度地檢測流感病毒等之病原性微生物的技術。
1‧‧‧陣列
2‧‧‧病毒
3‧‧‧基質
4‧‧‧反應生成物
5‧‧‧酵素
10‧‧‧下層部
11‧‧‧板狀部材
12‧‧‧側壁
13‧‧‧收容部
20‧‧‧上層部
30‧‧‧空間
42‧‧‧親水性溶媒
43‧‧‧疏水性溶媒
圖1係用以說明本發明之病原性微生物檢測方法的導入步驟及封入步驟之圖。
圖2係用以說明藉由病毒之粒子表面存在的酵素與顯色基質之反應的反應生成物之圖。
圖3係顯示檢討了親水性溶媒的pH對檢測敏感度所造成之影響的結果之圖(實施例1)。
圖4係顯示檢討了親水性溶媒之緩衝物質濃度對檢測敏感度所造成之影響的結果之圖(實施例2)。
用以實施發明之形態
以下,針對用以實施本發明的較佳形態,一邊參照圖面一邊進行說明。又,以下說明的實施形態係呈示本發明之代表性實施形態之一例,本發明之範圍並不藉此而被狹義地解釋。
1.病原性微生物檢測方法
本發明之病原性微生物檢測方法係用於為了檢測自感染病原性微生物的對象或有懷疑感染的對象所分離的生物樣品中之病原性微生物。本發明之病原性微生物檢測方法係包含以下之步驟。
(1A)導入步驟,其係於可收容病原性微生物的複數個收容部藉由具有疏水性的表面的側壁彼此被間隔所形成的下層部、及與該下層部中之形成有該收容部的面對向的上層部之間的空間中,導入親水性溶媒的步驟,而該親水性溶媒中包含該生物樣品、及會成為利用存在於該病原性微生物之粒子表面或內部的酵素的反應之基質的物質。
(2A)封入步驟,其係於該空間中導入疏水性溶媒,而於該收容部內,形成經疏水性溶媒被覆且包含該病原性微生物及該物質的親水性溶媒之液滴的步驟。
(3A)檢測步驟,其係光學性地檢測該液滴中的藉由該酵素與該物質之反應所生成的反應生成物的步驟。
於本發明中,生物樣品只要可含有會成為檢測對象的病原性微生物之來自活體的材料,則未特別限定。就生物樣品而言,可列舉例如,鼻腔吸引液、鼻腔擦拭液、咽頭擦拭液、氣管擦拭液、唾液、喀痰、血液(包含全血、血清及血漿)、尿、細胞或組織、臟器的抽出液等。
病原性微生物係於表面或內部具有酵素者,只要會生成利用該酵素的反應之結果可光學性地檢測的反應生成物,則未特別限定。病原性微生物更具體而言,係於表面或內部有具有對顯色基質之基質切斷活性的酵素,且藉由利用該酵素切斷顯色基質而使作為顯色團的反應生成物游離者。又,病原性微生物亦可為於表面或內部有具有使為基質的單體結合而合成聚合物的活性的酵素,且伴隨著利用該酵素的聚合物的合成而使作為顯色團的反應生成物生成者。就病原性微生物與其酵素之組合而言,可例示例如以下。
[導入步驟(A1)]
參照圖1A而說明導入步驟(A1)。於本實施形態,係使用陣列,而針對實施本發明之病原性微生物檢測方法的情形進行說明,該陣列係具備可收容病原性微生物(以下,以病毒為例作說明)的複數個收容部藉由具有疏水性的表面的側壁彼此被間隔所形成的下層部、及對該下層部中之形成有前述收容部的面間隔空間而對向的上層部。
於陣列1中,下層部10係可收容病毒粒子的複數個收容部13藉由具有疏水性之表面的側壁12彼此被間隔而形成。又,上層部20係與下層部10中之形成有收容部13的面對向。
於本步驟,係於下層部10與上層部20之間的空間30中,導入親水性溶媒42。於親水性溶媒42,可包含來自生物樣品的病毒2。又,於親水性溶媒42,包含會成為利用存在於病毒2之粒子表面(或內部)的酵素的反應之基質的物質3(以下稱為「基質3」)。親水性溶媒42係例如可自形成於上層部20及下層部10之至少一者的貫通孔(圖未呈示)導入空間30內。被導入空間30內的親水性溶媒42係如圖所示,流向平行於下層部10與上層部20對向之面的方向。
就親水性溶媒42而言,係使用水。親水性溶媒42具有較由基質3所產生的反應生成物之酸解離常數(pKa)還大的pH值(詳細說明於下文)。
就基質3而言,只要會於與酵素之反應後生成具有與反應前相異的光學特性之反應生成物,則可使用在反應前後吸光度或旋光度會變化的物質、或於反應後會成為呈現螢光的物質。關於基質3,係詳細說明於下文。
親水性溶媒42亦可含有對於酵素與基質3之反應的最適化為必要的緩衝物質。再者,藉由將親水性溶媒42中之緩衝物質設定為指定濃度以上,而可於檢測步驟(3)中使反應生成物之檢測更高敏感度化(詳細說明於下文)。
就緩衝物質而言,並未特別限定,但配合螢光色素的pKa,而可使用MES(2-啉乙磺酸(2-Morpholinoethanesulfonic acid))、ADA(N-(2-乙醯胺基)亞胺二乙酸(N-(2-Acetamido)iminodiacetic acid))、PIPES(哌-1,4-雙(2-乙磺酸)(Piperazine-1,4-bis(2-ethanesulfonic acid)))、ACES(N-(2-乙醯胺基)-2-胺基乙磺酸(N-(2-Acetamido)-2-aminoethanesulfonic acid))、BES(N,N-雙(2-羥基乙基)-2-胺基乙磺酸(N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid))、TES(N-參(羥基甲基)甲基-2-胺基乙磺酸(N-Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid))、HEPES(4-(2-羥基乙基)-1-哌乙磺酸(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid))等之所謂的古德緩衝劑(Good's Buffer)、或參(羥甲基)胺基 甲烷(Tris(hydroxymethyl)aminomethane))、DEA(二乙醇胺(Diethanolamine))等。
又,親水性溶媒42亦可含有界面活性劑。藉由含有界面活性劑,而會有可使存在於病毒2之內部的酵素於表面露出的情形。又,藉由含有界面活性劑,而會有親水性溶媒42變得容易被導入至空間30及收容部13內的傾向。
就界面活性劑而言,並未特別限定,但可列舉例如TWEEN20(CAS編號:9005-64-5,聚氧乙烯山梨醇酐單月桂酸酯(polyoxyethylene sorbitan monolaurate))及Triton X-100(CAS編號:9002-93-1,一般名聚乙二醇單-4-辛基苯基醚(n≒10))等。界面活性劑添加至第一溶媒20的濃度並未特別限定,但較佳為0.01~1%。
再者,就界面活性劑而言,可廣泛使用陰離子性界面活性劑、陽離子性界面活性劑、非離子性界面活性劑、兩性離子界面活性劑、來自天然的界面活性劑等。
就陰離子性界面活性劑而言,例如,可分類為羧酸型、硫酸酯型、磺酸型、磷酸酯型。其中,具體而言,可列舉例如,十二烷基硫酸鈉、月桂酸鈉、α-磺基脂肪酸甲基酯鈉、十二烷基苯磺酸鈉、十二烷基乙氧基硫酸鈉(sodium dodecyl ethoxylate sulfate)等,其中又較佳為使用十二烷基苯磺酸鈉。
就陽離子性界面活性劑而言,例如,可分類為第四級銨鹽型、烷基胺型、雜環胺型。具體而言,可 列舉例如,硬脂基三甲基氯化銨、二硬脂基二甲基氯化銨、二癸基二甲基氯化銨、十六烷基三吡啶鎓氯化物、十二烷基二甲基苄基氯化銨等。
就非離子界面活性劑而言,可列舉例如,聚氧乙烯烷基醚、聚氧乙烯硬化蓖麻油、聚氧乙烯單脂肪酸酯、聚氧乙烯山梨醇酐單脂肪酸酯、蔗糖脂肪酸酯、聚甘油脂肪酸酯、烷基聚糖苷、N-甲基烷基葡糖醯胺等。其中又於十二烷基醇乙氧基化物(dodecyl alcohol ethoxylate)、壬基酚乙氧基化物(nonylphenol ethoxylate)、月桂醯基二乙醇醯胺(lauroyl diethanol amide)之外,較佳為以Triton X(Triton X-100等)、Pluronic(註冊商標)(Pluronic F-123、F-68等)、Tween(Tween 20、40、60、65、80、85等)、Brij(註冊商標)(Brij 35、58、98等)、Span(Span 20、40、60、80、83、85)的名稱被販售者。
就兩性界面活性劑而言,較佳使用例如,月桂基二甲基胺基乙酸甜菜鹼、十二烷基胺基甲基二甲基磺基丙基甜菜鹼、3-(十四烷基二甲基銨)丙烷-1-磺酸酯等,較佳使用3-[(3-膽醯胺丙基)二甲基銨基]-1-丙烷磺酸酯(CHAPS)、3-[(3-膽醯胺丙基)二甲基銨基]-2-羥基-1-丙烷磺酸酯(CHAPSO)等。
就來自天然的界面活性劑而言,較佳例如卵磷脂、皂素,於被稱為卵磷脂的化合物之中,具體而言,較佳為磷脂醯膽鹼、磷脂醯乙醇胺、磷脂醯肌醇、磷脂醯絲胺酸、磷脂酸、磷脂醯甘油等。又,就皂素而言,較佳為石鹼木(Quillaja)皂素。
藉由本步驟,而病毒2及基質3會進入收容部13。於親水性溶媒42中,病毒2被充分地稀釋為低濃度的情形,進入1個收容部13的病毒2之數目可為0或最大為1。於親水性溶媒42中,於病毒2之濃度更高的情形,1個收容部13中可導入2個以上之病毒2。
[封入步驟(A2)]
參照圖1B來說明封入步驟(2)。於本步驟,於下層部10及上層部20之間的空間30中導入疏水性溶媒43。
疏水性溶媒43係只要是與導入步驟(1)所使用的親水性溶媒42難以混合的溶媒(非混和性之溶媒)即可。就疏水性溶媒43而言,可較佳使用例如選自包含飽和烴、不飽和烴、芳香族烴、矽酮油、全氟碳化物、鹵素系溶媒、及疏水性離子液體之群組的至少1種或包含其之混合物等。就飽和烴而言,可列舉例如鏈烷、環烷等。就鏈烷而言,可列舉例如癸烷、十六烷等。就不飽和烴而言,可列舉例如鯊烯等。就芳香族烴而言,可列舉例如苯、甲苯等。就全氟碳化物而言,可列舉例如Fluorinert(註冊商標)FC40(SIGMA公司製)等。就鹵素系溶媒而言,可列舉例如氯仿、二氯甲烷、氯苯等。疏水性離子液體係指至少在水中不離解的離子液體,可列舉例如,1-丁基-3-甲基咪唑鎓六氟磷酸鹽(1-Butyl-3-methylimidazolium Hexafluorophosphate)等。離子液體係指於室溫中以液體存在的鹽。
疏水性溶媒43亦與親水性溶媒42同樣,只要自形成於上層部20及下層部10之至少一者的貫通孔(圖未呈示)導入空間30內即可。被導入空間30內的疏水性溶媒43係如圖所示,流向平行於下層部10與上層部20對向之面的方向,空間30內之親水性溶媒42被疏水性溶媒43所取代。藉此,而於收容部13內,形成經疏水性溶媒43被覆且包含病毒2及基質3的親水性溶媒42之液滴。
而且,在親水性溶媒42之液滴的極小容積中共存之存在於病毒2的粒子表面或內部的酵素與基質3之反應進行,且反應生成物4生成。參照圖2而詳細地說明。於病毒2之粒子表面或內部係有酵素5存在(圖中顯示了酵素5於病毒表面存在的情形)。若基質3與酵素5接觸並反應,則反應生成物4會生成。顯色生成物4係顯示與基質3相異的光學特性,例如顯示吸光度、旋光度的位移、或發光(螢光)。
藉由本步驟,因病毒2與基質3被封入極小容積之液滴中,而藉由酵素5與基質3之反應,該液滴中反應生成物4於極小容積中生成。因此而認為能夠進行反應生成物4之光學檢測。收容部13之容積(即,親水性溶媒42之液滴的容積)並未特別限定,例如為10aL~100nL,較佳為1fL~1pL。
以病毒2為流感病毒(參照表1),且於基質3使用4-甲基繖形基-α-D-神經胺糖酸(4-Methylumbelliferyl-N-acetyl-α-D-neuraminic acid:4MU-NANA)的情形為例,更具體地進行說明。
於流感病毒之粒子表面係有神經胺糖酸酶(酵素5)存在。若4MU-NANA(基質3)與神經胺糖酸酶接觸並反應,則為螢光物質的4-甲基傘形花內酯(反應生成物4)會生成。
來自4MU-NANA之利用神經胺糖酸酶的水解,而下述式所示之作為呈現螢光的顯色團的4-甲基傘形花內酯(4MU)生成。基質3只要是藉由利用神經胺糖酸酶的神經胺糖酸之水解化而使可光學性地檢測的顯色團游離者,則未限於4MU-NANA,可使用歷來公知者。反應生成物4之4MU係如下述式所示具有羥基。
於本發明之檢測方法,為了使氫自此4MU之羥基脫離,並使4MU成為具有電荷的狀態,將親水性溶媒42之pH值設定為較4MU之酸解離常數(pKa)7.79還大。藉由使氫自4MU之羥基脫離,而經疏水性溶媒43被覆且含於親水性溶媒42之液滴的4MU會因該電荷而無法移行至疏水性溶媒43,結果就成為高濃度地蓄積於親水性溶媒42之液滴中。
即使是親水性溶媒42之pH值較4MU之酸解離常數(pKa)還小的情形,因4MU會成為具有羥基的 狀態,而相較於不具有電荷或者是氫自羥基脫離的情形,電荷係變小。於親水性溶媒42之液滴所含的4MU不具有電荷的情形或者是電荷小的情形,係因4MU會容易移行至與親水性溶媒42界面接觸的疏水性溶媒43,而4MU會自親水性溶媒42之液滴中流失,或者液滴中之4MU濃度會降低。
歷來,神經胺糖酸酶與4MU-NANA之反應係於利用神經胺糖酸酶的酵素反應之最適pH的5附近之pH條件下進行,且於4MU之螢光效率(量子效率)會被最大化之pH的10附近之pH條件下進行了游離的4MU之檢測。相對於此,本發明係使下述之點為技術特徵之一:將神經胺糖酸酶與4MU-NANA之反應及4MU之檢測任一者皆於較4MU之pKa7.79還大的pH條件下進行。
又,基質3與酵素5之反應,係即使是在本步驟之前,若基質3與酵素5接觸則可進行,但於本步驟中,於包含病毒2與基質3的親水性溶媒42之液滴形成之前,生成的反應生成物4並不會被蓄積於極小容積中。因此,於反應生成物4之光學檢測,在封入步驟(2)之前生成的反應生成物4的影響小到可忽視的程度。
除了含4MU的4-甲基繖形基-α-D-神經胺糖酸之外,作為會同樣地發生反應生成物4自親水性溶媒42之液滴中移行至被覆該液滴的疏水性溶媒43之問題的顯色基質,可列舉以下。
包含4-甲基傘形花內酯(4-Methylumbelliferone)的衍生物,4MU-NANA以外者。 其中,「衍生物」係意指於構造中,具有作為「顯色團」之4MU、及藉由與酵素5之反應而被切斷的「基質」之化合物。
含有螢光素(Fluorescein)作為顯色團的衍生物。若與酵素5接觸並反應,則藉由酵素5而基質會被切斷,且為螢光物質之螢光素(pKa:6.4)係作為反應生成物4而游離。於以下呈示螢光素之構造。
含試鹵靈(Resorufin)作為顯色團的衍生物。若與酵素5接觸並反應,則藉由酵素5而基質會被切斷,且為螢光物質的試鹵靈(pKa:6.0)係作為反應生成物4而游離。於以下呈示試鹵靈之構造。
含玫瑰紅(Rhodamine)作為顯色團的衍生物。若與酵素5接觸並反應,則藉由酵素5而基質會被 切斷,且為螢光物質的玫瑰紅(pKa:6.0)係作為反應生成物4而游離。於以下呈示玫瑰紅之構造。
於使用此等之衍生物作為基質3的情形,係將親水性溶媒42之pH值設定為較自衍生物生成的反應生成物4之酸解離常數(pKa)還大。藉此而使各反應生成物4成為具有電荷的狀態,可防止向疏水性溶媒43的移行(漏出),而於親水性溶媒42之液滴中使反應生成物4高濃度地蓄積(參照實施例1)。
再者,反應生成物自親水性溶媒42之液滴中向疏水性溶媒43的漏出,係藉由將親水性溶媒42中之緩衝物質設定為指定濃度以上而可更有效果地防止(參照實施例2)。緩衝物質之濃度係設成例如50mM以上,較佳為100mM以上,更佳為500mM以上,進一步較佳為1M以上。
[檢測步驟(A3)]
於本步驟,係進行在親水性溶媒42之液滴中生成之反應生成物4的光學檢測。
反應生成物4的光學檢測,係可使用能夠檢測基質3與反應生成物4的光學特性之差異的公知手段來進行。藉由以下而可光學性地檢測反應生成物4:例如,使用影像感測器或吸光度計、旋光度計來檢測特定之吸光度或旋光度的位移;藉由使用影像感測器或螢光顯微鏡、螢光測定器來檢測特定之螢光波長。
於病毒2為流感病毒,且於基質3使用4MU-NANA的情形,係進行生成之4MU(反應生成物4)的螢光檢測。
若根據所檢測之反應生成物4(例如4MU)的檢測強度(例如螢光強度),則可決定病毒的粒子數及/或亞型(subtype)。
具體而言,於流感病毒的情形,首先,使用所檢測的螢光強度、及事先作成之規定了螢光強度與神經胺糖酸酶活性之關係的標準曲線,而算出神經胺糖酸酶之酵素活性值。接著,使用所算出的酵素活性值、及事先作成之規定了酵素活性值與病毒粒子數之關係的標準曲線,而定量流感病毒之粒子數。藉此,而除了自對象所分離的生物樣品中是否含有病毒的判定之外,亦可定量地決定病毒量(模擬定量(analog determination)),且可診斷對象中的流感病毒之感染的有無及感染的強度。於標準曲線,亦可使用直接規定了螢光強度與病毒粒子數之關係者。
又,例如流感病毒中,係已知相較於B型流感病毒,而A型流感病毒具有較高的神經胺糖酸酶活 性。而且,本發明人等發現,使用本發明之檢測方法而A型病毒與B型病毒於神經胺糖酸酶活性會有2倍程度的差異,且基於活性值的大小可有效地區別兩者而檢測。在這樣的情形,首先,使用所檢測的螢光強度、及事先作成之規定了螢光強度與神經胺糖酸酶活性之關係的標準曲線,而算出神經胺糖酸酶之酵素活性值。接著,使用所算出的酵素活性值、及事先作成之酵素活性值與亞型之關係式,而可決定流感病毒之亞型。例如若為流感病毒,則若所算出的酵素活性值為基準值以上就判定為A型,若低於基準值則可判定為B型。藉此,而除了自對象所分離的生物樣品中是否含有病毒之判定以外,亦可決定病毒亞型,且可診斷對象中的感染流感病毒之亞型。於關係式,亦可使用直接規定了螢光強度與亞型之關係者。
再者,如上述,於親水性溶媒42中,病毒2被充分地稀釋為低濃度的情形,進入1個收容部13的病毒2之數目可為0或最大為1。此情形,亦可使用有檢測到反應生成物4的收容部13之數目、與未檢測到反應生成物4的收容部13之數目的比率,而根據事先作成之規定了該比率與病毒粒子數之關係的標準曲線來定量性地決定病毒量(數位定量)。
於封入步驟(2)中,係因可使反應生成物4高濃度地蓄積於親水性溶媒42之液滴中,即使是病毒2僅1個粒子進入收容部13的情形,亦可高敏感度地進行反應生成物4之檢測。因此,若依據本發明之檢測方法,則即使 是生物樣品中極微量含有之病毒,亦可高敏感度地檢測,且能夠高精度地決定病原性微生物之量。
又,因藉由使反應生成物4高濃度地蓄積於親水性溶媒42之液滴中,而可獲得高螢光強度,故可於光學檢測中使用感度較低的簡易攝影裝置,可期待能夠以例如智慧型手機所搭載的相機等進行光學檢測。利用智慧型手機所搭載的相機等之簡易攝影裝置的光學檢測,係可使規模較小的醫院或診療所、個人的本發明之病原性微生物之檢測方法的實施容易進行。再者,若利用智慧型手機具備的通信手段,則可將病原性微生物之檢測情報傳送至伺服器,可期待能夠藉由解析蓄積的情報(大數據),而提供作為流行區域、期間及亞型等之把握或預測。
於上述,係以病毒2為流感病毒,且於基質3使用4MU-NANA的情形為例進行了說明。於本發明中,以例如冠狀病毒、嚴重急性呼吸道症候群(SARS)冠狀病毒或者中東呼吸道症候群(MERS)病毒作為檢測對象的情形,於基質3係只要使用會藉由此等病毒表面具有的紅血球凝集素酯酶(酵素5)而受到水解,且使如上述的顯色團(反應生成物4)游離者即可。
又,以例如人類免疫不全病毒(HIV)、B型肝炎病毒或者人類T細胞白血病病毒(HTLV)作為檢測對象的情形,基質3可為藉由此等之病毒於表面或內部具有的反轉錄酶(酵素5)而被聚合化的核酸單體。藉由對核酸單體標示螢光色素,而於藉由聚合之反應生成物的核 酸鏈中,可檢測相較於核酸單體而增加的螢光強度。同樣地,以例如伊波拉病毒、C型肝炎病毒、拉薩熱病毒、漢他病毒、狂犬病病毒、日本腦炎病毒、黃熱病毒、登革熱病毒、德國麻疹病毒、輪狀病毒或者諾羅病毒作為檢測對象的情形,於基質3係可使用對藉由此等之病毒於表面或內部具有的RNA依賴性RNA聚合酶(酵素5)而聚合化的核酸單體標示螢光色素者。又,不限於伴隨著核酸單體之往核酸鏈的聚合而螢光強度增加的構成,只要是反應後與反應前會有不同的光學特性(吸光度、旋光度及螢光等)顯現之構成,即可廣泛採用。
如此地,於本發明之檢測方法中,基質係依作為檢測對象之病原性微生物的表面或內部所具有的酵素,而可適當選擇者。此時,只要因應所選擇的反應生成物之pKa,將導入步驟(1)所使用的親水性溶媒之pH值設計成較該pKa還大即可。
又,即使是例如流感病毒及腮腺炎病毒般地具有相同酵素(神經胺糖酸酶)的病原性微生物,基質也可因應各自的病原性微生物之酵素的基質特異性而作不同的設計。例如,使用4MU-NANA作為用以檢測流感病毒的顯色基質,而使用於作為用以檢測腮腺炎病毒的顯色基質之4MU-NANA中將其藉由水解而生成的顯色團自4MU變更為螢光素等之其他螢光物質者。如此地,藉由變更基質的一部分,而各自的顯色基質之對神經胺糖酸酶的親和性,即使為同一種酵素,亦於對流感病毒酵素與對腮腺炎病毒的酵素之間會變化。因此,本發明之檢測方法亦能夠將兩者區別而檢測。
2.病原性微生物之藥劑感受性的檢測方法
本發明之檢測自病原性微生物感染的對象或有懷疑感染的對象所分離的生物樣品中之病原性微生物的藥劑感受性的方法,係包含以下之步驟。
(B1)導入步驟,其係於可收容病原性微生物的複數個收容部藉由具有疏水性的表面的側壁彼此被間隔所形成的下層部、及與該下層部中之形成有該收容部的面對向的上層部之間的空間,導入親水性溶媒的步驟,而該親水性溶媒含有前述生物樣品、及會成為利用存在於前述病原性微生物之表面或內部的酵素的反應之基質的物質的前述酵素之抑制劑。
(B2)封入步驟,其係於前述空間中導入疏水性溶媒,於前述收容部內中,形成經疏水性溶媒被覆且包含前述病原性微生物與前述物質及前述抑制劑的親水性溶媒之液滴的步驟。
(B3)檢測步驟,其係光學性地檢測該液滴中的藉由該酵素與該物質之反應所生成的反應生成物的步驟,(其中,前述抑制劑之存在下的前述反應生成物之檢測強度較前述抑制劑之非存在下的前述反應生成物之檢測強度還減少的情形,表示前述病原性微生物對前述抑制劑具有感受性)。
[導入步驟(B1)]
本發明之病原性微生物之藥劑感受性的檢測方法之導入步驟(B1),係僅於成為藥劑感受性的評價對象的酵素抑制劑係包含於親水性溶媒之點,與上述之病 原性微生物檢測方法的導入步驟(A1)不同。於導入步驟(B1),係除了病原性微生物及基質之外,存在於病原性微生物之表面或內部的酵素之抑制劑會進入收容部。
[封入步驟(B2)]
本發明之病原性微生物的藥劑感受性之檢測方法的封入步驟(B2)之操作,係與上述之病原性微生物檢測方法的封入步驟(A2)相同。於封入步驟(B2),係在收容部內形成經疏水性溶媒被覆且包含病原性微生物、基質及抑制劑的親水性溶媒之液滴。
[檢測步驟(B3)]
於本發明之病原性微生物的藥劑感受性之檢測方法的檢測步驟(B3),係與上述之病原性微生物檢測方法之檢測步驟(A3)同樣地,進行親水性溶媒之液滴中生成的反應生成物之光學檢測。
將抑制劑之存在下的前述反應生成物之檢測強度,與抑制劑之非存在下的前述反應生成物之檢測強度比較,而前者較後者還減少的情形,顯示藉由抑制劑而親水性溶媒之液滴中的反應生成物之生成被抑制。即,因病原性微生物具有的酵素被抑制,而顯示病原性微生物對抑制劑具有感受性。
另一方面,抑制劑之非存在下的前述反應生成物之檢測強度,與抑制劑之非存在下的前述反應生成物之檢測強度與比較為同等的情形,顯示親水性溶媒之液滴中的反應生成物之生成未被抑制劑抑制。即,因病原性微生物具有的酵素未被抑制,而顯示病原性微生物對抑制劑具有耐性。
具體而言,於病原性微生物為流感病毒的情形,係例如使用4MU-NANA作為基質,使用神經胺糖酸酶抑制劑(奧司他韋(Oseltamivir)、扎那米韋(Zanamivir)等)作為抑制劑,而針對使神經胺糖酸酶抑制劑之存在下與非存在下之條件以外相同的2試驗組群,進行生成的4MU之螢光檢測。將神經胺糖酸酶抑制劑之存在下的4MU之檢測強度,與神經胺糖酸酶抑制劑之非存在下的4MU之檢測強度比較,前者較後者還減少的情形,顯示藉由神經胺糖酸酶抑制劑而親水性溶媒之液滴中的4MU之生成被抑制。即,因流感病毒具有的神經胺糖酸酶被抑制,而顯示流感病毒對神經胺糖酸酶抑制劑具有感受性。
另一方面,神經胺糖酸酶抑制劑之非存在下的4MU之檢測強度,與神經胺糖酸酶抑制劑之非存在下的4MU之檢測強度比較為同等的情形,顯示親水性溶媒之液滴中的4MU之生成並未藉由神經胺糖酸酶抑制劑而被抑制。即,因流感病毒具有的神經胺糖酸酶未被抑制,而顯示流感病毒對神經胺糖酸酶抑制劑具有耐性。
就可進行此種藥劑感受性之檢測的病原微生物與酵素抑制劑之組合而言,例如,將冠狀病毒、嚴重急性呼吸道症候群(SARS)冠狀病毒或者中東呼吸道症候群(MERS)病毒作為檢測對象的情形,可列舉此等之病毒於表面具有的紅血球凝集素酯酶(HE)之抑制劑(HE抗體、3,4-二氯異香豆素(3,4-dichloroisocoumarin)、9-O-乙醯化唾液酸多糖(9-O-Acetylated Polysialoside)等)。
又,例如,將人類免疫不全病毒(HIV)、B型肝炎病毒或人類T細胞白血病病毒(HTLV)作為檢測對象的情形,可列舉此等之病毒於表面或內部具有的反轉錄酶之抑制劑(立妥威(Retrovir)(GlaxoSmithKline.Inc.、齊多夫定(zidovudine)/AZT)、惠妥滋(Videx)(Bristol-Myers Squibb.Inc.、地達諾新(didanosine)/ddI)、癒濾(Hivid)(Hoffmann-La Roche公司)(扎西他濱(Zalcitabine)/ddC)、滋利特(Zerit)(Bristol-Myers Squibb公司、斯達烏丁(Stavudine)/d4T)、益平維(Epivir)(GlaxoSmithKline公司,拉米夫定(lamivudine)/3TC)及卡貝滋(Combivir)(GlaxoSmithKline公司,齊多夫定/拉米夫定)奈弗拉平(Virammune)(Boehringer-Ingelheim Pharmaceuticals.Inc.、尼維拉平(Nevirapine))、地拉韋啶Rescriptor (Pharmacia & Upjohn公司、Delavirdine)及Sustiva(DuPont PHARMA.Co.、依法韋侖(Efavirenz))等)。
同樣地,例如,將伊波拉病毒、C型肝炎病毒、拉薩熱病毒、漢他病毒、狂犬病病毒、日本腦炎病毒、黃熱病毒、登革熱病毒、德國麻疹病毒、輪狀病毒或諾羅病毒作為檢測對象的情形,可列舉此等之病毒於表面或內部具有的RNA依賴性RNA聚合酶之抑制劑(法匹拉韋(Favipiravir)、利巴韋林(Ribavirin)等)。
再者,例如,將大腸菌群、腸炎弧菌、彎曲桿菌、腸桿菌或芽孢桿菌屬菌作為檢測對象的情形,可列舉此等之細菌於表面或內部具有的半乳糖苷酶之抑制劑(栗精胺(Castanospermine)、環己烯四醇β環氧化物 (Conduritol B Epoxide)、Bromoconduritol、2-去氧-D-半乳糖(2-Deoxy-D-Galactose)等)、葡萄醣醛酸酶之抑制劑(醋葡內酯(Aceglatone)、D-葡萄糖二酸-1,4-內酯(D-glucaro-1,4-lactone)、溶血磷脂類(lysophospholipids)等)、胰凝乳蛋白酶、胰蛋白酶之抑制劑(來自大豆、雞蛋等的胰蛋白酶抑制劑、Arg4-Met5-Marinostatin、苯甲基磺醯氟(Phenylmethylsulfonyl fluoride)、胺乙基苯甲基磺醯氟(Aminoethyl benzylsulfonyl fluoride)、抑肽酶(Aprotinin)、甲苯磺醯離胺酸氯甲基酮(Tosyl lysine chloromethyl ketone)、甲苯磺醯苯丙胺酸氯甲基酮(tosyl phenylalanine chloromethyl ketone)等)、木糖苷酶之抑制劑(栗精胺、甲苯乙脒(Xyl-amidine)等)。
如此,於本發明之病原性微生物之藥劑感受性的檢測方法中,抑制劑係依作為檢測對象的病原性微生物於表面或內部具有的酵素而可適當選擇者。
3.抗病原性微生物藥劑之篩選方法
本發明之篩選抗病原性微生物藥劑的方法,係包含以下之步驟。
(C1)導入步驟,其係於可收容病原性微生物的複數個收容部藉由具有疏水性的表面的側壁彼此被間隔所形成的下層部、及與該下層部中之形成有該收容部的面對向的上層部之間的空間,導入親水性溶媒的步驟,而該親水性溶媒含有前述病原性微生物、會成為利用存在於前述病原性微生物之表面或內部的酵素的反應之基質的物質、及候補化合物。
(C2)封入步驟,其係於前述空間中導入疏水性溶媒,而於前述收容部內,形成經疏水性溶媒被覆且包含前述病原性微生物、前述物質及前述候補化合物的親水性溶媒之液滴的入步驟。
(C3)檢測步驟,其係光學性地檢測該液滴中的藉由該酵素與該物質之反應所生成的反應生成物的步驟,(其中,前述候補化合物之存在下的前述反應生成物之檢測強度,較前述候補化合物之非存在下的前述反應生成物之檢測強度還減少的情形,表示前述候補化合物具有抗病原性微生物活性)。
[導入步驟(C1)]
本發明之抗病原性微生物藥劑之篩選方法之導入步驟(C1),係僅於成為抗病原性微生物活性的評價對象的候補化合物含於親水性溶媒的點,與上述之病原性微生物檢測方法之導入步驟(A1)不同。於導入步驟(C1),係除了病原性微生物及基質之外,候補化合物會進入收容部。
[封入步驟(C2)]
本發明之抗病原性微生物藥劑之篩選方法的封入步驟(C2)之操作,係與上述之病原性微生物檢測方法之封入步驟(A2)相同。於封入步驟(C2),於收容部內形成經疏水性溶媒被覆且包含病原性微生物、基質及候補化合物的親水性溶媒之液滴。
[檢測步驟(C3)]
於本發明之抗病原性微生物藥劑的篩選方法的檢測步驟(C3),係與上述之病原性微生物檢測方法之檢測步驟(A3)同樣地,進行親水性溶媒之液滴中生成的反應生成物之光學檢測。
將候補化合物之存在下的前述反應生成物之檢測強度,與候補化合物之非存在下的前述反應生成物之檢測強度比較,而前者較後者還減少的情形,顯示藉由候補化合物而親水性溶媒之液滴中的反應生成物之生成被抑制。即,因病原性微生物具有的酵素被抑制,而顯示候補化合物具有抗病原性微生物活性。
另一方面,候補化合物之非存在下的前述反應生成物之檢測強度與候補化合物之非存在下的前述反應生成物之檢測強度比較為同等的情形,顯示親水性溶媒之液滴中的反應生成物之生成並未藉由抑制劑而被抑制。即,因病原性微生物具有的酵素未被抑制,而顯示候補化合物不具有抗病原性微生物活性。
4.病原性微生物檢測套組
本發明之套組,係用以檢測自感染病原性微生物的對象或有懷疑感染的對象所分離的生物樣品中之病原性微生物的套組,其包含:陣列,其具備可收容前述病原性微生物的複數個收容部藉由具有疏水性的表面的側壁彼此被間隔所形成的下層部、及對前述下層部中之形成有前述收容部的面間隔空間而對向的上層部; 會成為利用存在於前述病原性微生物之粒子表面或內部的酵素的反應之基質的物質;具有較利用前述酵素與前述物質之反應所生成的反應生成物之酸解離常數(pKa)還大的pH值的親水性溶媒;及疏水性溶媒。
本發明之套組,係包含上述陣列1、基質3、親水性溶媒42及疏水性溶媒43。關於基質3、親水性溶媒42及疏水性溶媒43,係同已說明者,故以下進一步詳細地說明陣列1之構成。
陣列1之下層部10係具備板狀部材11及具有疏水性之表面的側壁12。於下層部10,係藉由側壁12而複數之收容部13彼此被間隔而形成。
板狀部材11較佳為具有親水性表面。「親水性表面」係指與親水性溶媒之親和性較與疏水性溶媒之親和性還高的表面。就板狀部材11而言,只要為固體材料即可,但可使用例如玻璃、矽、高分子樹脂等。
側壁12被設置於板狀部材11之表面上,較佳為設置於親水性表面上,係將複數之收容部13的各個間隔的構造物。側壁12係具有疏水性的表面。「疏水性」在此以與「親油性」相同的意義使用,係指與疏水性溶媒的親和性較與親水性溶媒之親和性還高。
又,側壁12係只要其表面,即與上層部20對向的面為疏水性即可,側面,即收容部13內之內壁可為疏水性,亦可為親水性。
例如,側壁12係可藉由親水性之構造物、及形成於其表面的疏水性層所構成。親水性之構造物可使用例如玻璃、矽、高分子樹脂等。疏水性層可使用例如撥水性之樹脂、氟系高分子樹脂等。就氟系高分子樹脂而言,可列舉例如非晶氟樹脂等。非晶氟樹脂係具有高疏水性,且因所謂對活體樣品的毒性低的理由,而被較佳使用。
就上述非晶氟樹脂而言,例如,可適當使用選自CYTOP(註冊商標)、TEFLON(註冊商標)AF2400、及TEFLON(註冊商標)AF1600的至少一種。其中,又因所謂微細加工為容易的理由,最佳為CYTOP(註冊商標)。
又例如,側壁12亦可藉由疏水性之材料構成。就側壁12而言,可使用例如氟系高分子樹脂、對二甲苯系高分子樹脂等。就氟系高分子樹脂而言,可列舉例如非晶氟樹脂等。就非晶氟樹脂而言,可適當使用上述之樹脂。
側壁12只要是被構成為如於板狀部材11上形成有複數個收容部13即可,例如亦可為於收容部13被形成之位置有孔形成的板形狀之構造物。
收容部13係將板狀部材11之表面的一部分作為底面,底面為親水性。藉由收容部13之底面及側面所包圍的區域的形狀,亦可為例如圓柱形狀、角柱形狀等。
於本實施形態,收容部13之底面為親水性,且側壁12之表面為疏水性。藉此,於導入步驟(1)中, 可將親水性溶媒42效率佳地導入收容部13之中,並且於封入步驟(2)中可防止疏水性溶媒43進入收容部13中。
上層部20係可使用例如玻璃、矽、高分子樹脂等。上層部20,係對下層部10中之形成有收容部13的面間隔空間30而對向。即,於側壁12與疏水性層22之間有空間30。此空間30構成流路。藉由此構成,而陣列1係成為流通池(flow cell)構造。
空間30係於下層部10與上層部20之間能夠作為流路使用,該流路係用以將流體流通於平行於下層部10與上層部20彼此對向之面的方向。
於下層部10或上層部20,亦可形成用以於空間30導入流體的貫通孔(圖未呈示)。例如,下層部10亦可具有形成收容部13的區域、及未形成收容部13的區域。而且,亦可於下層部10中之未形成收容部13的區域、或上層部20中之與此區域為對向的部分形成貫通孔。
於本實施形態中,構成空間30之表面的上層部20之表面為疏水性,空間30之下面為側壁12之疏水性表面及收容部13。據此,空間30之中,收容部13之底面以外的部分全部成為疏水性。藉此,於導入步驟(1)中,可效率佳地將親水性溶媒42導入各收容部13內。又,於封入步驟(2)中,不會有疏水性溶媒43進入到各收容部13內的情形。因此,藉由將疏水性溶媒43導入空間30內,而可使於各收容部13有效率地形成液滴。
[實施例] [試驗例1:親水性溶媒之pH值之檢討]
藉由以下之步驟,而檢討了親水性溶媒之pH值對檢測敏感度的影響。
首先,按照金等人的報告(“Quantifying genetically inserted fluorescent protein in single iPS cells to monitor Nanog expression using electroactive microchamber arrays”,Lab on Chip,2014,Issue 4,Vol.14,p.730-736),作成Droplet array device(DAD)。將蓋玻片(24mm×32mm)洗淨、乾燥後,將非晶氟樹脂(CYTOP 816AP、旭硝子)旋轉塗布,於180℃燒成1小時。於塗布有非晶氟樹脂的蓋玻片上,旋轉塗布正型光阻(AZ-4903、AZ Electronic Materials),而於55℃燒成3分鐘之後,再於110℃燒成5分鐘。使用以5μm間隔具有直徑3μm的穴的光罩,而進行了光刻法。以氧電漿作乾蝕刻後,將洗淨的蓋玻片作為DAD獲得。DAD係具有直徑4μm、深度3μm的孔(收容部)(約100萬個/10mm2),孔的底面有蓋玻片露出。使用所獲得的DAD而作成如圖1所示之流通池構造的陣列。
於調整為pH6.5~9.0的緩衝劑溶液(33mM DEA-HCl,4mM CaCl2)中,溶解了4-MU使成為50μM。
於將溶解了4-MU的緩衝劑溶液30μL導入陣列的各孔中,填充了緩衝劑溶液(參照圖1A)。接著,於陣列中導入200μL疏水性溶媒(FC40),並於各孔中使經疏水性溶媒被覆的親水性溶媒之液滴形成。
以被連接在螢光顯微鏡(IX8,OLYMPUS)的CMOS相機(Neo sCMOS,Andor),拍攝各液滴之螢光畫像,測定了螢光強度。對於每個孔,將10mm2的區域分割成120個進行了攝影。於1張畫像,含有約8,600個的孔。將螢光畫像以畫像解析軟體(Meta-Morph,Molecular Devices)進行解析,算出了螢光強度。
將結果示於圖3。藉由將緩衝劑溶液之pH值設定為較4MU之pKa(7.79)還大,而可更高敏感度地檢測了4MU之螢光。於pH值8以上,係成為4MU具有電荷的狀態,認為是因為4MU之對FC40的移行(漏出)被抑制了。
[試驗例2:親水性溶媒之緩衝物質濃度的檢討]
依據以下之步驟,檢討了親水性溶媒之緩衝物質濃度對檢測敏感度的影響。
於將DEA之濃度調整為25mM~1M的緩衝劑溶液(4mM CaCl2、pH6.5)中溶解了4-MU使成為50μM。
將溶解了4-MU的緩衝劑溶液30μL導入陣列,並於各孔中填充了緩衝劑溶液(參照圖1A)。接著,於陣列中導入200μL疏水性溶媒(FC40),並於各孔中使經疏水性溶媒被覆的親水性溶媒之液滴形成。
於螢光顯微鏡下進行縮時攝影,測定了各液滴之螢光強度。
將結果示於圖4。於DEA濃度1M,若減去藉由曝光的退色之影響,則無法觀察到螢光強度隨時間的降低。不論DEA濃度500mM或100mM,螢光強度的 減少係至觀察後30分鐘為止被顯著地抑制了。於DEA濃度50mM,則於觀察後10分鐘螢光強度被維持,但於25mM,則觀察到了螢光強度的減少。
顯示了:若考慮在本發明之檢測方法中檢測所需要的時間為數分鐘左右,則將緩衝劑溶液中之緩衝物質的濃度設定為50mM以上,藉此而可更高敏感度地檢測4MU之螢光。認為是藉由將緩衝劑溶液中之緩衝物質設定為指定的濃度以上,而可抑制了4MU之對FC40的移行(漏出)。

Claims (7)

  1. 一種方法,其係檢測自感染病原性微生物的對象或有懷疑感染的對象所分離的生物樣品中之該病原性微生物的方法,其包含:導入步驟,其係於可收容前述病原性微生物的複數個收容部藉由具有疏水性的表面的側壁彼此被間隔所形成的下層部、及與該下層部中之形成有該收容部的面對向的上層部之間的空間中,導入親水性溶媒的步驟,而該親水性溶媒含有該生物樣品及會成為利用存在於該病原性微生物之表面或內部的酵素的反應之基質的物質;封入步驟,其係於該空間中導入疏水性溶媒,而於該收容部內,形成經疏水性溶媒被覆且包含該病原性微生物及該物質的親水性溶媒之液滴的步驟;檢測步驟,其係光學性地檢測該液滴中的藉由該酵素與該物質之反應所生成的反應生成物的步驟;其中該親水性溶媒具有較該反應生成物之酸解離常數(pKa)還大的pH值。
  2. 如請求項1之方法,其中該病原性微生物為流感病毒,該酵素為神經胺糖酸酶,該物質為4-甲基繖形基-α-D-神經胺糖酸(4-Methylumbelliferyl-N-acetyl-α-D-neuraminic acid),該反應生成物為4-甲基傘形花內酯。
  3. 一種套組,其係用以檢測自感染病原性微生物的對象或有懷疑感染的對象所分離的生物樣品中之該病原性微生物的套組,其包含: 陣列,其具備可收容該病原性微生物的複數個收容部藉由具有疏水性的表面的側壁彼此被間隔所形成的下層部、及對該下層部中之形成有該收容部所形成的面間隔空間而對向的上層部;會成為利用存在於該病原性微生物之表面或內部的酵素的反應之基質的物質;具有較利用該酵素與該物質之反應所生成的反應生成物之酸解離常數(pKa)還大的pH值的親水性溶媒;及疏水性溶媒。
  4. 一種方法,其係於與疏水性溶媒作界面接觸的親水性溶媒中,使酵素、與會成為利用該酵素的反應之基質的物質反應,而檢測反應生成物的方法,其中該親水性溶媒具有較該反應生成物之酸解離常數(pKa)還大的pH值。
  5. 如請求項4之方法,其中該親水性溶媒含有病原性微生物,該酵素為存在於該病原性微生物之表面或內部之具有基質切斷活性的酵素,該物質為顯色基質,光學性地檢測藉由利用該酵素的該顯色基質之切斷而生成的反應生成物。
  6. 如請求項5之方法,其中該病原性微生物為流感病毒,該酵素為神經胺糖酸酶,該顯色基質為4-甲基繖形基-α-D-神經胺糖酸(4-Methylumbelliferyl-N-acetyl-α-D-neuraminic acid),該反應生成物為4-甲基傘形花內酯。
  7. 如請求項5或6之方法,其中該親水性溶媒含有自感染該病原性微生物的對象或有懷疑感染的對象所分離的生物樣品。
TW106130237A 2016-09-05 2017-09-05 用以檢測病原性微生物之方法及套組 TW201812297A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-172515 2016-09-05
JP2016172515 2016-09-05
JP2017-099579 2017-05-19
JP2017099579A JP7016136B2 (ja) 2016-09-05 2017-05-19 病原性微生物検出のための方法及びキット

Publications (1)

Publication Number Publication Date
TW201812297A true TW201812297A (zh) 2018-04-01

Family

ID=61624311

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106130237A TW201812297A (zh) 2016-09-05 2017-09-05 用以檢測病原性微生物之方法及套組

Country Status (6)

Country Link
US (1) US11008603B2 (zh)
EP (1) EP3508586A4 (zh)
JP (1) JP7016136B2 (zh)
CN (1) CN109689882A (zh)
BR (1) BR112019004272A2 (zh)
TW (1) TW201812297A (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168200A1 (ja) * 2018-03-02 2019-09-06 国立研究開発法人科学技術振興機構 酵素反応生成物の検出方法
JP7454861B2 (ja) * 2019-03-05 2024-03-25 国立研究開発法人科学技術振興機構 インフルエンザウイルス検出のための方法及びキット、並びにインフルエンザイウイルス感染の診断方法
CN110643503B (zh) * 2019-10-30 2023-03-28 北京陆桥技术股份有限公司 一种高精度微生物检测芯片
CN111122527A (zh) * 2019-12-18 2020-05-08 中国科学院南海海洋研究所 一种水环境中细菌原位显微成像检测装置及检测方法
EP3865583A1 (de) * 2020-02-14 2021-08-18 Testo bioAnalytics GmbH Verfahren zum nachweis von mikroorganismen und scheibenförmiger probenträger
EP4131277A4 (en) 2020-03-27 2024-04-24 Kyocera Corporation INFORMATION PROCESSING DEVICE, EXAMINATION SYSTEM, CONTROL METHOD FOR INFORMATION PROCESSING DEVICE, CONTROL PROGRAM, AND RECORDING MEDIUM
US20230294094A1 (en) 2020-07-29 2023-09-21 Kyocera Corporation Flow channel device
WO2022202217A1 (ja) 2021-03-26 2022-09-29 国立研究開発法人産業技術総合研究所 ウエルアレイを用いたウイルス検出方法、ウエルアレイ及び検出装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4279993A (en) 1979-11-13 1981-07-21 Magers Thomas A Indicator composition and test device containing amine oxide, and method of use
DE3412939A1 (de) 1984-04-06 1985-10-17 Behringwerke Ag, 3550 Marburg Substrate fuer hydrolasen, verfahren zu ihrer herstellung und ihre verwendung
US5837520A (en) 1995-03-07 1998-11-17 Canji, Inc. Method of purification of viral vectors
EP0959877A4 (en) 1996-04-10 2000-08-23 Univ California CORRECTION OF GENETIC DEFECTS USING CHEMICAL CAPS
JP3863231B2 (ja) 1996-09-06 2006-12-27 アルフレッサファーマ株式会社 ビリルビンオキシダーゼの安定化
CA2314431A1 (en) 1997-12-18 1999-06-24 Sepracor Inc. Screening assays for the detection and diagnosis of influenza virus
EP1064296B1 (en) 1998-03-18 2005-10-19 Amersham Biosciences Corp. Thermostable dna polymerase from thermoanaerobacter thermohydrosulfuricus
AU4342100A (en) 1999-04-16 2000-11-02 Zymetx, Inc. Viral detection method using viral encoded enzymes and chemiluminescent substrates
US6372895B1 (en) 2000-07-07 2002-04-16 3M Innovative Properties Company Fluorogenic compounds
BR0012937A (pt) 1999-08-05 2002-04-30 3M Innovative Properties Co Composto fluorogênico, estrutura de compósito sensìvel à enzima, conjugado macromolecular fluorogênico, métodos de determinar a eficácia de um procedimento de esterilização, de detectar uma molécula alvo biológico em uma amostra de teste, e, elemento de sensoreamento de enzima
JP3946421B2 (ja) 2000-08-04 2007-07-18 株式会社リコー 光ディスク装置
FR2845097B1 (fr) 2002-10-01 2006-06-16 Metis Biotechnologies Procede de detection et de comptage de microorganismes dans un echantillon
US8652782B2 (en) 2006-09-12 2014-02-18 Longhorn Vaccines & Diagnostics, Llc Compositions and methods for detecting, identifying and quantitating mycobacterial-specific nucleic acids
US20080268514A1 (en) 2007-04-24 2008-10-30 Rolf Muller Sample storage for life science
JP2008275511A (ja) 2007-05-01 2008-11-13 Bl:Kk インフルエンザウイルス抗原の免疫測定法及びそれに用いられる物
JP5706088B2 (ja) 2010-01-06 2015-04-22 大阪瓦斯株式会社 インフルエンザウイルスの検知方法およびインフルエンザウイルスの検知装置
RU2548619C1 (ru) 2011-03-08 2015-04-20 Японское Агентство По Науке И Технике Способ герметизации гранул, способ обнаружения молекулы-мишени, матрица, набор и устройство для обнаружения молекулы-мишени
JP2013101110A (ja) 2011-10-21 2013-05-23 Hitachi High-Technologies Corp 液体クロマトグラフ及び分析法
EP2777499B1 (en) * 2013-03-15 2015-09-16 Ortho-Clinical Diagnostics Inc Rotatable fluid sample collection device
WO2014143864A2 (en) * 2013-03-15 2014-09-18 University Of Cincinnati Methods of detecting influenza virus
JP6456592B2 (ja) 2013-07-10 2019-01-23 国立大学法人 東京大学 蛍光寿命イメージングプローブ
SG11201700133SA (en) 2014-07-08 2017-03-30 Japan Science & Tech Agency Substance sealing method and target molecule detecting method
WO2018043733A1 (ja) 2016-09-05 2018-03-08 国立研究開発法人科学技術振興機構 病原性微生物検出のための方法及びキット
EP3605110A4 (en) 2017-03-29 2021-05-05 Japan Science and Technology Agency MICROSCOPIC SUBSTANCE DETECTION METHOD AND DEVICE FOR DETECTING A MICROSCOPIC SUBSTANCE

Also Published As

Publication number Publication date
JP2018038384A (ja) 2018-03-15
US11008603B2 (en) 2021-05-18
EP3508586A1 (en) 2019-07-10
BR112019004272A2 (pt) 2019-06-04
CN109689882A (zh) 2019-04-26
US20190194717A1 (en) 2019-06-27
EP3508586A4 (en) 2020-04-29
JP7016136B2 (ja) 2022-02-04

Similar Documents

Publication Publication Date Title
TW201812297A (zh) 用以檢測病原性微生物之方法及套組
JP7274780B2 (ja) 病原性微生物検出のための方法及びキット
AU2015286488B2 (en) Substance sealing method and target molecule detecting method
KR102348484B1 (ko) 인플루엔자의 진단을 위한 방법 및 키트
JP2023520754A (ja) SARS-CoV-2ウイルスの迅速で現場配備可能な検出
Obayashi et al. A single-molecule digital enzyme assay using alkaline phosphatase with a cumarin-based fluorogenic substrate
BR112012021202B1 (pt) aparelho e métodos para preparação, reação e detecção integradas de amostras
CN107533061A (zh) 用于捕获外来体的组合物和方法
JP7329851B2 (ja) 酵素反応生成物の検出方法
Fu et al. Microfluidic biosensor for rapid nucleic acid quantitation based on hyperspectral interferometric amplicon-complex analysis
Park et al. Membrane Rigidity‐Tunable Fusogenic Nanosensor for High Throughput Detection of Fusion‐Competent Influenza A Virus
Van Puyvelde et al. Cov2MS: an automated and quantitative matrix-independent assay for mass spectrometric measurement of SARS-CoV-2 nucleocapsid protein
JP4519794B2 (ja) マイクロ流路素子
Zhang et al. Neuraminidase-activatable NIR fluorescent probe for influenza virus ratiometric imaging in living cells and colorimetric detection on cotton swabs
Diakite et al. Point-of-care diagnostics for ricin exposure
Zhang et al. A simple and rapid fluorescent neuraminidase enzymatic assay on a microfluidic chip
CN113518828B (zh) 用于流感病毒检测的方法及试剂盒、以及流感病毒感染的诊断方法
EP3605054B1 (en) Microscopic substance encapsulation method, microscopic substance detection method, and device for detecting microscopic substance
Halpin et al. Perspectives and challenges in validating new diagnostic technologies
Wang et al. Fluorescence quantification of intracellular materials at the single-cell level by an integrated dual-well array microfluidic device
Lima et al. Lab on a Paper‐Based Device for Coronavirus Biosensing
McGuigan et al. Microfluidic isolation and fluorescence microscopy in a fully automated digital diagnostic instrument (Simoa HD-1 analyzer)
Ashok et al. Laboratory Diagnosis of Novel Human Coronavirus (SARS-CoV-2) Infections-A Review
Borberg et al. A COVID19-selective pH-paper test: Ultrafast and highly accurate antibody-free viral detection in native saliva
Yadav et al. Point-of-Care Devices for Viral Detection: COVID-19 Pandemic and Beyond. Micromachines 2023, 14, 1744