TW201743568A - 增強型打孔和低密度同位核對(ldpc)碼結構 - Google Patents

增強型打孔和低密度同位核對(ldpc)碼結構 Download PDF

Info

Publication number
TW201743568A
TW201743568A TW106115720A TW106115720A TW201743568A TW 201743568 A TW201743568 A TW 201743568A TW 106115720 A TW106115720 A TW 106115720A TW 106115720 A TW106115720 A TW 106115720A TW 201743568 A TW201743568 A TW 201743568A
Authority
TW
Taiwan
Prior art keywords
punctured
variable nodes
nodes
code
variable
Prior art date
Application number
TW106115720A
Other languages
English (en)
Other versions
TWI692211B (zh
Inventor
湯瑪斯喬瑟夫 李察德森
須里尼瓦司 庫德卡
Original Assignee
高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高通公司 filed Critical 高通公司
Publication of TW201743568A publication Critical patent/TW201743568A/zh
Application granted granted Critical
Publication of TWI692211B publication Critical patent/TWI692211B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/033Theoretical methods to calculate these checking codes
    • H03M13/036Heuristic code construction methods, i.e. code construction or code search based on using trial-and-error
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/116Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices
    • H03M13/1168Quasi-cyclic LDPC [QC-LDPC] codes, i.e. the parity-check matrix being composed of permutation or circulant sub-matrices wherein the sub-matrices have column and row weights greater than one, e.g. multi-diagonal sub-matrices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix
    • H03M13/1174Parity-check or generator matrices built from sub-matrices representing known block codes such as, e.g. Hamming codes, e.g. generalized LDPC codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/61Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
    • H03M13/615Use of computational or mathematical techniques
    • H03M13/616Matrix operations, especially for generator matrices or check matrices, e.g. column or row permutations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6362Error control coding in combination with rate matching by puncturing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6362Error control coding in combination with rate matching by puncturing
    • H03M13/6368Error control coding in combination with rate matching by puncturing using rate compatible puncturing or complementary puncturing
    • H03M13/6393Rate compatible low-density parity check [LDPC] codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)

Abstract

本案內容的某些態樣大體係關於用於增強型打孔和低密度同位核對(LDPC)碼結構的技術。提供了一種由發送設備進行無線通訊的方法。該方法通常包括:基於LDPC碼來編碼一組資訊位元以產生碼字,該LDPC碼由具有第一數量的變數節點和第二數量的核對節點的基本矩陣定義;根據被設計為對與該等變數節點中的至少兩個變數節點對應的位元進行打孔的打孔圖案來對該碼字進行打孔,以產生經打孔的碼字;針對經打孔的該至少兩個變數節點添加至少一個額外同位位元;及發送該經打孔的碼字。

Description

增強型打孔和低密度同位核對(LDPC)碼結構
本專利申請案請求於2016年5月12日提出申請的美國臨時專利申請第62/335,163號的權益和優先權,其全部內容出於所有適用目的以引用方式併入本文。
以下論述的技術的某些態樣大體係關於無線通訊以及偵測及/或糾正二元資料中的錯誤,並且更特定言之係關於用於增強型打孔和低密度同位核對(LDPC)碼結構的方法和裝置。某些態樣可以賦能經打孔的LDPC碼的改良效能。
無線通訊系統被廣泛部署以提供各種類型的通訊內容,諸如,語音、視訊、資料、訊息傳遞、廣播等。該等系統可以採用能夠藉由共享可用的系統資源(例如,頻寬和發射功率)來支援與多個使用者進行通訊的多工存取技術。此種多工存取系統的實例包括分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分時同步CDMA(TD-SCDMA)系統、分頻多工存取(FDMA)系統、單載波FDMA(SC-FDMA)系統、第三代合作夥伴計畫(3GPP)長期進化(LTE)系統、LTE高級(LTE-A)系統和正交分頻多工存取(OFDMA)系統。
已經在各種電信標準中採用了多種存取技術,以提供使得不同的無線設備能夠在市政、國家、區域、乃至全球層面上進行通訊的共用協定。新興電信標準的一個實例是新型無線電(NR),例如5G無線電存取。NR是對由3GPP發佈的LTE行動服務標準的一組增強標準。其被設計為藉由提高頻譜效率、降低成本、改良服務,利用新頻譜、以及使用在下行鏈路(DL)和上行鏈路(UL)上具有循環字首(CP)的OFDMA並支援波束成形、多輸入多輸出(MIMO)天線技術和載波聚合以更好地與其他開放標準整合,來更好地支援行動寬頻網際網路存取。
通常,無線多工存取通訊系統可以同時支援多個無線節點的通訊。每個節點經由正向和反向鏈路上的傳輸與一或更多個基地台進行通訊。前向鏈路(或下行鏈路)是指從基地台到節點的通訊鏈路,而反向鏈路(或上行鏈路)是指從節點到基地台的通訊鏈路。可以經由單輸入單輸出、多輸入單輸出或多輸入多輸出(MIMO)系統建立通訊鏈路。
無線多工存取通訊系統可以包括多個BS,每個BS同時支援用於多個通訊設備的通訊,通訊設備亦稱為使用者設備(UE)。在LTE或LTE-A網路中,一或更多個BS的集合可以定義e節點B(eNB)。在其他實例(例如,在下一代NR或5G網路中),無線多工存取通訊系統可以包括與多個中央單元(CU)(例如,中央節點(CN)、存取節點控制器(ANC)等)通訊的多個分散式單元(DU)(例如,邊單元(EU)、邊節點(EN)、無線電頭端(RH)、智能無線電頭端(SRH)、發送接收點(TRP)等),其中與CU通訊的一組一或更多個DU可以定義存取節點(例如,BS、NR BS、5G BS、NB、eNB、NR NB、5G NB、存取點(AP)、網路節點、gNB、TRP等)。BS、AN或DU可以在下行鏈路通道(例如,用於從BS至UE的傳輸)和上行鏈路通道(例如,用於從UE到BS、AN或DU的傳輸)上與UE或一組UE進行通訊。
二元值(例如,1和0)用於表示和傳送各種類型的資訊,例如視訊、音訊、統計資訊等。不幸地是,在二元資料的儲存、傳輸及/或處理期間,錯誤可能無意中被引入;例如,「1」可能變為「0」,反之亦然。
通常,在資料傳輸的情況下,接收器在存在雜訊或失真的情況下觀測每個接收的位元,並且僅獲得對該位元的值的指示。在該等情況下,觀測到的值被解釋為「軟」位元的來源。軟位元指示對該位元的值的優選估計(例如,1或0)以及對該估計的可靠性的某個指示。儘管錯誤的數量可能相對較低,但是即使是少量的錯誤或失真水平亦可能導致資料不可用,或者在傳輸錯誤的情況下可能需要重新傳輸資料。為了提供用以檢查錯誤並在某些情況下糾正錯誤的機制,可以對二元資料進行編碼以引入精心設計的冗餘。資料單元的編碼產生通常被稱為碼字的結果。由於其冗餘,碼字通常將包含比從其產生碼字的輸入資料單元多的位元。
冗餘位元由編碼器添加到所發送的位元串流以建立碼字。當接收或處理從所發送的碼字產生的信號時,在信號中觀測到的包括在碼字中的冗餘資訊可以用於辨識及/或糾正來自所接收的信號的錯誤或者從所接收的信號中去除失真,以便恢復原始資料單元。此種錯誤檢查及/或糾正可以被實施為解碼過程的一部分。在沒有錯誤的情況下,或者在有可糾正的錯誤或失真的情況下,可以使用解碼來從被處理的來源資料恢復被編碼了的原始資料單元。在有不可恢復的錯誤的情況下,解碼過程可以產生關於原始資料不能被完全恢復的指示。此種對解碼失敗的指示可以啟動資料的重傳。隨著對用於資料通訊的光纖線路的使用和資料可以從資料儲存設備(例如,磁碟機、磁帶等)讀取以及向該資料儲存設備儲存所用的速率增加,不僅對資料儲存和傳輸容量的有效使用的需求、而且對能夠以高速率對資料進行編碼和解碼的能力的需求越來越多。
以下內容總結本案內容的一些態樣以提供對所論述技術的基本理解。本發明內容不是對本案內容的所有預期特徵的泛泛概述,而是既不意欲標識本案內容的所有態樣的關鍵或重要元素,亦不意欲描述本案內容的任何或所有態樣的範疇。其唯一目的是概括地呈現本案內容的一或更多個態樣的一些概念,作為稍後呈現的更詳細描述的序言。在考慮到此論述之後,特別是在閱讀了「具體實施方式」一節之後,一名技藝人士將會理解本案內容的特徵如何提供包括無線網路中的存取點和站之間的改良的通訊的優點。
儘管編碼效率和高資料速率是重要的,但是對於要在廣泛的設備(例如,消費者設備)中實際使用的編碼及/或解碼系統而言,編碼器及/或解碼器可以以合理的成本被實施亦是重要的。
隨著對行動寬頻存取的需求不斷增加,存在對進一步改良NR技術的需求。優選地,該等改良應適用於採用該等技術的其他多工存取技術和電信標準。針對改良的一個領域是編碼/解碼的領域,其適用於NR。例如,用於用於NR的高效能LDPC碼的技術是期望的。
本案內容的某些態樣大體係關於用於對低密度同位核對(LDPC)碼的增強型打孔的方法和裝置。通訊系統通常需要以幾種不同的速率操作。LDPC碼是針對用於提供具有不同速率的編碼和解碼的簡單實施方案的一個選擇。例如,可以藉由對較低速率的LDPC碼進行打孔來產生較高速率的LDPC碼。
本案內容的某些態樣提供了可以由發送設備執行的用於無線通訊的方法。該方法通常包括:基於LDPC碼來編碼一組資訊位元以產生碼字,該LDPC碼由具有第一數量的變數節點和第二數量的核對節點的基本矩陣定義;根據被設計為對與該變數節點中的至少兩個變數節點對應的位元進行打孔的打孔模式來對該碼字進行打孔,以產生經打孔的碼字;針對經打孔的該至少兩個變數節點添加至少一個額外同位位元;及發送該經打孔的碼字。
本案內容的某些態樣提供了一種用於無線通訊的裝置,諸如發送設備。該裝置通常包括:用於基於LDPC碼來編碼一組資訊位元以產生碼字的構件,該LDPC碼由具有第一數量的變數節點和第二數量的核對節點的基本矩陣定義;用於根據被設計為對與該變數節點中的至少兩個變數節點對應的位元進行打孔的打孔模式來對該碼字進行打孔,以產生經打孔的碼字的構件;用於針對經打孔的該至少兩個變數節點添加至少一個額外同位位元的構件;及用於發送該經打孔的碼字的構件。
本案內容的某些態樣提供了一種用於無線通訊的裝置,諸如發送設備。該裝置通常包括與記憶體耦合的至少一個處理器,並且該至少一個處理器被配置為:基於LDPC碼來編碼一組資訊位元以產生碼字,該LDPC碼由具有第一數量的變數節點和第二數量的核對節點的基本矩陣定義;根據被設計為對與該變數節點中的至少兩個變數節點對應的位元進行打孔的打孔模式來對該碼字進行打孔,以產生經打孔的碼字;及針對經打孔的該至少兩個變數節點添加至少一個額外同位位元。該裝置包括被配置為發送該經打孔的碼字的發射器。
本案內容的某些態樣提供了一種其上儲存有電腦可執行代碼的電腦可讀取媒體。電腦可執行代碼通常包括:用於基於LDPC碼來編碼一組資訊位元以產生碼字的代碼,該LDPC碼由具有第一數量的變數節點和第二數量的核對節點的基本矩陣定義;用於根據被設計為對與該變數節點中的至少兩個變數節點對應的位元進行打孔的打孔模式來對該碼字進行打孔,以產生經打孔的碼字的代碼;用於針對經打孔的該至少兩個變數節點添加至少一個額外同位位元的代碼;及用於發送該經打孔的碼字的代碼。
在結合附圖瀏覽了本案內容的特定示例性態樣的以下描述後,本案內容的其他態樣、特徵和實施例對於本領域一般技藝人士將變得顯而易見。儘管可以相對於下文的某些態樣和附圖來論述本案內容的特徵,但是本案內容的所有態樣可以包括本文所論述的一或更多個有利特徵。換言之,儘管一或更多個態樣可以被論述為具有某些有利特徵,但亦可以根據本文所論述的本案內容的各個態樣來使用該等特徵中的一或更多個。以類似的方式,儘管可以在下文將示例性態樣作為設備、系統或方法實施例來論述,但是應當理解,此種示例性實施例可以在各種設備、系統和方法中實施。
本案內容的各態樣提供用於針對新無線電(NR)存取技術(例如,5G無線電存取)進行編碼(及/或解碼)的裝置、方法、處理系統和電腦程式產品。NR可以指被配置以根據新的空中介面或固定的傳輸層工作的無線電設備。NR可以包括對於針對寬頻寬(例如,80 MHz及以上)的增強型行動寬頻(eMBB)服務、針對高載波頻率(例如60 GHz)的毫米波(mmW)服務、針對非向後相容MTC技術的海量機器類型通訊(mMTC)服務,及/或針對超可靠低潛時通訊(URLLC)服務的任務關鍵(MiCr)型服務的支援。該等服務可以包括潛時和可靠性要求。NR可以使用低密度同位核對(LDPC)編碼及/或極化碼。
本案內容的各態樣提供了針對增強型打孔和低密度同位核對(LDPC)碼結構的技術,例如,以得到具有增強效能的LDPC碼。在多個態樣,可以例如對多個相對低度的變數節點進行打孔,而不是對單個高度的變數節點進行打孔。變數節點的度是指在基本圖中變數到核對節點之間的連接的數量。在大的基本圖(亦稱為基本碼或基本PCM)中,變數節點可以支援相對於較小的基本圖中的變數節點的更高的連通度(degree of connectivity)。此外,為了有效地提高碼率,可以向LDPC碼結構添加額外的同位位元,每個同位位元對應於由經打孔的兩個節點的同位形成的度為一的變數節點。
參照附圖在下文中更全面地描述本案內容的各個態樣。然而,本案內容可以以許多不同的形式實施,並且不應被解釋為限於貫穿本案內容中呈現的任何特定結構或功能。而是提供該等態樣,使得本案內容將是徹底和完整的,並將向本領域技藝人士充分傳達本案內容的範疇。基於本文的教導,本領域技藝人士應當理解,本案內容的範疇意欲涵蓋本文揭示的本案內容的任何態樣,而無論是獨立於或結合本案內容的任何其他態樣被實施的。例如,可以使用本文所闡述的任何數量的態樣來實施裝置或者實行方法。此外,本案內容的範疇意欲涵蓋使用除了本文所闡述的本案內容的各個態樣之外的或不是本文所闡述的本案內容的各個態樣的其他結構、功能或者結構和功能來實行的此種裝置或方法。應當理解,本文揭示的本案內容的任何態樣可以由申請專利範圍的一或更多個元素來實施。詞語「示例性」在本文中用於表示「用作示例、實例或說明」。本文中描述為「示例性」的任何態樣不一定被解釋為比其他態樣優選或有利。
儘管本文描述了特定態樣,但是該等態樣的許多變化和排列皆在本案內容的範疇內。儘管提及了優選態樣的一些益處和優點,但是本案內容的範疇並不意欲限於特定的益處、用途或目的。相反,本案內容的各態樣意欲廣泛地應用於不同的無線技術、系統組態、網路和傳輸協定,其中一些在附圖中以實例並在優選態樣的以下描述中圖示。特定實施方式和附圖僅僅是對本案內容的說明而不是限制,本案內容的範疇由所附申請專利範圍及其均等物定義。
本文描述的技術可以用於各種無線通訊網路,例如分碼多工存取(CDMA)網路、分時多工存取(TDMA)網路、分頻多工存取(FDMA)網路、正交FDMA(OFDMA)網路、單載波FDMA(SC-FDMA)網路等。術語「網路」和「系統」通常可互換使用。CDMA網路可以實施諸如通用陸地無線電存取(UTRA)、CDMA2000等的無線電技術。UTRA包括寬頻CDMA(W-CDMA)和低碼片速率(LCR)。CDMA2000涵蓋IS-2000、IS-95和IS-856標準。TDMA網路可以實施諸如行動通訊全球系統(GSM)的無線電技術。OFDMA網路可以實施諸如進化UTRA(E-UTRA)、IEEE 802.11、IEEE 802.16、IEEE802.20、Flash-OFDM 等的無線電技術。UTRA、E-UTRA和GSM是通用行動電信系統(UMTS)的部分。3GPP LTE和LTE-Advanced(LTE-A)是使用E UTRA的UMTS的版本。UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM在來自名為「第三代合作夥伴計畫」(3GPP)的組織的檔案中描述。在來自名為「第三代合作夥伴計畫2」(3GPP2)的組織的檔案中描述了CDMA2000。該等通訊網路僅被列舉為可以在其中應用本案內容中描述的技術的網路的實例;然而,本案內容不限於上面描述的通訊網路。為了清楚起見,應當注意,儘管各態樣可以使用通常與3G及/或4G無線技術相關聯的術語來描述態樣,但是本案內容的各態樣可以被應用於其他基於代(generation)的通訊系統,諸如包括5G及後代的新的無線電(NR)技術。 無線通訊系統上下文
圖1圖示可以執行本案內容的各態樣的示例性無線通訊網路100。例如,諸如UE 120或BS 110的發送設備可以基於低密度同位核對(LDPC)碼來編碼一組資訊位元以產生碼字。發送設備可以根據打孔圖案來執行對LDPC的打孔。打孔圖案可以被設計為對與至少兩個變數節點對應的位元進行打孔。經打孔的變數節點可以是基本矩陣中的最高度的變數節點,而相對於其他LDPC碼中的變數節點則是相對低度的變數節點。高度的變數節點具有到核對節點的許多連接。大的基本圖(例如,具有許多核對節點)可以相對於小的基本圖(例如,具有很少的核對節點)來支援/包括更大程度的變數節點。可以針對經打孔的變數節點的每個配對向LDPC碼結構添加額外同位位元。
如圖1所示,無線通訊網路100可以包括多個BS 110和其他網路實體。BS可以是與UE進行通訊的站。每個BS 110可以為特定的地理區域提供通訊覆蓋。在3GPP中,術語「細胞」可以指服務該覆蓋區域的節點B及/或節點B子系統的覆蓋區域,此取決於使用該術語的上下文。在NR系統中,術語「細胞」和gNB、節點B、5G NB、AP、NR BS、NR BS、TRP等可以是可互換的。在一些實例中,細胞可以不一定是靜止的,並且細胞的地理區域可以根據行動BS的位置而移動。在一些實例中,BS可以使用任何合適的傳輸網路,經由各種類型的回載介面(諸如直接實體連接、虛擬網路等)在無線通訊網路100中相互間及/或與一或更多個其他BS或網路節點(未圖示)互連。
通常,任何數量的無線網路可以部署在給定的地理區域中。每個無線網路可以支援特定的無線電存取技術(RAT)並且可以在一或更多個頻率上工作。RAT亦可以被稱為無線電技術、空中介面等。頻率亦可以被稱為載波、頻率通道等。每個頻率可以支援給定地理區域中的單個RAT,以便避免具有不同的RAT的無線網路之間的干擾。在一些情況下,可以部署NR或5G RAT網路。
BS可以為巨集細胞、微微細胞、毫微微細胞及/或其他類型的細胞提供通訊覆蓋。巨集細胞可以覆蓋相對較大的地理區域(例如,半徑為幾公里),並且可以允許具有服務訂閱的UE的不受限制的存取。微微細胞可以覆蓋相對較小的地理區域,並且可以允許具有服務訂閱的UE的不受限制的存取。毫微微細胞可以覆蓋相對較小的地理區域(例如,家庭),並且可以允許具有與毫微微細胞相關聯的UE(例如,封閉用戶群組(CSG)中的UE、家庭中的使用者的UE等)的受限存取。巨集細胞的BS可以被稱為巨集BS。微微細胞的BS可以被稱為微微BS。毫微微細胞的BS可以被稱為毫微微BS或歸屬BS。在圖1所示的實例中,BS 110a、BS 110b和BS 110c可以分別是用於巨集細胞102a、巨集細胞102b和巨集細胞102c的巨集BS。BS可以支援一或更多個(例如,三個)細胞。
無線通訊網路100亦可以包括中繼站。中繼站是從上游站(例如,BS 110或UE 120)接收資料及/或其他資訊的傳輸並向下游站(例如,UE 120或BS 110)發送資料及/或其他資訊的傳輸的站。中繼站亦可以是中繼用於其他UE的傳輸的UE。在圖1所示的實例中,中繼站110r可以與BS 110a和UE 120r通訊,以便助於BS 110a和UE 120r之間的通訊。中繼站亦可以被稱為中繼、中繼eNB等。
無線通訊網路100可以是包括不同類型的BS(例如,巨集BS、微微BS、毫微微BS、中繼等)的異質網路。該等不同類型的BS可以具有不同的發射功率位準、不同的覆蓋區域以及對無線通訊網路100中的干擾的不同的影響。例如,巨集BS可以具有高發射功率位準(例如,20瓦),而微微BS、毫微微BS和中繼可以具有較低的發射功率位準(例如,1瓦)。
無線通訊網路100可以支援同步或非同步操作。對於同步操作,BS可以具有類似的訊框時序,並且來自不同BS的傳輸可以在時間上大致對準。對於非同步操作,BS可以具有不同的訊框時序,並且來自不同BS的傳輸可能不在時間上對準。本文描述的技術可以用於同步和非同步操作兩者。
網路控制器130可以耦合到一組BS並且為該等BS提供協調和控制。網路控制器130可以經由回載與BS 110進行通訊。BS 110亦可以例如經由無線或有線回載直接或間接地彼此通訊。
UE 120(例如,UE 120x、UE 120y等)可以分散在整個無線通訊網路100中,並且每個UE可以是靜止的或行動的。UE亦可以被稱為行動站、終端、存取終端、用戶單元、站、客戶端設備(CPE)、蜂巢式電話、智慧型電話、個人數位助理(PDA)、無線數據機、無線通訊設備、手持設備、膝上型電腦、無線電話、無線區域迴路(WLL)站、平板電腦、照相機、遊戲設備、小筆電、智慧型電腦、超級本、醫療設備或醫療設施、生物測定感測器/設備、諸如智慧手錶、智慧服裝、智慧眼鏡、智慧腕帶、智慧飾品(例如智慧戒指、智慧手鏈等)的可穿戴設備、娛樂設備(例如,音樂設備、視訊設備、衛星無線電等)、車輛部件或感測器、智慧電錶/感測器、工業製造設備、全球定位系統設備或被配置為經由無線或有線媒體進行通訊的任何其他合適的設備。一些UE可以被認為是進化型或機器型通訊(MTC)設備或進化MTC(e MTC)設備。MTC和eMTC UE包括例如可以與BS、另一設備(例如,遠端設備)或某個其他實體通訊的機器人、無人機、遠端設備、感測器、儀錶、監測器、位置標籤等。無線節點可以經由有線或無線通訊鏈路提供例如對於或到網路(例如,諸如網際網路或蜂巢網路的廣域網路)的連接。一些UE可以被認為是物聯網路(IoT)設備。
在圖1中,具有雙箭頭的實線指示UE和服務BS之間的期望傳輸,其是被指定為在下行鏈路及/或上行鏈路上為UE服務的BS。具有雙箭頭的細虛線指示UE與BS之間的干擾傳輸。
某些無線網路(例如,LTE)在下行鏈路上利用正交分頻多工(OFDM)和在上行鏈路上利用單載波分頻多工(SC-FDM)。OFDM和SC-FDM將系統頻寬劃分成多個(K個)正交次載波,其通常亦被稱為音調、頻調(bin)等。每個次載波可以用資料來調制。通常,調制符號在頻域中以OFDM發送,在時域中以SC-FDM發送。相鄰次載波之間的間隔可以是固定的,並且次載波的總數(K)可以取決於系統頻寬。例如,次載波的間隔可以是15kHz,最小資源配置(稱為「資源區塊」(RB))可以是12個次載波(亦即,180kHz)。因此,對於分別為1.25MHz、2.5MHz、5MHz、10MHz或20MHz的系統頻寬,標稱快速傅裡葉變換(FFT)大小可以分別等於128、256、512、1024或2048。系統頻寬亦可以被劃分成次頻帶。例如,次頻帶可以覆蓋1.08MHz(亦即,6個RB),並且對於1.25MHz、2.5MHz、5MHz、10MHz或20MHz的系統頻寬可以分別有1、2、4、8或16個次頻帶。
儘管本文描述的實例的各態樣可以與LTE技術相關聯,但是本案內容的各態樣可以適用於諸如NR的其他無線通訊系統。
NR可以在上行鏈路和下行鏈路上利用具有CP的OFDM,並且包括對使用TDD的半雙工操作的支援。可以支援100MHz的單分量載波頻寬。NR RB可以在0.1ms的持續時間上跨越次載波頻寬為75kHz的12個次載波。每個無線電訊框可以由長度為10ms的50個子訊框組成。因此,每個子訊框可以具有0.2ms的長度。每個子訊框可以指示用於資料傳輸的鏈路方向(亦即,下行鏈路或上行鏈路),並且每個子訊框的鏈路方向可以被動態地切換。每個子訊框可以包括DL/UL資料以及DL/UL控制資料。用於NR的UL和DL子訊框可以如以下參照圖7和圖8更詳細地描述。可以支援波束形成,並且可以動態地配置波束方向。亦可以支援用預編碼的MIMO傳輸。DL中的MIMO配置可以支援具有多層DL傳輸的多達8個發射天線,多層DL傳輸多達8個串流並且每UE多達2個串流。可以支援每UE多達2個串流的多層傳輸。可以用多達8個服務細胞來支援多個細胞的聚合。替代地,除了基於OFDM的空中介面之外,NR可以支援不同的空中介面。
在一些實例中,可以排程對空中介面的存取。排程實體(例如,BS 110或UE 120)在其服務區域或細胞內的一些或所有設備和裝置之間分配用於通訊的資源。在本案內容中,如下文進一步論述地,排程實體可以負責為一或更多個從屬實體排程、指派、重新配置和釋放資源。亦即,對於經排程的通訊,從屬實體利用由排程實體分配的資源。BS不是唯一可以用作排程實體的實體。亦即,在一些實例中,UE可以用作排程實體,為一或更多個從屬實體(例如,一或更多個其他UE)排程資源。在該實例中,UE正用作排程實體,並且其他UE利用UE排程的資源進行無線通訊。UE可以在同級間(P2P)網路及/或網格網路中用作排程實體。在網格網路實例中,除了與排程實體通訊之外,UE可以可選地直接彼此進行通訊。
從而,在具有對時間-頻率資源的經排程的存取並且具有蜂巢配置、P2P配置和網格配置的無線通訊網路中,排程實體和一或更多個從屬實體可以利用所排程的資源進行通訊。
NR無線電存取網路(RAN)可以包括一或更多個中央單元(CU)和分散式單元(DU)。NR BS(例如,gNB、5G NB、NB、5G NB、TRP、AP)可以對應於一或更多個BS。NR細胞可以被配置為存取細胞(ACell)或僅資料細胞(DCells)。DCell可以是用於載波聚合或雙重連接的細胞,但不用於初始存取、細胞選擇/重選或交遞。
圖2圖示可以在圖1所示的無線通訊系統100中實施的分散式RAN 200的示例邏輯架構。5G存取節點(AN)206可以包括存取節點控制器(ANC)202。ANC 202可以是分散式RAN 200的CU。下一代核心網路(NG-CN)204的回載介面可以終止於ANC 202。到相鄰的下一代存取節點(NG-AN)的回載介面可以終止於ANC 202。ANC 202可以包括一或更多個TRP 208。
TRP 208包括DU。TRP 208可以連接到一個ANC(ANC 202)或多於一個ANC(未圖示)。例如,對於RAN共享、無線電即服務(RaaS)和服務特定的AND部署,TRP可以連接到多於一個的ANC 202。TRP 208可以包括一或更多個天線埠。TRP 208可以被配置為單獨(例如,動態選擇)或聯合(例如,聯合傳輸)向UE(例如,UE 120)提供傳輸量。
分散式RAN 200的示例性邏輯架構可以用於說明前傳(fronthaul)定義。邏輯架構可以支援跨不同的部署類型的前傳化(fronthauling)解決方案。例如,邏輯架構可以基於發送網路能力(例如,頻寬、等待時間及/或信號干擾)。邏輯架構可以與LTE共享特徵及/或部件。NG-AN 210可以支援與NR的雙重連接。NG-AN 210可以共享用於LTE和NR的共用的前傳。邏輯架構可以賦能TRP 208之間和當中的協調。例如,協調可以在TRP 208內及/或經由ANC 202跨TRP 208來預配置。可以不存在TRP間介面。
分散式RAN 200的邏輯架構可以包括分離邏輯功能的動態配置。如將參照圖5更詳細地描述地,無線電資源控制(RRC)層、封包資料收斂協定(PDCP)層、無線電鏈路控制(RLC)層、媒體存取控制(MAC)層和實體(PHY)層可以被放置在DU(例如,TRP 208)或CU(例如,ANC 202)處。
圖3圖示根據本案內容的態樣的分散式RAN 300的示例實體架構。如圖3所示,分散式RAN 300包括集中式核心網路單元(C-CU)302、集中式RAN單元(C-RU)304和DU 306。
C-CU 302可以組織核心網路功能。C-CU 302可以被集中地部署。可以卸載C-CU 302功能(例如,到高級無線服務(AWS)),以便處理峰值容量。C-RU 304可以組織一或更多個ANC功能。可選地,C-RU 304可以在本端組織核心網路功能。C-RU 304可以具有分散式部署。C-RU 304可以位於網路邊附近。DU 306可以組織一或更多個TRP(邊節點(EN)、邊單元(EU)、無線電頭端(RH)、智能無線電頭端(SRH)等)。DU 306可以位於具有射頻(RF)功能性的網路的邊。
圖4圖示圖1所示的BS 110和UE 120的示例部件,其可以用於實施本案內容的針對高效能的、靈活的且緊湊的LDPC編碼的各態樣。圖4中圖示的BS 110和UE 120的一或更多個部件可以用於實施本案內容的各態樣。例如,UE 120的天線452a-454r、解調器/調制器454a-454r、TX MIMO處理器466、接收處理器458、發射處理器464及/或控制器/處理器480,及/或BS 110的天線434a-434t、解調器/調制器432a-434t、TX MIMO處理器430、發射處理器420、接收處理器438及/或控制器/處理器440可以被使用以執行參照圖13進行說明並在本文描述的操作1300。
對於受限關聯場景,BS 110可以是圖1中的巨集BS 110c,而UE 120可以是UE 120y。BS 110亦可以是其他類型的BS。BS 110可以配備有天線434a至434t,而UE 120可以配備有天線452a至452r。
在BS 110處,發射處理器420可以從資料來源412接收資料,並從控制器/處理器440接收控制資訊。控制資訊可以用於實體廣播通道(PBCH)、實體控制格式指示符通道(PCFICH)、實體混合ARQ指示符通道(PHICH)、實體下行鏈路控制通道(PDCCH)或其他控制通道或信號。資料可以用於實體下行鏈路共享通道(PDSCH)或其他資料通道或信號。發射處理器420可以處理(例如,編碼和符號映射)資料和控制資訊以分別獲得資料符號和控制符號。例如,發射處理器420可以使用下文更詳細地論述的LDPC碼設計來對資訊位元進行編碼。發射處理器420亦可以產生例如用於主要同步信號(PSS)、輔同步信號(SSS)和細胞特定參考信號(CRS)的參考符號。發射(TX)多輸入多輸出(MIMO)處理器430可以對資料符號、控制符號及/或參考符號(若可應用)執行空間處理(例如,預編碼),並且可以將輸出符號串流提供給調制器(MOD)432a至432t。每個調制器432可以處理相應的輸出符號串流(例如,用於OFDM等)以獲得輸出取樣串流。每個調制器432可以進一步處理(例如,轉換成類比、放大、濾波和升頻轉換)輸出取樣串流以獲得下行鏈路信號。來自調制器432a至432t的下行鏈路信號可以分別經由天線434a至434t發送。
在UE 120處,天線452a至452r可以接收來自BS 110的下行鏈路信號,並且可以分別向解調器(DEMOD)454a至454r提供接收的信號。每個解調器454可以調節(例如,濾波、放大、降頻轉換和數位化)相應的接收信號以獲得輸入取樣。每個解調器454亦可以處理輸入取樣(例如,用於OFDM等)以獲得接收到的符號。MIMO偵測器456可以從所有解調器454a至454r獲得接收符號,若可應用,則對所接收的符號進行MIMO偵測,並提供偵測到的符號。接收處理器458可以處理(例如,解調、解交錯和解碼)所偵測到的符號,將針對UE 120的解碼資料提供給資料槽460,並將解碼的控制資訊提供給控制器/處理器480。
在上行鏈路上,在UE 120,發射處理器464可以接收和處理來自資料來源462的(例如,對於實體上行鏈路共享通道(PUSCH)或者其他資料通道或信號的)資料和來自控制器/處理器480的(例如,對於實體上行鏈路控制通道(PUCCH)或者其他控制通道或信號的)控制資訊。發射處理器464亦可以產生針對參考信號的參考符號。來自發射處理器464的符號可以(若可應用)由TX MIMO處理器466進行預編碼,由解調器454a至454r(例如,對於SC-FDM等)進一步處理,並被發送給BS 110。在BS 110處,來自UE 120的上行鏈路信號可以由天線434接收,由調制器432處理,(若可應用)由MIMO偵測器436偵測,並且由接收處理器438進一步處理以獲得由UE 120發送的經解碼的資料和控制資訊。接收處理器438可以提供經解碼的資料到資料槽439和經解碼的控制資訊到控制器/處理器440。
記憶體442可以儲存用於BS 110的資料和程式碼,並且記憶體482可以儲存用於UE 120的資料和程式碼。排程器444可以排程UE用於在下行鏈路及/或上行鏈路上的資料傳輸。
圖5圖示根據本案內容的各態樣的圖示用於實施通訊協定堆疊的實例的圖500。所圖示的通訊協定堆疊可以由在5G系統(例如,支援基於上行鏈路的行動性的系統)中操作的設備來實施。圖500圖示包括RRC層510、PDCP層515、RLC層520、MAC層525和PHY層530的通訊協定堆疊。在一個實例中,協定堆疊的層可以被實施為軟體的分開的模組、處理器或ASIC的各部分、藉由通訊鏈路連接的非並置式設備的各部分,或其各種組合。並置式實施方式和非並置式實施方式可以例如在用於網路存取設備(例如,AN、CU及/或DU)或UE的協定堆疊中使用。
第一選擇方案505-a圖示協定堆疊的分離實施方案,其中協定堆疊的實施在集中式網路存取設備(例如,ANC 202)和分散式網路存取設備(例如,DU 208)之間分離。在第一選擇方案505-a中,RRC層510和PDCP層515可以由CU實施,並且RLC層520、MAC層525和PHY層530可以由DU來實施。在各種實例中,CU和DU可以並置或非並置。第一選擇方案505-a可以是在巨集細胞、微細胞或微微細胞部署中有用的。
第二選擇方案505-b圖示協定堆疊的統一實施,其中協定堆疊在單個網路存取設備(例如,存取節點(AN))、NR BS、NR NB、網路節點(NN)、TRP、gNB等)中實施。在第二選擇方案中,RRC層510、PDCP層515、RLC層520、MAC層525和PHY層530可以各自由AN實施。第二選擇方案505-b可以是在毫微微細胞部署中有用的。
無論網路存取設備是實施協定堆疊的一部分還是全部,UE皆可以實施整個協定堆疊(例如,RRC層510、PDCP層515、RLC層520、MAC層525和PHY層530)。
圖6是圖示圍繞DL的子訊框600的實例的圖。圍繞DL的子訊框600可以包括控制部分602。控制部分602可以存在於圍繞DL的子訊框600的初始或開始部分中。控制部分602可以包括與圍繞DL的子訊框600的各個部分對應的各種排程資訊及/或控制資訊。在一些配置中,控制部分602可以是實體DL控制通道(PDCCH),如圖6所示。圍繞DL的子訊框600亦可以包括DL資料部分604。DL資料部分604可以被稱為圍繞DL的子訊框600的有效載荷。DL資料部分604可以包括用於從排程實體(例如,UE或BS)傳送DL資料到從屬實體(例如,UE)的通訊資源。在一些配置中,DL資料部分604可以是實體DL共享通道(PDSCH)。
圍繞DL的子訊框600亦可以包括共用UL部分606。共用UL部分606可以被稱為UL短脈衝、共用UL短脈衝及/或各種其他合適的術語。共用UL部分606可以包括對應於圍繞DL的子訊框600的各種其他部分的回饋資訊。例如,共用UL部分606可以包括對應於控制部分602的回饋資訊。回饋資訊的非限制性實例可以包括確認(ACK)信號、否定確認(NACK)信號、HARQ指示符及/或各種其他合適類型的資訊。共用UL部分606可以另外地或替代地包括諸如與隨機存取通道(RACH)程序、排程請求(SR)以及各種其他合適類型的資訊有關的資訊的資訊。如圖6所示,DL資料部分604的末尾可以與共用UL部分606的開端在時間上被分隔。此時間分隔可以被稱為間隙、保護週期、保護間隔及/或各種其他合適的術語。此種分隔為從DL通訊(例如,由從屬實體(例如,UE)進行的接收操作)到UL通訊(例如,由從屬實體(例如,UE)進行的傳輸)的交遞提供了時間。上述內容僅僅是圍繞DL的子訊框的一個實例,並且在不必偏離本文描述的各態樣的情況下可以存在具有相似特徵的替代結構。
圖7是圖示圍繞UL的子訊框700的實例的圖。圍繞UL的子訊框700可以包括控制部分702。控制部分702可以存在於圍繞UL的子訊框700的初始或開始部分中。圖7中的控制部分702可以類似於上面參照圖6描述的控制部分602。圍繞UL的子訊框700亦可以包括UL資料部分704。UU資料部分704可以被稱為圍繞UL的子訊框700的有效載荷。UL資料部分704可以指用於從從屬實體(例如,UE)到排程實體(例如,UE或BS)傳送UL資料的通訊資源。在一些配置中,控制部分702可以是PDCCH。
如圖7所示,控制部分702的末尾可以與UL資料部分704的開端在時間上被分隔。此時間分隔可以被稱為間隙、保護週期、保護間隔及/或各種其他合適的術語。此種分隔為從DL通訊(例如,由排程實體進行的接收操作)到UL通訊(例如,由排程實體進行的傳輸)的交遞提供了時間。圍繞UL的子訊框700亦可以包括共用UL部分706。圖7中的共用UL部分706可以類似於上面參照圖6描述的共用UL部分606。共用UL部分706可以另外地或替代地包括與通道品質指示符(CQI)、探測參考信號(SRS)以及各種其他合適類型的資訊有關的資訊。上述內容僅僅是圍繞UL的子訊框的一個實例,並且可以在不必偏離本文描述的各態樣的情況下存在具有相似特徵的替代結構。
在一些情況下,兩個或兩個以上從屬實體(例如,UE)可以使用側鏈(sidelink)信號彼此通訊。此種側鏈通訊的現實應用可以包括公共安全、鄰近服務、UE到網路中繼、車輛間(V2V)通訊、一鍵通(IoE)通訊、IoT通訊、任務關鍵型網格網路(mission-critical mesh),及/或各種其他合適的應用。一般而言,即使排程實體可以用於排程及/或控制目的,側鏈信號亦可以指從一個從屬實體(例如,UE1)向另一個從屬實體(例如,UE2)傳送的而不經由排程實體(例如UE或BS)中繼該傳送的信號。在一些實例中,可以使用經授權頻譜(不同於通常使用未授權頻譜的無線區域網路(WLAN))來傳送側鏈信號。
UE可以工作於各種無線電資源配置,包括與使用專用資源集合發送引導頻相關聯的配置(例如,無線電資源控制(RRC)專用狀態等),或者與使用共用資源集合發送引導頻相關聯的配置(例如,RRC共用狀態等)。當在RRC專用狀態下工作時,該UE可以選擇用於向網路發送引導頻信號的專用資源集合。當在RRC共用狀態下工作時,該UE可以選擇用於向網路發送引導頻信號的共用資源集合。在任一種情況下,由該UE發送的引導頻信號可以由一或更多個網路存取設備(諸如AN或DU)或其部分來接收。每個進行接收的網路存取設備可以被配置為接收和量測在共用資源集合上發送的引導頻信號,並且亦接收和量測在分配給一些UE的專用資源集上發送的引導頻信號,其中針對該等UE的網路存取設備是針對該UE的網路存取設備的監視集中的成員。一或更多個進行接收的網路存取設備或進行接收的網路存取設備將對引導頻信號的量測發送到的CU可以使用量測以辨識用於該等UE的服務細胞,或者以發起針對該等UE中的一或更多個UE的服務細胞的改變。示例糾錯編碼 特徵
許多通訊系統使用糾錯碼(error-correcting codes)。特定而言,糾錯碼藉由在資料串流中引入冗餘來補償該等系統中資訊傳遞的固有不可靠性。低密度同位核對(LDPC)碼是使用反覆運算編碼系統的特定類型的糾錯碼。Gallager代碼是「規則」LDPC碼的早期實例。規則LDPC碼是其同位核對矩陣H 的大多數元素為「0」的線性塊碼。
LDPC碼可以由二分圖(通常稱為「Tanner圖」)表示。在二分圖中,一組變數節點對應於碼字的位元(例如,資訊位元或系統位元),並且一組核對節點對應於定義該碼的一組同位核對約束。因此,圖的節點被分開成兩個不同的集合,並且具有連接兩個不同類型的節點(亦即,變數節點和核對節點)的邊。規則圖或碼的所有變數節點具有相同的度,且其所有約束節點具有相同的度。在此種情況下,碼是規則碼。另一態樣,非規則碼具有不同度的約束節點及/或變數節點。例如,一些變數節點的度可以是4,其他節點的度可以是3,另外節點的度是2。
「提升(Lifting)」使得能夠使用並行編碼及/或解碼實施方案來實施LDPC碼,同時亦降低了通常與大LDPC碼相關聯的複雜度。特定地,提升是用於根據較小的基本碼的多個副本來產生相對較大的LDPC碼的技術。例如,可以藉由產生基本圖的多個(Z個)並行副本來產生經提升的LDPC碼,隨後經由基本圖的每個副本的邊簇的置換來將並行副本互連。因此,可以藉由「複製和置換」操作獲得較大的圖,其中多個副本被重疊,使得相同類型的頂點緊密接近,而整個圖由多個斷開的子圖組成。
藉由複製亦可以被稱為原型圖的二分基本圖(G)多次(Z次)來建立經提升的圖,Z可以被稱為提升、提升尺寸或提升尺寸值。若變數節點和核對節點是藉由圖中的「邊」(亦即,連接變數節點和核對節點的線)來連接的,則變數節點和核對節點被認為是「鄰點」。另外,對於二分基本圖(G)的每個邊(e),將置換應用於邊(e)的Z個副本以將G的N 個副本互連。置換通常是與邊相關聯的整數值k ,其可以被稱為提升值。當且僅當對於每個核對節點,與所有相鄰變數節點相關聯的位元的和為零模2時(亦即,其包括偶數個1),與變數節點序列具有一對一關聯的位元序列是有效的碼字。若使用的置換(提升值)是循環的,則所得到的LDPC碼可以是準循環的(QC)。
圖8至圖8A分別圖示根據本案內容的某些態樣的實例LDPC碼的圖和矩陣表示。例如,圖8圖示表示LDPC碼的二分圖800。二分圖800包括連接到4個核對節點820(由正方形表示)的一組5個變數節點810(由圓圈表示)。二分圖800中的邊(由連接變數節點810到核對節點820的線表示)將變數節點810連接到核對節點820。因此,二分圖800由經由|E |= 12條邊連接的|V | = 5個變數節點和|C |=4個核對節點組成。
二分圖800可以由簡化的鄰接矩陣表示,如圖8A所示。矩陣表示800A包括同位矩陣(PCM)H和碼字向量x ,其中x 1 -x 5 表示碼字x 的位元。H 用於決定接收信號是否被正常解碼。H 具有與j 個核對節點對應的C 行和與i 個變數節點對應的V 列(亦即,解調符號),其中行表示方程式,列表示碼字的位元。在圖8A中,H 具有分別對應於來自二分圖800的4個核對節點和5個變數節點的4行和5列。若第j個核對節點經由邊連接到第i 個變數節點(亦即,兩個節點是鄰點),則在H 的第i 列和第j 行中存在「1」。亦即,第i 行和第j 列的交點包含:「1」,此時邊連接對應的頂點;和「0」,此時不存在邊。當且僅當Hx = 0時,碼字向量x 才表示有效的碼字(例如,若對於每個約束節點,(經由位元與變數節點的關聯)與該約束節點相鄰的該等位元的和為0模2(亦即,該等位元包括偶數個1)。因此,若正確接收到碼字,則Hx = 0(mod 2)。當經編碼的接收信號與H的乘積變為「0」時,此表示尚未發生錯誤。
解調符號或變數節點的數目是LDPC碼長度。行(列)中的非零元素的數量被定義為行(列)權重d(c)d(v)。節點的度是指連接到該節點的邊的數量。例如,如圖8所示,變數節點801具有三個連通度,用邊連接到核對節點811、812和813。變數節點802具有三個連通度,用邊連接到核對節點811、813和814。變數節點803具有兩個連通度,用邊連接到核對節點811和814。變數節點804具有兩個連通度,用邊連接到核對節點812和814。變數節點805具有兩個連通度,用邊連接到核對節點812和813。此特徵在圖8A所示的矩陣H 中圖示,其中存取變數節點810的邊的數量等於對應列中的1的數量,並被稱為變數節點度d(v)。類似地,與核對節點820相連的邊的數量等於對應行中的1的數量,並被稱為核對節點度d(c)。例如,如圖8A所示,矩陣H 中的第一列對應於變數節點801,列(1, 1, 1, 0)中的對應條目指示到核對節點811、812和813的邊連接,而0指示沒有到核對節點814的邊。H的第二、第三、第四和第四列中的條目分別表示變數節點802、803、804和805到核對節點的邊連接。
圖9是二分圖900,其圖示圖8的二分圖800的三個副本的提升。三個副本可以藉由在該等副本之間置換相同的邊而被互連。若置換被限於循環置換,則所得到的圖對應於提升Z = 3的準循環LDPC。根據其得到三個副本的原始圖在本文被稱為基本圖。為了根據基本圖匯出不同大小的圖,可以將「複製和置換」操作應用於基本圖。
可以藉由用Z×Z矩陣替換基本PCM之每一者條目,根據基本圖的PCM來構造經提升的圖的對應PCM。「0」條目(彼等沒有基本邊(base edge)的條目)被替換為0矩陣,並且1條目(指示基本邊)被替換為Z×Z置換矩陣。在循環提升的情況下,置換是循環置換。
經循環提升的LDPC碼亦可以被解釋為二元多項式模xz +1的環上的碼。在此種解釋中,二元多項式(x)= b0 + b1 x + b2 x2 + ... + bz-1 xz-1 可以關聯到基本圖之每一者變數節點。二元向量(b0 、b1 、b2 ...bz-1 )對應於關聯到經提升的圖中的Z個對應的變數節點的位元,亦即,單個基本變數節點的Z個副本。藉由將對應的二元多項式乘以xk ,來實現二元向量的經由k(被稱為關聯到圖中的邊的提升值)的循環置換,其中乘法是模xz +1。基本圖中的度為d的同位核對(degree d parity check)可以被解釋為對相鄰二元多項式B1(x)...Bd(x)的線性約束,被記為xk1 B1(x)+xk2 B2(x)+...+xkd Bd(x)= 0xk1 B1(x)+xk2 B2(x)+...+xkd Bd(x)= 0,值k 1 ...k d 是與對應邊相關聯的循環提升值。
此種得到的等式相當於與基本圖中的單個關聯同位核對節點對應的經循環提升的Tanner圖中的Z個同位核對。因此,用於經提升的圖的同位矩陣可以使用基本圖的矩陣來表示,其中1條目被形式為xk 的單項式代替,並且0條目被提升為0,然而0現在被解釋為0二元多項式模xz +1。可以經由提供k代替xk 來寫出此種矩陣。在此種情況下,0多項式有時表示為「-1」,有時被解釋為另一個字元以便將其與x0 區分開。
通常,同位核對矩陣的平方子矩陣表示碼的同位位元。互補列對應於在編碼時被設置為等於要編碼的資訊位元的資訊位元。編碼可以藉由求解上述平方子矩陣中的變數以滿足同位方程來實施。矩陣H可以被分成兩部分M和N,其中M是正方形部分。因此,編碼縮減為求解Mc = s = Nd,其中c和d包括x。在準循環碼或經循環提升的碼的情況下,上述代數可以被解釋為越過二元多項式的環xz +1的環。在準循環的802.11 LDPC碼的情況下,編碼子矩陣M具有如圖10所示的整數表示。
可以對接收到的LDPC碼字進行解碼以產生原始碼字的重構版本。在沒有錯誤的情況下,或者在可糾正錯誤的情況下,可以使用解碼來恢復被編碼的原始資料單元。解碼器可以使用冗餘位元來偵測和糾正位元錯誤。LDPC解碼器通常藉由反覆運算地執行局部運算並經由沿著邊在二分圖800內交換訊息來傳遞該等結果,以及藉由基於輸入訊息在節點處執行計算來更新該等訊息,來工作。該等步驟通常可以重複幾次。例如,圖800之每一者變數節點810可以最初被提供有「軟位元」(例如,表示所接收的碼字的位元),該軟位元指示經由如根據通訊通道的觀測結果決定的對關聯位元的值的估計。使用該等軟位元,LDPC解碼器可以經由反覆運算地從記憶體讀取訊息或其一部分以及將經更新的訊息或其一部分寫回到記憶體,來更新訊息。更新操作通常基於對應的LDPC碼的同位核對約束。在針對經提升的LDPC碼的實施方案中,相同的邊上的訊息通常被並行處理。
被設計用於高速應用的LDPC碼通常使用具有較大提升因數的準循環結構和相對較小的基本圖,以支援編碼和解碼操作中的高並行性。具有更高碼速率(例如,訊息長度與碼字長度的比率)的LDPC碼往往具有相對較少的同位核對。若基本同位核對的數量小於變數節點的度(例如,連接到變數節點的邊的數量),則在基本圖中,該變數節點藉由兩個或兩個以上邊連接到基本同位核對中的至少一個(例如,變數節點可以具有「雙邊」)。若基本同位核對的數量小於變數節點的度(例如,連接到變數節點的邊的數量),則在基本圖中,該變數節點藉由兩個或兩個以上邊連接到基本同位核對中的至少一個。對於並行硬體實施方案的目的,具有基本變數節點和由兩個或兩個以上邊連接的基本核對節點通常是不期望的。例如,此種雙邊可以導致對相同記憶體位置的多次併發讀取和寫入操作,此繼而可以造成資料一致性問題。基本LDPC碼中的雙邊可以在單個並行同位核對更新期間,兩次觸發對相同軟位元值記憶體位置的並行讀取。因此,通常需要額外電路來組合被寫回到記憶體的軟位元值,以便適當地併入兩個更新。消除LDPC碼中的雙邊有助於避免此種額外的複雜性。
基於循環提升的LDPC碼設計可以被解釋為多項式模的環上的碼,該多項式模可以是二元多項式模xZ -1,其中Z是提升大小(例如,準循環碼中的循環的大小)。因此,對此種碼進行編碼通常可以被解釋為在此環中的代數運算。
在標準的非規則LDPC碼集合(度分佈)的定義中,Tanner圖表示中的所有邊可以在統計上是可互換的。換言之,存在單個統計等效類的邊。對於多邊LDPC碼,多個等效類的邊可以是可行的。當在標準的非規則LDPC集合定義中時,圖中的節點(變數節點和約束節點兩者)由該等節點的度(即該等節點連接到的邊的數量)來指定,在多邊類型設置中,邊度(edge degree)是向量;其指定獨立地連接到來自每個邊等效類(類型)的節點的邊的數量。多邊類型集合由有限數量的邊類型組成。約束節點的度數類型是(非負)整數的向量;該向量的第i 個條目記錄連接到此種節點的第i 類型的通訊端的數量。此向量可以被稱為邊度。儘管變數節點的度類型有兩部分,但是其可以被看作(非負)整數的向量。第一部分涉及所接收的分佈並將被稱為所接收的度,以及第二部分指定邊度。邊度與約束節點的作用相同。當邊使得相同類型的通訊端配對時,邊被按類型歸類。關於通訊端必須與同類型的通訊端配對的約束表徵了多邊類型概念。在多邊類型描述中,不同的節點類型可以具有不同的所接收的分佈(例如,相關聯的位元可以經由不同的通道)。
藉由從碼字移除位元以產生較短的碼字來執行打孔。從而,經打孔的變數節點對應於實際未發送的碼字位元。對LDPC碼中的變數節點進行打孔會建立縮短的碼(例如,由於位元的移除),同時亦有效地移除了核對節點。特定地,對於包括要被打孔的位元的LDPC碼的矩陣表示(其中要被打孔的變數節點具有的度為一(例如,藉由行合併)),對變數節點進行打孔使得從該碼中移除相關聯的位元,並且有效地從圖中移除該碼的單個相鄰核對節點。作為結果,圖中的核對節點的數量減少了一個。可以根據打孔圖案進行打孔。打孔圖案指定要被打孔的位元。
圖11是圖示根據本案內容的某些態樣的編碼器的簡化方塊圖。圖11是圖示可以被配置為提供包括用於無線傳輸的編碼訊息的信號的射頻(RF)數據機1150的一部分的簡化方塊圖1100。在一個實例中,BS 110(或反向路徑上的UE 120)中的迴旋編碼器1102接收用於傳輸的訊息1120。訊息1120可以包含指向接收設備的資料及/或編碼語音或其他內容。編碼器1102使用通常基於由BS 110或另一網路實體定義的配置來選擇的合適的調制和編碼方案(MCS),對該訊息進行編碼。由編碼器1102產生的編碼位元串流1122隨後可以被打孔模組1104選擇性地打孔,打孔模組1104可以是單獨的設備或部件,或者可以與編碼器1102整合。打孔模組1104可以決定位元串流應當在傳輸之前被打孔,或者應當在不進行打孔的情況下被發送。通常基於網路條件、網路配置、RAN定義的偏好及/或出於其他原因,來做出要對位元串流1122進行打孔的決策。位元串流1122可以根據打孔圖案1112來被打孔,並被用以對訊息1120進行編碼。打孔模組1104向映射器1106提供輸出1124,該映射器產生Tx符號1126的序列,該Tx符號1126的序列由Tx鏈1108調制、放大或以其他方式處理以產生用於經由天線1110傳輸的RF信號1128。
根據數據機部分1150是否被配置為對位元串流1122進行打孔,打孔模組1104的輸出1124可以是未經打孔的位元串流1122或經打孔的位元串流1122的版本。在一個實例中,可以在編碼器1102的輸出1124中對同位位元及/或其他糾錯位元進行打孔,以便在RF通道的有限頻寬內發送訊息1120。在另一實例中,可以對位元串流進行打孔以減少發送訊息1120所需的功率,以避免干擾或者出於其他網路相關的原因。該等經打孔的碼字位元不被發送。
用於解碼LDPC碼字的解碼器和解碼演算法藉由在圖內沿邊交換訊息、並藉由經由基於輸入訊息在節點處執行計算來更新該等訊息,來執行。圖之每一者變數節點最初被提供有稱為接收值的軟位元,軟位元指示對如藉由根據例如通訊通道的觀測結果決定的相關聯位元的值的估計。理想情況下,對分開的位元的估計是統計上獨立的。此種理想情況可能在實踐中受到侵犯。接收的字由接收的值的集合組成。
圖12是圖示根據本案內容的某些態樣的解碼器的簡化方塊圖。圖12是圖示RF數據機1250的一部分的簡化示意圖,RF數據機1250可以被配置為接收和解碼包括經打孔的編碼訊息的被無線地發送的信號。經打孔的碼字位元可被視為被擦除的。例如,在初始化時,可以將經打孔的節點的LLR設置為「0」。在各種實例中,接收到信號的數據機1250可以常駐在UE處,在BS處,或者在用於執行所描述的功能的任何其他合適的裝置或構件處。天線1202向UE提供RF信號1220。RF鏈1204處理和解調RF信號1220,並且可以向解映射器1206提供符號序列1222,解映射器1206產生表示編碼訊息的位元串流1224。
解映射器1206可以提供經解打孔的(depunctured)位元串流1224。在一個實例中,解映射器1206可以包括解打孔模組,其可以被配置為在位元串流中的位置處插入空值,其中發射器在該位置處刪除了經打孔的位元。可以當用於在發射器處產生經打孔的位元串流的打孔圖案1210是已知的時,使用解打孔模組。打孔圖案1210可以用於辨識可以在由迴旋解碼器1208解碼位元串流1224期間忽略的LLR 122。LLR可以與位元串流1224中的一組解打孔的位元位置相關聯。因此,解碼器1208可以藉由忽略所辨識的LLR 1228,來以降低的處理管理負擔產生解碼訊息1226。LDPC解碼器可以包括並行執行同位核對或變數節點操作的複數個處理元件。例如,當處理具有提升大小Z的碼字時,LDPC解碼器可以利用數個(Z)個處理元件同時對經提升的圖的所有Z個邊執行同位核對操作。
解碼器1208的處理效率可以藉由將解碼器1208配置為忽略對應於在經打孔的位元串流1222中發送的訊息中的經打孔的位元的LLR 1228而得以改良。經打孔的位元串流1222可以根據打孔圖案而已被打孔,該打孔圖案定義要從編碼訊息中移除的某些位元。在一個實例中,可以移除某些同位位元或其他糾錯位元。打孔圖案可以以辨識在每個訊息中要被打孔的位元的位置的打孔矩陣或表來表示。可以選擇打孔圖案以減少用以解碼訊息1226的處理管理負擔,同時保持與通訊通道上的資料速率的及/或與由網路設置的傳輸功率限制的一致性。由此得到的經打孔的位元串流儘管通常表現出高速率糾錯碼的糾錯特性,但具有較少的冗餘度。因此,當通道狀況引起相對高的訊雜比(SNR)時,可以有效地採用打孔以減少接收器中的解碼器1208處的處理管理負擔。
迴旋解碼器1208可以用於來自已使用迴旋碼編碼的位元串流來解碼m位元資訊串。解碼器1208可以包括維特比解碼器、代數解碼器或另一合適的解碼器。在一個實例中,維特比解碼器採用公知的維特比演算法來找到對應於接收到的位元串流1224的最可能的訊號傳遞狀態序列(維特比路徑)。位元串流1224可以是基於對針對位元串流1224計算的LLR的統計分析來解碼的。在一個實例中,維特比解碼器可以使用概度比測試以根據位元串流1224產生LLR,來比較和選擇定義訊號傳遞狀態序列的正確維特比路徑。概度比可以用於使用概度比測試來統計地比較複數個候選維特比路徑的適合度,該概度比測試比較每個候選維特比路徑的概度比的對數值(亦即,LLR)以決定哪個路徑更可能考慮產生了位元串流1224的符號序列。
在接收器處,用於解碼未經打孔的位元串流的相同解碼器通常可以用於解碼經打孔的位元串流,而不管有多少位元已被打孔。在一般接收器中,LLR資訊通常在藉由用零填充針對經打孔的狀態的或位置的LLR(經解打孔的LLR)來嘗試進行解密之前被解打孔。解碼器可以忽略有效地不攜帶資訊的經解打孔的LLR。 示例增強打孔和LDPC碼結構特徵
意欲用於無線傳輸的低密度同位核對(LDPC)碼的期望性質之一是針對高斯雜訊通道和衰落通道兩者的高效能。亦期望地是,變數節點的最大度(例如,圖中的變數節點到圖中的核對節點的連通度或連接數量)不是非常大(例如,相對於參考LDPC碼而言)。
某些系統(例如,802.11n、802.11ad、WiMAX、ATSC等)可以使用多邊類型LDPC碼結構。多邊類型LDPC碼可以具有優於標準的非規則LDPC碼的優點。例如,多邊類型LDPC碼結構可以提供比標準的非規則LDPC碼更多的自由度,其可以被利用來設計具有優異效能、低編碼/解碼複雜度及/或其他期望特性的碼。
多邊類型的結構可以將高度的經打孔的變數節點引入到設計中,使得可以用有界節點度來降低與容量的間隙。儘管經打孔的節點有助於實現被稱為匹配條件的設計目標,但是在解碼過程開始時,經打孔的節點可能導致反覆運算解碼器減慢。例如,經打孔的節點沿著出邊發出擦除資訊,導致所連接的核對節點在前幾次反覆運算中發送很少資訊或不發送資訊。在經提升的LDPC碼的上下文中,對於藉由提升(例如,複製)相對較小的基本碼來構造的碼,通常希望地是,基本碼沒有雙邊或有幾個雙邊(例如,藉由兩邊連接到核對節點的變數節點)。由於高度變數節點連接到許多核對節點,所以高度變數節點可能導致建立雙邊,例如,當核對節點數量相對較小時,可以以更高的速率進行建立雙邊。
用於LDPC碼的另一期望特性是對混合自動重傳請求(HARQ)擴展的支援。HARQ擴展可以包括:添加額外同位位元,以及藉由添加度為一的變數節點來分離預先存在的同位核對。若分離的兩個部分連接到經打孔的變數節點(此可以是期望的,以便實施期望的效能),則預分離的核對節點可以具有連接到經打孔的變數節點的至少兩個邊。例如,具有經打孔的單個高度變數節點的LDPC碼設計在基本碼中存在雙邊。因此,可以期望有具有較小度的經打孔的多個變數節點而不是具有較大度的經打孔的一個變數節點;然而,對於高速率碼,可能難以實現良好的效能。換言之,可能在避免雙邊和實現更高的碼速率之間存在折衷。
因此,用於對具有較少的雙邊但仍然能夠在寬範圍的碼速率下實現高效能的用於對LDPC碼進行打孔的技術是期望的。
本文提供了技術,用於對基本圖中具有最高度的多個變數節點的增強型打孔,而相對於其他類型的LDPC碼,用於對相對較低度的變數節點的增強型打孔,以及用於具有添加到多邊類型LDPC碼結構的額外同位位元的LDPC碼結構,其中多邊類型LDPC碼結構可以有助於在高斯和衰落通道上實現期望的碼速率和效能。
圖13圖示根據本案內容的某些態樣的用於無線通訊的示例操作1300。操作1300可以例如由發送設備(例如,UE 120或BS 110)來執行。操作1300可以在1302開始於藉由基於LDPC碼(例如,多邊類型LDPC碼)對一組資訊位元進行編碼以產生碼字。LDPC碼由具有第一數量的變數節點(基本矩陣中的列)和第二數量的核對節點(基本矩陣中的行)的基本矩陣定義。變數節點可以具有相對於參考LDPC碼(例如,具有單個高度打孔節點的LDPC碼)中的變數節點的到核對節點的低連通度,並且基本矩陣具有針對經打孔的變數節點的至少一個額外同位位元(例如,針對每對經打孔的變數節點的一個額外變數節點或M-1個額外變數節點)。在1304,發送設備根據設計為對與(例如,基本矩陣的兩個最高度變數節點)變數節點的至少兩個(例如,M個變數節點)對應的位元進行打孔的打孔模式來對該碼字進行打孔,以產生經打孔的碼字。在1306,發送設備針對經打孔的至少兩個變數節點中的至少一個配對向基本圖添加到至少一個額外同位位元。
在1308,發送設備發送經打孔的碼字。根據某些態樣,至少一個額外變數節點是藉由對經打孔的兩個變數節點的同位來形成的。至少一個額外變數節點可以具有為一的到核對節點的連通度。
根據某些態樣,可以設計LDPC碼,其使得多個較低度的節點被打孔,而不是打孔單個高度節點。例如,具有特定度的兩個節點可以被打孔,代替具有兩倍於該度的度的經打孔的一個節點。經打孔的變數節點可以是LDPC碼結構中的最高度變數節點,但是相對於具有經打孔的單個高度變數節點的其他(例如,規則)LDPC碼,仍是相對低度的變數節點。存在為較低度節點的經打孔的兩個節點可以有助於實現針對該等節點的較慢的解碼收斂,此可能使得難以實現針對高速率碼的良好效能,特別是在核對節點的數量相對較小的情況下。在某些情況下,經打孔的節點可以是基本圖中的最高度節點(亦即,具有與基本圖中的核對節點具有最多連接邊的變數節點);然而,經打孔的節點可以具有相對於參考LDPC碼中的經打孔的節點的可能的最高連通度或度而言的低連通度。
根據某些態樣,未經打孔的額外位元可以被添加到LDPC碼結構中。可以藉由取用對經打孔的兩個節點的同位來形成未經打孔的額外位元(例如,同位位元可以是度為一的變數節點)。將未經打孔的額外位元添加到LDPC碼結構可以具有降低淨打孔速率(net puncturing rate)的效果。具有經打孔的兩個節點和發送的一個額外同位位元的整體結構只能有效地對來自碼的僅一個自由度進行打孔。經打孔的節點保持使得其優點仍然存在,而同位位元可以允許更快速的收斂,並且因此有助於在解碼過程中決定經打孔的位元的值。此結構可以有助於改善高斯和衰落通道兩者上的整體設計的效能,同時為上述論述的其他期望特徵提供支援。
根據某些態樣,可以使用LDPC碼結構,其中基本圖有少量具有中等(例如相對較低)度(例如,度為3到度為7)的經打孔的變數節點。LDPC碼結構亦可以包含分別從兩個此種經打孔的節點形成的額外同位位元。
在一個示例實施方案中,可以使用具有長度為27或28的基本圖的LDPC碼結構。在基本圖中,可以對兩個低度變數節點進行打孔,並且可以將一個額外同位位元添加到藉由對經打孔的兩個節點的同位形成的LDPC碼結構中。此種LDPC碼結構例如可用於四分之一到九分之八的碼率。
根據某些態樣,具有大的基本圖的LDPC碼結構可以涉及更多數量的經打孔的低度節點和添加的更多數量的相關聯的同位位元。例如,對於經打孔的m 個變數節點,可以添加m -1度為一的同位位元。儘管在其他情況下,可以添加不同數量的同位位元,例如,在某些情況下,可以使用少於m -1個同位位元。在圖14所示的另一示例實施方案中,可以使用具有長度為36的基本圖的LDPC碼結構1400。在基本圖中,LDPC碼結構1400中的具有相對低度的三個最高度變數節點1304被打孔,並且兩個額外同位位元1306被添加到LDPC碼結構1400,每個額外同位位元是藉由對經打孔的節點中的兩個的同位來形成的,並且被連接到核對節點1402中的一個。
可以注意到,相對較低度的經打孔的節點的度不包括用於形成額外同位位元的邊。在HARQ擴展中,由於添加了另外的同位位元,經打孔的節點的度可能會顯著增加。多邊類型設計的優點之一是其允許以受控的方式引入度為一的變數節點。藉由對所有度為一的變數節點進行打孔,並藉由經過移除該等變數節點相關聯的核對節點從碼圖中移除該等變數節點,可以獲得「核心」圖。經打孔的變數節點的「度」可以是核心圖中的節點的度。
本文描述的技術和裝置用於產生具有至少經打孔的、相對低度的兩個變數節點的LDPC碼結構,並用於針對經打孔的變數節點配對添加額外同位位元,其可以提供更好的編碼器/解碼器操作,並且因此提供處理器及/或處理系統的增強效能。例如,對較低度的經打孔的節點的使用有助於避免在圖中存在可以減慢反覆運算解碼的雙邊。藉由針對經打孔的變數節點將額外同位位元添加到基本圖中,即使在存在經打孔的變數節點的情況下亦可以獲得良好的效能,並且可以實施更高的碼速率,同時仍避免在圖中產生雙邊。因此,使用所提出的LDPC碼結構的編碼/解碼帶來了改良的處理時間。
本文揭示的方法包括用於實現所描述的方法的一或更多個步驟或動作。在不脫離申請專利範圍的範疇的情況下,方法步驟及/或動作可以彼此互換。換言之,除非指定了特定的步驟或動作的順序,否則在不脫離申請專利範圍的範疇的情況下可以修改特定步驟及/或動作的順序及/或使用。
如本文所使用地,術語「決定」包括各種各樣的動作。例如,「決定」可以包括估算、計算、處理、匯出、調查、檢視(例如,查閱資料表、資料庫或其他資料結構)、核定等。此外,「決定」可以包括接收(例如,接收資訊)、存取(例如,存取記憶體中的資料)等。此外,「決定」可以包括解決、選擇、選取、建立等。
在一些情況下,設備可以具有用於輸出訊框以進行傳輸的介面,而不是實際上發送訊框。例如,處理器可以經由匯流排介面將訊框輸出到用於傳輸的RF前端。類似地,不是實際接收訊框,設備可以具有用於獲得從另一設備接收的訊框的介面。例如,處理器可以經由匯流排介面從用於傳輸的RF前端獲得(或接收)訊框。
上述方法的各種操作可以藉由能夠執行對應功能的任何合適的構件來執行。構件可以包括各種硬體及/或軟體部件及/或模組,包括但不限於電路、特殊應用積體電路(ASIC)或處理器。通常,在有附圖中圖示的操作的情況下,該等操作可以具有有類似編號的對應的對等手段功能方塊部件。
結合本案內容描述的各種說明性邏輯區塊、模組和電路可以用被設計用於執行本文所描述的功能的通用處理器、數位訊號處理器(DSP)、特殊應用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)或其他可程式設計邏輯設備(PLD)、個別閘門或電晶體邏輯、個別硬體部件或其任何組合。通用處理器可以是微處理器,但是在替代方案中,處理器可以是任何可商購的處理器、控制器、微控制器或狀態機。處理器亦可以被實施為計算設備的組合,例如DSP和微處理器的組合、複數個微處理器、結合DSP核心的一或更多個微處理器,或任何其他此類配置。
若在硬體中實施,則示例硬體設定可以包括無線節點中的處理系統。處理系統可以用匯流排架構來實施。匯流排可以包括任何數量的互連匯流排和橋,此取決於處理系統的特定應用和整體設計約束。匯流排可以連結各種電路,包括處理器、機器可讀取媒體和匯流排介面。除了別的外,匯流排介面可以用於經由匯流排將網路配接器連接到處理系統。網路配接器可以用於實施PHY層的信號處理功能。在無線節點(參見圖1)的情況下,使用者介面(例如,小鍵盤、顯示器、滑鼠、操縱桿等)亦可以連接到匯流排。匯流排亦可以連結諸如時序源、周邊設備、電壓調節器、功率管理電路等各種其他電路,此在本領域中是眾所周知的,因此將不再進一步描述。處理器可以用一或更多個通用及/或專用處理器實施。實例包括微處理器、微控制器、DSP處理器以及可執行軟體的其他電路。本領域技藝人士將認識到,根據特定應用和施加在整個系統上的整體設計約束,如何最好地實施用於處理系統的所描述的功能。
若以軟體實施,則功能可以作為電腦可讀取媒體上的一或更多個指令或代碼儲存或發送。軟體應被寬泛地解釋為指令、資料或其任何組合,而無論被稱為軟體、韌體、中介軟體、微代碼、硬體描述語言還是其他。電腦可讀取媒體包括電腦儲存媒體和通訊媒體兩者,包括便於將電腦程式從一個地方傳送到另一個地方的任何媒體。處理器可能負責管理匯流排和通用處理,包括執行儲存在機器可讀儲存媒體上的軟體模組。電腦可讀取儲存媒體可以耦合到處理器,使得處理器可以從儲存媒體讀取資訊和向儲存媒體寫入資訊。在替代方案中,儲存媒體可以與處理器成一體。作為實例,機器可讀取媒體可以包括傳輸線、由資料調制的載波,及/或與無線節點分開的其上儲存有指令的電腦可讀取儲存媒體,所有該等可以由處理器經由匯流排介面存取。替代地或另外,機器可讀取媒體或其任何部分可以整合到處理器中,諸如在用快取記憶體及/或通用暫存器檔案可以是如此。機器可讀儲存媒體的實例可以包括例如RAM(隨機存取記憶體)、快閃記憶體、ROM(唯讀記憶體)、PROM(可程式設計唯讀記憶體)、EPROM(可抹除可程式設計唯讀記憶體)、EEPROM(電子可抹除可程式設計唯讀記憶體)、暫存器、磁碟、光碟、硬碟或任何其他合適的儲存媒體,或其任何組合。機器可讀取媒體可以體現在電腦程式產品中。
軟體模組可以包括單個指令或許多指令,並且可以分佈在多個不同程式碼片段之間、不同程式之間以及跨多個儲存媒體。電腦可讀取媒體可以包括多個軟體模組。軟體模組包括當由諸如處理器的裝置執行時使得處理系統執行各種功能的指令。軟體模組可以包括傳輸模組和接收模組。每個軟體模組可以常駐在單個儲存設備中或者分佈在多個儲存設備間。例如,當觸發事件發生時,軟體模組可以從硬碟載入到RAM中。在執行軟體模組期間,處理器可以將一些指令載入到快取記憶體中以增加存取速度。隨後可以將一或更多個快取記憶體行載入到共用暫存器檔中以供處理器執行。當參照下文的軟體模組的功能時,將理解地是,當執行來自該軟體模組的指令時,此種功能由處理器實施。
而且,任何連接被適當地稱為電腦可讀取媒體。例如,若使用同軸電纜、光纖電纜、雙絞線、數位用戶線(DSL)或諸如紅外(IR)、無線電和微波的無線技術從網站、伺服器或其他遠端源傳輸軟體,則同軸電纜、光纖電纜、雙絞線、DSL或諸如紅外線、無線電和微波的無線技術皆包含在媒體的定義中。如本文所使用的磁碟和光碟包括壓縮光碟(CD)、鐳射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光光碟®,其中磁碟通常磁性地再現資料,而光碟以光學方式用鐳射再現資料。因此,在一些態樣,電腦可讀取媒體可以包括非暫時性電腦可讀取媒體(例如有形媒體)。此外,對於其他態樣,電腦可讀取媒體可以包括暫時性電腦可讀取媒體(例如,信號)。上述的組合亦應包括在電腦可讀取媒體的範圍內。
因此,某些態樣可以包括用於執行本文呈現的操作的電腦程式產品。例如,此種電腦程式產品可以包括具有在其上儲存(及/或編碼)的指令的電腦可讀取媒體,該等指令可由一或更多個處理器執行以執行本文所述的操作。
此外,應當理解,用於執行本文描述的方法和技術的模組及/或其他適當的構件可以由無線節點及/或基地台適當地下載及/或以其他方式獲得。例如,此種設備可以耦合到伺服器以便於傳送用於執行本文描述的方法的構件。替代地,可以經由儲存構件(例如RAM、ROM、諸如光碟(CD)或軟碟等的實體儲存媒體等)來提供本文描述的各種方法,使得無線節點及/或基地台可以在將儲存構件耦合到或提供給設備時獲得各種方法。此外,可以利用用於將本文所描述的方法和技術提供給設備的任何其他合適的技術。
應當理解,申請專利範圍不限於上文所示的精確配置和部件。在不脫離申請專利範圍的範疇的情況下,可以對上述方法和裝置的佈置、操作和細節進行各種修改、改變和變化。
100‧‧‧無線通訊網路 102a‧‧‧巨集細胞 102b‧‧‧巨集細胞 102c‧‧‧巨集細胞 110‧‧‧BS 110a‧‧‧BS 110b‧‧‧BS 110c‧‧‧BS 110d‧‧‧BS 120‧‧‧UE 120r‧‧‧UE 130‧‧‧網路控制器 200‧‧‧分散式RAN 202‧‧‧存取節點控制器(ANC) 204‧‧‧下一代核心網路(NG-CN) 206‧‧‧存取節點(AN) 208‧‧‧TRP 210‧‧‧NG-AN 300‧‧‧分散式RAN 302‧‧‧集中式核心網路單元(C-CU) 304‧‧‧集中式RAN單元(C-RU) 306‧‧‧DU 412‧‧‧資料來源 420‧‧‧發射處理器 430‧‧‧發射(TX)多輸入多輸出(MIMO)處理器 432a‧‧‧調制器(MOD) 432t‧‧‧調制器(MOD) 434a‧‧‧天線 434t‧‧‧天線 436‧‧‧MIMO偵測器 438‧‧‧接收處理器 439‧‧‧資料槽 440‧‧‧控制器/處理器 442‧‧‧記憶體 444‧‧‧排程器 452a‧‧‧天線 452r‧‧‧天線 454a‧‧‧解調器/調制器 454r‧‧‧解調器/調制器 456‧‧‧MIMO偵測器 458‧‧‧接收處理器 460‧‧‧資料槽 462‧‧‧資料來源 464‧‧‧發射處理器 466‧‧‧TX MIMO處理器 480‧‧‧控制器/處理器 482‧‧‧記憶體 500‧‧‧圖 505-a‧‧‧第一選擇方案 505-b‧‧‧第二選擇方案 510‧‧‧RRC層 515‧‧‧PDCP層 520‧‧‧RLC層 525‧‧‧MAC層 530‧‧‧PHY層 600‧‧‧DL的子訊框 602‧‧‧控制部分 604‧‧‧DL資料部分 606‧‧‧共用UL部分 700‧‧‧UL的子訊框 702‧‧‧控制部分 704‧‧‧UL資料部分 706‧‧‧共用UL部分 800‧‧‧二分圖 800A‧‧‧矩陣表示 801‧‧‧變數節點 802‧‧‧變數節點 803‧‧‧變數節點 804‧‧‧變數節點 805‧‧‧變數節點 811‧‧‧核對節點 812‧‧‧核對節點 813‧‧‧核對節點 814‧‧‧核對節點 820‧‧‧核對節點 900‧‧‧二分圖 1100‧‧‧簡化方塊圖 1102‧‧‧迴旋編碼器 1104‧‧‧打孔模組 1106‧‧‧映射器 1108‧‧‧Tx鏈 1110‧‧‧天線 1112‧‧‧打孔圖案 1120‧‧‧訊息 1122‧‧‧位元串流 1124‧‧‧輸出 1126‧‧‧Tx符號 1128‧‧‧RF信號 1150‧‧‧數據機部分 1202‧‧‧天線 1204‧‧‧RF鏈 1206‧‧‧解映射器 1208‧‧‧迴旋解碼器 1210‧‧‧打孔圖案 1220‧‧‧RF信號 1222‧‧‧經打孔的位元串流 1224‧‧‧位元串流 1226‧‧‧解碼訊息 1228‧‧‧LLR 1300‧‧‧操作 1302‧‧‧操作 1304‧‧‧操作 1306‧‧‧操作 1308‧‧‧操作 1400‧‧‧LDPC碼結構 1402‧‧‧核對節點
按照可以詳細地理解本案內容的上述特徵的方式,可以藉由參照各態樣來進行對在上面簡要總結的描述的更特定的描述,其中一些態樣在附圖中圖示。然而,附圖僅圖示本案內容的某些典型態樣,而並因此不被視為限制其範疇,此是因為描述可以適於其他等效的態樣。
圖1是圖示根據本案內容的某些態樣的示例性無線通訊網路的方塊圖。
圖2是圖示根據本案內容的某些態樣的分散式無線電存取網路(RAN)的示例邏輯架構的方塊圖。
圖3是圖示根據本案內容的某些態樣的分散式RAN的示例實體架構的圖。
圖4是圖示根據本案內容的某些態樣的示例性基地台(BS)和使用者設備(UE)的設計的方塊圖。
圖5是圖示根據本案內容的某些態樣的用於實施通訊協定堆疊的實例的圖。
圖6圖示根據本案內容的某些態樣的圍繞下行鏈路(DL)的子訊框的實例。
圖7圖示根據本案內容的某些態樣的圍繞上行鏈路(UL)的子訊框的實例。
圖8是根據本案內容的某些態樣的示例性低密度同位核對(LDPC)碼的圖表示。
圖8A是根據本案內容的某些態樣的對圖8的示例LDPC碼的矩陣表示。
圖9是根據本案內容的某些態樣的對圖8的LDPC碼的提升的圖表示。
圖10是準循環802.11 LDPC碼的矩陣的整數表示。
圖11是圖示根據本案內容的某些態樣的示例性編碼器的簡化方塊圖。
圖12是圖示根據本案內容的某些態樣的示例性解碼器的簡化方塊圖。
圖13是圖示根據本案內容的某些態樣的用於由發送設備基於用於無線通訊的增強型打孔和LDPC碼結構來編碼資訊的示例操作的流程圖。
圖14圖示根據本案內容的某些態樣的具有經打孔的多個相對低度的變數節點和額外同位位元的示例性LDPC碼的圖表示。
為了便於理解,在可能的情況下,已經使用相同的元件符號來表示對於附圖而言共同的相同元件。可以設想,在一個實施例中揭示的元件可以有利地用於其他實施例,而無需特別說明。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
1300‧‧‧操作
1302‧‧‧操作
1304‧‧‧操作
1306‧‧‧操作
1308‧‧‧操作

Claims (28)

  1. 一種用於無線通訊的方法,包括以下步驟: 基於一低密度同位核對(LDPC)碼來編碼一組資訊位元以產生一碼字,該LDPC碼由具有一第一數量的變數節點和一第二數量的核對節點的一基本矩陣定義; 根據被設計為對與該等變數節點中的至少兩個變數節點對應的位元進行打孔的一打孔圖案來對該碼字進行打孔,以產生一經打孔的碼字; 針對經打孔的該至少兩個變數節點向該基本矩陣添加至少一個額外同位位元;及 發送該經打孔的碼字。
  2. 如請求項1所述之方法,其中經打孔的該至少兩個變數節點具有與該基本矩陣中的其他變數節點相比的到該等核對節點的一更高連通度。
  3. 如請求項1所述之方法,其中該至少一個額外同位位元是藉由對經打孔的該至少兩個變數節點中的至少一個配對的一同位來形成的。
  4. 如請求項1所述之方法,其中經打孔的該至少兩個變數節點包括M 個變數節點,並且其中該至少一個額外同位位元是M -1個同位位元。
  5. 如請求項1所述之方法,其中該第一數量的變數節點是27或28個變數節點。
  6. 如請求項1所述之方法,其中經打孔的該至少兩個變數節點具有比一參考LDPC碼中的一變數節點的一第二連通度低的到該等核對節點的一第一連通度。
  7. 如請求項1所述之方法,亦包括以下步驟: 藉由取用由具有經打孔的該至少兩個變數節點和該至少一個額外同位位元的該基本矩陣定義的該LDPC碼的Z個副本,來產生經提升的至少一個LDPC碼。
  8. 一種用於無線通訊的裝置,包括: 用於基於一低密度同位核對(LDPC)碼來編碼一組資訊位元以產生一碼字的構件,該LDPC碼由具有一第一數量的變數節點和一第二數量的核對節點的一基本矩陣定義; 用於根據被設計為對與該等變數節點中的至少兩個變數節點對應的位元進行打孔的一打孔圖案來對該碼字進行打孔,以產生一經打孔的碼字的構件; 用於針對經打孔的該至少兩個變數節點向該基本矩陣添加至少一個額外同位位元的構件;及 用於發送該經打孔的碼字的構件。
  9. 如請求項8所述之裝置,其中經打孔的該至少兩個變數節點具有與該基本矩陣中的其他變數節點相比的到該核對節點的一更高連通度。
  10. 如請求項8所述之裝置,其中該至少一個額外同位位元是藉由對經打孔的該至少兩個變數節點中的至少一個配對的一同位來形成的。
  11. 如請求項8所述之裝置,其中經打孔的該至少兩個變數節點包括M 個變數節點,並且其中該至少一個額外同位位元是M -1個同位位元。
  12. 如請求項8所述之裝置,其中該第一數量的變數節點是27或28個變數節點。
  13. 如請求項8所述之裝置,其中經打孔的該至少兩個變數節點具有比一參考LDPC碼中的一變數節點的一第二連通度低的到該等核對節點的一第一連通度。
  14. 如請求項8所述之裝置,亦包括: 用於藉由取用由具有經打孔的該至少兩個變數節點和該至少一個額外同位位元的該基本矩陣定義的該LDPC碼的Z 個副本,來產生經提升的至少一個LDPC碼的構件。
  15. 一種用於無線通訊的裝置,包括: 至少一個處理器,其與一記憶體耦合並被配置為: 基於一低密度同位核對(LDPC)碼來編碼一組資訊位元以產生一碼字,該LDPC碼由具有一第一數量的變數節點和一第二數量的核對節點的一基本矩陣定義; 根據被設計為對與該等變數節點中的至少兩個變數節點對應的位元進行打孔的一打孔圖案來對該碼字進行打孔,以產生一經打孔的碼字;及 針對經打孔的該至少兩個變數節點向該基本矩陣添加至少一個額外同位位元;及 一發射器,被配置為發送該經打孔的碼字。
  16. 如請求項15所述之裝置,其中經打孔的該至少兩個變數節點具有與該基本矩陣中的其他變數節點相比的到該核對節點的一更高連通度。
  17. 如請求項15所述之裝置,其中該至少一個額外同位位元是藉由對經打孔的該至少兩個變數節點中的至少一個配對的一同位來形成的。
  18. 如請求項15所述之裝置,其中經打孔的該至少兩個變數節點包括M 個變數節點,並且其中該至少一個額外同位位元是M -1個同位位元。
  19. 如請求項15所述之裝置,其中該第一數量的變數節點是27或28個變數節點。
  20. 如請求項15所述之裝置,其中經打孔的該至少兩個變數節點具有比一參考LDPC碼中的一變數節點的一第二連通度低的到該核對節點的一第一連通度。
  21. 如請求項15所述之裝置,其中該至少一個處理器亦被配置為: 藉由取用由具有經打孔的該至少兩個變數節點和該至少一個額外同位位元的該基本矩陣定義的該LDPC碼的Z 個副本,來產生經提升的至少一個LDPC碼。
  22. 一種其上儲存有用於無線通訊的電腦可執行代碼的電腦可讀取媒體,包括: 用於基於一低密度同位核對(LDPC)碼來編碼一組資訊位元以產生一碼字的代碼,該LDPC碼由具有一第一數量的變數節點和一第二數量的核對節點的一基本矩陣定義; 用於根據被設計為對與該等變數節點中的至少兩個變數節點對應的位元進行打孔的一打孔圖案來對該碼字進行打孔,以產生一經打孔的碼字的代碼; 用於針對經打孔的該至少兩個變數節點向該基本矩陣添加至少一個額外同位位元的代碼;及 用於發送該經打孔的碼字的代碼。
  23. 如請求項22所述之裝置,其中經打孔的該至少兩個變數節點具有與該基本矩陣中的其他變數節點相比的到該核對節點的一更高連通度。
  24. 如請求項2所述2之裝置,其中該至少一個額外同位位元是藉由對經打孔的該至少兩個變數節點中的至少一個配對的一同位來形成的。
  25. 如請求項22所述之裝置,其中經打孔的該至少兩個變數節點包括M 個變數節點,並且其中該至少一個額外同位位元是M -1個同位位元。
  26. 如請求項22所述之裝置,其中該第一數量的變數節點是27或28個變數節點。
  27. 如請求項22所述之裝置,其中經打孔的該至少兩個變數節點具有比一參考LDPC碼中的一變數節點的一第二連通度低的到該核對節點的一第一連通度。
  28. 如請求項22所述之裝置,亦包括: 用於藉由取用由具有經打孔的該至少兩個變數節點和該至少一個額外同位位元的該基本矩陣定義的該LDPC碼的Z個副本,來產生經提升的至少一個LDPC碼的代碼。
TW106115720A 2016-05-12 2017-05-12 增強型打孔和低密度同位核對(ldpc)碼結構 TWI692211B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662335163P 2016-05-12 2016-05-12
US62/335,163 2016-05-12
US15/593,035 2017-05-11
US15/593,035 US10454499B2 (en) 2016-05-12 2017-05-11 Enhanced puncturing and low-density parity-check (LDPC) code structure

Publications (2)

Publication Number Publication Date
TW201743568A true TW201743568A (zh) 2017-12-16
TWI692211B TWI692211B (zh) 2020-04-21

Family

ID=58745486

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106115720A TWI692211B (zh) 2016-05-12 2017-05-12 增強型打孔和低密度同位核對(ldpc)碼結構

Country Status (20)

Country Link
US (2) US10454499B2 (zh)
EP (1) EP3455942A1 (zh)
JP (1) JP6808755B2 (zh)
KR (1) KR102150183B1 (zh)
CN (2) CN114520660A (zh)
AU (1) AU2017263634B2 (zh)
BR (1) BR112018073114B1 (zh)
CA (1) CA3019600C (zh)
CL (1) CL2018003152A1 (zh)
CO (1) CO2018012093A2 (zh)
IL (1) IL262101B (zh)
MX (1) MX2018013497A (zh)
MY (1) MY189511A (zh)
PH (1) PH12018502070A1 (zh)
RU (1) RU2718171C1 (zh)
SA (1) SA518400286B1 (zh)
SG (1) SG11201808344UA (zh)
TW (1) TWI692211B (zh)
WO (1) WO2017197267A1 (zh)
ZA (1) ZA201807541B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI760593B (zh) * 2018-02-01 2022-04-11 弗勞恩霍夫爾協會 使用混成式編碼器/解碼器空間分析之音訊場景編碼器、音訊場景解碼器及相關方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10784901B2 (en) 2015-11-12 2020-09-22 Qualcomm Incorporated Puncturing for structured low density parity check (LDPC) codes
US11043966B2 (en) 2016-05-11 2021-06-22 Qualcomm Incorporated Methods and apparatus for efficiently generating multiple lifted low-density parity-check (LDPC) codes
US10454499B2 (en) 2016-05-12 2019-10-22 Qualcomm Incorporated Enhanced puncturing and low-density parity-check (LDPC) code structure
US10313057B2 (en) 2016-06-01 2019-06-04 Qualcomm Incorporated Error detection in wireless communications using sectional redundancy check information
US9917675B2 (en) 2016-06-01 2018-03-13 Qualcomm Incorporated Enhanced polar code constructions by strategic placement of CRC bits
US10469104B2 (en) 2016-06-14 2019-11-05 Qualcomm Incorporated Methods and apparatus for compactly describing lifted low-density parity-check (LDPC) codes
SG11201810437XA (en) 2016-07-27 2019-02-27 Qualcomm Inc Design of hybrid automatic repeat request (harq) feedback bits for polar codes
US10340949B2 (en) 2017-02-06 2019-07-02 Qualcomm Incorporated Multiple low density parity check (LDPC) base graph design
CN114598424A (zh) * 2017-02-15 2022-06-07 中兴通讯股份有限公司 一种数据处理方法及装置
US10879927B2 (en) * 2017-05-17 2020-12-29 Futurewei Technologies, Inc. Compact low density parity check (LDPC) base graph
US10312939B2 (en) 2017-06-10 2019-06-04 Qualcomm Incorporated Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code
BR112020000140A2 (pt) 2017-07-07 2020-08-04 Qualcomm Incorporated técnicas de comunicação aplicando seleção de gráfico base de código de verificação de paridade de baixa densidade
EP3711419A4 (en) * 2017-11-17 2021-06-02 ZTE Corporation SYSTEM AND METHOD FOR PROCESSING TAX INFORMATION
US10680764B2 (en) * 2018-02-09 2020-06-09 Qualcomm Incorporated Low-density parity check (LDPC) parity bit storage for redundancy versions
WO2019164515A1 (en) * 2018-02-23 2019-08-29 Nokia Technologies Oy Ldpc codes for 3gpp nr ultra-reliable low-latency communications
US11032061B2 (en) * 2018-04-27 2021-06-08 Microsoft Technology Licensing, Llc Enabling constant plaintext space in bootstrapping in fully homomorphic encryption
US11005595B2 (en) * 2018-06-07 2021-05-11 Qualcomm Incorporated Self-decodability for low-density parity-check codes
CN109167600A (zh) * 2018-10-12 2019-01-08 哈尔滨工业大学 基于深度置信网络的抗音调干扰ldpc码的译码方法
US11777524B2 (en) * 2019-04-22 2023-10-03 Lg Electronics Inc. Method for supporting rate-compatible non-binary LDPC code, and wireless terminal using same
US11303303B2 (en) * 2020-01-03 2022-04-12 Qualcomm Incorporated Rate 7/8 low-density parity-check (LDPC) code
US11764813B1 (en) 2022-06-07 2023-09-19 Western Digital Technologies, Inc. Extendable parity code matrix construction and utilization in a data storage device
WO2024040457A1 (en) * 2022-08-24 2024-02-29 Qualcomm Incorporated Low-density parity-check coding with applications for probabilistic amplitude shaping

Family Cites Families (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5583500A (en) 1993-02-10 1996-12-10 Ricoh Corporation Method and apparatus for parallel encoding and decoding of data
US5844918A (en) 1995-11-28 1998-12-01 Sanyo Electric Co., Ltd. Digital transmission/receiving method, digital communications method, and data receiving apparatus
ES2344299T3 (es) 1997-07-30 2010-08-24 Samsung Electronics Co., Ltd. Metodo y dispositivo para codificacion de canal adaptativo.
TW427076B (en) 1999-04-06 2001-03-21 Inst Information Industry CRC key checking device and the method thereof
WO2001039421A2 (de) 1999-11-25 2001-05-31 Siemens Aktiengesellschaft Verfahren zur anpassung der datenrate in einer kommunikationsvorrichtung und entsprechende kommunikationsvorrichtung
US6633865B1 (en) 1999-12-23 2003-10-14 Pmc-Sierra Limited Multithreaded address resolution system
US6931581B1 (en) 2000-10-25 2005-08-16 Sun Microsystems, Inc. Method for superimposing a sequence number in an error detection code in a data network
US6961388B2 (en) 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
US7093179B2 (en) 2001-03-22 2006-08-15 University Of Florida Method and coding means for error-correction utilizing concatenated parity and turbo codes
US6987778B2 (en) 2001-05-22 2006-01-17 Qualcomm Incorporated Enhanced channel interleaving for optimized data throughput
US6633856B2 (en) 2001-06-15 2003-10-14 Flarion Technologies, Inc. Methods and apparatus for decoding LDPC codes
KR100762632B1 (ko) 2001-10-17 2007-10-01 삼성전자주식회사 부호 분할 다중 접속 통신 시스템에서 전송 채널 다중화/역다중화 장치 및 방법
US6854082B1 (en) 2001-11-27 2005-02-08 Lsi Logic Corporation Unequal error protection Reed-Muller code generator and decoder
US20060013181A1 (en) * 2002-07-31 2006-01-19 Victor Stolpman Apparatus, and associated method, for allocating communications in a multi-channel communication system
US6961888B2 (en) 2002-08-20 2005-11-01 Flarion Technologies, Inc. Methods and apparatus for encoding LDPC codes
US6957375B2 (en) 2003-02-26 2005-10-18 Flarion Technologies, Inc. Method and apparatus for performing low-density parity-check (LDPC) code operations using a multi-level permutation
US7222284B2 (en) * 2003-06-26 2007-05-22 Nokia Corporation Low-density parity-check codes for multiple code rates
KR100955952B1 (ko) 2003-10-13 2010-05-19 삼성전자주식회사 무선 통신 시스템에서 리프팅 저밀도 패러티 검사 부호를이용한 시공간 부호화 방법 및 장치
KR100918763B1 (ko) 2003-11-14 2009-09-24 삼성전자주식회사 병렬 연접 저밀도 패리티 검사 부호를 사용하는 채널 부호화/복호 장치 및 방법
CN1947368B (zh) 2004-04-28 2010-06-16 三星电子株式会社 对具有可变块长度的块低密度奇偶校验码编码/解码的设备和方法
KR20050118056A (ko) * 2004-05-12 2005-12-15 삼성전자주식회사 다양한 부호율을 갖는 Block LDPC 부호를 이용한이동 통신 시스템에서의 채널부호화 복호화 방법 및 장치
US7526717B2 (en) 2004-06-16 2009-04-28 Samsung Electronics Co., Ltd. Apparatus and method for coding and decoding semi-systematic block low density parity check codes
US20050283707A1 (en) 2004-06-22 2005-12-22 Eran Sharon LDPC decoder for decoding a low-density parity check (LDPC) codewords
US7346832B2 (en) 2004-07-21 2008-03-18 Qualcomm Incorporated LDPC encoding methods and apparatus
US7395490B2 (en) 2004-07-21 2008-07-01 Qualcomm Incorporated LDPC decoding methods and apparatus
EP1641128A1 (en) * 2004-09-22 2006-03-29 STMicroelectronics N.V. Method and device for delivering punctured code words encoded with a LDPC code.
WO2006039801A1 (en) 2004-10-12 2006-04-20 Nortel Networks Limited System and method for low density parity check encoding of data
US7581159B2 (en) * 2004-11-23 2009-08-25 Texas Instruments Incorporated Simplified decoding using structured and punctured LDPC codes
US7543197B2 (en) 2004-12-22 2009-06-02 Qualcomm Incorporated Pruned bit-reversal interleaver
US7571369B2 (en) 2005-02-17 2009-08-04 Samsung Electronics Co., Ltd. Turbo decoder architecture for use in software-defined radio systems
KR101157246B1 (ko) * 2005-05-16 2012-06-15 삼성전자주식회사 저밀도 패리티 검사 부호의 패딩 및 천공 방법
US7571372B1 (en) 2005-06-23 2009-08-04 Marvell International Ltd. Methods and algorithms for joint channel-code decoding of linear block codes
US7343539B2 (en) * 2005-06-24 2008-03-11 The United States Of America As Represented By The United States National Aeronautics And Space Administration ARA type protograph codes
US8213291B2 (en) 2005-06-29 2012-07-03 Intel Corporation Wireless data transmission methods, devices, and systems
KR100856235B1 (ko) * 2005-09-26 2008-09-03 삼성전자주식회사 가변 부호화율을 가지는 블록 저밀도 패리티 검사 부호부호화/복호 장치 및 방법
KR100943623B1 (ko) 2005-09-30 2010-02-24 삼성전자주식회사 저밀도 패러티 검사 부호의 천공기법
KR100966043B1 (ko) 2005-10-31 2010-06-25 삼성전자주식회사 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서 신호 송수신 장치 및 방법
KR100929079B1 (ko) * 2005-10-31 2009-11-30 삼성전자주식회사 저밀도 패리티 검사 부호를 사용하는 통신 시스템의 복호 장치 및 방법
TWI303414B (en) 2005-12-21 2008-11-21 Ind Tech Res Inst A data encoding method for error correcton
US8132072B2 (en) 2006-01-06 2012-03-06 Qualcomm Incorporated System and method for providing H-ARQ rate compatible codes for high throughput applications
US7979784B2 (en) 2006-03-29 2011-07-12 Samsung Electronics Co., Ltd. Method and system for enhancing transmission reliability of video information over wireless channels
CN100546205C (zh) * 2006-04-29 2009-09-30 北京泰美世纪科技有限公司 构造低密度奇偶校验码的方法、译码方法及其传输系统
KR101119111B1 (ko) 2006-05-04 2012-03-16 엘지전자 주식회사 Ldpc 부호를 이용한 데이터 재전송 방법
KR101191196B1 (ko) 2006-06-07 2012-10-15 엘지전자 주식회사 패리티 검사 행렬을 이용하여 부호화 및 복호화하는 방법
KR100834650B1 (ko) * 2006-09-04 2008-06-02 삼성전자주식회사 통신 시스템에서 신호 송수신 장치 및 방법
US7797464B2 (en) 2006-09-08 2010-09-14 Ciena Corporation Configuring data transmission over one or more line cards globally or individually
US7840880B1 (en) 2006-09-25 2010-11-23 Altera Corporation Methods and apparatus for error checking code computation
US8464120B2 (en) 2006-10-18 2013-06-11 Panasonic Corporation Method and system for data transmission in a multiple input multiple output (MIMO) system including unbalanced lifting of a parity check matrix prior to encoding input data streams
US7986622B2 (en) 2006-10-24 2011-07-26 Broadcom Corporation Method and system for physical layer aggregation
CA2664918C (en) * 2006-10-26 2014-06-03 Qualcomm Incorporated Coding schemes for wireless communication transmissions
US8892979B2 (en) * 2006-10-26 2014-11-18 Qualcomm Incorporated Coding schemes for wireless communication transmissions
KR100981501B1 (ko) * 2006-11-06 2010-09-10 연세대학교 산학협력단 통신 시스템에서 신호 송신 장치 및 방법
US8086929B2 (en) 2006-11-17 2011-12-27 Lg Electronics Inc. Method of executing LDPC coding using parity check matrix
KR100833515B1 (ko) 2006-12-05 2008-05-29 한국전자통신연구원 가변 정보 길이 및 가변 부호율을 가진 ldpc 부호의패리티 검사 행렬 생성 방법, 부/복호화 방법 및 이를이용하는 장치
CA2674719A1 (en) 2007-01-24 2008-07-31 Qualcomm Incorporated Ldpc encoding and decoding of packets of variable sizes
US20100107033A1 (en) * 2007-01-31 2010-04-29 Kenichi Kuri Radio communication device and puncturing method
US8418015B2 (en) 2007-06-08 2013-04-09 China Academy Of Telecommunications Technology Method, apparatus and system for coding and decoding of LDPC codes
CN101325474B (zh) 2007-06-12 2012-05-09 中兴通讯股份有限公司 Ldpc码的混合自动请求重传的信道编码及调制映射方法
JP5131998B2 (ja) 2007-06-15 2013-01-30 パナソニック株式会社 無線通信装置、無線通信システム及び無線通信方法
US7890834B2 (en) 2007-06-20 2011-02-15 Motorola Mobility, Inc. Apparatus comprising a circular buffer and method for assigning redundancy versions to a circular buffer
JP5354979B2 (ja) 2007-07-12 2013-11-27 パナソニック株式会社 低密度パリティ検査畳み込み符号(ldpc−cc)符号化器及びldpc−cc復号器
WO2009011134A1 (ja) * 2007-07-19 2009-01-22 Panasonic Corporation 無線通信装置およびldpc符号化における通信リソース配置方法
WO2009019817A1 (ja) 2007-08-09 2009-02-12 Panasonic Corporation 無線通信装置、無線通信システム及び無線通信方法
KR100928261B1 (ko) 2007-09-08 2009-11-24 엘지전자 주식회사 비검출 오류 저감을 위한 신호 분할 및 crc 부착 방법
WO2009041034A1 (ja) 2007-09-27 2009-04-02 Panasonic Corporation 無線通信装置、無線通信システム及び無線通信方法
EP2381582B1 (en) 2007-12-06 2013-04-10 Samsung Electronics Co., Ltd. Method and apparatus for channel encoding in a communication system using low-density parity-check codes
CN101188428B (zh) 2007-12-10 2012-09-05 中兴通讯股份有限公司 一种ldpc码的有限长度循环缓存的速率匹配方法
KR101445080B1 (ko) 2008-02-12 2014-09-29 삼성전자 주식회사 하이브리드 자동 반복 요구 방식을 사용하는 통신 시스템에서 신호 송신 방법 및 장치
KR101503059B1 (ko) 2008-02-26 2015-03-19 삼성전자주식회사 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서 채널 부호/복호 방법 및 장치
KR101503058B1 (ko) * 2008-02-26 2015-03-18 삼성전자주식회사 저밀도 패리티 검사 부호를 사용하는 통신 시스템에서의 채널 부호화/복호화 방법 및 장치
CN102651652B (zh) 2008-05-04 2015-07-29 华为技术有限公司 生成码率兼容ldpc码及harq方案的方法及装置
US20090300461A1 (en) 2008-05-29 2009-12-03 Gadi Shor Device, method and computer program product for communication
CN102084599A (zh) 2008-07-09 2011-06-01 夏普株式会社 通信装置、通信系统、接收方法和通信方法
EP2323303A1 (en) 2008-09-02 2011-05-18 Panasonic Corporation Wireless communication device and wireless communication method
US8347199B2 (en) 2009-01-21 2013-01-01 Cisco Technology, Inc. Enhanced error detection in multilink serdes channels
US8433972B2 (en) 2009-04-06 2013-04-30 Nec Laboratories America, Inc. Systems and methods for constructing the base matrix of quasi-cyclic low-density parity-check codes
EP2244387A1 (en) * 2009-04-23 2010-10-27 Georgia Tech Research Corporation Method and transmitter for use in secure communication using error correction codes
US8245097B2 (en) 2009-04-27 2012-08-14 Kan Ling Capital, L.L.C. Iterative decoding of punctured low-density parity check codes by selection of decoding matrices
US8495450B2 (en) 2009-08-24 2013-07-23 Samsung Electronics Co., Ltd. System and method for structured LDPC code family with fixed code length and no puncturing
US8560911B2 (en) 2009-09-14 2013-10-15 Samsung Electronics Co., Ltd. System and method for structured LDPC code family
JP5073770B2 (ja) 2010-02-19 2012-11-14 株式会社エヌ・ティ・ティ・ドコモ 移動端末装置、無線基地局装置及び無線通信方法
US8687751B1 (en) 2010-04-02 2014-04-01 Marvell International Ltd. Multiple-input multiple-output receivers using successive interference cancellation based on cyclic redundancy check
US8601345B1 (en) 2010-05-12 2013-12-03 Tellabs Operations, Inc. Method and apparatus for searching frame alignment with false alignment protection
US9634693B2 (en) 2010-08-12 2017-04-25 Samsung Electronics Co., Ltd Apparatus and method for decoding LDPC codes in a communications system
US8627166B2 (en) 2011-03-16 2014-01-07 Samsung Electronics Co., Ltd. LDPC code family for millimeter-wave band communications in a wireless network
CN103188044A (zh) 2011-05-19 2013-07-03 北京新岸线移动多媒体技术有限公司 一种用于数据传输的方法和设备
KR20120137198A (ko) 2011-06-11 2012-12-20 삼성전자주식회사 통신 시스템에서 패킷 송수신 장치 및 방법
KR101942530B1 (ko) 2011-08-22 2019-01-25 삼성전자 주식회사 오류정정부호 기반 암호화 시스템의 성능 개선 방법 및 장치
CN102437858B (zh) 2011-08-31 2013-11-06 北京理工大学 一种卷积码编码器结构的改进方法
CN102340378A (zh) 2011-10-23 2012-02-01 许继集团有限公司 纵联保护用光纤通道crc校验方法
US9176927B2 (en) 2011-11-08 2015-11-03 The Royal Institution For The Advancement Of Learning/Mcgill University Methods and systems for decoding polar codes
CN103220001B (zh) 2012-01-20 2016-09-07 华为技术有限公司 与循环冗余校验级联的极性码的译码方法和译码装置
US9124872B2 (en) 2012-04-16 2015-09-01 Qualcomm Incorporated Coefficient groups and coefficient coding for coefficient scans
US9088769B2 (en) 2012-06-28 2015-07-21 Blackberry Limited Reduced worst-case context-coded bins in video compression with parity hiding
US9503126B2 (en) 2012-07-11 2016-11-22 The Regents Of The University Of California ECC polar coding and list decoding methods and codecs
WO2014021837A1 (en) 2012-07-31 2014-02-06 Empire Technology Development Llc Entropy coding and decoding using polar codes
CN108650057B (zh) 2012-10-17 2023-10-13 华为技术有限公司 一种编译码的方法、装置及系统
KR102007770B1 (ko) 2012-12-14 2019-08-06 삼성전자주식회사 패킷의 부호화 방법과 그 복호화 장치 및 방법
KR101951663B1 (ko) 2012-12-14 2019-02-25 삼성전자주식회사 Crc 부호와 극 부호에 의한 부호화 방법 및 장치
US9178653B2 (en) * 2013-01-16 2015-11-03 Broadcom Corporation Very short size LDPC coding for physical and/or control channel signaling
US9362956B2 (en) 2013-01-23 2016-06-07 Samsung Electronics Co., Ltd. Method and system for encoding and decoding data using concatenated polar codes
KR101710025B1 (ko) 2013-01-24 2017-02-24 캘리포니아 인스티튜트 오브 테크놀로지 재기록 불능 메모리에서의 결합 재기록 및 에러 정정
WO2014127129A1 (en) * 2013-02-13 2014-08-21 Qualcomm Incorporated Ldpc design using quasi-cyclic constructions and puncturing for high rate, high parallelism, and low error floor
CN104038234B (zh) 2013-03-07 2017-09-29 华为技术有限公司 极性码的译码方法和译码器
CN103281166B (zh) 2013-05-15 2016-05-25 北京邮电大学 一种基于极化码的混合自动重传请求传输方法
US9432143B2 (en) * 2013-06-06 2016-08-30 Broadcom Corporation Combining CRC and FEC on a variable number of NCPs
KR102104937B1 (ko) 2013-06-14 2020-04-27 삼성전자주식회사 Ldpc 부호의 부호화 장치, 그의 부호화 방법, 복호화 장치 및 그의 복호화 방법
TW201519596A (zh) 2013-07-11 2015-05-16 Interdigital Patent Holdings 智慧HARQ WiFi系統及方法
US10075266B2 (en) 2013-10-09 2018-09-11 Qualcomm Incorporated Data transmission scheme with unequal code block sizes
CN103746708A (zh) 2013-10-25 2014-04-23 中国农业大学 一种Polar-LDPC级联码的构造方法
KR102218196B1 (ko) 2013-10-28 2021-02-23 삼성전자주식회사 인코더, 이의 동작 방법과, 상기 인코더를 포함하는 장치들
US9787470B2 (en) 2013-12-12 2017-10-10 Samsung Electronics Co., Ltd. Method and apparatus of joint security advanced LDPC cryptcoding
US9602241B2 (en) 2013-12-17 2017-03-21 Samsung Electronics Co., Ltd. Computing system with polar processing mechanism and method of operation thereof
CN103716130A (zh) 2014-01-09 2014-04-09 苏州英菲泰尔电子科技有限公司 提高网络传输可靠性的物理层自适应处理方法
US9319073B2 (en) 2014-02-11 2016-04-19 Seagate Technology Llc Mitigation of write errors in multi-level cell flash memory through adaptive error correction code decoding
EP3113387B1 (en) 2014-03-21 2019-05-22 Huawei Technologies Co., Ltd. Polar code rate-matching method and rate-matching device
CN105306165B (zh) 2014-06-23 2019-10-11 中兴通讯股份有限公司 数据发送方法及装置
US10193578B2 (en) 2014-07-10 2019-01-29 The Royal Institution For The Advancement Of Learning / Mcgill University Flexible polar encoders and decoders
US9432052B2 (en) * 2014-09-18 2016-08-30 Broadcom Corporation Puncture-aware low density parity check (LDPC) decoding
US9692451B2 (en) 2014-09-30 2017-06-27 Avago Technologies General Ip (Singapore) Pte. Ltd Non-binary low density parity check (NB-LDPC) codes for communication systems
US9654144B2 (en) 2014-09-30 2017-05-16 Micron Technology, Inc. Progressive effort decoder architecture
US9954645B2 (en) 2014-12-05 2018-04-24 Lg Electronics Inc. Method and device for providing secure transmission based on polar code
US20160164537A1 (en) 2014-12-08 2016-06-09 Samsung Electronics Co., Ltd. Method and apparatus for parallel concatenated ldpc convolutional codes enabling power-efficient decoders
US20160173132A1 (en) 2014-12-10 2016-06-16 Alcatel-Lucent Usa Inc. Construction of Structured LDPC Convolutional Codes
EP3046259A1 (en) 2015-01-16 2016-07-20 Alcatel Lucent Apparatuses and methods for ldpc convolutional encoding and decoding
US20160218750A1 (en) 2015-01-23 2016-07-28 Empire Technology Development Llc Parity check code encoder
US9479375B1 (en) 2015-04-02 2016-10-25 University Of South Florida Joint physical layer security and PAPR mitigation in OFDM systems
US10231121B2 (en) 2015-06-24 2019-03-12 Lg Electronics Inc. Security communication using polar code scheme
US10461779B2 (en) 2015-08-12 2019-10-29 Telefonaktiebolaget Lm Ericsson (Publ) Rate-compatible polar codes
CN105227189B (zh) 2015-09-24 2019-01-01 电子科技大学 分段crc辅助的极化码编译码方法
CN105337696B (zh) 2015-10-08 2018-03-30 东南大学 基于分段crc校验的极化解码方法
US10523364B2 (en) 2015-11-06 2019-12-31 Samsung Electronics Co., Ltd. Channel coding framework for 802.11AY and larger block-length LDPC codes for 11AY with 2-step lifting matrices and in-place property
US10784901B2 (en) 2015-11-12 2020-09-22 Qualcomm Incorporated Puncturing for structured low density parity check (LDPC) codes
WO2017091244A1 (en) 2015-11-23 2017-06-01 Intel IP Corporation Hybrid arq schemes based on low density parity check codes
US10581462B2 (en) 2015-12-01 2020-03-03 Huawei Technologies Co., Ltd. Signature-enabled polar encoder and decoder
WO2017111559A1 (en) 2015-12-23 2017-06-29 Samsung Electronics Co., Ltd. Apparatus and method for encoding and decoding channel in communication or broadcasting system
US11043966B2 (en) 2016-05-11 2021-06-22 Qualcomm Incorporated Methods and apparatus for efficiently generating multiple lifted low-density parity-check (LDPC) codes
EP3902142A1 (en) 2016-05-12 2021-10-27 MediaTek Inc. Qc-ldpc coding methods and apparatus
US10454499B2 (en) 2016-05-12 2019-10-22 Qualcomm Incorporated Enhanced puncturing and low-density parity-check (LDPC) code structure
US10313057B2 (en) 2016-06-01 2019-06-04 Qualcomm Incorporated Error detection in wireless communications using sectional redundancy check information
US9917675B2 (en) 2016-06-01 2018-03-13 Qualcomm Incorporated Enhanced polar code constructions by strategic placement of CRC bits
US20170353267A1 (en) 2016-06-01 2017-12-07 Qualcomm Incorporated Generalized polar code construction
US10469104B2 (en) 2016-06-14 2019-11-05 Qualcomm Incorporated Methods and apparatus for compactly describing lifted low-density parity-check (LDPC) codes
SG11201810437XA (en) 2016-07-27 2019-02-27 Qualcomm Inc Design of hybrid automatic repeat request (harq) feedback bits for polar codes
CN109565289A (zh) 2016-08-11 2019-04-02 瑞典爱立信有限公司 基于目标信息长度和目标奇偶校验长度的纠错码选择
DK3308469T3 (da) 2016-08-12 2020-06-02 Ericsson Telefon Ab L M Rate-matching-fremgangsmåder til LDPC-koder
CN106341138B (zh) 2016-09-05 2019-05-10 厦门大学 基于原模图ldpc码的联合信源信道编码矩阵构造方法
US10644829B2 (en) 2016-09-15 2020-05-05 Huawei Technologies Co., Ltd. Method and apparatus for encoding data using a polar code
US10447312B2 (en) 2016-11-25 2019-10-15 Lg Electronics Inc. Method of performing interleaving using LDPC and communication apparatus therefor
WO2018128559A1 (en) 2017-01-09 2018-07-12 Huawei Technologies Co., Ltd. Efficiently decodable qc-ldpc code
US10594339B2 (en) 2017-02-03 2020-03-17 Huawei Technologies Co., Ltd. Method for generating parity check matrix for low density parity check coding
RU2720950C1 (ru) 2017-02-03 2020-05-15 Идак Холдингз, Инк. Сегментация блока кода в зависимости от выбора базовой матрицы ldpc
CN108809487B (zh) 2017-05-04 2022-07-22 华为技术有限公司 传输数据的方法、基站和终端设备
CN108809509B (zh) 2017-05-05 2021-01-22 电信科学技术研究院 低密度奇偶校验码的基础图选择方法及装置
US10312939B2 (en) 2017-06-10 2019-06-04 Qualcomm Incorporated Communication techniques involving pairwise orthogonality of adjacent rows in LPDC code
US10454620B2 (en) 2017-06-16 2019-10-22 At&T Intellectual Property I, L.P. Facilitating notifications to indicate failed code block groups in 5G or other next generation networks
US20180367245A1 (en) 2017-06-19 2018-12-20 Qualcomm Incorporated COMMUNICATION TECHNIQUES WITH SELF-DECODABLE REDUNDANCY VERSIONS (RVs) USING SYSTEMATIC CODES
BR112020000140A2 (pt) 2017-07-07 2020-08-04 Qualcomm Incorporated técnicas de comunicação aplicando seleção de gráfico base de código de verificação de paridade de baixa densidade
US10735134B2 (en) 2017-08-11 2020-08-04 Qualcomm Incorporated Self-decodable redundancy versions for low-density parity-check codes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI760593B (zh) * 2018-02-01 2022-04-11 弗勞恩霍夫爾協會 使用混成式編碼器/解碼器空間分析之音訊場景編碼器、音訊場景解碼器及相關方法
US11361778B2 (en) 2018-02-01 2022-06-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio scene encoder, audio scene decoder and related methods using hybrid encoder-decoder spatial analysis
US11854560B2 (en) 2018-02-01 2023-12-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio scene encoder, audio scene decoder and related methods using hybrid encoder-decoder spatial analysis

Also Published As

Publication number Publication date
EP3455942A1 (en) 2019-03-20
KR20190006957A (ko) 2019-01-21
AU2017263634A1 (en) 2018-10-25
KR102150183B1 (ko) 2020-08-31
CO2018012093A2 (es) 2019-02-08
CN109075802A (zh) 2018-12-21
JP6808755B2 (ja) 2021-01-06
NZ746814A (en) 2021-05-28
CN109075802B (zh) 2022-04-15
AU2017263634B2 (en) 2020-09-24
IL262101A (en) 2018-11-29
SG11201808344UA (en) 2018-11-29
MY189511A (en) 2022-02-16
RU2718171C1 (ru) 2020-03-30
ZA201807541B (en) 2020-10-28
BR112018073114A2 (pt) 2019-03-06
TWI692211B (zh) 2020-04-21
WO2017197267A1 (en) 2017-11-16
MX2018013497A (es) 2019-02-28
PH12018502070A1 (en) 2019-07-01
CL2018003152A1 (es) 2019-02-15
JP2019519974A (ja) 2019-07-11
SA518400286B1 (ar) 2022-01-24
US10454499B2 (en) 2019-10-22
CA3019600C (en) 2021-08-31
CA3019600A1 (en) 2017-11-16
US11025276B2 (en) 2021-06-01
US20190356337A1 (en) 2019-11-21
US20170331497A1 (en) 2017-11-16
CN114520660A (zh) 2022-05-20
BR112018073114B1 (pt) 2024-03-12
IL262101B (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP7453448B2 (ja) 低密度パリティ検査コードのベースグラフ選択を適用する通信技法
US11025276B2 (en) Enhanced puncturing and low-density parity-check (LDPC) code structure
TWI699976B (zh) 用於精簡地描述經提升之低密度同位檢查碼之方法及裝置
JP7260587B2 (ja) 基底行列内の隣接する行のペアワイズ直交性を有するqc-ldpcコードの符号化および復号化
CN109075800B (zh) 用于生成多个提升式低密度奇偶校验(ldpc)码的方法和装置