TW201737471A - Memory structure and manufacturing method of the same - Google Patents

Memory structure and manufacturing method of the same Download PDF

Info

Publication number
TW201737471A
TW201737471A TW105111408A TW105111408A TW201737471A TW 201737471 A TW201737471 A TW 201737471A TW 105111408 A TW105111408 A TW 105111408A TW 105111408 A TW105111408 A TW 105111408A TW 201737471 A TW201737471 A TW 201737471A
Authority
TW
Taiwan
Prior art keywords
layer
insulating
conductor
recess
memory structure
Prior art date
Application number
TW105111408A
Other languages
Chinese (zh)
Other versions
TWI591806B (en
Inventor
賴二琨
蔣光浩
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW105111408A priority Critical patent/TWI591806B/en
Application granted granted Critical
Publication of TWI591806B publication Critical patent/TWI591806B/en
Publication of TW201737471A publication Critical patent/TW201737471A/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A memory structure and a manufacturing method of the same are provided. The memory structure includes a bottom oxide layer, a first conductive layer, a first insulation recess, a plurality of insulating layers, a plurality of second conductive layers, a second insulation recess, a channel layer, and a memory layer. The first conductive layer is located on the bottom oxide layer. The first insulation recess penetrates through the first conductive layer and is located on the bottom oxide layer, the first insulation recess having a first width. The insulating layers are located on the first conductive layer. The second conductive layers and the insulating layers are interlacedly stacked, and the second conductive layers are electrically isolated from the first conductive layer. The second insulation recess penetrates through the insulating layers and the second conductive layers and located on the first insulation recess, the second insulation recess having a second width larger than the first width. The channel layer is located on at least a sidewall of the second insulation recess. The memory layer is located between the channel layer and the second conductive layers.

Description

記憶體結構及其製造方法Memory structure and manufacturing method thereof

本揭露內容是有關於一種記憶體結構及其製造方法,且特別是有關於一種三維記憶體結構及其製造方法。The present disclosure relates to a memory structure and a method of fabricating the same, and more particularly to a three-dimensional memory structure and a method of fabricating the same.

非揮發性記憶體元件具有存入元件中的資料不會因為電源供應的中斷而消失的特性,因而成為目前普遍被用來儲存資料的記憶體元件之一。快閃記憶體是一種典型的非揮發性記憶體技術。The non-volatile memory component has the characteristics that the data stored in the component does not disappear due to the interruption of the power supply, and thus becomes one of the memory components currently commonly used for storing data. Flash memory is a typical non-volatile memory technology.

製作具有垂直通道的非揮發性記憶體元件,例如垂直通道NAND快閃記憶體的方法,一般係先以複數絕緣層和多晶矽層交錯堆疊在半導體基材上形成多層堆疊結構,再於多層堆疊結構中形成貫穿開口,將基材暴露於外;並依序在貫穿開口的側壁上毯覆記憶層,例如矽-矽氧化物-氮化矽-矽氧化物-矽(SONOS)記憶層以及多晶矽通道層,藉以在記憶層、通道層以及多晶矽層上定義出複數個記憶胞。A method for fabricating a non-volatile memory component having a vertical channel, such as a vertical channel NAND flash memory, is generally formed by stacking a plurality of insulating layers and a polysilicon layer on a semiconductor substrate to form a multilayer stacked structure, and then stacking the multilayer structure. Forming a through opening to expose the substrate to the outside; and sequentially blanketing the memory layer on the sidewall of the through opening, such as a 矽-矽 oxide-tantalum nitride-矽 oxide-矽 (SONOS) memory layer and a polysilicon channel The layer is used to define a plurality of memory cells on the memory layer, the channel layer, and the polysilicon layer.

然而,隨著記憶體元件的應用的增加,對於記憶體元件的需求也趨向較小的尺寸、較大的記憶容量。因應這種需求,係需要製造高元件密度及具有小尺寸的記憶裝置,也因此製程的難度係提升。However, as the use of memory components has increased, the demand for memory components has also tended to be smaller in size and larger in memory capacity. In response to this demand, it is necessary to manufacture a memory device having a high component density and a small size, and thus the difficulty of the process is improved.

因此,有需要提供一種垂直通道快閃記憶體元件及其製造方法,來解決習知技術所面臨的問題。Accordingly, it would be desirable to provide a vertical channel flash memory component and method of fabricating the same that addresses the problems faced by the prior art.

本揭露內容係有關於一種記憶體結構及其製造方法。實施例中,記憶體結構中,以兩次蝕刻製程分別製作兩個凹槽,因此可以較容易控制整體凹槽的深度,且第二絕緣凹槽的寬度大於第一絕緣凹槽的寬度,因此第二絕緣凹槽的蝕刻製程可以輕易地對齊第一絕緣凹槽的位置。The disclosure relates to a memory structure and a method of fabricating the same. In the embodiment, in the memory structure, two grooves are respectively formed by two etching processes, so that the depth of the entire groove can be easily controlled, and the width of the second insulating groove is larger than the width of the first insulating groove, so The etching process of the second insulating recess can be easily aligned with the position of the first insulating recess.

根據本揭露內容之一實施例,係提出一種記憶體結構。記憶體結構包括一底氧化層、一第一導體層、一第一絕緣凹槽、複數個絕緣層、複數個第二導體層、一第二絕緣凹槽、一通道層以及一記憶層。第一導體層位於底氧化層上。第一絕緣凹槽穿過第一導體層且位於底氧化層上,且第一絕緣凹槽具有一第一寬度。絕緣層位於第一導體層上。第二導體層與絕緣層交錯堆疊,且第二導體層和第一導體層電性隔離。第二絕緣凹槽穿過絕緣層和第二導體層且位於第一絕緣凹槽上,第二絕緣凹槽具有一第二寬度,且第二寬度大於第一寬度。通道層位於第二絕緣凹槽的至少一側壁上。記憶層位於通道層與第二導體層之間。According to one embodiment of the present disclosure, a memory structure is proposed. The memory structure includes a bottom oxide layer, a first conductor layer, a first insulating recess, a plurality of insulating layers, a plurality of second conductor layers, a second insulating recess, a channel layer, and a memory layer. The first conductor layer is on the bottom oxide layer. The first insulating recess passes through the first conductor layer and is located on the bottom oxide layer, and the first insulating recess has a first width. The insulating layer is on the first conductor layer. The second conductor layer and the insulating layer are alternately stacked, and the second conductor layer and the first conductor layer are electrically isolated. The second insulating groove passes through the insulating layer and the second conductor layer and is located on the first insulating groove, the second insulating groove has a second width, and the second width is greater than the first width. The channel layer is located on at least one sidewall of the second insulating recess. The memory layer is between the channel layer and the second conductor layer.

根據本揭露內容之另一實施例,係提出一種記憶體結構的製造方法。記憶體結構的製造方法包括以下步驟:形成一底氧化層;形成一第一導體層於底氧化層上;形成一第一絕緣凹槽,第一絕緣凹槽穿過第一導體層且位於底氧化層上,第一絕緣凹槽具有一第一寬度;形成複數個絕緣層於第一導體層上;形成複數個第二導體層,第二導體層與絕緣層交錯堆疊,且和第一導體層電性隔離;形成一第二絕緣凹槽,第二絕緣凹槽穿過絕緣層和第二導體層且位於第一絕緣凹槽上,第二絕緣凹槽具有一第二寬度,第二寬度大於第一寬度;形成一通道層於第二絕緣凹槽的至少一側壁上;以及形成一記憶層於通道層與第二導體層之間。According to another embodiment of the present disclosure, a method of fabricating a memory structure is presented. The method for fabricating a memory structure includes the steps of: forming a bottom oxide layer; forming a first conductor layer on the bottom oxide layer; forming a first insulating recess, the first insulating recess passing through the first conductor layer and located at the bottom The first insulating recess has a first width on the oxide layer; forming a plurality of insulating layers on the first conductor layer; forming a plurality of second conductor layers, the second conductor layer and the insulating layer are alternately stacked, and the first conductor Electrically isolating; forming a second insulating recess, the second insulating recess passes through the insulating layer and the second conductor layer and is located on the first insulating recess, the second insulating recess has a second width, the second width Greater than the first width; forming a channel layer on at least one sidewall of the second insulating recess; and forming a memory layer between the channel layer and the second conductor layer.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

在此揭露內容之實施例中,係提出一種記憶體結構及其製造方法。實施例中,記憶體結構中,以兩次蝕刻製程分別製作兩個凹槽,因此可以較容易控制整體凹槽的深度,且第二絕緣凹槽的寬度大於第一絕緣凹槽的寬度,因此第二絕緣凹槽的蝕刻製程可以輕易地對齊第一絕緣凹槽的位置。然而,實施例僅用以作為範例說明,並不會限縮本發明欲保護之範圍。此外,實施例中之圖式係省略部份要之元件,以清楚顯示本發明之技術特點。In the embodiments disclosed herein, a memory structure and a method of fabricating the same are presented. In the embodiment, in the memory structure, two grooves are respectively formed by two etching processes, so that the depth of the entire groove can be easily controlled, and the width of the second insulating groove is larger than the width of the first insulating groove, so The etching process of the second insulating recess can be easily aligned with the position of the first insulating recess. However, the examples are for illustrative purposes only and are not intended to limit the scope of the invention. In addition, the drawings in the embodiments are omitted in order to clearly show the technical features of the present invention.

但必須注意的是,這些特定的實施案例與方法,並非用以限定本發明。本發明仍可採用其他特徵、元件、方法及參數來加以實施。較佳實施例的提出,僅係用以例示本發明的技術特徵,並非用以限定本發明的申請專利範圍。該技術領域中具有通常知識者,將可根據以下說明書的描述,在不脫離本發明的精神範圍內,作均等的修飾與變化。在不同實施例與圖式之中,相同的元件,將以相同的元件符號加以表示。However, it must be noted that these specific embodiments and methods are not intended to limit the invention. The invention may be practiced with other features, elements, methods and parameters. The preferred embodiments are merely illustrative of the technical features of the present invention and are not intended to limit the scope of the invention. Equivalent modifications and variations will be made without departing from the spirit and scope of the invention. In the different embodiments and the drawings, the same elements will be denoted by the same reference numerals.

請參照第1圖,其繪示本揭露內容之一實施例之記憶體結構之示意圖。如第1圖所示,記憶體結構10包括一底氧化層100、一第一導體層200、一第一絕緣凹槽300、複數個絕緣層400、複數個第二導體層500、一第二絕緣凹槽600、一通道層700以及一記憶層800。Please refer to FIG. 1 , which is a schematic diagram of a memory structure according to an embodiment of the disclosure. As shown in FIG. 1, the memory structure 10 includes a bottom oxide layer 100, a first conductor layer 200, a first insulating recess 300, a plurality of insulating layers 400, a plurality of second conductor layers 500, and a second An insulating groove 600, a channel layer 700, and a memory layer 800.

如第1圖所示,第一導體層200位於底氧化層100上。第一絕緣凹槽300穿過第一導體層200且位於底氧化層100上,且第一絕緣凹槽300具有一第一寬度W1。絕緣層400位於第一導體層200上。第二導體層500與絕緣層400交錯堆疊,且第二導體層500和第一導體層200電性隔離。第二絕緣凹槽600穿過絕緣層400和第二導體層500且位於第一絕緣凹槽300上,第二絕緣凹槽600具有一第二寬度W2,且第二寬度W2大於第一寬度W1。通道層700位於第二絕緣凹槽600的至少一側壁上。記憶層800位於通道層700與第二導體層500之間。As shown in FIG. 1, the first conductor layer 200 is located on the bottom oxide layer 100. The first insulating recess 300 passes through the first conductive layer 200 and is located on the bottom oxide layer 100, and the first insulating recess 300 has a first width W1. The insulating layer 400 is located on the first conductor layer 200. The second conductor layer 500 and the insulating layer 400 are alternately stacked, and the second conductor layer 500 and the first conductor layer 200 are electrically isolated. The second insulating recess 600 passes through the insulating layer 400 and the second conductive layer 500 and is located on the first insulating recess 300. The second insulating recess 600 has a second width W2, and the second width W2 is greater than the first width W1. . The channel layer 700 is located on at least one sidewall of the second insulating recess 600. The memory layer 800 is located between the channel layer 700 and the second conductor layer 500.

根據本揭露內容之實施例,記憶體結構10可以作為三維垂直通道NAND快閃記憶體元件的主要結構,其中第一導體層200例如是反轉閘極(inversion gate),第二導體層500例如是字元線。According to an embodiment of the present disclosure, the memory structure 10 can be the primary structure of a three-dimensional vertical channel NAND flash memory device, wherein the first conductor layer 200 is, for example, an inversion gate, and the second conductor layer 500 is, for example. Is the word line.

根據本揭露內容之實施例,以兩次蝕刻製程分別製作兩個凹槽300/600,因此可以較容易控制整體凹槽的深度;且第二絕緣凹槽600的第二寬度W2大於第一絕緣凹槽300的第一寬度W1,因此第二絕緣凹槽600的蝕刻製程可以輕易地對齊第一絕緣凹槽300的位置。According to an embodiment of the present disclosure, two grooves 300/600 are separately formed by two etching processes, so that the depth of the entire groove can be easily controlled; and the second width W2 of the second insulating groove 600 is greater than the first insulation. The first width W1 of the recess 300, and thus the etching process of the second insulating recess 600, can be easily aligned with the position of the first insulating recess 300.

更進一步而言,如第1圖所示,根據本揭露內容之實施例,通道層700位於第二絕緣凹槽600的側壁和底面上,形成U型區700a於第一導體層200中,因而即使是通道層700的U型區700a都可以靠近第一導體層200,因此通道層700的相當大的範圍都可以受到閘極(經由第一導體層200)的控制,而可以有效減小通道層不受閘極控制的區域,進而減少通道層不受到閘極控制之區域的較大阻值及較小電流對於記憶裝置之操作性能的不良影響。Further, as shown in FIG. 1 , according to an embodiment of the present disclosure, the channel layer 700 is located on the sidewalls and the bottom surface of the second insulating recess 600 to form the U-shaped region 700 a in the first conductive layer 200. Even though the U-shaped region 700a of the channel layer 700 can be close to the first conductor layer 200, a relatively large range of the channel layer 700 can be controlled by the gate (via the first conductor layer 200), and the channel can be effectively reduced. The layer is not controlled by the gate, thereby reducing the large resistance of the channel layer not affected by the gate and the small current has an adverse effect on the operational performance of the memory device.

再者,如第1圖所示,根據本揭露內容之實施例,通道層700位於記憶層800上,換言之,通道層700並非埋置於記憶層800中、被其他膜層所覆蓋、或埋置於一些管線中,因而可以較容易對通道層700進行各種處理,例如可以較容易地對通道層700進行熱處理,使其晶粒尺寸增大、晶界減少以及提高電流。Furthermore, as shown in FIG. 1, according to an embodiment of the present disclosure, the channel layer 700 is located on the memory layer 800. In other words, the channel layer 700 is not buried in the memory layer 800, covered by other film layers, or buried. It is placed in some pipelines, so that it is easier to perform various treatments on the channel layer 700. For example, the channel layer 700 can be more easily heat-treated to increase the grain size, reduce the grain boundaries, and increase the current.

如第1圖所示,實施例中,記憶體結構10更可包括一頂氧化層900,頂氧化層900位於絕緣層400和第二導體層500上。As shown in FIG. 1 , in the embodiment, the memory structure 10 further includes a top oxide layer 900 on the insulating layer 400 and the second conductor layer 500 .

如第1圖所示的實施例中,第一絕緣凹槽300和第二絕緣凹槽600內填充氧化物,而頂氧化層900覆蓋通道層700和第二絕緣凹槽600的上方。In the embodiment shown in FIG. 1, the first insulating recess 300 and the second insulating recess 600 are filled with an oxide, and the top oxide layer 900 covers the upper of the channel layer 700 and the second insulating recess 600.

實施例中,如第1圖所示,第一導體層200具有一厚度T1,厚度T1例如是1500~4000埃。詳細而言,根據本揭露內容之實施例,第一導體層200具有相對較大的厚度T1,因此以兩次蝕刻製程分別製作兩個凹槽300/600可以令兩個凹槽300/600的連接處位於第一導體層200中,可以較容易控制整體凹槽的深度,也因此有利於製程中之第二導體層500(字元線)的圖案化。In the embodiment, as shown in FIG. 1, the first conductor layer 200 has a thickness T1, and the thickness T1 is, for example, 1500 to 4000 angstroms. In detail, according to an embodiment of the present disclosure, the first conductor layer 200 has a relatively large thickness T1, so that two recesses 300/600 can be respectively fabricated by two etching processes to make the two recesses 300/600 The connection is located in the first conductor layer 200, which makes it easier to control the depth of the overall groove, and thus facilitates the patterning of the second conductor layer 500 (character line) in the process.

實施例中,如第1圖所示,第一絕緣凹槽300的第一寬度W1例如是10~30奈米,第二絕緣凹槽600的第二寬度W2例如是50~150奈米。In the embodiment, as shown in FIG. 1, the first width W1 of the first insulating groove 300 is, for example, 10 to 30 nm, and the second width W2 of the second insulating groove 600 is, for example, 50 to 150 nm.

實施例中,第一導體層200和第二導體層500可分別包括多晶矽、鎢或兩者之組合。In an embodiment, the first conductor layer 200 and the second conductor layer 500 may respectively comprise polysilicon, tungsten or a combination of the two.

請參照第2圖,其繪示本揭露內容之另一實施例之記憶體結構之示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。Please refer to FIG. 2 , which is a schematic diagram of a memory structure according to another embodiment of the disclosure. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.

如第2圖所示,記憶體結構20中,通道層700具有一垂直延伸段700v和一水平延伸段700h,垂直延伸段700v和水平延伸段700h係相連接,且水平延伸段700h位於第二導體層500之上。As shown in FIG. 2, in the memory structure 20, the channel layer 700 has a vertical extension 700v and a horizontal extension 700h, the vertical extension 700v and the horizontal extension 700h are connected, and the horizontal extension 700h is located at the second. Above the conductor layer 500.

如第2圖所示,實施例中,記憶體結構20更可包括一硬遮罩層910,硬遮罩層910位於通道層700上。硬遮罩層910具有一延伸段910a,延伸段910a位於通道層700的水平延伸段700h上,且硬遮罩層910的延伸段910a的延伸長度L1大於通道層700的水平延伸段700h的延伸長度L2。實施例中,通道層700的水平延伸段700h用於電性連接至記憶裝置的位元線。As shown in FIG. 2 , in the embodiment, the memory structure 20 further includes a hard mask layer 910 , and the hard mask layer 910 is located on the channel layer 700 . The hard mask layer 910 has an extension 910a on the horizontal extension 700h of the channel layer 700, and the extension L1 of the extension 910a of the hard mask layer 910 is greater than the extension of the horizontal extension 700h of the channel layer 700. Length L2. In an embodiment, the horizontal extension 700h of the channel layer 700 is used to electrically connect to the bit line of the memory device.

請參照第3圖,其繪示本揭露內容之又一實施例之記憶體結構之示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。Please refer to FIG. 3 , which is a schematic diagram of a memory structure according to still another embodiment of the disclosure. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.

如第3圖所示,實施例中,記憶體結構30更可包括一低溫氧化物層(low-temperature oxide)920。低溫氧化物層920位於硬遮罩層910上,且低溫氧化物層920完全覆蓋硬遮罩層910的延伸段910a。As shown in FIG. 3, in the embodiment, the memory structure 30 may further include a low-temperature oxide 920. The low temperature oxide layer 920 is on the hard mask layer 910 and the low temperature oxide layer 920 completely covers the extension 910a of the hard mask layer 910.

如第3圖所示,實施例中,低溫氧化物層920的上部具有突出外緣,突出外緣的側面920s超過延伸段910a的側面910s,延伸段910a的側面910s超過水平延伸段700h的側面700s。As shown in FIG. 3, in the embodiment, the upper portion of the low temperature oxide layer 920 has a protruding outer edge, the side surface 920s of the protruding outer edge exceeds the side surface 910s of the extended portion 910a, and the side surface 910s of the extended portion 910a exceeds the side of the horizontal extended portion 700h. 700s.

請參照第4圖,其繪示本揭露內容之再一實施例之記憶體結構之示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。Please refer to FIG. 4 , which is a schematic diagram of a memory structure according to still another embodiment of the disclosure. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.

如第4圖所示,實施例中,記憶體結構40更包括一貫穿開口950。貫穿開口950穿過絕緣層400、第二導體層500和第一導體層200,且貫穿開口950位於底氧化層100上。As shown in FIG. 4, in the embodiment, the memory structure 40 further includes a through opening 950. The through opening 950 passes through the insulating layer 400, the second conductor layer 500, and the first conductor layer 200, and the through opening 950 is located on the bottom oxide layer 100.

請參照第5圖,其繪示本揭露內容之更一實施例之記憶體結構之示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。Please refer to FIG. 5, which is a schematic diagram of a memory structure according to a further embodiment of the present disclosure. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.

如第5圖所示,實施例中,記憶體結構50的第一導體層200可包括兩個導體部分210和220,導體部分210和導體部分220例如可由不同材料所製作。舉例而言,鄰接第一絕緣凹槽300的導體部分210由多晶矽所製作,而鄰接貫穿開口950的導體部分220由鎢所製作。As shown in FIG. 5, in an embodiment, the first conductor layer 200 of the memory structure 50 can include two conductor portions 210 and 220, and the conductor portion 210 and the conductor portion 220 can be made, for example, of different materials. For example, the conductor portion 210 adjoining the first insulating recess 300 is made of polysilicon, and the conductor portion 220 adjoining the through opening 950 is made of tungsten.

如第5圖所示,導體部分210基本上位於第二絕緣凹槽600和底氧化層100之間,而導體部分220基本上位於絕緣層400和底氧化層100之間。As shown in FIG. 5, the conductor portion 210 is substantially located between the second insulating recess 600 and the bottom oxide layer 100, and the conductor portion 220 is substantially located between the insulating layer 400 and the bottom oxide layer 100.

請參照第6圖,其繪示本揭露內容之又更一實施例之記憶體結構之示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。Please refer to FIG. 6 , which is a schematic diagram of a memory structure according to still another embodiment of the disclosure. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.

如第6圖所示,實施例中,記憶體結構60的第一導體層200可包括兩個導體部分210和220,鄰接第一絕緣凹槽300的導體部分210由多晶矽所製作,而鄰接貫穿開口950的導體部分220由鎢所製作。As shown in FIG. 6, in the embodiment, the first conductor layer 200 of the memory structure 60 may include two conductor portions 210 and 220, and the conductor portion 210 adjacent to the first insulating recess 300 is made of polysilicon, and the abutment is continuous. The conductor portion 220 of the opening 950 is made of tungsten.

如第6圖所示,由多晶矽所製作的導體部分210所佔有的體積大於由鎢所製作的導體部分220所佔有的體積。As shown in Fig. 6, the conductor portion 210 made of polycrystalline germanium occupies a larger volume than the conductor portion 220 made of tungsten.

第7A圖~第7F圖繪示依照本發明之一實施例之一種記憶體結構之製造方法示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。7A-7F are schematic views showing a method of fabricating a memory structure in accordance with an embodiment of the present invention. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.

如第7A圖所示,形成底氧化層100,以及形成第一導體層200於底氧化層100上。實施例中,第一導體層200例如是多晶矽層,其厚度T1例如是1500~4000埃。第一導體層200在記憶裝置中可作為閘極。As shown in FIG. 7A, a bottom oxide layer 100 is formed, and a first conductor layer 200 is formed on the bottom oxide layer 100. In the embodiment, the first conductor layer 200 is, for example, a polysilicon layer, and has a thickness T1 of, for example, 1500 to 4000 angstroms. The first conductor layer 200 can function as a gate in a memory device.

如第7B圖所示,形成第一絕緣凹槽300。第一絕緣凹槽300穿過第一導體層200且位於底氧化層100上,第一絕緣凹槽300具有第一寬度W1,第一寬度W1例如是10~30奈米。實施例中,例如是蝕刻第一導體層200並停止於底氧化層100上以形成第一絕緣凹槽300,此蝕刻製程對於底氧化層100和第一導體層200具有高選擇比。As shown in FIG. 7B, a first insulating recess 300 is formed. The first insulating recess 300 passes through the first conductive layer 200 and is located on the bottom oxide layer 100. The first insulating recess 300 has a first width W1, and the first width W1 is, for example, 10 to 30 nm. In an embodiment, for example, the first conductor layer 200 is etched and stopped on the bottom oxide layer 100 to form a first insulating recess 300. The etching process has a high selectivity ratio to the bottom oxide layer 100 and the first conductor layer 200.

如第7C圖所示,填充絕緣材料於第一絕緣凹槽300中。實施例中,例如是先沈積氧化物於第一絕緣凹槽300中,接著以例如化學機械研磨方式平坦化氧化物的表面至第一導體層200的上表面。As shown in FIG. 7C, the insulating material is filled in the first insulating recess 300. In an embodiment, for example, an oxide is first deposited in the first insulating recess 300, and then the surface of the oxide is planarized to the upper surface of the first conductor layer 200 by, for example, chemical mechanical polishing.

如第7D圖所示,形成多個絕緣層400於第一導體層200上,以及形成多個第二導體層500,第二導體層500與絕緣層400交錯堆疊,且第二導體層500和第一導體層200彼此電性隔離。實施例中,絕緣層400例如是氧化物層,第二導體層500例如是多晶矽層,或者是摻雜多晶矽層,在記憶裝置中可作為字元線。As shown in FIG. 7D, a plurality of insulating layers 400 are formed on the first conductor layer 200, and a plurality of second conductor layers 500 are formed, the second conductor layer 500 and the insulating layer 400 are alternately stacked, and the second conductor layer 500 and The first conductor layers 200 are electrically isolated from each other. In the embodiment, the insulating layer 400 is, for example, an oxide layer, and the second conductive layer 500 is, for example, a polysilicon layer or a doped polysilicon layer, which can be used as a word line in a memory device.

如第7E圖所示,形成第二絕緣凹槽600,第二絕緣凹槽600穿過絕緣層400和第二導體層500且位於第一絕緣凹槽300上。第二絕緣凹槽600的第二寬度W2大於第一絕緣凹槽300的第一寬度W1。實施例中,第二絕緣凹槽600的第二寬度W2例如是50~150奈米。As shown in FIG. 7E, a second insulating recess 600 is formed, and the second insulating recess 600 passes through the insulating layer 400 and the second conductive layer 500 and is located on the first insulating recess 300. The second width W2 of the second insulating groove 600 is greater than the first width W1 of the first insulating groove 300. In an embodiment, the second width W2 of the second insulating groove 600 is, for example, 50 to 150 nm.

實施例中,例如是蝕刻絕緣層400、第二導體層500以及部分的第一導體層200和部分的第一絕緣凹槽300之絕緣材料,而停止於第一導體層200之中,以形成第二絕緣凹槽600於第一絕緣凹槽300上。第一導體層200的相對較大的厚度T1有利於此蝕刻製程的蝕刻深度之控制。In an embodiment, for example, the insulating material 400, the second conductive layer 500, and a portion of the first conductive layer 200 and a portion of the insulating material of the first insulating recess 300 are etched and stopped in the first conductive layer 200 to form The second insulating groove 600 is on the first insulating groove 300. The relatively large thickness T1 of the first conductor layer 200 facilitates the control of the etch depth of the etch process.

根據本揭露內容之實施例,以兩次蝕刻製程製作兩個凹槽300/600,兩個凹槽300/600的連接處位於第一導體層200中,因此較容易控制整體凹槽的深度;且第二絕緣凹槽600的第二寬度W2大於第一絕緣凹槽300的第一寬度W1,因此第二絕緣凹槽600的蝕刻製程可以輕易地對齊第一絕緣凹槽300的位置。According to an embodiment of the present disclosure, two grooves 300/600 are formed by two etching processes, and the connection of the two grooves 300/600 is located in the first conductor layer 200, so that it is easier to control the depth of the entire groove; The second width W2 of the second insulating recess 600 is greater than the first width W1 of the first insulating recess 300, so that the etching process of the second insulating recess 600 can easily align the position of the first insulating recess 300.

如第7F圖所示,形成通道層700於第二絕緣凹槽600的至少一側壁上,以及形成記憶層800於通道層700與第二導體層500之間。實施例中,通道層700例如是多晶矽層或者是鍺(Ge)/矽化鍺(SiGe)/鍺銦錫氧化物(GIZO)層,記憶層800例如可具有氧化矽-氮化矽-氧化矽(Oxide-Nitride-Oxide,ONO)、氧化矽-氮化矽-氧化矽-氮化矽-氧化矽(Oxide-Nitride-Oxide-Nitride-Oxide,ONONO)或氧化矽-氮化矽-氧化矽-氮化矽-氧化矽-氮化矽-氧化矽(Oxide-Nitride-Oxide-Nitride-Oxide-Nitride-Oxide,ONONONO) 結構的複合層(但不以此為限)。As shown in FIG. 7F, the channel layer 700 is formed on at least one sidewall of the second insulating recess 600, and the memory layer 800 is formed between the via layer 700 and the second conductor layer 500. In an embodiment, the channel layer 700 is, for example, a polysilicon layer or a germanium (Ge)/germanium telluride (SiGe)/germanium indium tin oxide (GIZO) layer, and the memory layer 800 may have, for example, hafnium oxide-tantalum nitride-yttria ( Oxide-Nitride-Oxide, ONO), Oxide-Nitride-Oxide-Nitride-Oxide (ONONO) or Cerium Oxide-Nttrium Nitride-Oxide-Nitride A composite layer of the structure of Oxide-Nitride-Oxide-Nitride-Oxide-Nitride-Oxide (ONONONO) (but not limited thereto).

如第7F圖所示,通道層700更可形成於第二絕緣凹槽600的底面上。如此一來,通道層700的大部分區域皆靠近第一導體層200或第二導體層500,而可以避免通道層700不受閘極和/或字元線控制的區域之較大阻值及較小電流對於記憶裝置之操作性能的不良影響。As shown in FIG. 7F, the channel layer 700 may be formed on the bottom surface of the second insulating groove 600. As a result, most of the area of the channel layer 700 is close to the first conductor layer 200 or the second conductor layer 500, and the channel layer 700 can be prevented from being affected by the gate and/or the area controlled by the word line. The small current has an adverse effect on the operational performance of the memory device.

接著,請參照第1圖,形成頂氧化層900於絕緣層400和第二導體層500上。至此,形成如第1圖所示的記憶體結構10。Next, referring to FIG. 1, a top oxide layer 900 is formed on the insulating layer 400 and the second conductor layer 500. Thus far, the memory structure 10 as shown in Fig. 1 is formed.

請同時參照第7A圖~第7F圖和第8A圖~第8H圖,其繪示依照本發明之另一實施例之一種記憶體結構之製造方法示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。Please refer to FIG. 7A to FIG. 7F and FIG. 8A to FIG. 8H simultaneously, which illustrate a manufacturing method of a memory structure according to another embodiment of the present invention. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.

進行如第7A圖~第7F圖的步驟之後,接著,如第8A圖所示,形成硬遮罩層910於通道層700上。實施例中,硬遮罩層910例如是氮化矽層或氧化矽層。此階段的硬遮罩層910可以用來保護通道層700。After the steps of FIGS. 7A to 7F are performed, next, as shown in FIG. 8A, a hard mask layer 910 is formed on the channel layer 700. In an embodiment, the hard mask layer 910 is, for example, a tantalum nitride layer or a tantalum oxide layer. The hard mask layer 910 at this stage can be used to protect the channel layer 700.

如第8B圖所示,形成有機介電層930於硬遮罩層910且填充第二絕緣凹槽600,以及形成另一個硬遮罩層940於有機介電層930上。實施例中,如第8B圖所示,有機介電層930具有一平坦的上表面,而硬遮罩層940形成於有機介電層930的平坦上表面上。As shown in FIG. 8B, an organic dielectric layer 930 is formed on the hard mask layer 910 and fills the second insulating recess 600, and another hard mask layer 940 is formed on the organic dielectric layer 930. In the embodiment, as shown in FIG. 8B, the organic dielectric layer 930 has a flat upper surface, and the hard mask layer 940 is formed on the flat upper surface of the organic dielectric layer 930.

實施例中,有機介電層930例如包括有機介電材料或Topaz材料(應用材料公司(Applied Materials)所開發),硬遮罩層940例如包括含矽硬遮罩底部抗反射塗層(silicon-containing hard-mask bottom anti-reflection coating,SHB)、低溫氧化物層(low-temperature oxide,LTO)、或DARC層(應用材料公司所開發)。In an embodiment, the organic dielectric layer 930 includes, for example, an organic dielectric material or a Topaz material (developed by Applied Materials), and the hard mask layer 940 includes, for example, a hard mask-containing anti-reflective coating (silicon- Containing hard-mask bottom anti-reflection coating (SHB), low-temperature oxide (LTO), or DARC layer (developed by Applied Materials).

如第8C圖所示,設置一圖案化遮罩層960於硬遮罩層940上,以進行後續的圖案化製程。圖案化遮罩層960具有至少一開口960a,開口960a對應預定的第二絕緣凹槽600。如第8C圖所示,實施例中,此結構同時也可具有另一個第二絕緣凹槽600,而開口960a僅對應預定的第二絕緣凹槽600,另一個第二絕緣凹槽600完全被圖案化遮罩層960所覆蓋。As shown in FIG. 8C, a patterned mask layer 960 is disposed over the hard mask layer 940 for subsequent patterning processes. The patterned mask layer 960 has at least one opening 960a corresponding to a predetermined second insulating groove 600. As shown in FIG. 8C, in the embodiment, the structure may also have another second insulating groove 600, and the opening 960a only corresponds to the predetermined second insulating groove 600, and the other second insulating groove 600 is completely The patterned mask layer 960 is covered.

如第8D圖所示,根據圖案化遮罩層960蝕刻移除部分的有機介電層930和硬遮罩層940,暴露出第二絕緣凹槽600內的硬遮罩層910和其下的通道層700,同時一併蝕刻移除圖案化遮罩層960。由於有機介電層930的材料相對於硬遮罩層910、通道層700、絕緣層400和第二導體層500具有高蝕刻選擇比,因此蝕刻移除有機介電層930所留下的硬遮罩層910和其下的通道層700保有完整的結構,並未受到蝕刻製程的破壞。As shown in FIG. 8D, the removed portion of the organic dielectric layer 930 and the hard mask layer 940 are etched according to the patterned mask layer 960, exposing the hard mask layer 910 in the second insulating recess 600 and the underlying The channel layer 700 is simultaneously etched away to remove the patterned mask layer 960. Since the material of the organic dielectric layer 930 has a high etching selectivity with respect to the hard mask layer 910, the channel layer 700, the insulating layer 400, and the second conductor layer 500, etching removes the hard mask left by the organic dielectric layer 930. The cover layer 910 and the underlying channel layer 700 retain a complete structure and are not damaged by the etching process.

如第8E圖所示,形成低溫氧化物層920於有機介電層930和硬遮罩層940上,並填充於第二絕緣凹槽600內。實施例中,例如是以原子層沈積法(ALD)形成低溫氧化物層920。低溫氧化物層920可以保護硬遮罩層910和通道層700不受後續的等向性蝕刻(iso-tropical etching)製程的破壞。As shown in FIG. 8E, a low temperature oxide layer 920 is formed over the organic dielectric layer 930 and the hard mask layer 940 and filled in the second insulating recess 600. In an embodiment, the low temperature oxide layer 920 is formed, for example, by atomic layer deposition (ALD). The low temperature oxide layer 920 can protect the hard mask layer 910 and the channel layer 700 from subsequent destruction by an iso-tropical etching process.

如第8F圖所示,蝕刻移除部分的低溫氧化物層920及硬遮罩層940,暴露出有機介電層930。As shown in FIG. 8F, a portion of the low temperature oxide layer 920 and the hard mask layer 940 are etched away to expose the organic dielectric layer 930.

如第8G圖所示,蝕刻移除有機介電層930,且保留低溫氧化物層920、硬遮罩層910和通道層700。舉例而言,如第8G圖所示,實施例中,位於另一個第二絕緣凹槽600內的有機介電層930在此步驟中被蝕刻移除。As shown in FIG. 8G, the organic dielectric layer 930 is removed by etching, and the low temperature oxide layer 920, the hard mask layer 910, and the channel layer 700 are retained. For example, as shown in FIG. 8G, in the embodiment, the organic dielectric layer 930 located in the other second insulating recess 600 is etched away in this step.

接著,如第8H圖所示,以等向性蝕刻(iso-tropical etching)製程蝕刻移除部分的硬遮罩層910和部分的通道層700,而形成低溫氧化物層920的上部之突出外緣的側面920s超過硬遮罩層910的延伸段910a的側面910s,延伸段910a的側面910s超過通道層700的水平延伸段700h的側面700s。Next, as shown in FIG. 8H, a portion of the hard mask layer 910 and a portion of the channel layer 700 are removed by an iso-tropical etching process to form an upper portion of the low temperature oxide layer 920. The side 920s of the rim exceeds the side 910s of the extended section 910a of the hard mask layer 910, and the side 910s of the extended section 910a exceeds the side 700s of the horizontally extending section 700h of the channel layer 700.

實施例中,等向性蝕刻製程例如包括採用熱磷酸(H3 PO4 )蝕刻液或以化學乾式蝕刻(chemical dry etch,CDE)製程蝕刻硬遮罩層910,以及採用氨水(NH4 OH)或氫氧化四甲基銨(TMAH)蝕刻液、或以化學乾式蝕刻(CDE)製程蝕刻通道層700。In an embodiment, the isotropic etching process includes, for example, etching a hard mask layer 910 using a hot phosphoric acid (H 3 PO 4 ) etching solution or a chemical dry etch (CDE) process, and using ammonia water (NH 4 OH). Or a tetramethylammonium hydroxide (TMAH) etchant or a chemical dry etch (CDE) process to etch the via layer 700.

接著,請參照第3圖,形成頂氧化層900於絕緣層400、第二導體層500和低溫氧化物層920上。至此,形成如第3圖所示的記憶體結構30。Next, referring to FIG. 3, a top oxide layer 900 is formed on the insulating layer 400, the second conductor layer 500, and the low temperature oxide layer 920. Thus far, the memory structure 30 as shown in FIG. 3 is formed.

根據本揭露內容之實施例的製造方法,可以形成水平延伸段700h用以電性連接至記憶裝置的位元線,同時不蝕刻記憶層800。如此一來,可保有記憶層800的完整,可以維持記憶層800的電場分佈均勻性,降低電場分佈不均勻可能產生的邊緣效應(edge effect),而可以有效維持並提升記憶裝置的編程/抹除之操作效能和操作速度。According to the manufacturing method of the embodiment of the present disclosure, the horizontal extension 700h can be formed to electrically connect to the bit line of the memory device without etching the memory layer 800. In this way, the integrity of the memory layer 800 can be maintained, the uniformity of the electric field distribution of the memory layer 800 can be maintained, and the edge effect which may be generated by uneven electric field distribution can be reduced, and the programming/wiping of the memory device can be effectively maintained and improved. In addition to operational performance and operating speed.

請同時參照第7A圖~第7F圖和第9A圖~第9B圖,其繪示依照本發明之又一實施例之一種記憶體結構之製造方法示意圖。Please refer to FIG. 7A to FIG. 7F and FIG. 9A to FIG. 9B simultaneously, which illustrate a manufacturing method of a memory structure according to still another embodiment of the present invention.

進行如第7A圖~第7F圖的步驟之後,接著,如第9A圖所示,形成硬遮罩層910於通道層700上。實施例中,硬遮罩層910例如是氮化矽層。此階段的硬遮罩層910可以用來保護通道層700。After the steps of FIGS. 7A to 7F are performed, next, as shown in FIG. 9A, a hard mask layer 910 is formed on the channel layer 700. In an embodiment, the hard mask layer 910 is, for example, a tantalum nitride layer. The hard mask layer 910 at this stage can be used to protect the channel layer 700.

接著,如第9B圖所示,以等向性蝕刻製程蝕刻移除部分的硬遮罩層910和部分的通道層700,而形成硬遮罩層910的延伸段910a的側面910s超過通道層700的水平延伸段700h的側面700s。實施例中,例如可以先形成如第8H圖所示之包括低溫氧化物層920的結構,再以稀釋氫氟酸(diluted hydrofluoric acid,DHF)移除低溫氧化物層920。Next, as shown in FIG. 9B, a portion of the hard mask layer 910 and a portion of the channel layer 700 are removed by an isotropic etching process, and the side 910s of the extended portion 910a forming the hard mask layer 910 exceeds the channel layer 700. The side of the horizontal extension 700h is 700s. In the embodiment, for example, a structure including the low temperature oxide layer 920 as shown in FIG. 8H may be formed first, and the low temperature oxide layer 920 may be removed by diluted hydrofluoric acid (DHF).

實施例中,等向性蝕刻製程例如包括採用熱磷酸(H3 PO4 )蝕刻液或以化學乾式蝕刻(chemical dry etch)製程蝕刻硬遮罩層910,以及採用氨水(NH4 OH)或氫氧化四甲基銨(TMAH)蝕刻液、或以化學乾式蝕刻(chemical dry etch)製程蝕刻通道層700。In an embodiment, the isotropic etching process includes, for example, etching a hard mask layer 910 using a hot phosphoric acid (H 3 PO 4 ) etching solution or a chemical dry etching process, and using ammonia water (NH 4 OH) or hydrogen. The channel layer 700 is etched by oxidizing a tetramethylammonium (TMAH) etchant or by a chemical dry etch process.

接著,請參照第2圖,形成頂氧化層900於絕緣層400和第二導體層500上。至此,形成如第2圖所示的記憶體結構20。Next, referring to FIG. 2, a top oxide layer 900 is formed on the insulating layer 400 and the second conductor layer 500. Thus far, the memory structure 20 as shown in Fig. 2 is formed.

第10A圖~第10K圖繪示依照本發明之再一實施例之一種記憶體結構之製造方法示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。10A to 10K are schematic views showing a method of fabricating a memory structure in accordance with still another embodiment of the present invention. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.

如第10A圖所示,形成底氧化層100,以及形成一絕緣層200A於底氧化層100上。實施例中,絕緣層200A例如是氮化矽層,其厚度T1例如是1500~4000埃。As shown in FIG. 10A, a bottom oxide layer 100 is formed, and an insulating layer 200A is formed on the bottom oxide layer 100. In the embodiment, the insulating layer 200A is, for example, a tantalum nitride layer, and has a thickness T1 of, for example, 1,500 to 4,000 angstroms.

如第10B圖所示,形成凹槽300A。凹槽300A穿過絕緣層200A且位於底氧化層100上,凹槽300A具有寬度W3例如是70~150奈米。實施例中,例如是蝕刻絕緣層200A並停止於底氧化層100上以形成凹槽300A。As shown in Fig. 10B, a groove 300A is formed. The groove 300A passes through the insulating layer 200A and is located on the bottom oxide layer 100, and the groove 300A has a width W3 of, for example, 70 to 150 nm. In the embodiment, for example, the insulating layer 200A is etched and stopped on the underlying oxide layer 100 to form the recess 300A.

如第10C圖所示,形成導體部分210於凹槽300A的側壁上,並定義出第一絕緣凹槽300。實施例中,例如是以導體材料填充凹槽300A,接著蝕刻凹槽300A的導體材料以形成第一絕緣凹槽300及導體部分210,第一絕緣凹槽300具有第一寬度W1為10~30奈米。實施例中,導體材料例如是多晶矽。As shown in Fig. 10C, the conductor portion 210 is formed on the side wall of the recess 300A, and the first insulating recess 300 is defined. In an embodiment, the recess 300A is filled with a conductor material, for example, and then the conductor material of the recess 300A is etched to form a first insulating recess 300 and a conductor portion 210. The first insulating recess 300 has a first width W1 of 10-30. Nano. In the embodiment, the conductor material is, for example, polysilicon.

如第10D圖所示,填入絕緣材料於第一絕緣凹槽300中。As shown in FIG. 10D, an insulating material is filled in the first insulating recess 300.

如第10E圖所示,形成多個絕緣層400於第一絕緣凹槽300、導體部分210及絕緣層200A上,以及形成多個犧牲層500A,犧牲層500A與絕緣層400交錯堆疊。實施例中,絕緣層400例如是氧化矽層,犧牲層500A例如是氮化矽層。As shown in FIG. 10E, a plurality of insulating layers 400 are formed on the first insulating recess 300, the conductor portion 210, and the insulating layer 200A, and a plurality of sacrificial layers 500A are formed, and the sacrificial layer 500A and the insulating layer 400 are alternately stacked. In the embodiment, the insulating layer 400 is, for example, a hafnium oxide layer, and the sacrificial layer 500A is, for example, a tantalum nitride layer.

如第10F圖所示,形成第二絕緣凹槽600,第二絕緣凹槽600穿過絕緣層400和犧牲層500A且位於第一絕緣凹槽300上。第二絕緣凹槽600的第二寬度W2大於第一絕緣凹槽300的第一寬度W1。實施例中,第二絕緣凹槽600的第二寬度W2例如是50~150奈米。As shown in FIG. 10F, a second insulating recess 600 is formed, and the second insulating recess 600 passes through the insulating layer 400 and the sacrificial layer 500A and is located on the first insulating recess 300. The second width W2 of the second insulating groove 600 is greater than the first width W1 of the first insulating groove 300. In an embodiment, the second width W2 of the second insulating groove 600 is, for example, 50 to 150 nm.

如第10G圖所示,形成通道層700於第二絕緣凹槽600的至少一側壁上,以及形成記憶層800於通道層700與犧牲層500A之間。As shown in FIG. 10G, a channel layer 700 is formed on at least one sidewall of the second insulating recess 600, and a memory layer 800 is formed between the via layer 700 and the sacrificial layer 500A.

如第10H圖所示,形成頂氧化層900於絕緣層400和犧牲層500A上。As shown in FIG. 10H, a top oxide layer 900 is formed on the insulating layer 400 and the sacrificial layer 500A.

如第10I圖所示,形成貫穿開口950。貫穿開口950穿過頂氧化層900、通道層700、記憶層800、絕緣層400、犧牲層500A和絕緣層200A,且位於底氧化層100上。As shown in FIG. 10I, a through opening 950 is formed. The through opening 950 passes through the top oxide layer 900, the channel layer 700, the memory layer 800, the insulating layer 400, the sacrificial layer 500A, and the insulating layer 200A, and is located on the bottom oxide layer 100.

如第10J圖所示,移除犧牲層500A和絕緣層200A。實施例中,例如經由貫穿開口950導入蝕刻液以將犧牲層500A和絕緣層200A蝕刻移除。As shown in FIG. 10J, the sacrificial layer 500A and the insulating layer 200A are removed. In the embodiment, the etching liquid is introduced, for example, through the through opening 950 to etch away the sacrificial layer 500A and the insulating layer 200A.

如第10K圖所示,形成導體部分220和第二導體層500。實施例中,例如經由貫穿開口950導入導體材料填充犧牲層500A和絕緣層200A蝕刻留下的空間,接著再經由貫穿開口950導入蝕刻液將貫穿開口950的導體材料蝕刻分開。至此,形成如第10K圖所示的記憶體結構50A。As shown in Fig. 10K, the conductor portion 220 and the second conductor layer 500 are formed. In the embodiment, the space left by etching the sacrificial layer 500A and the insulating layer 200A is filled, for example, via the through opening 950, and then the conductive material passing through the opening 950 is etched apart by introducing an etching solution through the through opening 950. Thus far, the memory structure 50A as shown in Fig. 10K is formed.

另一實施例中,請同時參照第5圖、第8A~8H圖和第10A~10K圖,在進行如第10G圖所示的步驟之後,進行如第8A~8H圖所示的步驟以形成如第5圖所示的低溫氧化物層920、硬遮罩層910的延伸段910a和通道層700的水平延伸段700h之結構,接著再進行第10H~10K圖所示的步驟,最後塗佈氧化物材料於頂氧化層900上和貫穿開口950中,則形成如第5圖所示的記憶體結構50。In another embodiment, referring to FIG. 5, FIG. 8A to FIG. 8H, and FIGS. 10A to 10K, after performing the steps as shown in FIG. 10G, the steps as shown in FIGS. 8A to 8H are performed to form. The structure of the low temperature oxide layer 920, the extension 910a of the hard mask layer 910, and the horizontal extension 700h of the channel layer 700, as shown in Fig. 5, is followed by the steps shown in Figs. 10H to 10K, and finally coated. The oxide material is formed on the top oxide layer 900 and through the opening 950 to form the memory structure 50 as shown in FIG.

如第4圖所示的記憶體結構40之製造方法與如第5圖所示的記憶體結構50之製造方法的差異在於如第10B~10C圖所示的步驟,其中不形成凹槽300A和導體部分210,而是直接在絕緣層200A中形成具有第一寬度W1為10~30奈米的第一絕緣凹槽300,之後的製造步驟則類似如第10D~10K圖所示的步驟。The manufacturing method of the memory structure 40 as shown in FIG. 4 differs from the manufacturing method of the memory structure 50 as shown in FIG. 5 in the steps shown in FIGS. 10B to 10C in which the groove 300A is not formed and The conductor portion 210, but directly forming the first insulating groove 300 having the first width W1 of 10 to 30 nm directly in the insulating layer 200A, the subsequent manufacturing steps are similar to the steps shown in Figs. 10D to 10K.

如第6圖所示的記憶體結構60之製造方法與如第5圖所示的記憶體結構50之製造方法的差異在於如第10B~10C圖所示的步驟,其中調整凹槽300A的寬度W3,使寬度W3大於第二絕緣凹槽600預定的第二寬度W2,之後的製造步驟則類似如第10D~10K圖所示的步驟。The manufacturing method of the memory structure 60 as shown in FIG. 6 differs from the manufacturing method of the memory structure 50 as shown in FIG. 5 in the steps shown in FIGS. 10B to 10C in which the width of the groove 300A is adjusted. W3, the width W3 is made larger than the predetermined second width W2 of the second insulating groove 600, and the subsequent manufacturing steps are similar to the steps shown in Figs. 10D-10K.

第11A圖~第11K-1圖繪示依照本發明之更一實施例之一種記憶體結構之製造方法示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。11A to 11K-1 are schematic views showing a method of manufacturing a memory structure in accordance with still another embodiment of the present invention. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.

如第11A圖所示,形成底氧化層100於基板100A上,以及形成第一導體層200於底氧化層100上。然後,形成多個絕緣層400於第一導體層200上,以及形成多個第二導體層500,第二導體層500與絕緣層400交錯堆疊,且第二導體層500和第一導體層200電性隔離。接著,形成硬遮罩層970於第二導體層500上。As shown in FIG. 11A, a bottom oxide layer 100 is formed on the substrate 100A, and a first conductor layer 200 is formed on the bottom oxide layer 100. Then, a plurality of insulating layers 400 are formed on the first conductor layer 200, and a plurality of second conductor layers 500 are formed, the second conductor layers 500 and the insulating layer 400 are alternately stacked, and the second conductor layer 500 and the first conductor layer 200 are stacked. Electrically isolated. Next, a hard mask layer 970 is formed on the second conductor layer 500.

如第11B~11B-1圖所示,其中第11B-1圖繪示沿第11B圖之剖面線11B-11B’之剖面示意圖,形成凹槽900A,凹槽900A穿過絕緣層400、第二導體層500、第一導體層200及底氧化層100且位於基板100A上。11B-11B-1, wherein FIG. 11B-1 shows a cross-sectional view along section line 11B-11B' of FIG. 11B, forming a groove 900A, the groove 900A passing through the insulating layer 400, and the second The conductor layer 500, the first conductor layer 200, and the bottom oxide layer 100 are located on the substrate 100A.

如第11C~11C-1圖所示,其中第11C-1圖繪示沿第11C圖之剖面線11C-11C’之剖面示意圖,形成通道層700於凹槽900A的至少一側壁上,以及形成記憶層800於通道層700與第二導體層500之間。實施例中,通道層700例如是多晶矽層,記憶層800例如可具有氧化矽-氮化矽-氧化矽(Oxide-Nitride-Oxide,ONO)、氧化矽-氮化矽-氧化矽-氮化矽-氧化矽(Oxide-Nitride-Oxide-Nitride-Oxide,ONONO)或氧化矽-氮化矽-氧化矽-氮化矽-氧化矽-氮化矽-氧化矽(Oxide-Nitride-Oxide-Nitride-Oxide-Nitride-Oxide,ONONONO) 結構的複合層(但不以此為限)。接著,形成硬遮罩層910於通道層700上。11C-11C-1, wherein FIG. 11C-1 is a schematic cross-sectional view along section line 11C-11C' of FIG. 11C, forming a channel layer 700 on at least one sidewall of the recess 900A, and forming The memory layer 800 is between the channel layer 700 and the second conductor layer 500. In an embodiment, the channel layer 700 is, for example, a polysilicon layer, and the memory layer 800 may have, for example, Oxide-Nitride-Oxide (ONO), yttrium oxide-tantalum nitride-yttria-yttrium nitride. -Oxide-Nitride-Oxide-Nitride-Oxide (ONONO) or yttrium oxide-tantalum nitride-yttria-tantalum nitride-yttria-yttrium-yttrium-yttrium-Oxide -Nitride-Oxide, ONONONO) Composite layer of structure (but not limited to this). Next, a hard mask layer 910 is formed on the channel layer 700.

如第11D圖所示,形成有機介電層930於硬遮罩層910且填充凹槽900A,以及形成另一個硬遮罩層940於有機介電層930上。As shown in FIG. 11D, an organic dielectric layer 930 is formed on the hard mask layer 910 and fills the recess 900A, and another hard mask layer 940 is formed on the organic dielectric layer 930.

如第11E圖所示,設置一圖案化遮罩層960於硬遮罩層940上,以進行後續的圖案化製程。圖案化遮罩層960具有至少一開口960a,開口960a對應預定的凹槽900A。As shown in FIG. 11E, a patterned mask layer 960 is disposed over the hard mask layer 940 for subsequent patterning processes. The patterned mask layer 960 has at least one opening 960a corresponding to the predetermined groove 900A.

如第11F~11F-1圖所示,其中第11F-1圖繪示沿第11F圖之剖面線11F-11F’之剖面示意圖,根據圖案化遮罩層960蝕刻移除部分的有機介電層930和硬遮罩層940,暴露出預定的凹槽900A內的硬遮罩層910和其下的通道層700。由於有機介電層930的材料相對於硬遮罩層910和其下的通道層700具有高選擇比,因此移除有機介電層930所留下的硬遮罩層910和其下的通道層700保有完整的結構,並未受到蝕刻製程的破壞。As shown in FIG. 11F to FIG. 11F-1, FIG. 11F-1 is a schematic cross-sectional view along section line 11F-11F′ of FIG. 11F, and a portion of the organic dielectric layer is removed according to the patterned mask layer 960. 930 and hard mask layer 940 expose a hard mask layer 910 within predetermined recess 900A and a channel layer 700 thereunder. Since the material of the organic dielectric layer 930 has a high selectivity with respect to the hard mask layer 910 and the channel layer 700 therebelow, the hard mask layer 910 left by the organic dielectric layer 930 and the channel layer under it are removed. The 700 has a complete structure and is not damaged by the etching process.

如第11G圖所示,形成低溫氧化物層920於有機介電層930和硬遮罩層940上,並填充於凹槽900A內。As shown in FIG. 11G, a low temperature oxide layer 920 is formed over the organic dielectric layer 930 and the hard mask layer 940 and filled in the recess 900A.

如第11H圖所示,蝕刻移除部分的低溫氧化物層920及硬遮罩層940,暴露出有機介電層930。As shown in FIG. 11H, a portion of the low temperature oxide layer 920 and the hard mask layer 940 are etched away to expose the organic dielectric layer 930.

如第11I~11I-1圖所示,其中第11I-1圖繪示沿第11I圖之剖面線11I-11I’之剖面示意圖,蝕刻移除有機介電層930,且保留低溫氧化物層920、硬遮罩層910和通道層700。舉例而言,如第11I-1圖所示,實施例中,位於另一個凹槽900A內的有機介電層930在此步驟中被蝕刻移除。As shown in FIG. 11I to FIG. 11I, FIG. 11I-1 is a schematic cross-sectional view along section line 11I-11I' of FIG. 11I, etching removes the organic dielectric layer 930, and retains the low temperature oxide layer 920. , a hard mask layer 910 and a channel layer 700. For example, as shown in FIG. 11I-1, in the embodiment, the organic dielectric layer 930 located in the other recess 900A is etched away in this step.

如第11J圖所示,以等向性蝕刻(iso-tropical etching)製程蝕刻移除部分的硬遮罩層910和部分的通道層700,而形成低溫氧化物層920的上部之突出外緣的側面920s超過硬遮罩層910的延伸段910a的側面910s,延伸段910a的側面910s超過通道層700的水平延伸段700h的側面700s。As shown in FIG. 11J, a portion of the hard mask layer 910 and a portion of the channel layer 700 are removed by an iso-tropical etching process to form a protruding outer edge of the upper portion of the low temperature oxide layer 920. Side 920s extends beyond side 910s of extension 910a of hard mask layer 910, and side 910s of extension 910a exceeds side 700s of horizontal extension 700h of channel layer 700.

接著,如第11K~11K-1圖所示,其中第11K-1圖繪示沿第11K圖之剖面線11K-11K’之剖面示意圖,形成頂氧化層900於絕緣層400、第二導體層500、記憶層800和低溫氧化物層920上。至此,形成如第11K~11K-1圖所示的記憶體結構1100。Next, as shown in FIG. 11K to FIG. 11K-1, FIG. 11K-1 is a schematic cross-sectional view taken along section line 11K-11K' of FIG. 11K, and a top oxide layer 900 is formed on the insulating layer 400 and the second conductor layer. 500, memory layer 800 and low temperature oxide layer 920. Thus far, the memory structure 1100 as shown in Figs. 11K to 11K-1 is formed.

第12A圖~第12B-1圖繪示依照本發明之又更一實施例之一種記憶體結構之製造方法示意圖。本實施例中與前述實施例相同或相似之元件係沿用同樣或相似的元件標號,且相同或相似元件之相關說明請參考前述,在此不再贅述。12A to 12B-1 are schematic views showing a manufacturing method of a memory structure according to still another embodiment of the present invention. The same or similar components as those of the above-mentioned embodiments are denoted by the same or similar components, and the related descriptions of the same or similar components are referred to the foregoing, and are not described herein again.

進行如第11A~11F-1圖所示的步驟之後,進行如第9A~9B圖所示的步驟,形成如第12A圖所示的結構,其中硬遮罩層910的延伸段910a的側面910s超過通道層700的水平延伸段700h的側面700s。After performing the steps as shown in FIGS. 11A to 11F-1, the steps as shown in FIGS. 9A to 9B are performed to form a structure as shown in FIG. 12A, in which the side 910s of the extended portion 910a of the hard mask layer 910 is formed. The side 700s of the horizontal extension 700h of the channel layer 700 is exceeded.

接著,如第12B~12B-1圖所示,其中第12B-1圖繪示沿第12B圖之剖面線12B-12B’之剖面示意圖,形成頂氧化層900於絕緣層400、第二導體層500和記憶層800上。至此,形成如第12B~12B-1圖所示的記憶體結構1200。Next, as shown in FIG. 12B to FIG. 12B-1, FIG. 12B-1 is a schematic cross-sectional view along section line 12B-12B′ of FIG. 12B, and a top oxide layer 900 is formed on the insulating layer 400 and the second conductor layer. 500 and memory layer 800. Thus far, the memory structure 1200 as shown in Figs. 12B to 12B-1 is formed.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

10、20、30、40、50、50A、60、1100、120‧‧‧記憶體結構
100‧‧‧底氧化層
100A‧‧‧基板
200‧‧‧第一導體層
200A、400‧‧‧絕緣層
210、220‧‧‧導體部分
300‧‧‧第一絕緣凹槽
300A、900A‧‧‧凹槽
500‧‧‧第二導體層
500A‧‧‧犧牲層
600‧‧‧第二絕緣凹槽
700‧‧‧通道層
700a‧‧‧U型區
700h‧‧‧水平延伸段
700v‧‧‧垂直延伸段
700s、910s、920s‧‧‧側面
800‧‧‧記憶層
900‧‧‧頂氧化層
910、940、970‧‧‧硬遮罩層
910a‧‧‧延伸段
920‧‧‧低溫氧化物層
930‧‧‧有機介電層
950‧‧‧貫穿開口
960‧‧‧圖案化遮罩層
960a‧‧‧開口
L1、L2‧‧‧延伸長度
T1‧‧‧厚度
W1‧‧‧第一寬度
W2‧‧‧第二寬度
W3‧‧‧寬度
11B-11B’、11C-11C’、11F-11F’、11I-11I’、11K-11K’‧‧‧剖面線
10, 20, 30, 40, 50, 50A, 60, 1100, 120‧‧‧ memory structures
100‧‧‧ bottom oxide layer
100A‧‧‧Substrate
200‧‧‧First conductor layer
200A, 400‧‧‧ insulation
210, 220‧‧‧ conductor parts
300‧‧‧First insulation groove
300A, 900A‧‧‧ grooves
500‧‧‧Second conductor layer
500A‧‧‧ sacrificial layer
600‧‧‧Second insulation groove
700‧‧‧channel layer
700a‧‧‧U-zone
700h‧‧‧ horizontal extension
700v‧‧‧ vertical extension
700s, 910s, 920s‧‧‧ side
800‧‧‧ memory layer
900‧‧‧Top oxide layer
910, 940, 970‧‧‧ hard mask layer
910a‧‧‧Extension
920‧‧‧Low temperature oxide layer
930‧‧‧Organic Dielectric Layer
950‧‧‧through opening
960‧‧‧ patterned mask layer
960a‧‧‧ openings
L1, L2‧‧‧ extended length
T1‧‧‧ thickness
W1‧‧‧ first width
W2‧‧‧ second width
W3‧‧‧Width
11B-11B', 11C-11C', 11F-11F', 11I-11I', 11K-11K'‧‧‧ hatching

第1圖繪示本揭露內容之一實施例之記憶體結構之示意圖。 第2圖繪示本揭露內容之另一實施例之記憶體結構之示意圖。 第3圖繪示本揭露內容之又一實施例之記憶體結構之示意圖。 第4圖繪示本揭露內容之再一實施例之記憶體結構之示意圖。 第5圖繪示本揭露內容之更一實施例之記憶體結構之示意圖。 第6圖繪示本揭露內容之又更一實施例之記憶體結構之示意圖。 第7A圖~第7F圖繪示依照本發明之一實施例之一種記憶體結構之製造方法示意圖。 第8A圖~第8H圖繪示依照本發明之另一實施例之一種記憶體結構之製造方法示意圖。 第9A圖~第9B圖繪示依照本發明之又一實施例之一種記憶體結構之製造方法示意圖。 第10A圖~第10K圖繪示依照本發明之再一實施例之一種記憶體結構之製造方法示意圖。 第11A圖~第11K-1圖繪示依照本發明之更一實施例之一種記憶體結構之製造方法示意圖。 第12A圖~第12B-1圖繪示依照本發明之又更一實施例之一種記憶體結構之製造方法示意圖。FIG. 1 is a schematic diagram showing a memory structure of an embodiment of the present disclosure. FIG. 2 is a schematic diagram showing the structure of a memory of another embodiment of the present disclosure. FIG. 3 is a schematic diagram showing the memory structure of still another embodiment of the present disclosure. FIG. 4 is a schematic diagram showing the memory structure of still another embodiment of the present disclosure. FIG. 5 is a schematic diagram showing the memory structure of a further embodiment of the present disclosure. FIG. 6 is a schematic diagram showing the memory structure of still another embodiment of the present disclosure. 7A-7F are schematic views showing a method of fabricating a memory structure in accordance with an embodiment of the present invention. 8A-8H are schematic views showing a method of fabricating a memory structure in accordance with another embodiment of the present invention. 9A to 9B are schematic views showing a method of manufacturing a memory structure according to still another embodiment of the present invention. 10A to 10K are schematic views showing a method of fabricating a memory structure in accordance with still another embodiment of the present invention. 11A to 11K-1 are schematic views showing a method of manufacturing a memory structure in accordance with still another embodiment of the present invention. 12A to 12B-1 are schematic views showing a manufacturing method of a memory structure according to still another embodiment of the present invention.

10‧‧‧記憶體結構 10‧‧‧ memory structure

100‧‧‧底氧化層 100‧‧‧ bottom oxide layer

200‧‧‧第一導體層 200‧‧‧First conductor layer

300‧‧‧第一絕緣凹槽 300‧‧‧First insulation groove

400‧‧‧絕緣層 400‧‧‧Insulation

500‧‧‧第二導體層 500‧‧‧Second conductor layer

600‧‧‧第二絕緣凹槽 600‧‧‧Second insulation groove

700‧‧‧通道層 700‧‧‧channel layer

700a‧‧‧U型區 700a‧‧‧U-zone

800‧‧‧記憶層 800‧‧‧ memory layer

900‧‧‧頂氧化層 900‧‧‧Top oxide layer

T1‧‧‧厚度 T1‧‧‧ thickness

W1‧‧‧第一寬度 W1‧‧‧ first width

W2‧‧‧第二寬度 W2‧‧‧ second width

Claims (10)

一種記憶體結構,包括: 一底氧化層; 一第一導體層,位於該底氧化層上; 一第一絕緣凹槽,穿過該第一導體層且位於該底氧化層上,該第一絕緣凹槽具有一第一寬度; 複數個絕緣層,位於該第一導體層上; 複數個第二導體層,與該些絕緣層交錯堆疊,且和該第一導體層電性隔離; 一第二絕緣凹槽,穿過該些絕緣層和該些第二導體層且位於該第一絕緣凹槽上,該第二絕緣凹槽具有一第二寬度,該第二寬度大於該第一寬度; 一通道層,位於該第二絕緣凹槽的至少一側壁上;以及 一記憶層,位於該通道層與該些第二導體層之間。A memory structure comprising: a bottom oxide layer; a first conductor layer on the bottom oxide layer; a first insulating recess through the first conductor layer and on the bottom oxide layer, the first The insulating recess has a first width; a plurality of insulating layers are disposed on the first conductor layer; a plurality of second conductor layers are alternately stacked with the insulating layers and electrically isolated from the first conductor layer; a second insulating groove extending through the insulating layer and the second conductive layer and located on the first insulating groove, the second insulating groove having a second width, the second width being greater than the first width; a channel layer on at least one sidewall of the second insulating recess; and a memory layer between the channel layer and the second conductor layers. 如申請專利範圍第1項所述之記憶體結構,其中該通道層更位於該第二絕緣凹槽的一底面上,該第一導體層和該些第二導體層分別包括多晶矽或鎢。The memory structure of claim 1, wherein the channel layer is further located on a bottom surface of the second insulating recess, and the first conductor layer and the second conductor layers respectively comprise polysilicon or tungsten. 如申請專利範圍第1項所述之記憶體結構,其中該第一導體層具有一厚度係為1500~4000埃,該第一絕緣凹槽的該第一寬度係為15~30奈米,該第二絕緣凹槽的該第二寬度係為70~120奈米。The memory structure of claim 1, wherein the first conductor layer has a thickness of 1500 to 4000 angstroms, and the first width of the first insulating groove is 15 to 30 nm. The second width of the second insulating groove is 70 to 120 nm. 如申請專利範圍第1項所述之記憶體結構,其中該通道層具有一垂直延伸段和一水平延伸段,該水平延伸段位於該些第二導體層之上,該記憶體結構更包括: 一硬遮罩層,位於該通道層上,其中該硬遮罩層具有一延伸段,該延伸段位於該通道層的該水平延伸段上,且該硬遮罩層的該延伸段的延伸長度大於該通道層的該水平延伸段的延伸長度;以及 一低溫氧化物層(low-temperature oxide),位於該硬遮罩層上,且完全覆蓋該硬遮罩層的該延伸段。The memory structure of claim 1, wherein the channel layer has a vertical extension and a horizontal extension, and the horizontal extension is located on the second conductor layer, the memory structure further comprising: a hard mask layer on the channel layer, wherein the hard mask layer has an extension segment on the horizontal extension of the channel layer, and an extension of the extension portion of the hard mask layer An extension of the horizontal extension greater than the channel layer; and a low-temperature oxide layer on the hard mask layer and completely covering the extension of the hard mask layer. 如申請專利範圍第1項所述之記憶體結構,更包括: 一貫穿開口,穿過該些絕緣層、該些第二導體層和該第一導體層,且位於該底氧化層上;以及 一頂氧化層,位於該些絕緣層和該些第二導體層上。The memory structure of claim 1, further comprising: a through opening through the insulating layer, the second conductive layer and the first conductive layer, and located on the bottom oxide layer; A top oxide layer is disposed on the insulating layers and the second conductor layers. 一種記憶體結構的製造方法,包括: 形成一底氧化層; 形成一第一導體層於該底氧化層上; 形成一第一絕緣凹槽,該第一絕緣凹槽穿過該第一導體層且位於該底氧化層上,該第一絕緣凹槽具有一第一寬度; 形成複數個絕緣層於該第一導體層上; 形成複數個第二導體層,該些第二導體層與該些絕緣層交錯堆疊,且和該第一導體層電性隔離; 形成一第二絕緣凹槽,該第二絕緣凹槽穿過該些絕緣層和該些第二導體層且位於該第一絕緣凹槽上,該第二絕緣凹槽具有一第二寬度,該第二寬度大於該第一寬度; 形成一通道層於該第二絕緣凹槽的至少一側壁上;以及 形成一記憶層於該通道層與該些第二導體層之間。A method of fabricating a memory structure, comprising: forming a bottom oxide layer; forming a first conductor layer on the bottom oxide layer; forming a first insulating recess, the first insulating recess passing through the first conductive layer And on the bottom oxide layer, the first insulating recess has a first width; forming a plurality of insulating layers on the first conductor layer; forming a plurality of second conductor layers, the second conductor layers and the The insulating layers are alternately stacked and electrically isolated from the first conductive layer; forming a second insulating recess, the second insulating recess passing through the insulating layers and the second conductive layers and located in the first insulating recess a second insulating recess having a second width, the second width being greater than the first width; forming a channel layer on at least one sidewall of the second insulating recess; and forming a memory layer in the channel Between the layer and the second conductor layers. 如申請專利範圍第6項所述之記憶體結構的製造方法,其中該通道層更位於該第二絕緣凹槽的一底面上,該第一導體層和該些第二導體層分別包括多晶矽或鎢。The method of fabricating a memory structure according to claim 6, wherein the channel layer is further located on a bottom surface of the second insulating recess, and the first conductor layer and the second conductor layers respectively comprise polysilicon or Tungsten. 如申請專利範圍第6項所述之記憶體結構的製造方法,其中該第一導體層具有一厚度係為1500~4000埃,該第一絕緣凹槽的該第一寬度係為15~30奈米,該第二絕緣凹槽的該第二寬度係為70~120奈米。The method for manufacturing a memory structure according to claim 6, wherein the first conductor layer has a thickness of 1500 to 4000 angstroms, and the first width of the first insulating groove is 15 to 30 angstroms. The second width of the second insulating groove is 70-120 nm. 如申請專利範圍第6項所述之記憶體結構的製造方法,其中該通道層具有一垂直延伸段和一水平延伸段,該水平延伸段位於該些第二導體層之上,該記憶體結構的製造方法更包括: 形成一硬遮罩層於該通道層上,其中該硬遮罩層具有一延伸段,該延伸段位於該通道層的該水平延伸段上,且該硬遮罩層的該延伸段的延伸長度大於該通道層的該水平延伸段的延伸長度;以及 形成一低溫氧化物層(low-temperature oxide)於該硬遮罩層上,且完全覆蓋該硬遮罩層的該延伸段。The method of fabricating a memory structure according to claim 6, wherein the channel layer has a vertical extension and a horizontal extension, and the horizontal extension is located on the second conductor layer, the memory structure The manufacturing method further includes: forming a hard mask layer on the channel layer, wherein the hard mask layer has an extension portion, the extension portion is located on the horizontal extension portion of the channel layer, and the hard mask layer is The extension has an extension length greater than an extension of the horizontal extension of the channel layer; and forming a low-temperature oxide on the hard mask layer and completely covering the hard mask layer Extension. 如申請專利範圍第6項所述之記憶體結構的製造方法,更包括: 形成一貫穿開口,該貫穿開口穿過該些絕緣層、該些第二導體層和該第一導體層,且位於該底氧化層上;以及 形成一頂氧化層於該些絕緣層和該些第二導體層上。The method of fabricating the memory structure of claim 6, further comprising: forming a through opening, the through opening passing through the insulating layer, the second conductor layer and the first conductor layer, and located at And forming a top oxide layer on the insulating layer and the second conductive layers.
TW105111408A 2016-04-12 2016-04-12 Memory structure and manufacturing method of the same TWI591806B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105111408A TWI591806B (en) 2016-04-12 2016-04-12 Memory structure and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105111408A TWI591806B (en) 2016-04-12 2016-04-12 Memory structure and manufacturing method of the same

Publications (2)

Publication Number Publication Date
TWI591806B TWI591806B (en) 2017-07-11
TW201737471A true TW201737471A (en) 2017-10-16

Family

ID=60048585

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105111408A TWI591806B (en) 2016-04-12 2016-04-12 Memory structure and manufacturing method of the same

Country Status (1)

Country Link
TW (1) TWI591806B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685091B (en) * 2019-04-18 2020-02-11 旺宏電子股份有限公司 Semiconductor structure and manufacturing method thereof
US10811427B1 (en) 2019-04-18 2020-10-20 Macronix International Co., Ltd. Semiconductor structure and manufacturing method thereof
TWI716864B (en) * 2017-12-01 2021-01-21 美商矽基因股份有限公司 Forming method of three dimensional integrated circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716864B (en) * 2017-12-01 2021-01-21 美商矽基因股份有限公司 Forming method of three dimensional integrated circuit
TWI685091B (en) * 2019-04-18 2020-02-11 旺宏電子股份有限公司 Semiconductor structure and manufacturing method thereof
US10811427B1 (en) 2019-04-18 2020-10-20 Macronix International Co., Ltd. Semiconductor structure and manufacturing method thereof

Also Published As

Publication number Publication date
TWI591806B (en) 2017-07-11

Similar Documents

Publication Publication Date Title
KR101221598B1 (en) Method for forming a dielectric layer pattern and method for manufacturing non-volatile memory device using for the same
US8273625B2 (en) Structure for flash memory cells
US9748262B1 (en) Memory structure and manufacturing method of the same
TW201401442A (en) Method of fabricating non-volatile memory device
US8158480B2 (en) Method of forming a pattern for a semiconductor device, method of forming a charge storage pattern using the same method, non-volatile memory device and methods of manufacturing the same
TWI591806B (en) Memory structure and manufacturing method of the same
KR101572482B1 (en) Method Manufactruing of Flash Memory Device
US6984559B2 (en) Method of fabricating a flash memory
US20060081906A1 (en) Semiconductor device and method of manufacturing the same
US9029216B1 (en) Memory and manufacturing method thereof
KR100655283B1 (en) Electrically Erasable Programmable Read-Only MemoryEEPROM Device And Method Of Fabricating The Same
KR100757337B1 (en) Charge trap type non-volatile memory device and method for manufacturing the same
CN109524405B (en) Method for manufacturing semiconductor element
CN107302006B (en) Memory structure and manufacturing method thereof
US20190206732A1 (en) Three-dimensional semiconductor device and method for manufacturing the same
US8524569B2 (en) Methods of forming an isolation layer and methods of manufacturing semiconductor devices having an isolation layer
TWI395290B (en) Flash memory and method of fabricating the same
TWI571975B (en) Semiconductor device and method of forming the same
TWI497650B (en) Memory and manufacturing method thereof
KR101419882B1 (en) Method for forming a pattern, method for forming a charge storage pattern using the same method, Non-volatile memory device and method for manufacturing the same
KR100924862B1 (en) Flash device fabrication method
TWI478293B (en) Method of fabricating non-volatile memory device
TWI639212B (en) Manufacturing method of semiconductor structure
KR100832028B1 (en) Method for manufacturing semiconductor memory device
TWI559455B (en) Method for manufacturing non-volatile memory