TWI559455B - Method for manufacturing non-volatile memory - Google Patents

Method for manufacturing non-volatile memory Download PDF

Info

Publication number
TWI559455B
TWI559455B TW104100388A TW104100388A TWI559455B TW I559455 B TWI559455 B TW I559455B TW 104100388 A TW104100388 A TW 104100388A TW 104100388 A TW104100388 A TW 104100388A TW I559455 B TWI559455 B TW I559455B
Authority
TW
Taiwan
Prior art keywords
layer
volatile memory
conductor
forming
insulating
Prior art date
Application number
TW104100388A
Other languages
Chinese (zh)
Other versions
TW201626506A (en
Inventor
張明豐
廖宏魁
Original Assignee
力晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶科技股份有限公司 filed Critical 力晶科技股份有限公司
Priority to TW104100388A priority Critical patent/TWI559455B/en
Priority to CN201510031596.6A priority patent/CN105870066B/en
Publication of TW201626506A publication Critical patent/TW201626506A/en
Application granted granted Critical
Publication of TWI559455B publication Critical patent/TWI559455B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

非揮發性記憶體的製造方法 Non-volatile memory manufacturing method

本發明是有關於一種記憶體元件的製造方法,且特別是有關於一種非揮發性記憶體的製造方法。 The present invention relates to a method of fabricating a memory device, and more particularly to a method of fabricating a non-volatile memory.

隨著電子資訊產業的高度發展,記憶體元件的製作為現今半導體產業之重要技術之一。在各種記憶體相關產品中,非揮發性記憶體因具有可進行多次資料之存入、讀取或抹除等動作,且存入之資料在斷電後也不會消失之優點,已成為個人電腦和電子設備所廣泛採用的一種記憶體元件。 With the rapid development of the electronic information industry, the production of memory components is one of the important technologies in the semiconductor industry today. Among various memory-related products, non-volatile memory has the advantage of being able to store, read, or erase multiple data, and the stored data does not disappear after power-off. A memory component widely used in personal computers and electronic devices.

典型的非揮發性記憶體元件可具有堆疊式的閘極(Stacked-Gate)結構,其中包括以摻雜多晶矽製作的浮置閘極(Floating Gate)與控制閘極(Control Gate)。浮置閘極位於控制閘極和基底之間,未與任何電路連接,而控制閘極則與字元線(Word Line)相接,此外還包括穿隧氧化層(Tunneling Oxide)和閘間介電層(Inter-Gate Dielectric Layer)分別位於基底和浮置閘極之間以及浮置閘極和控制閘極之間。 A typical non-volatile memory component can have a stacked Stacked-Gate structure including a floating gate and a control gate fabricated with doped polysilicon. The floating gate is located between the control gate and the substrate and is not connected to any circuit. The control gate is connected to the word line (Word Line). In addition, the tunneling oxide layer (Tunneling Oxide) and the gate chamber are also included. An Inter-Gate Dielectric Layer is located between the substrate and the floating gate and between the floating gate and the control gate.

近年來,在記憶體元件的製造技術中,已出現採用包含氮化矽的電荷陷入層取代傳統的多晶矽浮置閘極的設計。此種氮化矽電荷陷入層上下通常各有一層氧化矽,而形成一種包含氧化矽/氮化矽/氧化矽(oxide-nitride-oxide,簡稱ONO)層所構成之堆疊式結構(stacked structure),具有此種閘極結構之元件可稱為矽/氧化矽/氮化矽/氧化矽/矽(silicon-oxide-nitride-oxide-silicon,簡稱SONOS)記憶體元件。 In recent years, in the fabrication technology of memory devices, a design has been proposed in which a charge trapping layer containing tantalum nitride is used in place of a conventional polysilicon floating gate. The tantalum nitride charge trapping layer usually has a layer of yttrium oxide on top of each other to form a stacked structure comprising a yttria/nitride-oxide (ONO) layer. An element having such a gate structure may be referred to as a silicon-oxide-nitride-oxide-silicon (SONOS) memory element.

隨著科技的日新月異,半導體相關元件之集積度不斷提高,因而各種記憶體元件尺寸也必須進一步縮減,以使操作速度加快。但是,當欲縮減記憶體元件尺寸時,會產生嚴重的短通道效應(short channel effect)、穩定性劣化等問題。為了進一步提升元件的可靠性與穩定性,需要提供能夠改善上述問題的技術方案。 With the rapid development of technology, the accumulation of semiconductor-related components continues to increase, so the size of various memory components must be further reduced to speed up the operation. However, when the size of the memory element is to be reduced, serious problems such as a short channel effect and deterioration in stability are caused. In order to further improve the reliability and stability of components, it is necessary to provide a technical solution capable of improving the above problems.

本發明提供一種非揮發性記憶體的製造方法,其能夠避免短通道效應的產生,且可進一步提升記憶體元件的可靠性與穩定性。 The present invention provides a method of manufacturing a non-volatile memory that can avoid the generation of a short channel effect and further improve the reliability and stability of the memory element.

本發明所提供的非揮發性記憶體的製造方法包括:於基底上依序形成複合層、第一導體層及第一頂蓋層;對第一頂蓋層、第一導體層、複合層以及基底進行圖案化,以於基底中形成多個淺溝槽,上述淺溝槽沿第一方向延伸;於上述淺溝槽中分別形成元件隔離結構,上述元件隔離結構的表面位於第一頂蓋層與基底 之間;對第一頂蓋層、第一導體層、複合層以及基底進行圖案化,以於基底中形成多個溝槽,上述溝槽沿第二方向延伸,其中第一方向與第二方向交錯;於上述溝槽中形成絕緣層及第二導體層,其中絕緣層環繞而包覆第二導體層;移除第一頂蓋層,並在暴露出的絕緣層之兩側分別形成第二頂蓋層;以及以第二頂蓋層為罩幕,圖案化第一導體層以及複合層,以使第一導體層形成為控制閘極。 The method for manufacturing a non-volatile memory provided by the present invention comprises: sequentially forming a composite layer, a first conductor layer and a first cap layer on a substrate; and the first cap layer, the first conductor layer, the composite layer, and The substrate is patterned to form a plurality of shallow trenches in the substrate, the shallow trenches extending in a first direction; and an element isolation structure is formed in the shallow trenches, wherein a surface of the component isolation structure is located on the first cap layer And substrate Patterning the first cap layer, the first conductor layer, the composite layer, and the substrate to form a plurality of trenches in the substrate, the trenches extending in the second direction, wherein the first direction and the second direction Interleaving; forming an insulating layer and a second conductor layer in the trench, wherein the insulating layer surrounds and covers the second conductor layer; removing the first cap layer and forming a second surface on both sides of the exposed insulating layer a cap layer; and a second cap layer as a mask, patterning the first conductor layer and the composite layer such that the first conductor layer is formed as a control gate.

在本發明的一實施例中,上述於溝槽中形成絕緣層及第二導體層的步驟包括:於上述溝槽內壁上形成第一絕緣材料層;形成填滿上述溝槽的第二導體材料層;至少移除上述溝槽中的第二導體材料層的一部分;以及形成第二絕緣材料層,以覆蓋上述第二導體材料層。 In an embodiment of the invention, the step of forming the insulating layer and the second conductor layer in the trench includes: forming a first insulating material layer on the inner wall of the trench; forming a second conductor filling the trench a material layer; removing at least a portion of the second conductor material layer in the trench; and forming a second insulating material layer to cover the second conductor material layer.

在本發明的一實施例中,上述於暴露出的絕緣層之兩側分別形成第二頂蓋層的步驟包括:在絕緣層及第一導體層上形成頂蓋材料層;移除頂蓋材料層的一部分。 In an embodiment of the invention, the step of forming a second cap layer on each side of the exposed insulating layer comprises: forming a capping material layer on the insulating layer and the first conductor layer; removing the cap material Part of the layer.

在本發明的一實施例中,上述方法更包括對基板進行摻雜製程,以形成源極區以及汲極區。 In an embodiment of the invention, the method further includes performing a doping process on the substrate to form a source region and a drain region.

在本發明的一實施例中,形成上述元件隔離結構的步驟包括:在各個淺溝槽中形成絕緣材料層;對上述絕緣材料層進行平坦化;以及移除一部分的絕緣材料層。 In an embodiment of the invention, the step of forming the element isolation structure includes: forming an insulating material layer in each shallow trench; planarizing the insulating material layer; and removing a portion of the insulating material layer.

在本發明的一實施例中,上述複合層包括氧化矽/氮化矽/氧化矽。 In an embodiment of the invention, the composite layer comprises yttrium oxide/yttria/yttria.

在本發明的一實施例中,上述第一導體層及上述第二導體層的材質包括摻雜多晶矽。 In an embodiment of the invention, the material of the first conductor layer and the second conductor layer comprises a doped polysilicon.

在本發明的一實施例中,上述第一頂蓋層的材質包括氮化矽。 In an embodiment of the invention, the material of the first cap layer comprises tantalum nitride.

在本發明的一實施例中,上述第二頂蓋層的材質包括氮化矽。 In an embodiment of the invention, the material of the second cap layer comprises tantalum nitride.

在本發明的一實施例中,上述絕緣層的材質包括氧化矽。 In an embodiment of the invention, the material of the insulating layer comprises yttrium oxide.

基於上述,藉由本發明所提供的非揮發性記憶體的製造方法,能夠避免記憶體元件產生短通道效應,且可進一步提升半導體元件的可靠性與穩定性。此外,在本發明所提供的製造方法中,藉由採用自對準製程(self-aligned process)等而能進一步簡化製造步驟,從而更有效率地進行非揮發性記憶體元件之製造。 Based on the above, with the method of manufacturing a non-volatile memory provided by the present invention, it is possible to avoid the short channel effect of the memory element and further improve the reliability and stability of the semiconductor element. Further, in the manufacturing method provided by the present invention, the manufacturing steps can be further simplified by using a self-aligned process or the like, thereby more efficiently manufacturing the non-volatile memory element.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧基底 100‧‧‧Base

102‧‧‧複合層 102‧‧‧Composite layer

102a‧‧‧電荷儲存結構 102a‧‧‧Charge storage structure

104‧‧‧第一導體層 104‧‧‧First conductor layer

104a‧‧‧控制閘極 104a‧‧‧Control gate

106‧‧‧第一頂蓋層 106‧‧‧First cover

108‧‧‧溝槽 108‧‧‧ trench

110、200‧‧‧絕緣層 110, 200‧‧‧ insulation

110a‧‧‧第一絕緣材料層 110a‧‧‧First insulating material layer

110b‧‧‧第二絕緣材料層 110b‧‧‧Second layer of insulating material

112‧‧‧第二導體層 112‧‧‧Second conductor layer

112a‧‧‧第二導體材料層 112a‧‧‧Second conductor material layer

114‧‧‧第二頂蓋層 114‧‧‧Second top cover

114a‧‧‧頂蓋材料層 114a‧‧‧Top cover material layer

116‧‧‧源極區 116‧‧‧ source area

118‧‧‧汲極區 118‧‧‧Bungee Area

圖1A至圖1G為依照本發明之實施例所繪示的非揮發性記憶體之製造方法的流程剖面示意圖。 1A-1G are schematic cross-sectional views showing a method of manufacturing a non-volatile memory according to an embodiment of the invention.

圖2A至圖2F為依照本發明之實施例所繪示的非揮發性記憶體之製造方法的流程的另一剖面示意圖。 2A-2F are schematic cross-sectional views showing the flow of a method of manufacturing a non-volatile memory according to an embodiment of the invention.

圖1A至圖1G為依照本發明之實施例所繪示的非揮發性記憶體之製造方法的流程剖面示意圖。應注意,圖1A至1G所示的剖面為與記憶單元之位元線(bit-line)方向平行(或垂直於記憶單元之字元線(word line)方向);圖2A至2F所示的剖面為與記憶單元之字元線方向平行(或垂直於記憶單元之位元線方向)。 1A-1G are schematic cross-sectional views showing a method of manufacturing a non-volatile memory according to an embodiment of the invention. It should be noted that the cross-sections shown in FIGS. 1A to 1G are parallel to the bit-line direction of the memory cell (or perpendicular to the word line direction of the memory cell); FIGS. 2A to 2F are shown. The profile is parallel to the direction of the word line of the memory cell (or perpendicular to the direction of the bit line of the memory cell).

首先,請參照圖1A及圖2A,於基底100上依序形成複合層102、第一導體層104及第一頂蓋層106。基底100例如是矽基底。 First, referring to FIG. 1A and FIG. 2A, the composite layer 102, the first conductor layer 104, and the first cap layer 106 are sequentially formed on the substrate 100. The substrate 100 is, for example, a crucible substrate.

複合層102例如是由底介電層、電荷陷入層與頂介電層所構成的。底介電層之材質例如是氧化矽,其形成方法例如是熱氧化法。電荷陷入層之材質例如是氮化矽,其形成方法例如是化學氣相沈積法。頂介電層之材質例如是氧化矽,其形成方法例如是化學氣相沈積法。當然,底介電層及頂介電層也可以是其他類似的材質。電荷陷入層之材質並不限於氮化矽,也可以是其他能夠使電荷陷入於其中之材質,例如鉭氧化層、鈦酸鍶層、鉿氧化層或摻雜多晶矽等。在本實施例中,複合層102的材質例如是氧化矽/氮化矽/氧化矽複合層。 The composite layer 102 is composed of, for example, a bottom dielectric layer, a charge trapping layer, and a top dielectric layer. The material of the bottom dielectric layer is, for example, ruthenium oxide, and the formation method thereof is, for example, a thermal oxidation method. The material of the charge trapping layer is, for example, tantalum nitride, and the formation method thereof is, for example, a chemical vapor deposition method. The material of the top dielectric layer is, for example, ruthenium oxide, and the formation method thereof is, for example, chemical vapor deposition. Of course, the bottom dielectric layer and the top dielectric layer may also be other similar materials. The material of the charge trapping layer is not limited to tantalum nitride, and may be other materials capable of trapping charges therein, such as a tantalum oxide layer, a barium titanate layer, a tantalum oxide layer, or a doped polysilicon. In the present embodiment, the material of the composite layer 102 is, for example, a yttria/niobium nitride/yttria composite layer.

第一導體層104的材質例如是摻雜多晶矽,其形成方法例如是利用化學氣相沈積法先形成一層未摻雜多晶矽層後,再進行離子植入步驟以形成之,當然也可以採用臨場植入摻質的方式而以化學氣相沈積法形成。 The material of the first conductor layer 104 is, for example, doped polysilicon. The formation method is, for example, forming an undoped polysilicon layer by chemical vapor deposition, and then performing an ion implantation step to form the substrate. It is formed by chemical vapor deposition in a manner of doping.

第一頂蓋層106的材質例如是氮化矽,其形成方法例如是化學氣相沉積法。 The material of the first cap layer 106 is, for example, tantalum nitride, and the forming method thereof is, for example, a chemical vapor deposition method.

接著,對第一頂蓋層106、第一導體層104、複合層102以及基底100進行圖案化,以於基底100中形成多個淺溝槽,且此些淺溝槽沿第一方向(即,與欲形成的記憶單元之位元線方向平行的方向)延伸,然後在各個淺溝槽中形成絕緣層200,從而獲得如圖2A所示的結構。絕緣層200的材質例如是氧化矽。上述絕緣層200的形成方法例如是先利用化學氣相沉積法在各個淺溝槽中形成絕緣材料層,接著,藉由化學機械研磨對絕緣材料層進行平坦化後,進行回蝕刻以移除一部分的絕緣材料層,而形成絕緣層200,其中,絕緣層200的表面位於第一頂蓋層106與基底100之間,且絕緣層200是作為元件隔離結構。 Next, the first cap layer 106, the first conductor layer 104, the composite layer 102, and the substrate 100 are patterned to form a plurality of shallow trenches in the substrate 100, and the shallow trenches are along the first direction (ie, Extending in a direction parallel to the direction of the bit line of the memory cell to be formed, and then forming the insulating layer 200 in each shallow trench, thereby obtaining a structure as shown in FIG. 2A. The material of the insulating layer 200 is, for example, cerium oxide. The method for forming the insulating layer 200 is, for example, first forming an insulating material layer in each shallow trench by chemical vapor deposition, and then, after planarizing the insulating material layer by chemical mechanical polishing, etching is performed to remove a portion. The insulating material layer is formed to form the insulating layer 200, wherein the surface of the insulating layer 200 is located between the first capping layer 106 and the substrate 100, and the insulating layer 200 is used as an element isolation structure.

接下來,請參照圖1B及圖2B,利用罩幕(未圖示)對第一頂蓋層106、第一導體層104、複合層102以及基底100進行圖案化,以於基底100中形成多個溝槽108,此些溝槽108沿第二方向(即,與欲形成的記憶單元之字元線方向平行的方向,其與前述第一方向交錯)延伸。此些溝槽108之底部為位在基底100內,且自第一頂蓋層106的表面起算,上述溝槽108的深度例如是100nm~500nm,且溝槽108的底部與未經圖案化的基底100之表面的距離例如是10nm~100nm,但並不限於此。所屬技術領域中具通常知識者應理解,藉由移除了一部分的基底100而使溝槽108的底部位在基底100內,可獲得較長的通道長度(channel length), 從而避免短通道效應的發生。 Next, referring to FIG. 1B and FIG. 2B, the first cap layer 106, the first conductor layer 104, the composite layer 102, and the substrate 100 are patterned by a mask (not shown) to form a plurality of layers in the substrate 100. The trenches 108 extend in the second direction (ie, a direction parallel to the direction of the word line of the memory cell to be formed, which is interlaced with the aforementioned first direction). The bottoms of the trenches 108 are located in the substrate 100, and from the surface of the first capping layer 106, the depth of the trenches 108 is, for example, 100 nm to 500 nm, and the bottom of the trenches 108 is unpatterned. The distance of the surface of the substrate 100 is, for example, 10 nm to 100 nm, but is not limited thereto. It will be understood by those of ordinary skill in the art that by removing a portion of the substrate 100 such that the bottom of the trench 108 is within the substrate 100, a longer channel length can be obtained. Thereby avoiding the occurrence of short channel effects.

之後,請參照圖1C及圖2C,先於溝槽108內壁上形成共形的第一絕緣材料層110a,接下來,再於第一絕緣材料層110a上形成填滿溝槽108中的剩餘部分之第二導體材料層112a。第一絕緣材料層110a的材質例如是氧化矽。第二導體材料層112a的材質例如是摻雜多晶矽。第一絕緣材料層110a的形成方法例如是化學氣相沉積法,而上述第二導體材料層112a的形成方法例如是利用化學氣相沈積法搭配離子植入步驟來形成,亦可藉由臨場植入摻質的方式搭配化學氣相沈積法來形成。 Thereafter, referring to FIG. 1C and FIG. 2C, a conformal first insulating material layer 110a is formed on the inner wall of the trench 108, and then the remaining portion of the trench 108 is formed on the first insulating material layer 110a. A portion of the second layer of conductor material 112a. The material of the first insulating material layer 110a is, for example, cerium oxide. The material of the second conductor material layer 112a is, for example, doped polysilicon. The method for forming the first insulating material layer 110a is, for example, a chemical vapor deposition method, and the method for forming the second conductive material layer 112a is formed by, for example, chemical vapor deposition combined with an ion implantation step, or by using a field implant. The way of doping is formed by chemical vapor deposition.

然後,請參照圖1D及圖2D,至少移除溝槽108中的第二導體材料層112a的一部分,再形成第二絕緣材料層110b。第二絕緣材料層110b覆蓋第二導體材料層112a表面。藉此,可於溝槽108中形成絕緣層110及第二導體層112,且由第一絕緣材料層110a以及第二絕緣材料層110b構成的絕緣層110環繞並包覆第二導體層112。 Then, referring to FIG. 1D and FIG. 2D, at least a portion of the second conductive material layer 112a in the trench 108 is removed, and a second insulating material layer 110b is formed. The second insulating material layer 110b covers the surface of the second conductor material layer 112a. Thereby, the insulating layer 110 and the second conductor layer 112 can be formed in the trench 108, and the insulating layer 110 composed of the first insulating material layer 110a and the second insulating material layer 110b surrounds and covers the second conductive layer 112.

上述第二導體層112的材質例如是摻雜多晶矽。此外,上述至少移除溝槽中的第二導體材料層112a的一部分,再形成第二絕緣材料層110b的方法例如是先藉由化學機械研磨進行平坦化後,進行回蝕刻(etch back)以移除至少一部分的第二導體材料層112a,然後再藉由化學氣相沉積法沉積第二絕緣材料層110b,最後再進行一次化學機械研磨。此外,上述第二絕緣材料層110b之材質可與第一絕緣材料層110a相同,例如是氧化矽。 The material of the second conductor layer 112 is, for example, doped polysilicon. In addition, the method of removing at least a portion of the second conductive material layer 112a in the trench and forming the second insulating material layer 110b is performed by, for example, planarizing by chemical mechanical polishing, and performing etch back. At least a portion of the second conductive material layer 112a is removed, and then the second insulating material layer 110b is deposited by chemical vapor deposition, and finally a chemical mechanical polishing is performed. In addition, the material of the second insulating material layer 110b may be the same as the first insulating material layer 110a, for example, yttrium oxide.

接下來,請參照圖1E及圖2E,移除第一頂蓋層106。移除第一頂蓋層106的方法例如是利用如磷酸(H3PO4)等蝕刻液而以濕式蝕刻的方式進行移除。然後,在第一頂蓋層106移除後所暴露出的絕緣層110及第一導體層104上形成頂蓋材料層114a。上述頂蓋材料層114a的材質例如是氮化矽。形成頂蓋材料層114a的方法例如是化學氣相沉積法。 Next, referring to FIG. 1E and FIG. 2E, the first cap layer 106 is removed. The method of removing the first cap layer 106 is, for example, removal by wet etching using an etching solution such as phosphoric acid (H 3 PO 4 ). Then, a capping material layer 114a is formed on the insulating layer 110 and the first conductor layer 104 exposed after the first cap layer 106 is removed. The material of the cap material layer 114a is, for example, tantalum nitride. The method of forming the cap material layer 114a is, for example, a chemical vapor deposition method.

請參照圖1F及圖2F,移除頂蓋材料層114a的一部分,而於暴露出的絕緣層110之兩側分別形成第二頂蓋層114。移除頂蓋材料層114a的一部分的方法例如是非等向性蝕刻法。 Referring to FIGS. 1F and 2F, a portion of the cap material layer 114a is removed, and a second cap layer 114 is formed on each of the exposed insulating layers 110. A method of removing a portion of the cap material layer 114a is, for example, an anisotropic etching method.

最後,請參照圖1G,以第二頂蓋層114為罩幕,圖案化第一導體層104以及複合層102,而圖案化使用非等向性蝕刻製程,以使第一導體層104形成為控制閘極104a。經上述圖案化的複合層102例如是作為電荷儲存結構102a,第二導體層112例如是作為字元線閘(word line gate)。此外,可更進一步對基板100進行摻雜製程,以形成源極區116以及汲極區118,其116亦可為汲極區而118為源極區。 Finally, referring to FIG. 1G, the first cap layer 114 and the composite layer 102 are patterned by using the second cap layer 114 as a mask, and the patterning uses an anisotropic etching process to form the first conductor layer 104 as The gate 104a is controlled. The composite layer 102 patterned as described above is, for example, a charge storage structure 102a, and the second conductor layer 112 is, for example, a word line gate. In addition, the substrate 100 may be further doped to form a source region 116 and a drain region 118, which may also be a drain region and 118 a source region.

綜上所述,本發明所提供的非揮發性記憶體的製造方法能夠避免記憶體元件產生短通道效應,且可進一步提升半導體元件的可靠性與穩定性。具體來說,在本發明所提供的製造方法中,透過移除一部分基底而形成深度較深的溝槽,而可獲得具有較長通道長度之元件,從而能夠避免短通道效應的發生;此外,藉由採用鑲嵌式製程(damascene process)以及自對準製程(self-aligned process)等而能進一步簡化以往必須使用光罩的製程步驟,從而能夠更有效率地進行如單一記憶胞二位元(2 bit/cell)SONOS記憶體等元件之製造。 In summary, the method for manufacturing a non-volatile memory provided by the present invention can avoid the short channel effect of the memory element, and can further improve the reliability and stability of the semiconductor element. Specifically, in the manufacturing method provided by the present invention, a deep-depth groove is formed by removing a part of the substrate, and an element having a longer channel length can be obtained, thereby avoiding occurrence of a short-channel effect; By using a damascene process and a self-aligned process (self-aligned) The process steps such as the conventional use of the photomask can be further simplified, and the manufacture of components such as a single memory cell (2 bit/cell) SONOS memory can be performed more efficiently.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧基底 100‧‧‧Base

102a‧‧‧電荷儲存結構 102a‧‧‧Charge storage structure

104a‧‧‧控制閘極 104a‧‧‧Control gate

110‧‧‧絕緣層 110‧‧‧Insulation

112‧‧‧第二導體層 112‧‧‧Second conductor layer

114‧‧‧第二頂蓋層 114‧‧‧Second top cover

116‧‧‧源極區 116‧‧‧ source area

118‧‧‧汲極區 118‧‧‧Bungee Area

Claims (10)

一種非揮發性記憶體的製造方法,包括:於一基底上依序形成一複合層、一第一導體層及一第一頂蓋層;對該第一頂蓋層、該第一導體層、該複合層以及該基底進行圖案化,以於該基底中形成多個淺溝槽,該些淺溝槽沿一第一方向延伸;於該些淺溝槽中分別形成一元件隔離結構,該元件隔離結構的表面位於該頂蓋層與該基底之間;對該第一頂蓋層、該第一導體層、該複合層以及該基底進行圖案化,以於該基底中形成多個溝槽,該些溝槽沿一第二方向延伸,其中該第一方向與該第二方向交錯;於該些溝槽中形成一絕緣層及一第二導體層,其中該絕緣層環繞而包覆該第二導體層;移除該第一頂蓋層,並在暴露出的該絕緣層之兩側分別形成一第二頂蓋層;以及以該第二頂蓋層為罩幕,圖案化該第一導體層以及該複合層,以使該第一導體層形成為控制閘極。 A method for manufacturing a non-volatile memory, comprising: sequentially forming a composite layer, a first conductor layer and a first cap layer on a substrate; the first cap layer, the first conductor layer, The composite layer and the substrate are patterned to form a plurality of shallow trenches in the substrate, the shallow trenches extending along a first direction; and an element isolation structure is formed in the shallow trenches, the component The surface of the isolation structure is located between the cap layer and the substrate; the first cap layer, the first conductor layer, the composite layer and the substrate are patterned to form a plurality of trenches in the substrate, The trenches extend along a second direction, wherein the first direction is staggered with the second direction; an insulating layer and a second conductor layer are formed in the trenches, wherein the insulating layer surrounds the first layer a second conductor layer; removing the first cap layer and forming a second cap layer on both sides of the exposed insulating layer; and patterning the first cap layer as a mask a conductor layer and the composite layer such that the first conductor layer is formed as a control gate 如申請專利範圍第1項所述之非揮發性記憶體的製造方法,其中於該些溝槽中形成該絕緣層及該第二導體層的步驟包括:於該些溝槽內壁上形成一第一絕緣材料層;形成填滿該些溝槽的一第二導體材料層; 至少移除該些溝槽中的該第二導體材料層的一部分;以及形成一第二絕緣材料層,以覆蓋該第二導體材料層。 The method for manufacturing a non-volatile memory according to claim 1, wherein the step of forming the insulating layer and the second conductor layer in the trenches comprises: forming a sidewall on the inner walls of the trenches a first layer of insulating material; forming a second layer of conductive material filling the trenches; Removing at least a portion of the second layer of conductor material in the trenches; and forming a second layer of insulating material to cover the second layer of conductor material. 如申請專利範圍第1項所述之非揮發性記憶體的製造方法,其中,於暴露出的該絕緣層之兩側分別形成該第二頂蓋層的步驟包括:在該絕緣層及該第一導體層上形成一頂蓋材料層;以及移除該頂蓋材料層的一部分。 The method for manufacturing a non-volatile memory according to claim 1, wherein the step of forming the second cap layer on both sides of the exposed insulating layer comprises: the insulating layer and the first Forming a layer of capping material on a conductor layer; and removing a portion of the capping material layer. 如申請專利範圍第1項所述之非揮發性記憶體的製造方法,更包括:對該基板進行一摻雜製程,以形成源極區以及汲極區。 The method for manufacturing a non-volatile memory according to claim 1, further comprising: performing a doping process on the substrate to form a source region and a drain region. 如申請專利範圍第1項所述之非揮發性記憶體的製造方法,其中形成該元件隔離結構的步驟包括:在各該淺溝槽中形成一絕緣材料層;對該絕緣材料層進行平坦化;以及移除一部分的該絕緣材料層。 The method for manufacturing a non-volatile memory according to claim 1, wherein the step of forming the element isolation structure comprises: forming an insulating material layer in each of the shallow trenches; planarizing the insulating material layer And removing a portion of the layer of insulating material. 如申請專利範圍第1項所述之非揮發性記憶體的製造方法,其中該複合層的材質包括氧化矽/氮化矽/氧化矽。 The method for producing a non-volatile memory according to claim 1, wherein the material of the composite layer comprises cerium oxide/cerium nitride/cerium oxide. 如申請專利範圍第1項所述之非揮發性記憶體的製造方法,其中該第一導體層及該第二導體層的材質包括摻雜多晶矽。 The method for manufacturing a non-volatile memory according to claim 1, wherein the material of the first conductor layer and the second conductor layer comprises doped polysilicon. 如申請專利範圍第1項所述之非揮發性記憶體的製造方法,其中,該第一頂蓋層的材質包括氮化矽。 The method for manufacturing a non-volatile memory according to claim 1, wherein the material of the first cap layer comprises tantalum nitride. 如申請專利範圍第1項所述之非揮發性記憶體的製造方 法,其中,該第二頂蓋層的材質包括氮化矽。 Manufacturer of non-volatile memory as described in claim 1 The method, wherein the material of the second cap layer comprises tantalum nitride. 如申請專利範圍第1項所述之非揮發性記憶體的製造方法,其中,該絕緣層的材質包括氧化矽。 The method for producing a non-volatile memory according to claim 1, wherein the material of the insulating layer comprises cerium oxide.
TW104100388A 2015-01-07 2015-01-07 Method for manufacturing non-volatile memory TWI559455B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104100388A TWI559455B (en) 2015-01-07 2015-01-07 Method for manufacturing non-volatile memory
CN201510031596.6A CN105870066B (en) 2015-01-07 2015-01-22 Method for manufacturing non-volatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104100388A TWI559455B (en) 2015-01-07 2015-01-07 Method for manufacturing non-volatile memory

Publications (2)

Publication Number Publication Date
TW201626506A TW201626506A (en) 2016-07-16
TWI559455B true TWI559455B (en) 2016-11-21

Family

ID=56623188

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104100388A TWI559455B (en) 2015-01-07 2015-01-07 Method for manufacturing non-volatile memory

Country Status (2)

Country Link
CN (1) CN105870066B (en)
TW (1) TWI559455B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090283813A1 (en) * 2008-05-19 2009-11-19 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method for fabricating nonvolatile semiconductor memory device
WO2011160011A1 (en) * 2010-06-19 2011-12-22 SanDisk Technologies, Inc. Isolation between nonvolatile memory cells by means of low- dielectric- constant dielectrics and air gaps and corresponding manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100998945B1 (en) * 2008-09-05 2010-12-09 주식회사 하이닉스반도체 Method for fabricating non-volatile memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090283813A1 (en) * 2008-05-19 2009-11-19 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method for fabricating nonvolatile semiconductor memory device
WO2011160011A1 (en) * 2010-06-19 2011-12-22 SanDisk Technologies, Inc. Isolation between nonvolatile memory cells by means of low- dielectric- constant dielectrics and air gaps and corresponding manufacturing method

Also Published As

Publication number Publication date
CN105870066B (en) 2018-09-28
TW201626506A (en) 2016-07-16
CN105870066A (en) 2016-08-17

Similar Documents

Publication Publication Date Title
US9543313B2 (en) Nonvolatile memory device and method for fabricating the same
JP2009027161A (en) Method of fabricating flash memory device
US11004863B2 (en) Non-volatile memory with gate all around thin film transistor and method of manufacturing the same
KR20210022093A (en) 3D memory device and manufacturing method thereof
US20190319037A1 (en) Method of manufacturing memory device
TWI647822B (en) Three-dimensional non-volatile memory and manufacturing method thereof
KR100673228B1 (en) Method of manufacturing a nand flash memory device
KR20100041968A (en) Method of manufacturing a semiconductor device
US10381449B2 (en) Method of manufacturing memory device
KR101005638B1 (en) Semiconductor device and manufacturing method thereof
TWI615949B (en) Three-dimensional memory device and method of forming the same
US8766350B2 (en) Semiconductor device and method for fabricating semiconductor device
US20180197871A1 (en) Flash memory device and fabrication method thereof
US8138077B2 (en) Flash memory device and method of fabricating the same
TWI571975B (en) Semiconductor device and method of forming the same
TWI559455B (en) Method for manufacturing non-volatile memory
TWI508232B (en) Non-volatile memory cell and method of the same
TWI555065B (en) Method of manufacturing non-volatile memory
TWI493660B (en) Non-volatile memory and manufacturing method thereof
TWI565035B (en) Memory cell and fabricating method thereof
TWI478293B (en) Method of fabricating non-volatile memory device
JP2010272675A (en) Semiconductor storage device
KR20060012695A (en) Method of manufacturing a semiconductor device
US9431406B1 (en) Semiconductor device and method of forming the same
KR100652383B1 (en) Method of manufacturing a semiconductor device