TWI508232B - Non-volatile memory cell and method of the same - Google Patents

Non-volatile memory cell and method of the same Download PDF

Info

Publication number
TWI508232B
TWI508232B TW102114274A TW102114274A TWI508232B TW I508232 B TWI508232 B TW I508232B TW 102114274 A TW102114274 A TW 102114274A TW 102114274 A TW102114274 A TW 102114274A TW I508232 B TWI508232 B TW I508232B
Authority
TW
Taiwan
Prior art keywords
layer
charge storage
substrate
volatile memory
memory cell
Prior art date
Application number
TW102114274A
Other languages
Chinese (zh)
Other versions
TW201442154A (en
Inventor
Chu Ming Ma
Chih Lin Chen
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW102114274A priority Critical patent/TWI508232B/en
Publication of TW201442154A publication Critical patent/TW201442154A/en
Application granted granted Critical
Publication of TWI508232B publication Critical patent/TWI508232B/en

Links

Description

非揮發性記憶胞及其造方法Non-volatile memory cell and method of making same

本發明是有關於一種積體電路及其製造方法,且特別是有關於一種非揮發性記憶胞及其製造方法。The present invention relates to an integrated circuit and a method of fabricating the same, and more particularly to a non-volatile memory cell and a method of fabricating the same.

非揮發性記憶體允許多次的資料程式化、讀取及抹除操作,甚至在記憶體的電源中斷後還能保存儲存於其中的資料。由於這些優點,非揮發性記憶體已成為個人電腦與電子設備中廣泛使用的記憶體。Non-volatile memory allows multiple data stylization, reading and erasing operations, and even saves the data stored in the memory after the power is interrupted. Because of these advantages, non-volatile memory has become a widely used memory in personal computers and electronic devices.

熟知的應用電荷儲存結構(charge storage structure)的可電程式化及抹除(electrically programmable and erasable)非揮發性記憶體技術,如電子可抹除可程式化唯讀記憶體(EEPROM)及快閃記憶體(flash記憶體),已使用於各種現代化應用。快閃記憶體設計成具有記憶胞陣列,其可以獨立地程式化與讀取。一般的快閃記憶體記憶胞將電荷儲存於浮置閘。另一種類似一般快閃記憶體的非揮發性記憶體則是使用氮化矽來製作電荷捕捉結構(charge-trapping structure),以取代浮置閘的導體材料。當氮化矽的電荷 捕捉記憶胞被程式化時,電荷被捕捉且不會移動穿過氮化矽的電荷捕捉結構。在不持續供應電源時,電荷會一直保持在氮化矽電荷捕捉層中,維持其資料狀態,直到記憶胞被抹除。由於電荷不會移動穿過氮化矽電荷捕捉層,因此電荷可位於不同的電荷捕捉處。換言之,電荷捕捉結構型的快閃記憶體元件中,在每一個記憶胞中可以儲存一個位元以上的資訊。Well-known electrically programmable and erasable non-volatile memory technologies such as electronic erasable programmable read-only memory (EEPROM) and flash memory using charge storage structures Memory (flash memory) has been used in a variety of modern applications. The flash memory is designed to have an array of memory cells that can be programmed and read independently. A typical flash memory cell stores charge in a floating gate. Another non-volatile memory similar to a general flash memory uses tantalum nitride to create a charge-trapping structure to replace the conductive material of the floating gate. When the charge of tantalum nitride When the capture memory cell is programmed, the charge is captured and does not move through the charge trapping structure of the tantalum nitride. When the power supply is not continuously supplied, the charge remains in the tantalum nitride charge trap layer, maintaining its data state until the memory cell is erased. Since the charge does not move through the tantalum nitride charge trapping layer, the charge can be located at a different charge trap. In other words, in the flash memory structure of the charge trapping structure type, information of more than one bit can be stored in each memory cell.

目前已有多種方法提出來製作上述兩種非揮發性記憶體,但是由於製作隔離結構的溝渠頂角容易在製程中裸露出來或是遭受蝕刻的破壞,使得溝渠頂角上所形成的穿隧介電層的厚度較薄,造成記憶體可靠度上的問題。再者,若要藉由回蝕刻降低隔離結構的高度以提升閘極耦合比(GCR),則必須避免溝渠頂角上方的穿隧介電層遭受蝕刻的破壞而更變得薄,因此,其回蝕刻製程亦必須要精確控制,其製程裕度非常小。At present, there are various methods proposed to fabricate the above two kinds of non-volatile memory, but since the apex angle of the trench in which the isolation structure is formed is easily exposed in the process or damaged by etching, the tunneling layer formed on the apex angle of the trench is formed. The thickness of the electrical layer is thin, causing problems in memory reliability. Furthermore, if the height of the isolation structure is to be reduced by etch back to increase the gate coupling ratio (GCR), it is necessary to prevent the tunneling dielectric layer above the apex angle of the trench from being etched and become thinner. Therefore, The etchback process must also be precisely controlled, and its process margin is very small.

本發明提出一種非揮發性記憶胞,其具有高的閘極耦合比與可靠度。The present invention provides a non-volatile memory cell having a high gate coupling ratio and reliability.

本發明提出一種非揮發性記憶胞的製造方法,其製程具有足夠的製程裕度。The invention proposes a method for manufacturing a non-volatile memory cell, the process of which has sufficient process margin.

本發明提供一種非揮發性記憶胞,包括基底、電荷儲存結構以及穿隧介電層。基底中具有隔離結構,定義出主動區。電荷儲存結構位於主動區上。電荷儲存結構的底部寬度實質上等於 主動區的寬度,電荷儲存結構的側壁與基底的上表面的第一夾角不同於隔離結構之側壁與基底的上表面的第二夾角。穿隧介電層位於電荷儲存結構與基底之間。穿隧介電層的下表面平坦,且穿隧介電層的上表面實質上與基底的上表面平行。The present invention provides a non-volatile memory cell comprising a substrate, a charge storage structure, and a tunneling dielectric layer. The substrate has an isolation structure defining an active region. The charge storage structure is located on the active area. The bottom width of the charge storage structure is substantially equal to The width of the active region, the first angle of the sidewall of the charge storage structure and the upper surface of the substrate is different from the second angle of the sidewall of the isolation structure to the upper surface of the substrate. The tunneling dielectric layer is between the charge storage structure and the substrate. The lower surface of the tunneling dielectric layer is flat and the upper surface of the tunneling dielectric layer is substantially parallel to the upper surface of the substrate.

依據本發明一實施例所述,上述電荷儲存結構的材料為介電荷捕捉層或導體層。According to an embodiment of the invention, the material of the charge storage structure is a dielectric charge trapping layer or a conductor layer.

依據本發明一實施例所述,上述第一夾角小於上述第二夾角。According to an embodiment of the invention, the first angle is smaller than the second angle.

依據本發明一實施例所述,上述電荷儲存結構的中間寬度與底部寬度實質上相同,或其差異小於10nm。According to an embodiment of the invention, the intermediate width of the charge storage structure is substantially the same as the bottom width, or the difference is less than 10 nm.

依據本發明一實施例所述,上述電荷儲存結構的中間寬度與頂部寬度或實質上相同,或其差異小於10nm。According to an embodiment of the invention, the intermediate width of the charge storage structure is substantially the same as the top width, or the difference is less than 10 nm.

本發明提出一種非揮發性記憶胞的製造方法,包括在基底上形成多數個圖案化的罩幕層。在圖案化的罩幕層的側壁形成多數個間隙壁。以圖案化的罩幕層與間隙壁為罩幕,移除部分基底,以形成多數個溝渠,其中任意相鄰兩個溝渠之間定義出主動區。形成多數個隔離結構,隔離結構位於溝渠中並且向上延伸至間隙壁之間。移除圖案化的罩幕層與間隙壁,以在隔離結構之間以及主動區上形成多數個開口。在每一開口中形成穿隧介電層與電荷儲存結構。其中,穿隧介電層的下表面平坦且實質上與基底的上表面平行,電荷儲存結構的底部寬度實質上等於對應的主動區的寬度,電荷儲存結構的側壁與基底的上表面的第一夾角不同 於隔離結構之側壁與基底的上表面的第二夾角。The present invention provides a method of fabricating a non-volatile memory cell comprising forming a plurality of patterned mask layers on a substrate. A plurality of spacers are formed in the sidewalls of the patterned mask layer. A patterned mask layer and a spacer are used as a mask to remove a portion of the substrate to form a plurality of trenches, wherein an active region is defined between any two adjacent trenches. A plurality of isolation structures are formed, the isolation structures being located in the trench and extending upwardly between the spacers. The patterned mask layer and the spacers are removed to form a plurality of openings between the isolation structures and on the active regions. A tunneling dielectric layer and a charge storage structure are formed in each opening. Wherein the lower surface of the tunneling dielectric layer is flat and substantially parallel to the upper surface of the substrate, the bottom width of the charge storage structure is substantially equal to the width of the corresponding active region, and the sidewall of the charge storage structure and the first surface of the substrate are first Different angle a second angle between the sidewall of the isolation structure and the upper surface of the substrate.

依據本發明一實施例所述,上述非揮發性記憶胞的製造方法,更包括在上述間隙壁與尚數圖案化的罩幕層之間形成多個襯層。在每一開口中形成穿隧介電層與電荷儲存結構之前,移除襯層。According to an embodiment of the invention, the method for manufacturing the non-volatile memory cell further includes forming a plurality of lining layers between the spacer and the patterned mask layer. The liner is removed prior to forming the tunnel dielectric layer and the charge storage structure in each opening.

依據本發明一實施例所述,上述襯層與上述間隙壁的材料不同,且與上述圖案化罩幕層的材料不同。According to an embodiment of the invention, the lining layer is different from the material of the spacer and different from the material of the patterned mask layer.

依據本發明一實施例所述,其中形成上述隔離結構的步驟包括於上述基底上形成絕緣層,並填入於上述溝渠中,接著,進行平坦化製程,移除罩幕層上的絕緣層。According to an embodiment of the invention, the step of forming the isolation structure includes forming an insulating layer on the substrate and filling the trench, and then performing a planarization process to remove the insulating layer on the mask layer.

依據本發明一實施例所述,上述非揮發性記憶胞的製造方法,更包括回蝕刻上述溝渠上的上述絕緣層。According to an embodiment of the invention, the method for fabricating the non-volatile memory cell further includes etching back the insulating layer on the trench.

依據本發明一實施例所述,上述非揮發性記憶胞的製造方法,更包括回蝕刻部分該些隔離結構。According to an embodiment of the invention, the method for fabricating the non-volatile memory cell further includes etching back a portion of the isolation structures.

基於上述,依據本發明實施例之非揮發性記憶胞的製造方法,在穿隧介電層形成之前移除絕緣層的步驟具有很大的製程裕度(process window)。此外,藉由隔離結構的回蝕刻,可以增加控制閘與電荷儲存結構之間的耦合面積,提升閘極耦合比。Based on the above, in the method of manufacturing a non-volatile memory cell according to an embodiment of the present invention, the step of removing the insulating layer before the tunneling dielectric layer is formed has a large process window. In addition, by the etch back of the isolation structure, the coupling area between the control gate and the charge storage structure can be increased, and the gate coupling ratio can be increased.

再者,電荷儲存結構可以具有垂直的側壁,以避免導體弦(conductor stringer)的問題,也可以避免在電荷儲存下方形成孔隙。Furthermore, the charge storage structure can have vertical sidewalls to avoid problems with the conductor stringer and to avoid void formation under charge storage.

本發明實施例之非揮發性記憶胞,其具有高的閘極耦合 比與可靠度。Non-volatile memory cells of embodiments of the invention having high gate coupling Ratio and reliability.

本發明實施例之非揮發性記憶胞的製造方法,其製程具有足夠的製程裕度。The method for manufacturing a non-volatile memory cell according to an embodiment of the present invention has a process margin with sufficient process margin.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

10‧‧‧基底10‧‧‧Base

12‧‧‧圖案化的罩幕層12‧‧‧ patterned mask layer

14‧‧‧第一層14‧‧‧ first floor

16‧‧‧第二層16‧‧‧ second floor

18、18a、18b‧‧‧襯層18, 18a, 18b‧‧‧ lining

20‧‧‧間隙壁材料層20‧‧‧ spacer material layer

20a‧‧‧間隙壁20a‧‧‧ spacer

22‧‧‧溝渠22‧‧‧ Ditch

24‧‧‧主動區24‧‧‧active area

26‧‧‧絕緣層26‧‧‧Insulation

26a、26b‧‧‧隔離結構26a, 26b‧‧‧Isolation structure

28、29‧‧‧開口28, 29‧‧‧ openings

30‧‧‧穿隧介電層30‧‧‧Tunnel dielectric layer

32‧‧‧電荷儲存結構32‧‧‧Charge storage structure

34‧‧‧介電層34‧‧‧ dielectric layer

36‧‧‧控制閘36‧‧‧Control gate

圖1A至圖1I為依照本發明之一示範實施例繪示的一種非揮發性記憶胞的製造方法的流程剖面。1A through 1I are flow cross-sectional views showing a method of fabricating a non-volatile memory cell according to an exemplary embodiment of the invention.

請照圖1A,在基底10上形成圖案化的罩幕層12。基底10可以是半導體基底,如是矽或是矽化鍺。基底10也可以是絕緣層上有矽(SOI)基底。前述圖案化的罩幕層12可以是單層材料層、雙層材料層或是多層材料層。在一示範實施例中,前述各圖案化的罩幕層12是由第一層14與第二層16所組成的雙材料層所構成。第一層例如是墊氧化層,而第二層例如是氮化矽層。形成方法可以先依序形成第一材料層與第二材料層,然後經由微影與蝕刻製程圖案化第二材料層與第一材料層。A patterned mask layer 12 is formed on the substrate 10 in accordance with FIG. 1A. Substrate 10 can be a semiconductor substrate such as tantalum or tantalum. The substrate 10 may also be a ruthenium (SOI) substrate on the insulating layer. The aforementioned patterned mask layer 12 may be a single layer material layer, a two layer material layer or a multilayer material layer. In an exemplary embodiment, each of the patterned mask layers 12 is formed of a two-layer layer of a first layer 14 and a second layer 16. The first layer is, for example, a pad oxide layer, and the second layer is, for example, a tantalum nitride layer. The forming method may sequentially form the first material layer and the second material layer, and then pattern the second material layer and the first material layer via a lithography and etching process.

接著,請繼續參照圖1A,在基底10上形成襯層18,以覆蓋圖案化的罩幕層12以及基底10。之後,在襯層18上形成間隙壁材料層20。襯層18的材料與圖案化罩幕層12的材料不同。 在一示範實施例中,襯層18的材料與圖案化的罩幕層12的第二層16的材料不同。襯層18的材料例如是氧化矽、硼磷矽玻璃或多晶矽。襯層18的形成方法例如是化學氣相沉積法或原子層沉積法,厚度例如是1nm至20nm。間隙壁材料層20的材料與襯層18不同,且與後續形成的絕緣層26(圖1C)不同。間隙壁材料層20的材料例如是氮化矽、氧氮化物或多晶矽。間隙壁材料層20的形成方法例如是化學氣相沉積法或原子層沉積法,厚度例如是1nm至20nm。Next, referring to FIG. 1A, a liner 18 is formed on the substrate 10 to cover the patterned mask layer 12 and the substrate 10. Thereafter, a spacer material layer 20 is formed on the liner 18. The material of the liner 18 is different from the material of the patterned mask layer 12. In an exemplary embodiment, the material of the liner 18 is different than the material of the second layer 16 of the patterned mask layer 12. The material of the lining 18 is, for example, cerium oxide, borophosphon glass or polycrystalline germanium. The formation method of the underlayer 18 is, for example, a chemical vapor deposition method or an atomic layer deposition method, and the thickness is, for example, 1 nm to 20 nm. The material of the spacer material layer 20 is different from the liner 18 and is different from the subsequently formed insulating layer 26 (Fig. 1C). The material of the spacer material layer 20 is, for example, tantalum nitride, oxynitride or polysilicon. The method of forming the spacer material layer 20 is, for example, a chemical vapor deposition method or an atomic layer deposition method, and the thickness is, for example, 1 nm to 20 nm.

請參照圖1B,非等向性蝕刻間隙壁材料層20與襯層18,以在圖案化的罩幕層12的側壁形成間隙壁20a與襯層18a。接著,以圖案化的罩幕層12、襯層18a與間隙壁20a為罩幕,移除部分基底10,以形成溝渠22,其中任意相鄰兩個溝渠22之間定義出主動區24。之後,於基底10上以及溝渠20中形成絕緣層26。絕緣層26的材料可以是絕緣材料,例如是氧化矽或是硼磷矽玻璃,其形成的方法例如是化學氣相沉積法。Referring to FIG. 1B, the spacer material layer 20 and the liner 18 are anisotropically etched to form a spacer 20a and a liner 18a on the sidewalls of the patterned mask layer 12. Next, a portion of the substrate 10 is removed with the patterned mask layer 12, the liner layer 18a and the spacers 20a as masks to form the trenches 22, wherein the active regions 24 are defined between any two adjacent trenches 22. Thereafter, an insulating layer 26 is formed on the substrate 10 and in the trench 20. The material of the insulating layer 26 may be an insulating material such as cerium oxide or borophosphon glass, which is formed by, for example, chemical vapor deposition.

請參照圖1C,進行平坦化製程,移除圖案化的罩幕層12上的絕緣層26。平坦化製程可以以圖案化的罩幕層12做為研磨終止層,採用化學機械研磨製程來實施。Referring to FIG. 1C, a planarization process is performed to remove the insulating layer 26 on the patterned mask layer 12. The planarization process can be performed using a patterned mask layer 12 as a polishing stop layer using a chemical mechanical polishing process.

請參照圖1D至1F,移除圖案化的罩幕層12、襯層18a以及間隙壁20a。更具體地說,在一示範實施例中,請參照圖1D,先移除圖案化的罩幕層12的第二層16。接著,請參照圖1E,移除部分襯層18a與圖案化的罩幕層12的第一層14,留下殘留的襯 層18b。之後,請參照圖1F,移除間隙壁20a以及殘留的襯層18a,在隔離結構(留下的絕緣層)26a之間以及主動區24上形成開口28。Referring to FIGS. 1D through 1F, the patterned mask layer 12, the liner 18a, and the spacers 20a are removed. More specifically, in an exemplary embodiment, referring to FIG. 1D, the second layer 16 of the patterned mask layer 12 is removed first. Next, referring to FIG. 1E, a portion of the liner 18a and the first layer 14 of the patterned mask layer 12 are removed, leaving a residual liner. Layer 18b. Thereafter, referring to FIG. 1F, the spacers 20a and the remaining liner 18a are removed, and openings 28 are formed between the isolation structures (the remaining insulating layers) 26a and the active regions 24.

請參照圖1C與1D,在移除圖案化的罩幕層12的第二層16時,由於襯層18a與圖案化的罩幕層12的第一層14的材料不同於圖案化的罩幕層12的第二層16的材料,因此,襯層18a與圖案化的罩幕層12的第一層14可以保護絕緣層26,避免絕緣層26遭受蝕刻的破壞。同樣地,請參照圖1D與1E,在移除襯層18a與圖案化的罩幕層12的第一層14時,由於間隙壁20a的材料不同於襯層18a與圖案化的罩幕層12的第一層14,因此,間隙壁20a可以保護絕緣層26,避免絕緣層26遭受蝕刻的破壞,而絕緣層26的上表面則會因為未有任何保護而部分被移除,留下的絕緣層26做為隔離結構26a。再者,請參照圖1E與1F,在移除間隙壁20a的過程中,由於間隙壁20a的材料與絕緣層26不同,可以選擇對於間隙壁20a/絕緣層26具有高蝕刻選擇比的蝕刻劑進行蝕刻製程,減少隔離結構26a的側壁受到蝕刻的破壞。因此,在移除間隙壁20a之後,基底10的上表面實質上平坦,而隔離結構26a的側壁實質上不會有凹陷。此外,在移除間隙壁20a的過程中,殘留的襯層18a也可以保護溝渠22的頂角處的基底10以及隔離結構26a,避免凹陷形成。殘留的襯層18a可以在間隙壁20a移除之後再移除之,或是在移除間隙壁20a的過程中被移除。Referring to FIGS. 1C and 1D, when the second layer 16 of the patterned mask layer 12 is removed, the material of the first layer 14 of the liner layer 18a and the patterned mask layer 12 is different from the patterned mask. The material of the second layer 16 of layer 12, therefore, the first layer 14 of liner 18a and patterned mask layer 12 can protect insulating layer 26 from damage by etching. Similarly, referring to FIGS. 1D and 1E, when the first layer 14 of the lining layer 18a and the patterned mask layer 12 is removed, the material of the spacer 20a is different from the lining layer 18a and the patterned mask layer 12 The first layer 14, therefore, the spacers 20a can protect the insulating layer 26 from the etch damage of the insulating layer 26, while the upper surface of the insulating layer 26 is partially removed without any protection, leaving the insulation Layer 26 acts as isolation structure 26a. 1E and 1F, in the process of removing the spacer 20a, since the material of the spacer 20a is different from that of the insulating layer 26, an etchant having a high etching selectivity ratio to the spacer 20a/insulation 26 can be selected. An etching process is performed to reduce the damage of the sidewall of the isolation structure 26a. Therefore, after the spacers 20a are removed, the upper surface of the substrate 10 is substantially flat, and the sidewalls of the isolation structure 26a are substantially free of depressions. Further, in the process of removing the spacers 20a, the residual lining 18a can also protect the substrate 10 at the apex angle of the trench 22 and the isolation structure 26a from dent formation. The residual liner 18a may be removed after the spacer 20a is removed, or removed during removal of the spacer 20a.

請參照圖1G,在隔離結構(留下的絕緣層)26a之間以及主動區24上的開口28之中形成穿隧介電層30。穿隧介電層30的材 料例如是氧化矽。穿隧介電層30的形成方法可以採用熱氧化法或是化學氣相沉積法。穿隧介電層30的厚度例如是1nm至10nm。由於在移除間隙壁20a之後,基底10的上表面仍為實質上平坦,因此,所形成的穿隧介電層30的下表面亦是實質上平坦,且其上表面實質上與基底10的上表面平行。Referring to FIG. 1G, a tunneling dielectric layer 30 is formed between the isolation structures (the remaining insulating layers) 26a and the openings 28 on the active regions 24. Tunneling the dielectric layer 30 The material is, for example, cerium oxide. The method of forming the tunnel dielectric layer 30 may be a thermal oxidation method or a chemical vapor deposition method. The thickness of the tunnel dielectric layer 30 is, for example, 1 nm to 10 nm. Since the upper surface of the substrate 10 is still substantially flat after the spacers 20a are removed, the lower surface of the tunneling dielectric layer 30 is also substantially flat, and the upper surface thereof is substantially opposite to the substrate 10. The upper surface is parallel.

接著,在穿隧介電層30上形成電荷儲存結構32。電荷儲存結構32的材料可以是介電荷捕捉層或導體層。介電荷捕捉層可以是單層結構或是多層結構。介電荷捕捉層的材料包括氮化矽。在一實施例中,介電荷捕捉層的材料由下而上包括氧化矽、氮化矽以及氧化矽之堆疊結構,形成的方法例如是化學氣相沉積法或是熱氧化法或是熱氮化法,厚度例如分別是1nm至5nm、1nm至5nm以及1nm至5nm。導體層的材料例如是摻雜多晶矽,形成的方法例如是化學氣相沉積法,厚度例如是1nm至100nm。由於隔離結構26a的側壁實質上不會有凹陷,因此,形成在隔離結構26a之間的開口28之中的電荷儲存結構32例如是具有垂直的側壁,其中間寬度W2與其頂部寬度W1實質上相同,或其差異小於1nm;而且電荷儲存結構32的中間寬度W2與其底部寬度W3實質上相同,或其差異小於10nm。此外,電荷儲存結構32的底部寬度W3實質上等於對應的主動區24的寬度W4。由於電荷儲存結構32具有垂直的側壁,因此可以避免導體弦(Conductor stringer)的問題,也可以避免在電荷儲存下方形成孔隙。Next, a charge storage structure 32 is formed on the tunnel dielectric layer 30. The material of the charge storage structure 32 may be a dielectric charge trapping layer or a conductor layer. The dielectric charge trapping layer may be a single layer structure or a multilayer structure. The material of the dielectric charge trap layer includes tantalum nitride. In one embodiment, the material of the dielectric charge trapping layer comprises a stack structure of yttrium oxide, lanthanum nitride, and lanthanum oxide from bottom to top, and the forming method is, for example, chemical vapor deposition or thermal oxidation or thermal nitridation. The thickness is, for example, 1 nm to 5 nm, 1 nm to 5 nm, and 1 nm to 5 nm, respectively. The material of the conductor layer is, for example, doped polysilicon, and the formation method is, for example, chemical vapor deposition, and the thickness is, for example, 1 nm to 100 nm. Since the sidewalls of the isolation structure 26a are substantially free of recesses, the charge storage structure 32 formed in the opening 28 between the isolation structures 26a has, for example, a vertical sidewall having a width W2 substantially the same as the top width W1 thereof. Or a difference of less than 1 nm; and the intermediate width W2 of the charge storage structure 32 is substantially the same as its bottom width W3, or a difference of less than 10 nm. Moreover, the bottom width W3 of the charge storage structure 32 is substantially equal to the width W4 of the corresponding active region 24. Since the charge storage structure 32 has vertical sidewalls, the problem of the conductor stringer can be avoided, and the formation of voids under the charge storage can also be avoided.

之後,請參照圖1H,可以依據實際閘極耦合比(Gate coupling ratio,GCR)之需求,選擇性再移除隔離結構26a的上表面的一部分,形成開口29。留下的隔離結構26b的表面高度降低,可用來增加後續形成之控制閘36與電荷儲存結構32之間的耦合面積,以提升GCR。選擇性移除隔離結構26a的方法可以採用回蝕刻法。回蝕刻法可以是濕式蝕刻法,例如是以氫氟酸溶液做為蝕刻劑。由於隔離結構26b上的開口29與基底10中的溝渠22是不同時間形成,且其側壁具有不同的傾斜度,因此,在開口29中的電荷儲存結構32的側壁與基底10的上表面的第一夾角α不同於溝渠22中隔離結構26a之側壁與基底10的上表面的第二夾角β。第一夾角α與第二夾角β的差例如是0度至10度。After that, please refer to Figure 1H, which can be based on the actual gate coupling ratio (Gate The need for a coupling ratio, GCR, selectively removes a portion of the upper surface of the isolation structure 26a to form an opening 29. The surface height of the remaining isolation structure 26b is reduced to increase the coupling area between the subsequently formed control gate 36 and the charge storage structure 32 to enhance the GCR. The method of selectively removing the isolation structure 26a may employ an etch back method. The etch back method may be a wet etching method, for example, using a hydrofluoric acid solution as an etchant. Since the opening 29 on the isolation structure 26b is formed at different times from the trench 22 in the substrate 10, and the sidewalls thereof have different inclinations, the sidewall of the charge storage structure 32 in the opening 29 and the upper surface of the substrate 10 An angle a is different from the second angle β of the side wall of the isolation structure 26a in the trench 22 and the upper surface of the substrate 10. The difference between the first angle α and the second angle β is, for example, 0 to 10 degrees.

其後,參照圖1I,在基底10上以及開口29形成介電層34與控制閘36。介電層34的材料例如是氧化矽,形成的方法例如是化學氣相沉積法或是熱氧化法,厚度例如是1nm至20nm。控制閘36為導體層,其可以是單層材料或是雙層材料。在一示範實施例中,控制閘36為單層材料,例如是摻雜多晶矽,形成的方法例如是化學氣相沉積法,厚度例如是10nm至200nm。由於電荷儲結構32具有平滑的側壁(例如是垂直的側壁),因此,介電層34可以共行地覆蓋在電荷儲結構32的表面上,而且控制閘36可以與介電層34接觸且將開口29填滿,不會有無法接觸介電層34或無法填滿開口29形成孔隙的情形。Thereafter, referring to FIG. 1I, a dielectric layer 34 and a control gate 36 are formed on the substrate 10 and the opening 29. The material of the dielectric layer 34 is, for example, ruthenium oxide, and the formation method is, for example, a chemical vapor deposition method or a thermal oxidation method, and the thickness is, for example, 1 nm to 20 nm. The control gate 36 is a conductor layer which may be a single layer material or a two layer material. In an exemplary embodiment, the control gate 36 is a single layer of material, such as doped polysilicon, formed by, for example, chemical vapor deposition, having a thickness of, for example, 10 nm to 200 nm. Since the charge reservoir structure 32 has smooth sidewalls (eg, vertical sidewalls), the dielectric layer 34 can be co-planned over the surface of the charge reservoir structure 32, and the control gate 36 can be in contact with the dielectric layer 34 and The opening 29 is filled and there is no possibility that the dielectric layer 34 cannot be contacted or the opening 29 cannot be filled to form a void.

綜上所述,依據本發明實施例之非揮發性記憶胞的製造方法,在穿隧介電層形成之前移除絕緣層的步驟具有很大的製程 裕度(process window)。此外,藉由隔離結構的回蝕刻,可以增加控制閘與電荷儲存結構之間的耦合面積,提升閘極耦合比。再者,依據本發明實施例之非揮發性記憶胞的電荷儲存結構的底部寬度實質上等於主動區的寬度,電荷儲存結構的側壁與基底的上表面的第一夾角不同於隔離結構之側壁與基底的上表面的第二夾角。電荷儲存結構可以具有垂直的側壁,以避免導體弦(conductor stringer)的問題,也可以避免在電荷儲存下方形成孔隙。非揮發性記憶胞的穿隧介電層的下表面平坦,且穿隧介電層的上表面實質上與基底的上表面平行,亦即穿隧介電層的厚度均勻,因此非揮發性記憶胞具有高的可靠度。In summary, according to the method for fabricating a non-volatile memory cell according to an embodiment of the present invention, the step of removing the insulating layer before the tunneling dielectric layer is formed has a large process. The process window. In addition, by the etch back of the isolation structure, the coupling area between the control gate and the charge storage structure can be increased, and the gate coupling ratio can be increased. Furthermore, the bottom width of the charge storage structure of the non-volatile memory cell according to the embodiment of the present invention is substantially equal to the width of the active region, and the first angle between the sidewall of the charge storage structure and the upper surface of the substrate is different from the sidewall of the isolation structure. a second angle of the upper surface of the substrate. The charge storage structure can have vertical sidewalls to avoid problems with conductor stringers and to avoid formation of voids under charge storage. The lower surface of the tunneling dielectric layer of the non-volatile memory cell is flat, and the upper surface of the tunneling dielectric layer is substantially parallel to the upper surface of the substrate, that is, the thickness of the tunneling dielectric layer is uniform, so the non-volatile memory The cell has high reliability.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

10‧‧‧基底10‧‧‧Base

12‧‧‧圖案化的罩幕層12‧‧‧ patterned mask layer

14‧‧‧第一層14‧‧‧ first floor

16‧‧‧第二層16‧‧‧ second floor

18a‧‧‧襯層18a‧‧‧ lining

20a‧‧‧間隙壁20a‧‧‧ spacer

22‧‧‧溝渠22‧‧‧ Ditch

24‧‧‧主動區24‧‧‧active area

26‧‧‧絕緣層26‧‧‧Insulation

26a‧‧‧隔離結構26a‧‧‧Isolation structure

Claims (8)

一種非揮發性記憶胞,包括:基底,該基底中具有隔離結構,定義出主動區;電荷儲存結構,位於該主動區上,其中該電荷儲存結構的底部寬度實質上等於該主動區的寬度,該電荷儲存結構的側壁與該基底的該上表面的第一夾角不同於該隔離結構之側壁與該基底的該上表面的第二夾角,且該電荷儲存結構的材料為介電荷捕捉層;以及穿隧介電層,位於該電荷儲存結構與該基底之間,其中該穿隧介電層的下表面平坦,且該穿隧介電層的上表面實質上與該基底的該上表面平行,該穿隧介電層的寬度實質上等於該電荷儲存結構的中間寬度。 A non-volatile memory cell includes: a substrate having an isolation structure defining an active region; and a charge storage structure disposed on the active region, wherein a bottom width of the charge storage structure is substantially equal to a width of the active region, The first angle of the sidewall of the charge storage structure and the upper surface of the substrate is different from the second angle of the sidewall of the isolation structure and the upper surface of the substrate, and the material of the charge storage structure is a dielectric charge trapping layer; a tunneling dielectric layer is disposed between the charge storage structure and the substrate, wherein a lower surface of the tunneling dielectric layer is flat, and an upper surface of the tunneling dielectric layer is substantially parallel to the upper surface of the substrate The width of the tunneling dielectric layer is substantially equal to the intermediate width of the charge storage structure. 如申請專利範圍第1項所述的所述的非揮發性記憶胞,其中該第一夾角小於該第二夾角。 The non-volatile memory cell of claim 1, wherein the first angle is less than the second angle. 如申請專利範圍第1項所述的非揮發性記憶胞,其中該電荷儲存結構的中間寬度與該底部寬度實質上相同,或其差異小於10nm。 The non-volatile memory cell of claim 1, wherein the intermediate width of the charge storage structure is substantially the same as the bottom width, or a difference of less than 10 nm. 如申請專利範圍第1項所述的非揮發性記憶胞,其中該電荷儲存結構的中間寬度與該頂部寬度或實質上相同,或其差異小於10nm。 The non-volatile memory cell of claim 1, wherein the intermediate width of the charge storage structure is substantially the same as the top width, or a difference of less than 10 nm. 一種非揮發性記憶胞的製造方法,包括:在基底上形成多數個圖案化的罩幕層; 在該些圖案化的罩幕層的側壁形成多數個間隙壁;在該些間隙壁與該些圖案化的罩幕層之間形成多數個襯層;以該些圖案化的罩幕層與該些間隙壁為罩幕,移除部分該基底,以形成多數個溝渠,其中任意相鄰兩個溝渠之間定義出主動區;形成多數個隔離結構,該些隔離結構位於該些溝渠中並且向上延伸至該些間隙壁之間;移除該圖案化的罩幕層與該些間隙壁,以在該些隔離結構之間以及該些主動區上形成多數個開口;以及在每一開口中形成穿隧介電層與電荷儲存結構,其中,在每一開口中形成該穿隧介電層與該電荷儲存結構之前,移除該些襯層,該些穿隧介電層的下表面平坦且實質上與該基底的上表面平行,該些電荷儲存結構的底部寬度實質上等於對應的該些主動區的寬度,該些電荷儲存結構的側壁與該基底的該上表面的第一夾角不同於該隔離結構之側壁與該基底的該上表面的第二夾角。 A method for manufacturing a non-volatile memory cell, comprising: forming a plurality of patterned mask layers on a substrate; Forming a plurality of spacers on sidewalls of the patterned mask layers; forming a plurality of liners between the spacers and the patterned mask layers; and the patterned mask layers and the The spacers are masks, and a portion of the substrate is removed to form a plurality of trenches, wherein an active region is defined between any two adjacent trenches; a plurality of isolation structures are formed, and the isolation structures are located in the trenches and upward Extending between the spacers; removing the patterned mask layer and the spacers to form a plurality of openings between the isolation structures and the active regions; and forming in each opening Tunneling the dielectric layer and the charge storage structure, wherein the liner layer is removed before the tunneling dielectric layer and the charge storage structure are formed in each of the openings, and the lower surfaces of the tunnel dielectric layers are flat and Parallel to the upper surface of the substrate, the bottom width of the charge storage structures is substantially equal to the width of the corresponding active regions, and the first angle of the sidewalls of the charge storage structures is different from the upper surface of the substrate The isolation knot The side walls of the second angle with the substrate surface. 如申請專利範圍第5項所述的非揮發性記憶胞的製造方法,其中該襯層與該些間隙壁的材料不同,且與該些圖案化罩幕層的材料不同。 The method for manufacturing a non-volatile memory cell according to claim 5, wherein the lining is different from the materials of the spacers and different from the materials of the patterned mask layers. 如申請專利範圍第5項所述的非揮發性記憶胞的製造方法,其中形成該些隔離結構的步驟包括:於該基底上形成一絕緣層,並填入於該溝渠中;以及進行平坦化製程,移除該罩幕層上的該絕緣層。 The method for manufacturing a non-volatile memory cell according to claim 5, wherein the forming the isolation structure comprises: forming an insulating layer on the substrate, filling in the trench; and planarizing The process removes the insulating layer on the mask layer. 如申請專利範圍第7項所述的非揮發性記憶胞的製造方法,更包括回蝕刻該溝渠上的該絕緣層。 The method for fabricating a non-volatile memory cell according to claim 7, further comprising etching back the insulating layer on the trench.
TW102114274A 2013-04-22 2013-04-22 Non-volatile memory cell and method of the same TWI508232B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102114274A TWI508232B (en) 2013-04-22 2013-04-22 Non-volatile memory cell and method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102114274A TWI508232B (en) 2013-04-22 2013-04-22 Non-volatile memory cell and method of the same

Publications (2)

Publication Number Publication Date
TW201442154A TW201442154A (en) 2014-11-01
TWI508232B true TWI508232B (en) 2015-11-11

Family

ID=52422998

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102114274A TWI508232B (en) 2013-04-22 2013-04-22 Non-volatile memory cell and method of the same

Country Status (1)

Country Link
TW (1) TWI508232B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI548064B (en) * 2015-02-16 2016-09-01 力晶科技股份有限公司 Non-volatile memory and method of manufacturing thereof
TWI685085B (en) 2019-02-26 2020-02-11 華邦電子股份有限公司 Memory device and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200725817A (en) * 2005-12-26 2007-07-01 Powerchip Semiconductor Corp Method of manufacturing non-volatile memory and floating gate layer
TW200741887A (en) * 2006-04-28 2007-11-01 Macronix Int Co Ltd Method for manufacturing NAND flash memory
TW201128768A (en) * 2010-02-12 2011-08-16 Macronix Int Co Ltd Bit line structure, semiconductor device and method of forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200725817A (en) * 2005-12-26 2007-07-01 Powerchip Semiconductor Corp Method of manufacturing non-volatile memory and floating gate layer
TW200741887A (en) * 2006-04-28 2007-11-01 Macronix Int Co Ltd Method for manufacturing NAND flash memory
TW201128768A (en) * 2010-02-12 2011-08-16 Macronix Int Co Ltd Bit line structure, semiconductor device and method of forming the same

Also Published As

Publication number Publication date
TW201442154A (en) 2014-11-01

Similar Documents

Publication Publication Date Title
KR101221598B1 (en) Method for forming a dielectric layer pattern and method for manufacturing non-volatile memory device using for the same
KR101096186B1 (en) Method for manufacturing semiconductor device prevented pattern leaning
CN106356374B (en) Flash memory and manufacturing method thereof
JP2002016154A (en) Semiconductor device and manufacturing method thereof
US20080132016A1 (en) Method of manufacturing a flash memory device
CN108091562B (en) ONO etching method of SONOS memory
US7977191B2 (en) Method for fabricating flash memory device
JP4500668B2 (en) Method for manufacturing flash memory device
TWI555179B (en) Method of manufacturing isolation structure and non-volatile memory with the isolation structure
TWI508232B (en) Non-volatile memory cell and method of the same
US7713820B2 (en) Method for manufacturing non-volatile memory
JP2007013171A (en) Method of manufacturing nand flash memory device
JP2008010817A (en) Manufacturing method of nand flash memory device
TWI571975B (en) Semiconductor device and method of forming the same
KR100597646B1 (en) Method of manufacturing floating gate in Flash memory
TWI581407B (en) Method for fabricating memory
TWI532150B (en) Non-volatile memory and fabricating method thereof
TWI786813B (en) Method of manufacturing floating gate
US20090065846A1 (en) Non-volatile memory and manufacturing method thereof
TWI493660B (en) Non-volatile memory and manufacturing method thereof
TWI478293B (en) Method of fabricating non-volatile memory device
TWI559455B (en) Method for manufacturing non-volatile memory
KR100638987B1 (en) Method for forming STI in flash memory device
US9431406B1 (en) Semiconductor device and method of forming the same
TWI485812B (en) Memory device and method of forming the same