TWI478293B - Method of fabricating non-volatile memory device - Google Patents

Method of fabricating non-volatile memory device Download PDF

Info

Publication number
TWI478293B
TWI478293B TW100117043A TW100117043A TWI478293B TW I478293 B TWI478293 B TW I478293B TW 100117043 A TW100117043 A TW 100117043A TW 100117043 A TW100117043 A TW 100117043A TW I478293 B TWI478293 B TW I478293B
Authority
TW
Taiwan
Prior art keywords
layer
dielectric layer
forming
volatile memory
liner
Prior art date
Application number
TW100117043A
Other languages
Chinese (zh)
Other versions
TW201248789A (en
Inventor
Daniel Li Chung Huang
Ming Feng Chang
Hong Wei Chan
Chen Long Chang
Original Assignee
Promos Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Promos Technologies Inc filed Critical Promos Technologies Inc
Priority to TW100117043A priority Critical patent/TWI478293B/en
Publication of TW201248789A publication Critical patent/TW201248789A/en
Application granted granted Critical
Publication of TWI478293B publication Critical patent/TWI478293B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

非揮發性記憶元件的製造方法Method for manufacturing non-volatile memory element

本發明是有關於一種積體電路的製造方法,且特別是有關於一種非揮發性記憶元件的製造方法。The present invention relates to a method of fabricating an integrated circuit, and more particularly to a method of fabricating a non-volatile memory element.

非揮發性記憶體元件可多次進行資料之存入、讀取、抹除,且存入的資料在斷電後也不會消失,因此,已成為個人電腦和電子設備廣泛採用的一種記憶體元件。Non-volatile memory components can store, read, and erase data multiple times, and the stored data will not disappear after power-off. Therefore, it has become a memory widely used in personal computers and electronic devices. element.

典型的非揮發性記憶體元件包括浮置閘(floating gate)與控制閘(control gate)。控制閘是直接設置在浮置閘上,浮置閘與控制閘之間以介電層相隔,而浮置閘與基底之間是以穿隧氧化層(tunneling oxide)相隔(亦即所謂堆疊閘極快閃記憶體)。Typical non-volatile memory components include floating gates and control gates. The control gate is directly disposed on the floating gate, and the floating gate and the control gate are separated by a dielectric layer, and the floating gate and the substrate are separated by a tunneling oxide layer (also referred to as a stacked gate) Extremely fast flash memory).

目前所發展的非揮發性記憶體元件的浮置閘則位於控制閘的兩側。控制閘是以嵌入溝渠的方式形成,控制閘下方的閘介電層是在溝渠形成之後,且在控制閘形成之前,利用沉積的方式形成,因此,隨著溝渠的高寬比逐漸的增加,沉積製程愈難以控制,所形成的閘介電層的不均勻度愈高,特別是其邊緣處的厚度遠小於中心的厚度,導致邊緣處成為漏電的路徑,造成元件可靠度的問題。The floating gates of the currently developed non-volatile memory components are located on both sides of the control gate. The control gate is formed by embedding the trench. The gate dielectric layer under the control gate is formed after the trench is formed and before the control gate is formed. Therefore, as the aspect ratio of the trench gradually increases, The more difficult the deposition process is, the higher the unevenness of the formed gate dielectric layer, especially the thickness at the edge is much smaller than the thickness of the center, resulting in a leakage path at the edge, which causes problems in component reliability.

本發明提供一種非揮發性記憶元件的製造方法,其可以增加控制閘下方之閘界電層的均勻度,減少漏電,提升元件的可靠度。The invention provides a method for manufacturing a non-volatile memory element, which can increase the uniformity of the gate boundary electrical layer under the control gate, reduce leakage and improve the reliability of the component.

本發明提供一種非揮發性記憶元件的製造方法,包括在基底上形成具有溝渠的堆疊結構。此堆疊結構包括第一介電層、第一導體層與第一頂蓋層依序堆疊於基底上,且包括第二介電層位於溝渠側壁上。接著,以至少兩種不同的成膜方法,於溝渠底部的基底上形成閘介電層。之後,於溝渠中嵌入第二導體層與第二頂蓋層。然後,移除第一頂蓋層,之後,再移除部分第一導電層。The present invention provides a method of fabricating a non-volatile memory element comprising forming a stacked structure having trenches on a substrate. The stack structure includes a first dielectric layer, a first conductor layer and a first cap layer sequentially stacked on the substrate, and a second dielectric layer on the trench sidewall. Next, a gate dielectric layer is formed on the substrate at the bottom of the trench in at least two different film formation methods. Thereafter, a second conductor layer and a second cap layer are embedded in the trench. Then, the first cap layer is removed, and then a portion of the first conductive layer is removed.

依照本發明一實施例所述,上述至少兩種不同的成膜方法使得閘介電層的中心與邊緣的不均勻度小於25%。此處不均勻度的定義為:According to an embodiment of the invention, the at least two different film forming methods result in a center-to-edge unevenness of the gate dielectric layer of less than 25%. Here the definition of unevenness is:

不均勻度%=(最大膜厚-最小膜厚)/(平均膜厚) x 100%Unevenness % = (maximum film thickness - minimum film thickness) / (average film thickness) x 100%

依照本發明一實施例所述,上述形成閘介電層的步驟包括:於溝渠底部的基底上形成襯層,再於襯層上形成第三介電層。According to an embodiment of the invention, the step of forming the gate dielectric layer comprises: forming a liner on the substrate at the bottom of the trench, and forming a third dielectric layer on the liner.

依照本發明一實施例所述,上述用於形成襯層的方法係使得襯層的不均勻度低於第三介電層的不均勻度。According to an embodiment of the invention, the method for forming a liner is such that the unevenness of the liner is lower than the unevenness of the third dielectric layer.

依照本發明一實施例所述,上述形成襯層的方法包括一製程方法,其可以使得襯層的不均勻度在10%以下。In accordance with an embodiment of the invention, the method of forming a liner includes a process method that results in a non-uniformity of the liner of less than 10%.

依照本發明一實施例所述,上述用來形成襯層之製程方法包括熱氧化製程或原子層沉積製程。According to an embodiment of the invention, the method for forming a liner includes a thermal oxidation process or an atomic layer deposition process.

依照本發明一實施例所述,上述熱氧化製程包括快速熱氧化製程或臨場水汽生成(ISSG)製程。According to an embodiment of the invention, the thermal oxidation process comprises a rapid thermal oxidation process or an on-site water vapor generation (ISSG) process.

依照本發明一實施例所述,用於形成襯層的方法的成膜速率低於用於形成第三介電層的成膜速率。According to an embodiment of the invention, the film forming rate of the method for forming the underlayer is lower than the film forming rate for forming the third dielectric layer.

依照本發明一實施例所述,用於形成襯層的方法係使得襯層的緻密度高於第三介電層的緻密度。In accordance with an embodiment of the invention, the method for forming the liner is such that the density of the liner is higher than the density of the third dielectric layer.

依照本發明一實施例所述,上述襯層之厚度小於第三介電層的厚度。According to an embodiment of the invention, the thickness of the underlayer is less than the thickness of the third dielectric layer.

本發明之非揮發性記憶元件的製造方法,其可以增加控制閘下方之閘界電層的均勻度,減少漏電,提升元件的可靠度。The method for manufacturing a non-volatile memory element of the present invention can increase the uniformity of the gate boundary electrical layer under the control gate, reduce leakage, and improve the reliability of the component.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1至7是依據本發明一實施例所繪示之一種非揮發性記憶元件的製造方法的剖面示意圖。1 to 7 are schematic cross-sectional views showing a method of fabricating a non-volatile memory device according to an embodiment of the invention.

請參照圖1,在基底10上形成介電層12、第一導體層14與第一頂蓋層16。基底10之材質例如是半導體,例如是矽,或者是絕緣層上有矽(SOI)。基底10的材料也可以是其他的化合物半導體。介電層12是用來製作穿隧介電層,其材質例如是氧化矽,或其他適合用來製作穿隧介電層的介電材料。介電層12之形成方法例如是熱氧化法,或是化學氣相沉積法,或其他合適的方法。介電層12的厚度例如是約為50至100埃。第一導體層14係用來製作浮置閘,其材質例如是摻雜的多晶矽。第一導體層14之形成方法例如是利用化學氣相沈積法形成未摻雜多晶矽層後,進行離子植入步驟以形成之。第一導體層14之形成方法也可以是利用化學氣相沈積法形成摻雜多晶矽層並在臨場進行摻雜。第一導體層14的厚度例如是約為800至2000埃。第一頂蓋層16的材質例如是氮化矽或是氮氧化矽,其形成的方法例如是化學氣相沈積法。第一頂蓋層16的厚度例如是約為1000至3000埃。Referring to FIG. 1, a dielectric layer 12, a first conductor layer 14, and a first cap layer 16 are formed on the substrate 10. The material of the substrate 10 is, for example, a semiconductor such as germanium or a germanium (SOI) on the insulating layer. The material of the substrate 10 may also be other compound semiconductors. The dielectric layer 12 is used to fabricate a tunneling dielectric layer, such as tantalum oxide, or other dielectric material suitable for use in fabricating a tunneling dielectric layer. The method of forming the dielectric layer 12 is, for example, a thermal oxidation method, or a chemical vapor deposition method, or other suitable method. The thickness of the dielectric layer 12 is, for example, about 50 to 100 angstroms. The first conductor layer 14 is used to fabricate a floating gate, the material of which is, for example, a doped polysilicon. The method of forming the first conductor layer 14 is, for example, forming an undoped polysilicon layer by chemical vapor deposition, and then performing an ion implantation step to form it. The first conductor layer 14 may be formed by a chemical vapor deposition method to form a doped polysilicon layer and doping in the field. The thickness of the first conductor layer 14 is, for example, about 800 to 2000 angstroms. The material of the first cap layer 16 is, for example, tantalum nitride or hafnium oxynitride, and the method of forming it is, for example, chemical vapor deposition. The thickness of the first cap layer 16 is, for example, about 1000 to 3000 angstroms.

請參照圖2,圖案化第一頂蓋層16與第一導體層14,以形成溝渠18。圖案化的方法可以利用微影與蝕刻製程。之後,於基底10上形成介電層20,覆蓋溝渠18的底部、側壁以及第一頂蓋層16。介電層20可以是由單層材料層或是多層材料層所構成之堆疊層。在一實施例中,介電層20的材質可以是氧化矽或氧化矽/氮化矽(ON)堆疊層,其形成步驟例如是先以熱氧化法形成一層氧化矽層後,利用化學氣相沈積法於氧化矽層上形成氮化矽層。氧化矽/氮化矽堆疊層的厚度例如分別是約為20至80埃/20至120埃。介電層20之材質也可以是任何其他已知的介電材料。Referring to FIG. 2, the first cap layer 16 and the first conductor layer 14 are patterned to form a trench 18. The patterning method can utilize lithography and etching processes. Thereafter, a dielectric layer 20 is formed on the substrate 10 to cover the bottom of the trench 18, the sidewalls, and the first cap layer 16. The dielectric layer 20 may be a stacked layer composed of a single layer of material or a plurality of layers of material. In an embodiment, the material of the dielectric layer 20 may be a tantalum oxide or tantalum oxide/yttria (ON) stacked layer, and the forming step is, for example, first forming a layer of tantalum oxide by thermal oxidation, and then utilizing the chemical vapor phase. The deposition method forms a tantalum nitride layer on the ruthenium oxide layer. The thickness of the yttria/tantalum nitride stacked layer is, for example, about 20 to 80 angstroms / 20 to 120 angstroms, respectively. The material of the dielectric layer 20 can also be any other known dielectric material.

然後,請參照圖3,移除溝渠18底部的介電層20及其下方的介電層12,裸露出溝渠18底部的基底10表面,留下溝渠18側壁的介電層20。移除溝渠18底部的介電層20的方法包括非等向性蝕刻法,例如是乾式蝕刻法。採用非等向性蝕刻法來移除溝渠18底部的介電層20的過程中,第一頂蓋層16上的介電層20也會被移除。至此,基底10上形成了具有溝渠18的堆疊結構40,此堆疊結構40包括第一介電層12、第一導體層14與第一頂蓋層16依序堆疊於基底10上,且包括第二介電層20位於溝渠18的側壁。Then, referring to FIG. 3, the dielectric layer 20 at the bottom of the trench 18 and the dielectric layer 12 under it are removed, and the surface of the substrate 10 at the bottom of the trench 18 is exposed, leaving the dielectric layer 20 on the sidewall of the trench 18. The method of removing the dielectric layer 20 at the bottom of the trench 18 includes an anisotropic etch, such as a dry etch. During the anisotropic etch to remove the dielectric layer 20 at the bottom of the trench 18, the dielectric layer 20 on the first cap layer 16 is also removed. So far, a stacked structure 40 having a trench 18 is formed on the substrate 10. The stacked structure 40 includes a first dielectric layer 12, a first conductive layer 14 and a first cap layer 16 are sequentially stacked on the substrate 10, and includes The second dielectric layer 20 is located on the sidewall of the trench 18.

接著,請參照圖4,以至少兩種不同的成膜方法,於溝渠底部18的基底10上以及溝渠18之側壁形成介電層(22、24)。首先,先於溝渠18底部形成襯層22。其後,再於基底10上形成介電層24,以覆蓋第一頂蓋層16、介電層20以及襯層22。襯層22與介電層24的材質可以相同或相異。在一實施例中,襯層22與介電層24都是氧化矽。襯層22之形成方法與介電層24的形成方法不同。更詳細地說,襯層22其中心與邊緣的不均勻度低於介電層24其中心與邊緣的不均勻度。不均勻度的定義如下:Next, referring to FIG. 4, a dielectric layer (22, 24) is formed on the substrate 10 of the trench bottom 18 and the sidewalls of the trench 18 in at least two different film forming methods. First, a liner 22 is formed prior to the bottom of the trench 18. Thereafter, a dielectric layer 24 is formed over the substrate 10 to cover the first cap layer 16, the dielectric layer 20, and the liner 22. The material of the lining layer 22 and the dielectric layer 24 may be the same or different. In an embodiment, the liner 22 and the dielectric layer 24 are both hafnium oxide. The method of forming the liner 22 is different from the method of forming the dielectric layer 24. In more detail, the unevenness of the center and edge of the liner 22 is lower than the unevenness of the center and edge of the dielectric layer 24. The definition of unevenness is as follows:

不均勻度%=(最大膜厚-最小膜厚)/(平均膜厚) x 100%Unevenness % = (maximum film thickness - minimum film thickness) / (average film thickness) x 100%

在一實施例中,襯層22所使用的製程方法(成長或是沉積),係可以使其不均勻度控制在10%以下者。通常膜的均勻度與成膜的速率有關,成膜的速率愈高則膜的均勻度愈低。在一實施例中,襯層22所採用的形成方法的成膜速率低於介電層的成膜速率。從另一個角度來說,襯層22的緻密度高於介電層24的緻密度。襯層22所使用的製程方法包括熱氧化製程或原子層沉積製程或其他合適用來成長襯層的方法。熱氧化製程包括快速熱氧化製程(RTO)或臨場水汽生成(in-situ steam generation,ISSG)製程。介電層24的形成方法例如是化學氣相沉積法。在一實施例中,襯層22之厚度小於介電層24的厚度。襯層22之厚度例如是1至200埃;介電層24的厚度例如是100至400埃。襯層22與介電層24的厚度總和例如是100至600埃。在溝渠18側壁的介電層24與介電層20是做為浮置閘與控制閘之間的閘間介電層。在溝渠18底部的介電層24與襯層22則是做為後續形成之控制閘與基底10之間的閘介電層,其中心與邊緣的不均勻度小於25%。In one embodiment, the process method (growth or deposition) used by the liner 22 can be such that the unevenness is controlled to less than 10%. Generally, the uniformity of the film is related to the rate of film formation, and the higher the rate of film formation, the lower the uniformity of the film. In one embodiment, the film formation rate employed by the liner 22 is lower than the film formation rate of the dielectric layer. From another perspective, the density of the liner 22 is higher than the density of the dielectric layer 24. The process methods used for the liner 22 include a thermal oxidation process or an atomic layer deposition process or other suitable method for growing the liner. The thermal oxidation process includes a rapid thermal oxidation process (RTO) or an in-situ steam generation (ISSG) process. The method of forming the dielectric layer 24 is, for example, a chemical vapor deposition method. In one embodiment, the thickness of the liner 22 is less than the thickness of the dielectric layer 24. The thickness of the liner 22 is, for example, 1 to 200 angstroms; and the thickness of the dielectric layer 24 is, for example, 100 to 400 angstroms. The sum of the thicknesses of the liner 22 and the dielectric layer 24 is, for example, 100 to 600 angstroms. The dielectric layer 24 and the dielectric layer 20 on the sidewalls of the trench 18 serve as a gate dielectric layer between the floating gate and the control gate. The dielectric layer 24 and the lining layer 22 at the bottom of the trench 18 are used as a gate dielectric layer between the subsequently formed control gate and the substrate 10, and the center-to-edge unevenness is less than 25%.

繼之,於基底上形成第二導體層26,第二導體層26覆蓋介電層24並填入於溝渠18之中。第二導體層26之材質例如是摻雜的多晶矽。第二導體層26之形成方法例如是利用化學氣相沈積法形成未摻雜多晶矽層後,進行離子植入步驟以形成之。第二導體層26之形成方法也可以是利用化學氣相沈積法形成摻雜多晶矽層並在臨場進行摻雜。第二導體層26的厚度例如是約為2000至5000埃。Next, a second conductor layer 26 is formed on the substrate, and the second conductor layer 26 covers the dielectric layer 24 and is filled in the trench 18. The material of the second conductor layer 26 is, for example, a doped polysilicon. The second conductor layer 26 is formed by, for example, forming an undoped polysilicon layer by chemical vapor deposition, and performing an ion implantation step to form it. The second conductor layer 26 may be formed by a chemical vapor deposition method to form a doped polysilicon layer and doping in the field. The thickness of the second conductor layer 26 is, for example, about 2,000 to 5,000 angstroms.

之後,請參照圖5,移除圖4中第一頂蓋層16上方的第二導體層26與介電層24,並移除溝渠18之中一部分的第二導體層26,使嵌於溝渠18中且留下來的第二導體層26的高度低於第一頂蓋層16的高度,其高低差例如是約為100至1000埃。在一實施例中,移除部分第二導體層26的方法例如是可以先採用化學機械研磨法,以第一頂蓋層16為研磨終止層,將第一頂蓋層16上的第二導體層26以及介電層24移除。之後,再利用回蝕刻製程將溝渠18中一部分的第二導體層26移除。在另一實施例中,移除部分的第二導體層26的方法例如是可以直接利用回蝕刻製程將第一頂蓋層16上的第二導體層26移除,並繼續移除溝渠18中的部分第二導體層26。之後,移除第一頂蓋層16上的介電層24。留下來之嵌於溝渠18中的第二導體層26係做為控制閘。Thereafter, referring to FIG. 5, the second conductor layer 26 and the dielectric layer 24 above the first cap layer 16 in FIG. 4 are removed, and a portion of the second conductor layer 26 of the trench 18 is removed to be embedded in the trench. The height of the second conductor layer 26 remaining in the 18 is lower than the height of the first cap layer 16, and the height difference is, for example, about 100 to 1000 angstroms. In one embodiment, the method of removing a portion of the second conductor layer 26 may be, for example, first using a chemical mechanical polishing method with the first cap layer 16 as a polishing stop layer and the second conductor on the first cap layer 16. Layer 26 and dielectric layer 24 are removed. Thereafter, a portion of the second conductor layer 26 in the trench 18 is removed using an etch back process. In another embodiment, the method of removing a portion of the second conductor layer 26 may be, for example, removing the second conductor layer 26 on the first cap layer 16 using an etch back process and continuing to remove the trenches 18 A portion of the second conductor layer 26. Thereafter, the dielectric layer 24 on the first cap layer 16 is removed. The second conductor layer 26, which is embedded in the trench 18, serves as a control gate.

接著,於溝渠18中的第二導體層26上形成第二頂蓋層28。第二頂蓋層28的材質與第一頂蓋層16之材質不同,其材質例如是氧化矽,厚度例如是約為500至2000埃。第二頂蓋層28的形成的方法例如是利用化學氣相沈積法先沉積第二頂蓋材料層(未繪示),之後再以第一頂蓋層16為移除終止層,移除第一頂蓋層16上的第二頂蓋材料層。移除第一頂蓋層16上的第二頂蓋材料層的方法例如是化學機械研磨法。Next, a second cap layer 28 is formed on the second conductor layer 26 in the trench 18. The material of the second cap layer 28 is different from the material of the first cap layer 16, and the material thereof is, for example, cerium oxide, and the thickness is, for example, about 500 to 2000 angstroms. The method for forming the second cap layer 28 is, for example, first depositing a second capping material layer (not shown) by chemical vapor deposition, and then removing the terminating layer by using the first capping layer 16 as a removal terminating layer. A second layer of top cover material on a cap layer 16. A method of removing the second cap material layer on the first cap layer 16 is, for example, a chemical mechanical lapping method.

其後,請參照圖6,移除第一頂蓋層16,裸露出第一導體層14。移除第一頂蓋層16的方法可以採用蝕刻製程,例如是濕式蝕刻製程。之後,於基底10上形成間隙壁材料層30,覆蓋第一導體層14、介電層20、介電層24與第二頂蓋層28。間隙壁材料層30的材質與第二頂蓋層28的材質不同,其材質例如是氮化矽,形成的方法例如是化學氣相沈積法,厚度例如是約為100至600埃。Thereafter, referring to FIG. 6, the first cap layer 16 is removed to expose the first conductor layer 14. The method of removing the first cap layer 16 may employ an etching process such as a wet etching process. Thereafter, a spacer material layer 30 is formed on the substrate 10 to cover the first conductor layer 14, the dielectric layer 20, the dielectric layer 24, and the second cap layer 28. The material of the spacer material layer 30 is different from the material of the second cap layer 28, and the material thereof is, for example, tantalum nitride. The method of forming is, for example, chemical vapor deposition, and the thickness is, for example, about 100 to 600 angstroms.

然後。請參照圖7,非等向性蝕刻間隙壁材料層30,以在介電層20的側壁上形成間隙壁30a,間隙壁30a覆蓋部分第一導電層14。非等向性蝕刻的方法例如是乾式蝕刻法。其後,以間隙壁30a以及第二頂蓋層28為罩幕,移除部分第一導體層14,裸露出介電層12。移除部分第一導體層14的方法可以採用非等向性蝕刻法,例如是乾式蝕刻法。留下的第一導電層14位於第二導體層26的兩側,做為控制閘。介電層24與介電層20組合後則是做為第一導電層14(浮置閘)與第二導體層26(控制閘)之間的閘間介電層。介電層24與襯層22組合後則是做為控制閘與基底10之間的閘介電層。then. Referring to FIG. 7, the spacer material layer 30 is anisotropically etched to form a spacer 30a on the sidewall of the dielectric layer 20, and the spacer 30a covers a portion of the first conductive layer 14. The method of anisotropic etching is, for example, a dry etching method. Thereafter, with the spacers 30a and the second cap layer 28 as masks, a portion of the first conductor layer 14 is removed, and the dielectric layer 12 is exposed. The method of removing a portion of the first conductor layer 14 may employ an anisotropic etching method such as a dry etching method. The remaining first conductive layer 14 is located on both sides of the second conductor layer 26 as a control gate. The dielectric layer 24 is combined with the dielectric layer 20 as an inter-gate dielectric layer between the first conductive layer 14 (floating gate) and the second conductor layer 26 (control gate). The dielectric layer 24 is combined with the liner 22 as a gate dielectric between the control gate and the substrate 10.

在本發明上述實施例中,是將控制閘與基底之間的閘介電層以兩個步驟來形成,先形成均勻度較高的襯層,之後,再利用成膜速率較高的沉積方式來形成介電層。然而,本發明並不以此為限,控制閘與基底之間的閘介電層可以以更多的步驟來形成,而不限於2個步驟,實際在應用時,可以依據需要調整之,只要是第一個成膜步驟的膜均勻度高於後續步驟者,而後續的成膜速率高於第一個成膜步驟都是本發明涵蓋之範圍。In the above embodiment of the present invention, the gate dielectric layer between the control gate and the substrate is formed in two steps, and a liner having a higher uniformity is formed first, and then a deposition method having a higher film formation rate is used. To form a dielectric layer. However, the present invention is not limited thereto, and the gate dielectric layer between the control gate and the substrate can be formed in more steps, and is not limited to two steps. Actually, in application, it can be adjusted as needed, as long as It is the film uniformity of the first film forming step that is higher than the subsequent steps, and the subsequent film forming rate is higher than the first film forming step.

綜上所述,本發明控制閘與基底之間的閘介電層可以拆成以兩個步驟或更多的來形成,先在溝渠的底部形成均勻度較高的襯層,減緩中心與邊緣處的高低差,進而可以減緩高寬比過高對於後續沈積製程所形成之介電層膜厚不均的問題,之後,再利用成膜速率較高的沉積方式來形成介電層,一方面可以提供閘介電層所需的總厚度,另一方面可以增加製程的產出(throughput),避免襯層的成膜速率較低,而影響產出。因此,本發明之方法可以使得控制閘與基底之間的閘介電層較為均勻,避免厚度差異造成漏電流及其衍生的可靠度的問題。In summary, the gate dielectric layer between the control gate and the substrate of the present invention can be formed into two or more steps, and a relatively uniform liner is formed at the bottom of the trench to slow the center and the edge. The difference in height can further alleviate the problem of uneven thickness of the dielectric layer formed by the subsequent deposition process if the aspect ratio is too high, and then use a deposition method with a higher deposition rate to form the dielectric layer. The total thickness required for the gate dielectric layer can be provided, and on the other hand, the throughput of the process can be increased to avoid a lower film formation rate of the liner and affect the output. Therefore, the method of the present invention can make the gate dielectric layer between the control gate and the substrate relatively uniform, and avoid the problem of leakage current and reliability of the derivative caused by the thickness difference.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10...基底10. . . Base

12、20、24...介電層12, 20, 24. . . Dielectric layer

14、26...導體層14, 26. . . Conductor layer

16、28...頂蓋層16, 28. . . Roof layer

18...溝渠18. . . ditch

22...襯層twenty two. . . lining

30...間隙壁材料層30. . . Gap material layer

30a...間隙壁30a. . . Clearance wall

40...堆疊結構40. . . Stack structure

圖1至7是依據本發明一實施例所繪示之一種非揮發性記憶元件的製造方法的剖面示意圖。1 to 7 are schematic cross-sectional views showing a method of fabricating a non-volatile memory device according to an embodiment of the invention.

10...基底10. . . Base

12、20、24...介電層12, 20, 24. . . Dielectric layer

14、26...導體層14, 26. . . Conductor layer

16...頂蓋層16. . . Roof layer

18...溝渠18. . . ditch

22...襯層twenty two. . . lining

40...堆疊結構40. . . Stack structure

Claims (10)

一種非揮發性記憶元件的製造方法,包括:在一基底上形成具有一溝渠的一堆疊結構,該堆疊結構包括一第一介電層、一第一導體層與一第一頂蓋層依序堆疊於該基底上,且包括一第二介電層位於該溝渠側壁上;以至少兩種不同的成膜方法,於該溝渠底部的該基底上形成一閘介電層;於該溝渠中嵌入一第二導體層與一第二頂蓋層;移除該第一頂蓋層;以及移除部分該第一導電層。A method of fabricating a non-volatile memory device, comprising: forming a stacked structure having a trench on a substrate, the stacked structure comprising a first dielectric layer, a first conductive layer and a first top cover layer sequentially Stacked on the substrate, and including a second dielectric layer on the sidewall of the trench; forming a gate dielectric layer on the substrate at the bottom of the trench in at least two different film forming methods; embedding in the trench a second conductor layer and a second cap layer; removing the first cap layer; and removing a portion of the first conductive layer. 如申請專利範圍第1項所述之非揮發性記憶元件的製造方法,其中上述至少兩種不同的成膜方法使得該閘介電層的中心與邊緣的不均均勻度小於25%。The method of fabricating the non-volatile memory device of claim 1, wherein the at least two different film forming methods result in a non-uniform uniformity of the center and the edge of the gate dielectric layer of less than 25%. 如申請專利範圍第1項所述之非揮發性記憶元件的製造方法,其中形成該閘介電層的步驟包括:於該溝渠底部的該基底上形成一襯層;以及於該襯層上形成一第三介電層。The method of manufacturing the non-volatile memory device of claim 1, wherein the step of forming the gate dielectric layer comprises: forming a liner on the substrate at the bottom of the trench; and forming on the liner A third dielectric layer. 如申請專利範圍第3項所述之非揮發性記憶元件的製造方法,其中用於形成該襯層的方法係使得該襯層的不均勻度低於該第三介電層的不均勻度。The method of manufacturing a non-volatile memory element according to claim 3, wherein the method for forming the underlayer is such that the unevenness of the underlayer is lower than the unevenness of the third dielectric layer. 如申請專利範圍第3項所述之非揮發性記憶元件的製造方法,其中形成該襯層的方法包括一製程方法,其可以使得該襯層的不均勻度在10%以下。The method of manufacturing a non-volatile memory element according to claim 3, wherein the method of forming the liner comprises a process method which can make the unevenness of the underlayer be 10% or less. 如申請專利範圍第5項所述之非揮發性記憶元件的製造方法,其中用於形成該襯層的該製程方法包括熱氧化製程或原子層沉積製程。The method of manufacturing a non-volatile memory element according to claim 5, wherein the process for forming the liner comprises a thermal oxidation process or an atomic layer deposition process. 如申請專利範圍第6項所述之非揮發性記憶元件的製造方法,其中該熱氧化製程包括快速熱氧化製程或臨場水汽生成製程。The method of manufacturing a non-volatile memory element according to claim 6, wherein the thermal oxidation process comprises a rapid thermal oxidation process or a on-site water vapor generation process. 如申請專利範圍第3項所述之非揮發性記憶元件的製造方法,其中用於形成該襯層的方法的成膜速率低於用於形成該第三介電層的成膜速率。The method of producing a non-volatile memory element according to claim 3, wherein a film forming rate of the method for forming the underlayer is lower than a film forming rate for forming the third dielectric layer. 如申請專利範圍第3項所述之非揮發性記憶元件的製造方法,其中用於形成該襯層的方法係使得該襯層的緻密度高於該第三介電層的緻密度。The method of manufacturing a non-volatile memory element according to claim 3, wherein the method for forming the liner is such that the density of the liner is higher than the density of the third dielectric layer. 如申請專利範圍第3項所述之非揮發性記憶元件的製造方法,其中該襯層之厚度小於該第三介電層的厚度。The method of manufacturing a non-volatile memory element according to claim 3, wherein the thickness of the underlayer is less than the thickness of the third dielectric layer.
TW100117043A 2011-05-16 2011-05-16 Method of fabricating non-volatile memory device TWI478293B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100117043A TWI478293B (en) 2011-05-16 2011-05-16 Method of fabricating non-volatile memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100117043A TWI478293B (en) 2011-05-16 2011-05-16 Method of fabricating non-volatile memory device

Publications (2)

Publication Number Publication Date
TW201248789A TW201248789A (en) 2012-12-01
TWI478293B true TWI478293B (en) 2015-03-21

Family

ID=48138823

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100117043A TWI478293B (en) 2011-05-16 2011-05-16 Method of fabricating non-volatile memory device

Country Status (1)

Country Link
TW (1) TWI478293B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11575051B2 (en) 2019-08-30 2023-02-07 Winbond Electronics Corp. Memory device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020127805A1 (en) * 2001-01-30 2002-09-12 Seiko Epson Corporation Method of manufacturing semiconductor integrated circuit device including nonvolatile semiconductor memory devices
US20030232472A1 (en) * 2002-05-30 2003-12-18 Silicon Based Technology Corp. Methods of fabbricating a stack-gate non-volatile memory device and its contactless memory arrays

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020127805A1 (en) * 2001-01-30 2002-09-12 Seiko Epson Corporation Method of manufacturing semiconductor integrated circuit device including nonvolatile semiconductor memory devices
US20030232472A1 (en) * 2002-05-30 2003-12-18 Silicon Based Technology Corp. Methods of fabbricating a stack-gate non-volatile memory device and its contactless memory arrays

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11575051B2 (en) 2019-08-30 2023-02-07 Winbond Electronics Corp. Memory device and manufacturing method thereof

Also Published As

Publication number Publication date
TW201248789A (en) 2012-12-01

Similar Documents

Publication Publication Date Title
KR101221598B1 (en) Method for forming a dielectric layer pattern and method for manufacturing non-volatile memory device using for the same
JP5603688B2 (en) Method for forming floating gate of nonvolatile memory cell
US7589374B2 (en) Semiconductor device and related fabrication method
EP2455967B1 (en) A method for forming a buried dielectric layer underneath a semiconductor fin
TW201401442A (en) Method of fabricating non-volatile memory device
TWI607573B (en) Method of fabricating semiconductor structure
US7514368B2 (en) Flash memory device
TWI555179B (en) Method of manufacturing isolation structure and non-volatile memory with the isolation structure
JP4834304B2 (en) Manufacturing method of semiconductor device
TWI591806B (en) Memory structure and manufacturing method of the same
KR100673228B1 (en) Method of manufacturing a nand flash memory device
JP2008010817A (en) Manufacturing method of nand flash memory device
TWI478293B (en) Method of fabricating non-volatile memory device
TWI395290B (en) Flash memory and method of fabricating the same
TWI508232B (en) Non-volatile memory cell and method of the same
US9123579B2 (en) 3D memory process and structures
KR100924862B1 (en) Flash device fabrication method
US7923770B2 (en) Memory device and method of fabricating the same
TWI548039B (en) Method for fabricating semiconductor device
KR100946120B1 (en) Semiconductor memory device and method for fabricatingthe same
TWI559455B (en) Method for manufacturing non-volatile memory
KR100803494B1 (en) Method for fabricating flash memory device
KR100806516B1 (en) Method of manufacturing a nand flash memory device
TWI469253B (en) Method of fabricating a flash and an isolating structure applied to a flash
TWI574385B (en) Non-volatile memory structure and manufacturing method thereof