TWI647822B - Three-dimensional non-volatile memory and manufacturing method thereof - Google Patents

Three-dimensional non-volatile memory and manufacturing method thereof Download PDF

Info

Publication number
TWI647822B
TWI647822B TW107100816A TW107100816A TWI647822B TW I647822 B TWI647822 B TW I647822B TW 107100816 A TW107100816 A TW 107100816A TW 107100816 A TW107100816 A TW 107100816A TW I647822 B TWI647822 B TW I647822B
Authority
TW
Taiwan
Prior art keywords
layer
gate
disposed
charge storage
storage structure
Prior art date
Application number
TW107100816A
Other languages
Chinese (zh)
Other versions
TW201931576A (en
Inventor
林怡婷
裘元杰
李鴻志
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW107100816A priority Critical patent/TWI647822B/en
Application granted granted Critical
Publication of TWI647822B publication Critical patent/TWI647822B/en
Publication of TW201931576A publication Critical patent/TW201931576A/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

一種三維非揮發性記憶體及其製造方法。三維非揮發性記憶體包括基底、電荷儲存結構、堆疊結構以及通道層。電荷儲存結構配置於基底上。堆疊結構配置於電荷儲存結構的一側,且包括多個絕緣層、多個閘極、緩衝層以及阻障層。絕緣層與閘極交替地堆疊。緩衝層配置於各閘極與電荷儲存結構之間且配置於絕緣層的表面上。阻障層配置於各閘極與緩衝層之間。閘極的端部相對於阻障層的端部在遠離通道層的方向上是凸出的。A three-dimensional non-volatile memory and a method of manufacturing the same. The three-dimensional non-volatile memory includes a substrate, a charge storage structure, a stacked structure, and a channel layer. The charge storage structure is disposed on the substrate. The stacked structure is disposed on one side of the charge storage structure and includes a plurality of insulating layers, a plurality of gates, a buffer layer, and a barrier layer. The insulating layer and the gate are alternately stacked. The buffer layer is disposed between each gate and the charge storage structure and disposed on a surface of the insulating layer. The barrier layer is disposed between each of the gates and the buffer layer. The end of the gate is convex relative to the end of the barrier layer in a direction away from the channel layer.

Description

三維非揮發性記憶體及其製造方法Three-dimensional non-volatile memory and manufacturing method thereof

本發明是有關於一種記憶體及其製造方法,且特別是有關於一種三維非揮發性記憶體及其製造方法。The present invention relates to a memory and a method of fabricating the same, and more particularly to a three-dimensional non-volatile memory and a method of fabricating the same.

非揮發性記憶體元件(如,快閃記憶體)由於具有使存入的資料在斷電後也不會消失的優點,因此成為個人電腦和其他電子設備所廣泛採用的一種記憶體元件。Non-volatile memory components (eg, flash memory) are a memory component widely used in personal computers and other electronic devices because they have the advantage that the stored data does not disappear after power is turned off.

目前業界較常使用的快閃記憶體陣列包括反或閘(NOR)快閃記憶體與反及閘(NAND)快閃記憶體。由於NAND快閃記憶體的結構是使各記憶胞串接在一起,其積集度與面積利用率較NOR快閃記憶體有效率,因此NAND快閃記憶體的記憶密度比NOR快閃記憶體的記憶密度高得多。因此,NAND快閃記憶體已經廣泛地應用在多種電子產品中,特別是大量資料儲存領域。Flash memory arrays currently used in the industry include reverse OR gate (NOR) flash memory and NAND flash memory. Since the structure of the NAND flash memory is such that the memory cells are connected in series, the degree of integration and area utilization is more efficient than that of the NOR flash memory, so the memory density of the NAND flash memory is higher than that of the NOR flash memory. The memory density is much higher. Therefore, NAND flash memory has been widely used in a variety of electronic products, especially in the field of large data storage.

此外,為了進一步地提升記憶體元件的儲存密度以及積集度,發展出一種三維NAND快閃記憶體。然而,在目前三維NAND快閃記憶體進行操作過程中,記憶胞的干擾為三維NAND快閃記憶體中主要的挑戰之一,特別是存在微量的殘留物。In addition, in order to further increase the storage density and the degree of integration of the memory elements, a three-dimensional NAND flash memory has been developed. However, in the current operation of three-dimensional NAND flash memory, the interference of memory cells is one of the main challenges in three-dimensional NAND flash memory, especially the presence of trace residues.

本發明提供一種三維非揮發性記憶體及其製造方法,其可消除在進行操作期間閘極之間例如電連接/電橋的干擾現象。The present invention provides a three-dimensional non-volatile memory and a method of fabricating the same that eliminates interference phenomena between gates, such as electrical connections/bridges, during operation.

本發明的提出一種三維非揮發性記憶體,包括基底、電荷儲存結構、堆疊結構以及通道層。電荷儲存結構配置於基底上。堆疊結構配置於電荷儲存結構的一側,且包括多個絕緣層、多個閘極、緩衝層以及阻障層。絕緣層與閘極交替地堆疊。緩衝層配置於各閘極與電荷儲存結構之間且配置於絕緣層的表面上。阻障層配置於各閘極與緩衝層之間。通道層配置於所述電荷儲存結構另一側。閘極的端部相對於阻障層的端部在遠離通道層的方向上是凸出的。The present invention provides a three-dimensional non-volatile memory comprising a substrate, a charge storage structure, a stacked structure, and a channel layer. The charge storage structure is disposed on the substrate. The stacked structure is disposed on one side of the charge storage structure and includes a plurality of insulating layers, a plurality of gates, a buffer layer, and a barrier layer. The insulating layer and the gate are alternately stacked. The buffer layer is disposed between each gate and the charge storage structure and disposed on a surface of the insulating layer. The barrier layer is disposed between each of the gates and the buffer layer. The channel layer is disposed on the other side of the charge storage structure. The end of the gate is convex relative to the end of the barrier layer in a direction away from the channel layer.

在本發明的一些實施例中,絕緣層102a的端部E1在垂直於通道層的方向上至閘極124a的端部E2的距離為L1,絕緣層102a的端部E1在垂直於通道層的方向上至阻障層122a的端部E3的距離為L2,且1<L2/L1<2。In some embodiments of the present invention, the end E1 of the insulating layer 102a is at a distance L1 from the end portion E2 of the gate 124a in a direction perpendicular to the channel layer, and the end E1 of the insulating layer 102a is perpendicular to the channel layer. The distance in the direction from the end E3 of the barrier layer 122a is L2, and 1 < L2 / L1 < 2.

在本發明的一些實施例中,上述的緩衝層的與阻障層接觸的第一部分的厚度為T1,緩衝層的不與阻障層接觸的第二部分的厚度為T2,且0<T1−T2≦30埃(Å)。In some embodiments of the present invention, the thickness of the first portion of the buffer layer in contact with the barrier layer is T1, and the thickness of the second portion of the buffer layer not in contact with the barrier layer is T2, and 0<T1− T2 ≦ 30 angstroms (Å).

在本發明的一些實施例中,上述的緩衝層的第二部分為不連續的。In some embodiments of the invention, the second portion of the buffer layer described above is discontinuous.

在本發明的一些實施例中,上述的第二部分中含有所述阻障層的原子的原子濃度可小於1原子%。In some embodiments of the present invention, the atomic concentration of the atoms containing the barrier layer in the second portion may be less than 1 atom%.

在本發明的一些實施例中,上述的阻障層的材料例如是鈦、氮化鈦、鉭、氮化鉭或其組合。In some embodiments of the invention, the material of the barrier layer is, for example, titanium, titanium nitride, tantalum, tantalum nitride or a combination thereof.

在本發明的一些實施例中,上述的緩衝層的材料例如是高介電常數的材料。In some embodiments of the invention, the material of the buffer layer described above is, for example, a material having a high dielectric constant.

本發明提出一種三維非揮發性記憶體的製造方法,包括下列步驟。於基底上形成電荷儲存結構以及堆疊結構。電荷儲存結構配置於堆疊結構的側壁上。堆疊結構包括多個絕緣層、多個閘極、緩衝層以及阻障層。絕緣層與閘極交替地堆疊。緩衝層配置於各閘極與電荷儲存結構之間且配置於絕緣層的表面上。阻障層配置於各閘極與緩衝層之間。於電荷儲存結構上形成通道層。閘極的端部相對於阻障層的端部在遠離通道層的方向上是凸出的。The invention provides a method for manufacturing a three-dimensional non-volatile memory, comprising the following steps. A charge storage structure and a stacked structure are formed on the substrate. The charge storage structure is disposed on the sidewall of the stacked structure. The stacked structure includes a plurality of insulating layers, a plurality of gates, a buffer layer, and a barrier layer. The insulating layer and the gate are alternately stacked. The buffer layer is disposed between each gate and the charge storage structure and disposed on a surface of the insulating layer. The barrier layer is disposed between each of the gates and the buffer layer. A channel layer is formed on the charge storage structure. The end of the gate is convex relative to the end of the barrier layer in a direction away from the channel layer.

在本發明的一些實施例中,絕緣層102a的端部E1在垂直於通道層的方向上至閘極124a的端部E2的距離為L1,絕緣層102a的端部E1在垂直於通道層的方向上至阻障層122a的端部E3的距離為L2,且1<L2/L1<2。In some embodiments of the present invention, the end E1 of the insulating layer 102a is at a distance L1 from the end portion E2 of the gate 124a in a direction perpendicular to the channel layer, and the end E1 of the insulating layer 102a is perpendicular to the channel layer. The distance in the direction from the end E3 of the barrier layer 122a is L2, and 1 < L2 / L1 < 2.

在本發明的一些實施例中,上述的緩衝層的與阻障層接觸的第一部分的厚度為T1,緩衝層的不與阻障層接觸的第二部分的厚度為T2,且0<T1−T2≦30埃。In some embodiments of the present invention, the thickness of the first portion of the buffer layer in contact with the barrier layer is T1, and the thickness of the second portion of the buffer layer not in contact with the barrier layer is T2, and 0<T1− T2 ≦ 30 angstroms.

在本發明的一些實施例中,上述的緩衝層的第二部分為不連續的。In some embodiments of the invention, the second portion of the buffer layer described above is discontinuous.

在本發明的一些實施例中,上述的第二部分中含有所述阻障層的原子的原子濃度可小於1原子%。In some embodiments of the present invention, the atomic concentration of the atoms containing the barrier layer in the second portion may be less than 1 atom%.

在本發明的一些實施例中,上述的堆疊結構的形成方法包括下列步驟。於基底上形成交替堆疊的多個絕緣材料層與多個犧牲層。對絕緣材料層與犧牲層進行圖案化製程,以形成第一開口。移除第一開口所暴露的犧牲層,以形成暴露部分電荷儲存結構的第二開口。於第一開口的表面上形成閘極層且於第二開口中填入閘極層,閘極層包括依序形成的緩衝材料層、阻障材料層以及閘極材料層。移除部分的閘極材料層、部分的緩衝材料層以及部分的阻障材料層,以形成閘極、緩衝層以及阻障層。In some embodiments of the invention, the method of forming the stacked structure described above includes the following steps. A plurality of layers of insulating material and a plurality of sacrificial layers alternately stacked are formed on the substrate. A patterning process is performed on the insulating material layer and the sacrificial layer to form a first opening. The sacrificial layer exposed by the first opening is removed to form a second opening exposing a portion of the charge storage structure. A gate layer is formed on the surface of the first opening and a gate layer is filled in the second opening. The gate layer includes a buffer material layer, a barrier material layer and a gate material layer which are sequentially formed. A portion of the gate material layer, a portion of the buffer material layer, and a portion of the barrier material layer are removed to form a gate, a buffer layer, and a barrier layer.

在本發明的一些實施例中,上述移除部分的閘極材料層、部分的阻障材料層以及部分的緩衝材料層的方法包括下列步驟。進行第一蝕刻製程,移除部分的閘極材料層,以暴露阻障材料層。進行第二蝕刻製程,移除部分的阻障材料層,以暴露緩衝材料層。進行第三蝕刻製程,移除部分的緩衝材料層,以形成緩衝層。In some embodiments of the invention, the method of removing a portion of the gate material layer, a portion of the barrier material layer, and a portion of the buffer material layer includes the following steps. A first etching process is performed to remove a portion of the gate material layer to expose the barrier material layer. A second etching process is performed to remove a portion of the barrier material layer to expose the buffer material layer. A third etching process is performed to remove a portion of the buffer material layer to form a buffer layer.

在本發明的一些實施例中,上述的第一蝕刻製程例如是回蝕刻製程。In some embodiments of the invention, the first etching process described above is, for example, an etch back process.

在本發明的一些實施例中,上述的第二蝕刻製程例如是乾式蝕刻製程或濕式蝕刻製程。In some embodiments of the present invention, the second etching process is, for example, a dry etching process or a wet etching process.

在本發明的一些實施例中,上述的第三蝕刻製程例如是交替進行乾式處理以及濕式處理。In some embodiments of the invention, the third etching process described above is, for example, alternately performing dry processing and wet processing.

在本發明的一些實施例中,上述的乾式處理例如是電漿處理。In some embodiments of the invention, the dry process described above is, for example, a plasma process.

在本發明的一些實施例中,上述的濕式處理例如是使用含氟溶劑做為蝕刻液的濕式處理。In some embodiments of the invention, the wet treatment described above is, for example, a wet treatment using a fluorine-containing solvent as an etchant.

基於上述,在本發明所提出的三維非揮發性記憶體及其製造方法中,藉由移除部分閘極之間的絕緣層而同時移除位於絕緣層中的階梯殘留,因此可大大地降低在進行操作時閘極之間的干擾(例如是金屬殘留物)以及短路問題。Based on the above, in the three-dimensional non-volatile memory and the method of fabricating the same according to the present invention, the step residue in the insulating layer is simultaneously removed by removing the insulating layer between the portions of the gates, thereby greatly reducing Interference between gates (eg metal residues) and short circuit problems during operation.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1A至圖1I為本發明一些實施例的三維非揮發性記憶體的製造流程剖面圖。圖2為圖1B的上視圖。1A through 1I are cross-sectional views showing a manufacturing process of a three-dimensional non-volatile memory according to some embodiments of the present invention. Figure 2 is a top view of Figure 1B.

請參照圖1A,於基底100上形成堆疊結構101。基底100例如是矽基底。在一些實施例中,可依據設計需求而於基底100中形成摻雜區(如,N+摻雜區)(未繪示)。堆疊結構101包括交替地堆疊的多個絕緣材料層102與多個犧牲層104。絕緣材料層102的材料包括介電材料,例如是氧化矽。犧牲層104的材料與絕緣材料層102不同,且與絕緣材料層102具有足夠的蝕刻選擇比,此外並無特別限制。在一些實施例中,犧牲層104的材料例如是氮化矽。絕緣材料層102與犧牲層104例如是藉由進行多次化學氣相沈積製程所形成。堆疊結構101中絕緣材料層102以及犧牲層104的層數可以大於16。然而,本發明並不以此為限,堆疊結構101中絕緣材料層102以及犧牲層104的層數可取決於記憶體裝置的設計及密度。Referring to FIG. 1A, a stacked structure 101 is formed on the substrate 100. The substrate 100 is, for example, a crucible substrate. In some embodiments, a doped region (eg, an N+ doped region) (not shown) may be formed in the substrate 100 depending on design requirements. The stacked structure 101 includes a plurality of insulating material layers 102 and a plurality of sacrificial layers 104 that are alternately stacked. The material of the layer of insulating material 102 comprises a dielectric material such as yttrium oxide. The material of the sacrificial layer 104 is different from the insulating material layer 102 and has a sufficient etching selectivity ratio with the insulating material layer 102, and is not particularly limited. In some embodiments, the material of the sacrificial layer 104 is, for example, tantalum nitride. The insulating material layer 102 and the sacrificial layer 104 are formed, for example, by performing a plurality of chemical vapor deposition processes. The number of layers of the insulating material layer 102 and the sacrificial layer 104 in the stacked structure 101 may be greater than 16. However, the invention is not limited thereto, and the number of layers of the insulating material layer 102 and the sacrificial layer 104 in the stacked structure 101 may depend on the design and density of the memory device.

接著,對堆疊結構101進行蝕刻,以形成穿過堆疊結構101的開口106。在一些實施例中,在上述蝕刻製程中,可選擇性地移除部分基底100,使得開口106延伸至基底100中。開口106例如是孔,如圖2所示。Next, the stacked structure 101 is etched to form an opening 106 through the stacked structure 101. In some embodiments, a portion of the substrate 100 can be selectively removed during the etching process described above such that the opening 106 extends into the substrate 100. The opening 106 is, for example, a hole as shown in FIG.

請同時參照圖1B以及圖2,於開口106的側壁上形成電荷儲存結構112。電荷儲存結構112覆蓋絕緣材料層102與犧牲層104。電荷儲存結構112可以是氧化物、氮化物或其組合。在一些實施例中,電荷儲存結構112包括氧化物-氮化物-氧化物(ONO)複合層。在一例示實施例中,電荷儲存結構112包括氧化矽層109、氮化矽層110以及氧化矽層111。在一些實施例中,電荷儲存結構112包括氧化物-氮化物-氧化物-氮化物-氧化物(ONONO)複合層。在一例示實施例中,電荷儲存結構112包括氧化矽層135、氮化矽層136、氧化矽層137、氮化矽層138以及氧化矽層139,如圖1B-1所示。更具體地說,電荷儲存結構112以間隙壁的形式形成於開口106的側壁上,而裸露出開口106的底面的基底100。Referring to FIG. 1B and FIG. 2 simultaneously, a charge storage structure 112 is formed on the sidewall of the opening 106. The charge storage structure 112 covers the insulating material layer 102 and the sacrificial layer 104. The charge storage structure 112 can be an oxide, a nitride, or a combination thereof. In some embodiments, charge storage structure 112 includes an oxide-nitride-oxide (ONO) composite layer. In an exemplary embodiment, charge storage structure 112 includes a hafnium oxide layer 109, a tantalum nitride layer 110, and a hafnium oxide layer 111. In some embodiments, charge storage structure 112 includes an oxide-nitride-oxide-nitride-oxide (ONONO) composite layer. In an exemplary embodiment, the charge storage structure 112 includes a hafnium oxide layer 135, a tantalum nitride layer 136, a hafnium oxide layer 137, a tantalum nitride layer 138, and a hafnium oxide layer 139, as shown in FIG. 1B-1. More specifically, the charge storage structure 112 is formed in the form of a spacer on the sidewall of the opening 106 to expose the substrate 100 of the bottom surface of the opening 106.

在本實施例中,圖2中的開口106為陣列排列,但本發明不限於此。在一些實施例中,開口106為隨機排列,只要開口106之間的距離大於100埃即可。In the present embodiment, the openings 106 in FIG. 2 are arranged in an array, but the invention is not limited thereto. In some embodiments, the openings 106 are randomly arranged as long as the distance between the openings 106 is greater than 100 angstroms.

接著,於電荷儲存結構112上形成通道層114。具體地說,通道層114覆蓋開口106的側面上的電荷儲存結構112,並與開口106的底面所裸露出的基底100接觸。在一些實施例中,通道層114可做為位元線。通道層114的材料例如是半導體材料,如多晶矽或摻雜多晶矽等。可藉由原位摻雜來進行摻雜,或是藉由離子植入製程來進行摻雜。Next, a channel layer 114 is formed over the charge storage structure 112. Specifically, the channel layer 114 covers the charge storage structure 112 on the side of the opening 106 and is in contact with the substrate 100 exposed by the bottom surface of the opening 106. In some embodiments, the channel layer 114 can be implemented as a bit line. The material of the channel layer 114 is, for example, a semiconductor material such as polysilicon or doped polysilicon or the like. Doping may be performed by in-situ doping or by ion implantation.

請參照圖1C,於開口106中形成介電層115。介電層115的形成方法例如是利用化學氣相沈積法或旋塗法形成填滿開口106的介電材料層(未繪示),再對介電材料層進行回蝕刻製程,以使所形成的介電層115的上表面低於堆疊結構101的頂表面。Referring to FIG. 1C, a dielectric layer 115 is formed in the opening 106. The method for forming the dielectric layer 115 is, for example, forming a dielectric material layer (not shown) filling the opening 106 by chemical vapor deposition or spin coating, and then performing an etch back process on the dielectric material layer to form the dielectric layer 115. The upper surface of the dielectric layer 115 is lower than the top surface of the stacked structure 101.

接著,於介電層115上形成導體插塞116。導體插塞116與通道層114接觸。在一些實施例中,導體插塞116的材料例如是多晶矽或摻雜多晶矽。導體插塞116的形成方法例如是先形成填滿開口106的導體材料層(未繪示),再對導體材料層進行化學機械研磨製程及/或回蝕刻製程,以移除開口106外的導體材料層。Next, a conductor plug 116 is formed on the dielectric layer 115. The conductor plug 116 is in contact with the channel layer 114. In some embodiments, the material of the conductor plug 116 is, for example, polysilicon or doped polysilicon. The conductor plug 116 is formed by, for example, forming a conductive material layer (not shown) filling the opening 106, and then performing a chemical mechanical polishing process and/or an etch back process on the conductive material layer to remove the conductor outside the opening 106. Material layer.

然後,於堆疊結構101上形成絕緣層117。絕緣層117覆蓋電荷儲存結構112、通道層114、導體插塞116以及堆疊結構101。在一些實施例中,絕緣層117的材料例如是氧化矽或其他絕緣材料。Then, an insulating layer 117 is formed on the stacked structure 101. The insulating layer 117 covers the charge storage structure 112, the channel layer 114, the conductor plugs 116, and the stacked structure 101. In some embodiments, the material of the insulating layer 117 is, for example, yttria or other insulating material.

請參照圖1D,對絕緣層117、絕緣材料層102與犧牲層104進行圖案化製程,以形成穿過絕緣層117、絕緣材料層102與犧牲層104的開口(亦稱作溝渠)118。在一些實施例中,在進行所述圖案化製程期間,也會同時移除部分基底100,使得開口118延伸至基底100。此外,在對絕緣材料層102進行圖案化製程之後,絕緣材料層102的剩餘部分形成絕緣層102a。Referring to FIG. 1D, the insulating layer 117, the insulating material layer 102, and the sacrificial layer 104 are patterned to form openings (also referred to as trenches) 118 through the insulating layer 117, the insulating material layer 102, and the sacrificial layer 104. In some embodiments, during the patterning process, portions of the substrate 100 are also removed simultaneously such that the openings 118 extend to the substrate 100. Further, after the patterning process of the insulating material layer 102, the remaining portion of the insulating material layer 102 forms the insulating layer 102a.

接著,移除開口118所暴露的犧牲層104,以形成暴露出部分電荷儲存結構112的側向開口120。移除開口118所暴露的犧牲層104的方法例如是乾式蝕刻法或溼式蝕刻法。使用在乾式蝕刻法中的蝕刻劑例如是NF 3、H 2、HBr、O 2、N 2或He。上述溼式蝕刻法所使用的蝕刻液例如是磷酸(H 3PO 4)溶液。 Next, the sacrificial layer 104 exposed by the opening 118 is removed to form a lateral opening 120 that exposes a portion of the charge storage structure 112. The method of removing the sacrificial layer 104 exposed by the opening 118 is, for example, a dry etching method or a wet etching method. The etchant used in the dry etching method is, for example, NF 3 , H 2 , HBr, O 2 , N 2 or He. The etching liquid used in the above wet etching method is, for example, a phosphoric acid (H 3 PO 4 ) solution.

請參照圖1E,於開口118的表面上形成閘極層126且於側向開口120中填入閘極層126。閘極層126包括依序形成的緩衝材料層121、阻障材料層122以及閘極導體材料層124。在一些實施例中,緩衝材料層121形成於阻障材料層122與電荷儲存結構112之間以及絕緣層102a的表面上。緩衝材料層121的材料例如是介電常數大於7的高介電常數的材料,如氧化鋁(Al 2O 3)、HfO 2、La 2O 5、過渡金屬氧化物、鑭系元素氧化物或其組合等。在一些實施例中,緩衝材料層121的形成方法需要良好的階梯覆蓋,在整個結構上獲得良好的膜厚均勻性。所述方法例如是化學氣相沈積法或原子層沈積法(ALD)。緩衝材料層121可用以提升抹除以及編程特性。阻障材料層122的材料例如是鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合。阻障材料層122的形成方法例如是化學氣相沈積法。閘極導體材料層124的材料例如是多晶矽、非晶矽、鎢(W)、鈷(Co)鋁(Al)、矽化鎢(WSix)或矽化鈷(CoSix)。閘極導體材料層124的形成方法例如是化學氣相沈積法。 Referring to FIG. 1E, a gate layer 126 is formed on the surface of the opening 118 and a gate layer 126 is filled in the lateral opening 120. The gate layer 126 includes a buffer material layer 121, a barrier material layer 122, and a gate conductor material layer 124 that are sequentially formed. In some embodiments, a buffer material layer 121 is formed between the barrier material layer 122 and the charge storage structure 112 and on the surface of the insulating layer 102a. The material of the buffer material layer 121 is, for example, a material having a high dielectric constant having a dielectric constant of more than 7, such as alumina (Al 2 O 3 ), HfO 2 , La 2 O 5 , a transition metal oxide, a lanthanide oxide or Its combination and so on. In some embodiments, the method of forming the buffer material layer 121 requires good step coverage to achieve good film thickness uniformity throughout the structure. The method is, for example, chemical vapor deposition or atomic layer deposition (ALD). The buffer material layer 121 can be used to enhance erase and programming characteristics. The material of the barrier material layer 122 is, for example, titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), or a combination thereof. The method of forming the barrier material layer 122 is, for example, a chemical vapor deposition method. The material of the gate conductor material layer 124 is, for example, polycrystalline germanium, amorphous germanium, tungsten (W), cobalt (Co) aluminum (Al), tungsten germanium (WSix) or cobalt telluride (CoSix). The method of forming the gate conductor material layer 124 is, for example, a chemical vapor deposition method.

請參照圖1F至圖1H,移除部分的閘極導體材料層124、部分的阻障材料層122以及部分的緩衝材料層121,以形成閘極124a、緩衝層121a以及阻障層122a。Referring to FIGS. 1F through 1H, a portion of the gate conductor material layer 124, a portion of the barrier material layer 122, and a portion of the buffer material layer 121 are removed to form the gate 124a, the buffer layer 121a, and the barrier layer 122a.

在一些實施例中,如圖1F所示,進行第一蝕刻製程,移除部分的閘極導體材料層124,以暴露阻障材料層122。第一蝕刻製程可以是回蝕刻製程,例如濕式蝕刻製程或乾式蝕刻製程。乾式蝕刻製程或濕式蝕刻製程都是可行的。在一些實施例中,可以在電漿系統下進行乾式蝕刻,電漿系統包括感應耦合電漿(inductively coupled plasma,ICP)、遠程電漿、電容式射頻電漿(capacitive coupled plasma,CCP)或電子迴旋共振電漿(electron cyclotron resonance,ECR)系統。且可以應用例如是NF 3、SF 6或CF 4的氟類化合物。在一些實施例中,在濕式蝕刻的情況下,可以施加NH 4OH、H 2O 2、H 2SO 4、HNO 3或醋酸。在一些實施例中,在進行第一蝕刻製程期間,除了移除開口118中的閘極導體材料層124外,也會移除掉側向開口120中部分的閘極導體材料層124。此外,在對閘極導體材料層124進行第一蝕刻製程之後,閘極導體材料層124的剩餘部分形成閘極124a。在一些實施例中,閘極124a可做為字元線。在一些實施例中,絕緣層102a的端部E1相對於側向開口120中所暴露的閘極124a的端部E2是凸出的。具體來說,絕緣層102a的端部E1相對於閘極124a的端部E2在遠離通道層114的方向上是凸出的。在本實施例中,相鄰兩個閘極124a藉由位於其間的絕緣層102a而隔離,而且由於絕緣層102a凸出於相鄰的側向開口120(上、下)中兩個閘極124a,因此,可避免相鄰的閘極124a彼此接觸。在本實施例中,閘極124a的端部E2具有實質上平坦表面,但本發明不限於此。在另一些實施例中,閘極124a的端部E2具有圓弧狀表面。在一些實施例中,閘極124a的端部E2在接近開口120中心處的表面比閘極124a的端部E2在靠近開口120邊緣(即靠近阻障材料層122)的表面凸出(如虛線所示)。 In some embodiments, as shown in FIG. 1F, a first etch process is performed to remove a portion of the gate conductor material layer 124 to expose the barrier material layer 122. The first etch process can be an etch back process, such as a wet etch process or a dry etch process. Dry etching processes or wet etching processes are possible. In some embodiments, the dry etching can be performed under a plasma system including inductively coupled plasma (ICP), remote plasma, capacitive coupled plasma (CCP), or electrons. An electron cyclotron resonance (ECR) system. And a fluorine compound such as NF 3 , SF 6 or CF 4 can be applied. In some embodiments, in the case of wet etching, NH 4 OH, H 2 O 2 , H 2 SO 4 , HNO 3 or acetic acid may be applied. In some embodiments, a portion of the gate conductor material layer 124 in the lateral opening 120 is removed in addition to removing the gate conductor material layer 124 in the opening 118 during the first etching process. Moreover, after the first etch process of the gate conductor material layer 124, the remaining portion of the gate conductor material layer 124 forms the gate 124a. In some embodiments, gate 124a can be used as a word line. In some embodiments, the end E1 of the insulating layer 102a is convex relative to the end E2 of the gate 124a exposed in the lateral opening 120. Specifically, the end portion E1 of the insulating layer 102a is convex with respect to the end portion E2 of the gate 124a in a direction away from the channel layer 114. In the present embodiment, the adjacent two gates 124a are isolated by the insulating layer 102a located therebetween, and since the insulating layer 102a protrudes from the two adjacent gates 124a of the adjacent lateral openings 120 (upper and lower) Therefore, adjacent gates 124a can be prevented from contacting each other. In the present embodiment, the end portion E2 of the gate 124a has a substantially flat surface, but the present invention is not limited thereto. In other embodiments, the end E2 of the gate 124a has an arcuate surface. In some embodiments, the end E2 of the gate 124a protrudes from the surface near the center of the opening 120 than the end E2 of the gate 124a near the edge of the opening 120 (ie, near the barrier material layer 122) (eg, a dashed line) Shown).

接著,請參照圖1G,進行第二蝕刻製程,移除部分的阻障材料層122,以暴露緩衝材料層121。第二蝕刻製程例如是乾式蝕刻製程或濕式蝕刻製程。在一些實施例中,在進行第二蝕刻製程期間,除了移除開口118上的阻障材料層122外,也會移除掉側向開口120中暴露的阻障材料層122以及閘極124a與緩衝材料層121之間部分的阻障材料層122。在對阻障材料層122進行第二蝕刻製程之後,阻障材料層122的剩餘部分形成阻障層122a。在一些實施例中,側向開口120中所暴露的閘極124a的端部E2相對於側向開口120中所暴露的阻障層122a的端部E3是凸出的。具體來說,閘極124a的端部E2相對於阻障層122a的端部E3在遠離通道層114的方向上是凸出的。在本實施例中,藉由移除開口118上的阻障材料層122且甚至移除側向開口120中的阻障材料層122至低於閘極124a的端部E2,可有助於相鄰側向開口120中的閘極124a之間的隔離,並減少相鄰側向開口120之間的階梯殘留(stringer)(即阻障材料層的殘留物)。在本實施例中,阻障層122a的端部E3具有實質上平坦表面,但本發明不限於此。在另一些實施例中,阻障層122a的端部E3具有傾斜的表面。具體來說,阻障層122a的端部E3具有自與緩衝材料層121接觸的點向通道層114的傾斜的表面。Next, referring to FIG. 1G, a second etching process is performed to remove a portion of the barrier material layer 122 to expose the buffer material layer 121. The second etching process is, for example, a dry etching process or a wet etching process. In some embodiments, during the second etching process, in addition to removing the barrier material layer 122 on the opening 118, the barrier material layer 122 and the gate 124a exposed in the lateral opening 120 are also removed. A portion of the barrier material layer 122 between the buffer material layers 121. After the second etching process is performed on the barrier material layer 122, the remaining portion of the barrier material layer 122 forms the barrier layer 122a. In some embodiments, the end E2 of the gate 124a exposed in the lateral opening 120 is convex relative to the end E3 of the barrier layer 122a exposed in the lateral opening 120. Specifically, the end portion E2 of the gate 124a is convex with respect to the end portion E3 of the barrier layer 122a in a direction away from the channel layer 114. In this embodiment, by removing the barrier material layer 122 on the opening 118 and even removing the barrier material layer 122 in the lateral opening 120 to the end E2 below the gate 124a, the phase can be facilitated. The isolation between the gates 124a in the lateral openings 120 is adjacent and the stringer between adjacent lateral openings 120 (i.e., the residue of the barrier material layer) is reduced. In the present embodiment, the end portion E3 of the barrier layer 122a has a substantially flat surface, but the present invention is not limited thereto. In other embodiments, the end E3 of the barrier layer 122a has an inclined surface. Specifically, the end portion E3 of the barrier layer 122a has an inclined surface from the point of contact with the buffer material layer 121 toward the channel layer 114.

在一些實施例中,可藉由單一蝕刻製程來同時移除部分的閘極導體材料層124以及部分的阻障材料層122。In some embodiments, a portion of the gate conductor material layer 124 and a portion of the barrier material layer 122 can be simultaneously removed by a single etch process.

請參照圖1H,進行第三蝕刻製程,移除部分的所暴露的緩衝材料層121,以形成緩衝層121a。在一些實施例中,第三蝕刻製程可以是交替進行乾式處理以及濕式處理。乾式處理例如是電漿處理。在一些實施例中,可以在電漿系統下進行乾式處理,電漿系統包括感應耦合電漿(inductively coupled plasma,ICP)、遠程電漿、電容式射頻電漿(capacitive coupled plasma,CCP)或電子迴旋共振電漿(electron cyclotron resonance,ECR)系統。在一些實施例中,可使用氧化氣體、惰性氣體或其組合進行電漿處理。氧化氣體幾乎不能與半導體材料以及閘極材料產生反應。氧化氣體例如是氧氣、惰性氣體。惰性氣體例如是氮氣、氪氣或氬氣。在一些實施例中,濕式處理例如是使用含氟溶劑做為蝕刻液的濕式處理,例如是稀釋的氫氟酸(diluted hydrofluoric acid,DHF)或緩衝氧化矽蝕刻劑(buffered oxide etch,BOE),但本發明不限於此,亦可使用其他蝕刻液來進行濕式處理。在一些實施例中,在進行第三蝕刻製程期間,除了移除開口118上的部分的緩衝材料層121外,也會移除掉部分側向開口120中暴露的緩衝材料層121。具體來說,在對所暴露的緩衝材料層121進行乾式處理之後,經乾式處理後的緩衝材料層121的表面相較於未經電漿處理的緩衝材料層121變得更加鬆散或無定形。接著,對經乾式處理後的緩衝材料層121進行溼式處理,以移除部分的緩衝材料層121。Referring to FIG. 1H, a third etching process is performed to remove a portion of the exposed buffer material layer 121 to form a buffer layer 121a. In some embodiments, the third etch process can be alternately dry and wet. The dry treatment is, for example, a plasma treatment. In some embodiments, the dry processing can be performed under a plasma system including inductively coupled plasma (ICP), remote plasma, capacitive coupled plasma (CCP), or electrons. An electron cyclotron resonance (ECR) system. In some embodiments, the plasma treatment can be performed using an oxidizing gas, an inert gas, or a combination thereof. The oxidizing gas hardly reacts with the semiconductor material and the gate material. The oxidizing gas is, for example, oxygen or an inert gas. The inert gas is, for example, nitrogen, helium or argon. In some embodiments, the wet treatment is, for example, a wet treatment using a fluorine-containing solvent as an etchant, such as diluted hydrofluoric acid (DHF) or buffered oxide etch (BOE). However, the present invention is not limited thereto, and other etching liquids may be used for the wet processing. In some embodiments, during the third etch process, in addition to removing portions of the buffer material layer 121 on the opening 118, the portion of the buffer material 121 exposed in the portion of the lateral opening 120 is also removed. Specifically, after the exposed buffer material layer 121 is dry-treated, the surface of the dry-processed buffer material layer 121 becomes looser or amorphous than the plasma-free buffer material layer 121. Next, the dry-processed buffer material layer 121 is subjected to a wet treatment to remove a portion of the buffer material layer 121.

特別要說明的是,在習知避免閘極之間干擾的製程中,雖然會移除閘極之間的阻障材料層以減少相鄰閘極之間的階梯殘留(即阻障材料層的殘留物),但仍然會有少量的階梯殘留埋在緩衝材料層的與阻障材料層接觸的表面。上述的階梯殘留會容易形成遺漏路徑(leakage path)以及閘極橋(gate bridge),進而引起閘極之間的干擾以及短路的問題。然而,在本發明中,藉由對所暴露的緩衝材料層進行第三蝕刻製程,以移除部分的緩衝材料層,同時移除位於緩衝材料層中的階梯殘留。In particular, in the conventional process of avoiding interference between gates, the barrier material layer between the gates is removed to reduce the step residue between adjacent gates (ie, the barrier material layer) Residue), but there is still a small amount of step residue buried in the surface of the buffer material layer that is in contact with the barrier material layer. The above-mentioned step residue easily forms a leak path and a gate bridge, which causes interference between the gates and a short circuit. However, in the present invention, a third etching process is performed on the exposed buffer material layer to remove a portion of the buffer material layer while removing the step residue in the buffer material layer.

在一些實施例中,可重覆交替進行乾式處理以及濕式處理直至完全移除所暴露的緩衝材料層121中的階梯殘留(stringer)。此外,在對所暴露的緩衝材料層121進行第三蝕刻製程之後,緩衝材料層121的剩餘部分形成緩衝層121a。在一些實施例中,每一次交替進行乾式處理以及濕式處理可移除大於1埃的量的閘極124a、阻障層122a、緩衝層121a。In some embodiments, the dry processing and the wet processing may be alternately repeated until the step string in the exposed buffer material layer 121 is completely removed. Further, after performing the third etching process on the exposed buffer material layer 121, the remaining portion of the buffer material layer 121 forms the buffer layer 121a. In some embodiments, alternating dry processing and wet processing may remove gate 124a, barrier layer 122a, buffer layer 121a by an amount greater than 1 angstrom.

在一些實施例中,如圖1H所示,在對所暴露的緩衝材料層121進行第三蝕刻製程之後,所形成的緩衝層121a仍連續地覆蓋在絕緣層102a的表面上。在一些實施例中,在對所暴露的緩衝材料層121進行第三蝕刻製程之後,所形成的緩衝層121a不連續地覆蓋在絕緣層102a的表面上。在另一些實施例中,在對所暴露的緩衝材料層121進行第三蝕刻製程之後,所形成的緩衝層121a暴露絕緣層102a的角落(未繪示),藉此可阻斷金屬/金屬氧化物之間的實體連接(physical connection)。In some embodiments, as shown in FIG. 1H, after the third etching process is performed on the exposed buffer material layer 121, the formed buffer layer 121a is continuously overlaid on the surface of the insulating layer 102a. In some embodiments, after the third etching process is performed on the exposed buffer material layer 121, the formed buffer layer 121a is discontinuously overlaid on the surface of the insulating layer 102a. In other embodiments, after the third etching process is performed on the exposed buffer material layer 121, the formed buffer layer 121a exposes a corner (not shown) of the insulating layer 102a, thereby blocking metal/metal oxidation. Physical connection between objects.

請參照圖1I,形成覆蓋開口118的側壁且填充側向開口120的絕緣層128。在一些實施例中,絕緣層128的材料例如是氧化矽。形成絕緣層128的方法例如是化學氣相沈積法或原子層沈積法(ALD)。接著,進行蝕刻製程以移除位於開口118的底部的絕緣層128。在一些實施例中,在對絕緣層128進行蝕刻製程之後,部分的基板100可被選擇性地移除。於開口118中依序填入阻障層130以及金屬層132。阻障層130的材料例如是鈦(Ti)、氮化鈦(TiN)、鉭(Ta)、氮化鉭(TaN)或其組合。形成阻障層130的方法例如是化學氣相沈積法。金屬層132的材料例如是鎢(W)、多晶矽、鈷、矽化鎢(WSix)或矽化鈷(CoSix)。形成金屬層132的方法例如是化學氣相沈積法。在一些實施例中,金屬層132可做為共用源極線(common source line)。至此,完成本發明的三維非揮發性記憶體的製作。Referring to FIG. 1I, an insulating layer 128 is formed that covers the sidewalls of the opening 118 and fills the lateral opening 120. In some embodiments, the material of the insulating layer 128 is, for example, yttrium oxide. The method of forming the insulating layer 128 is, for example, a chemical vapor deposition method or an atomic layer deposition method (ALD). Next, an etching process is performed to remove the insulating layer 128 at the bottom of the opening 118. In some embodiments, a portion of the substrate 100 can be selectively removed after the insulating process is performed on the insulating layer 128. The barrier layer 130 and the metal layer 132 are sequentially filled in the opening 118. The material of the barrier layer 130 is, for example, titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), or a combination thereof. A method of forming the barrier layer 130 is, for example, a chemical vapor deposition method. The material of the metal layer 132 is, for example, tungsten (W), polycrystalline germanium, cobalt, tungsten germanium (WSix) or cobalt telluride (CoSix). A method of forming the metal layer 132 is, for example, a chemical vapor deposition method. In some embodiments, metal layer 132 can serve as a common source line. So far, the fabrication of the three-dimensional non-volatile memory of the present invention has been completed.

以下,將參照圖1I說明本發明的三維非揮發性記憶體的結構。此外,本實施例的三維非揮發性記憶體的製造方法雖然是以上述方法為例進行說明,然而本發明的三維非揮發性記憶體的形成方法並不以此為限。圖3為圖1I的區域A的局部放大圖。圖4為另一實施例的區域A的局部放大圖。Hereinafter, the structure of the three-dimensional non-volatile memory of the present invention will be described with reference to FIG. 1I. Further, although the method for manufacturing a three-dimensional non-volatile memory of the present embodiment has been described by taking the above method as an example, the method of forming the three-dimensional non-volatile memory of the present invention is not limited thereto. Fig. 3 is a partial enlarged view of a region A of Fig. 1I. Fig. 4 is a partial enlarged view of a region A of another embodiment.

請參照圖1I、圖3以及圖4,三維非揮發性記憶體包括基底100、電荷儲存結構112、堆疊結構127以及通道層114。堆疊結構127與電荷儲存結構112配置基底100上,且堆疊結構127配置於電荷儲存結構112的一側。堆疊結構127包括多個絕緣層102a、多個閘極124a、緩衝層121a以及阻障層122a。絕緣層102a與閘極124a交替地堆疊。緩衝層121a配置於各閘極124a與電荷儲存結構112之間且配置於絕緣層102a的表面上。阻障層122a配置於各閘極124a與緩衝層121a之間。通道層114配置於電荷儲存結構112上。1I, 3, and 4, the three-dimensional non-volatile memory includes a substrate 100, a charge storage structure 112, a stacked structure 127, and a channel layer 114. The stacked structure 127 and the charge storage structure 112 are disposed on the substrate 100, and the stacked structure 127 is disposed on one side of the charge storage structure 112. The stacked structure 127 includes a plurality of insulating layers 102a, a plurality of gates 124a, a buffer layer 121a, and a barrier layer 122a. The insulating layer 102a and the gate 124a are alternately stacked. The buffer layer 121a is disposed between each of the gates 124a and the charge storage structure 112 and disposed on the surface of the insulating layer 102a. The barrier layer 122a is disposed between each of the gates 124a and the buffer layer 121a. The channel layer 114 is disposed on the charge storage structure 112.

在一些實施例中,閘極124a的端部E2相對於阻障層122a的端部E3在遠離通道層114的方向上是凸出的。在一些實施例中,絕緣層102a的端部E1在垂直於通道層的方向上至閘極124a的端部E2的距離為L1,絕緣層102a的端部E1在垂直於通道層的方向上至阻障層122a的端部E3的距離為L2,且1<L2/L1<2。在一些實施例中,50埃<L2−L1<400埃。在一些實施例中,L1一般大於50埃。在另一些實施例中,阻障層122a的端部E3具有傾斜的表面。具體來說,阻障層122a的端部E3具有自與緩衝材料層121接觸的點向通道層114的傾斜的表面,如圖4所示。在此情況下,絕緣層102a的端部E1在垂直於通道層的方向上至端部E3的與緩衝材料層121接觸的點的距離為L2。In some embodiments, the end E2 of the gate 124a is convex relative to the end E3 of the barrier layer 122a in a direction away from the channel layer 114. In some embodiments, the end E1 of the insulating layer 102a is at a distance L1 from the end portion E2 of the gate 124a in a direction perpendicular to the channel layer, and the end E1 of the insulating layer 102a is in a direction perpendicular to the channel layer. The distance of the end portion E3 of the barrier layer 122a is L2, and 1 < L2 / L1 < 2. In some embodiments, 50 Angstroms < L2−L1 < 400 Angstroms. In some embodiments, L1 is generally greater than 50 angstroms. In other embodiments, the end E3 of the barrier layer 122a has an inclined surface. Specifically, the end portion E3 of the barrier layer 122a has an inclined surface from the point of contact with the buffer material layer 121 toward the channel layer 114, as shown in FIG. In this case, the distance E1 of the end portion E1 of the insulating layer 102a in the direction perpendicular to the channel layer to the point where the end portion E3 is in contact with the buffer material layer 121 is L2.

在一些實施例中,緩衝層121a包括與阻障層122a接觸的第一部分123以及不與阻障層122a接觸的第二部分125,其中緩衝層121a的第一部分123的厚度為T1,緩衝層121a的第二部分125的厚度為T2,且0<T1−T2≦30埃。在一些實施例中,緩衝層121a的第二部分125為不連續的。具體來說,緩衝層121a的第二部分125暴露絕緣層102a的角落(未繪示),藉此可阻斷金屬/金屬氧化物之間的實體連接(physical connection)。In some embodiments, the buffer layer 121a includes a first portion 123 that is in contact with the barrier layer 122a and a second portion 125 that is not in contact with the barrier layer 122a, wherein the first portion 123 of the buffer layer 121a has a thickness T1, and the buffer layer 121a The second portion 125 has a thickness T2 and 0 < T1 − T2 ≦ 30 angstroms. In some embodiments, the second portion 125 of the buffer layer 121a is discontinuous. Specifically, the second portion 125 of the buffer layer 121a exposes a corner (not shown) of the insulating layer 102a, thereby blocking the physical connection between the metal/metal oxide.

在一些實施例中,緩衝層121a的第二部分125中含有緩衝層121a的原子的原子濃度小於1原子%。In some embodiments, the atomic concentration of atoms in the second portion 125 of the buffer layer 121a containing the buffer layer 121a is less than 1 atomic percent.

在一些實施例中,三維非揮發性記憶體可更包括介電層115以及導體插塞116。介電層115位於開口106的下部,且通道層114 環繞介電層115。導體插塞116位於開口106的上部且與通道層114接觸。In some embodiments, the three-dimensional non-volatile memory can further include a dielectric layer 115 and a conductor plug 116. The dielectric layer 115 is located at a lower portion of the opening 106, and the channel layer 114 surrounds the dielectric layer 115. The conductor plug 116 is located at an upper portion of the opening 106 and is in contact with the channel layer 114.

綜上所述,在上述實施例的三維非揮發性記憶體及其製造方法中,藉由移除部分閘極之間的絕緣層而同時移除位於絕緣層中的階梯殘留,因此可改善在進行操作時閘極之間的干擾以及短路問題。In summary, in the three-dimensional non-volatile memory of the above embodiment and the method of fabricating the same, the step residue remaining in the insulating layer is simultaneously removed by removing the insulating layer between the gates, thereby improving Interference between the gates and short-circuit problems during operation.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧基底100‧‧‧Base

101、127‧‧‧堆疊結構101, 127‧‧‧ stacked structure

102、121‧‧‧絕緣材料層102, 121‧‧‧Insulation material layer

102a、117‧‧‧絕緣層102a, 117‧‧‧ insulation

104‧‧‧犧牲層104‧‧‧ Sacrifice layer

106、118‧‧‧開口106, 118‧‧‧ openings

109、111、135、137、139‧‧‧氧化矽層109, 111, 135, 137, 139‧‧ ‧ yttrium oxide layer

110、136、138‧‧‧氮化矽層110, 136, 138‧‧‧ tantalum nitride layer

112‧‧‧電荷儲存結構112‧‧‧ Charge storage structure

114‧‧‧通道層114‧‧‧Channel layer

115‧‧‧介電層115‧‧‧ dielectric layer

116‧‧‧導體插塞116‧‧‧ Conductor plug

120‧‧‧側向開口120‧‧‧ lateral opening

121‧‧‧緩衝材料層121‧‧‧buffer material layer

121a‧‧‧緩衝層121a‧‧‧buffer layer

122‧‧‧阻障材料層122‧‧‧Disability material layer

122a‧‧‧阻障層122a‧‧‧Barrier layer

123‧‧‧第一部分123‧‧‧Part 1

124‧‧‧閘極材料層124‧‧‧ gate material layer

124a‧‧‧閘極124a‧‧‧ gate

125‧‧‧第二部分125‧‧‧Part II

126‧‧‧閘極層126‧‧ ‧ gate layer

128‧‧‧絕緣層128‧‧‧Insulation

130‧‧‧阻障層130‧‧‧Barrier layer

132‧‧‧金屬層132‧‧‧metal layer

A‧‧‧區域A‧‧‧ area

E1、E2、E3‧‧‧端部E1, E2, E3‧‧‧ end

L1、L2‧‧‧長度L1, L2‧‧‧ length

T1、T2‧‧‧厚度T1, T2‧‧‧ thickness

圖1A、圖1B、圖1B-1、圖1C至圖1I為本發明一些實施例的三維非揮發性記憶體的製造流程剖面圖。 圖2為圖1B的上視圖。 圖3為圖1I的區域A的局部放大圖。 圖4為另一實施例的區域A的局部放大圖。1A, 1B, 1B-1, and 1C-1I are cross-sectional views showing a manufacturing process of a three-dimensional non-volatile memory according to some embodiments of the present invention. Figure 2 is a top view of Figure 1B. Fig. 3 is a partial enlarged view of a region A of Fig. 1I. Fig. 4 is a partial enlarged view of a region A of another embodiment.

Claims (10)

一種三維非揮發性記憶體,包括:基底;電荷儲存結構,配置於所述基底上;堆疊結構,配置於所述電荷儲存結構的一側,且包括:多個絕緣層與多個閘極,其中所述絕緣層與所述閘極交替地堆疊;緩衝層,配置於各閘極與所述電荷儲存結構之間且配置於所述絕緣層的表面上;以及阻障層,配置於所述各閘極與所述緩衝層之間;以及通道層,配置於所述電荷儲存結構另一側,其中所述閘極的端部相對於所述阻障層的端部在遠離所述通道層的方向上是凸出的,所述絕緣層的端部在垂直於通道層的方向上至所述閘極的端部的距離為L1,所述絕緣層的端部在垂直於通道層的方向上至所述阻障層的端部的距離為L2,且1<L2/L1<2。 A three-dimensional non-volatile memory comprising: a substrate; a charge storage structure disposed on the substrate; a stacked structure disposed on one side of the charge storage structure, and comprising: a plurality of insulating layers and a plurality of gates, Wherein the insulating layer and the gate are alternately stacked; a buffer layer is disposed between each gate and the charge storage structure and disposed on a surface of the insulating layer; and a barrier layer is disposed on the Between each of the gates and the buffer layer; and a channel layer disposed on the other side of the charge storage structure, wherein an end of the gate is away from the channel layer with respect to an end of the barrier layer The direction of the insulating layer is convex, the distance of the end of the insulating layer in the direction perpendicular to the channel layer to the end of the gate is L1, and the end of the insulating layer is perpendicular to the channel layer The distance up to the end of the barrier layer is L2, and 1 < L2 / L1 < 2. 如申請專利範圍第1項所述的三維非揮發性記憶體,其中所述緩衝層的與所述阻障層接觸的第一部分的厚度為T1,所述緩衝層的不與所述阻障層接觸的第二部分的厚度為T2,且0<T1-T2≦30埃。 The three-dimensional non-volatile memory according to claim 1, wherein a thickness of the first portion of the buffer layer in contact with the barrier layer is T1, and the buffer layer is not opposite to the barrier layer. The second portion of the contact has a thickness T2 and 0 < T1 - T2 ≦ 30 angstroms. 如申請專利範圍第2項所述的三維非揮發性記憶體,其中所述緩衝層的所述第二部分為不連續的。 The three-dimensional non-volatile memory of claim 2, wherein the second portion of the buffer layer is discontinuous. 如申請專利範圍第1項所述的三維非揮發性記憶體,其中所述阻障層的材料包括鈦、氮化鈦、鉭、氮化鉭或其組合。 The three-dimensional non-volatile memory of claim 1, wherein the material of the barrier layer comprises titanium, titanium nitride, tantalum, tantalum nitride or a combination thereof. 如申請專利範圍第1項所述的三維非揮發性記憶體,其中所述緩衝層的材料包括高介電常數的材料。 The three-dimensional non-volatile memory of claim 1, wherein the material of the buffer layer comprises a material having a high dielectric constant. 一種三維非揮發性記憶體,包括:基底;電荷儲存結構,配置於所述基底上;堆疊結構,配置於所述電荷儲存結構的一側,且包括:多個絕緣層與多個閘極,其中所述絕緣層與所述閘極交替地堆疊;緩衝層,配置於各閘極與所述電荷儲存結構之間且配置於所述絕緣層的表面上;以及阻障層,配置於所述各閘極與所述緩衝層之間;以及通道層,配置於所述電荷儲存結構另一側,其中所述閘極的端部相對於所述阻障層的端部在遠離所述通道層的方向上是凸出的,所述緩衝層的與所述阻障層接觸的第一部分的厚度為T1,所述緩衝層的不與所述阻障層接觸的第二部分的厚度為T2,且0<T1-T2≦30埃。 A three-dimensional non-volatile memory comprising: a substrate; a charge storage structure disposed on the substrate; a stacked structure disposed on one side of the charge storage structure, and comprising: a plurality of insulating layers and a plurality of gates, Wherein the insulating layer and the gate are alternately stacked; a buffer layer is disposed between each gate and the charge storage structure and disposed on a surface of the insulating layer; and a barrier layer is disposed on the Between each of the gates and the buffer layer; and a channel layer disposed on the other side of the charge storage structure, wherein an end of the gate is away from the channel layer with respect to an end of the barrier layer a direction in which a thickness of the first portion of the buffer layer in contact with the barrier layer is T1, and a thickness of the second portion of the buffer layer not in contact with the barrier layer is T2, And 0 < T1 - T2 ≦ 30 angstroms. 一種三維非揮發性記憶體的製造方法,包括:於基底上形成電荷儲存結構以及堆疊結構,所述電荷儲存結構配置於所述堆疊結構的側壁上,其中所述堆疊結構包括: 多個絕緣層與多個閘極,其中所述絕緣層與所述閘極交替地堆疊;緩衝層,配置於各閘極與所述電荷儲存結構之間且配置於所述絕緣層的表面上;以及阻障層,配置所述各閘極與所述緩衝層之間;以及於所述電荷儲存結構上形成通道層,其中所述閘極的端部相對於所述阻障層的端部在遠離所述通道層的方向上是凸出的,所述絕緣層的端部在垂直於通道層的方向上至所述閘極的端部的距離為L1,所述絕緣層的端部在垂直於通道層的方向上至所述阻障層的端部的距離為L2,且1<L2/L1<2。 A method for fabricating a three-dimensional non-volatile memory, comprising: forming a charge storage structure on a substrate, and a stacked structure, wherein the charge storage structure is disposed on a sidewall of the stacked structure, wherein the stacked structure comprises: a plurality of insulating layers and a plurality of gates, wherein the insulating layer and the gate are alternately stacked; a buffer layer is disposed between each of the gates and the charge storage structure and disposed on a surface of the insulating layer And a barrier layer disposed between the gates and the buffer layer; and a channel layer formed on the charge storage structure, wherein an end of the gate is opposite to an end of the barrier layer Protruding in a direction away from the channel layer, the end of the insulating layer being at a distance L1 from the end of the gate in a direction perpendicular to the channel layer, the end of the insulating layer being The distance from the end of the barrier layer in the direction perpendicular to the channel layer is L2, and 1 < L2 / L1 < 2. 如申請專利範圍第7項所述的三維非揮發性記憶體的製造方法,其中所述緩衝層的與所述阻障層接觸的第一部分的厚度為T1,所述緩衝層的不與所述阻障層接觸的第二部分的厚度為T2,且0埃<T1-T2≦30埃。 The method of manufacturing a three-dimensional non-volatile memory according to claim 7, wherein a thickness of the first portion of the buffer layer in contact with the barrier layer is T1, and the buffer layer is not The thickness of the second portion of the barrier layer contact is T2, and 0 angstroms <T1-T2 ≦ 30 angstroms. 如申請專利範圍第8項所述的三維非揮發性記憶體的製造方法,其中所述緩衝層的所述第二部分為不連續的。 The method of manufacturing a three-dimensional non-volatile memory according to claim 8, wherein the second portion of the buffer layer is discontinuous. 一種三維非揮發性記憶體的製造方法,包括:於基底上形成電荷儲存結構以及堆疊結構,所述電荷儲存結構配置於所述堆疊結構的側壁上,其中所述堆疊結構包括:多個絕緣層與多個閘極,其中所述絕緣層與所述閘極交替地堆疊;緩衝層,配置於各閘極與所述電荷儲存結構之間且配置 於所述絕緣層的表面上;以及阻障層,配置所述各閘極與所述緩衝層之間;以及於所述電荷儲存結構上形成通道層,其中所述閘極的端部相對於所述阻障層的端部在遠離所述通道層的方向上是凸出的,所述緩衝層的與所述阻障層接觸的第一部分的厚度為T1,所述緩衝層的不與所述阻障層接觸的第二部分的厚度為T2,且0埃<T1-T2≦30埃。 A method for fabricating a three-dimensional non-volatile memory, comprising: forming a charge storage structure on a substrate and a stacked structure, the charge storage structure being disposed on a sidewall of the stacked structure, wherein the stacked structure comprises: a plurality of insulating layers And a plurality of gates, wherein the insulating layer and the gate are alternately stacked; a buffer layer is disposed between each gate and the charge storage structure and configured On the surface of the insulating layer; and a barrier layer disposed between the gates and the buffer layer; and forming a channel layer on the charge storage structure, wherein an end of the gate is opposite to The end of the barrier layer is convex in a direction away from the channel layer, and the thickness of the first portion of the buffer layer in contact with the barrier layer is T1, and the buffer layer is not The thickness of the second portion of the barrier layer contact is T2, and 0 angstroms <T1-T2 ≦ 30 angstroms.
TW107100816A 2018-01-09 2018-01-09 Three-dimensional non-volatile memory and manufacturing method thereof TWI647822B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107100816A TWI647822B (en) 2018-01-09 2018-01-09 Three-dimensional non-volatile memory and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107100816A TWI647822B (en) 2018-01-09 2018-01-09 Three-dimensional non-volatile memory and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI647822B true TWI647822B (en) 2019-01-11
TW201931576A TW201931576A (en) 2019-08-01

Family

ID=65803808

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107100816A TWI647822B (en) 2018-01-09 2018-01-09 Three-dimensional non-volatile memory and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI647822B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI683424B (en) * 2019-04-12 2020-01-21 大陸商長江存儲科技有限責任公司 A three-dimensional memory device having a deposited semiconductor plug and a method of forming the same
CN112071845A (en) * 2019-06-10 2020-12-11 爱思开海力士有限公司 Memory device and method of manufacturing the same
TWI728877B (en) * 2020-07-23 2021-05-21 旺宏電子股份有限公司 Memory device and method of forming the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534576B (en) * 2020-11-04 2024-05-24 长江存储科技有限责任公司 Bottom select gate contact for a center stair-step structure in a three-dimensional memory device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130093005A1 (en) * 2011-10-17 2013-04-18 Jang-Gn Yun Three-dimensional semiconductor memory device
US20160351497A1 (en) * 2015-02-04 2016-12-01 Sandisk Technologies Llc Cobalt-containing conductive layers for control gate electrodes in a memory structure
US20170092733A1 (en) * 2015-09-29 2017-03-30 Sandisk Technologies Inc. Memory device containing cobalt silicide control gate electrodes and method of making thereof
US9728551B1 (en) * 2016-02-04 2017-08-08 Sandisk Technologies Llc Multi-tier replacement memory stack structure integration scheme

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130093005A1 (en) * 2011-10-17 2013-04-18 Jang-Gn Yun Three-dimensional semiconductor memory device
US20160351497A1 (en) * 2015-02-04 2016-12-01 Sandisk Technologies Llc Cobalt-containing conductive layers for control gate electrodes in a memory structure
US20170092733A1 (en) * 2015-09-29 2017-03-30 Sandisk Technologies Inc. Memory device containing cobalt silicide control gate electrodes and method of making thereof
US9728551B1 (en) * 2016-02-04 2017-08-08 Sandisk Technologies Llc Multi-tier replacement memory stack structure integration scheme

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI683424B (en) * 2019-04-12 2020-01-21 大陸商長江存儲科技有限責任公司 A three-dimensional memory device having a deposited semiconductor plug and a method of forming the same
CN112071845A (en) * 2019-06-10 2020-12-11 爱思开海力士有限公司 Memory device and method of manufacturing the same
US11729979B2 (en) 2019-06-10 2023-08-15 SK Hynix Inc. Memory device and method for fabricating the memory device
CN112071845B (en) * 2019-06-10 2024-02-13 爱思开海力士有限公司 Memory device and method of manufacturing the same
TWI728877B (en) * 2020-07-23 2021-05-21 旺宏電子股份有限公司 Memory device and method of forming the same

Also Published As

Publication number Publication date
TW201931576A (en) 2019-08-01

Similar Documents

Publication Publication Date Title
CN110121774B (en) Method of forming a gate structure of a three-dimensional memory device
US12027424B2 (en) Semiconductor integrated circuit
TWI647822B (en) Three-dimensional non-volatile memory and manufacturing method thereof
CN107611129B (en) Three-dimensional nonvolatile memory and manufacturing method thereof
JP7524192B2 (en) Three-dimensional memory device and method for fabricating same
JP6355139B2 (en) Memory structure having self-aligned floating gate and control gate and associated method
KR20120030173A (en) Method of manufacturing a semiconductor device
US11004863B2 (en) Non-volatile memory with gate all around thin film transistor and method of manufacturing the same
TWI832034B (en) Semiconductor device and manufacturing method thereof
US7087489B2 (en) Method of fabricating trap type nonvolatile memory device
US10424593B2 (en) Three-dimensional non-volatile memory and manufacturing method thereof
KR100673228B1 (en) Method of manufacturing a nand flash memory device
US6350696B1 (en) Spacer etch method for semiconductor device
TWI635573B (en) Memory device and method of manufacturing the same
US20080128789A1 (en) Semiconductor memory device and method of manufacturing the same
JP2006191053A (en) Process for fabricating semiconductor memory
TW202207468A (en) Semiconductor device and method
TW201834211A (en) Three-dimensional memory device and method of forming the same
CN110349908B (en) Self-aligned contact structure and method for forming the same
CN110071113B (en) Three-dimensional nonvolatile memory and manufacturing method thereof
TW201624622A (en) Non-volatile memory cell, NAND-type non-volatile memory and method of manufacturing thereof
US20240347388A1 (en) Semiconductor integrated circuit
US20240304681A1 (en) Semiconductor device and method of forming the same
US20240136425A1 (en) Semiconductor device and method for manufacturing the same
US20230290642A1 (en) Method for forming semiconductor device