TW201728539A - 用於加熱金屬容器的裝置和方法 - Google Patents

用於加熱金屬容器的裝置和方法 Download PDF

Info

Publication number
TW201728539A
TW201728539A TW105134043A TW105134043A TW201728539A TW 201728539 A TW201728539 A TW 201728539A TW 105134043 A TW105134043 A TW 105134043A TW 105134043 A TW105134043 A TW 105134043A TW 201728539 A TW201728539 A TW 201728539A
Authority
TW
Taiwan
Prior art keywords
ring
container
flange
wall
line segment
Prior art date
Application number
TW105134043A
Other languages
English (en)
Other versions
TWI709543B (zh
Inventor
吉勃特迪 安傑利斯
春鴻契爾西 何
Original Assignee
康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康寧公司 filed Critical 康寧公司
Publication of TW201728539A publication Critical patent/TW201728539A/zh
Application granted granted Critical
Publication of TWI709543B publication Critical patent/TWI709543B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • C03B7/07Electric means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

揭示一種製造熔融玻璃的設備及方法。設備包括用於輸送熔融玻璃的容器與至少一個凸緣,該至少一個凸緣經配置以透過凸緣供應電流至容器,該凸緣包括完全環繞容器於封閉迴路中延伸的第一環,該第一環包含第一部分與第二部分,第一部分包括第一厚度,而第二部分包括第二厚度,第二厚度與第一厚度不同,其中第一部分與第二部分重疊於凸緣的平面中,而使得第一部分的至少一個部分係位於第二部分之至少一個部分與容器壁之間,而第一部分或第二部分都未完全環繞容器延伸。亦揭示一種使用所揭示凸緣製造玻璃的方法。

Description

用於加熱金屬容器的裝置和方法
本發明係關於一種加熱金屬容器的設備,且更特別言之,係為一種加熱金屬容器的設備,該金屬容器經配置以輸送材料,而容納於其中的材料則由該容器直接電加熱。舉例而言,該材料可為熔融玻璃。
在商業規模上的玻璃製造一般而言是在耐火陶瓷熔融爐中進行,其中原生材料(批料)被添加至熔融爐,並被加熱到批料經受化學反應以製造熔融玻璃的溫度。可以使用許多加熱批料的方法,包含燃氣燃燒器、電流或二者。在所謂的混合處理中,來自一或更多個燃氣燃燒器的氣焰最初加熱該批料。當批料的溫度提高並形成熔融玻璃時,材料的電阻抗降低,因此可透過安裝在熔融爐側壁及/或底部中的電極將電流引入到熔融玻璃中。電流從熔融玻璃內部加熱,而燃氣燃燒器從熔融玻璃上方加熱。在一些實施例中,可運用浸沉燃燒方式。
熔融玻璃的下游處理(例如,澄清與均質化)可在熔融爐結構的某些部分中進行,或在位於熔融爐下游並以導管連接至熔融爐的其他容器中進行。為了在輸送熔融玻璃時維持熔融玻璃的適當溫度,可加熱熔融玻璃。在一些處理中(如澄清處理),熔融玻璃可在澄清容器中加熱至大於熔爐溫度的溫度,以促成從熔融玻璃更完全地移除氣泡。在熔融爐下游的製造設備的其他部分中,可冷卻熔融玻璃,同時流經一或更多個導管,以讓熔融玻璃具有適合成形的黏滯性。然而,可透過控制熱能增加的方式限制冷卻,以避免過快的冷卻速度。
對於光學品質玻璃的製造而言(例如,適合作為顯示器玻璃的玻璃,用於如電視、電腦螢幕、平板、智慧型手機、及類似物的裝置中使用的顯示面板製造),下游處理裝備一般係由貴金屬形成,如鉑族金屬。鉑及/或其合金特別有用於熔融玻璃處理裝備的製造,因為其為可採用的、具有高熔化溫度,並具有良好的耐腐蝕性。
在傳統上,熔融爐下游的金屬容器(包括導管與其他處理裝備)係藉由外部電加熱元件加熱,例如安裝於環繞容器放置之耐火絕緣材料中的繞組。這些繞組經常為鉑繞組或鉑合金。儘管這可滿足於小體積的操作,但應理解,若熔融玻璃的體積必須增加(例如在以每小時或每天為基礎下)時,則必須能夠利用簡單提高熔融玻璃通過處理裝備之流率的方式,以避免與增加新製造裝備相關聯的顯著資本支出。然而,提高的流動體積可能需要較大的熱能流入。在一些時候,這在利用外部加熱元件的條件下變得難以達成。因此,玻璃製品的現代大尺寸玻璃製造,以及特別是利用熔融玻璃通過貴金屬容器的方式所製造的玻璃製品,係運用藉由在容器本身之中建立電流以加熱容器並因此加熱容器內的熔融玻璃的方式,進行所謂的熔融玻璃直接加熱。
其他的考量包括在將熔融玻璃引入系統之前,初始系統準備期間的下游金屬處理裝備的預先加熱。在這些情況下,在將熔融玻璃引入容器之前,可能需要大電流以達到所需溫度。對容器的連接必須能夠承載此電流,而不對於容器或連接部件造成有害影響。
在最基本的實施例中,下游處理裝備可包含金屬容器,金屬容器包括至少二個連接至其的凸緣。凸緣接著與電流源電氣連接,而通常包括介於凸緣主體與電纜(例如,匯流排)之間的電極部分,而從功率源傳送電流至凸緣。習知的凸緣設計可能並未充分環繞容器周圍以分佈電流,因為在凸緣中的電流並不被考量而較為簡單,這可能環繞容器而建立熱點。這對於非圓形容器可能特別有問題,像是具有長橢圓形橫斷面的導管。因此,需要一種凸緣設計,當凸緣耦接至容器時環繞容器分佈更均勻的電流,以避免容器壁中的熱點與其中熔融玻璃的不均勻加熱。
本文所述係為用於在玻璃製造設備中附加至容器的凸緣。凸緣係用於將電流分佈至凸緣所附加之容器之壁,例如金屬導管,而藉此加熱容器以及可能存在於容器中的熔融玻璃。根據本發明的凸緣包括以貴金屬形成而具有抵抗高溫能力的第一環,如鉑族金屬或其合金之一者所形成。適合的貴金屬包括鉑族金屬,鉑、銠、銥、釕、鈀、鋨與其合金。根據本發明之第一環包含至少二個個別部分,其厚度可以不同。個別部分在材料上亦可以不同,而使得個別部分具有不同的材料電阻抗。同時,儘管第一環完整環繞容器於封閉迴路中延伸,但第一環的個別部分的任一者都未完全環繞整個容器延伸。因此,個別部分係為分離區域,其中一個部分可以具有與另一部分不同(亦即,小於或大於)的厚度。如本文所述之示例性實施例,從容器的中心沿著一個角位置朝外無限延伸的線段可以只與第一環的一個部分交叉。然而,對於沿著不同角位置延伸的另一線段而言,該線段係可以穿過第一環的二個部分的寬度。因此,第一環的部分係以邊緣對邊緣形式沿著邊緣的某些區域重疊,但任一部分都未完全環繞容器延伸。
第一環中的複數個部分(特別是當第一環係為凸緣的最內環時)係用於以避免電流沿著凸緣的電極部分與另一凸緣(附加至容器,並與第一凸緣間隔)的電極部分之間的最短傳導路徑的高集中方式引導電流,亦即沿著電極與容器之間的線性路徑,以及沿著最靠近電極部分的位置的容器壁。舉例而言,若二個間隔凸緣的電極部分都定向於容器頂部,則凸緣之間的最短傳導路徑係沿著容器頂部。本發明的實施例引導電流朝向容器的側部與底部,藉此降低在凸緣頂部處與容器頂部處的電流。
應理解,本文所述之原則與示例性實施例儘管敘述於玻璃製造設備的上下文,但可關於用於處理在金屬容器中輸送或容納之其他材料的其他設備。
因此,在一個實施例中,敘述用於處理材料之設備包含容器,該容器包含壁,該容器經佈置以輸送材料。凸緣係附加至容器,並經配置以傳送電流至容器壁,凸緣包含完全環繞容器於封閉迴路中延伸的第一環,第一環包括包含第一厚度的第一部分與第二厚度的第二部分,第二厚度與第一厚度不同。容器在垂直於容器縱軸之平面中的橫斷面形狀可為圓形或長橢圓形。在一些實施例中,舉例而言,容器可為澄清容器。在一些實施例中,材料係為熔融玻璃。
第一環的第一部分與第二部分在凸緣的平面重疊,因此第一部分係位於第二部分與容器壁之間,而第一部分或第二部分都未完全環繞容器延伸。在一些實施例中,第一環的第一部分的厚度不同於第二部分的厚度。舉例而言,第一環的第一部分的厚度可以小於第一環的第二部分的厚度。
凸緣可進一步包含環繞第一環在封閉迴路中延伸的第二環。第二環的厚度可以大於第一環的第一或第二部分之任一或二者的厚度。第二環可為最外環。
第一環可包含第一金屬,而第二環包含與第一金屬不同的第二金屬。舉例而言,第一環可包含鉑族金屬或其合金,而第二環可例如包含鎳、銅或其合金,但不受此限制。在一些實施例中,第一環可為鉑-銠合金。
根據本發明的實例,從凸緣平面中的容器的中心線段延伸且垂直於中心線段的第一徑向線段可以穿過第一環的第一部分,而不與第一環的第二部分交叉。第一徑向線段可以與容器的短軸平行。
第一環可進一步包含第三部分,其中第三部分並未完全環繞容器延伸。在示例性實施例中,第三部分可位於第一部分與第二部分之間。
在另一實施例中,敘述一種包含容器的製造玻璃的設備,該容器包含壁與附加至容器的凸緣。容器在垂直於容器縱軸之平面中的橫斷面形狀可為圓形或長橢圓形。在一些實施例中,舉例而言,容器可為澄清容器。凸緣經配置以傳送電流至容器壁。凸緣可包含第一環,第一環完全環繞容器延伸,並在封閉迴路中附加至容器壁,第一環包含第一部分與第二部分,第一部分包括第一厚度,第二部分包括第二厚度,第二厚度與第一厚度不同。然而,第一部分或第二部分之任一者或二者可為均勻的厚度。第一部分或第二部分都未完全環繞容器延伸,而可存在至少一個徑向線段,從凸緣平面中的容器之中心線段延伸並垂直於中心線段,而穿過第一部分與第二部分二者的寬度。凸緣可進一步包含第二環,第二環於封閉迴路中完全環繞第一環延伸。
第一環可包含第一金屬,而第二環包含與第一金屬不同的第二金屬。
在一些實施例中,第二環環繞第一環的整個周圍而接觸第一環,而第一部分與第二部分二者接觸第二環。
在另一實施例中,敘述一種製造電加熱容器的方法,該容器包含電氣凸緣,經配置以供應電流至其所附加的容器,電氣凸緣於實質上垂直於容器的中心線段的平面中環繞容器,該方法包含以下步驟:(a)將電氣凸緣參數化,電氣凸緣包含第一環與一第二環,第一環包含第一金屬,第二環包含第二金屬,第二金屬與第一金屬不同,第一環包含凸緣平面中具有不同厚度的複數個徑向重疊部分,其中第一環包含第一與第二重疊部分,且沒有重疊部分完全環繞容器延伸。參數化之該步驟可包括以下步驟:決定重疊位置的厚度、形狀、及位置;(b)對於透過凸緣供應至容器的總預定電流,計算在第一環中的預定位置處的電流密度;及(c)若預定位置處的電流密度之間的差異大於預定電流密度數值,則修改重疊位置的尺寸、形狀、及位置中之至少一者;接著(e)重複步驟(b)及(c),直到第一環的電流密度小於預定電流密度數值。預定電流密度數值可為絕對電流密度值或百分比電流密度值。
本發明的實施例可以為了包含供應電流的相鄰凸緣的容器,而在最靠近凸緣的電極部分的位置處,在容器凸緣接點處產生電流密度,而電流密度可以小於相鄰凸緣之間的中點處的電流密度。在一些實例中,此位置可在容器頂部,其中電極部分從凸緣主體於12點鐘位置垂直朝上延伸。在其他實例中,電極部分可相對於凸緣主體於6點鐘位置垂直朝下延伸。在另一實例中,電極部分可相對於凸緣主體於3點鐘或9點鐘位置水平延伸。應注意,介於前述位置之間的位置亦是可能的。在相鄰凸緣之電極部分從凸緣主體於12點鐘位置(亦即,靠近該容器頂部)垂直朝上延伸的實例中,在延伸於相鄰凸緣之間的線段上,或在相鄰凸緣之間的線段上(例如在12點鐘的位置處),在線段上的最大電流密度以及在線段上的容器凸緣接點處的電流密度之間的電流密度差異可以等於或小於10%,例如,等於或小於6%,或等於或小於5%,例如在約4%至約10%的範圍中,而包括其之間的所有範圍與子範圍。
在示例性實施例中,沿著容器上最靠近凸緣電極部分之週緣(角度)位置中的線段的最大電流密度(例如在12點鐘位置的最大電流密度)係發生在相鄰凸緣之間的總距離約20%的位置內,例如,等於或小於約18%,等於或小於約15%,或等於或小於約13%。
應瞭解,上述一般描述與以下詳細描述二者皆描述本發明的實施例,並且意欲提供用於理解所敘述及請求的實施例之本質及特性之概述或框架。包括附隨圖式以提供對實施例的進一步理解,且附隨圖式併入本說明書中並構成本說明書的一部分。圖式描述本發明的各種實施例,並與該敘述一起用於說明其原則與操作。
現在將參考本發明之示例性實施例所圖示之隨附圖式,於此後對於設備與方法進行更完整的敘述。在圖式各處儘可能使用相同的元件符號以指稱相同或相似的部件。然而,本發明可以用許多不同形式實現,且不應視為受限於本文所記載的實施例。
本文所表示之範圍可為從「約」一個特定值及/或到「約」另一特定值。當表示此類範圍時,另一實施例包括從一個特定值及/或到另一特定值。同樣地,當以使用前置詞「約」的近似方式表示值時,將可瞭解到特定值將形成另一實施例。可進一步瞭解範圍的每一端點明顯與另一端點有關,並獨立於另一端點。
本文所使用的方向用詞(例如上、下、右、左、前方、後方、頂部、底部)係只對於參照圖式的圖示成立,而不預期為暗示絕對方向。
除非另外明確陳述,否則並不視為本文所述任何方法必須建構為以特定順序施行其步驟。因此,在方法請求項並不實際記載其步驟之順序或者不在請求項或敘述中具體說明步驟係限制於特定順序的情況中,在任何方面都不以任何方式推斷其順序。這適用於為了說明的任何可能非表述基礎,包括對於佈置或操作流程之佈置的邏輯主題;文法組織或標點所推衍的通用意義;在說明書中所敘述之實施例的數量或類型。
當在此使用時,除非上下文明確另外指示,否則單數型「一」、「一個」與「該」包括複數指稱。因此,舉例而言,除非上下文明確另外指示,否則對於「一」部件的參照包括具有二或更多個部件的態樣。
本發明的態樣包括將批料處理成熔融玻璃的設備,而更特定為用於處理熔融玻璃的設備。本發明的熔爐可在加熱氣體、液體及/或固體的廣泛應用範圍中應用。在一個實例中,本發明的設備係敘述為參照一種玻璃熔融系統,經配置以將批料熔融成熔融玻璃,並將熔融玻璃輸送至下游處理裝備。
本發明的方法可以用各種不同方法處理熔融玻璃。舉例而言,可藉由將熔融玻璃加熱至大於初始溫度的溫度,處理熔融玻璃。在進一步實例中,可藉由維持熔融玻璃的溫度或降低可能因為輸入熱能至熔融玻璃之中而發生的熱損失率,處理熔融玻璃,並藉此控制熔融玻璃的冷卻速率。
本發明的方法可以利用澄清容器或混合容器(例如攪拌容器)處理熔融玻璃。可選擇地,設備可包括一或更多個其他部件,例如熱管理裝置、電子裝置、機電裝置、支撐結構或其他部件,以促成包括輸送容器(導管)之玻璃製造設備的操作,該輸送容器係用於從一個位置將熔融玻璃運送至另一位置。
第1圖所示係為示例性玻璃製造設備10。在一些實例中,玻璃製造設備10可包含玻璃熔融爐12,該玻璃熔融爐12可包括熔融容器14。除了熔融容器14之外,玻璃熔融爐12可以選擇性包括一或更多個附加部件,例如經配置以加熱批料並將批料轉化成熔融玻璃的加熱元件(例如,燃燒器或電極)。在進一步實例中,玻璃熔融爐12可包括熱管理裝置(例如,絕緣、加熱及/或冷卻部件),經配置以控制熔融玻璃的溫度。在另一實例中,玻璃熔融爐12可包括電子裝置及/或機電裝置,經配置以促成將批料材料熔融成熔融玻璃。又進一步地,玻璃熔融爐12可包括支撐結構(例如,支撐底座、支撐組件等)或其他部件。
玻璃熔融容器14通常以耐火材料構成,例如耐火陶瓷材料。在一些實例中,玻璃熔融容器14可由耐火陶瓷磚建構,例如包含氧化鋁或氧化鋯的耐火陶瓷磚。
在一些實例中,玻璃熔融爐可整合成玻璃製造設備的部件,經配置以製造玻璃帶。在一些實例中,本發明的玻璃熔融爐可整合成玻璃製造設備的部件,玻璃製造設備包含狹槽拉引設備、浮浴設備、包括融合下拉設備、上拉設備、壓軋設備、管拉伸設備或其他玻璃帶製造設備的下拉設備。做為實例,第1圖示意性圖示為融合下拉設備10之部件的玻璃熔融爐12,用於玻璃帶的融合拉引,以在後續處理成玻璃片。
玻璃製造設備(例如,融合下拉設備10)可選擇性包括上游玻璃製造設備16,位於玻璃熔融容器14相對於熔融玻璃流動方向的上游。在一些實例中,上游玻璃製造設備16的一部分或整個上游玻璃製造設備16可整合成玻璃熔融爐12的一部分。
如所述實例所示,上游玻璃製造設備16可包括批料儲存箱18、批料傳送裝置20、及連接至批料傳送裝置的馬達22。儲存箱18可經配置以儲存大量批料24,而能如箭頭26所指示餽送至玻璃熔融爐12的熔融容器14。在一些實例中,批料傳送裝置20可由馬達22啟動,而經配置以從儲存箱18傳送預定量的批料24至熔融容器14。在進一步實例中,馬達22可啟動批料傳送裝置20,以依據來自熔融容器14下游的熔化玻璃的感測水平,以受控制的速率引入批料24。熔融容器14中的批料24可在之後加熱,以形成熔融玻璃28。
玻璃製造設備10亦可選擇性包括下游玻璃製造設備30,位於玻璃熔融爐12相對於熔融玻璃流動方向的下游。在一些實例中,下游玻璃製造設備30的一部分可整合成玻璃熔融爐12的一部分。舉例而言,以下論述的第一連接導管32或下游玻璃製造設備30的其他部分可整合成玻璃熔融爐12的一部分。下游玻璃製造設備的元件(包括第一連接導管32)可由貴金屬形成。適合的貴金屬包括由鉑、銥、銠、鋨、釕、及鈀與其合金構成之金屬群集所選擇的鉑族金屬。舉例而言,玻璃製造設備的下游部件可由包括重量為70至90%的鉑與重量為10至30%的銠的鉑銠合金形成。
下游玻璃製造設備30可包括第一調整容器(例如澄清容器34),位於熔融容器14下游,並利用上述第一連接導管32連接至熔融容器14。在一些實例中,熔融玻璃28可以用重力藉由第一連接導管32的方式從熔融容器14餽送至澄清容器34。舉例而言,重力可以造成熔融玻璃28從熔融容器14通過第一連接導管32的內部通道至澄清容器34。
在澄清容器34內,可以用各種技術從熔融玻璃28移除氣泡。舉例而言,批料24可包括例如氧化錫的多價化合物(亦即,澄清劑),其在受熱時經受化學還原並釋放氧氣。其他適合的澄清劑包括砷、銻、鐵、及鈰,但不限制於此。澄清容器34係加熱至高於熔融容器溫度的溫度,藉此加熱澄清劑。由澄清劑的溫度引致化學還原所產生的氧氣氣泡上升通過澄清容器內的熔融玻璃,其中在熔融爐中產生之熔融氣體可聚集至由澄清劑產生的氧氣氣泡內。變大的氧氣泡接著可以上升至澄清容器中的熔融玻璃的自由表面,並在之後排出。
下游玻璃製造設備30可進一步包括第二調整容器(例如混合容器36),位於澄清容器34下游,以混合熔融玻璃。熔融玻璃混合容器36可用於提供均勻的熔融玻璃成分,藉此減少或消除非均勻性的線,否則其可能存在於離開澄清容器的經澄清熔融玻璃內。如圖所示,澄清容器34可利用第二連接導管38連接至熔融玻璃混合容器36。在一些實例中,熔融玻璃28可以用重力藉由第二連接導管38的方式從澄清容器34餽送至混合容器36。舉例而言,重力可以造成熔融玻璃28從澄清容器34通過第二連接導管38的內部通道至混合容器36。
下游玻璃製造設備30可進一步包括另一調整容器(例如傳送容器40),位於混合容器36下游。傳送容器40可以調整餽送至下游成形裝置的熔融玻璃28。舉例而言,傳送容器40可作為堆積器及/或流動控制器,以調整並提供熔融玻璃28藉由出口導管44的方式至成形主體42的一致流動。如圖所示,混合容器36可利用第三連接導管46連接至傳送容器40。在一些實例中,熔融玻璃28可以用重力藉由第三連接導管46的方式從混合容器36餽送至傳送容器40。舉例而言,重力可以用於驅動熔融玻璃28從混合容器36通過第三連接導管46的內部通道至傳送容器40。
下游玻璃製造設備30可進一步包括成形設備48,包含上述成形主體42,成形主體42包括入口導管50。出口導管44可放置以從傳送容器40將熔融玻璃28傳送至成形設備48的入口導管50。在融合成形處理中,成形主體42可包含位於成形主體的上方表面的水槽52,並使成形表面54匯聚,以沿著成形主體的底部邊緣(根部)56匯聚。經由傳送容器40、出口導管44與入口導管50傳送至成形主體水槽52的熔融玻璃,從水槽壁溢流,並沿著匯聚成形表面54下降,而成為熔融玻璃分離流。熔融玻璃分離流在下方並沿著根部56結合,以製造單一玻璃帶58,該單一玻璃帶58係藉由對玻璃帶施加張力的方式從根部56拉引,例如以重力或牽拉輥(未圖示)的方式施加,以隨著玻璃冷卻及熔融玻璃黏滯性增加而控制玻璃帶的尺寸,因此玻璃帶58經歷黏彈性轉換,並具有使玻璃帶58穩定尺寸特性的力學性質。玻璃帶接著可由玻璃分離設備(未圖示)分離成個別玻璃片。
與下游玻璃製造設備30的其他部件不同,成形主體42通常以耐火陶瓷材料形成,例如氧化鋁(氧化鋁)或氧化鋯(氧化鋯),然而亦可使用其他耐火材料。在一些實例中,成形主體42為單塊陶瓷材料,其已經經過等壓平衡的受壓及燒結,接著加工成適當形狀。在其他實例中,成形主體可以由結合二或更多個耐火材料塊的方式成形,例如陶瓷耐火材料。成形主體42可包括一或更多個貴金屬部件,經配置以引導熔融玻璃流過成形主體及來自成形主體的流動。
當熔融玻璃28從熔融容器14行進至成形主體42時,熔融玻璃28在熔融玻璃所流過的各種貴金屬容器內受到熱調節。舉例而言,當熔融玻璃28行進通過第一連接導管32至澄清容器34時,熔融玻璃可加熱至高於在熔融容器中的熔融玻璃之溫度的溫度,以促成澄清處理。當熔融玻璃沿著澄清容器的長度流動時,可在澄清容器內進一步加熱熔融玻璃28。如先前所述,澄清容器中相對於熔融容器相對高的溫度,兩方都強化澄清劑的化學還原,藉此提高澄清劑的氧氣釋放,並降低熔融玻璃的黏滯性,藉此促成熔融玻璃內所夾帶的氣泡上升至熔融玻璃的自由表面。因此,第一導管32與澄清容器34可經配置以包括凸緣,用於引導電流通過第一導管與澄清容器的壁。
當熔融玻璃從澄清容器34通過第二導管38輸送至混合容器36時,必須避免熔融玻璃的溫度下降至低於熔融玻璃能容易混合(均勻化)的溫度,例如藉由位於混合容器內的可旋轉攪拌棒進行混合。若混合容器中的熔融玻璃的溫度變成過於黏滯,混合效率可能受到負面影響,而降低使熔融玻璃均勻化時的混合處理的效果。因此,位於澄清容器34與混合容器36之間的第二連接導管38以及混合容器本身可經配置為具有凸緣,以引導電流通過第二導管與混合容器的壁。
藉由傳送容器40傳送至成形主體42的熔融玻璃28必須具有適當的黏滯性,以讓玻璃帶能夠成形。若熔融玻璃的黏滯性過低,則對玻璃帶施加適當的張力可能變得困難或無法進行。若黏滯性過高,則厚度控制可能變成問題。此外,隨著熔融玻璃28流過成形主體42的成形表面54,熔融玻璃28的溫度必須受到控制,以避免熔融玻璃本身的結晶化(反玻化)及避免成形主體材料的結晶化與沈降,其可能隨著熔融玻璃流過成形主體的成形表面而溶解至熔融玻璃。為了在熔融玻璃28傳送至成形主體42時,達到熔融玻璃28的適當溫度及黏滯性,隨著熔融玻璃行進通過第三連接導管46從熔融玻璃的淨熱損必須有效控制。因此,第三連接導管46可經配置以具有凸緣,以引導電流通過第三導管的壁。
玻璃製造設備10的前述部件的任一者或所有都可經配置以具有一或更多個凸緣。凸緣可經配置而使得供應至凸緣的電流可受到分別控制,以產生各種溫度區域。舉例而言,澄清容器34可包含複數個凸緣,其中二或更多格凸緣的群集可受控制,以沿著澄清容器提供不同溫度的區域。應理解,不同溫度的區域可以沿著下游玻璃製造設備的金屬部件在任一或更多個位置中建立。以下敘述提供對於適合在玻璃製造設備內使用之凸緣的詳細論述,例如在下游玻璃製造設備內使用,包括其建構與其操作。
第2圖所示係為根據本發明的實施例的附加至容器102之示例性凸緣100的橫斷面側視圖。舉例而言,容器102可為包含下游玻璃製造設備30的金屬容器或可包含玻璃製造設備10的任何其他金屬容器或其他金屬部件的任一者,下游玻璃製造設備30係在上述熔融爐12與成形主體42之間,包括第一、第二、及第三導管32、38、及46、澄清容器34、混合容器36、傳送容器40、出口導管44、及入口50。容器102包含壁104,封閉經配置以接收熔融玻璃流的內部空間106,並包括沿著容器的長度延伸的中心縱軸108,以及在垂直於縱軸108之凸緣平面中的橫斷面形狀。縱軸108係位於容器橫斷面的中心處,而亦可稱為容器中心線段108。容器102的橫斷面形狀可以在垂直於縱軸108的平面中,以沿著容器的長度(沿著縱軸108)位置為函數,變化形狀及尺寸二者,但在第2圖的實例中係圖示為圓形橫斷面。舉例而言,下游玻璃製造設備內的某些導管可包括過渡導管,以形成從具有一個橫斷面形狀的導管至具有不同橫斷面之另一導管的過渡器件。
凸緣100包含主體部分110,主體部分110包括第一環112、第二環114、及附加至主體部分110的最外環的電極部分116。在一些實例中,第二環114可為最外環。舉例而言,電極部分116係直接連接至最外環,如第2圖所示之第二環114。在一些實例中,電極部分116可以與最外環整合並與其一起形成。在其他實例中,電極部分116可分別形成並以焊接方式附加至最外環,例如第二環114。當在此使用時,第一環112可為最內環並與容器102緊密接觸,例如藉由將第一環112的內側邊緣焊接至容器壁104。
在第2圖所示之實施例中,第一環112包含第一金屬,在第一環112為最內環時,第一金屬兼容於容器102,並具有生存於容器的外部表面(例如,壁104)的高溫環境下長時間而不顯著退化的能力。舉例而言,第一環112可包含貴金屬,例如鉑族金屬或其合金,而在一些實施例中可包括與容器102相同的貴金屬。舉例而言,第一環112可包含鉑銠合金,其中包含合金重量70至90%的鉑與合金重量20至30%的銠。第一環112的所有部分都可由相同金屬形成,或是第一環112可包括不同金屬。舉例而言,第一環112可包含以不同百分比組成的鉑銠合金,或包括其他合金材料以修改第一環的電阻抗,以改變第一環的力學性質(例如強度與或硬度),或是用以取得可由合金所需要或達到的任何其他期望屬性。第一環112進一步包括寬度W1,其中寬度W1係沿著垂直於縱軸108的線段所量得。在一些實施例中,可相對於環繞第一環的角度位置而變化寬度W1。在其他實施例中,舉例而言,在第2圖的實施例中,寬度W1可在角度上為常數。
第二環114與容器102的壁104間隔,並位於環繞第一環112的封閉迴路中,且較第一環112離容器壁104更遠距離,而因此暴露於較第一環112更低的溫度,其若需要的話可包含與製造第一環112時使用的金屬或多種金屬不同的金屬。舉例而言,儘管第一環112可由包括鉑族金屬或其合金的貴金屬形成,但第二環114亦可由較不昂貴及/或較低的抗高溫性,然而仍為具有電傳導的金屬形成,例如像是鎳、銅、或其合金,但不限於此。然而,如上所述,在一些實例中,第二環114可為含鉑環。第二環114進一步包括寬度W2,其中W2係沿著垂直於縱軸108的線段所量得。寬度W2可隨著相對於容器102(例如縱軸108)的角度位置為函數而變化,或是寬度W2實質上為常數。在一些實施例中,第二環114可例如藉由焊接方式直接與第一環112結合。在其他實施例中,第二環114可以與第一環112間隔,而不與第一環112直接接觸。舉例而言,凸緣100可包含第一環112與第二環114之間的一或更多個中間環。
在一些實施例中,最外環的厚度(例如在垂直於凸緣100的主要表面的方向中)可以隨著環繞凸緣所附加之容器的角度位置為函數而變化。舉例而言,最外環可由鎳、銅或其他相較於鉑或其合金為較不昂貴及/或較低抗高溫性的金屬形成,其中相鄰於電極部分116的最外環的區域相較於最外環的其他區域更厚。較厚部分可相鄰於電極部分116,但不直接在電極部分116與第一環112的第一部分118之間(例如,參照第6圖、第7圖、及第8圖)。舉例而言,較厚部分可以比其他部分厚最多50%或大於50%,例如在約厚25%至約厚75%的範圍中,例如在約厚30%至約厚70%的範圍中,在約厚35%至約厚60%的範圍中,或在約厚40%至約厚55%的範圍中。最外環的較厚部分協助操縱環繞容器周圍的供應電流,並最小化(例如消除)最外環上靠近電極部分116的熱點的形成。此類過熱情況可能因為在電極部分中或環繞電極部分的電流密度過高而發生。相鄰電極部分116但不在電極部分116與第一環112之間的最外環的較厚部分呈現增加的橫斷面區域,並由於電阻加熱而因此形成降低的電流密度與降低的溫度。因此,相鄰電極116的最外環的部分可以較相對於電極部分的最外環的部分更厚。如上所述,最外環可為第二環114。然而,在其他實施例中,第二環114可以是最外環與第一環112中間的環。
如先前敘述,第一環112環繞容器102於封閉迴路中延伸,而在第一環112為最內環的情況中,第一環112可以沿著第一環112的內側邊緣環繞容器壁104的外側周圍附加至容器102。舉例而言,第一環112的內側邊緣可以焊接至容器壁104的外部表面。同樣地,在如第2圖所述的實例中,第二環114的內側邊緣可以直接附加至第一環112的外側邊緣。在其他實例中,如先前敘述,附加介入環可位於第一環112與第二環114之間,亦即在第二環114內側邊緣與第一環112外側邊緣之間。此類附加介入環可包括例如鉑族金屬或其合金的貴金屬。此外,附加環(例如最外環)可位於第二環114的外側。
如由第2圖進一步描述,第一環112包含第一部分118,第一部分118包含第一厚度T1。舉例而言,T1可在約40密耳(約0.1公分)至約50密耳(約0.13公分)的範圍中。在一些實施例中,第一部分118可以環繞小於容器102的整體周圍的二分之一(<180度)延伸。在一些實施例中,第一部分118可環繞等於或大於容器102整體周圍的二分之一,但小於容器102的完整周圍(>180度但小於360度)延伸。舉例而言,考慮第2圖所示的包含圓形橫斷面的容器,該圖式進一步描繪電極部分116朝著遠離容器102的頂部垂直延伸。儘管第2圖僅描述朝著遠離容器102的方向從凸緣100延伸的單一電極166,但凸緣100可包括二或更多個電極部分。進一步地,考量在紙面中(亦即,在凸緣平面中)穿過凸緣100延伸垂直於縱軸108的線段120,包括穿過電極116與容器102,且其中容器102的第一直徑122係位於線段120上。亦考量垂直於線段120並延伸穿過及垂直於縱軸108的第二線段124,而其中容器102的第二直徑126係位於線段124上。在所示實施例中,線段120係圖示為垂直及正交於線段124,線段124係圖示為水平,然而亦可應用不同於垂直與水平的定向。根據第2圖所示之實施例,第一環112的第一部分118相對於水平線段124環繞大於容器壁104的整個上方的二分之一延伸。這是以環繞容器壁104延伸超過(至下方)水平線段124的第一部分118所描繪。
前述敘述可藉由想像在凸緣100的平面中垂直於縱軸(中心線段)108並從縱軸108無限朝外延伸的二個徑向線段(第一徑向線段130與第二徑向線段132)的另一方式檢視,其中第一徑向線段130僅與第一部分118上在垂直線段120的一個側的單一點(點A)相交,而第二徑向線段132與第一部分118上在垂直線段120的相對側的不同單一點(點B)相交。在第一部分118環繞容器102延伸的區域上,在第一徑向線段130與第二徑向線段132之間並由其限制的弧係對向為360度−α的角度。在此實例中,角度α可小於180度。此外,在第2圖的實例中,其中第一環112為最內環,第一部分118係與容器壁104接觸超過角度360度−α。因此,角度α可代表容器壁102環繞第一部分118並不延伸或並不與容器壁接觸的區域。
應注意,第一部分118係相鄰於電極部分116,並如電極部分116位於水平線段124的相同側上。此點的意義將於以下更詳細說明。
第一環112進一步包含第二部分128,第二部分128包括第二厚度T2。第二厚度T2可以與第一厚度T1不同。舉例而言,第二厚度T2可以大於第一厚度T1。在一些實施例中,T2可在約80密耳(約0.2公分)至約100密耳(約0.25公分)的範圍中。第二部分128環繞第一部分118並未延伸的容器壁104的部分延伸,例如至少在角度α的範圍上。在第2圖所示之實施例中,第二部分128與容器壁104接觸α的角度範圍。在一些實施例中,第二部分128可環繞容器壁104延伸大於α的角度範圍。以替代方式檢視,想像在凸緣100的平面中垂直於縱軸(中心線段)108並從縱軸108無限朝外延伸的二個附加徑向線段(第三徑向線段134與第四徑向線段136),其中第三徑向線段134僅與第二部分128上的單一點(點C)相交,而第四徑向線段136與第二部分128上的垂直線段120的另一側上的不同單一點(點D)相交。應注意,在第2圖的示例性凸緣中,第一與第二徑向線段130、132相對於水平線段124朝下延伸,而第三與第四徑向線段134、136通常相對於水平線段124朝上延伸。第三徑向線段134與第四徑向線段136之間的環繞第二部分128延伸的弧係對向為360度−β的角度。角度β可以是小於180度的角度,而第二部分128至少環繞以360度−β所定義的壁104的部分延伸。在第2圖所示的實施例中,角度β亦標示由第一部分112與朝外相鄰環(例如第二環114)接觸的角度範圍。第二部分128環繞容器102延伸的角度範圍(360度−β)可以大於180度,即使在所述實施例中,第二部分128與容器壁104之間的接觸線段係為對向小於180度(角度α)。亦應理解在凸緣100的平面內並相對於容器102在第一部分118與第二部分128之間存在邊緣對邊緣的重疊。根據第2圖,該重疊區域係在第一徑向線段130與第三徑向線段134之間及/或在第二徑向線段132與第四徑向線段136之間。相對於第2圖而言,假設在環繞垂直線段120的凸緣100的右半部與左半部具有對稱性時,至少一個重疊區域的角度範圍係為(360度−α−β)/2。在所呈現的上下文中,此類重疊意指至少一個任意徑向線段138係位於凸緣100的平面中,並垂直於縱軸108及從縱軸108朝外無限延伸,至少一個任意徑向線段138將延伸穿過第一部分118與第二部分128二者的寬度。在移動方面來看,若一者沿著線段138在遠離縱軸108的方向中延伸,將接著通過第一部分118並接著通過第二部分128。因此,沿著任意線段138,第一部分118係位於第二部分128與容器壁104之間。應注意,在其他角度定向中,任意線段(例如任意線段138)可能只穿過第一部分118,而又另一定向可能只穿過第二部分128。
總結以上敘述,第一環112係在環繞容器102的封閉迴路中延伸。第一環112包含至少二個部分(第一部分118與第二部分128),第一與第二部分之任一者都環繞容器102在封閉迴路中獨立延伸。第一部分118與第二部分128係至少部分以巢狀方式位於存在邊緣對邊緣的重疊的區域中,其中第一部分118的外側邊緣的至少一部分但非全部係與第二部分128的內側邊緣一部分但非全部接觸。相對於容器的中心線段而言,第一部分118環繞容器102的至少一部分延伸,並可能相對於縱軸108延伸大於180度的角度。同樣地,第二部分128環繞著容器102的至少一部分延伸,並可能相對於縱軸108延伸大於180度的角度。在示例性實施例中,第一部分118的第一厚度T1可以小於第二部分128的第二厚度T2。在其他實施例中,可選擇第一部分118與第二部分128的材料以提供不同的內在電阻。
在第2圖與先前敘述的協助下,應進一步注意,至少一個徑向線段150係位於凸緣100的平面中,並垂直於縱軸108及從縱軸108朝外無限延伸,其對於第一環112而言只穿過第一部分118但不穿過第二部分128的寬度。徑向線段150可以進一步與電極部分116交叉。同樣地,至少一個徑向線段152係位於凸緣100的平面中,並垂直於縱軸108及從縱軸108朝外無限延伸,其對於第一環112而言只穿過第二部分128但不穿過第一部分118的寬度,並且不與電極部分交叉。
先前參照第2圖所述者係描述單一電極部分116,第一部分118一般相鄰於電極部分116,並相對於水平線段124位於與電極部分116的容器102的相同側上。第二部分128係相對放置。考慮論述之目的,且並不限制為第3A圖所圖示的一般示例性凸緣140,其中凸緣140僅包括單一環與單一電極部分142,且為了方便與參考起見,假設電極部分142係垂直定向並在遠離通用容器144頂部的方向中朝上延伸。轉到第3B圖,亦考慮與第一凸緣140相同的第二凸緣140,而具有相同定向,且在容器144上沿著縱軸與第一凸緣140間隔。最後,考慮第一與第二凸緣140之每一者都連接至電源,而在第一凸緣140與第二凸緣140之間通過容器144建立電流。根據本發明之實例,最大的電流密度係在沿著朝下通過第一凸緣的電極至該容器頂部的線段,而此線段代表電極與容器之間的最短路徑,在第3A圖中以箭頭代表電流,而箭頭之間的距離代表電流密度。在容器內,最大的電流密度發生在沿著容器頂部143的凸緣140之間,而此代表在第一凸緣的頂部內側部分(凸緣在此處連接容器)與第二凸緣的頂部內側部分之間的最短路徑。在第二凸緣處,情況與第一凸緣相同,其中最大電流密度存在於沿著從容器144頂部延伸至各別凸緣的電極部分的線段。
前述現象可能造成流經容器的熔融玻璃的非均勻加熱,因為容器的某些部分承載與容器的其他部分不同的電流密度。更重要地,大部分的電流密度集中在沿著電極部分至容器頂部的線段。此種沿著容器壁最靠近電極部分之線段所發生的高集中電流,可能造成凸緣沿著此線段的區域的過度加熱,而特別是接近凸緣與容器最靠近電極部分的該部分之間的接點處。凸緣及/或容器的選擇部分的過度加熱在最壞的情況下可能造成凸緣或容器的熱損害(例如,熔融)。此外,熔融玻璃的非均勻加熱可能在後續造成非均勻的黏滯性,因此流經容器之熔融玻璃的一些區域呈現與熔融玻璃的其他區域不同的黏滯性。舉例而言,在容器144充滿流經其中的熔融玻璃的情況中,且在其橫斷面中,熔融玻璃流的底部部分可能比起熔融玻璃的頂部部分更冷(接收較少的加熱),而因此呈現比熔融玻璃流的頂部部分更大的黏滯性。這可能不只會擾動通過容器的熔融玻璃流,也可能干擾下游處理。舉例而言,在非均勻加熱發生於靠近攪拌容器上游時,非均勻黏滯性可能干擾混合與均質化。在非均勻黏滯性發生在成形主體的上游及靠近成形主體時,非均勻黏滯性可能干擾成形處理,並妨礙產生具有均勻厚度的高品質玻璃。
對於某些容器類型而言,舉例而言,在容器並未完全充滿熔融玻璃時,前述的情況可能特別嚴重。舉例而言,操作期間的澄清容器可能並未完全充滿熔融玻璃,而因此熔融玻璃包含自由表面。澄清容器未包括熔融玻璃的體積包含熔融玻璃的自由表面與澄清容器的上方內側表面之間的氣相大氣。流經澄清容器的熔融玻璃可能是比氣相大氣更佳的熱傳導體,而當凸緣的電極朝上垂直定向時,最大量的電阻加熱可能至少為了前述理由而發生在容器中具有最小量的熱傳導性的部分。換言之,至少由於氣相大氣的相對差的熱傳導性,因此容器頂部可能因為高電流密度形成的未期望高溫而受到傷害,且容器同時也無法沿著電流路徑將足夠的熱輻射或傳導離開以避免傷害。
亦應注意前述關於電流路徑的類似難處可能發生在凸緣本身,因為電流的大部分係依循著電極部分116與容器之間的最短傳導路徑。因此,凸緣100亦可能遭受由於高電流密度而導致的熱損傷。因此,在一些實施例中,凸緣100可包括冷卻導管145,通常環繞最外環的周圍(例如,外部邊緣)放置,冷卻導管經配置以承載冷卻流體,例如空氣或水。
更大的問題在於下游製造設備在準備將熔融玻璃引入至設備時的初始預先加熱。在此操作期間,需要非常高的電流值以在引入熔融玻璃流之前達成設備部件的適當加熱。由於在這些條件下,整個容器可能由氣相大氣填滿,容器壁的某些部分可能遭受到非常高的電流密度與高溫。
於此在各種具體實施例中敘述的凸緣,藉由有效操縱電流,因此使電流安全分佈的方式,消減或避免像是以上敘述的那些問題,例如將電流操縱遠離以上敘述的最短傳導路徑。舉例而言,當位於上述最短傳導路徑上的第一環112的第一部分118製造成比第一環的其他部分(第二部分128)更薄時,因為較薄的第一部分呈現較高的電阻,造成藉由有效地操縱電流離開第一部分118,而得到更均勻的電流分佈。這可以在凸緣100中形成較低的整體溫度,而因此避免顯著熱點。這與關於容器的整個周圍運用較厚區域的習知凸緣設計明顯不同,容器本身或直接附加至容器之凸緣都成為容納更大電流的構件。因此,如第2圖所述,第一環112包括靠近電極部分116的至少第一部分,並因此係位於電極部分116與容器102之間的最短傳導路徑上,亦即較第一環的剩餘部分更薄。此外,模擬結果顯示第一與第二部分118、128的重疊配置不但可操縱電流以減少在凸緣及/或容器的靠近電極部分處的電流密度,亦可使電流環繞第一環112可附加之容器102,以對電流均勻性有所貢獻。應注意,在第一環112的敘述中,甚至在附加至容器102時,減折可能位於第一環112與容器壁104之間的焊接材料的存在性,而焊接材料本身具有使電流密度分配至容器的最小影響。應注意,在本發明的完整敘述中,術語「環」預期代表封閉的弧形形狀,且不需要為圓形。因此,術語「環」可意指任何封閉形式,而前述敘述亦可應用於非圓形容器及凸緣設計,這在以下將被更完整論述。
第4圖係為圖示附加至容器202的另一示例性凸緣200的橫斷面前視圖。容器202可為包含上述下游玻璃製造設備30的容器或可包含玻璃製造設備10的任何其他金屬容器中之任一者,包括第一、第二、及第三導管32、38、及46、澄清容器34、混合容器36、傳送容器40、出口導管44、及入口50。容器202包括定義內部空間206的壁204。容器202進一步包括沿著容器的長度於容器中心處延伸的縱軸208,以及在垂直於縱軸208之凸緣的平面中的橫斷面形狀。橫斷面形狀可沿著容器的長度,以位置為函數,變化形狀及尺寸二者,但在第4圖的實例中係圖示為長橢圓形。長橢圓形意指包括長(主要)軸210與短(次要)軸212的形狀,二者都垂直於縱軸208,其中長軸較短軸更長。長橢圓形橫斷面可為卵形、橢圓形、長方形或這些或其他形狀的組合。舉例而言,第4圖的實例所述的長橢圓橫斷面形狀包含具有二個弧形端部部分(如二個半圓形端部部分)的大概長方形。
凸緣200類似於凸緣100,包含主體部分214,主體部分214包括第一環216、第二環218、及附加至最外環的電極部分220。在一些實例中,第二環218可為最外環,其中電極部分220如所示而直接連接至第二環218。舉例而言,電極部分220可以與第二環218整合並與其一起形成。在一些實例中,電極部分220可分別形成並以如焊接之方式附加至最外環,例如第二環218。第一環216係位於第二環218與容器202之間,並可為最內環並與容器壁204緊密接觸。舉例而言,第一環216可環繞第一環216的內側邊緣焊接至容器壁204。
在第4圖所示的實施例中,第一環216(特別是若經配置為最內環時)可包含第一金屬,第一金屬兼容於容器202,並具有生存於容器的表面的高溫環境下長時間而不顯著退化的能力。舉例而言,第一環216可包含貴金屬,像是如先前敘述的鉑族金屬或其合金,而在一些實例中可包括與容器壁204相同的貴金屬。第一環216的所有者都可由相同金屬形成,或是第一環216可包括不同金屬。所述不同金屬可包括相同元素但具有不同比例的合金。舉例而言,第一環216可以在環的不同區域中利用具有不同電阻的金屬,以在可能具有或不具有厚度差異使用的方式中,制定第一環的區域的阻抗。舉例而言,第一環216可包括具有高電阻之第一金屬區域,以及較低電阻的其他區域。第一環216可包含平滑彎曲及連續的外側周圍(邊緣),並進一步包括寬度W1。寬度W1可為定值,或寬度W1可隨著環繞容器202的角度位置為函數而變化。
第二環218與容器202的壁204間隔,並可包含與用於第一環216製造的金屬或多個金屬不同的金屬。舉例而言,儘管第一環216可由貴金屬形成,包括鉑族金屬或其合金,但第二環218可以用較不昂貴的電傳導體形成,例如鎳、銅或其合金,但不限制於此。第二環218進一步包括寬度W2。寬度W2可為定值,或寬度W2可隨著環繞容器202的角度位置為函數而變化。
在第一環216為最內環且連接至容器壁104的情況中,第一環216的內側邊緣可附加至容器壁204並環繞容器202於封閉迴路中延伸。舉例而言,第一環216的內側邊緣可焊接至容器壁204。同樣地,在第4圖所述的實施例中,第二環218的內側邊緣可附加至第一環216的外側邊緣。在一些實例中,介入的附加環可位於第一環216與第二環218之間。在一些實例中,第二環218可為最外環。然而,在其他實例中,附加環可位於第二環218的外側(例如最外環),或附加環可位於第一環216內側,並在第一環216與容器壁204之間。
在一些實施例中,不管最外環是否為第二環218,最外環的厚度可隨著環繞凸緣所附加之容器的角度位置為函數而變化。舉例而言,最外環可由鎳、銅或其他相較於鉑或其合金為較不昂貴及/或較低抗高溫性的金屬形成,其中相鄰於電極部分220的最外環的區域相較於最外環的其他區域更厚。較厚部分可相鄰於電極部分220,但不直接在電極部分220與第一環216的第一部分222之間(例如,參照第6圖、第7圖、及第8圖)。舉例而言,較厚部分可以比其他部分厚最多50%或大於50%,例如在約厚25%至約厚75%的範圍中,例如在約厚30%至約厚70%的範圍中,在約厚35%至約厚60%的範圍中,或在約厚40%至約厚55%的範圍中。最外環的較厚部分協助操縱環繞容器周圍的電流,而最小化(如消除)在最外環上靠近電極部分220的熱點的形成。此類過熱情況可能因為在電極部分中或環繞電極部分的電流密度過高而發生。最外環相鄰於電極部分220但不在電極部分220與第一環216之間的較厚部分係呈現增加的橫斷面區域,並因此呈現降低的電流密度。因此,最外環相鄰於電極部分220的部分可較最外環的其他部分更厚,例如最外環相對於電極部分的部分。如上所述,最外環可為第二環218。然而,在其他實施例中,第二環218可為介於最外環與第一環216之間的環,或介於最外環與容器壁204之間的環。
如由第4圖進一步描述,第一環216包含第一部分222,第一部分118包含第一厚度T1。第一部分222可環繞壁204的部分延伸,且可以在凸緣的平面中環繞小於容器202的整體周圍的二分之一(小於180度)延伸。在其他實施例中,第一部分222可以在凸緣的平面中,環繞等於或大於容器202的整體周圍的二分之一(³180度),但小於容器202的完整周圍(<360度)的壁204的部分延伸。舉例而言,考慮第4圖所示的長橢圓容器,其中電極部分220朝著遠離容器202垂直延伸。進一步考慮在凸緣200的平面中無限延伸的垂直線段224,其延伸穿過並垂直於縱軸208,而電極部分220位於其中。舉例而言,在電極部分220垂直延伸的實施例中,垂直線段220可將凸緣200與容器202對分為對稱的右及左半部,而其中容器202的短(次要)軸212係位於垂直線段224上。亦考慮位於凸緣200的平面中的無限延伸的水平線段226,水平線段226垂直於垂直線段224,並在縱軸208處與垂直線段224相交,其中容器202的長(主要)軸210位於水平線段226上。根據第4圖所述的實施例,第一部分222可環繞大於容器壁204的周圍的二分之一但小於整個周圍而延伸。舉例而言,第一部分222可以接觸大於容器壁204的周圍的二分之一但小於整個周圍。這圖示於所述實施例中,其中第一部分222環繞容器壁204而延伸於壁的整個上方的二分之一,並在壁上朝下延伸超過容器的右側與左側二者的長軸。如第4圖所述之實施例中,第一環216可為最內環,而第一部分222接觸於大於容器壁204的周圍的二分之一但小於整個周圍的容器壁204,或環繞容器壁204延伸大於容器壁204的周圍的二分之一但小於整個周圍。這可藉由注意第一部分222可以與容器壁204接觸超過大於180度的弧(或環繞其延伸)的另一方式檢視。亦應注意,第一部分222係與電極部分220相鄰,並與電極部分220位於水平線段226的相同側上(使用水平線段226做為頂部側與底部側之間的邊界)。然而,在一些實施例中,第一部分222可環繞容器202延伸小於180度。
第一環216進一步包含第二部分228,第二部分128包含第二厚度T2。第二厚度T2可以與第一厚度T1不同。在第4圖所述的實施例中,第二部分228可以與第一部分222並未接觸的容器204的部分接觸。以替代方式檢視,若第一部分222與容器壁204接觸360度−α的角度範圍,其中α小於180度,則第二部分228可以與容器壁204接觸α的角度範圍。然而,在第4圖亦可理解,第二部分228可環繞容器202延伸超過第一部分222與容器壁204之間的接觸線段。因此,第二部分228環繞著容器202延伸的角度範圍可以大於180度,即使第二部分228與容器壁204之間的接觸線段係對向為小於180度的角度。這導致凸緣200的平面內的第一部分222與第二部分228之間的邊緣對邊緣重疊。在所呈現的上下文中,所述重疊意指至少一個任意徑向線段230位於凸緣200的平面中,並從縱軸208朝外無限延伸,任意徑向線段230將分別穿過第一部分222與第二部分228二者延伸。從移動方面看來,若一者沿著任意線段230在遠離容器壁204的方向中延伸,則將接著通過第一部分222或第二部分228中之一者,並接著通過第二部分228或第一部分222中之另一者。在重疊區域中,第一部分222的外側邊緣的一部分係與第二部分228的內側邊緣的一部分接觸,而使得第一部分222的一部分係在凸緣200的平面中的第二部分228的一部分與容器壁204之間。
從先前敘述可看到,第一環216係環繞容器202於封閉迴路中延伸,且第一環216包含至少二個部分222、228。任一部分222或228都未環繞容器完全延伸。這些部分222、228係為巢狀方式,其中存在邊緣對邊緣重疊的區域,其中第一部分222的外側邊緣係與第二部分228的內側邊緣接觸。又以另一方式檢視,考慮在凸緣200的平面中,徑向線段232垂直於該縱軸208,並從縱軸208朝外無限延伸,且只與第一部分222的單一點(點E)相交。亦考慮徑向線段234垂直於縱軸208,並從縱軸208朝外無限延伸,且在垂直線段224的相反側上與第一部分222的另一單一點F相交。第一與第二徑向線段232、234之間的弧對向的角度可為小於180度的角度α,而第一部分222環繞容器202至少延伸360度−α的角度。同樣地,考慮徑向線段236垂直於縱軸208,並從縱軸208朝外無限延伸,且只與第二部分228的單一點G相交。亦考慮徑向線段238垂直於縱軸208,並從縱軸208朝外無限延伸,且亦與第二部分228的單一點H相交,點H與點G不同。第三與第四徑向線段236與238之間的弧對向的角度可為小於180度的角度β,而第二部分228環繞容器202至少延伸360度−β的角度。在示例性實施例中,第一部分222的厚度T1可以小於第二部分228的厚度T2。在一些實施例中,可選擇第一部分118與第二部分128的材料,以提供不同的內在電阻。
在第4圖與先前敘述的協助下應瞭解,存在至少一個徑向線段240位於凸緣200的平面中,並垂直於縱軸208及從縱軸208朝外無限延伸,而對於第一環216而言只穿過第一部分222但不穿過第二部分228的寬度。徑向線段240進一步與電極部分220交叉。同樣地,存在至少一個徑向線段242位於凸緣200的平面中,並垂直於縱軸208及從縱軸208朝外無限延伸,而對於第一環216而言只穿過第二部分228但不穿過第一部分222的寬度。
在第5圖中描述的又一實施例中,另一示例性凸緣300係圖示為附加至容器302。容器302可為包含上述下游玻璃製造設備30的容器或可包含玻璃製造設備10的任何其他金屬容器中之任一者,包括第一、第二、及第三導管32、38、及46、澄清容器34、混合容器36、傳送容器40、出口導管44、及入口50。容器302包括定義內部空間306的壁304。容器302進一步包括沿著容器的長度延伸的中心縱軸308,以及在垂直於縱軸308之凸緣的平面中的橫斷面形狀。橫斷面形狀可沿著容器的長度,以位置為函數,變化形狀及尺寸二者,但在第5圖的實例中係圖示為長橢圓形。在其他實施例中,長橢圓形橫斷面可為卵形、橢圓形、長方形或這些或其他形狀的組合。舉例而言,第5圖所示的長橢圓橫斷面形狀包含具有二個弧形端部部分(如二個半圓形端部部分)的大概長方形。
凸緣300類似於凸緣100與200,包含主體部分314,該主體部分314包括第一環316、第二環318、及附加至最外環的電極部分320。在一些實例中,第二環318可為最外環,其中電極部分320係如所示直接耦接至第二環318。舉例而言,電極部分320可以與第二環318整合並與其一起形成。在一些實例中,電極部分320可分別形成並以如焊接之方式附加至最外環,例如第二環318。在一些實施例中,第一環316可為最內環,並與容器壁304緊密接觸。
在一些實施例中,最外環的厚度可隨著環繞凸緣所附加之容器的角度位置為函數而變化。舉例而言,最外環可由鎳、銅或其他相較於鉑或其合金為較不昂貴及/或較低抗高溫性的金屬形成,其中相鄰於電極部分320的最外環的區域相較於最外環的其他區域更厚。較厚部分可相鄰於電極部分320,但不直接在電極部分320與第一環316的第一部分322之間(例如,參照第6圖、第7圖、及第8圖)。舉例而言,較厚部分可以比其他部分厚最多50%或大於50%,例如在約厚25%至約厚75%的範圍中,例如在約厚30%至約厚70%的範圍中,在約厚35%至約厚60%的範圍中,或在約厚40%至約厚55%的範圍中。最外環的較厚部分協助操縱環繞容器周圍的電流,而最小化(如消除)在最外環上靠近電極部分320的熱點的形成。此類過熱情況可能因為在電極部分中或環繞電極部分的電流密度過高而發生。最外環相鄰於電極部分320但不在電極部分320與第一環316之間的較厚部分係呈現增加的橫斷面區域,並因此呈現降低的電流密度。因此,最外環相鄰於電極的部分可以比最外環的其他部分更厚,例如,最外環相對於電極部分320的部分。如上所述,最外環可為第二環318。然而,在其他實施例中,第二環318可為介於最外環與第一環316之間的環,或介於最外環與容器壁304之間的環。
在第5圖所示實施例中,第一環316可包含第一金屬,該第一金屬兼容於容器302,並具有生存於容器表面的高溫環境下長時間而不顯著退化的能力。舉例而言,第一環316可包含貴金屬,例如先前敘述的鉑族金屬或其合金,而在一些實例中可包括與容器壁304相同的貴金屬。第一環316的所有者都可由相同金屬形成,或是第一環316可包括不同金屬。所述不同金屬可包括相同元素但具有不同比例的合金。第一環316進一步包括寬度W1。寬度W1可為定值,或寬度W1可隨著環繞容器302的角度位置為函數而變化。在一些實施例中,第一環316可包含平滑彎曲及連續的外側周圍。
第二環318與容器302的壁304間隔,而因此第二環318可包含與製造第一環316時使用的金屬或多個金屬不同的金屬。舉例而言,儘管第一環316可由貴金屬形成,包括鉑族金屬或其合金,但第二環318可以用較不昂貴的電傳導體形成,例如鎳、銅或其合金,但不限制於此。第二環318進一步包括寬度W2。寬度W2可為定值,或寬度W2可隨著環繞容器302的角度位置為函數而變化。
在第一環316為最內環的情況中,第一環316的內側邊緣可在環繞容器302的封閉迴路中附加至容器壁304。舉例而言,第一環316的內側邊緣可焊接至容器壁304。同樣地,在第5圖所述的實施例中,第二環318的內側邊緣可附加至第一環316的外側邊緣。在其他實例中,介入的附加環可位於第一環316與第二環318之間。此外,附加環(例如最外環)可位於第二環318的外側或第一環316的內側,例如在第一環216與容器壁304之間。
如由第5圖進一步描述,第一環316包含第一部分322,第一部分118包含第一厚度T1。第一部分322可以在凸緣的平面中環繞小於容器302的整體周圍之二分之一(小於180度)的壁304的部分延伸。在其他實施例中,第一部分322可以在凸緣的平面中,環繞等於或大於容器302的整體周圍的二分之一(³180度),但小於容器202的完整周圍(<360度)的壁304的部分延伸。舉例而言,考慮第5圖所示的長橢圓容器,其中電極部分320朝著遠離容器302垂直延伸。進一步考慮無限延伸的垂直線段324,垂直線段324將包括電極部分320的凸緣300與容器302對分為對稱的右及左半部,而其中容器302的短(次要)軸312係位於垂直線段324上。亦考慮無限延伸的水平線段326,水平線段326係垂直於垂直線段324,且其中容器302的長(主要)軸310係位於水平線段326上。根據第5圖所述的實施例,第一部分322可以在凸緣的平面中環繞大於容器壁部304的周圍之二分之一(>180度)但小於整個周圍(<360度)而延伸。舉例而言,第一部分322可以接觸大於容器壁304的周圍的二分之一但小於整個周圍。這圖示於所述實施例中,其中第一部分322環繞容器壁304而延伸於壁的整個上方的二分之一,並在壁上朝下延伸超過容器的右側與左側二者的長軸。在第5圖的實施例中,第一環316可為最內環,而第一部分322接觸大於容器壁304的周圍之二分之一但小於整個周圍的部分。應注意,第一部分322係相鄰於電極部分320,並如電極部分320位於水平線段326的相同側上。
第一環316進一步包含第二部分328,第二部分128包含第二厚度T2。第二厚度T2可以與第一厚度T1相同或不同。在第5圖所述實施例中,第二部分328可以在凸緣的平面中環繞壁304的部分而延伸小於容器302的完整周圍之二分之一(<180度)。在其他實施例中,第二部分328可以在凸緣的平面中,環繞等於或大於容器302的整體周圍的二分之一(³180度),但小於容器302的整個周圍(<360度)的壁304的部分延伸。第二部分328可以與第一部分322並未接觸的容器壁304的至少一部分接觸。以替代方式檢視,若第一部分322與容器壁304接觸360度−α的角度範圍,其中α小於180度,則第二部分328可以與容器壁304接觸等於或小於α的角度範圍。然而,從第5圖的實施例中亦應理解,第二部分328可環繞容器302延伸超過第一部分322與容器壁304之間的接觸線段。因此,第二部分328環繞容器302延伸的角度範圍可以大於180度,即使第二部分328與容器壁304之間的接觸線段係對向為小於180度的角度。
第一環316可進一步包含第三部分,第三部分可劃分成二個分離子部分(部分332a與332b),其中子部分332a與332b中之每一者都環繞容器壁304的至少一部分延伸,且每一者都具有厚度T3。二個子部分332a與332b都可環繞垂直線段324相對及對稱設置。在一些實施例中,子部分332a與332b可位於第一部分322與第二部分328之間。第三厚度T3可以小於第二厚度T2,但大於厚度T1,例如,T1<T3<T2。
在一些實施例中,第一環316的內側邊緣可附加至容器壁304,並環繞容器302於封閉迴路中延伸。舉例而言,第一環316的內側邊緣可焊接至容器壁304。同樣地,在第5圖描述的實例中,第二環318的內側邊緣可附加至第一環316的外側邊緣。
亦如第5圖所示,在凸緣300的平面中於第一部分322與子部分332a及332b之間具有邊緣對邊緣重疊。所述重疊意指對於從縱軸308朝外無限延伸並垂直於縱軸,且位於凸緣300的平面中的至少一個任意徑向線段330而言,任意徑向線段330將分別延伸穿過第一部分322以及子部分332a或子部分332b中之至少一者的寬度。此外,在子部分332a及332b以及第二部分328之間具有邊緣對邊緣重疊,而使得徑向線段330延伸穿過第二部分328以及子部分332a或子部分332b中之至少一者的寬度。最後,在第一部分322與第二部分328之間具有重疊,儘管並非邊緣對邊緣(接觸)重疊,其中徑向線段330延伸穿過第一部分322的寬度與第二部分328的寬度。因此,徑向線段330穿過第一環316的所有三個部分,亦即322、328、及332a及/或332b。
以又另一方式檢視,考慮在凸緣300的平面中,徑向線段336垂直於縱軸308,並從縱軸308朝外無限延伸,而相對於容器302只與第一部分322的單一點(點J)相交。亦考慮徑向線段338從縱軸208朝外無限延伸,並在垂直線段324的相反側上與第一部分322的另一單一點(點K)相交。徑向線段336、338之間的弧對向的角度為小於180度的角度α,而第一部分322環繞容器302至少延伸360度−α的角度。同樣地,考慮徑向線段340垂直於縱軸308,並從縱軸308朝外無限延伸,並只與子部分332a的單一點(點L)相交。亦考慮徑向線段342垂直於縱軸308,並從縱軸308朝外無限延伸,且只與子部分332b的單一點(點M)相交。徑向線段340、342之間的弧對向的角度為小於180度的角度f,而子部分332a或332b的至少一部分可位於第二部分328與容器壁304之間。事實上,子部分332a的至少一部分可位於第二部分328與第一部分322之間。
最後,考慮附加徑向線段348。徑向線段342及348之間的弧對向的角度為小於180度的角度y,並可定義第一部分322接觸第二環318的角度範圍。同樣地,徑向線段340及344之間的弧對向的角度為小於180度的角度q,並可定義第二部分328接觸容器壁304的角度範圍。
在第5圖與先前敘述的協助下應進一步理解,存在至少一個徑向線段350位於凸緣300的平面中,並從縱軸308朝外無限延伸,而對於第一環316而言只穿過第一部分322但不穿過第二部分328或子部分332a或332b的寬度。徑向線段350進一步與電極部分320交叉。同樣地,存在至少一個徑向線段352位於凸緣300的平面中,並從縱軸308朝外無限延伸及垂直於縱軸308,而對於第一環316而言只穿過第二部分328但不穿過第一部分322或子部分332a或332b的寬度。
在第6圖所述的又另一實施例中,另一示例性凸緣400係圖示為附加至容器402。容器402可為包含上述下游玻璃製造設備30的容器或可包含玻璃製造設備10的任何其他金屬容器中之任一者,包括第一、第二、及第三導管32、38、及46、澄清容器34、混合容器36、傳送容器40、出口導管44、及入口50。容器402包括定義內部空間406的壁404。容器402進一步包括沿著容器的長度延伸的中心縱軸408,以及在垂直於縱軸408之凸緣的平面中的橫斷面形狀。橫斷面形狀可沿著容器的長度,以位置為函數,變化形狀及尺寸二者,但在第6圖的實例中係圖示為長橢圓形。第6圖的橫斷面形狀包括長(主要)軸410與短(次要)軸412的形狀,二者都垂直於縱軸408並彼此垂直。長橢圓形橫斷面可為卵形、橢圓形、長方形或這些或其他形狀的組合。舉例而言,第6圖所示的長橢圓橫斷面形狀包含具有二個弧形端部部分(如二個半圓形端部部分)的大概長方形。
凸緣400類似於凸緣100、200及300,包含主體部分414,該主體部分314包括第一環416、第二環418、及附加至最外環的電極部分420。在一些實例中,第二環418可為最外環,其中電極部分420係如所示直接耦接至第二環418。舉例而言,電極部分420可以與第二環418整合並與其一起形成。在一些實例中,電極部分420可分別形成並以如焊接之方式附加至最外環,例如第二環418。第一環416可為最內環,並與容器壁404緊密接觸。舉例而言,最內環416可環繞第一環416的內側邊緣焊接至容器壁404。
在一些實施例中,最外環的厚度可隨著環繞凸緣所附加之容器的角度位置為函數而變化。舉例而言,最外環可由鎳、銅或其他相較於鉑或其合金為較不昂貴及/或較低抗高溫性的金屬形成,其中相鄰於電極部分420的最外環的區域相較於最外環的其他區域更厚。舉例而言,第6圖的實施例的最外環的部分419(在所述實施例中亦為第二環418)可以較最外環的部分421更厚。舉例而言,部分419可以比部分421更厚最多50%或大於50%,例如在約厚25%至約厚75%的範圍中,例如在約厚30%至約厚70%的範圍中,在約厚35%至約厚60%的範圍中,或在約厚40%至約厚55%的範圍中。最外環的較厚部分協助操縱環繞容器周圍的電流,而最小化(如消除)在最外環上靠近電極部分420的熱點的形成。此類過熱情況可能因為在電極部分中或環繞電極部分的電流密度過高而發生。最外環相鄰於電極部分420但不直接在電極部分420與第一環416之間的較厚部分係呈現增加的橫斷面區域,並因此呈現降低的電流密度。因此,最外環相鄰於電極部分420的部分可以比最外環的其他部分更厚,例如最外環相對於電極部分420的部分421。如上所述,最外環可為第二環418。然而,在其他實施例中,第二環418可為介於最外環與第一環416之間的環,或介於最外環與容器壁404之間的環。
在第6圖所示實施例中,第一環416可包含第一金屬,該第一金屬兼容於容器402,並具有生存於容器表面的高溫環境下長時間而不顯著退化的能力。舉例而言,第一環416可包含貴金屬,例如先前敘述的鉑族金屬或其合金,而在一些實例中可包括與容器壁404相同的貴金屬。第一環416的所有者都可由相同金屬形成,或是第一環416可包括不同金屬。所述不同金屬可包括相同元素但具有不同比例的合金。第一環416進一步包括寬度W1。寬度W1可為定值,或寬度W1可隨著環繞容器402的角度位置為函數而變化。在第6圖所述的實施例中,W1係隨著環繞容器402的角度位置為函數而變化。第一環416可包含平滑彎曲及連續的外側周圍(邊緣)。
第二環418與容器402的壁404間隔,並可包含與用於第一環416製造的金屬或多個金屬不同的金屬。舉例而言,儘管第一環416可由貴金屬形成,包括鉑族金屬或其合金,但第二環418可以用較不昂貴的電傳導體形成,例如鎳、銅或其合金,但不限制於此。第二環418進一步包括寬度W2。寬度W2可為定值,或寬度W2可隨著環繞容器402的角度位置為函數而變化。在第6圖所述的實施例中,W2係隨著環繞容器402的角度位置為函數而變化。
第6圖所述的凸緣400係與第5圖所描繪的凸緣300相同,除了第5圖圖示由第一部分332所形成的角度α(在徑向線段336及338之間的角度)係大於在徑向線段340及342之間的子部分332a與子部分332b的角度q的凸緣的實施例,而在先前實例中,前述徑向線段只在單一點處碰觸各別子部分。第6圖具體圖示由第一環416的第一部分422所形成的角度α(在徑向線段436及438之間的角度)小於在無限延伸的徑向線段440及442之間的第一環416的子部分432a與子部分432b之間的角度q的實施例,其中前述徑向線段只在單一點碰觸各別子部分。因此,在第5圖的實施例中,子部分332a(及332b)接觸容器壁304,而在第6圖的實施例中,子部分432a(及432b)並未接觸容器402的壁404。
在第7圖所述的另一實施例中,另一示例性凸緣500係圖示為附加至容器502。容器502可為包含上述下游玻璃製造設備30的容器或可包含玻璃製造設備10的任何其他金屬容器中之任一者,包括第一、第二、及第三導管32、38、及46、澄清容器34、混合容器36、傳送容器40、出口導管44、及入口50。容器502包括定義內部空間506的壁504。容器502進一步包括沿著容器的長度於容器的中心處延伸的中心縱軸508,以及在垂直於縱軸508之凸緣的平面中的橫斷面形狀。橫斷面形狀可沿著容器的長度,以位置為函數,變化形狀及尺寸二者,但在第7圖的實例中係圖示為長橢圓形。長橢圓形橫斷面可為卵形、橢圓形、長方形或這些或其他形狀的組合。舉例而言,第7圖所示的長橢圓橫斷面形狀包含具有二個弧形端部部分(如二個半圓形端部部分)的大概長方形。
凸緣500類似於凸緣100、200、300及400,並包含主體部分514,該主體部分514包括第一環516、第二環518、及附加至最外環的電極部分520。因此,前述凸緣200、300及400對於其主要部件的敘述亦可應用於凸緣500。在一些實例中,第二環518可為最外環,其中電極部分520係如所示直接耦接至第二環518。舉例而言,電極部分520可以與第二環518整合並與其一起形成。在一些實例中,電極部分520可分別形成並以如焊接之方式附加至最外環,例如第二環518。在一些實施例中,第一環516可為最內環,並與容器壁504緊密接觸。
在第7圖所示實施例中,第一環516可包含第一金屬,該第一金屬兼容於容器502,並具有生存於容器表面的高溫環境下長時間而不顯著退化的能力。舉例而言,第一環516可包含貴金屬,例如先前敘述的鉑族金屬或其合金,而在一些實例中可包括與容器壁504相同的貴金屬。第一環516的所有者都可由相同金屬形成,或是第一環516可包括不同金屬。所述不同金屬可包括相同元素但具有不同比例的合金。第一環516進一步包括寬度W1。寬度W1可為定值,或寬度W1可隨著環繞容器502的角度位置為函數而變化。第一環516可包含平滑彎曲及連續的外側周圍(邊緣)。
第二環518與容器502的壁504間隔,並可包含與用於第一環516製造的金屬或多個金屬不同的金屬。舉例而言,儘管第一環516可由貴金屬形成,包含鉑族金屬或其合金,但第二環518可以較不昂貴的電傳導體形成,例如像是鎳、銅、鉬或其合金,但不限制於此。第二環518進一步包括寬度W2。寬度W2可為定值,或寬度W2可隨著環繞容器502的角度位置為函數而變化。
在一些實施例中,最外環的厚度可隨著環繞凸緣所附加之容器的角度位置為函數而變化。舉例而言,最外環可由鎳、銅、或其他與鉑或其合金相較起來較不昂貴且抵抗高溫能力較低的金屬形成,其中最外環相鄰於電極部分520的區域係比最外環的其他區域更厚。舉例而言,第7圖的實施例的最外環的部分519(在所述實施例中亦為第二環518)可以較最外環的部分521更厚。舉例而言,部分519可以比部分521更厚最多50%或大於50%,例如在約厚25%至約厚75%的範圍中,例如在約厚30%至約厚70%的範圍中,在約厚35%至約厚60%的範圍中,或在約厚40%至約厚55%的範圍中。最外環的較厚部分協助操縱環繞容器周圍的電流,而最小化(如消除)在最外環上靠近電極部分520的熱點的形成。此類過熱情況可能因為在電極部分中或環繞電極部分的電流密度過高而發生。最外環相鄰於電極部分520但不直接在電極部分520與第一環516之間的較厚部分,呈現增加的橫斷面區域,並因此呈現降低的電流密度。因此,最外環相鄰於電極部分520的部分可以比最外環的其他部分更厚,例如最外環相對於電極部分的部分。如上所述,最外環可為第二環518。然而,在其他實施例中,第二環518可為最外環與第一環516之間的環,或介於最外環與容器壁504之間的環。
在第一環516為最內環的情況中,第一環516的內部邊緣可附加至容器壁504,並環繞容器502於封閉迴路中延伸。舉例而言,第一環516的內側邊緣可焊接至容器壁504。同樣地,在第7圖所述的實施例中,第二環518的內側邊緣可附加至第一環516的外側邊緣。在其他實例中,介入部分(例如介入的附加環)可位於第一環516與第二環518之間。此外,附加環可位於第二環518的外側或第一環516的內側,例如在第一環516與容器壁504之間。
類似於第5圖及第6圖的實施例(凸緣300及400),第一環516可包含至少三個部分(第一部分522、第二部分528、及第三部分,分別具有三個厚度T1、T2、及T3,而第三部分係區分成為二個子部分532a及532b)。三個部分沒有任何一個環繞容器502完全延伸。子部分532a及532b可以相對及對稱定位。凸緣500與凸緣300及400不同處至少在於第二部分528的一部分係位於第一部分522的子部分530a及530b之間。因此,在凸緣500的平面中具有至少一個徑向線段550從縱軸508朝外無限延伸並垂直於縱軸508,其分別延伸穿過所有三個部分522、528及子部分532a及532b的寬度。在凸緣500的平面中亦具有至少一個徑向線段552,其從縱軸508朝外無限延伸並垂直於縱軸508,其只延伸穿過該等部分之二者,亦即第二部分528及子部分532a或532b中之一者。亦可能從第7圖立即看到其他的凸緣配置,例如縮短子部分532a的角度範圍(藉由在虛線556截短子部分532a),因此存在從縱軸508延伸的徑向線段(例如徑向線段550),其將只延伸穿過第一與第二部分522及528。應理解,亦可對於子部分532b進行所述縮短。
在第7圖與先前敘述的協助下應理解,存在至少一個徑向線段558係位於凸緣500的平面中,並從縱軸508朝外無限延伸及垂直於縱軸508,其對於第一環516而言只穿過第一部分522但不穿過第二部分528或子部分532a或532b的寬度。徑向線段558進一步與電極部分520交叉。同樣地,存在至少一個徑向線段560係位於凸緣500的平面中,並從縱軸508朝外無限延伸及垂直於縱軸508,其對於第一環516而言只穿過第二部分528但不穿過第一部分522或子部分532a或532b的寬度。
第8圖所示的凸緣600係類似於凸緣100、200、300、400及500,並包含主體部分614,該主體部分614包括第一環616、第二環618、及附加至最外環的電極部分620。因此,前述凸緣100、200、300、400及500對於其主要部件的敘述在適當的情況下亦可應用於第8圖的凸緣。在一些實例中,第二環618可為最外環,其中電極部分620係如所示直接耦接至第二環618。舉例而言,電極部分620可以與第二環618整合並與其一起形成。在一些實例中,電極部分620可分別形成並以如焊接之方式附加至最外環,例如第二環618。第一環616可為最內環,並與容器602的壁604緊密接觸。
在第8圖所示實施例中,第一環616可包含第一金屬,該第一金屬兼容於容器602,並具有生存於容器表面的高溫環境下長時間而不顯著退化的能力。舉例而言,第一環616可包含貴金屬,例如先前敘述的鉑族金屬或其合金,而在一些實例中可包括與容器壁604相同的貴金屬。第一環616的所有者都可由相同金屬形成,或是第一環616可包括不同金屬。所述不同金屬可包括相同元素但具有不同比例的合金。第一環616進一步包括寬度W1。寬度W1可為定值,或寬度W1可隨著環繞容器602的角度位置為函數而變化。第一環616可包含平滑彎曲及連續的外側周圍。
此外,第一環616包含第一部分622與第二部分628,分別對應於例如凸緣200的部分222及228。
第二環618與容器602的壁604間隔,而因此第二環618可包含與製造第一環616時使用的金屬或多個金屬不同的金屬。舉例而言,儘管第一環616可由貴金屬形成,包含鉑族金屬或其合金,但第二環618可以較不昂貴的電傳導體形成,例如鎳或銅。第二環618進一步包括寬度W2。寬度W2可為定值,或寬度W2可隨著環繞容器602的角度位置為函數而變化。
在一些實施例中,最外環的厚度可隨著環繞凸緣所附加之容器的角度位置為函數而變化。舉例而言,最外環可由鎳、銅或其他相較於鉑或其合金為較不昂貴及/或較低抗高溫性的金屬形成,其中相鄰於電極部分620的最外環的區域相較於最外環的其他區域更厚。舉例而言,第8圖的實施例的最外環的部分650(在所述實施例中亦為第二環618)可以較最外環的部分652更厚。舉例而言,部分650可以比部分652更厚最多50%或大於50%,例如在約厚25%至約厚75%的範圍中,例如在約厚30%至約厚70%的範圍中,在約厚35%至約厚60%的範圍中,或在約厚40%至約厚55%的範圍中。最外環的較厚部分協助操縱環繞容器周圍的電流,而最小化(如消除)在最外環上靠近電極部分620的熱點的形成。此類過熱情況可能因為在電極部分中或環繞電極部分的電流密度過高而發生。最外環相鄰於電極部分620但不直接在電極部分620與第一環616之間的較厚部分,呈現增加的橫斷面區域,並因此呈現降低的電流密度。因此,最外環相鄰於電極部分620的部分可以比最外環的其他部分更厚,例如最外環相對於電極部分的部分。如上所述,最外環可為第二環618。然而,在其他實施例中,第二環618可為最外環與第一環616之間的環,或介於最外環與容器壁604之間的環。
在第一環616為最內環的情況中,第一環616的內部邊緣可附加至容器壁604,並環繞容器602於封閉迴路中延伸。舉例而言,第一環616的內側邊緣可焊接至容器壁604。同樣地,在第8圖所述的實施例中,第二環618的內側邊緣可附加至第一環616的外側邊緣。在其他實例中,介入部分(例如介入的附加環)可位於第一環616與第二環618之間。此外,附加環可位於第二環618的外側或第一環616的內側,例如在第一環616與容器壁604之間。
在第8圖的實施例中,第一環616包括在其外側邊緣中的切口654,以進一步引導電流,該切口係位於水平線段626與電極部分620的相對側上。此外,前述第一環114、216、316、416或516的任一者都可包含切口,其分別包含相對於水平線段124、226、326、426、526,在第一環上與電極部分120、220、320、420及520的相對側上的切除部分。在第8圖所示實施例中,切口654係為V形切除。
第9圖所示係為附加至容器702的示例性凸緣700的橫斷面視圖。舉例而言,容器702可為包含下游玻璃製造設備30的金屬容器或可包含玻璃製造設備10的任何其他金屬容器的任一者,下游玻璃製造設備30係在上述熔融爐與成形主體之間,包括第一、第二、及第三導管32、38、及46、澄清容器34、混合容器36、傳送容器40、出口導管44、及入口50。容器702係由壁704定義,壁704包圍內部空間706,並包括沿著容器的長度延伸的中心縱軸708,以及垂直於縱軸708於凸緣的平面中的橫斷面形狀。容器橫斷面形狀可以沿著容器的長度,以位置為函數,變化形狀及尺寸二者,但在第9圖的實例中係圖示為圓形橫斷面。因此,縱軸708係位於容器圓形橫斷面的中心。
凸緣700包含主體部分710,該主體部分710包括第一環712與第二環714。在第9圖的實施例中,凸緣700包含二個附加至主體部分710的最外環的電極部分716a及716b,其中二個電極部分係以180度置換。在一些實例中,第二環714可最外環,其中電極部分716a與716b係如圖示直接耦接至第二環714。舉例而言,電極部分716a與716b可以與最外環整合並與其一起形成。在一些實例中,電極部分716a與716b可分別形成,並例如藉由焊接附加至最外環,例如第二環714。當在此使用時,第一環712可為最內環,並與容器702緊密接觸。
在第9圖所示的實施例中,第一環712包含第一金屬,第一金屬兼容於容器702,並具有生存於容器的外部表面的高溫環境下長時間而不顯著退化的能力。舉例而言,第一環712可包含貴金屬,例如鉑族金屬或其合金,而在一些實例中可包括與容器702相同的貴金屬。第一環712的所有者都可由相同金屬形成,或是第一環712可包括不同金屬。第一環712進一步包括寬度W1。在一些實施例中,可相對於環繞第一環的角度位置而變化寬度W1。在其他實施例中,舉例而言,在第9圖的實施例中,寬度W1可在角度上基本上為常數。
第二環714與容器702的壁704間隔,並位於環繞第一環712的封閉迴路中,且相較於第一環712而言離容器壁704更遠距離,而因此暴露於較第一環712而言為較低的溫度,並可包括與製造第一環712所使用的金屬或多個金屬不同的金屬。舉例而言,儘管第一環712可由包括鉑族金屬或其合金的貴金屬形成,但第二環714可以用較不昂貴的電傳導金屬形成,例如鎳或銅。第二環714進一步包括寬度W2。可隨著相對於容器702的角度位置為函數而變化寬度W2,或是W2基本上為常數。在一些實施例中,第二環714的內側邊緣可以直接以例如焊接方式與第一環712的外側邊緣連接。
第一環712環繞容器702於封閉迴路中延伸,而在第一環712為最內環的情況中,第一環712可環繞容器壁704的外側周圍而附加至容器702。舉例而言,第一環712的內側邊緣可焊接至容器壁部704的外部表面。同樣地,在第9圖所述的實施例中,第二環714的內側邊緣可附加至第一環712的外側邊緣。在其他實例中,介入部分(例如介入的附加環)可位於第一環712與第二環714之間。此外,附加環(例如最外環)可位於第二環714的外側或第一環712的內側,例如在第一環712與容器壁704之間。
在一些實施例中,最外環的厚度可隨著環繞凸緣所附加之容器的角度位置為函數而變化。舉例而言,最外環可由鎳、銅、或其他與鉑或其合金相較起來較不昂貴且抵抗高溫能力較低的金屬形成,其中最外環相鄰於電極部分716a、716b的區域係比最外環的其他區域更厚。舉例而言,部分716a、716b可以比最外環的其他區域更厚最多50%或大於50%,例如在約厚25%至約厚75%的範圍中,例如在約厚30%至約厚70%的範圍中,在約厚35%至約厚60%的範圍中,或在約厚40%至約厚55%的範圍中。最外環的較厚部分協助操縱環繞容器周圍的電流,而最小化(如消除)在最外環上靠近電極部分的熱點的形成。此類過熱情況可能因為在電極部分716a、716b中或環繞電極部分716a、716b的電流密度過高而發生。最外環相鄰於電極部分的較厚部分呈現增加的橫斷面區域,並因此呈現降低的電流密度。因此,最外環相鄰於電極部分的部分可以比最外環的其他部分更厚,例如,最外環在電極部分與鄰近於厚部分之間的部分。如上所述,最外環可為第二環714。然而,在其他實施例中,第二環714可為最外環與第一環712之間的環,或介於最外環與容器壁704之間的環。
如第9圖進一步圖示,第一環712可包含位於水平線段720的相對側上的二個子部分718a及718b,並包括厚度T1。子部分718a可環繞容器702的整體周圍的二分之一或小於二分之一延伸,並與之接觸。同樣地,子部分718b亦可環繞容器702的整體周圍的二分之一或小於二分之一延伸,並與之接觸。舉例而言,在第9圖的實施例中,子部分718a及718b二者都環繞容器702而小於容器的周圍的二分之一延伸,並因此成為分離的子部分,其中任一子部分都未完全環繞容器的周圍延伸。應理解,在一些實施例中,子部分718a及718b並未彼此接觸。舉例而言,子部分718a及718b可放置相鄰於各別電極部分716a及716b,而延伸穿過並垂直縱軸708的垂直線段724延伸穿過子部分二者。子部分718a及718b可具有相同厚度T1,或子部分718a及718b可具有不同厚度T1a及T1b,其中T1b與T1a不同。
第一環712進一步包含子部分722a及子部分722b。子部分722a及722b可具有相同厚度T2,或子部分722a及722b可具有不同厚度T2a及T2b,其中T2b與T2a不同。類似於子部分718a及718b,子部分722a及722b係為分離,且環繞容器702相對放置。亦類似於子部分718a及718b,子部分722a及722b之每一者都環繞容器702延伸小於180度。在一些實施例中,T1小於T2。在一些實施例中,T1a與T1b相等,且T2a與T2b相等,而T1a、T1b小於T2a、T2b。在一些實施例中,可選擇每一子部分的材料,以具有不同的內在電阻。
由第9圖與先前敘述可理解,子部分718a、718b及722a、722b係為重疊子部分。因此,存在至少一個徑向線段726從縱軸708朝外無限延伸且垂直於縱軸708,其穿過子部分718a或718b之一者但不穿過子部分722a或子部分722b之任一者。亦存在至少一個徑向線段728從縱軸708朝外無限延伸且垂直於縱軸708,其穿過子部分718a或718b之一者以及子部分722a或722b之一者。最後,存在至少一個徑向線段730,其在凸緣的平面中從縱軸708朝外無限延伸且垂直於縱軸708,其穿過子部分722a或722b之一者,而未穿過子部分718a或子部分718b之任一者。
該領域具有通常知識者應理解,在利用前述揭示發明的優點下,可以產生許多凸緣設計。更特定言之,可預想一種一致的設計方法,其中可制定以凸緣上的角度位置為函數的凸緣電流承載能力,因此在凸緣(附加至壁)與壁相交的區域可將電流均勻的傳送至容器壁。因此,在一個此類方法中,第一步驟包含將初始凸緣及容器設計參數化。初始凸緣及/或容器設計可為現有的實體凸緣及/或容器,或初始凸緣及容器設計可為虛擬設計。參數化的意義係藉此將凸緣及/或容器減少成定義結構與其操作特徵的所需參數值。舉例而言,只具有單一環並在環的最內側邊緣處附加至具有預定壁厚度之容器的簡單圓形對稱凸緣可利用參數值參數化,例如定義環的外部周圍的外部半徑、定義凸緣的內側邊緣的內側半徑、厚度、及材料(例如,至少以電阻定義其本身)、容器的壁厚度、及甚至熔融材料(例如,熔融玻璃)通過容器的流率,但不限制於此。參數值可用於針對凸緣中的預定電流以計算在凸緣中或在凸緣上任一點處的電流密度。舉例而言,必要計算可利用為任務所設計或適用任務的軟體進行,例如電流分析軟體。此外,在材料通過容器的預定流率下,電流密度可用於計算凸緣或容器壁在預定位置處的溫度。這些計算結果可以與所需電流密度及/或溫度比較。舉例而言,可使用ANSYS Fluent軟體計算流場與溫度場。
因此,該方法可進一步包含使用參數化值、以及例如供應至凸緣的預定電流與在一些實例中的材料(例如,熔融玻璃)通過容器的流率,以計算凸緣及/或容器中的電流密度,及/或凸緣及/或容器中的溫度。經計算的電流密度及/或溫度可作為修改凸緣及/或容器的基礎。舉例而言,可藉由改變以下至少一者而修改凸緣的初始設計,包含凸緣之材料的第一環的個別部分的數量、第一環的個別部分的厚度、第一環的個別部分的形狀、第一環的寬度的變化、包含環或其部分之一或更多個材料的內在電阻等,但不限制於此。當已建立改變時,可重新計算在凸緣及/或容器的預定位置處的電流密度及/或溫度,並再度與在凸緣或容器上的感興趣區域之間的電流密度及/或溫度所需差異比較,例如,在容器的頂部部分與容器的側部及底部部分之間的電流密度及/或溫度的差異。在預定點處的電流密度及/或溫度亦可以與預定值比較,例如與預定限制比較。修改及計算的處理可以用迭代方式應用,直到達到電流密度及/或溫度的所需差異。在完成後,最終設計的參數值便可用於製造呈現最終參數值的凸緣及/或容器。
實例1
利用FLUENT軟體及針對電流分析所發展的軟體執行模擬,以評估如第10圖所示的空的習知凸緣,經配置為長橢圓容器802,長橢圓容器802包含包圍內部空間806的壁804,並具有根據第4圖的凸緣的凸緣設計,亦即凸緣200。容器壁804具有40密耳(約50.8公分)的固定厚度。習知凸緣800包括主體部分808與從其延伸的電極部分810。主體部分808包括具有0.5英吋厚度(1.27公分)的鎳質最外環810,以及二個不同厚度的鉑銠環,其為具有80密耳(約0.41公分)的固定厚度的最內環812以及具有40密耳(約0.20公分)的固定厚度的最外環810與容器802之間的中間環814。鉑銠環812及814二者都環繞容器802完全延伸。容器802具有6英吋(15.24公分)的短軸816及20英吋(50.8公分)的長軸818。根據第4圖的凸緣,凸緣200係包括鎳質最外環218與鉑銠最內環216,鉑銠最內環216包含具有40密耳(約0.20公分)的固定厚度的第一部分222以及具有80密耳(約50.8公分)的固定厚度的第二部分228。凸緣200係環繞相同容器802而定位。凸緣包括單一電極部分220。
在模擬中,凸緣二者係以相同建構的第二凸緣配對,其間隔60英吋(152.4公分)遠,並以10,000安培供應。亦即,凸緣800係以第二凸緣800配對,而凸緣200係以第二凸緣200配對。模擬指示習知凸緣800的最大溫度為攝氏2030度,遠超過鉑的熔融溫度(攝氏1768.3度)。最大溫度發生在電極部分810與容器802的頂部之間的筆直線段上的中間環中。最大電流密度為16安培/mm2 ,並發生在相鄰於容器壁804的弧形部分的最內環812中。在鎳質環810中發生的最大溫度為攝氏1096度。
相對於凸緣800,在相同條件下的凸緣200呈現的最大溫度為攝氏1523度,並發生在電極部分220及容器802頂部之間的筆直線段上的第一部分222中。最大溫度比鉑的熔融溫度更低。最大電流密度為11安培/mm2 ,並發生在與凸緣800相同的位置中。在鎳質環中發生的最大溫度為攝氏650度。
實例2
第11圖模擬以12000安培/mm2 的供應電流沿著容器(導管)的長度的三個位置的凸緣800中的電流密度,並與凸緣200的電流密度比較。凸緣200與800在長橢圓容器(導管)上再次以相同各別凸緣配對,長橢圓容器具有9英吋(約22.9公分)的短軸816及30英吋(76.2公分)的長軸,並在配對凸緣之間間隔60英吋(152.4公分)。計算在容器的頂部處、長軸(邊緣)處、及容器的底部處的電流密度。習知凸緣800包括主體部分808與從其延伸的電極部分810。主體部分808包括具有0.5英吋厚度(1.27公分)的鎳質最外環810,以及二個不同厚度的鉑銠環,其為具有80密耳(約0.41公分)的固定厚度的最內環812以及具有40密耳(約0.20公分)的固定厚度的最外環810與容器802之間的中間環814。鉑銠環812及814二者都環繞容器802完全延伸。容器802具有9英吋(22.9公分)的短軸816及30英吋(76.2公分)的長軸818。凸緣200包括厚度0.5英吋(1.27公分)的鎳質最外環218與鉑銠最內環216,鉑銠最內環216包含具有40密耳(約0.2公分)的固定厚度的第一部分222、具有80密耳(約50.8公分)的固定厚度的第二部分228、及單一電極部分220。凸緣200係環繞相同容器802而定位。
第11圖圖示在左側凸緣處(在−30英吋,76.2公分的位置)的習知凸緣設計的容器的頂部的電流密度大致為7.3安培/mm2 (曲線900),而在容器的底部處為約5.3安培/mm2 (曲線904)。在容器的邊緣處,電流密度為約7.3安培/mm2 (曲線902)。在凸緣之間的距離上,在此實例中為60英吋(152.4公分),電流密度的變化大致為0.55安培/mm2 (介於約7.3安培/mm2 及6.75安培/mm2 之間)。此外,可看到在容器凸緣接點處有最高的電流密度(亦即,在圖式中的−30英吋與+30英吋處),並在凸緣之間朝向中點減少。
相較之下,在容器凸緣接點處(例如,−30英吋)的凸緣200的容器的頂部的電流密度只為約6.5安培/mm2 (曲線906),而在容器凸緣接點處(例如,−30英吋)的容器的底部處為約5.8安培/mm2 (曲線910)。在容器的邊緣(側邊)處,電流密度為約7.3安培/mm2 (曲線910)。因此,環繞容器凸緣接點處的容器的周圍的電流最大變化為約1.5安培/mm2 ,意指電流係操縱以朝著遠離容器的頂部的方向。
更重要的是,對於供應與針對習知凸緣的相同電流而言,在凸緣之間的距離上,沿著容器的頂部的電流密度(曲線906)只大致變化0.26安培/mm2 (約6.76安培/mm2 與6.5安培/mm2 之間)。此差異量為容器的頂部處的最大電流密度的約4%。此外,從圖式可清楚看到,與習知凸緣相較,沿著容器的頂部的電流密度在容器凸緣接點處(亦即,−30英吋與+30英吋)為最低,並隨著從一個凸緣移動至另一凸緣而快速增加至最大電流密度。在所述實例中,電流密度峰值非常靠近容器凸緣接點。在所呈現實例中,電流密度在凸緣的約8英吋(20.32公分)內達到最大值,或是在相鄰凸緣之間的總距離的約13%內達到最大值。此外,在位於第11圖的實例中的約−22英吋與+22英吋處的位置(總距離為44英吋,111.76公分)的峰值之間的電流密度實質上固定,其變化不大於約0.05安培/mm2
總結來說,對於相同的輸入電流而言,當與習知凸緣比較時,根據本文所述之實施例的凸緣能夠顯著降低於最靠近電極部分的位置的點處的凸緣與容器壁之間之接點處的電流密度(其中電流引入至凸緣主體中),例如,降低在本實例中的容器的頂部的電流密度,並展示能夠沿著容器的頂部在相鄰凸緣之間的距離上產生更一致(均勻)的電流密度。
第12圖圖示供應12000安培/mm2 的電流的沿著容器(導管)的長度的三個相同位置處的凸緣800與200的相同配置的模擬溫度。凸緣200及800係再次以相同的各別凸緣配對,並計算在容器的頂部處(12點鐘位置)、長軸處(3點鐘位置)、及容器的底部處(6點鐘位置)的溫度。第12圖圖示在最左側凸緣處(在−30英吋,76.2公分的位置)的習知凸緣設計的容器的頂部處(12點鐘位置)的溫度在容器凸緣接點處大致為攝氏1360度(曲線912),而在容器的底部處(6點鐘位置)約為攝氏1140度(曲線916)。在容器的側邊處(3點鐘位置)的容器凸緣接點處為約攝氏1220度(曲線914)。
相較之下,凸緣200在容器的頂部處(12點鐘位置)的溫度在容器凸緣接點處大致為攝氏1300度(曲線918),而在容器的底部處(6點鐘位置)為約攝氏1075度(曲線922)。在容器的3點鐘位置處於容器凸緣接點處為約攝氏1220度(曲線920)。
第11圖與第12圖的資料展示根據本發明之實施例的凸緣能夠承載高電流(例如,>8000安培),藉由使靠近容器的頂部在凸緣中的電流重新分佈至凸緣的其他區域的方式,而不損害凸緣所附加之容器的功能性。此外,資料展示使用本文各種實施例所述的凸緣設計可以改良電流分佈與溫度的均勻性。舉例而言,在約−25英吋的位置處(第11圖的線段924),環繞使用習知凸緣之容器的周圍(頂部、側邊、及底部)的電流密度係在約5.5至7.25安培/mm2 的範圍變化,差異為約1.75安培/mm2 ,或為約24.1%。對於凸緣200而言,環繞容器的周圍的電流密度係在約6.15至6.75安培/mm2 的範圍變化,差異為約0.6安培/mm2 ,或為約8.9%。
在第12圖上的約−25英吋的位置處(第12圖的線段926),在使用習知凸緣800時,環繞容器的周圍的容器溫度係在約攝氏1170度至約1225度的範圍變化,差異為約攝氏55度,或約5.5%。對於凸緣200而言,在相同位置處環繞容器的周圍的溫度係在約攝氏1180度至大約1210度的範圍變化,差異為約攝氏30度,或約2.5%。因此,儘管資料展示對於二個凸緣設計而言在導管中心處(位置0)的溫度基本上大致均勻,但相較於習知凸緣,運用根據本文所述實施例之凸緣的容器可在凸緣容器接點處呈現較低的電流密度,特別是在最靠近電極部分的位置處,且越靠近凸緣有越高的周圍溫度均勻性,並可在凸緣之間的容器的可考量長度上維持電流密度與溫度的顯著均勻性。
該領域具有通常知識者應理解,在不背離本發明精神與範疇下可對本發明之實施例進行各種修改與變化。因此,預期本發明係涵蓋落於附加請求項與其等價物之範圍內,對於所提供實施例進行的修改與變化。
10‧‧‧玻璃製造設備
12‧‧‧玻璃熔融爐
14‧‧‧熔融容器
16‧‧‧上游玻璃製造設備
18‧‧‧批料儲存箱
20‧‧‧批料傳送裝置
22‧‧‧馬達
24‧‧‧批料
26‧‧‧箭頭
28‧‧‧熔融玻璃
30‧‧‧下游玻璃製造設備
32‧‧‧第一連接導管
34‧‧‧澄清容器
36‧‧‧混合容器
38‧‧‧第二連接導管
40‧‧‧傳送容器
42‧‧‧成形主體
44‧‧‧出口導管
46‧‧‧第三連接導管
48‧‧‧成形設備
50‧‧‧入口導管
52‧‧‧水槽
54‧‧‧成形表面
56‧‧‧底部邊緣
58‧‧‧玻璃帶
100‧‧‧凸緣
102‧‧‧容器
104‧‧‧壁
106‧‧‧內部空間
108‧‧‧縱軸
110‧‧‧主體部分
112‧‧‧第一環
114‧‧‧第二環
116‧‧‧電極部分
118‧‧‧第一環的第一部分
120‧‧‧線段
122‧‧‧容器的第一直徑
124‧‧‧線段
126‧‧‧容器的第二直徑
128‧‧‧第一環的第二部分
130‧‧‧第一徑向線段
132‧‧‧第二徑向線段
134‧‧‧第三徑向線段
136‧‧‧第四徑向線段
138‧‧‧徑向線段
140‧‧‧凸緣
142‧‧‧電極部分
143‧‧‧容器頂部
144‧‧‧容器
145‧‧‧冷卻導管
150‧‧‧徑向線段
152‧‧‧徑向線段
200‧‧‧凸緣
202‧‧‧容器
204‧‧‧壁
206‧‧‧內部空間
208‧‧‧縱軸
210‧‧‧長軸
212‧‧‧短軸
214‧‧‧主體部分
216‧‧‧第一環
218‧‧‧第二環
220‧‧‧電極部分
222‧‧‧第一環的第一部分
224‧‧‧垂直線段
226‧‧‧水平線段
228‧‧‧第一環的第二部分
230‧‧‧徑向線段
232‧‧‧徑向線段
234‧‧‧徑向線段
236‧‧‧徑向線段
238‧‧‧徑向線段
240‧‧‧徑向線段
242‧‧‧徑向線段
300‧‧‧凸緣
302‧‧‧容器
304‧‧‧壁
306‧‧‧內部空間
308‧‧‧縱軸
310‧‧‧長軸
312‧‧‧短軸
314‧‧‧主體部分
316‧‧‧第一環
318‧‧‧第二環
320‧‧‧電極部分
322‧‧‧第一環的第一部分
324‧‧‧垂直線段
326‧‧‧水平線段
328‧‧‧第一環的第二部分
330‧‧‧徑向線段
332a‧‧‧子部分
332b‧‧‧子部分
336‧‧‧徑向線段
338‧‧‧徑向線段
340‧‧‧徑向線段
342‧‧‧徑向線段
344‧‧‧徑向線段
348‧‧‧徑向線段
350‧‧‧徑向線段
352‧‧‧徑向線段
400‧‧‧凸緣
402‧‧‧容器
404‧‧‧壁
406‧‧‧內部空間
408‧‧‧縱軸
410‧‧‧長軸
412‧‧‧短軸
414‧‧‧主體部分
416‧‧‧第一環
418‧‧‧第二環
419a‧‧‧最外環部分
419b‧‧‧最外環部分
420‧‧‧電極部分
421‧‧‧最外環介於電極部分及第一環之間的部分
422‧‧‧第一環的第一部分
426‧‧‧水平線段
432a‧‧‧第一環的子部分
432b‧‧‧第一環的子部分
436‧‧‧線段
438‧‧‧線段
440‧‧‧線段
442‧‧‧線段
500‧‧‧凸緣
502‧‧‧容器
504‧‧‧壁
506‧‧‧內部空間
508‧‧‧縱軸
514‧‧‧主體部分
516‧‧‧第一環
518‧‧‧第二環
519a‧‧‧最外環部分
519b‧‧‧最外環部分
520‧‧‧電極部分
521‧‧‧最外環介於電極部分及第一環之間的部分
522‧‧‧第一環的第一部分
528‧‧‧第一環的第二部分
532a‧‧‧第一環的第三部分的子部分
532b‧‧‧第一環的第三部分的子部分
550‧‧‧線段
552‧‧‧線段
556‧‧‧虛線
558‧‧‧線段
560‧‧‧線段
600‧‧‧凸緣
602‧‧‧容器
604‧‧‧壁
614‧‧‧主體部分
616‧‧‧第一環
618‧‧‧第二環
620‧‧‧電極部分
622‧‧‧第一環的第一部分
626‧‧‧水平線段
628‧‧‧第一環的第二部分
650a‧‧‧最外環部分
650b‧‧‧最外環部分
652‧‧‧最外環介於電極部分及第一環之間的部分
654‧‧‧切口
700‧‧‧凸緣
702‧‧‧容器
704‧‧‧壁
706‧‧‧內部空間
708‧‧‧縱軸
710‧‧‧主體部分
712‧‧‧第一環
714‧‧‧第二環
716a‧‧‧電極部分
716b‧‧‧電極部分
718a‧‧‧第一環的子部分
718b‧‧‧第一環的子部分
720‧‧‧水平線段
722a‧‧‧第一環的子部分
722b‧‧‧第一環的子部分
724‧‧‧垂直線段
726‧‧‧線段
728‧‧‧線段
730‧‧‧徑向線段
800‧‧‧凸緣
802‧‧‧容器
804‧‧‧壁
806‧‧‧內部空間
808‧‧‧主體部分
810‧‧‧電極部分
810‧‧‧最外環
812‧‧‧最內環
814‧‧‧中間環
816‧‧‧短軸
818‧‧‧長軸
900‧‧‧曲線
902‧‧‧曲線
904‧‧‧曲線
906‧‧‧曲線
908‧‧‧曲線
910‧‧‧曲線
912‧‧‧曲線
914‧‧‧曲線
916‧‧‧曲線
918‧‧‧曲線
920‧‧‧曲線
922‧‧‧曲線
924‧‧‧曲線
926‧‧‧曲線
A‧‧‧相交點
B‧‧‧相交點
C‧‧‧相交點
D‧‧‧相交點
E‧‧‧相交點
F‧‧‧相交點
G‧‧‧相交點
H‧‧‧相交點
J‧‧‧相交點
K‧‧‧相交點
L‧‧‧相交點
M‧‧‧相交點
N‧‧‧相交點
α‧‧‧角度
β‧‧‧角度
y‧‧‧角度
f‧‧‧角度
q‧‧‧角度
W1‧‧‧寬度
W2‧‧‧寬度
T1‧‧‧厚度
T1a‧‧‧厚度
T1b‧‧‧厚度
T2‧‧‧厚度
T2a‧‧‧厚度
T2b‧‧‧厚度
第1圖係為根據本文所述之實施例的示例性玻璃製造設備的示意圖;
第2圖係為根據本文所述之實施例的示例性凸緣的側視圖;
第3A圖係為通用凸緣的側視圖,其圖示電流分佈的效果,電流分佈係集中在電極部分與附加至凸緣之容器之間的線段上;
第3B圖係為導管的斷面側視圖,其包含二個第3A圖的通用凸緣;
第4圖係為根據本文所述之實施例的另一示例性凸緣的側視圖;
第5圖係為根據本文所述之實施例的另一示例性凸緣的側視圖;
第6圖係為根據本文所述之實施例的另一示例性凸緣的側視圖;
第7圖係為根據本文所述之實施例的另一示例性凸緣的側視圖;
第8圖係為根據本文所述之實施例的另一示例性凸緣的側視圖;
第9圖係為根據本文所述之實施例的另一示例性凸緣的側視圖;
第10圖係為習知凸緣設計的側視圖;
第11圖係為圖示習知凸緣對於根據本文所述之實施例之凸緣,在其所附加之容器壁中,對三個不同位置以長度為函數的電流密度比較之圖;
第12圖係為圖示習知凸緣對於根據本文所述之實施例之凸緣,在其所附加之容器壁中,對三個不同位置以長度為函數的電流密度比較之圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
(請換頁單獨記載) 無
100‧‧‧凸緣
102‧‧‧容器
104‧‧‧壁
106‧‧‧內部空間
108‧‧‧縱軸
110‧‧‧主體部分
112‧‧‧第一環
114‧‧‧第二環
116‧‧‧電極部分
118‧‧‧第一環的第一部分
120‧‧‧線段
122‧‧‧容器的第一直徑
124‧‧‧線段
126‧‧‧容器的第二直徑
128‧‧‧第一環的第二部分
130‧‧‧第一徑向線段
132‧‧‧第二徑向線段
134‧‧‧第三徑向線段
136‧‧‧第四徑向線段
138‧‧‧徑向線段
145‧‧‧冷卻導管
150‧‧‧徑向線段
152‧‧‧徑向線段
A‧‧‧相交點
B‧‧‧相交點
C‧‧‧相交點
D‧‧‧相交點
α‧‧‧角度
β‧‧‧角度
W1‧‧‧寬度
W2‧‧‧寬度

Claims (15)

  1. 一種用於處理一熔融材料的設備,包含: 一容器,該容器包含一壁,該容器經佈置以輸送該熔融材料;以及 一凸緣,該凸緣附加至該容器,並經配置以傳送一電流至該容器壁,該凸緣包含完全環繞該容器於一封閉迴路中延伸的一第一環,該第一環包含一第一部分與一第二部分,該第一部分包括一第一厚度,而該第二部分包括一第二厚度,該第二厚度與該第一厚度不同,其中該第一部分與該第二部分重疊於該凸緣的一平面中,而使得該第一部分係位於該第二部分與該容器壁之間,而該第一部分或該第二部分並未完全環繞該容器延伸。
  2. 如請求項1所述之設備,其中該第一環的該第一部分的該厚度小於該第一環的該第二部分的該厚度。
  3. 如請求項1所述之設備,進一步包含一第二環,該第二環環繞該第一環於一封閉迴路中延伸。
  4. 如請求項3所述之設備,其中該第二環的一厚度大於該第二部分的該厚度。
  5. 如請求項3所述之設備,其中該第一環包含一第一金屬,而該第二環包含一第二金屬,該第二金屬與該第一金屬不同。
  6. 如請求項3至5中之任一者之設備,其中該第二環係為一最外環。
  7. 如請求項1所述之設備,其中在該凸緣的一平面中從該容器的一中心線段延伸並垂直於該中心線段的一第一徑向線段上,該第一徑向線段穿過該第一環的該第一部分,而不與該第一環的該第二部分交叉。
  8. 如請求項1所述之設備,其中該第一環進一步包含一第三部分,該第三部分位於該第一部分與該第二部分之間,其中該第三部分並未完全環繞該容器延伸。
  9. 如請求項1所述之設備,進一步包含一最外環,其中該最外環的一厚度隨著環繞該容器之角度位置為函數而變化。
  10. 如請求項9所述之設備,進一步包含一電極,該電極附加至該最外環,而該最外環鄰近於該電極的一部分較該最外環相對於該電極的一部分更厚。
  11. 如請求項1所述之設備,其中該容器在垂直於該容器的一縱軸之一平面中的一橫斷面形狀為長橢圓形。
  12. 一種製造一電加熱容器的方法,該電加熱容器包含一電氣凸緣,經配置以供應一電流至所附加的該容器,該電氣凸緣在實質垂直於該容器的一中心線段的一平面上包圍該容器,該方法包含以下步驟: (a)將該電氣凸緣參數化,該電氣凸緣包含一第一環與一第二環,該第一環包含一第一金屬,該第二環包含一第二金屬,該第二金屬與該第一金屬不同,該第一環包含該凸緣的一平面中的不同厚度的複數個徑向重疊部分,其中該等徑向重疊部分沒有任一個完全環繞該容器延伸,該參數化步驟包括以下步驟:決定該等徑向重疊部分的一厚度、一形狀、及一位置; (b)針對透過該凸緣供應至該容器的一總預定電流,計算該第一環在一第一位置處的一電流密度;以及 (c)若該凸緣在該容器的該頂部處的該電流密度之間的一差異大於一預定值,則修改該等徑向重疊部分之尺寸、形狀、及位置中之至少一者;以及 (e)重複步驟(b)及(c),直到在該第一位置處的該電流密度小於該預定值。
  13. 如請求項12所述之方法,進一步包含以下步驟:在步驟(b)使用該第一位置處的該計算電流密度而計算該容器壁的一溫度。
  14. 一種製造玻璃的方法,包含以下步驟: 使熔融玻璃流經一容器,該容器包含一壁、一第一凸緣、及一第二凸緣,該第二凸緣鄰近於該第一凸緣,該第一與第二凸緣於各別容器凸緣接點處附加至該壁,該第一與第二凸緣經配置以供應一電流至該壁,該第一與第二凸緣之每一者都包括從一主體部分延伸的一電極部分; 在該第一與第二凸緣之間於該壁中建立一電流;以及 其中沿著在該壁上從該第一凸緣延伸至該第二凸緣的一線段,在該壁上最靠近該第一與第二凸緣之該等電極部分的一部分處,沿著該線段的一電流密度在該等容器凸緣接點處為最小。
  15. 如請求項14所述之方法,其中在該線段上的一最大電流密度與該最小電流密度之間的一差異係等於或小於10%。
TW105134043A 2015-10-21 2016-10-21 用於處理熔融材料、製造電加熱容器或製造玻璃的裝置和方法 TWI709543B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562244462P 2015-10-21 2015-10-21
US62/244,462 2015-10-21

Publications (2)

Publication Number Publication Date
TW201728539A true TW201728539A (zh) 2017-08-16
TWI709543B TWI709543B (zh) 2020-11-11

Family

ID=57208402

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109135133A TWI733600B (zh) 2015-10-21 2016-10-21 用於處理熔融材料、製造電加熱容器或製造玻璃的裝置和方法
TW105134043A TWI709543B (zh) 2015-10-21 2016-10-21 用於處理熔融材料、製造電加熱容器或製造玻璃的裝置和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109135133A TWI733600B (zh) 2015-10-21 2016-10-21 用於處理熔融材料、製造電加熱容器或製造玻璃的裝置和方法

Country Status (7)

Country Link
US (2) US10633276B2 (zh)
EP (1) EP3365287B1 (zh)
JP (1) JP6990010B2 (zh)
KR (1) KR102645627B1 (zh)
CN (1) CN108290762A (zh)
TW (2) TWI733600B (zh)
WO (1) WO2017070453A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6925582B2 (ja) * 2017-12-20 2021-08-25 日本電気硝子株式会社 ガラス物品の製造方法及び製造装置
JP6925583B2 (ja) * 2017-12-20 2021-08-25 日本電気硝子株式会社 ガラス物品の製造方法及び製造装置
JP7136015B2 (ja) * 2019-06-17 2022-09-13 日本電気硝子株式会社 ガラス移送装置
KR102664414B1 (ko) 2021-12-10 2024-05-13 조현경 혈압 파형 측정센서 및 그의 혈압 측정장치
CN114436505B (zh) * 2022-02-10 2023-07-25 成都光明光电股份有限公司 光学玻璃澄清装置及其澄清方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132995B (zh) * 2005-03-08 2011-02-02 旭硝子株式会社 铂或铂合金制结构件及使用其的玻璃制造装置
WO2006123479A1 (ja) 2005-05-18 2006-11-23 Asahi Glass Company, Limited 白金製の複合管構造体を通電加熱する方法
KR100889716B1 (ko) * 2005-06-06 2009-03-23 아사히 가라스 가부시키가이샤 유리 제조 장치 및 그 구성 요소, 그리고 그 구성 요소를통전 가열하는 방법
KR100914422B1 (ko) * 2005-06-09 2009-08-27 아사히 가라스 가부시키가이샤 유리 제조 장치 및 그 구성 요소
US8269131B2 (en) 2008-02-28 2012-09-18 Corning Incorporated Nickel-containing flanges for use in direct resistance heating of platinum-containing vessels
JP4990230B2 (ja) * 2008-06-17 2012-08-01 AvanStrate株式会社 ガラス導管
JP5390889B2 (ja) * 2009-03-06 2014-01-15 信一 近藤 金属容器内の液体の加熱方法、及びそのための装置
JP5124540B2 (ja) 2009-07-29 2013-01-23 株式会社日立ハイテクノロジーズ 物品搬送システム,検体処理システム
US8274018B2 (en) 2010-02-25 2012-09-25 Corning Incorporated Apparatus for use in direct resistance heating of platinum-containing vessels
CN102442759A (zh) 2010-09-30 2012-05-09 旭硝子株式会社 玻璃制造装置及其构成要素
CN102442758A (zh) 2010-09-30 2012-05-09 旭硝子株式会社 玻璃制造装置及其构成要素以及对其进行通电加热的方法
US9242886B2 (en) * 2010-11-23 2016-01-26 Corning Incorporated Delivery apparatus for a glass manufacturing apparatus and methods
JP5769574B2 (ja) 2011-09-30 2015-08-26 AvanStrate株式会社 ガラス板の製造方法
US8857219B2 (en) * 2012-07-11 2014-10-14 Corning Incorporated Apparatus for use in direct resistance heating of platinum-containing vessels
JP5777590B2 (ja) 2012-09-28 2015-09-09 AvanStrate株式会社 ガラス基板の製造方法及びガラス基板の製造装置
JP6099037B2 (ja) 2012-10-24 2017-03-22 AvanStrate株式会社 ガラス板製造装置、およびこの装置を用いたガラス板の製造方法
KR101716996B1 (ko) * 2013-02-01 2017-03-15 아반스트레이트 가부시키가이샤 유리 기판의 제조 방법 및 유리 기판 제조 장치
CN203461952U (zh) 2013-09-29 2014-03-05 东旭集团有限公司 一种具有均温功能的玻璃铂金通道上用的电加热法兰
KR102288421B1 (ko) * 2013-10-18 2021-08-11 코닝 인코포레이티드 유리 제조 기기 및 그 방법
JP2015105196A (ja) * 2013-11-29 2015-06-08 AvanStrate株式会社 ガラス基板の製造方法、及び、ガラス基板の製造装置
CN107646022B (zh) * 2015-03-23 2020-08-21 康宁股份有限公司 用于加热金属容器的设备和方法

Also Published As

Publication number Publication date
US10800695B2 (en) 2020-10-13
US20180297883A1 (en) 2018-10-18
TW202124299A (zh) 2021-07-01
EP3365287B1 (en) 2022-11-16
TWI709543B (zh) 2020-11-11
JP6990010B2 (ja) 2022-01-12
US20200095151A1 (en) 2020-03-26
JP2018531206A (ja) 2018-10-25
US10633276B2 (en) 2020-04-28
KR102645627B1 (ko) 2024-03-11
TWI733600B (zh) 2021-07-11
WO2017070453A1 (en) 2017-04-27
KR20180074715A (ko) 2018-07-03
CN108290762A (zh) 2018-07-17
EP3365287A1 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6885873B2 (ja) 金属容器を加熱するための装置及び方法
TW201728539A (zh) 用於加熱金屬容器的裝置和方法
JP6463384B2 (ja) 白金含有容器の直接抵抗加熱に使用するための装置
JP6754469B2 (ja) ガラス製造装置および方法
JP2018531206A6 (ja) 金属容器を加熱するための装置および方法
JP6969573B2 (ja) ガラス製造装置、ガラス製造方法、ガラス供給管及び溶融ガラス搬送方法
CN110114319A (zh) 用于管理玻璃带冷却的方法和设备
JP7085546B2 (ja) 成形本体の寸法変動を補償するための方法および装置
WO2021162890A1 (en) Apparatus and method for improving electrical current flow in glass melt conduit
CN117923756A (zh) 用于制造玻璃制品的设备和方法
TW202417385A (zh) 用於製造玻璃製品的設備和方法