TW201719874A - Imaging device, module, electronic device, and method of operating the imaging device - Google Patents

Imaging device, module, electronic device, and method of operating the imaging device Download PDF

Info

Publication number
TW201719874A
TW201719874A TW105128811A TW105128811A TW201719874A TW 201719874 A TW201719874 A TW 201719874A TW 105128811 A TW105128811 A TW 105128811A TW 105128811 A TW105128811 A TW 105128811A TW 201719874 A TW201719874 A TW 201719874A
Authority
TW
Taiwan
Prior art keywords
transistor
circuit
potential
oxide semiconductor
charge
Prior art date
Application number
TW105128811A
Other languages
Chinese (zh)
Other versions
TWI812583B (en
Inventor
王丸拓郎
Original Assignee
半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 半導體能源研究所股份有限公司 filed Critical 半導體能源研究所股份有限公司
Publication of TW201719874A publication Critical patent/TW201719874A/en
Application granted granted Critical
Publication of TWI812583B publication Critical patent/TWI812583B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14638Structures specially adapted for transferring the charges across the imager perpendicular to the imaging plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • H04N25/589Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields with different integration times, e.g. short and long exposures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/616Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/709Circuitry for control of the power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Thin Film Transistor (AREA)

Abstract

An imaging device whose dynamic range can be wide with a simple structure is provided. In a circuit configuration and an operation method of the imaging device, whether a charge detection portion provided in a pixel is saturated with electrons is determined and an operation mode is changed depending on the determination result. First imaging data is captured first, and is read out in the case where the charge detection portion is not saturated with electrons. In the case where the charge detection portion is saturated with electrons, the saturation of the charge detection portion is eliminated and second imaging data is captured and read out.

Description

攝像裝置、模組、電子裝置以及攝像裝置的工作 方法 Work of camera, module, electronic device and camera method

本發明的一個實施方式係關於一種攝像裝置及其工作方法。 One embodiment of the present invention is directed to an image pickup apparatus and a method of operating the same.

注意,本發明的一個實施方式不侷限於上述技術領域。本說明書等所公開的發明的一個實施方式的技術領域係關於一種物體、方法或製造方法。或者,本發明的一個實施方式係關於一種製程(process)、機器(machine)、產品(manufacture)或者組成物(composition of matter)。由此,更明確而言,作為本說明書所公開的本發明的一個實施方式的技術領域的一個例子可以舉出半導體裝置、顯示裝置、液晶顯示裝置、發光裝置、照明設備、蓄電裝置、記憶體裝置、攝像裝置、這些裝置的工作方法或者這些裝置的製造方法。 Note that one embodiment of the present invention is not limited to the above technical field. The technical field of one embodiment of the invention disclosed in the present specification and the like relates to an object, a method or a manufacturing method. Alternatively, one embodiment of the invention relates to a process, a machine, a manufacture, or a composition of matter. Therefore, more specifically, examples of the technical field of one embodiment of the present invention disclosed in the present specification include a semiconductor device, a display device, a liquid crystal display device, a light-emitting device, a lighting device, a power storage device, and a memory. Devices, imaging devices, methods of operating such devices, or methods of making such devices.

注意,本說明書等中的半導體裝置是指藉由利用半導體特性而能夠工作的所有裝置。電晶體、半導體電路為半導體裝置的一個實施方式。另外,記憶體裝置、顯示裝置、攝像裝置、電子裝置有時包括半導體裝置。 Note that the semiconductor device in the present specification and the like refers to all devices that can operate by utilizing semiconductor characteristics. The transistor and the semiconductor circuit are one embodiment of a semiconductor device. Further, the memory device, the display device, the imaging device, and the electronic device may include a semiconductor device.

作為可以用於電晶體的半導體材料,氧化物半導體受到關注。例如,公開了作為氧化物半導體使用氧化鋅或In-Ga-Zn類氧化物半導體來形成電晶體的技術(參照專利文獻1及專利文獻2)。 As a semiconductor material that can be used for a transistor, an oxide semiconductor is attracting attention. For example, a technique of forming a transistor using zinc oxide or an In-Ga-Zn-based oxide semiconductor as an oxide semiconductor has been disclosed (see Patent Document 1 and Patent Document 2).

另外,專利文獻3公開了一種攝像裝置,其中將包括氧化物半導體的電晶體用於像素電路的一部分。 In addition, Patent Document 3 discloses an image pickup apparatus in which a transistor including an oxide semiconductor is used for a part of a pixel circuit.

[參考文獻] [references]

[專利文獻1]日本專利申請公開第2007-123861號公報 [Patent Document 1] Japanese Patent Application Publication No. 2007-123861

[專利文獻2]日本專利申請公開第2007-96055號公報 [Patent Document 2] Japanese Patent Application Publication No. 2007-96055

[專利文獻3]日本專利申請公開第2011-119711號公報 [Patent Document 3] Japanese Patent Application Laid-Open No. 2011-119711

現在CMOS影像感測器安裝在各種裝置中,並被期待攝像功能的提高。習知的CMOS影像感測器的動態範圍是3位元數至4位數(60dB至80dB)左右,被要求提高到相當於銀鹽膠片和肉眼的5位數至6位數(100dB至120dB)。 Now CMOS image sensors are installed in various devices and are expected to improve the camera function. The dynamic range of the conventional CMOS image sensor is from 3 to 4 digits (60 dB to 80 dB), and is required to be increased to 5 to 6 digits (100 dB to 120 dB) equivalent to silver salt film and the naked eye. ).

作為提高動態範圍的方法,已提出了切換電荷存儲部而進行攝像的方法或者在像素內進行類比資料處理的方法等。然而,前者需要外部控制,由此還需要用來檢測照度等的裝置。另一方面,由於後者的像素中的電晶體較多,所以有該電晶體的洩漏電流或雜訊等引起的影像劣化的問題。 As a method of increasing the dynamic range, a method of switching the charge storage unit to perform imaging or a method of performing analog data processing in a pixel has been proposed. However, the former requires external control, and thus a device for detecting illuminance or the like is also required. On the other hand, since there are many transistors in the latter pixel, there is a problem of image deterioration due to leakage current or noise of the transistor.

由此,本發明的一個實施方式的目的之一是提供一種以簡單的結構能夠擴大動態範圍的攝像裝置。另外,本發明的一個實施方式的目的之一是提供一種在第一次攝像之後改變像素的靈敏度,然後進行第二次攝像的攝像裝置。另外,本發明的一個實施方式的目的之一是提供一種低功耗的攝像裝置。另外,本發明的一個實施方式的目的之一是提供一種在曝光期間中讀出上一個圖框的資料的攝像裝置。另外,本發明的一個實施方式的目的之一是提供一種能夠拍攝雜訊少的影像的攝像裝置。另外,本發明的一個實施方式的目的之一是提供一種適合於高速工作的攝像裝置。另外,本發明的一個實施方式的目的之一是提供一種高解析度的攝像裝置。另外,本發明的一個實施方式的目的之一是提供一種高集成度的攝像裝置。另外,本發明的一個實施方式的目的之一是提供一種能夠在低照度環境下進行攝像的攝像裝置。另外,本發明的一個實施方式的目的之一是提供一種能夠在較廣的溫度範圍內使用的攝像裝置。另外,本發明的一個實施方式的目的之一是提供一種高開口率的攝像裝置。另外,本發明的一個實施方 式的目的之一是提供一種高可靠性的攝像裝置。另外,本發明的一個實施方式的目的之一是提供一種新穎的攝像裝置等。另外,本發明的一個實施方式的目的之一是提供一種上述攝像裝置的工作方法。另外,本發明的一個實施方式的目的之一是提供一種新穎的半導體裝置等。 Accordingly, it is an object of one embodiment of the present invention to provide an image pickup apparatus capable of expanding a dynamic range with a simple configuration. Further, it is an object of one embodiment of the present invention to provide an image pickup apparatus that changes the sensitivity of a pixel after the first image capture and then performs the second image capture. Further, it is an object of one embodiment of the present invention to provide an image pickup apparatus with low power consumption. Further, it is an object of one embodiment of the present invention to provide an image pickup apparatus that reads data of a previous frame during an exposure period. Further, an object of one embodiment of the present invention is to provide an image pickup apparatus capable of capturing an image with less noise. Further, it is an object of one embodiment of the present invention to provide an image pickup apparatus suitable for high speed operation. Further, it is an object of one embodiment of the present invention to provide a high-resolution imaging apparatus. Further, it is an object of one embodiment of the present invention to provide a highly integrated imaging apparatus. Further, it is an object of one embodiment of the present invention to provide an image pickup apparatus capable of performing image pickup in a low illumination environment. Further, it is an object of one embodiment of the present invention to provide an image pickup apparatus that can be used over a wide temperature range. Further, it is an object of one embodiment of the present invention to provide an image pickup apparatus having a high aperture ratio. In addition, one embodiment of the present invention One of the purposes of the formula is to provide a highly reliable camera device. Further, it is an object of one embodiment of the present invention to provide a novel image pickup apparatus and the like. Further, it is an object of one embodiment of the present invention to provide a method of operating the above-described image pickup apparatus. Further, it is an object of one embodiment of the present invention to provide a novel semiconductor device or the like.

注意,這些課題的記載並不妨礙其他課題的存在。此外,本發明的一個實施方式並不需要解決所有上述課題。另外,說明書、圖式以及申請專利範圍等的記載中顯然存在上述課題以外的課題,可以從說明書、圖式以及申請專利範圍等的記載中獲得上述課題以外的課題。 Note that the records of these topics do not hinder the existence of other topics. Moreover, one embodiment of the present invention does not need to solve all of the above problems. In addition, in the descriptions of the specification, the drawings, and the scope of the patent application, it is apparent that there is a problem other than the above-described problems, and problems other than the above-described problems can be obtained from the descriptions of the specification, the drawings, and the scope of the patent application.

本發明的一個實施方式係關於一種能夠自動改變像素的靈敏度進行攝像的攝像裝置。 One embodiment of the present invention relates to an image pickup apparatus capable of automatically changing the sensitivity of a pixel to perform imaging.

本發明的一個實施方式是一種包括第一電晶體至第六電晶體、光電轉換元件、第一電容器以及第二電容器的攝像裝置,其中,光電轉換元件的一個電極與第一電晶體的源極和汲極中的一個電連接,第一電晶體的源極和汲極中的一個與第二電晶體的源極和汲極中的一個電連接,第一電晶體的源極和汲極中的另一個與第三電晶體的源極和汲極中的一個電連接,第一電晶體的源極和汲極中的另一個與第四電晶體的源極和汲極中的一個電連接、第一電晶體的源極和汲極中的另一個與第五電晶體的閘極電極電連接,第一電晶體的源極和汲極中的另一個與第一電容器的一個電極電連接,第四電晶體的源極和汲極中的另一個與第二電容器的一個電極電連接,第五電晶體的源極和汲極中的一個與第六電晶體的源極和汲極中的一個電連接,第一電晶體、第二電晶體、第三電晶體及第四電晶體在形成通道的區域中包括氧化物半導體。 One embodiment of the present invention is an image pickup apparatus including first to sixth transistors, a photoelectric conversion element, a first capacitor, and a second capacitor, wherein one electrode of the photoelectric conversion element and a source of the first transistor And electrically connected to one of the drain electrodes, one of the source and the drain of the first transistor is electrically connected to one of the source and the drain of the second transistor, the source and the drain of the first transistor The other one is electrically connected to one of the source and the drain of the third transistor, and the other of the source and the drain of the first transistor is electrically connected to one of the source and the drain of the fourth transistor. The other of the source and the drain of the first transistor is electrically connected to the gate electrode of the fifth transistor, and the other of the source and the drain of the first transistor is electrically connected to one electrode of the first capacitor The other of the source and the drain of the fourth transistor is electrically connected to one electrode of the second capacitor, one of the source and the drain of the fifth transistor and the source and the drain of the sixth transistor An electrical connection, a first transistor, a second transistor, Three transistor and a fourth transistor including an oxide semiconductor region formed in the channel.

氧化物半導體較佳為包含In、Zn及M(M為Al、Ti、Ga、Sn、Y、Zr、La、Ce、Nd或Hf)。另外,第五電晶體及第六電晶體也可以在形成通道的區域中包括氧化物半導體。 The oxide semiconductor preferably contains In, Zn, and M (M is Al, Ti, Ga, Sn, Y, Zr, La, Ce, Nd, or Hf). In addition, the fifth transistor and the sixth transistor may also include an oxide semiconductor in a region where the channel is formed.

在光電轉換元件中,可以將硒或包含硒的化合物用於光電轉換層。例如,作為硒,可以使用非晶硒或結晶硒。 In the photoelectric conversion element, selenium or a compound containing selenium may be used for the photoelectric conversion layer. For example, as selenium, amorphous selenium or crystalline selenium can be used.

本發明的另一個實施方式是一種包括像素、第一電路、第二電路、第三電路、第四電路及第五電路的攝像裝置,其中,像素與第一電路電連接,第一電路與第二電路電連接,第二電路與第三電路電連接,第二電路與第四電路電連接,第三電路與第五電路電連接,第五電路與像素電連接,像素具有獲取第一攝像資料或第二攝像資料的功能,像素具有將第一攝像資料或第二攝像資料存儲在電荷存儲部中的功能,像素具有將存儲在電荷存儲部中的第一攝像資料或第二攝像資料傳送到電荷檢測部的功能,第一電路具有輸出將與第二攝像資料對應的電位和與電荷檢測部的重設電位對應的電位之間的差值的絕對值加到參考電位而得到的信號或者從參考電位減去該絕對值而得到的信號的功能,第二電路具有判定電荷檢測部被第一攝像資料飽和的有無的功能,第三電路具有在判定電荷檢測部未飽和的情況下藉由第五電路將不獲取第二攝像資料的信號輸出到像素的功能,第三電路具有在判定電荷檢測部飽和的情況下消除電荷檢測部的飽和並藉由第五電路將獲取第二攝像資料的信號輸出到像素的功能,第二電路及第四電路具有將第一電路所輸出的信號轉換為數位資料的功能。 Another embodiment of the present invention is an image pickup apparatus including a pixel, a first circuit, a second circuit, a third circuit, a fourth circuit, and a fifth circuit, wherein the pixel is electrically connected to the first circuit, the first circuit and the first The second circuit is electrically connected, the second circuit is electrically connected to the third circuit, the second circuit is electrically connected to the fourth circuit, the third circuit is electrically connected to the fifth circuit, the fifth circuit is electrically connected to the pixel, and the pixel has the first camera data. Or a function of the second image data, the pixel having a function of storing the first image data or the second image data in the charge storage portion, the pixel having the first image data or the second image data stored in the charge storage portion is transferred to The function of the charge detecting unit, the first circuit having a signal obtained by adding an absolute value of a difference between a potential corresponding to the second image data and a potential corresponding to the reset potential of the charge detecting portion to the reference potential or The function of the signal obtained by subtracting the absolute value from the potential, the second circuit has a function of determining whether or not the charge detecting unit is saturated by the first imaging data, and the third The circuit has a function of outputting a signal that does not acquire the second imaging material to the pixel by the fifth circuit in the case where it is determined that the charge detecting portion is not saturated, and the third circuit has the function of eliminating the charge detecting portion in the case where it is determined that the charge detecting portion is saturated The function of outputting a signal for acquiring the second image data to the pixel by the fifth circuit, and the second circuit and the fourth circuit have a function of converting the signal output by the first circuit into digital data.

本發明的另一個實施方式是一種攝像裝置的工作方法,該工作方法在第n(n為1以上的自然數)圖框期間中按順序進行如下步驟:使電荷存儲部的電位重設的第一步驟;將電荷存儲在電荷存儲部中的第二步驟;使電荷檢測部的電位重設的第三步驟;將電荷存儲部的電位傳送到電荷檢測部的第四步驟;以及讀出與電荷檢測部的電位對應的信號並根據該信號判定電荷檢測部的飽和的有無的第五步驟。當在第五步驟中判定電荷檢測部飽和時,按順序進行如下步驟:使電荷存儲部的電位重設的第六步驟;將電荷存儲在電荷存儲部中的第七步驟;暫時增大電荷檢測部的容量,消除電荷檢測部的飽和的第八步驟;以及將電荷存儲部的電位傳送到電荷檢測部的第九步驟,並且,在第(n+1)圖框期間的第一步驟及第二步驟的同時讀出與第n帳期間的第九步驟的電荷檢測部的電位對應的信號。當在第五步驟中判定電荷檢測部未飽和時,在第(n+1)圖框期間的第一步驟及第二步驟的同時讀出與第n帳期間的第四步驟的電荷檢測部的電位對應的信號。 Another embodiment of the present invention is an operation method of an image pickup apparatus that performs the following steps in the nth (n is a natural number of 1 or more) frame period in order to reset the potential of the charge storage portion a second step of storing a charge in the charge storage portion; a third step of resetting the potential of the charge detecting portion; a fourth step of transferring the potential of the charge storage portion to the charge detecting portion; and reading and charging The fifth step of determining the presence or absence of saturation of the charge detecting unit based on the signal corresponding to the potential of the detecting unit. When it is determined in the fifth step that the charge detecting portion is saturated, the following steps are performed in order: a sixth step of resetting the potential of the charge storage portion; a seventh step of storing the charge in the charge storage portion; temporarily increasing the charge detection The capacity of the portion, the eighth step of eliminating saturation of the charge detecting portion; and the ninth step of transferring the potential of the charge storage portion to the charge detecting portion, and the first step and the period during the (n+1)th frame period At the same time as the two steps, a signal corresponding to the potential of the charge detecting portion of the ninth step of the nth period is read. When it is determined in the fifth step that the charge detecting portion is not saturated, the first step and the second step of the (n+1)th frame period are read out simultaneously with the charge detecting portion of the fourth step of the nth billing period. The signal corresponding to the potential.

本發明的一個實施方式是一種包括第一電晶體至第七電晶體、光電轉換元件、第一電容器、第二電容器以及第三電容器的攝像裝置,其中,光電轉換元件的一個電極與第一電晶體的源極和汲極中的一個電連接,第一 電晶體的源極和汲極中的一個與第二電晶體的源極和汲極中的一個電連接,第一電晶體的源極和汲極中的另一個與第三電晶體的源極和汲極中的一個電連接,第一電晶體的源極和汲極中的另一個與第四電晶體的源極和汲極中的一個電連接、第一電晶體的源極和汲極中的另一個與第五電晶體的閘極電極電連接,第一電晶體的源極和汲極中的另一個與第一電容器的一個電極電連接,第四電晶體的源極和汲極中的另一個與第二電容器的一個電極電連接,第五電晶體的源極和汲極中的一個與第六電晶體的源極和汲極中的一個電連接,第四電晶體的閘極與第七電晶體的源極和汲極中的一個電連接,第四電晶體的閘極與第三電容器的一個電極電連接,第一電晶體、第二電晶體、第三電晶體、第四電晶體及第七電晶體在形成通道的區域中包括氧化物半導體。 One embodiment of the present invention is an image pickup apparatus including first to seventh transistors, a photoelectric conversion element, a first capacitor, a second capacitor, and a third capacitor, wherein one electrode of the photoelectric conversion element and the first electricity One of the source and the drain of the crystal is electrically connected, first One of a source and a drain of the transistor is electrically connected to one of a source and a drain of the second transistor, and the other of the source and the drain of the first transistor and the source of the third transistor Electrically connected to one of the drain electrodes, the other of the source and the drain of the first transistor being electrically connected to one of the source and the drain of the fourth transistor, the source and the drain of the first transistor The other of the electrodes is electrically connected to the gate electrode of the fifth transistor, and the other of the source and the drain of the first transistor is electrically connected to one electrode of the first capacitor, and the source and the drain of the fourth transistor The other of the electrodes is electrically connected to one electrode of the second capacitor, and one of the source and the drain of the fifth transistor is electrically connected to one of the source and the drain of the sixth transistor, and the gate of the fourth transistor The pole is electrically connected to one of the source and the drain of the seventh transistor, and the gate of the fourth transistor is electrically connected to one electrode of the third capacitor, the first transistor, the second transistor, the third transistor, The fourth transistor and the seventh transistor include an oxide semiconductor in a region where the channel is formed.

氧化物半導體較佳為包含In、Zn及M(M為Al、Ti、Ga、Sn、Y、Zr、La、Ce、Nd或Hf)。另外,第五電晶體及第六電晶體也可以在形成通道的區域中包括氧化物半導體。 The oxide semiconductor preferably contains In, Zn, and M (M is Al, Ti, Ga, Sn, Y, Zr, La, Ce, Nd, or Hf). In addition, the fifth transistor and the sixth transistor may also include an oxide semiconductor in a region where the channel is formed.

在光電轉換元件中,可以將硒或包含硒的化合物用於光電轉換層。例如,作為硒,可以使用非晶硒或結晶硒。 In the photoelectric conversion element, selenium or a compound containing selenium may be used for the photoelectric conversion layer. For example, as selenium, amorphous selenium or crystalline selenium can be used.

本發明的另一個實施方式是一種包括像素、第一電路、第二電路、第三電路及第四電路的攝像裝置,其中,像素包括電荷存儲部及電荷檢測部,電荷檢測部與第一電容器及第二電容器電連接,像素與第一電路電連接,第一電路與第二電路電連接,第二電路與第三電路電連接,第二電路與第四電路電連接,第三電路與像素電連接,像素具有獲取第一攝像資料或第二攝像資料的功能,像素具有將第一攝像資料或第二攝像資料存儲在電荷存儲部中的功能,像素具有將存儲在電荷存儲部中的第一攝像資料或第二攝像資料傳送到電荷檢測部的功能,第一電路具有輸出將與第二攝像資料對應的電位和與電荷檢測部的重設電位對應的電位之間的差值的絕對值加到參考電位而得到的信號或者從參考電位減去該絕對值而得到的信號的功能,第二電路具有判定電荷檢測部被第一攝像資料飽和的有無的功能,第三電路具有在判定電荷檢測部未飽和的情況下將使電荷檢測部與第二電容器的一個電極之間為非導通狀態的信號輸出到像素的功能,第三電路具有在判定電荷檢測部飽和的情況下將使電荷檢測部與第二電容器的一個電極 之間為導通狀態的信號輸出到像素的功能,像素具有在判定後將第二攝像資料從電荷存儲部傳送到電荷檢測部的功能,第二電路及第四電路具有將第一電路所輸出的信號轉換為數位資料的功能。 Another embodiment of the present invention is an image pickup apparatus including a pixel, a first circuit, a second circuit, a third circuit, and a fourth circuit, wherein the pixel includes a charge storage portion and a charge detecting portion, and the charge detecting portion and the first capacitor And the second capacitor is electrically connected, the pixel is electrically connected to the first circuit, the first circuit is electrically connected to the second circuit, the second circuit is electrically connected to the third circuit, the second circuit is electrically connected to the fourth circuit, and the third circuit and the pixel are electrically connected Electrically connected, the pixel has a function of acquiring the first image data or the second image data, and the pixel has a function of storing the first image data or the second image data in the charge storage portion, and the pixel has a portion to be stored in the charge storage portion a function of transmitting the image data or the second image data to the charge detecting portion, the first circuit having an absolute value of a difference between a potential corresponding to the second image data and a potential corresponding to the reset potential of the charge detecting portion a function of a signal obtained by adding a reference potential or a signal obtained by subtracting the absolute value from a reference potential, the second circuit having a determination charge detection The function of saturating the first image data, and the third circuit has a function of outputting a signal that causes the charge detecting portion and one electrode of the second capacitor to be non-conductive to the pixel when the charge detecting portion is not saturated. The third circuit has an electrode that will cause the charge detecting portion and the second capacitor in the case where it is determined that the charge detecting portion is saturated a function of outputting a signal in an on state to a pixel, the pixel having a function of transferring the second image data from the charge storage portion to the charge detecting portion after the determination, the second circuit and the fourth circuit having the output of the first circuit The function of converting signals into digital data.

本發明的另一個實施方式是一種攝像裝置的工作方法,該工作方法在第n(n為1以上的自然數)圖框期間中按順序進行如下步驟:使電荷存儲部的電位重設的第一步驟;將電荷存儲在電荷存儲部中的第二步驟;使電荷檢測部的電位重設的第三步驟;將電荷存儲部的電位傳送到電荷檢測部的第四步驟;以及讀出與電荷檢測部的電位對應的信號並根據該信號判定電荷檢測部的飽和的有無的第五步驟。當在第五步驟中判定電荷檢測部飽和時,按順序進行如下步驟:增大電荷檢測部的容量的第六步驟;以及使電荷檢測部的電位重設的第七步驟。當在第五步驟中判定電荷檢測部未飽和時,進行第七步驟,在第五步驟至第七步驟的同時按順序進行如下步驟:使電荷存儲部的電位重設的第八步驟;以及將電荷存儲在電荷存儲部中的第九步驟,並且,進行將電荷存儲部的電位傳送到電荷檢測部的第十步驟,在第(n+1)圖框期間的第一步驟及第二步驟的同時讀出與第n帳期間的第十步驟的電荷檢測部的電位對應的信號。 Another embodiment of the present invention is an operation method of an image pickup apparatus that performs the following steps in the nth (n is a natural number of 1 or more) frame period in order to reset the potential of the charge storage portion a second step of storing a charge in the charge storage portion; a third step of resetting the potential of the charge detecting portion; a fourth step of transferring the potential of the charge storage portion to the charge detecting portion; and reading and charging The fifth step of determining the presence or absence of saturation of the charge detecting unit based on the signal corresponding to the potential of the detecting unit. When it is determined in the fifth step that the charge detecting portion is saturated, the following steps are performed in order: a sixth step of increasing the capacity of the charge detecting portion; and a seventh step of resetting the potential of the charge detecting portion. When it is determined in the fifth step that the charge detecting portion is not saturated, the seventh step is performed, and in the fifth step to the seventh step, the following steps are sequentially performed: an eighth step of resetting the potential of the charge storage portion; and The ninth step of storing the charge in the charge storage portion, and performing the tenth step of transferring the potential of the charge storage portion to the charge detecting portion, in the first step and the second step of the (n+1)th frame period At the same time, a signal corresponding to the potential of the charge detecting portion in the tenth step of the nth period is read.

藉由使用本發明的一個實施方式,可以提供一種以簡單的結構能夠擴大動態範圍的攝像裝置。另外,可以提供一種在第一次攝像之後改變像素的靈敏度,然後進行第二次攝像的攝像裝置。另外,可以提供一種低功耗的攝像裝置。另外,可以提供一種在曝光期間中讀出上一個圖框的資料的攝像裝置。另外,可以提供一種能夠拍攝雜訊少的影像的攝像裝置。另外,可以提供一種適合於高速工作的攝像裝置。另外,可以提供一種高解析度的攝像裝置。另外,可以提供一種高集成度的攝像裝置。另外,可以提供一種能夠在低照度環境下進行攝像的攝像裝置。另外,可以提供一種能夠在較廣的溫度範圍內使用的攝像裝置。另外,可以提供一種高開口率的攝像裝置。另外,可以提供一種高可靠性的攝像裝置。另外,可以提供一種新穎的攝像裝置等。另外,可以提供一種上述攝像裝置的工作方法。另外,可以提供一種新穎的半導體裝置等。 By using one embodiment of the present invention, it is possible to provide an image pickup apparatus capable of expanding the dynamic range with a simple structure. In addition, it is possible to provide an image pickup apparatus that changes the sensitivity of the pixel after the first image capture and then performs the second image pickup. In addition, a low power consumption camera device can be provided. In addition, it is possible to provide an image pickup apparatus that reads out the material of the previous frame during the exposure period. In addition, it is possible to provide an image pickup apparatus capable of capturing an image with less noise. In addition, an image pickup apparatus suitable for high speed operation can be provided. In addition, a high-resolution imaging device can be provided. In addition, a highly integrated camera device can be provided. In addition, it is possible to provide an image pickup apparatus capable of performing imaging in a low illumination environment. In addition, an image pickup apparatus that can be used over a wide temperature range can be provided. In addition, an image pickup device having a high aperture ratio can be provided. In addition, a highly reliable image pickup device can be provided. In addition, a novel imaging device or the like can be provided. In addition, a method of operating the above-described image pickup apparatus can be provided. In addition, a novel semiconductor device or the like can be provided.

注意,本發明的一個實施方式不侷限於這些效果。例如,本發明的一個實施方式根據情況或狀況有時具有這些效果以外的效果。或者,例如, 根據情況或狀況,本發明的一個實施方式有時不具有上述效果。 Note that one embodiment of the present invention is not limited to these effects. For example, one embodiment of the present invention may have effects other than those effects depending on the situation or situation. Or, for example, One embodiment of the present invention sometimes does not have the above effects depending on the situation or situation.

10‧‧‧像素 10‧‧‧ pixels

11‧‧‧像素陣列 11‧‧‧Pixel Array

12‧‧‧電路 12‧‧‧ Circuitry

13‧‧‧電路 13‧‧‧ Circuitry

14‧‧‧電路 14‧‧‧ Circuitry

15‧‧‧電路 15‧‧‧ Circuitry

16‧‧‧電路 16‧‧‧ Circuitry

17‧‧‧比較器電路 17‧‧‧ Comparator circuit

18‧‧‧判定輸出電路 18‧‧‧Determination of output circuit

19‧‧‧計數電路 19‧‧‧Counting circuit

20‧‧‧像素 20‧‧ ‧ pixels

21‧‧‧像素陣列 21‧‧‧Pixel Array

22‧‧‧電路 22‧‧‧ Circuitry

23‧‧‧電路 23‧‧‧ Circuitry

24‧‧‧電路 24‧‧‧ Circuitry

25‧‧‧電路 25‧‧‧ Circuitry

27‧‧‧比較器電路 27‧‧‧ Comparator circuit

28‧‧‧判定輸出電路 28‧‧‧Determining the output circuit

29‧‧‧計數電路 29‧‧‧Counting circuit

35‧‧‧基板 35‧‧‧Substrate

41‧‧‧電晶體 41‧‧‧Optoelectronics

42‧‧‧電晶體 42‧‧‧Optoelectronics

43‧‧‧電晶體 43‧‧‧Optoelectronics

44‧‧‧電晶體 44‧‧‧Optoelectronics

45‧‧‧電晶體 45‧‧‧Optoelectronics

46‧‧‧電晶體 46‧‧‧Optoelectronics

51‧‧‧電晶體 51‧‧‧Optoelectronics

52‧‧‧電晶體 52‧‧‧Optoelectronics

53‧‧‧電晶體 53‧‧‧Optoelectronics

54‧‧‧電晶體 54‧‧‧Optoelectronics

61‧‧‧佈線 61‧‧‧Wiring

62‧‧‧佈線 62‧‧‧Wiring

63‧‧‧佈線 63‧‧‧Wiring

64‧‧‧佈線 64‧‧‧Wiring

65‧‧‧佈線 65‧‧‧Wiring

71‧‧‧佈線 71‧‧‧Wiring

71a‧‧‧導電層 71a‧‧‧ Conductive layer

71b‧‧‧導電層 71b‧‧‧ Conductive layer

72‧‧‧佈線 72‧‧‧Wiring

73‧‧‧佈線 73‧‧‧Wiring

74‧‧‧佈線 74‧‧‧Wiring

75‧‧‧佈線 75‧‧‧Wiring

80‧‧‧絕緣層 80‧‧‧Insulation

81‧‧‧導電體 81‧‧‧Electric conductor

82‧‧‧絕緣層 82‧‧‧Insulation

82a‧‧‧絕緣層 82a‧‧‧Insulation

82b‧‧‧絕緣層 82b‧‧‧Insulation

83‧‧‧絕緣層 83‧‧‧Insulation

88‧‧‧佈線 88‧‧‧Wiring

91‧‧‧佈線 91‧‧‧Wiring

92‧‧‧佈線 92‧‧‧Wiring

93‧‧‧佈線 93‧‧‧Wiring

94‧‧‧佈線 94‧‧‧Wiring

101‧‧‧電晶體 101‧‧‧Optoelectronics

102‧‧‧電晶體 102‧‧‧Optoelectronics

103‧‧‧電晶體 103‧‧‧Optoelectronics

104‧‧‧電晶體 104‧‧‧Optoelectronics

105‧‧‧電晶體 105‧‧‧Optoelectronics

106‧‧‧電晶體 106‧‧‧Optoelectronics

107‧‧‧電晶體 107‧‧‧Optoelectronics

108‧‧‧電晶體 108‧‧‧Optoelectronics

109‧‧‧電晶體 109‧‧‧Optoelectronics

110‧‧‧電晶體 110‧‧‧Optoelectronics

111‧‧‧電晶體 111‧‧‧Optoelectronics

112‧‧‧電晶體 112‧‧‧Optoelectronics

113‧‧‧電晶體 113‧‧‧Optoelectronics

115‧‧‧基板 115‧‧‧Substrate

120‧‧‧絕緣層 120‧‧‧Insulation

130‧‧‧氧化物半導體層 130‧‧‧Oxide semiconductor layer

130a‧‧‧氧化物半導體層 130a‧‧‧Oxide semiconductor layer

130b‧‧‧氧化物半導體層 130b‧‧‧Oxide semiconductor layer

130c‧‧‧氧化物半導體層 130c‧‧‧Oxide semiconductor layer

140‧‧‧導電層 140‧‧‧ Conductive layer

141‧‧‧導電層 141‧‧‧ Conductive layer

142‧‧‧導電層 142‧‧‧ Conductive layer

150‧‧‧導電層 150‧‧‧ Conductive layer

151‧‧‧導電層 151‧‧‧ Conductive layer

152‧‧‧導電層 152‧‧‧ Conductive layer

160‧‧‧絕緣層 160‧‧‧Insulation

170‧‧‧導電層 170‧‧‧ Conductive layer

171‧‧‧導電層 171‧‧‧ Conductive layer

172‧‧‧導電層 172‧‧‧ Conductive layer

173‧‧‧導電層 173‧‧‧ Conductive layer

175‧‧‧絕緣層 175‧‧‧Insulation

180‧‧‧絕緣層 180‧‧‧Insulation

190‧‧‧絕緣層 190‧‧‧Insulation

231‧‧‧區域 231‧‧‧ Area

232‧‧‧區域 232‧‧‧Area

233‧‧‧區域 233‧‧‧Area

331‧‧‧區域 331‧‧‧Area

332‧‧‧區域 332‧‧‧Area

333‧‧‧區域 333‧‧‧Area

334‧‧‧區域 334‧‧‧Area

335‧‧‧區域 335‧‧‧Area

400‧‧‧期間 During the period of 400‧‧

401‧‧‧期間 401‧‧‧

402‧‧‧期間 During the period of 402‧‧

403‧‧‧期間 403‧‧‧

561‧‧‧光電轉換層 561‧‧‧Photoelectric conversion layer

562‧‧‧透光導電層 562‧‧‧Light conductive layer

563‧‧‧半導體層 563‧‧‧Semiconductor layer

564‧‧‧半導體層 564‧‧‧Semiconductor layer

565‧‧‧半導體層 565‧‧‧Semiconductor layer

566‧‧‧電極 566‧‧‧electrode

566a‧‧‧導電層 566a‧‧‧ Conductive layer

566b‧‧‧導電層 566b‧‧‧ Conductive layer

567‧‧‧分隔壁 567‧‧‧ partition wall

568‧‧‧電洞注入障壁層 568‧‧‧ hole injection into the barrier layer

569‧‧‧電子注入障壁層 569‧‧‧Electronic injection barrier layer

600‧‧‧矽基板 600‧‧‧矽 substrate

610‧‧‧電晶體 610‧‧‧Optoelectronics

620‧‧‧電晶體 620‧‧‧Optoelectronics

650‧‧‧活性層 650‧‧‧active layer

660‧‧‧矽基板 660‧‧‧矽 substrate

741‧‧‧電晶體 741‧‧‧Optoelectronics

742‧‧‧電晶體 742‧‧‧Optoelectronics

743‧‧‧電晶體 743‧‧‧Optoelectronics

744‧‧‧電晶體 744‧‧‧Optoelectronics

745‧‧‧電晶體 745‧‧‧Optoelectronics

746‧‧‧電晶體 746‧‧‧Optoelectronics

747‧‧‧電晶體 747‧‧‧Optoelectronics

751‧‧‧電晶體 751‧‧‧Optoelectronics

752‧‧‧電晶體 752‧‧‧Optoelectronics

753‧‧‧電晶體 753‧‧‧Optoelectronics

754‧‧‧電晶體 754‧‧‧Optoelectronics

761‧‧‧佈線 761‧‧‧ wiring

762‧‧‧佈線 762‧‧‧Wiring

763‧‧‧佈線 763‧‧‧Wiring

764‧‧‧佈線 764‧‧‧Wiring

765‧‧‧佈線 765‧‧‧Wiring

771‧‧‧佈線 771‧‧‧Wiring

772‧‧‧佈線 772‧‧‧Wiring

773‧‧‧佈線 773‧‧‧Wiring

774‧‧‧佈線 774‧‧‧Wiring

775‧‧‧佈線 775‧‧‧Wiring

791‧‧‧佈線 791‧‧‧Wiring

792‧‧‧佈線 792‧‧‧Wiring

793‧‧‧佈線 793‧‧‧Wiring

794‧‧‧佈線 794‧‧‧Wiring

810‧‧‧封裝基板 810‧‧‧Package substrate

811‧‧‧封裝基板 811‧‧‧Package substrate

820‧‧‧玻璃蓋板 820‧‧‧glass cover

821‧‧‧透鏡蓋板 821‧‧‧Lens cover

830‧‧‧黏合劑 830‧‧‧Binder

835‧‧‧透鏡 835‧‧‧ lens

840‧‧‧凸塊 840‧‧‧Bumps

841‧‧‧焊盤 841‧‧‧ pads

850‧‧‧影像感測器晶片 850‧‧‧Image sensor chip

851‧‧‧影像感測器晶片 851‧‧‧Image sensor chip

860‧‧‧盤狀電極 860‧‧‧disk electrode

861‧‧‧盤狀電極 861‧‧‧ disc electrode

870‧‧‧線 870‧‧‧ line

871‧‧‧線 871‧‧‧ line

880‧‧‧通孔 880‧‧‧through hole

885‧‧‧焊盤 885‧‧‧ pads

890‧‧‧IC晶片 890‧‧‧ IC chip

901‧‧‧外殼 901‧‧‧Shell

902‧‧‧外殼 902‧‧‧ Shell

903‧‧‧表示部 903‧‧‧ indicates the Ministry

904‧‧‧表示部 904‧‧‧ indicates the Ministry

905‧‧‧麥克風 905‧‧‧ microphone

906‧‧‧揚聲器 906‧‧‧Speaker

907‧‧‧操作鍵 907‧‧‧ operation keys

908‧‧‧觸控筆 908‧‧‧ stylus

909‧‧‧相機 909‧‧‧ camera

911‧‧‧外殼 911‧‧‧ Shell

912‧‧‧顯示部 912‧‧‧Display Department

919‧‧‧相機 919‧‧‧ camera

931‧‧‧外殼 931‧‧‧ Shell

932‧‧‧顯示部 932‧‧‧Display Department

933‧‧‧腕帶 933‧‧‧ wristband

935‧‧‧按鈕 935‧‧‧ button

936‧‧‧表冠 936‧‧‧ crown

939‧‧‧相機 939‧‧‧ camera

951‧‧‧外殼 951‧‧‧Shell

952‧‧‧透鏡 952‧‧‧ lens

953‧‧‧支撐部 953‧‧‧Support

961‧‧‧外殼 961‧‧‧Shell

962‧‧‧快門按鈕 962‧‧‧Shutter button

963‧‧‧麥克風 963‧‧‧ microphone

965‧‧‧透鏡 965‧‧ lens

967‧‧‧發光部 967‧‧‧Lighting Department

971‧‧‧外殼 971‧‧‧Shell

972‧‧‧外殼 972‧‧‧Shell

973‧‧‧顯示部 973‧‧‧Display Department

974‧‧‧操作鍵 974‧‧‧ operation keys

975‧‧‧透鏡 975‧‧‧ lens

976‧‧‧連接部 976‧‧‧Connecting Department

1100‧‧‧層 1100‧‧ layer

1200‧‧‧層 1200‧‧ ‧

1400‧‧‧層 1400‧‧ layer

1500‧‧‧繞射光柵 1500‧‧‧diffraction grating

1600‧‧‧層 1600‧‧ layer

2500‧‧‧絕緣層 2500‧‧‧Insulation

2510‧‧‧遮光層 2510‧‧‧Lighting layer

2520‧‧‧有機樹脂層 2520‧‧‧Organic resin layer

2530‧‧‧濾色片 2530‧‧‧Color filters

2530a‧‧‧濾色片 2530a‧‧‧Color filters

2530b‧‧‧濾色片 2530b‧‧‧Color filters

2530c‧‧‧濾色片 2530c‧‧‧Color filters

2540‧‧‧微透鏡陣列 2540‧‧‧Microlens array

2550‧‧‧光學轉換層 2550‧‧‧Optical conversion layer

2560‧‧‧絕緣層 2560‧‧‧Insulation

在圖式中:圖1是說明像素的電路圖;圖2A和圖2B是說明攝像裝置的俯視圖、CDS電路的電路圖及A/D轉換電路的方塊圖;圖3A和圖3B是判定輸出電路及像素控制電路的電路圖;圖4是說明判定輸出電路及像素控制電路的工作的時序圖;圖5是說明攝像裝置的工作的流程圖;圖6是說明攝像裝置的工作的時序圖;圖7A和圖7B是說明CDS電路及比較器電路的工作的時序圖;圖8是說明攝像裝置的工作的時序圖;圖9是說明像素電路的圖;圖10A和圖10B是說明像素電路的圖;圖11是說明攝像裝置的工作的時序圖;圖12是說明攝像裝置的工作的時序圖;圖13A和圖13B是說明像素電路的圖;圖14是說明像素電路的圖;圖15A至圖15C是說明攝像裝置的結構的俯視圖及正面圖;圖16A至圖16C是說明攝像裝置的結構的剖面圖;圖17A至圖17C是說明攝像裝置的工作的圖;圖18A至圖18C是說明光電轉換元件的結構的剖面圖;圖19A至圖19D是說明光電轉換元件的連接方式的剖面圖;圖20A和圖20B是說明光電轉換元件的連接方式的剖面圖;圖21是說明攝像裝置的剖面圖;圖22A至圖22C是說明光電轉換元件的連接方式的剖面圖;圖23是說明攝像裝置的剖面圖;圖24A和圖24B是說明攝像裝置的剖面圖;圖25A至圖25C是說明攝像裝置的剖面圖及電路圖;圖26是說明攝像裝置的剖面圖;圖27是說明攝像裝置的剖面圖; 圖28是說明攝像裝置的剖面圖;圖29A至圖29D是說明攝像裝置的結構的剖面圖;圖30是說明攝像裝置的結構的剖面圖;圖31是說明攝像裝置的結構的剖面圖;圖32A1、圖32A2、圖32A3、圖32B1、圖32B2及圖32B3是說明彎曲的攝像裝置的圖;圖33是說明像素的電路圖;圖34A和圖34B是說明攝像裝置的俯視圖、CDS電路的電路圖及A/D轉換電路的方塊圖;圖35是判定輸出電路的電路圖;圖36是說明判定輸出電路的工作的時序圖;圖37是說明攝像裝置的工作的流程圖;圖38是說明攝像裝置的工作的時序圖;圖39A和圖39B是說明CDS電路及比較器電路的工作的時序圖;圖40是說明像素電路的圖;圖41A和圖41B是說明像素電路的圖;圖42是說明攝像裝置的工作的時序圖;圖43A和圖43B是說明像素電路的圖;圖44是說明像素電路的圖;圖45A至圖45F是說明電晶體的俯視圖及剖面圖;圖46A至圖46F是說明電晶體的俯視圖及剖面圖;圖47A至圖47D是說明電晶體的通道寬度方向的剖面的圖;圖48A至圖48F是說明電晶體的通道長度方向的剖面的圖;圖49A至圖49E是說明半導體層的俯視圖及剖面圖;圖50A至圖50F是說明電晶體的俯視圖及剖面圖;圖51A至圖51F是說明電晶體的俯視圖及剖面圖;圖52A至圖52D是說明電晶體的通道寬度方向的剖面的圖;圖53A至圖53F是說明電晶體的通道長度方向的剖面的圖;圖54A和圖54B是說明電晶體的俯視圖及剖面圖;圖55A至圖55C是說明電晶體的俯視圖;圖56A至圖56E是說明藉由XRD得到的CAAC-OS及單晶氧化物半導體的結構分析的圖以及示出CAAC-OS的選區電子繞射圖案的圖;圖57A至圖57E是CAAC-OS的剖面TEM影像、平面TEM影像及其影像 分析影像;圖58A至圖58D是nc-OS的電子繞射圖案以及nc-OS的剖面TEM影像;圖59A和圖59B是a-like OS的剖面TEM影像;圖60是因電子照射導致的In-Ga-Zn氧化物的結晶部的變化的圖;圖61A至圖61D是容納攝像裝置的封裝的透視圖及剖面圖;圖62A至圖62D是容納攝像裝置的封裝的透視圖及剖面圖;圖63A至圖63F是說明電子裝置的圖。 1A and 2B are block diagrams illustrating a top view of an image pickup apparatus, a circuit diagram of a CDS circuit, and an A/D conversion circuit; and FIGS. 3A and 3B are determination output circuits and pixels. FIG. 4 is a timing chart illustrating the operation of the imaging device and FIG. 6 is a flowchart illustrating the operation of the imaging device; FIG. 6 is a timing chart illustrating the operation of the imaging device; FIG. 7A and FIG. 7B is a timing chart illustrating the operation of the CDS circuit and the comparator circuit; FIG. 8 is a timing chart illustrating the operation of the image pickup apparatus; FIG. 9 is a diagram illustrating the pixel circuit; FIGS. 10A and 10B are diagrams illustrating the pixel circuit; FIG. 12 is a timing diagram illustrating the operation of the image pickup apparatus; FIG. 13A is a diagram illustrating a pixel circuit; FIG. 14 is a diagram illustrating a pixel circuit; FIG. 15A to FIG. FIG. 16A to FIG. 16C are cross-sectional views illustrating the structure of the image pickup apparatus; FIGS. 17A to 17C are diagrams illustrating the operation of the image pickup apparatus; FIGS. 18A to 18C are diagrams illustrating photoelectric conversion. FIG. 19A to FIG. 19D are cross-sectional views illustrating a connection manner of a photoelectric conversion element; FIGS. 20A and 20B are cross-sectional views illustrating a connection manner of the photoelectric conversion element; and FIG. 21 is a cross-sectional view illustrating the image pickup apparatus. 22A to 22C are cross-sectional views illustrating a connection mode of the photoelectric conversion element; FIG. 23 is a cross-sectional view illustrating the image pickup apparatus; FIGS. 24A and 24B are cross-sectional views illustrating the image pickup apparatus; and FIGS. 25A to 25C are diagrams illustrating the image pickup apparatus FIG. 26 is a cross-sectional view illustrating the image pickup apparatus; FIG. 27 is a cross-sectional view illustrating the image pickup apparatus; 28 is a cross-sectional view illustrating the structure of the image pickup apparatus, FIG. 30 is a cross-sectional view illustrating the structure of the image pickup apparatus, and FIG. 31 is a cross-sectional view illustrating the structure of the image pickup apparatus; FIG. 33A is a circuit diagram illustrating a pixel; FIG. 34A and FIG. FIG. 35 is a circuit diagram illustrating the operation of the determination output circuit; FIG. 37 is a flowchart illustrating the operation of the image pickup apparatus; FIG. 38 is a flowchart illustrating the operation of the image pickup apparatus FIG. 39A and FIG. 39B are timing charts illustrating the operation of the CDS circuit and the comparator circuit; FIG. 40 is a diagram illustrating a pixel circuit; FIGS. 41A and 41B are diagrams illustrating a pixel circuit; FIG. 43A and FIG. 43B are diagrams illustrating a pixel circuit; FIG. 44 is a view illustrating a pixel circuit; FIGS. 45A to 45F are plan views and cross-sectional views illustrating the transistor; FIGS. 46A to 46F are diagrams FIG. 47A to FIG. 47D are diagrams illustrating a cross section of the transistor in the channel width direction; FIGS. 48A to 48F are diagrams illustrating a cross section of the transistor in the channel length direction; FIGS. 49A to 49E are FIGS. 4A to 50F are a plan view and a cross-sectional view of the transistor; FIGS. 51A to 51F are a plan view and a cross-sectional view of the transistor; and FIGS. 52A to 52D are diagrams illustrating the transistor. FIG. 53A to FIG. 53F are diagrams illustrating a cross section of a transistor in a channel length direction; FIGS. 54A and 54B are a plan view and a cross-sectional view illustrating a transistor; and FIGS. 55A to 55C are diagrams illustrating a transistor. FIG. 56A to FIG. 56E are diagrams illustrating structural analysis of CAAC-OS and single crystal oxide semiconductor obtained by XRD and a diagram showing selected area electronic diffraction patterns of CAAC-OS; FIGS. 57A to 57E are diagrams Profile TEM image, planar TEM image and image of CAAC-OS FIG. 58A to FIG. 58D are electron diffraction patterns of nc-OS and cross-sectional TEM images of nc-OS; FIGS. 59A and 59B are cross-sectional TEM images of a-like OS; FIG. 60 is an In view of electron irradiation. FIG. 61A to FIG. 61D are a perspective view and a cross-sectional view of a package accommodating an image pickup device; and FIGS. 62A to 62D are a perspective view and a cross-sectional view of a package accommodating the image pickup device; 63A to 63F are diagrams illustrating an electronic device.

參照圖式對實施方式進行詳細說明。但是,本發明不侷限於以下的說明,所屬技術領域的通常知識者可以很容易地理解一個事實就是,本發明的方式及詳細內容在不脫離本發明的精神及其範圍的情況下可以被變換為各種各樣的形式。因此,本發明不應該被解釋為僅限定於以下所示的實施方式的記載內容中。注意,在下面所說明的發明的結構中,在不同的圖式中共同使用相同的元件符號來表示相同的部分或具有相同功能的部分,而省略其重複說明。注意,有時在不同的圖式中適當地省略或改變相同組件的陰影。 The embodiment will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and those skilled in the art can easily understand that the present invention can be modified without departing from the spirit and scope of the present invention. For a variety of forms. Therefore, the present invention should not be construed as being limited to the description of the embodiments shown below. It is to be noted that, in the structures of the invention described below, the same component symbols are used in the different drawings to denote the same parts or the parts having the same functions, and the repeated description thereof is omitted. Note that the shadows of the same components are sometimes omitted or changed as appropriate in different drawings.

另外,為方便起見,附加了第一、第二等序數詞,而其並不表示製程順序或疊層順序。因此,例如可以將“第一”適當地替換為“第二”或“第三”等來進行說明。此外,本說明書等中所記載的序數詞與用於指定本發明的一個實施方式的序數詞有時不一致。 In addition, the first and second ordinal numerals are added for convenience, and they do not indicate a process sequence or a stacking order. Therefore, for example, "first" may be appropriately replaced with "second" or "third" or the like for explanation. Further, the ordinal numbers described in the present specification and the like sometimes do not coincide with the ordinal numbers used to designate one embodiment of the present invention.

例如,在本說明書等中,當明確地記載為“X與Y連接”時,意味著如下情況:X與Y電連接;X與Y在功能上連接;X與Y直接連接。因此,不侷限於規定的連接關係(例如,圖式或文中所示的連接關係等),圖式或文中所示的連接關係以外的連接關係也包含於圖式或文中所記載的內容中。 For example, in the present specification and the like, when explicitly referred to as "X and Y connection", it means that X and Y are electrically connected; X and Y are functionally connected; and X and Y are directly connected. Therefore, it is not limited to a predetermined connection relationship (for example, a connection relationship such as a drawing or a text), and a connection relationship other than the connection relationship shown in the drawings or the text is also included in the contents described in the drawings or the text.

這裡,X和Y為物件(例如,裝置、元件、電路、佈線、電極、端子、導電膜及層等)。 Here, X and Y are objects (for example, devices, components, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).

作為X與Y直接連接的情況的一個例子,可以舉出在X與Y之間沒有 連接能夠電連接X與Y的元件(例如開關、電晶體、電容器、電感器、電阻元件、二極體、顯示元件、發光元件及負載等),並且X與Y沒有藉由能夠電連接X與Y的元件(例如開關、電晶體、電容器、電感器、電阻元件、二極體、顯示元件、發光元件及負載等)連接的情況。 As an example of the case where X and Y are directly connected, it can be exemplified that there is no between X and Y. Connecting elements capable of electrically connecting X and Y (such as switches, transistors, capacitors, inductors, resistive elements, diodes, display elements, light-emitting elements, loads, etc.), and X and Y are not electrically connected to X and A case where a component of Y (for example, a switch, a transistor, a capacitor, an inductor, a resistor element, a diode, a display element, a light-emitting element, a load, etc.) is connected.

作為X與Y電連接的情況的一個例子,例如可以在X與Y之間連接一個以上的能夠電連接X與Y的元件(例如開關、電晶體、電容器、電感器、電阻元件、二極體、顯示元件、發光元件及負載等)。另外,開關具有控制開啟和關閉的功能。換言之,藉由使開關處於導通狀態(開啟狀態)或非導通狀態(關閉狀態)來控制是否使電流流過。或者,開關具有選擇並切換電流路徑的功能。另外,X與Y電連接的情況包括X與Y直接連接的情況。 As an example of the case where X and Y are electrically connected, for example, one or more elements capable of electrically connecting X and Y (for example, a switch, a transistor, a capacitor, an inductor, a resistance element, and a diode) may be connected between X and Y. , display components, light-emitting components, loads, etc.). In addition, the switch has the function of controlling the opening and closing. In other words, whether or not current is caused to flow is controlled by turning the switch in an on state (on state) or a non-conduction state (off state). Alternatively, the switch has the function of selecting and switching the current path. In addition, the case where X and Y are electrically connected includes a case where X and Y are directly connected.

作為X與Y在功能上連接的情況的一個例子,例如可以在X與Y之間連接一個以上的能夠在功能上連接X與Y的電路(例如,邏輯電路(反相器、NAND電路、NOR電路等)、信號轉換電路(D/A轉換電路、A/D轉換電路、伽瑪校正電路等)、電位位準轉換電路(電源電路(升壓電路、降壓電路等)、改變信號的電位位準的位準轉移電路等)、電壓源、電流源、切換電路、放大電路(能夠增大信號振幅或電流量等的電路、運算放大器、差動放大電路、源極隨耦電路、緩衝電路等)、信號生成電路、記憶體電路、控制電路等)。注意,例如,即使在X與Y之間夾有其他電路,當從X輸出的信號傳送到Y時,也可以說X與Y在功能上是連接著的。另外,X與Y在功能上連接的情況包括X與Y直接連接的情況及X與Y電連接的情況。 As an example of a case where X and Y are functionally connected, for example, one or more circuits capable of functionally connecting X and Y may be connected between X and Y (for example, a logic circuit (inverter, NAND circuit, NOR) Circuit, etc.), signal conversion circuit (D/A conversion circuit, A/D conversion circuit, gamma correction circuit, etc.), potential level conversion circuit (power supply circuit (boost circuit, step-down circuit, etc.), change signal potential Level level transfer circuit, etc.), voltage source, current source, switching circuit, amplifier circuit (circuit capable of increasing signal amplitude or current amount, operational amplifier, differential amplifier circuit, source follower circuit, buffer circuit) Etc.), signal generation circuit, memory circuit, control circuit, etc.). Note that, for example, even if other circuits are sandwiched between X and Y, when the signal output from X is transmitted to Y, it can be said that X and Y are functionally connected. In addition, the case where X and Y are functionally connected includes a case where X and Y are directly connected, and a case where X and Y are electrically connected.

此外,當明確地記載為“X與Y電連接”時,在本說明書等中意味著如下情況:X與Y電連接(亦即,以中間夾有其他元件或其他電路的方式連接X與Y);X與Y在功能上連接(亦即,以中間夾有其他電路的方式在功能上連接X與Y);X與Y直接連接(亦即,以中間不夾有其他元件或其他電路的方式連接X與Y)。亦即,在本說明書等中,當明確地記載為“電連接”時與只明確地記載為“連接”時的情況相同。 Further, when explicitly described as "X and Y electrical connection", in the present specification and the like, it means that X and Y are electrically connected (that is, X and Y are connected in such a manner that other elements or other circuits are interposed therebetween). X; Y is functionally connected (ie, X and Y are functionally connected in such a way as to have other circuits in between); X is directly connected to Y (ie, without other components or other circuits in between) Way to connect X and Y). In other words, in the present specification and the like, the case where it is clearly described as "electrical connection" is the same as the case where it is clearly described as "connected".

注意,例如,在電晶體的源極(或第一端子等)藉由Z1(或沒有藉由Z1)與X電連接,電晶體的汲極(或第二端子等)藉由Z2(或沒有藉由Z2)與Y電連接的情況下以及在電晶體的源極(或第一端子等)與Z1的一部分 直接連接,Z1的另一部分與X直接連接,電晶體的汲極(或第二端子等)與Z2的一部分直接連接,Z2的另一部分與Y直接連接的情況下,可以表示為如下。 Note that, for example, the source (or the first terminal, etc.) of the transistor is electrically connected to X by Z1 (or not by Z1), and the drain (or second terminal, etc.) of the transistor is by Z2 (or not) By Z2) connected to Y and in the source (or first terminal, etc.) of the transistor and part of Z1 Direct connection, another part of Z1 is directly connected to X, the drain of the transistor (or the second terminal, etc.) is directly connected to a part of Z2, and the other part of Z2 is directly connected to Y, which can be expressed as follows.

例如,可以表示為“X、Y、電晶體的源極(或第一端子等)與電晶體的汲極(或第二端子等)互相電連接,X、電晶體的源極(或第一端子等)、電晶體的汲極(或第二端子等)與Y依次電連接”。或者,可以表示為“電晶體的源極(或第一端子等)與X電連接,電晶體的汲極(或第二端子等)與Y電連接,X、電晶體的源極(或第一端子等)、電晶體的汲極(或第二端子等)與Y依次電連接”。或者,可以表示為“X藉由電晶體的源極(或第一端子等)及汲極(或第二端子等)與Y電連接,X、電晶體的源極(或第一端子等)、電晶體的汲極(或第二端子等)、Y依次設置為相互連接”。藉由使用與這種例子相同的表示方法規定電路結構中的連接順序,可以區別電晶體的源極(或第一端子等)與汲極(或第二端子等)而決定技術範圍。 For example, it can be expressed as "X, Y, the source of the transistor (or the first terminal, etc.) and the gate of the transistor (or the second terminal, etc.) are electrically connected to each other, X, the source of the transistor (or the first The terminal, etc.), the drain of the transistor (or the second terminal, etc.) and the Y are sequentially electrically connected. Alternatively, it can be expressed as "the source of the transistor (or the first terminal, etc.) is electrically connected to X, the drain of the transistor (or the second terminal, etc.) is electrically connected to Y, and the source of X, the transistor (or One terminal, etc.), the drain of the transistor (or the second terminal, etc.) is electrically connected to Y in sequence. Alternatively, it can be expressed as "X is electrically connected to Y by the source (or first terminal, etc.) of the transistor and the drain (or the second terminal, etc.), X, the source of the transistor (or the first terminal, etc.) The drain of the transistor (or the second terminal, etc.) and Y are sequentially arranged to be connected to each other. By specifying the connection order in the circuit configuration using the same representation method as the above example, the source (or the first terminal, etc.) of the transistor and the drain (or the second terminal, etc.) can be distinguished to determine the technical range.

另外,作為其他表示方法,例如可以表示為“電晶體的源極(或第一端子等)至少經過第一連接路徑與X電連接,所述第一連接路徑不具有第二連接路徑,所述第二連接路徑是電晶體的源極(或第一端子等)與電晶體的汲極(或第二端子等)之間的路徑,所述第一連接路徑是藉由Z1的路徑,電晶體的汲極(或第二端子等)至少經過第三連接路徑與Y電連接,所述第三連接路徑不具有所述第二連接路徑,所述第三連接路徑是藉由Z2的路徑”。或者,也可以表示為“電晶體的源極(或第一端子等)至少經過第一連接路徑,藉由Z1與X電連接,所述第一連接路徑不具有第二連接路徑,所述第二連接路徑具有藉由電晶體的連接路徑,電晶體的汲極(或第二端子等)至少經過第三連接路徑,藉由Z2與Y電連接,所述第三連接路徑不具有所述第二連接路徑”。或者,也可以表示為“電晶體的源極(或第一端子等)至少經過第一電路徑,藉由Z1與X電連接,所述第一電路徑不具有第二電路徑,所述第二電路徑是從電晶體的源極(或第一端子等)到電晶體的汲極(或第二端子等)的電路徑,電晶體的汲極(或第二端子等)至少經過第三電路徑,藉由Z2與Y電連接,所述第三電路徑不具有第四電路徑,所述第四電路徑是從電晶體的汲極(或第二端子等)到電晶體的源極(或第一端子等)的電路徑”。藉由使用與這種例子同樣的表示方 法規定電路結構中的連接路徑,可以區別電晶體的源極(或第一端子等)和汲極(或第二端子等)來決定技術範圍。 In addition, as another display method, for example, “the source (or the first terminal, etc.) of the transistor may be electrically connected to X through at least a first connection path, and the first connection path does not have a second connection path. The second connection path is a path between a source (or a first terminal, etc.) of the transistor and a drain (or a second terminal, etc.) of the transistor, the first connection path being a path through Z1, the transistor The drain (or the second terminal, etc.) is electrically connected to Y through at least a third connection path, the third connection path does not have the second connection path, and the third connection path is a path by Z2. Alternatively, the source (or the first terminal or the like) of the transistor may be electrically connected to the X through at least the first connection path, and the first connection path does not have the second connection path. The second connection path has a connection path through the transistor, and the drain (or the second terminal, etc.) of the transistor is electrically connected to the Y through at least the third connection path, and the third connection path does not have the Two connection paths". Alternatively, the source (or the first terminal, etc.) of the transistor may be electrically connected to at least the first electrical path, and the first electrical path does not have the second electrical path. The second electrical path is an electrical path from the source (or the first terminal, etc.) of the transistor to the drain (or the second terminal, etc.) of the transistor, and the drain (or the second terminal, etc.) of the transistor passes at least the third The electrical path is electrically connected to Y by Z2, the third electrical path does not have a fourth electrical path, the fourth electrical path is from the drain of the transistor (or the second terminal, etc.) to the source of the transistor (or the electrical path of the first terminal, etc.). By using the same representation as this example The method stipulates the connection path in the circuit structure, and can distinguish the source (or the first terminal, etc.) of the transistor and the drain (or the second terminal, etc.) to determine the technical range.

注意,這種表示方法只是一個例子而已,不侷限於上述表示方法。在此,X、Y、Z1及Z2為物件(例如,裝置、元件、電路、佈線、電極、端子、導電膜及層等)。 Note that this representation method is only an example and is not limited to the above representation method. Here, X, Y, Z1, and Z2 are objects (for example, devices, components, circuits, wirings, electrodes, terminals, conductive films, layers, etc.).

另外,即使圖式示出在電路圖上獨立的組件彼此電連接,也有一個組件兼有多個組件的功能的情況。例如,在佈線的一部分被用作電極時,一個導電膜兼有佈線和電極的兩個組件的功能。因此,本說明書中的“電連接”的範疇內還包括這種一個導電膜兼有多個組件的功能的情況。 In addition, even if the drawings show that the individual components on the circuit diagram are electrically connected to each other, there is a case where one component has the function of a plurality of components. For example, when a part of the wiring is used as an electrode, one conductive film functions as both the wiring and the two components of the electrode. Therefore, the term "electrical connection" in the present specification also includes the case where such a conductive film has the function of a plurality of components.

另外,根據情況或狀態,可以互相調換“膜”和“層”這兩個詞。例如,有時可以將“導電層”調換為“導電膜”。此外,有時可以將“絕緣膜”調換為“絕緣層”。 In addition, depending on the situation or state, the words "film" and "layer" can be interchanged. For example, it is sometimes possible to change the "conductive layer" to a "conductive film." In addition, it is sometimes possible to change the "insulation film" to the "insulation layer".

另外,一般而言,電位(電壓)是相對的,其大小根據與參考電位之差決定。因此,在記載為“接地”、“GND”等的情況下,電位也不必須侷限於0V。例如,也有以電路中的最低電位為基準而定義“接地”或“GND,’的情況。或者,也有以電路中的中間電位為基準而定義“接地”或“GND”的情況。在該情況下,以該電位為基準規定正電位及負電位。 In addition, in general, the potential (voltage) is relative, and its magnitude is determined by the difference from the reference potential. Therefore, when it is described as "ground", "GND", etc., the potential is not necessarily limited to 0V. For example, there is a case where "ground" or "GND" is defined based on the lowest potential in the circuit. Alternatively, "ground" or "GND" may be defined based on the intermediate potential in the circuit. Next, the positive potential and the negative potential are defined based on the potential.

實施方式1 Embodiment 1

在本實施方式中,參照圖式說明本發明的一個實施方式的攝像裝置。 In the present embodiment, an image pickup apparatus according to an embodiment of the present invention will be described with reference to the drawings.

本發明的一個實施方式是一種能夠判定設置在像素內的電荷檢測部的電子的飽和狀態並根據判定結果改變工作模式的攝像裝置的電路結構及工作方法。首先,獲取第一攝像資料,在電荷檢測部未飽和的情況下,直接讀出第一攝像資料。在電荷檢測部飽和的情況下,消除電荷檢測部的飽和,進行第二攝像資料的獲取及讀出。第一攝像資料相當於與低照度對應的影像資料,第二攝像資料相當於與高照度對應的影像資料。 One embodiment of the present invention is a circuit configuration and an operation method of an image pickup apparatus capable of determining a saturation state of electrons of a charge detecting portion provided in a pixel and changing an operation mode according to a determination result. First, the first imaging data is acquired, and when the charge detecting unit is not saturated, the first imaging data is directly read. When the charge detecting unit is saturated, the saturation of the charge detecting unit is eliminated, and the second image data is acquired and read. The first imaging material corresponds to image data corresponding to low illumination, and the second imaging data corresponds to image data corresponding to high illumination.

藉由上述工作,即使在低照度環境下也可以獲取雜訊少且灰階保持的寬動態範圍的影像。此外,即使在包含高照度的環境下進行攝像也可以保持亮部的灰階,而可以獲取寬動態範圍的影像。 With the above work, it is possible to acquire an image with a wide dynamic range in which the noise is small and the gray scale is maintained even in a low illumination environment. In addition, even if the image is taken in an environment containing high illumination, the gray scale of the bright portion can be maintained, and an image with a wide dynamic range can be obtained.

圖1是本發明的一個實施方式的攝像裝置所包括的像素10的電路圖。在圖1等中示出作為電晶體採用n-ch型電晶體的例子,但是本發明的一個實施方式不侷限於此,一部分的電晶體也可以使用p-ch型電晶體代替n-ch型電晶體。 1 is a circuit diagram of a pixel 10 included in an image pickup apparatus according to an embodiment of the present invention. An example in which an n-ch type transistor is used as a transistor is shown in FIG. 1 and the like, but one embodiment of the present invention is not limited thereto, and a part of the transistor may also use a p-ch type transistor instead of the n-ch type. Transistor.

在像素10中,光電轉換元件PD的一個電極與電晶體41的源極和汲極中的一個電連接。電晶體41的源極和汲極中的一個與電晶體42的源極和汲極中的一個電連接。電晶體41的源極和汲極中的另一個與電晶體43的源極和汲極中的一個電連接。電晶體41的源極和汲極中的另一個與電晶體44的源極和汲極中的一個電連接。電晶體41的源極和汲極中的另一個與電晶體45的閘極電連接。電晶體41的源極和汲極中的另一個與電容器C1的一個電極電連接。電晶體44的源極和汲極中的另一個與電容器C2的一個電極電連接。電晶體45的源極和汲極中的一個與電晶體46的源極和汲極中的一個電連接。 In the pixel 10, one electrode of the photoelectric conversion element PD is electrically connected to one of the source and the drain of the transistor 41. One of the source and the drain of the transistor 41 is electrically connected to one of the source and the drain of the transistor 42. The other of the source and the drain of the transistor 41 is electrically connected to one of the source and the drain of the transistor 43. The other of the source and the drain of the transistor 41 is electrically connected to one of the source and the drain of the transistor 44. The other of the source and the drain of the transistor 41 is electrically connected to the gate of the transistor 45. The other of the source and the drain of the transistor 41 is electrically connected to one electrode of the capacitor C1. The other of the source and the drain of the transistor 44 is electrically connected to one electrode of the capacitor C2. One of the source and the drain of the transistor 45 is electrically connected to one of the source and the drain of the transistor 46.

在此,將光電轉換元件PD的一個電極、電晶體41的源極和汲極中的一個與電晶體42的源極和汲極中的一個連接的節點AN稱為電荷存儲部。另外,將電晶體41的源極和汲極中的另一個、電晶體43的源極和汲極中的一個、電晶體44的源極和汲極中的一個、電晶體45的閘極與電容器C1的一個電極連接的節點FD稱為電荷檢測部。 Here, a node AN connecting one electrode of the photoelectric conversion element PD, one of the source and the drain of the transistor 41, and one of the source and the drain of the transistor 42 is referred to as a charge storage portion. Further, one of the source and the drain of the transistor 41, one of the source and the drain of the transistor 43, one of the source and the drain of the transistor 44, and the gate of the transistor 45 are A node FD to which one electrode of the capacitor C1 is connected is referred to as a charge detecting portion.

光電轉換元件PD的另一個電極與佈線71(VPD)電連接。電晶體42的源極和汲極中的另一個及電晶體43的源極和汲極中的另一個與佈線72(VRS)電連接。電容器C1的另一個電極及電容器C2的另一個電極與佈線73(VSS)電連接。電晶體45的源極和汲極中的另一個與佈線74(VPI)電連接。電晶體46的源極和汲極中的另一個與佈線91(OUT1)電連接。 The other electrode of the photoelectric conversion element PD is electrically connected to the wiring 71 (VPD). The other of the source and the drain of the transistor 42 and the other of the source and the drain of the transistor 43 are electrically connected to the wiring 72 (VRS). The other electrode of the capacitor C1 and the other electrode of the capacitor C2 are electrically connected to the wiring 73 (VSS). The other of the source and the drain of the transistor 45 is electrically connected to the wiring 74 (VPI). The other of the source and the drain of the transistor 46 is electrically connected to the wiring 91 (OUT1).

在上述各組件的連接方式中,作為一個例子示出多個電晶體或多個電容器與共同的佈線電連接的情況,但是多個電晶體或多個電容器也可以分 別與不同的佈線電連接。 In the connection method of each of the above components, a case where a plurality of transistors or a plurality of capacitors are electrically connected to a common wiring is shown as an example, but a plurality of transistors or a plurality of capacitors may be divided. Do not electrically connect to different wiring.

佈線71(VPD)、佈線72(VRS)、佈線73(VSS)及佈線74(VPI)可以具有電源線的功能。例如,佈線71(VPD)及佈線73(VSS)可以被用作低電位電源線。佈線72(VRS)及佈線74(VPI)可以被用作高電位電源線。 The wiring 71 (VPD), the wiring 72 (VRS), the wiring 73 (VSS), and the wiring 74 (VPI) may have the function of a power supply line. For example, the wiring 71 (VPD) and the wiring 73 (VSS) can be used as a low potential power supply line. Wiring 72 (VRS) and wiring 74 (VPI) can be used as a high potential power line.

電晶體41的閘極與佈線61(TX)電連接。電晶體42的閘極與佈線62(GWRS)電連接。電晶體43的閘極與佈線63(RS)電連接。電晶體44的閘極與佈線64(CN)電連接。電晶體46的閘極與佈線65(SE)電連接。 The gate of the transistor 41 is electrically connected to the wiring 61 (TX). The gate of the transistor 42 is electrically connected to the wiring 62 (GWRS). The gate of the transistor 43 is electrically connected to the wiring 63 (RS). The gate of the transistor 44 is electrically connected to the wiring 64 (CN). The gate of the transistor 46 is electrically connected to the wiring 65 (SE).

佈線61(TX)、佈線62(GWRS)、佈線63(RS)、佈線64(CN)及佈線65(SE)可以被用作控制與這些佈線連接的電晶體的導通的信號線。佈線63(RS)及佈線65(SE)可以按行被控制。 The wiring 61 (TX), the wiring 62 (GWRS), the wiring 63 (RS), the wiring 64 (CN), and the wiring 65 (SE) can be used as signal lines for controlling conduction of the transistors connected to these wirings. The wiring 63 (RS) and the wiring 65 (SE) can be controlled in rows.

電晶體41可以被用作將節點AN的電位傳送到節點FD的電晶體。電晶體42可以被用作使節點AN的電位重設的電晶體。電晶體43可以被用作使節點FD的電位重設的電晶體。電晶體44可以被用作控制節點FD與電容器C2之間的電連接且分割存儲在節點FD中的電子的電晶體。電晶體45可以被用作根據節點FD的電位進行輸出的電晶體。電晶體46可以被用作選擇像素10的電晶體。 The transistor 41 can be used as a transistor that transmits the potential of the node AN to the node FD. The transistor 42 can be used as a transistor for resetting the potential of the node AN. The transistor 43 can be used as a transistor for resetting the potential of the node FD. The transistor 44 can be used as a transistor that controls the electrical connection between the node FD and the capacitor C2 and divides the electrons stored in the node FD. The transistor 45 can be used as a transistor that outputs according to the potential of the node FD. The transistor 46 can be used as a transistor for selecting the pixel 10.

注意,上述像素10的結構是一個例子,有時不包括一部分的電路、一部分的電晶體、一部分的電容器或者一部分的佈線等。另外,有時包括上述結構不包含的電路、電晶體、電容器及佈線等。另外,一部分的佈線的連接方式有時與上述結構的連接方式不同。 Note that the configuration of the above-described pixel 10 is an example, and sometimes does not include a part of the circuit, a part of the transistor, a part of the capacitor, or a part of the wiring or the like. Further, a circuit, a transistor, a capacitor, a wiring, and the like which are not included in the above configuration may be included. Further, the connection method of a part of the wiring may be different from the connection method of the above structure.

圖2A是說明本發明的一個實施方式的攝像裝置的圖。該攝像裝置包括:包括配置為矩陣狀的像素10的像素陣列11;具有驅動像素10的功能的電路12(行驅動器);對像素10的輸出信號進行CDS(Correlated Double Sampling:相關雙取樣)工作的電路13(CDS電路);具有判定節點FD的飽和的有無的功能以及將從電路13輸出的類比資料轉換為數位資料的功能的電路14(A/D轉換電路等);具有選擇經過電路24轉換了的資料而讀出的功能的電路15(列驅動器);以及根據節點FD的飽和的有無改變像素的工 作模式的電路16(像素控制電路)。另外,也可以採用沒有設置電路13的結構。 Fig. 2A is a view for explaining an image pickup apparatus according to an embodiment of the present invention. The image pickup apparatus includes: a pixel array 11 including pixels 10 arranged in a matrix; a circuit 12 (row driver) having a function of driving the pixels 10; and CDS (Correlated Double Sampling) operation on an output signal of the pixel 10. Circuit 13 (CDS circuit); circuit 14 (A/D conversion circuit or the like) having a function of determining the presence or absence of saturation of the node FD and converting the analog data output from the circuit 13 into digital data; having a selection pass circuit 24 The circuit 15 (column driver) of the function read out by the converted data; and the change of the pixel according to the saturation of the node FD A mode circuit 16 (pixel control circuit). Alternatively, a configuration in which the circuit 13 is not provided may be employed.

圖2B是與像素陣列11的一個列連接的電路13的電路圖及電路14的方塊圖。電路13可以包括電晶體51、電晶體52、電晶體53、電容器C3及電容器C4。另外,電路14可以包括比較器電路17、判定輸出電路18及計數電路19。 2B is a circuit diagram of a circuit 13 connected to one column of the pixel array 11 and a block diagram of the circuit 14. The circuit 13 may include a transistor 51, a transistor 52, a transistor 53, a capacitor C3, and a capacitor C4. Additionally, circuit 14 may include comparator circuit 17, decision output circuit 18, and counting circuit 19.

電晶體54具有電流源電路的功能。電晶體54的源極和汲極中的一個與佈線91(OUT1)電連接,源極和汲極中的另一個與電源線連接。該電源線例如可以為低電位電源線。此外,電晶體54的閘極不間斷地被施加偏壓。 The transistor 54 has the function of a current source circuit. One of the source and the drain of the transistor 54 is electrically connected to the wiring 91 (OUT1), and the other of the source and the drain is connected to the power supply line. The power line can be, for example, a low potential power line. Further, the gate of the transistor 54 is biased uninterruptedly.

在像素13中,電晶體51的源極和汲極中的一個與電晶體52的源極和汲極中的一個電連接。電晶體51的源極和汲極中的一個與電容器C3的一個電極電連接。電晶體52的源極和汲極中的另一個與電晶體53的源極和汲極中的一個電連接。電晶體52的源極和汲極中的另一個與電容器C4的一個電極電連接。電晶體52的源極和汲極中的另一個與佈線92(OUT2)電連接。電晶體53的源極和汲極中的另一個及電容器C3的另一個電極與佈線91(OUT1)電連接。電晶體51的源極和汲極中的另一個例如與被供應參考電位的高電位電源線(CDSVDD)電連接。電容器C4的另一個電極例如與低電位電源線(CDSVSS)電連接。 In the pixel 13, one of the source and the drain of the transistor 51 is electrically connected to one of the source and the drain of the transistor 52. One of the source and the drain of the transistor 51 is electrically connected to one electrode of the capacitor C3. The other of the source and the drain of the transistor 52 is electrically connected to one of the source and the drain of the transistor 53. The other of the source and the drain of the transistor 52 is electrically connected to one electrode of the capacitor C4. The other of the source and the drain of the transistor 52 is electrically connected to the wiring 92 (OUT2). The other of the source and the drain of the transistor 53 and the other electrode of the capacitor C3 are electrically connected to the wiring 91 (OUT1). The other of the source and the drain of the transistor 51 is electrically connected, for example, to a high potential power supply line (CDSVDD) to which a reference potential is supplied. The other electrode of the capacitor C4 is electrically connected, for example, to a low potential power line (CDSVSS).

對與圖1所示的像素10連接時的電路13的工作例子進行說明。首先,使電晶體51及電晶體52為導通狀態。接著,從像素10將攝像資料的電位輸出到佈線91(OUT1),在佈線92(OUT2)中保持參考電位(CDSVDD)。然後,使電晶體51為非導通狀態,從像素10將重設電位(在此,比攝像資料的電位高的電位,例如為VDD電位)輸出到佈線91(OUT1)。此時,佈線92(OUT2)的電位為將撮像資料的電位與重設電位之間的差值的絕對值加到參考電位(CDSVDD)而得到的電位。因此,可以將對參考電位(CDSVDD)追加實質上的撮像資料的電位而得到的雜訊少的電位信號供應到電路14。 An example of the operation of the circuit 13 when connected to the pixel 10 shown in Fig. 1 will be described. First, the transistor 51 and the transistor 52 are turned on. Next, the potential of the image data is output from the pixel 10 to the wiring 91 (OUT1), and the reference potential (CDSVDD) is held in the wiring 92 (OUT2). Then, the transistor 51 is turned off, and the reset potential (here, a potential higher than the potential of the image data, for example, the VDD potential) is output from the pixel 10 to the wiring 91 (OUT1). At this time, the potential of the wiring 92 (OUT2) is a potential obtained by adding the absolute value of the difference between the potential of the imaging material and the reset potential to the reference potential (CDSVDD). Therefore, a potential signal having a small amount of noise obtained by adding a potential of the substantial imaging material to the reference potential (CDSVDD) can be supplied to the circuit 14.

另外,當重設電位比撮像資料的電位低(例如,為GND電位等)時,佈線92(OUT2)的電位為從參考電位(CDSVDD)減去撮像資料的電位與重 設電位之間的差值的絕對值而得到的電位。 Further, when the reset potential is lower than the potential of the image data (for example, GND potential or the like), the potential of the wiring 92 (OUT2) is the potential and weight of the image data subtracted from the reference potential (CDSVDD). The potential obtained by setting the absolute value of the difference between the potentials.

此外,當使電晶體53為導通狀態時,形成旁路,由此可以將佈線91(OUT1)的信號直接輸出到佈線92(OUT2)。 Further, when the transistor 53 is turned on, a bypass is formed, whereby the signal of the wiring 91 (OUT1) can be directly output to the wiring 92 (OUT2).

在電路14中,利用比較器電路17對從電路13輸入的信號電位與參考電位(REF)進行比較。藉由佈線92(OUT2)將與第一攝像資料或第二攝像資料對應的信號電位輸入到比較器電路17。在此,第一攝像資料是第一次曝光資料,且被用來判定像素10的節點FD的飽和的有無。第二攝像資料是根據該判定而取得的第二次曝光資料。 In the circuit 14, the signal potential input from the circuit 13 is compared with the reference potential (REF) by the comparator circuit 17. The signal potential corresponding to the first image data or the second image data is input to the comparator circuit 17 by the wiring 92 (OUT2). Here, the first imaging material is the first exposure data, and is used to determine the presence or absence of saturation of the node FD of the pixel 10. The second imaging material is the second exposure data obtained based on the determination.

首先,當被輸入第一攝像資料時,比較器電路17向判定輸出電路18輸出判定結果。判定輸出電路18具有調節輸出時序而去除從比較器電路17輸出的雜訊的功能。 First, when the first imaging material is input, the comparator circuit 17 outputs the determination result to the determination output circuit 18. The determination output circuit 18 has a function of adjusting the output timing to remove the noise output from the comparator circuit 17.

比較器電路17判定第一攝像資料是否使像素10的節點FD飽和。此時,對比較器電路17輸入的參考電位(REF)是相當於節點FD的飽和時的固定電位。藉由對該電位與對應於第一攝像資料的信號電位進行比較,判定飽和的有無。在本實施方式中,迂回電路13對比較器電路17輸入對應於第一攝像資料的信號電位,但是也可以以不迂回電路13的方式對比較器電路17輸入對應於第一攝像資料的信號電位。 The comparator circuit 17 determines whether the first image data saturates the node FD of the pixel 10. At this time, the reference potential (REF) input to the comparator circuit 17 is a fixed potential corresponding to the saturation of the node FD. The presence or absence of saturation is determined by comparing the potential with a signal potential corresponding to the first imaging data. In the present embodiment, the circuit circuit 13 inputs a signal potential corresponding to the first image data to the comparator circuit 17, but the signal potential corresponding to the first image data may be input to the comparator circuit 17 in a manner that does not bypass the circuit 13. .

當判定節點FD未飽和時,判定輸出電路18將不獲取第二攝像資料的信號輸出到電路16。因此,對應於第一攝像資料的信號電位藉由電路13輸入到比較器電路17。輸入到比較器電路17的參考電位具有斜坡波形。將對該參考電位與對應於第一攝像資料的信號電位進行比較的結果輸出到計數電路19。計數電路19將對應於第一攝像資料的數位資料輸出到佈線94(OUT4)。 When it is determined that the node FD is not saturated, it is determined that the output circuit 18 outputs a signal that does not acquire the second imaging material to the circuit 16. Therefore, the signal potential corresponding to the first image data is input to the comparator circuit 17 through the circuit 13. The reference potential input to the comparator circuit 17 has a ramp waveform. The result of comparing the reference potential with the signal potential corresponding to the first imaging material is output to the counting circuit 19. The counting circuit 19 outputs digital data corresponding to the first image data to the wiring 94 (OUT4).

當判定節點FD飽和時,判定輸出電路18將獲取第二攝像資料的信號輸出到電路16。並且,電路16將獲取第二攝像資料的信號輸出到像素10。對應於第二攝像資料的信號電位藉由電路13輸入到比較器電路17。輸入到比較器電路17的參考電位具有斜坡波形。對該參考電位與對應於第二攝像 資料的信號電位進行比較的結果輸出到計數電路19。計數電路19將對應於第二攝像資料的數位資料輸出到佈線94(OUT4)。 When it is determined that the node FD is saturated, the determination output circuit 18 outputs a signal for acquiring the second imaging material to the circuit 16. And, the circuit 16 outputs a signal for acquiring the second imaging material to the pixel 10. The signal potential corresponding to the second imaging material is input to the comparator circuit 17 through the circuit 13. The reference potential input to the comparator circuit 17 has a ramp waveform. The reference potential corresponds to the second camera The result of the comparison of the signal potentials of the data is output to the counter circuit 19. The counting circuit 19 outputs the digital data corresponding to the second imaging material to the wiring 94 (OUT4).

作為判定輸出電路18,例如可以使用圖3A所示的電路。該電路的輸入端子(IN)與比較器電路17的輸出端子電連接。該電路的輸出端子(OUT)與佈線93(OUT3)電連接。判定輸出電路18按被選擇的行根據JRES信號被重設,然後將比較器電路17的判定結果輸出到電路16。 As the determination output circuit 18, for example, the circuit shown in Fig. 3A can be used. The input terminal (IN) of the circuit is electrically connected to the output terminal of the comparator circuit 17. The output terminal (OUT) of this circuit is electrically connected to the wiring 93 (OUT3). The decision output circuit 18 is reset in accordance with the JRES signal in the selected row, and then the decision result of the comparator circuit 17 is output to the circuit 16.

作為電路16,例如可以使用圖3B所示的電路。該電路的輸入端子(IN)與佈線93(OUT3)電連接。該電路的輸出端子(OUT)有兩種,一個與佈線61(TX)電連接,另一個與佈線64(CN)電連接。輸入到端子TX1和端子TX2中的一個的信號從該電路輸出到佈線61(TX)。此外,輸入到端子CN1和端子CN2中的一個的信號從該電路輸出到佈線64(CN)。此外,也可以對端子GCN輸入控制信號,固定從佈線61(TX)及佈線64(CN)輸出的信號。由於電路16具有閂鎖功能,所以當判定節點FD飽和時從判定輸出電路18輸出的信號保持在電路16中。因此,即使反復判定直到最後行,上述信號也被保持。 As the circuit 16, for example, the circuit shown in Fig. 3B can be used. The input terminal (IN) of the circuit is electrically connected to the wiring 93 (OUT3). There are two types of output terminals (OUT) of the circuit, one electrically connected to the wiring 61 (TX) and the other electrically connected to the wiring 64 (CN). A signal input to one of the terminal TX1 and the terminal TX2 is output from the circuit to the wiring 61 (TX). Further, a signal input to one of the terminal CN1 and the terminal CN2 is output from the circuit to the wiring 64 (CN). Further, a control signal may be input to the terminal GCN to fix a signal output from the wiring 61 (TX) and the wiring 64 (CN). Since the circuit 16 has a latch function, the signal output from the decision output circuit 18 is held in the circuit 16 when it is determined that the node FD is saturated. Therefore, even if the decision is repeated until the last line, the above signal is held.

上述電路可以根據圖4所示的時序圖而工作。圖4所示的RCK1/2及RCKB1/2是輸入到電路12(行驅動器)的時脈信號及反轉時脈信號,JRES是輸入到圖3A所示的電路的信號,GRES及JENB是輸入到圖3B所示的電路的信號,EN_CDS是輸入到電路13的電晶體53的閘極的信號,SE[1]是輸入到第一行的像素10的佈線65的信號,SE[N]是輸入到最後行的像素10的佈線65的信號。 The above circuit can operate according to the timing chart shown in FIG. The RCK 1/2 and RCKB 1/2 shown in FIG. 4 are clock signals and inverted clock signals input to the circuit 12 (row driver), JRES is a signal input to the circuit shown in FIG. 3A, and GRES and JENB are inputs. To the signal of the circuit shown in Fig. 3B, EN_CDS is a signal input to the gate of the transistor 53 of the circuit 13, SE[1] is a signal input to the wiring 65 of the pixel 10 of the first row, SE[N] is The signal of the wiring 65 of the pixel 10 input to the last row.

以frame[n]表示的期間相當於第n圖框(n為2以上的自然數)的期間。在第n圖框中,期間401是讀出第(n-1)圖框的資料的期間,期間402是讀出上述第一攝像資料並進行判定的期間,期間400是行驅動器不工作的期間。此外,第(n+1)圖框中的期間403是讀出第n圖框的資料的期間。 The period indicated by frame[n] corresponds to the period of the nth frame (n is a natural number of 2 or more). In the nth frame, a period 401 is a period in which the material of the (n-1)th frame is read, a period 402 is a period in which the first image data is read and a determination is made, and a period 400 is a period in which the row driver does not operate. . Further, the period 403 in the (n+1)th frame is a period in which the material of the nth frame is read.

接下來,參照圖5所示的流程圖及圖6所示的時序圖說明圖1所示的像素10的工作。本發明的一個實施方式的攝像裝置以全域快門方式工作,其一個圖框中的工作大致分為:第一攝像資料的獲取;第一攝像資料的判 定;第二攝像資料的獲取;以及上一個圖框的攝像資料的讀出。其中,第一攝像資料的獲取和上一個圖框的攝像資料的讀出同時進行。 Next, the operation of the pixel 10 shown in Fig. 1 will be described with reference to the flowchart shown in Fig. 5 and the timing chart shown in Fig. 6. The image pickup apparatus of one embodiment of the present invention operates in a global shutter mode, and the work in one frame is roughly divided into: acquisition of the first image data; judgment of the first image data The acquisition of the second camera data; and the reading of the camera data of the previous frame. The acquisition of the first image data and the reading of the image data of the previous frame are performed simultaneously.

在圖5及圖6中,以任意的第n圖框為基準進行說明。佈線71(VPD)及佈線73(VSS)為低電位(“L”),而佈線72(VRS)及佈線74(VPI)為高電位(“H”)。 In FIGS. 5 and 6, an arbitrary nth frame will be described as a reference. The wiring 71 (VPD) and the wiring 73 (VSS) are at a low potential ("L"), and the wiring 72 (VRS) and the wiring 74 (VPI) are at a high potential ("H").

在圖6中,GWRS是佈線62(GWRS)的電位,RS[1]是第一行的特定像素10的佈線63(RS)的電位,RS[N]是最後行的特定像素10的佈線63(RS)的電位,CN是佈線64(CN)的電位,TX是佈線61(TX)的電位,AN[1]是第一行的特定像素10的節點AN的電位,AN[N]是最後行的特定像素10的節點AN的電位,FD[1]是第一行的特定像素10的節點FD的電位,FD[N]是最後行的特定像素10的節點FD的電位。 In FIG. 6, GWRS is the potential of the wiring 62 (GWRS), RS[1] is the potential of the wiring 63 (RS) of the specific pixel 10 of the first row, and RS[N] is the wiring 63 of the specific pixel 10 of the last row. (RS) potential, CN is the potential of the wiring 64 (CN), TX is the potential of the wiring 61 (TX), AN[1] is the potential of the node AN of the specific pixel 10 of the first row, and AN[N] is the last The potential of the node AN of the specific pixel 10 of the row, FD[1] is the potential of the node FD of the specific pixel 10 of the first row, and FD[N] is the potential of the node FD of the specific pixel 10 of the last row.

首先,對第一攝像資料的獲取以及在上一圖框中獲取的攝像資料的讀出進行說明。 First, the acquisition of the first image data and the reading of the image data acquired in the previous frame will be described.

第一攝像資料的攝像模式的曝光時間相對較長,由此可以在低照度環境下獲得寬動態範圍的影像。另一方面,由於該曝光時間相對較長,所以在高照度環境下節點FD飽和。圖6的時序圖示出在第一攝像資料的判定時節點FD飽和的情況下的工作。 The exposure time of the imaging mode of the first imaging material is relatively long, so that a wide dynamic range image can be obtained in a low illumination environment. On the other hand, since the exposure time is relatively long, the node FD is saturated in a high illumination environment. The timing chart of Fig. 6 shows the operation in the case where the node FD is saturated at the time of the determination of the first image data.

在時刻T1,當將GWRS設定為“H”時,AN[1:N]被重設而成為“H”(佈線72(VRS)的電位)(S1)。 At time T1, when GWRS is set to "H", AN[1:N] is reset to become "H" (potential of wiring 72 (VRS)) (S1).

在時刻T2,當將GWRS設定為“L”時,AN[1:N]根據照度開始降低(第 一次曝光,S2) At time T2, when GWRS is set to "L", AN[1:N] starts to decrease according to illuminance (No. One exposure, S2)

在時刻T3,當將RS[1:N]設定為“H”並且將CN設定為“H”時,FD[1:N]被重設而成為“H”(佈線72(VRS)的電位)(S3)。此時,節點FD藉由電晶體44與電容器C2電連接。 At time T3, when RS[1:N] is set to "H" and CN is set to "H", FD[1:N] is reset to become "H" (potential of wiring 72 (VRS)) (S3). At this time, the node FD is electrically connected to the capacitor C2 via the transistor 44.

在時刻T4,當將RS[1:N]設定為“L”,將CN設定為“L”並且將TX 設定為“H”時,節點FD與電容器C2之間的電連接被切斷,由此,重設時的節點FD的電位保持在電容器C2中。此外,節點AN的電位傳送到節點FD,該節點FD的電位開始下降(S4)。 At time T4, when RS[1:N] is set to "L", CN is set to "L" and TX is set When "H" is set, the electrical connection between the node FD and the capacitor C2 is cut off, whereby the potential of the node FD at the time of reset is held in the capacitor C2. Further, the potential of the node AN is transmitted to the node FD, and the potential of the node FD starts to drop (S4).

在時刻T5,當將TX設定為“L”時,FD[1:N]被保持。到這裡是第一攝像資料的獲取工作。 At time T5, when TX is set to "L", FD[1:N] is held. Here is the acquisition of the first camera data.

在此,在時刻T1至T3之間,SE[1]至SE[N]在一定期間依次為“H”,在第(n-1)圖框中確定的攝像資料被讀出(510’)。也就是說,上述第n圖框的第一攝像資料的獲取工作和在第(n-1)圖框中確定的攝像資料的讀出同時進行。藉由上述方式在下一圖框中讀出攝像資料,即使採用全域快門方式也可以延長用來曝光等的時間。因此,在低照度下也可以獲取動態範圍寬且雜訊低的影像。 Here, between time T1 and T3, SE[1] to SE[N] are sequentially "H" for a certain period, and image data determined in the (n-1)th frame is read (510'). . That is to say, the acquisition of the first image data of the nth frame described above is performed simultaneously with the reading of the image data determined in the (n-1)th frame. By reading the image data in the next frame by the above method, the time for exposure or the like can be extended even if the global shutter mode is employed. Therefore, an image with a wide dynamic range and low noise can be obtained under low illumination.

圖7A是說明第一行的攝像資料的讀出的時序圖。SH是供應到電路13中的電晶體52的閘極的電位,CL是供應到電路13中的電晶體51的閘極的電位,REF(RAMP)是供應到比較器電路17的參考電位,OUT2是佈線92(OUT2)的電位,COMP_OUT是比較器電路17的輸出端子的電位。 Fig. 7A is a timing chart for explaining reading of image data in the first line. SH is the potential of the gate supplied to the transistor 52 in the circuit 13, CL is the potential of the gate supplied to the transistor 51 in the circuit 13, and REF (RAMP) is the reference potential supplied to the comparator circuit 17, OUT2 It is the potential of the wiring 92 (OUT2), and COMP_OUT is the potential of the output terminal of the comparator circuit 17.

在圖6中,在時刻T3之前,RS[1]至RS[N]在一定期間依次為“H”,節點FD被重設。該工作是基於圖7A所示的電路13的工作而運行的。 In FIG. 6, before time T3, RS[1] to RS[N] are sequentially "H" for a certain period of time, and the node FD is reset. This work is performed based on the operation of the circuit 13 shown in Fig. 7A.

接著,對第一攝像資料的判定及基於該判定結果而運行的工作進行說明。 Next, the determination of the first imaging material and the operation based on the determination result will be described.

在時刻T6至T8中,SE[1]至SE[N]在一定期間依次為“H”,第一攝像資料按行被讀出,由此,對所有的有效像素的節點FD的飽和的有無進行判定(S5)。 In time T6 to T8, SE[1] to SE[N] are sequentially "H" for a certain period of time, and the first image data is read out in rows, thereby whether or not the saturation of the node FD of all the effective pixels is present. A determination is made (S5).

圖7B是說明時刻T6至T8中的第一攝像資料的讀出的時序圖。在第一攝像資料的讀出期間中,將EN_CDS設定為“H”並且將CL設定為“H”,迂回電路13將從像素10輸出的信號輸入到比較器電路17。將REF(CONST)設定為固定電位,且為比節點FD飽和時輸出到佈線91(OUT1)的電位稍微 高的電位。藉由上述工作,可以根據比較器電路17的輸出而判定節點FD的飽和的有無。圖7B示出所選擇的特定像素10的節點FD飽和時的狀態,由此,從比較器電路17的輸出端子輸出的電位是“L”。此外,也可以將EN_CDS設定為“L”,不迂回電路13讀出第一攝像資料。此時,從比較器電路17的輸出端子輸出的電位是“H”。 FIG. 7B is a timing chart for explaining the reading of the first image data at times T6 to T8. In the readout period of the first image data, EN_CDS is set to "H" and CL is set to "H", and the bypass circuit 13 inputs the signal output from the pixel 10 to the comparator circuit 17. REF(CONST) is set to a fixed potential and is slightly higher than the potential output to the wiring 91 (OUT1) when the node FD is saturated. High potential. With the above operation, the presence or absence of saturation of the node FD can be determined based on the output of the comparator circuit 17. FIG. 7B shows a state when the node FD of the selected specific pixel 10 is saturated, whereby the potential output from the output terminal of the comparator circuit 17 is "L". Further, EN_CDS may be set to "L", and the first image data is read out by the circuit 13 without returning. At this time, the potential output from the output terminal of the comparator circuit 17 is "H".

此時,第一攝像資料被用來判定節點FD的飽和的有無,而不被輸出到外部。因此,可以停止為了外部輸出所需要的電路15(列驅動器)等輸出電路的工作。 At this time, the first image data is used to determine the presence or absence of saturation of the node FD, and is not output to the outside. Therefore, the operation of the output circuit such as the circuit 15 (column driver) required for external output can be stopped.

第一攝像資料的判定結果藉由判定輸出電路18輸出到電路16。在此,各列中的判定輸出電路18的輸出端子都連接到佈線93(OUT3)。由此,在所有像素10中的至少一個被判定為其節點FD飽和時,電路16在指定的時刻將CN設定為“H”並且將TX設定為“H”,而切換成獲取第二攝像資料的模式。到這裡是第一攝像資料的判定及基於該判定結果而運行的工作。 The determination result of the first imaging data is output to the circuit 16 by the determination output circuit 18. Here, the output terminals of the determination output circuit 18 in each column are connected to the wiring 93 (OUT3). Thus, when at least one of all the pixels 10 is determined to be saturated with its node FD, the circuit 16 sets CN to "H" and sets TX to "H" at a specified time, and switches to acquire the second image data. Mode. Here, it is the determination of the first imaging material and the operation based on the determination result.

接著,對第二攝像資料的獲取進行說明。第二攝像資料的攝像模式的曝光時間相對較短,由此可以在高照度環境下獲得寬動態範圍的影像。 Next, the acquisition of the second imaging material will be described. The exposure time of the imaging mode of the second imaging material is relatively short, whereby a wide dynamic range image can be obtained in a high illumination environment.

無論第一攝像資料的判定結果如何,或者在得到所有判定結果之前,可以進行用來獲取第二攝像資料的曝光工作。例如,如圖6所示,在時刻T7,將GWRS設定為“H”而使AN[1:N]重設(S6)。然後,在時刻T8,將GWRS設定為“L”,並在時刻T10以前進行第二次曝光(S7)。為了防止節點FD的飽和,將第二次曝光的曝光時間設定為短於第一次曝光的曝光時間。 The exposure work for acquiring the second image data may be performed regardless of the determination result of the first image data or before all the determination results are obtained. For example, as shown in FIG. 6, at time T7, GWRS is set to "H" and AN[1:N] is reset (S6). Then, at time T8, GWRS is set to "L", and a second exposure is performed before time T10 (S7). In order to prevent saturation of the node FD, the exposure time of the second exposure is set to be shorter than the exposure time of the first exposure.

在第二次曝光結束之前的時刻T9,利用電路16的工作將CN設定為“H”,使電晶體44為導通狀態,再次將節點FD與電容器C2電連接。 At time T9 before the end of the second exposure, CN is set to "H" by the operation of the circuit 16, the transistor 44 is turned on, and the node FD is electrically connected to the capacitor C2 again.

在即將時刻T9之前,節點FD處於電子飽和狀態,亦即電壓為0的狀態。在時刻T9,存儲有節點FD的重設時的電位的電容器C2與節點FD電連接,存儲電子被分割,由此節點FD的電位上升(S8)。 Immediately before time T9, the node FD is in an electronic saturation state, that is, a state in which the voltage is zero. At time T9, the capacitor C2 storing the potential at the time of resetting of the node FD is electrically connected to the node FD, and the stored electrons are divided, whereby the potential of the node FD rises (S8).

在時刻T10,當利用電路16的工作將CN設定為“L”並且將TX設定為 “H”時,節點AN的電位傳送到節點FD(S9)。 At time T10, when the operation of the circuit 16 is utilized, the CN is set to "L" and the TX is set to At "H", the potential of the node AN is transmitted to the node FD (S9).

在時刻T11,當將TX設定為“L”時,FD[1:N]被保持。到這裡是第二攝像資料的獲取工作。在第(n+1)圖框中,作為第n圖框的攝像資料讀出該第二攝像資料(S10)。 At time T11, when TX is set to "L", FD[1:N] is held. Here is the acquisition of the second camera data. In the (n+1)th frame, the second image data is read as the image data of the nth frame (S10).

圖8是判定節點FD未被第一攝像資料飽和時的時序圖。在所有像素10的節點FD未飽和的情況下,電路16不進行將CN及TX設定為“H”的工作。也就是說,不切換成獲取第二攝像資料的模式。因此,作為第一攝像資料獲取的資料直接被讀出。另外,在判定節點FD未飽和時,也可以使時刻T7至T8的將GWRS設定為“H”的工作無效化,而不進行第二次曝光。 FIG. 8 is a timing chart when the determination node FD is not saturated with the first imaging data. In the case where the nodes FD of all the pixels 10 are not saturated, the circuit 16 does not perform the operation of setting CN and TX to "H". That is to say, it does not switch to the mode of acquiring the second imaging material. Therefore, the material acquired as the first image data is directly read. Further, when it is determined that the node FD is not saturated, the operation of setting GWRS to "H" at times T7 to T8 may be invalidated without performing the second exposure.

如上所述,本發明的一個實施方式的攝像裝置以全域快門方式工作。因此,在判定所有像素10中的至少一個的節點FD飽和的情況下,切換成獲取第二攝像資料的模式,所以所有像素10獲取第二攝像資料。 As described above, the image pickup apparatus of one embodiment of the present invention operates in a global shutter mode. Therefore, in a case where it is determined that the node FD of at least one of all the pixels 10 is saturated, switching to the mode of acquiring the second image data, all the pixels 10 acquire the second image data.

藉由上述工作,能夠根據需要自動獲取第二攝像資料,即使拍攝混有明暗部分的影像,也可以保持亮部的灰階。也就是說,可以獲取寬動態範圍的影像。此外,即使在低照度環境下也可以獲取雜訊少且灰階保持的寬動態範圍影像。 With the above work, the second image data can be automatically acquired as needed, and the gray scale of the bright portion can be maintained even if the image with the light and dark portions is captured. In other words, you can get a wide dynamic range of images. In addition, wide dynamic range images with less noise and grayscale retention can be obtained even in low illumination environments.

像素10也可以具有圖9所示的結構。圖9所示的像素10與圖1所示的像素10的不同之處是光電轉換元件PD的連接方向。圖9所示的像素10可以根據圖11的時序圖(有第二攝像資料的獲取工作)或圖12的時序圖(沒有第二攝像資料的獲取工作)而工作。此時,佈線71(VPD)及佈線74(VPI)為高電位(“H”),佈線72(VRS)及佈線73(VSS)為低電位(“L”)。 The pixel 10 can also have the structure shown in FIG. The pixel 10 shown in FIG. 9 is different from the pixel 10 shown in FIG. 1 in the connection direction of the photoelectric conversion element PD. The pixel 10 shown in FIG. 9 can operate according to the timing chart of FIG. 11 (the acquisition operation of the second imaging material) or the timing chart of FIG. 12 (the acquisition operation without the second imaging material). At this time, the wiring 71 (VPD) and the wiring 74 (VPI) are at a high potential ("H"), and the wiring 72 (VRS) and the wiring 73 (VSS) are at a low potential ("L").

在此情況下,節點AN及節點FD在重設時處於電子飽和狀態,而在高照度環境下處於電子不足狀態。因此,節點AN及節點FD的電位變化與上述圖1所示的像素10的工作相反。 In this case, the node AN and the node FD are in an electronic saturation state at the time of resetting, and are in an electronically insufficient state in a high illuminance environment. Therefore, the potential changes of the node AN and the node FD are opposite to those of the pixel 10 shown in FIG. 1 described above.

另外,像素10也可以採用圖10A及圖10B所示的結構。圖10A是沒有 設置電晶體42的結構。在該結構中,藉由將佈線71(VPD)的電位設定為高電位,可以使節點AN的電位重設。圖10B是電晶體45的源極和汲極中的一個與佈線91(OUT)連接的結構。 Further, the pixel 10 may have the configuration shown in FIGS. 10A and 10B. Figure 10A is no The structure of the transistor 42 is set. In this configuration, by setting the potential of the wiring 71 (VPD) to a high potential, the potential of the node AN can be reset. FIG. 10B shows a structure in which one of the source and the drain of the transistor 45 is connected to the wiring 91 (OUT).

另外,用於像素10的電晶體可以採用如圖13A及圖13B所示的在電晶體41至電晶體46中設置有背閘極的結構。圖13A是對背閘極施加恆電位的結構,可以控制臨界電壓。在圖13A中,作為一個例子,舉出背閘極與供應低電位的佈線71(VPD)、佈線73(VSS)或佈線75(VSS2)連接的情況,但是也可以採用背閘極與上述佈線中的一個連接的結構。另外,圖13B是與前閘極相同的電位施加到背閘極的結構,藉由採用該結構,可以增大通態電流(on-state current)且減少關態電流(off-state current)。另外,也可以以所希望的電晶體具有適當的電特性的方式組合圖13A及圖13B所示的結構等。另外,也可以具有沒有設置背閘極的電晶體。此外,根據需要,可以組合圖9、圖10A和圖10B以及圖13A和圖13B的結構。 In addition, the transistor for the pixel 10 may have a structure in which a back gate is provided in the transistor 41 to the transistor 46 as shown in FIGS. 13A and 13B. Fig. 13A shows a structure in which a constant potential is applied to the back gate, and the threshold voltage can be controlled. In FIG. 13A, as an example, a case where the back gate is connected to the wiring 71 (VPD), the wiring 73 (VSS), or the wiring 75 (VSS2) that supplies the low potential is mentioned, but the back gate and the above wiring may be employed. The structure of a connection in . In addition, FIG. 13B is a structure in which the same potential as the front gate is applied to the back gate, and by adopting this configuration, the on-state current can be increased and the off-state current can be reduced. Further, the structure and the like shown in FIGS. 13A and 13B may be combined in such a manner that the desired transistor has appropriate electrical characteristics. Alternatively, a transistor having no back gate may be provided. Further, the structures of FIGS. 9, 10A and 10B, and FIGS. 13A and 13B can be combined as needed.

如圖14所示,像素10可以採用多個像素共同使用電晶體43至電晶體46的方式。圖14示出垂直方向的多個像素共同使用電晶體43至電晶體46的結構例子,也可以採用水平方向或水平垂直方向的多個像素共同使用電晶體43至電晶體46的結構。藉由採用上述結構,可以減少每一個像素所具有的電晶體的數量。 As shown in FIG. 14, the pixel 10 can adopt a manner in which a plurality of pixels collectively use the transistor 43 to the transistor 46. 14 shows a structural example in which a plurality of pixels in the vertical direction use the crystal 43 to the transistor 46 in common, and it is also possible to employ a structure in which the plurality of pixels in the horizontal direction or the horizontal vertical direction use the crystal 43 to the transistor 46 in common. By adopting the above structure, the number of transistors each pixel has can be reduced.

在圖14中,示出四個像素共同使用電晶體43至電晶體46的方式,也可以為兩個像素、三個像素或五個像素以上共同使用電晶體43至電晶體46的方式。另外,可以任意組合該結構與圖9、圖10A和圖10B以及圖13A和圖13B所示的結構。 In FIG. 14, a manner in which four pixels collectively use the transistor 43 to the transistor 46 is shown, and a mode in which the transistor 43 to the transistor 46 are commonly used for two pixels, three pixels, or five pixels or more may be used. In addition, the structure and the structures shown in FIGS. 9, 10A and 10B, and 13A and 13B can be arbitrarily combined.

本發明的一個實施方式的攝像裝置可以採用像素陣列11及包括電路12至電路16的基板35的疊層結構。例如,在圖15A為像素陣列11的俯視圖,圖15B為基板35的俯視圖的情況下,可以採用如圖15C的正面圖所示的像素陣列11及基板35的疊層結構。藉由採用該結構,可以使用對各組件適當的電晶體,並且可以縮小攝像裝置的面積。另外,圖15B所示的電路佈局是一個例子,也可以採用其他佈局。 The image pickup apparatus according to an embodiment of the present invention may employ a laminated structure of a pixel array 11 and a substrate 35 including the circuit 12 to the circuit 16. For example, FIG. 15A is a plan view of the pixel array 11, and FIG. 15B is a plan view of the substrate 35. A stacked structure of the pixel array 11 and the substrate 35 as shown in the front view of FIG. 15C can be employed. By adopting this configuration, it is possible to use a suitable transistor for each component, and it is possible to reduce the area of the image pickup device. In addition, the circuit layout shown in FIG. 15B is an example, and other layouts may be employed.

為了同時實現高速工作及使用CMOS電路的結構,電路12至電路16較佳為利用使用矽的電晶體(以下,稱為Si電晶體)形成。例如,可以作為基板35使用矽基板,在該矽基板上形成上述電路。另外,像素陣列11較佳為利用使用氧化物半導體的電晶體(以下,稱為OS電晶體)形成。此外,也可以將構成電路12至電路16的一部分的電晶體設置在與像素陣列11相同的面上。 In order to simultaneously realize high-speed operation and a structure using a CMOS circuit, the circuit 12 to the circuit 16 are preferably formed using a transistor using germanium (hereinafter, referred to as a Si transistor). For example, a germanium substrate can be used as the substrate 35, and the above-described circuit can be formed on the germanium substrate. Further, the pixel array 11 is preferably formed by a transistor (hereinafter referred to as an OS transistor) using an oxide semiconductor. Further, a transistor constituting a part of the circuit 12 to the circuit 16 may be disposed on the same surface as the pixel array 11.

參照圖式說明本發明的一個實施方式的攝像裝置的具體結構例子。圖16A所示的剖面圖是圖1所示的像素10中的光電轉換元件PD、電晶體41、電晶體43及電容器C1的具體連接方式的一個例子。在圖16A中未圖示電晶體42、電晶體44、電晶體45、電晶體46及電容器C2。電晶體41至電晶體46及電容器C1及C2可以設置在層1100中,光電轉換元件PD可以設置在層1200中。 A specific configuration example of an image pickup apparatus according to an embodiment of the present invention will be described with reference to the drawings. The cross-sectional view shown in Fig. 16A is an example of a specific connection mode of the photoelectric conversion element PD, the transistor 41, the transistor 43, and the capacitor C1 in the pixel 10 shown in Fig. 1. The transistor 42, the transistor 44, the transistor 45, the transistor 46, and the capacitor C2 are not shown in Fig. 16A. The transistor 41 to the transistor 46 and the capacitors C1 and C2 may be disposed in the layer 1100, and the photoelectric conversion element PD may be disposed in the layer 1200.

雖然在本實施方式所說明的剖面圖中,佈線、電極及接觸插頭(導電體81)為彼此不同的組件,但是在圖式上彼此電連接的組件有時在實際的電路中被認作為同一個組件。此外,佈線藉由導電體81與電極連接的方式是一個例子,而有時電極與佈線直接連接。 In the cross-sectional view described in the present embodiment, the wiring, the electrode, and the contact plug (conductor 81) are components different from each other, but the components electrically connected to each other in the drawings are sometimes recognized as the same in the actual circuit. A component. Further, the manner in which the wiring is connected to the electrodes by the conductor 81 is an example, and the electrodes may be directly connected to the wiring.

在各組件上設置有用作保護膜、層間絕緣膜或平坦化膜的絕緣層82及絕緣層83等。例如,絕緣層82及絕緣層83等可以使用氧化矽膜、氧氮化矽膜等無機絕緣膜。或者,也可以使用丙烯酸樹脂、聚醯亞胺樹脂等有機絕緣膜等。較佳的是,根據需要藉由CMP(Chemical Mechanical Polishing:化學機械拋光)法等對絕緣層82及絕緣層83等的頂面進行平坦化處理。 An insulating layer 82, an insulating layer 83, and the like serving as a protective film, an interlayer insulating film, or a planarizing film are provided on each of the modules. For example, an inorganic insulating film such as a hafnium oxide film or a hafnium oxynitride film can be used for the insulating layer 82, the insulating layer 83, and the like. Alternatively, an organic insulating film such as an acrylic resin or a polyimide resin may be used. Preferably, the top surface of the insulating layer 82, the insulating layer 83, and the like is planarized by a CMP (Chemical Mechanical Polishing) method or the like as necessary.

另外,有時不設置圖式所示的佈線等的一部分,有時各層包括在圖式中未圖示的佈線及電晶體等。此外,有時包括在圖式中未圖示的層。此外,有時不包括圖式所示的層的一部分。 In addition, a part of the wiring or the like shown in the drawings may not be provided, and each layer may include a wiring, a transistor, and the like which are not shown in the drawings. Further, a layer not shown in the drawings is sometimes included. In addition, some of the layers shown in the drawings are sometimes not included.

像素10的組件的電晶體41至電晶體46較佳為使用關態電流低的OS電晶體。OS電晶體的極低的關態電流可以使攝像的動態範圍寬。在圖1所示的像素10的電路結構中,當入射到光電轉換元件PD的光的強度大時,節點AN及節點FD的電位小。由於使用氧化物半導體的電晶體的關態電流 極低,因此即使閘極電位極小也可以正確地輸出對應於該閘極電位的電流。由此,可以擴大能夠檢測出的照度範圍,亦即擴大動態範圍。 The transistor 41 to the transistor 46 of the assembly of the pixel 10 preferably use an OS transistor having a low off-state current. The extremely low off-state current of the OS transistor allows for a wide dynamic range of imaging. In the circuit configuration of the pixel 10 shown in FIG. 1, when the intensity of light incident on the photoelectric conversion element PD is large, the potentials of the node AN and the node FD are small. Off-state current due to transistor using oxide semiconductor It is extremely low, so even if the gate potential is extremely small, the current corresponding to the gate potential can be correctly output. Thereby, it is possible to expand the range of illuminance that can be detected, that is, to expand the dynamic range.

此外,因為電晶體41、電晶體42、電晶體43及電晶體44的關態電流低,所以可以使在節點AN及節點FD中能夠保持電荷的期間為極長。因此,可以適用在全像素中同時進行電荷的存儲工作的全域快門方式,而不使電路結構或工作方法為複雜。另外,也可以以捲動快門方式驅動本發明的一個實施方式的攝像裝置。 Further, since the off-state currents of the transistor 41, the transistor 42, the transistor 43, and the transistor 44 are low, the period during which the charge can be held in the node AN and the node FD can be extremely long. Therefore, it is possible to apply a global shutter method in which charge storage work is simultaneously performed in all pixels without complicating the circuit structure or the operation method. Further, the image pickup apparatus according to an embodiment of the present invention may be driven by a scroll shutter method.

參照圖17A、圖17B及圖17C對攝像裝置的工作方式進行說明。在圖17A、圖17B及圖17C中,“E”表示可以進行曝光工作的期間,“R”表示可以進行讀出工作的期間。另外,n表示任意的第n(n為2以上的自然數)次的圖框的第n圖框。另外,(n-1)表示第n圖框的上一個圖框,(n+1)表示第n圖框的下一個圖框。另外,Line[1]表示像素陣列11的第一行,Line[M]表示像素陣列11的第M行(在圖17A至圖17C中,M表示4以上的自然數)。 The operation of the imaging device will be described with reference to FIGS. 17A, 17B, and 17C. In FIGS. 17A, 17B, and 17C, "E" indicates a period during which an exposure operation can be performed, and "R" indicates a period during which a reading operation can be performed. Further, n denotes an nth frame of an arbitrary nth (n is a natural number of 2 or more). In addition, (n-1) represents the previous frame of the nth frame, and (n+1) represents the next frame of the nth frame. In addition, Line[1] represents the first line of the pixel array 11, and Line[M] represents the Mth line of the pixel array 11 (in FIGS. 17A to 17C, M represents a natural number of 4 or more).

圖17A示意性地表示捲動快門方式的工作方法。捲動快門方式是按行依次進行曝光及資料的讀出的工作方法。在所有像素中沒有撮像的同時性,因此在拍攝運動物體時,影像中會產生畸變。 Fig. 17A schematically shows a method of operating the scroll shutter mode. The scroll shutter method is a working method in which exposure and data reading are sequentially performed in a row. There is no simultaneity in the image in all the pixels, so distortion occurs in the image when shooting a moving object.

圖17B示意性地表示一般的全域快門方式的工作方法。全域快門方式是在所有像素中同時進行曝光,然後按行讀出資料的工作方法。由此,即使拍攝運動物體也可以獲得沒有畸變的影像。 Fig. 17B schematically shows the operation of the general global shutter mode. The global shutter mode is a method of simultaneously performing exposure in all pixels and then reading data in rows. Thereby, an image without distortion can be obtained even if a moving object is photographed.

圖17C示意性地表示適用於本發明的一個實施方式的攝像裝置的工作方法。在該工作方法中,在第n圖框中同時進行所有像素的曝光,在第(n+1)圖框中進行第n圖框中獲取的資料的讀出。因此,在一個圖框期間中不進行同一圖框的曝光及讀出,與習知的全域快門方式不同,即使讀出期間增大也對曝光時間沒有限制。由此,可以延長曝光時間。 Fig. 17C schematically shows an operation method of an image pickup apparatus which is applied to one embodiment of the present invention. In this working method, all pixels are simultaneously exposed in the nth frame, and the data acquired in the nth frame is read in the (n+1)th frame. Therefore, exposure and reading of the same frame are not performed in one frame period, and unlike the conventional global shutter mode, there is no limitation on the exposure time even if the reading period is increased. Thereby, the exposure time can be extended.

因為OS電晶體的電特性變動的溫度依賴性比將矽用於活性區域或活性層的電晶體小,所以可以在極寬的溫度範圍中使用OS電晶體。因此,包括OS電晶體的攝像裝置及半導體裝置適合安裝於汽車、飛機、太空船等。 Since the temperature dependence of the variation of the electrical characteristics of the OS transistor is smaller than that of the transistor used for the active region or the active layer, the OS transistor can be used in an extremely wide temperature range. Therefore, an image pickup apparatus and a semiconductor apparatus including an OS transistor are suitable for mounting in automobiles, airplanes, spaceships, and the like.

此外,OS電晶體的汲極耐壓比Si電晶體高。在將硒類材料用於光電轉換層的光電轉換元件中,較佳為施加較高的電壓(例如,10V以上)而工作,以利用雪崩倍增(avalanche multiplication)。由此,藉由組合OS電晶體和將硒類材料用於光電轉換層的光電轉換元件,可以實現高可靠性的攝像裝置。 In addition, the threshold voltage of the OS transistor is higher than that of the Si transistor. In a photoelectric conversion element in which a selenium-based material is used for a photoelectric conversion layer, it is preferable to apply a high voltage (for example, 10 V or more) to operate to utilize avalanche multiplication. Thus, by combining an OS transistor and a photoelectric conversion element using a selenium material for the photoelectric conversion layer, a highly reliable image pickup device can be realized.

雖然圖16A示出各電晶體包括背閘極的方式的例子,但是如圖16B所示,也可以不包括背閘極。另外,如圖16C所示,電晶體的一部分,例如只有電晶體41也可以包括背閘極。該背閘極有時與對置設置的前閘極電連接。或者,有時對該背閘極供應與前閘極不同的恆電位。注意,還可以將該背閘極的有無適用於本實施方式所說明的其他像素結構。 Although FIG. 16A shows an example of the manner in which each transistor includes a back gate, as shown in FIG. 16B, the back gate may not be included. In addition, as shown in FIG. 16C, a portion of the transistor, such as only the transistor 41, may also include a back gate. The back gate is sometimes electrically connected to the oppositely disposed front gate. Alternatively, the back gate is sometimes supplied with a constant potential different from that of the front gate. Note that the presence or absence of the back gate can also be applied to other pixel structures described in the present embodiment.

作為設置在層1200中的光電轉換元件PD可以採用各種方式的元件。圖16A示出將硒類材料用於光電轉換層561的方式。使用硒類材料的光電轉換元件PD對可見光具有高外部量子效率。另外,由於硒類材料的光吸收係數高,所以有易於將光電轉換層561形成得較薄的優點。使用硒類材料形成的光電轉換元件PD可以為利用雪崩倍增(avalanche multiplication)而具有大增幅度的高靈敏度感測器。就是說,藉由將硒類材料用於光電轉換層561,即使像素面積小也可以獲得充分的光電流。因此,可以認為使用硒類材料的光電轉換元件PD適用於低照度環境下的攝像。 As the photoelectric conversion element PD provided in the layer 1200, various types of elements can be employed. FIG. 16A shows a manner in which a selenium-based material is used for the photoelectric conversion layer 561. The photoelectric conversion element PD using a selenium-based material has high external quantum efficiency for visible light. Further, since the selenium-based material has a high light absorption coefficient, there is an advantage that the photoelectric conversion layer 561 is easily formed thin. The photoelectric conversion element PD formed using a selenium-based material may be a high-sensitivity sensor having a large increase in amplitude using avalanche multiplication. That is, by using a selenium-based material for the photoelectric conversion layer 561, a sufficient photocurrent can be obtained even if the pixel area is small. Therefore, it can be considered that the photoelectric conversion element PD using a selenium-based material is suitable for imaging in a low illumination environment.

作為硒類材料,可以使用非晶硒或結晶硒。例如,結晶硒可以藉由形成非晶硒之後進行加熱處理而形成。另外,藉由使結晶硒的結晶粒徑小於像素間距,可以減少各像素間的特性偏差。另外,與非晶硒相比,結晶硒具有對於可見光的光譜靈敏度及光吸收係數高的特性。 As the selenium-based material, amorphous selenium or crystalline selenium can be used. For example, crystalline selenium can be formed by heat treatment after forming amorphous selenium. Further, by making the crystal grain size of the crystalline selenium smaller than the pixel pitch, the characteristic variation between the pixels can be reduced. Further, crystalline selenium has a characteristic of high spectral sensitivity and high light absorption coefficient with respect to visible light as compared with amorphous selenium.

在圖16A中,示出單層的光電轉換層561,但是如圖18A所示,可以在受光面一側設置氧化鎵、氧化鈰或In-Ga-Zn氧化物等作為電洞注入障壁層568。或者,如圖18B所示,也可以在電極566一側設置氧化鎳或硫化銻等作為電子注入障壁層569。或者,如圖18C所示,也可以設置電洞注入障壁層568及電子注入障壁層569。此外,如圖1及圖9所示,在像素10中,也可以採用光電轉換元件PD的連接方向不同的結構。由此,可以調換圖18A 至圖18C所示的電洞注入障壁層568及電子注入障壁層569。 In Fig. 16A, a single-layer photoelectric conversion layer 561 is shown, but as shown in Fig. 18A, gallium oxide, yttrium oxide or In-Ga-Zn oxide or the like may be provided as a hole injection barrier layer 568 on the light-receiving surface side. . Alternatively, as shown in FIG. 18B, nickel oxide, ruthenium sulfide or the like may be provided on the electrode 566 side as the electron injection barrier layer 569. Alternatively, as shown in FIG. 18C, a hole injection barrier layer 568 and an electron injection barrier layer 569 may be provided. Further, as shown in FIGS. 1 and 9, in the pixel 10, a configuration in which the photoelectric conversion elements PD are connected in different directions may be employed. Thus, Figure 18A can be exchanged. The hole injection barrier layer 568 and the electron injection barrier layer 569 are shown in FIG. 18C.

光電轉換層561可以為含有銅、銦、硒的化合物(CIS)的層,也可以為含有銅、銦、鎵、硒的化合物(CIGS)的層。藉由利用CIS及CIGS,可以形成如硒的單層時同樣地利用雪崩倍增的光電轉換元件。 The photoelectric conversion layer 561 may be a layer containing a compound of copper, indium, or selenium (CIS), or a layer containing a compound of copper, indium, gallium, or selenium (CIGS). By using CIS and CIGS, it is possible to form a photoelectric conversion element in which avalanche multiplication is similarly used when a single layer of selenium is formed.

作為使用硒類材料的光電轉換元件PD,例如可以採用在由金屬材料等形成的電極566與透光導電層562之間具有光電轉換層561的結構。此外,CIS及CIGS是p型半導體,而也可以與其接觸地設置n型半導體的硫化鎘或硫化鋅等以形成鍵合。 As the photoelectric conversion element PD using a selenium-based material, for example, a structure having a photoelectric conversion layer 561 between the electrode 566 formed of a metal material or the like and the light-transmitting conductive layer 562 can be employed. Further, CIS and CIGS are p-type semiconductors, and cadmium sulfide or zinc sulfide of an n-type semiconductor may be provided in contact therewith to form a bond.

在圖16A中,透光導電層562與佈線71直接接觸,但是如圖19A所示,透光導電層562也可以藉由佈線88與佈線71接觸。在圖16A中雖然採用不使光電轉換層561與透光導電層562在像素電路間分離的結構,但是如圖19B所示也可以採用在電路間分離的結構。此外,在像素之間,較佳為在不具有電極566的區域中使用絕緣體形成分隔壁567,以不使光電轉換層561及透光導電層562產生裂縫,但是如圖19C、圖19D所示也可以採用不設置分隔壁567的結構。 In FIG. 16A, the light-transmitting conductive layer 562 is in direct contact with the wiring 71, but as shown in FIG. 19A, the light-transmitting conductive layer 562 may be in contact with the wiring 71 by the wiring 88. Although a structure in which the photoelectric conversion layer 561 and the light-transmitting conductive layer 562 are not separated between the pixel circuits is employed in FIG. 16A, a structure separated between circuits may be employed as shown in FIG. 19B. Further, between the pixels, it is preferable to form the partition wall 567 using an insulator in a region having no electrode 566 so as not to cause cracks in the photoelectric conversion layer 561 and the light-transmitting conductive layer 562, but as shown in FIGS. 19C and 19D. It is also possible to adopt a structure in which the partition wall 567 is not provided.

此外,電極566及佈線71等也可以採用多層結構。例如,如圖20A所示,電極566也可以採用導電層566a和導電層566b的兩層結構,而佈線71也可以採用導電層71a和導電層71b的兩層結構。在圖20A的結構中,例如,較佳為選擇低電阻的金屬等來形成導電層566a及導電層71a,而選擇與光電轉換層561的接觸特性好的金屬等來形成導電層566b及導電層71b。藉由採用這種結構,可以提高光電轉換元件PD的電特性。此外,一些種類的金屬因與透光導電層562接觸而會產生電蝕。即使將這種金屬用於導電層71a,也藉由導電層71b可以防止電蝕。 Further, the electrode 566, the wiring 71, and the like may have a multilayer structure. For example, as shown in FIG. 20A, the electrode 566 may also adopt a two-layer structure of the conductive layer 566a and the conductive layer 566b, and the wiring 71 may also adopt a two-layer structure of the conductive layer 71a and the conductive layer 71b. In the structure of FIG. 20A, for example, a low-resistance metal or the like is selected to form the conductive layer 566a and the conductive layer 71a, and a metal having good contact characteristics with the photoelectric conversion layer 561 is selected to form the conductive layer 566b and the conductive layer. 71b. By adopting such a structure, the electrical characteristics of the photoelectric conversion element PD can be improved. In addition, some kinds of metals may cause electrical corrosion due to contact with the light-transmitting conductive layer 562. Even if such a metal is used for the conductive layer 71a, electrolytic corrosion can be prevented by the conductive layer 71b.

作為導電層566b及導電層71b,例如可以使用鉬或鎢等。此外,作為導電層566a及導電層71a,例如可以使用鋁、鈦或依次層疊鈦、鋁和鈦的疊層。 As the conductive layer 566b and the conductive layer 71b, for example, molybdenum or tungsten can be used. Further, as the conductive layer 566a and the conductive layer 71a, for example, aluminum, titanium, or a laminate in which titanium, aluminum, and titanium are laminated in this order may be used.

另外,如圖20B所示,透光導電層562可以藉由導電體81及佈線88 與佈線71連接。此外,絕緣層82等也可以採用多層結構。例如,如圖20B所示,在絕緣層82包括絕緣層82a和絕緣層82b,且絕緣層82a和絕緣層82b的蝕刻速率等不同的情況下,導電體81具有步階。在用作層間絕緣膜或平坦化膜的其他絕緣層採用多層結構的情況下,導電體81同樣地具有步階。在此示出絕緣層82具有兩層結構的例子,但是絕緣層82及其他絕緣層也可以具有三層以上的疊層結構。 In addition, as shown in FIG. 20B, the light-transmitting conductive layer 562 can be electrically connected to the conductor 81 and the wiring 88. It is connected to the wiring 71. Further, the insulating layer 82 or the like may also have a multilayer structure. For example, as shown in FIG. 20B, in the case where the insulating layer 82 includes the insulating layer 82a and the insulating layer 82b, and the etching rate and the like of the insulating layer 82a and the insulating layer 82b are different, the electric conductor 81 has a step. In the case where a multilayer structure is employed as the other insulating layer used as the interlayer insulating film or the planarizing film, the conductor 81 similarly has steps. Here, an example in which the insulating layer 82 has a two-layer structure is shown, but the insulating layer 82 and other insulating layers may have a laminated structure of three or more layers.

分隔壁567可以使用無機絕緣體或絕緣有機樹脂等形成。另外,分隔壁567也可以著色成黑色等以遮蔽照射到電晶體等的光及/或確定每一個像素的受光部的面積。 The partition wall 567 can be formed using an inorganic insulator or an insulating organic resin or the like. Further, the partition wall 567 may be colored in black or the like to shield light irradiated to the transistor or the like and/or to determine the area of the light receiving portion of each pixel.

另外,光電轉換元件PD也可以採用使用非晶矽膜或微晶矽膜等的pin型二極體元件等。 Further, as the photoelectric conversion element PD, a pin type diode element or the like using an amorphous germanium film or a microcrystalline germanium film or the like may be used.

例如,圖21是作為光電轉換元件PD使用pin型薄膜光電二極體的例子。該光電二極體包括依次層疊的n型半導體層565、i型半導體層564及p型半導體層563。i型半導體層564較佳為使用非晶矽。p型半導體層563及n型半導體層565可以使用包含賦予各導電型的摻雜物的非晶矽或者微晶矽等。以非晶矽為光電轉換層的光電二極體在可見光波長區域內的靈敏度較高,而易於檢測微弱的可見光。 For example, FIG. 21 is an example in which a pin type thin film photodiode is used as the photoelectric conversion element PD. The photodiode includes an n-type semiconductor layer 565, an i-type semiconductor layer 564, and a p-type semiconductor layer 563 which are sequentially stacked. The i-type semiconductor layer 564 is preferably an amorphous germanium. As the p-type semiconductor layer 563 and the n-type semiconductor layer 565, an amorphous germanium or a microcrystalline germanium or the like containing a dopant imparted to each conductivity type can be used. The photodiode having the amorphous germanium as the photoelectric conversion layer has high sensitivity in the visible light wavelength region, and is easy to detect weak visible light.

在圖21所示的光電轉換元件PD中,用作陰極的n型半導體層565與電極566接觸,該電極566與電晶體41電連接。此外,用作陽極的p型半導體層563藉由佈線88與佈線71電連接。 In the photoelectric conversion element PD shown in FIG. 21, an n-type semiconductor layer 565 serving as a cathode is in contact with an electrode 566 which is electrically connected to the transistor 41. Further, the p-type semiconductor layer 563 serving as an anode is electrically connected to the wiring 71 by a wiring 88.

另外,當光電轉換元件PD的陽極與陰極以及電極層與佈線的連接方式相反時,可以採用圖9所示的電路圖的結構。 Further, when the anode and cathode of the photoelectric conversion element PD and the electrode layer are connected to the wiring in the opposite manner, the structure of the circuit diagram shown in Fig. 9 can be employed.

無論在哪種情況下,都較佳為以p型半導體層563為受光面的方式形成光電轉換元件PD。藉由以p型半導體層563為受光面,可以提高光電轉換元件PD的輸出電流。 In either case, it is preferable to form the photoelectric conversion element PD such that the p-type semiconductor layer 563 is a light-receiving surface. By using the p-type semiconductor layer 563 as the light receiving surface, the output current of the photoelectric conversion element PD can be increased.

此外,具有pin型薄膜光電二極體的方式的光電轉換元件PD的結構以 及光電轉換元件PD與佈線的連接方式可以採用圖22A至圖22C所示的例子。另外,光電轉換元件PD的結構以及光電轉換元件PD與佈線的連接方式不侷限於此,也可以採用其他方式。 Further, the structure of the photoelectric conversion element PD having a pin type thin film photodiode is The connection between the photoelectric conversion element PD and the wiring can be as shown in Figs. 22A to 22C. Further, the configuration of the photoelectric conversion element PD and the connection manner of the photoelectric conversion element PD and the wiring are not limited thereto, and other methods may be employed.

圖22A示出設置有與光電轉換元件PD的p型半導體層563接觸的透光導電層562的結構。透光導電層562被用作電極,而可以提高光電轉換元件PD的輸出電流。 FIG. 22A shows a structure in which the light-transmitting conductive layer 562 which is in contact with the p-type semiconductor layer 563 of the photoelectric conversion element PD is provided. The light-transmitting conductive layer 562 is used as an electrode, and the output current of the photoelectric conversion element PD can be increased.

透光導電層562例如可以使用銦錫氧化物、包含矽的銦錫氧化物、包含鋅的氧化銦、氧化鋅、包含鎵的氧化鋅、包含鋁的氧化鋅、氧化錫、包含氟的氧化錫、包含銻的氧化錫、石墨烯或氧化石墨烯等。此外,透光導電層562不侷限於單層,而也可以為不同膜的疊層。 As the light-transmitting conductive layer 562, for example, indium tin oxide, indium tin oxide containing germanium, indium oxide containing zinc, zinc oxide, zinc oxide containing gallium, zinc oxide containing aluminum, tin oxide, tin oxide containing fluorine, or the like may be used. Containing antimony tin oxide, graphene or graphene oxide. Further, the light-transmitting conductive layer 562 is not limited to a single layer, but may be a laminate of different films.

圖22B是透光導電層562藉由導電體81及佈線88與佈線71連接的結構。另外,也可以採用光電轉換元件PD的p型半導體層563藉由導電體81及佈線88與佈線71連接的結構。在圖22B中,可以不設置透光導電層562。 22B shows a structure in which the light-transmitting conductive layer 562 is connected to the wiring 71 via the conductor 81 and the wiring 88. Further, a structure in which the p-type semiconductor layer 563 of the photoelectric conversion element PD is connected to the wiring 71 by the conductor 81 and the wiring 88 may be employed. In FIG. 22B, the light-transmitting conductive layer 562 may not be provided.

圖22C示出在覆蓋光電轉換元件PD的絕緣層中設置有使p型半導體層563露出的開口部並且覆蓋該開口部的透光導電層562與佈線71電連接的結構。 22C shows a structure in which an opening portion that exposes the p-type semiconductor layer 563 is provided in an insulating layer covering the photoelectric conversion element PD, and the light-transmitting conductive layer 562 covering the opening portion is electrically connected to the wiring 71.

此外,如圖23所示,光電轉換元件PD也可以採用將矽基板600用作光電轉換層的光電二極體。 Further, as shown in FIG. 23, the photoelectric conversion element PD may also employ a photodiode in which the ruthenium substrate 600 is used as a photoelectric conversion layer.

使用上述硒類材料或非晶矽等形成的光電轉換元件PD可以經過成膜製程、光微影製程、蝕刻製程等一般的半導體製程製造。另外,由於硒類材料具有高電阻,所以也可以採用如圖16A所示那樣光電轉換層561不在電路間分離的結構。因此,本發明的一個實施方式的攝像裝置可以以高良率及低成本製造。另一方面,在形成將矽基板600用作光電轉換層的光電二極體時,需要進行拋光製程或貼合製程等難度較高的製程。 The photoelectric conversion element PD formed using the above selenium-based material or amorphous germanium or the like can be manufactured through a general semiconductor process such as a film formation process, a photolithography process, or an etching process. Further, since the selenium-based material has high resistance, a structure in which the photoelectric conversion layer 561 is not separated from each other as shown in FIG. 16A can also be employed. Therefore, the image pickup apparatus according to one embodiment of the present invention can be manufactured with high yield and low cost. On the other hand, when forming a photodiode using the tantalum substrate 600 as a photoelectric conversion layer, it is necessary to perform a highly difficult process such as a polishing process or a bonding process.

此外,在本發明的一個實施方式的攝像裝置中也可以層疊有矽基板600,在該矽基板600中形成有電路。例如,如圖24A所示,層1400可以 與像素電路重疊,該層1400包括在矽基板600中具有活性區域的電晶體610及電晶體620。圖24B相當於電晶體的通道寬度方向的剖面圖。 Further, in the image pickup apparatus according to the embodiment of the present invention, the ruthenium substrate 600 may be laminated, and a circuit is formed in the ruthenium substrate 600. For example, as shown in FIG. 24A, layer 1400 can Overlap of the pixel circuit, the layer 1400 includes a transistor 610 having an active region in the germanium substrate 600 and a transistor 620. Fig. 24B corresponds to a cross-sectional view in the channel width direction of the transistor.

在此,在圖24A及圖24B中,示出Si電晶體具有鰭型的結構例子,但是如圖25A所示,也可以採用平面型結構。另外,如圖25B所示,也可以為具有矽薄膜的活性層650的電晶體。活性層650可以使用多晶矽或SOI(Silicon on Insulator:絕緣層上覆矽)結構的單晶矽。 Here, in FIGS. 24A and 24B, a configuration example in which the Si transistor has a fin shape is shown, but as shown in FIG. 25A, a planar structure may be employed. Further, as shown in FIG. 25B, a transistor having an active layer 650 of a tantalum film may also be used. As the active layer 650, a polycrystalline germanium or a single crystal germanium of a SOI (Silicon on Insulator) structure can be used.

形成在矽基板600上的電路可以具有讀出像素電路所輸出的信號的功能或進行轉換該信號的處理等的功能,例如,可以包括如圖25C的電路圖所示的CMOS反相器。電晶體610(n通道型)及電晶體620(p通道型)的閘極電極彼此電連接。電晶體610和電晶體620中的一個電晶體的源極和汲極中的一個電連接到另一個電晶體的源極和汲極中的一個。另外,電晶體610和電晶體620的源極和汲極中的另一個分別與不同的佈線電連接。 The circuit formed on the germanium substrate 600 may have a function of reading out a signal output from the pixel circuit or a process of converting the signal, and the like, and may include, for example, a CMOS inverter as shown in the circuit diagram of FIG. 25C. The gate electrodes of the transistor 610 (n channel type) and the transistor 620 (p channel type) are electrically connected to each other. One of the source and the drain of one of the transistor 610 and the transistor 620 is electrically connected to one of the source and the drain of the other transistor. In addition, the other of the source and the drain of the transistor 610 and the transistor 620 are electrically connected to different wirings, respectively.

形成在矽基板600上的電路例如相當於圖2A及圖15B所示的電路12、電路13、電路14、電路15及電路16等。 The circuit formed on the germanium substrate 600 corresponds to, for example, the circuit 12, the circuit 13, the circuit 14, the circuit 15, the circuit 16, and the like shown in FIGS. 2A and 15B.

此外,矽基板600不侷限於塊狀矽基板,也可以使用以鍺、矽鍺、碳化矽、砷化鎵、砷化鋁鎵、磷化銦、氮化鎵、有機半導體為材料的基板。 Further, the tantalum substrate 600 is not limited to a bulk tantalum substrate, and a substrate made of tantalum, niobium, tantalum carbide, gallium arsenide, aluminum gallium arsenide, indium phosphide, gallium nitride, or an organic semiconductor may be used.

在此,如圖23及圖24A和圖24B所示,在形成有包括氧化物半導體的電晶體的區域和形成有Si裝置(Si電晶體或Si光電二極體)的區域之間設置有絕緣層80。 Here, as shown in FIG. 23 and FIG. 24A and FIG. 24B, insulation is provided between a region where a transistor including an oxide semiconductor is formed and a region where a Si device (Si transistor or Si photodiode) is formed. Layer 80.

設置在電晶體610及電晶體620的活性區域附近的絕緣層中的氫使矽的懸空鍵終結。因此,該氫提高電晶體610及電晶體620的可靠性。另一方面,設置在電晶體41等的活性層的氧化物半導體層附近的絕緣層中的氫有可能成為在氧化物半導體層中生成載子的原因之一。因此,該氫有時引起電晶體41等的可靠性的下降。因此,當層疊包含使用矽類半導體材料的電晶體的一個層與包含使用氧化物半導體的電晶體的另一個層時,較佳為在它們之間設置具有防止氫擴散的功能的絕緣層80。藉由設置絕緣層80將氫封閉在一個層中,可以提高電晶體610及電晶體620的可靠性。同時, 由於能夠抑制氫從一個層擴散到另一個層,所以可以提高電晶體41等的可靠性。 The hydrogen disposed in the insulating layer near the active regions of the transistor 610 and the transistor 620 terminates the dangling bonds of the crucible. Therefore, the hydrogen increases the reliability of the transistor 610 and the transistor 620. On the other hand, hydrogen contained in the insulating layer in the vicinity of the oxide semiconductor layer of the active layer of the transistor 41 or the like may be one of the causes of generating a carrier in the oxide semiconductor layer. Therefore, the hydrogen sometimes causes a decrease in the reliability of the transistor 41 or the like. Therefore, when laminating one layer including a transistor using a bismuth-based semiconductor material and another layer including a transistor using an oxide semiconductor, it is preferable to provide an insulating layer 80 having a function of preventing hydrogen diffusion therebetween. By encapsulating hydrogen in one layer by providing the insulating layer 80, the reliability of the transistor 610 and the transistor 620 can be improved. Simultaneously, Since the diffusion of hydrogen from one layer to the other can be suppressed, the reliability of the transistor 41 and the like can be improved.

絕緣層80例如可以使用氧化鋁、氧氮化鋁、氧化鎵、氧氮化鎵、氧化釔、氧氮化釔、氧化鉿、氧氮化鉿、釔安定氧化鋯(YSZ)等。 As the insulating layer 80, for example, alumina, aluminum oxynitride, gallium oxide, gallium oxynitride, cerium oxide, cerium oxynitride, cerium oxide, cerium oxynitride, yttrium yttria (YSZ), or the like can be used.

在如圖24A和圖24B所示的結構中,可以將形成在矽基板600上的電路(例如,驅動電路)、電晶體41等與光電轉換元件PD重疊地形成,由此可以提高像素的集成度。換言之,可以提高攝像裝置的解析度。例如,可以將上述結構適用於像素數為4K2K、8K4K或者16K8K等的攝像裝置。另外,可以採用如下結構:以與電晶體41、電晶體42、電晶體43、電晶體44及光電轉換元件PD等重疊的方式使用Si電晶體形成像素10所包括的電晶體45及電晶體46。 In the structure shown in FIGS. 24A and 24B, a circuit (for example, a driving circuit), a transistor 41, and the like formed on the germanium substrate 600 may be formed to overlap with the photoelectric conversion element PD, thereby improving pixel integration. degree. In other words, the resolution of the imaging device can be improved. For example, the above configuration can be applied to an image pickup apparatus having a pixel number of 4K2K, 8K4K, or 16K8K. In addition, a structure in which the transistor 45 and the transistor 46 included in the pixel 10 are formed using the Si transistor in a manner overlapping the transistor 41, the transistor 42, the transistor 43, the transistor 44, and the photoelectric conversion element PD or the like may be employed. .

此外,本發明的一個實施方式的攝像裝置可以採用圖26所示的結構。圖26所示的攝像裝置是圖24A所示的攝像裝置的變形例,且示出由OS電晶體及Si電晶體形成CMOS反相器的例子。 Further, the image pickup apparatus according to an embodiment of the present invention can adopt the configuration shown in FIG. The imaging device shown in FIG. 26 is a modification of the imaging device shown in FIG. 24A, and shows an example in which a CMOS inverter is formed by an OS transistor and a Si transistor.

在此,設置在層1400中的Si電晶體的電晶體620為p通道型電晶體,設置在層1100中的OS電晶體的電晶體610為n通道型電晶體。藉由只將p通道型電晶體設置於矽基板600上,可以省略井的形成和n型雜質層的形成等製程。 Here, the transistor 620 of the Si transistor disposed in the layer 1400 is a p-channel type transistor, and the transistor 610 of the OS transistor disposed in the layer 1100 is an n-channel type transistor. By providing only the p-channel type transistor on the ruthenium substrate 600, processes such as formation of a well and formation of an n-type impurity layer can be omitted.

雖然圖26的攝像裝置示出將硒等用於光電轉換元件PD的例子,但是也可以採用與圖21同樣的使用pin型薄膜光電二極體的結構。 Although the imaging apparatus of FIG. 26 shows an example in which selenium or the like is used for the photoelectric conversion element PD, a configuration using a pin-type thin film photodiode similar to that of FIG. 21 may be employed.

在圖26所示的攝像裝置中,電晶體610可以藉由與形成在層1100中的電晶體41及電晶體43相同的製程製造。因此,可以簡化攝像裝置的製程。 In the image pickup apparatus shown in FIG. 26, the transistor 610 can be fabricated by the same process as the transistor 41 and the transistor 43 formed in the layer 1100. Therefore, the process of the image pickup apparatus can be simplified.

如圖27所示,本發明的一個實施方式的攝像裝置可以採用如下結構:貼合有由形成在矽基板660中的光電轉換元件PD及在其上形成的OS電晶 體構成的像素和形成有電路的矽基板600的結構。藉由採用上述結構,可以容易增大形成在矽基板660中的光電轉換元件PD的實效面積。另外,藉由使用微型化的Si電晶體使形成在矽基板600上的電路高集成化,可以提供一種具有高性能的半導體裝置。 As shown in FIG. 27, an image pickup apparatus according to an embodiment of the present invention may have a structure in which a photoelectric conversion element PD formed in a germanium substrate 660 and an OS transistor formed thereon are bonded. The structure of the body-constituted pixel and the germanium substrate 600 on which the circuit is formed. By adopting the above configuration, the effective area of the photoelectric conversion element PD formed in the ruthenium substrate 660 can be easily increased. Further, by using a miniaturized Si transistor to highly integrate the circuit formed on the germanium substrate 600, it is possible to provide a semiconductor device having high performance.

另外,作為圖27的變形例,如圖28所示,可以使用OS電晶體及Si電晶體形成電路。藉由採用上述結構,可以容易增大形成在矽基板660中的光電轉換元件PD的實效面積。另外,藉由使用微型化的Si電晶體使形成在矽基板600上的電路高集成化,可以提供一種具有高性能的半導體裝置。 Further, as a modification of FIG. 27, as shown in FIG. 28, an OS transistor and a Si transistor can be used to form a circuit. By adopting the above configuration, the effective area of the photoelectric conversion element PD formed in the ruthenium substrate 660 can be easily increased. Further, by using a miniaturized Si transistor to highly integrate the circuit formed on the germanium substrate 600, it is possible to provide a semiconductor device having high performance.

當採用圖28的結構時,可以由形成在矽基板600的Si電晶體及在其上形成的OS電晶體構成CMOS電路。OS電晶體的關態電流極低,可以構成靜態的洩漏電流極少的CMOS電路。 When the structure of FIG. 28 is employed, a CMOS circuit can be constituted by an Si transistor formed on the germanium substrate 600 and an OS transistor formed thereon. The off-state current of the OS transistor is extremely low, and it can constitute a CMOS circuit with a very small static leakage current.

注意,本實施方式中的攝像裝置所包括的電晶體及光電轉換元件的結構是一個例子。因此,例如電晶體41至電晶體46中的一個以上也可以由活性區域或活性層包含矽等的電晶體構成。此外,電晶體610和電晶體620中的兩個或一個也可以由活性層包括氧化物半導體層的電晶體構成。 Note that the configuration of the transistor and the photoelectric conversion element included in the image pickup apparatus in the present embodiment is an example. Therefore, for example, one or more of the transistor 41 to the transistor 46 may be composed of a transistor in which the active region or the active layer contains ruthenium or the like. Further, two or one of the transistor 610 and the transistor 620 may also be composed of a transistor in which the active layer includes an oxide semiconductor layer.

圖29A為對攝像裝置追加濾色片等的結構的一個例子的剖面圖。該剖面圖示出包括相當於三個像素的像素電路的區域的一部分。在形成有光電轉換元件PD的層1200上形成有絕緣層2500。絕緣層2500可以使用可見光透射性高的氧化矽膜等。另外,也可以作為鈍化膜層疊氮化矽膜。此外,也可以作為反射防止膜層疊氧化鉿等介電膜。 FIG. 29A is a cross-sectional view showing an example of a configuration in which a color filter or the like is added to an imaging device. This cross-sectional view shows a portion of a region including a pixel circuit equivalent to three pixels. An insulating layer 2500 is formed on the layer 1200 on which the photoelectric conversion element PD is formed. As the insulating layer 2500, a ruthenium oxide film or the like having high visible light transmittance can be used. Further, a tantalum nitride film may be laminated as a passivation film. Further, a dielectric film such as ruthenium oxide may be laminated as an anti-reflection film.

在絕緣層2500上也可以形成有遮光層2510。遮光層2510具有防止透過上部的濾色片的光的混合的功能。遮光層2510可以為鋁、鎢等的金屬層或者層疊該金屬層與被用作反射防止膜的介電膜的結構。 A light shielding layer 2510 may also be formed on the insulating layer 2500. The light shielding layer 2510 has a function of preventing mixing of light transmitted through the upper color filter. The light shielding layer 2510 may be a metal layer of aluminum, tungsten, or the like or a structure in which the metal layer and a dielectric film used as an antireflection film are laminated.

在絕緣層2500及遮光層2510上也可以設置被用作平坦化膜的有機樹脂層2520。另外,在每個像素中分別形成有濾色片2530(濾色片2530a、 濾色片2530b及濾色片2530c)。例如,濾色片2530a、濾色片2530b及濾色片2530c呈現R(紅色)、G(綠色)、B(藍色)、Y(黃色)、C(青色)和M(洋紅)等的顏色,由此可以獲得彩色影像。 An organic resin layer 2520 used as a planarization film may be provided on the insulating layer 2500 and the light shielding layer 2510. In addition, a color filter 2530 (color filter 2530a, The color filter 2530b and the color filter 2530c). For example, the color filter 2530a, the color filter 2530b, and the color filter 2530c exhibit colors such as R (red), G (green), B (blue), Y (yellow), C (cyan), and M (magenta). Thus, a color image can be obtained.

在濾色片2530上也可以設置具有透光性的絕緣層2560等。 An insulating layer 2560 or the like having a light transmissive property may be provided on the color filter 2530.

此外,如圖29B所示,也可以使用光學轉換層2550代替濾色片2530。藉由採用這種結構,可以形成能夠獲得各種各樣的波長區域內的影像的攝像裝置。 Further, as shown in FIG. 29B, the optical conversion layer 2550 may be used instead of the color filter 2530. By adopting such a configuration, it is possible to form an image pickup apparatus capable of obtaining images in various wavelength regions.

例如,藉由作為光學轉換層2550使用阻擋可見光線的波長以下的光的濾光片,可以形成紅外線攝像裝置。另外,藉由作為光學轉換層2550使用阻擋近紅外線的波長以下的光的濾光片,可以形成遠紅外線攝像裝置。另外,藉由作為光學轉換層2550使用阻擋可見光線的波長以上的光的濾光片,可以形成紫外線攝像裝置。 For example, an infrared imaging device can be formed by using a filter that blocks light of a wavelength below the visible light line as the optical conversion layer 2550. Further, by using a filter that blocks light of a wavelength lower than the near infrared ray as the optical conversion layer 2550, a far-infrared imaging device can be formed. Further, by using a filter that blocks light of a wavelength of visible light or more as the optical conversion layer 2550, an ultraviolet imaging device can be formed.

另外,藉由將閃爍體用於光學轉換層2550,可以形成用於X射線攝像裝置等的獲得使放射線強度視覺化的影像的攝像裝置。當透過拍攝物件的X射線等放射線入射到閃爍體時,由於被稱為光致發光的現象而轉換為可見光線或紫外光線等的光(螢光)。藉由由光電轉換元件PD檢測該光來獲得影像資料。此外,也可以將該結構的攝像裝置用於輻射探測器等。 Further, by using the scintillator for the optical conversion layer 2550, it is possible to form an imaging device for obtaining an image for visualizing the radiation intensity for an X-ray imaging device or the like. When radiation such as X-rays incident on a subject is incident on the scintillator, it is converted into light (fluorescence) such as visible light or ultraviolet light due to a phenomenon called photoluminescence. Image data is obtained by detecting the light by the photoelectric conversion element PD. Further, an imaging device of this configuration can also be used for a radiation detector or the like.

閃爍體含有如下物質:當閃爍體被照射X射線或伽瑪射線等放射線時吸收放射線的能量而發射可見光或紫外線的物質。例如,可以使用將Gd2O2S:Tb、Gd2O2S:Pr、Gd2O2S:Eu、BaFCl:Eu、NaI、CsI、CaF2、BaF2、CeF3、LiF、LiI、ZnO分散在樹脂或陶瓷中的材料。 The scintillator contains a substance that absorbs the energy of the radiation and emits visible light or ultraviolet rays when the scintillator is irradiated with radiation such as X-rays or gamma rays. For example, Gd 2 O 2 S:Tb, Gd 2 O 2 S:Pr, Gd 2 O 2 S:Eu, BaFCl:Eu, NaI, CsI, CaF 2 , BaF 2 , CeF 3 , LiF, LiI, A material in which ZnO is dispersed in a resin or ceramic.

在使用硒類材料的光電轉換元件PD中,由於可以將X射線等的放射線直接轉換為電荷,因此可以不使用閃爍體。 In the photoelectric conversion element PD using a selenium-based material, since the radiation such as X-rays can be directly converted into electric charges, the scintillator can be omitted.

另外,如圖29C所示,也可以在濾色片2530a、濾色片2530b及濾色片2530c上設置有微透鏡陣列2540。透過微透鏡陣列2540所具有的各透鏡的光經由設置在其下的濾色片而照射到光電轉換元件PD。此外,如圖29D所 示,也可以在光學轉換層2550上設置有微透鏡陣列2540。另外,圖29A、圖29B、圖29C、圖29D所示的層1200之外的區域為層1600。 Further, as shown in FIG. 29C, a microlens array 2540 may be provided on the color filter 2530a, the color filter 2530b, and the color filter 2530c. The light passing through the respective lenses of the microlens array 2540 is irradiated to the photoelectric conversion element PD via the color filter provided thereunder. In addition, as shown in Figure 29D It is also possible to provide a microlens array 2540 on the optical conversion layer 2550. Further, a region other than the layer 1200 shown in FIGS. 29A, 29B, 29C, and 29D is a layer 1600.

圖30是示出本發明的一個實施方式的像素10及圖29C所示的微透鏡陣列2540等的具體疊層結構例子的圖。圖30是使用圖24A所示的像素結構的例子。圖31是使用圖28所示的像素結構的例子。 FIG. 30 is a view showing a specific laminated structure example of the pixel 10 and the microlens array 2540 shown in FIG. 29C according to the embodiment of the present invention. Fig. 30 is an example of using the pixel structure shown in Fig. 24A. FIG. 31 is an example of using the pixel structure shown in FIG.

如上所述,可以採用使光電轉換元件PD、像素10所包括的電路及驅動電路都具有它們重疊的區域的結構,因此可以實現攝像裝置的小型化。 As described above, it is possible to adopt a configuration in which the photoelectric conversion element PD, the circuit included in the pixel 10, and the drive circuit have a region in which they overlap, and thus it is possible to achieve miniaturization of the image pickup apparatus.

此外,如圖30和圖31所示,可以採用在微透鏡陣列2540上設置有繞射光柵1500的結構。可以將介於繞射光柵1500的拍攝物件的影像(繞射影像)提取到像素中,然後根據像素中的攝像影像藉由運算處理構成輸入影像(拍攝物件的影像)。此外,藉由使用繞射光柵1500代替透鏡,可以降低攝像裝置的成本。 Further, as shown in FIGS. 30 and 31, a structure in which the diffraction grating 1500 is provided on the microlens array 2540 can be employed. The image (diffractive image) of the subject matter of the diffraction grating 1500 can be extracted into the pixel, and then the input image (the image of the object) can be formed by the arithmetic processing according to the imaged image in the pixel. Further, by using the diffraction grating 1500 instead of the lens, the cost of the image pickup device can be reduced.

繞射光柵1500可以由具有透光性的材料形成。例如,可以使用無機絕緣膜諸如氧化矽膜、氧氮化矽膜等。或者,還可以使用有機絕緣膜諸如丙烯酸樹脂、聚醯亞胺樹脂等。此外,也可以使用上述無機絕緣膜和有機絕緣膜的疊層。 The diffraction grating 1500 may be formed of a material having light transmissivity. For example, an inorganic insulating film such as a hafnium oxide film, a hafnium oxynitride film, or the like can be used. Alternatively, an organic insulating film such as an acrylic resin, a polyimide resin, or the like can also be used. Further, a laminate of the above inorganic insulating film and an organic insulating film may also be used.

可以藉由使用感光樹脂等的光微影製程形成繞射光柵1500。另外,也可以藉由光微影製程和蝕刻製程形成繞射光柵1500。此外,也可以藉由奈米壓印法或雷射劃片法等形成繞射光柵1500。 The diffraction grating 1500 can be formed by a photolithography process using a photosensitive resin or the like. In addition, the diffraction grating 1500 can also be formed by a photolithography process and an etching process. Further, the diffraction grating 1500 may be formed by a nanoimprint method, a laser dicing method, or the like.

另外,也可以在繞射光柵1500和微透鏡陣列2540之間具有間隔X。間隔X可以為1mm以下,較佳為100μm以下。該間隔既可以為空間,又可以將具有透光性的材料用作密封層或黏合層而設置。例如,將氮或稀有氣體等惰性氣體密封在該間隔中。或者,也可以將丙烯酸樹脂、環氧樹脂或聚醯亞胺樹脂等設置在該間隔中。或者,也可以設置矽酮油等液體。另外,在不設置微透鏡陣列2540的情況下也可以在濾色片2530和繞射光柵1500之間具有間隔X。 Alternatively, a space X may be provided between the diffraction grating 1500 and the microlens array 2540. The interval X may be 1 mm or less, preferably 100 μm or less. The space may be either a space or a material having a light transmissive property as a sealing layer or an adhesive layer. For example, an inert gas such as nitrogen or a rare gas is sealed in the space. Alternatively, an acrylic resin, an epoxy resin, a polyimide resin, or the like may be provided in the space. Alternatively, a liquid such as an oxime oil may be provided. Further, a spacer X may be provided between the color filter 2530 and the diffraction grating 1500 without providing the microlens array 2540.

另外,攝像裝置可以如圖32A1和圖32B1所示地彎曲。圖32A1示出使攝像裝置在該圖中的雙點劃線X1-X2的方向上彎曲的狀態。圖32A2示出圖32A1中的雙點劃線X1-X2所示的部分的剖面圖。圖32A3示出圖32A1中的雙點劃線Y1-Y2所示的部分的剖面圖。 In addition, the image pickup device can be bent as shown in Figs. 32A1 and 32B1. Fig. 32A1 shows a state in which the image pickup apparatus is bent in the direction of the two-dot chain line X1-X2 in the figure. Fig. 32A2 is a cross-sectional view showing a portion indicated by a chain double-dashed line X1-X2 in Fig. 32A1. Fig. 32A3 is a cross-sectional view showing a portion shown by a chain double-dashed line Y1-Y2 in Fig. 32A1.

圖32B1示出使攝像裝置在該圖中的雙點劃線X3-X4的方向上彎曲且在該圖中的雙點劃線Y3-Y4的方向上彎曲的狀態。圖32B2是圖32B1中的雙點劃線X3-X4所示的部分的剖面圖。圖32B3是圖32B1中的雙點劃線Y3-Y4所示的部分的剖面圖。 Fig. 32B1 shows a state in which the imaging device is bent in the direction of the two-dot chain line X3-X4 in the figure and curved in the direction of the two-dot chain line Y3-Y4 in the figure. Fig. 32B2 is a cross-sectional view of a portion indicated by a chain double-dashed line X3-X4 in Fig. 32B1. Fig. 32B3 is a cross-sectional view of a portion indicated by a chain double-dashed line Y3-Y4 in Fig. 32B1.

藉由使攝像裝置彎曲,可以降低像場彎曲或像散(astigmatism)。因此,可以容易進行與攝像裝置組合使用的透鏡等的光學設計。例如,由於可以減少用於像差校正的透鏡的數量,所以可以容易地實現使用攝像裝置的半導體裝置等的小型化或輕量化。此外,可以提高攝像影像的品質。 By bending the image pickup device, field curvature or astigmatism can be reduced. Therefore, the optical design of a lens or the like used in combination with the imaging device can be easily performed. For example, since the number of lenses for aberration correction can be reduced, miniaturization or weight reduction of a semiconductor device or the like using an image pickup device can be easily realized. In addition, the quality of the captured image can be improved.

在本實施方式中,描述了本發明的一個實施方式。或者,在其他實施方式中,描述本發明的一個實施方式。但是,本發明的一個實施方式不侷限於此。換而言之,在本實施方式及其他的實施方式中,記載有各種各樣的發明的方式,因此本發明的一個實施方式不侷限於特定的方式。例如,雖然作為例子示出將本發明的一個實施方式適用於攝像裝置的情況,但是本發明的一個實施方式不侷限於此。根據情況或狀況,也可以不將本發明的一個實施方式適用於攝像裝置。例如,也可以將本發明的一個實施方式適用於具有其他功能的半導體裝置。例如,作為本發明的一個實施方式,示出電晶體的通道形成區域、源極區域、汲極區域等包含氧化物半導體的例子,但是本發明的一個實施方式不侷限於此。根據情況或狀況,本發明的一個實施方式的各種電晶體、電晶體的通道形成區域、電晶體的源極區域、汲極區域等可以包含各種半導體。根據情況或狀況,本發明的一個實施方式的各種電晶體、電晶體的通道形成區域、或者電晶體的源極區域、汲極區域等可以包含矽、鍺、矽鍺、碳化矽、砷化鎵、砷化鋁鎵、磷化銦、氮化鎵和有機半導體等中的至少一個。另外,例如,根據情況或狀況,本發明的一個實施方式的各種電晶體、電晶體的通道形成區域、電晶體的源極區域、汲極區域等可以不包含氧化物半導體。 In the present embodiment, an embodiment of the present invention has been described. Alternatively, in other embodiments, one embodiment of the invention is described. However, one embodiment of the present invention is not limited thereto. In other words, in the present embodiment and other embodiments, various embodiments of the invention are described. Therefore, one embodiment of the present invention is not limited to a specific embodiment. For example, although an embodiment in which the embodiment of the present invention is applied to an image pickup apparatus is shown as an example, one embodiment of the present invention is not limited thereto. Depending on the situation or situation, one embodiment of the present invention may not be applied to an image pickup apparatus. For example, one embodiment of the present invention can also be applied to a semiconductor device having other functions. For example, as one embodiment of the present invention, an example in which an oxide semiconductor is formed in a channel formation region, a source region, a drain region, and the like of a transistor is shown, but one embodiment of the present invention is not limited thereto. The various transistor, the channel formation region of the transistor, the source region of the transistor, the drain region, and the like of one embodiment of the present invention may include various semiconductors depending on the circumstances or conditions. According to circumstances or conditions, various transistors of the embodiment of the present invention, a channel formation region of the transistor, or a source region, a drain region, or the like of the transistor may include germanium, antimony, bismuth, antimony carbide, gallium arsenide. At least one of aluminum gallium arsenide, indium phosphide, gallium nitride, and an organic semiconductor. Further, for example, depending on the circumstances or conditions, various transistors of the embodiment of the present invention, a channel formation region of the transistor, a source region of the transistor, a drain region, and the like may not include an oxide semiconductor.

本實施方式可以與其他實施方式所記載的結構適當地組合而實施。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.

實施方式2 Embodiment 2

在本實施方式中,參照圖式說明與實施方式1不同的攝像裝置。關於與實施方式1所說明的攝像裝置共通的部分,省略其詳細說明。 In the present embodiment, an imaging device different from that of the first embodiment will be described with reference to the drawings. The detailed description of the portions common to the imaging device described in the first embodiment will be omitted.

本發明的一個實施方式是一種能夠判定設置在像素內的電荷檢測部的電子的飽和狀態並根據判定結果改變工作模式的攝像裝置的電路結構及工作方法。首先,獲取第一攝像資料,在電荷檢測部未飽和的情況下,不改變電荷檢測部的電容值。在電荷檢測部飽和的情況下,增大電荷檢測部的電容值。在對所有像素進行上述控制之後,進行第二攝像資料的獲取及讀出。在不改變電荷檢測部的電容值的狀態下獲取的第二攝像資料相當於與低照度對應的資料。在增大電荷檢測部的電容值的狀態下獲取的第二攝像資料相當於與高照度對應的資料。 One embodiment of the present invention is a circuit configuration and an operation method of an image pickup apparatus capable of determining a saturation state of electrons of a charge detecting portion provided in a pixel and changing an operation mode according to a determination result. First, the first imaging data is acquired, and when the charge detecting portion is not saturated, the capacitance value of the charge detecting portion is not changed. When the charge detecting portion is saturated, the capacitance value of the charge detecting portion is increased. After the above control is performed on all the pixels, the acquisition and reading of the second image data are performed. The second imaging material acquired in a state where the capacitance value of the charge detecting portion is not changed corresponds to the material corresponding to the low illuminance. The second imaging material acquired in a state where the capacitance value of the charge detecting portion is increased corresponds to the material corresponding to the high illuminance.

藉由上述工作,即使在低照度環境下也可以獲取雜訊少且灰階保持的寬動態範圍的影像。此外,即使在包含高照度的環境下進行攝像也可以維持亮部的灰階,而可以獲取寬動態範圍的影像。 With the above work, it is possible to acquire an image with a wide dynamic range in which the noise is small and the gray scale is maintained even in a low illumination environment. In addition, even if the image is taken in an environment containing high illumination, the gray scale of the bright portion can be maintained, and an image with a wide dynamic range can be obtained.

圖33是本發明的一個實施方式的攝像裝置所包括的像素20的電路圖。在圖33等中示出作為電晶體採用n-ch型電晶體的例子,但是本發明的一個實施方式不侷限於此,一部分的電晶體也可以使用p-ch型電晶體代替n-ch型電晶體。 Fig. 33 is a circuit diagram of a pixel 20 included in the image pickup apparatus according to the embodiment of the present invention. An example in which an n-ch type transistor is used as a transistor is shown in FIG. 33 and the like, but one embodiment of the present invention is not limited thereto, and a part of the transistor may also use a p-ch type transistor instead of the n-ch type. Transistor.

在像素20中,光電轉換元件PD的一個電極與電晶體741的源極和汲極中的一個電連接。電晶體741的源極和汲極中的一個與電晶體742的源極和汲極中的一個電連接。電晶體741的源極和汲極中的另一個與電晶體743的源極和汲極中的一個電連接。電晶體741的源極和汲極中的另一個與電晶體744的源極和汲極中的一個電連接。電晶體741的源極和汲極中的另一個與電晶體745的閘極電連接。電晶體741的源極和汲極中的另一個與電容器C71的一個電極電連接。電晶體744的源極和汲極中的另一個與 電容器C72的一個電極電連接。電晶體745的源極和汲極中的一個與電晶體746的源極和汲極中的一個電連接。電晶體744的閘極與電晶體747的源極和汲極中的一個電連接。電晶體744的閘極與電容器C73的一個電極電連接。 In the pixel 20, one electrode of the photoelectric conversion element PD is electrically connected to one of the source and the drain of the transistor 741. One of the source and the drain of the transistor 741 is electrically connected to one of the source and the drain of the transistor 742. The other of the source and the drain of the transistor 741 is electrically connected to one of the source and the drain of the transistor 743. The other of the source and the drain of the transistor 741 is electrically connected to one of the source and the drain of the transistor 744. The other of the source and the drain of the transistor 741 is electrically connected to the gate of the transistor 745. The other of the source and the drain of the transistor 741 is electrically connected to one electrode of the capacitor C71. The other of the source and the drain of the transistor 744 One electrode of the capacitor C72 is electrically connected. One of the source and the drain of the transistor 745 is electrically coupled to one of the source and the drain of the transistor 746. The gate of transistor 744 is electrically coupled to one of the source and drain of transistor 747. The gate of the transistor 744 is electrically connected to one electrode of the capacitor C73.

在此,將光電轉換元件PD的一個電極、電晶體741的源極和汲極中的一個與電晶體742的源極和汲極中的一個連接的節點AN稱為電荷存儲部。另外,將電晶體741的源極和汲極中的另一個、電晶體743的源極和汲極中的一個、電晶體744的源極和汲極中的一個、電晶體745的閘極與電容器C71的一個電極連接的節點FD稱為電荷檢測部。另外,將電晶體744的閘極、電晶體747的源極和汲極中的一個與電容器C73的一個電極連接的節點CN稱為信號保持部。 Here, a node AN connecting one electrode of the photoelectric conversion element PD, one of the source and the drain of the transistor 741, and one of the source and the drain of the transistor 742 is referred to as a charge storage portion. In addition, one of the source and the drain of the transistor 741, one of the source and the drain of the transistor 743, one of the source and the drain of the transistor 744, and the gate of the transistor 745 are A node FD to which one electrode of the capacitor C71 is connected is referred to as a charge detecting portion. Further, a node CN connecting the gate of the transistor 744, the source and the drain of the transistor 747 to one electrode of the capacitor C73 is referred to as a signal holding portion.

光電轉換元件PD的另一個電極與佈線771(VPD)電連接。電晶體742的源極和汲極中的另一個及電晶體743的源極和汲極中的另一個與佈線772(VRS)電連接。電容器C71的另一個電極、電容器C72的另一個電極及電容器C73的另一個電極與佈線773(VSS)電連接。電晶體745的源極和汲極中的另一個與佈線774(VPI)電連接。電晶體746的源極和汲極中的另一個與佈線791(OUT1)電連接。 The other electrode of the photoelectric conversion element PD is electrically connected to a wiring 771 (VPD). The other of the source and the drain of the transistor 742 and the other of the source and the drain of the transistor 743 are electrically connected to the wiring 772 (VRS). The other electrode of the capacitor C71, the other electrode of the capacitor C72, and the other electrode of the capacitor C73 are electrically connected to the wiring 773 (VSS). The other of the source and the drain of the transistor 745 is electrically connected to the wiring 774 (VPI). The other of the source and the drain of the transistor 746 is electrically connected to the wiring 791 (OUT1).

在上述各組件的連接方式中,作為一個例子示出多個電晶體或多個電容器與共同的佈線電連接的情況,但是多個電晶體或多個電容器也可以分別與不同的佈線電連接。 In the connection method of each of the above components, a case where a plurality of transistors or a plurality of capacitors are electrically connected to a common wiring is shown as an example, but a plurality of transistors or a plurality of capacitors may be electrically connected to different wirings, respectively.

佈線771(VPD)、佈線772(VRS)、佈線773(VSS)及佈線774(VPI)可以具有電源線的功能。例如,佈線771(VPD)及佈線773(VSS)可以被用作低電位電源線。佈線772(VRS)及佈線774(VPI)可以被用作高電位電源線。 The wiring 771 (VPD), the wiring 772 (VRS), the wiring 773 (VSS), and the wiring 774 (VPI) may have the function of a power supply line. For example, the wiring 771 (VPD) and the wiring 773 (VSS) can be used as the low potential power supply line. Wiring 772 (VRS) and wiring 774 (VPI) can be used as a high potential power line.

電晶體741的閘極與佈線761(TX)電連接。電晶體742的閘極與佈線762(GWRS)電連接。電晶體743的閘極與佈線763(RS)電連接。電晶體746的閘極與佈線764(SE)電連接。電晶體747的閘極與佈線765(SE2)電連接。電晶體747的源極和汲極中的另一個與佈線793(OUT3)電連接。 The gate of the transistor 741 is electrically connected to the wiring 761 (TX). The gate of the transistor 742 is electrically connected to the wiring 762 (GWRS). The gate of the transistor 743 is electrically connected to the wiring 763 (RS). The gate of the transistor 746 is electrically connected to the wiring 764 (SE). The gate of the transistor 747 is electrically connected to the wiring 765 (SE2). The other of the source and the drain of the transistor 747 is electrically connected to the wiring 793 (OUT3).

佈線761(TX)、佈線762(GWRS)、佈線763(RS)、佈線764(SE)及佈線765(SE2)可以被用作控制與這些佈線連接的電晶體的導通的信號線。佈線763(RS)、佈線764(SE)及佈線765(SE2)可以按行被控制。 The wiring 761 (TX), the wiring 762 (GWRS), the wiring 763 (RS), the wiring 764 (SE), and the wiring 765 (SE2) can be used as signal lines for controlling conduction of the transistors connected to these wirings. The wiring 763 (RS), the wiring 764 (SE), and the wiring 765 (SE2) can be controlled in rows.

電晶體741可以被用作將節點AN的電位傳送到節點FD的電晶體。電晶體742可以被用作使節點AN的電位重設的電晶體。電晶體743可以被用作使節點FD的電位重設的電晶體。電晶體744可以被用作控制節點FD與電容器C72之間的電連接的電晶體。電晶體745可以被用作根據節點FD的電位進行輸出的電晶體。電晶體746可以被用作選擇像素20的電晶體。電晶體747可以被用作保持節點CN的電位的電晶體。 The transistor 741 can be used as a transistor that transmits the potential of the node AN to the node FD. The transistor 742 can be used as a transistor for resetting the potential of the node AN. The transistor 743 can be used as a transistor for resetting the potential of the node FD. The transistor 744 can be used as a transistor that controls the electrical connection between the node FD and the capacitor C72. The transistor 745 can be used as a transistor that outputs according to the potential of the node FD. A transistor 746 can be used as the transistor for selecting the pixel 20. The transistor 747 can be used as a transistor that maintains the potential of the node CN.

注意,上述像素20的結構是一個例子,有時不包括一部分的電路、一部分的電晶體、一部分的電容器或者一部分的佈線等。另外,有時包括上述結構不包含的電路、電晶體、電容器及佈線等。另外,一部分的佈線的連接方式有時與上述結構的連接方式不同。 Note that the configuration of the above-described pixel 20 is an example, and sometimes does not include a part of the circuit, a part of the transistor, a part of the capacitor, or a part of the wiring or the like. Further, a circuit, a transistor, a capacitor, a wiring, and the like which are not included in the above configuration may be included. Further, the connection method of a part of the wiring may be different from the connection method of the above structure.

圖34A是說明本發明的一個實施方式的攝像裝置的圖。該攝像裝置包括:包括配置為矩陣狀的像素20的像素陣列21;具有驅動像素20的功能的電路22(行驅動器);對像素20的輸出信號進行CDS(Correlated Double Sampling:相關雙取樣)工作的電路23(CDS電路);具有判定節點FD的飽和的有無的功能、根據該判定結果控制像素的工作模式的功能以及將從電路23輸出的類比資料轉換為數位資料的功能的電路24(A/D轉換電路等);以及具有選擇經過電路24轉換了的資料而讀出的功能的電路25(列驅動器)。另外,也可以採用沒有設置電路23的結構。 Fig. 34A is a view for explaining an image pickup apparatus according to an embodiment of the present invention. The image pickup apparatus includes: a pixel array 21 including pixels 20 arranged in a matrix; a circuit 22 (row driver) having a function of driving the pixels 20; and CDS (Correlated Double Sampling) operation on an output signal of the pixels 20. Circuit 23 (CDS circuit); circuit 24 having a function of determining the presence or absence of saturation of the node FD, a function of controlling the operation mode of the pixel based on the determination result, and a function of converting the analog data output from the circuit 23 into digital data (A) /D conversion circuit, etc.; and a circuit 25 (column driver) having a function of selecting data read by the circuit 24 to be read. Alternatively, a configuration in which the circuit 23 is not provided may be employed.

圖34B是與像素陣列21的一個列連接的電路23的電路圖及電路24的方塊圖。電路23可以包括電晶體751、電晶體752、電晶體753、電容器C74及電容器C75。另外,電路24可以包括比較器電路27、判定輸出電路28及計數電路29。 FIG. 34B is a circuit diagram of a circuit 23 connected to one column of the pixel array 21 and a block diagram of the circuit 24. The circuit 23 may include a transistor 751, a transistor 752, a transistor 753, a capacitor C74, and a capacitor C75. Additionally, circuit 24 may include comparator circuit 27, decision output circuit 28, and count circuit 29.

電晶體754具有電流源電路的功能。電晶體754的源極和汲極中的一個與佈線791(OUT1)電連接,源極和汲極中的另一個與電源線連接。該電 源線例如可以為低電位電源線。此外,電晶體754的閘極不間斷地被施加偏壓。 The transistor 754 has the function of a current source circuit. One of the source and the drain of the transistor 754 is electrically connected to the wiring 791 (OUT1), and the other of the source and the drain is connected to the power supply line. The electricity The source line can be, for example, a low potential power line. In addition, the gate of transistor 754 is biased uninterrupted.

在像素23中,電晶體751的源極和汲極中的一個與電晶體752的源極和汲極中的一個電連接。電晶體751的源極和汲極中的一個與電容器C74的一個電極電連接。電晶體752的源極和汲極中的另一個與電晶體753的源極和汲極中的一個電連接。電晶體752的源極和汲極中的另一個與電容器C75的一個電極電連接。電晶體752的源極和汲極中的另一個與佈線792(OUT2)電連接。電晶體753的源極和汲極中的另一個及電容器C74的另一個電極與佈線791(OUT1)電連接。電晶體751的源極和汲極中的另一個例如與被供應參考電位的高電位電源線(CDSVDD)電連接。電容器C75的另一個電極例如與低電位電源線(CDSVSS)電連接。 In the pixel 23, one of the source and the drain of the transistor 751 is electrically connected to one of the source and the drain of the transistor 752. One of the source and the drain of the transistor 751 is electrically connected to one electrode of the capacitor C74. The other of the source and the drain of the transistor 752 is electrically connected to one of the source and the drain of the transistor 753. The other of the source and the drain of the transistor 752 is electrically connected to one electrode of the capacitor C75. The other of the source and the drain of the transistor 752 is electrically connected to the wiring 792 (OUT2). The other of the source and the drain of the transistor 753 and the other electrode of the capacitor C74 are electrically connected to the wiring 791 (OUT1). The other of the source and the drain of the transistor 751 is electrically connected, for example, to a high potential power supply line (CDSVDD) to which a reference potential is supplied. The other electrode of the capacitor C75 is electrically connected, for example, to a low potential power line (CDSVSS).

對與圖33所示的像素20連接時的電路23的工作例子進行說明。首先,使電晶體751及電晶體752為導通狀態。接著,從像素20將攝像資料的電位輸出到佈線791(OUT1),在佈線792(OUT2)中保持參考電位(CDSVDD)。然後,使電晶體751為非導通狀態,從像素20將重設電位(在此,比攝像資料的電位高的電位,例如為VDD電位)輸出到佈線791(OUT1)。此時,佈線792(OUT2)的電位為將撮像資料的電位與重設電位之間的差值的絕對值加到參考電位(CDSVDD)而得到的電位。因此,可以將對參考電位(CDSVDD)追加實質上的撮像資料的電位而得到的雜訊少的電位信號供應到電路24。 An operation example of the circuit 23 when connected to the pixel 20 shown in FIG. 33 will be described. First, the transistor 751 and the transistor 752 are turned on. Next, the potential of the image data is output from the pixel 20 to the wiring 791 (OUT1), and the reference potential (CDSVDD) is held in the wiring 792 (OUT2). Then, the transistor 751 is turned off, and the reset potential (here, a potential higher than the potential of the image data, for example, the VDD potential) is output from the pixel 20 to the wiring 791 (OUT1). At this time, the potential of the wiring 792 (OUT2) is a potential obtained by adding the absolute value of the difference between the potential of the artifact data and the reset potential to the reference potential (CDSVDD). Therefore, a potential signal having a small amount of noise obtained by adding a potential of the substantial imaging material to the reference potential (CDSVDD) can be supplied to the circuit 24.

另外,當重設電位比撮像資料的電位低(例如,為GND電位等)時,佈線792(OUT2)的電位為從參考電位(CDSVDD)減去撮像資料的電位與重設電位之間的差值的絕對值而得到的電位。 Further, when the reset potential is lower than the potential of the image data (for example, GND potential or the like), the potential of the wiring 792 (OUT2) is the difference between the potential of the image data and the reset potential from the reference potential (CDSVDD). The potential obtained from the absolute value of the value.

此外,當使電晶體753為導通狀態時,形成旁路,由此可以將佈線791(OUT1)的信號直接輸出到佈線792(OUT2)。 Further, when the transistor 753 is turned on, a bypass is formed, whereby the signal of the wiring 791 (OUT1) can be directly output to the wiring 792 (OUT2).

在電路24中,利用比較器電路27對從電路23輸入的信號電位與參考電位(REF)進行比較。藉由佈線792(OUT2)將與第一攝像資料或第二攝像資料對應的信號電位輸入到比較器電路27。在此,第一攝像資料是第一次曝光資料,且被用來判定像素20的節點FD的飽和的有無。第二攝像資 料是根據該判定而取得的第二次曝光資料。 In the circuit 24, the signal potential input from the circuit 23 is compared with the reference potential (REF) by the comparator circuit 27. The signal potential corresponding to the first image data or the second image data is input to the comparator circuit 27 by the wiring 792 (OUT2). Here, the first imaging material is the first exposure data, and is used to determine the presence or absence of saturation of the node FD of the pixel 20. Second camera The material is the second exposure data obtained based on the determination.

首先,當被輸入第一攝像資料時,比較器電路27向判定輸出電路28輸出判定結果。判定輸出電路28具有調節輸出時序而去除從比較器電路27輸出的雜訊的功能。 First, when the first imaging data is input, the comparator circuit 27 outputs the determination result to the determination output circuit 28. The determination output circuit 28 has a function of adjusting the output timing to remove the noise output from the comparator circuit 27.

比較器電路27判定第一攝像資料是否使像素20的節點FD飽和。此時,對比較器電路27輸入的參考電位(REF)是相當於節點FD的飽和時的固定電位。藉由對該電位與對應於第一攝像資料的信號電位進行比較,判定飽和的有無。在本實施方式中,迂回電路23對比較器電路27輸入對應於第一攝像資料的信號電位,但是也可以以不迂回電路23的方式對比較器電路27輸入對應於第一攝像資料的信號電位。 The comparator circuit 27 determines whether the first image data saturates the node FD of the pixel 20. At this time, the reference potential (REF) input to the comparator circuit 27 is a fixed potential corresponding to the saturation of the node FD. The presence or absence of saturation is determined by comparing the potential with a signal potential corresponding to the first imaging data. In the present embodiment, the circuit circuit 23 inputs the signal potential corresponding to the first image data to the comparator circuit 27, but the signal potential corresponding to the first image data may be input to the comparator circuit 27 in a manner that does not bypass the circuit 23. .

當判定節點FD未飽和時,判定輸出電路28將不改變節點FD的電容值的信號輸出到上述像素。明確而言,將使電晶體744為非導通狀態的電位輸出到佈線793(OUT3),將該電位保持在像素20的節點CN中。此時,節點FD的電容值不變。 When it is determined that the node FD is not saturated, it is determined that the output circuit 28 outputs a signal that does not change the capacitance value of the node FD to the above pixel. Specifically, the potential in which the transistor 744 is in a non-conduction state is output to the wiring 793 (OUT3), and the potential is held in the node CN of the pixel 20. At this time, the capacitance value of the node FD does not change.

當判定節點FD飽和時,判定輸出電路28將增大節點FD的電容值的信號輸出到上述像素。明確而言,將使電晶體744為導通狀態的電位輸出到佈線793(OUT3),將該電位保持在像素20的節點CN中。此時,電容器C72與節點FD電連接,由此節點FD的電容值增大。 When it is determined that the node FD is saturated, it is determined that the output circuit 28 outputs a signal for increasing the capacitance value of the node FD to the above pixel. Specifically, the potential at which the transistor 744 is turned on is output to the wiring 793 (OUT3), and the potential is held in the node CN of the pixel 20. At this time, the capacitor C72 is electrically connected to the node FD, whereby the capacitance value of the node FD is increased.

在對所有的有效像素進行上述工作之後,使節點FD重設,獲取第二攝像資料。對應於第二攝像資料的信號電位藉由電路23輸入到比較器電路27。輸入到比較器電路27的參考電位(REF)具有斜坡波形。將對該參考電位與對應於第二攝像資料的信號電位進行比較的結果輸出到計數電路29。計數電路29將對應於第二攝像資料的數位資料輸出到佈線794(OUT4)。 After performing the above work on all the effective pixels, the node FD is reset to acquire the second image data. The signal potential corresponding to the second imaging material is input to the comparator circuit 27 via the circuit 23. The reference potential (REF) input to the comparator circuit 27 has a ramp waveform. The result of comparing the reference potential with the signal potential corresponding to the second imaging material is output to the counter circuit 29. The counting circuit 29 outputs the digital data corresponding to the second imaging material to the wiring 794 (OUT4).

作為判定輸出電路28,例如可以使用圖35所示的電路。該電路的輸入端子(IN)與比較器電路27的輸出端子電連接。該電路的輸出端子(OUT)與佈線793(OUT3)電連接。判定輸出電路28按被選擇的行根據JRES信號被重設,然後將比較器電路27的判定結果輸出到佈線793(OUT3)。此外, 也可以對端子GCN輸入控制信號,固定輸出到佈線793(OUT3)的信號。 As the determination output circuit 28, for example, the circuit shown in Fig. 35 can be used. The input terminal (IN) of the circuit is electrically connected to the output terminal of the comparator circuit 27. The output terminal (OUT) of this circuit is electrically connected to the wiring 793 (OUT3). The determination output circuit 28 is reset in accordance with the JRES signal in the selected row, and then outputs the determination result of the comparator circuit 27 to the wiring 793 (OUT3). In addition, It is also possible to input a control signal to the terminal GCN and fix the signal output to the wiring 793 (OUT3).

圖35所示的電路可以根據圖36所示的時序圖而工作。圖36所示的RCK1/2及RCKB1/2是輸入到電路22(行驅動器)的時脈信號及反轉時脈信號,JRES及JENB是輸入到圖35所示的電路的信號,EN_CDS是輸入到電路23的電晶體753的閘極的信號,SE[1]是輸入到第一行的像素20的佈線764的信號,SE[N]是輸入到最後行的像素20的佈線764的信號,SE2[1]是輸入到第一行的像素20的佈線765的信號,SE2[N]是輸入到最後行的像素20的佈線765的信號。 The circuit shown in Fig. 35 can operate in accordance with the timing chart shown in Fig. 36. The RCK1/2 and RCKB1/2 shown in Fig. 36 are clock signals and inverted clock signals input to the circuit 22 (row driver), JRES and JENB are signals input to the circuit shown in Fig. 35, and EN_CDS is an input. The signal to the gate of the transistor 753 of the circuit 23, SE[1] is the signal of the wiring 764 input to the pixel 20 of the first row, and SE[N] is the signal of the wiring 764 of the pixel 20 input to the last row, SE2[1] is a signal input to the wiring 765 of the pixel 20 of the first row, and SE2[N] is a signal input to the wiring 765 of the pixel 20 of the last row.

以frame[n]表示的期間相當於第n圖框(n為2以上的自然數)的期間。在第n圖框中,期間401是讀出第(n-1)圖框的資料的期間,期間402是讀出上述第一攝像資料並進行判定的期間,期間400是行驅動器不工作的期間。此外,第(n+1)圖框中的期間403是讀出第n圖框的資料的期間。 The period indicated by frame[n] corresponds to the period of the nth frame (n is a natural number of 2 or more). In the nth frame, a period 401 is a period in which the material of the (n-1)th frame is read, a period 402 is a period in which the first image data is read and a determination is made, and a period 400 is a period in which the row driver does not operate. . Further, the period 403 in the (n+1)th frame is a period in which the material of the nth frame is read.

接下來,參照圖37所示的流程圖及圖38所示的時序圖說明圖33所示的像素20的工作。本發明的一個實施方式的攝像裝置以全域快門方式工作,其一個圖框中的工作大致分為:第一攝像資料的獲取;第一攝像資料的判定;第二攝像資料的獲取;以及上一個圖框的攝像資料的讀出。其中,第一攝像資料的獲取和上一個圖框的攝像資料的讀出同時進行。 Next, the operation of the pixel 20 shown in FIG. 33 will be described with reference to the flowchart shown in FIG. 37 and the timing chart shown in FIG. The image pickup apparatus according to an embodiment of the present invention operates in a global shutter mode, and the work in one frame is roughly classified into: acquisition of first image data; determination of first image data; acquisition of second image data; and previous The reading of the camera data of the frame. The acquisition of the first image data and the reading of the image data of the previous frame are performed simultaneously.

在圖37及圖38中,以任意的第n圖框為基準進行說明。佈線771(VPD)及佈線773(VSS)為低電位(“L”),而佈線772(VRS)及佈線774(VPI)為高電位(“H”)。 In FIGS. 37 and 38, an arbitrary nth frame will be described as a reference. The wiring 771 (VPD) and the wiring 773 (VSS) are at a low potential ("L"), and the wiring 772 (VRS) and the wiring 774 (VPI) are at a high potential ("H").

在圖38中,GWRS是佈線762(GWRS)的電位,RS[1]是第一行的特定像素20的佈線763(RS)的電位,RS[N]是最後行的特定像素20的佈線763(RS)的電位,CN[1]是第一行的特定像素20的節點CN的電位,CN[N]是最後行的特定像素20的節點CN的電位,TX是佈線761(TX)的電位,AN[1]是第一行的特定像素20的節點AN的電位,AN[N]是最後行的特定像素20的節點AN的電位,FD[1]是第一行的特定像素20的節點FD的電位,FD[N]是最後行的特定像素20的節點FD的電位。 In FIG. 38, GWRS is the potential of the wiring 762 (GWRS), RS[1] is the potential of the wiring 763 (RS) of the specific pixel 20 of the first row, and RS[N] is the wiring 763 of the specific pixel 20 of the last row. The potential of (RS), CN[1] is the potential of the node CN of the specific pixel 20 of the first row, CN[N] is the potential of the node CN of the specific pixel 20 of the last row, and TX is the potential of the wiring 761 (TX) AN[1] is the potential of the node AN of the specific pixel 20 of the first row, AN[N] is the potential of the node AN of the specific pixel 20 of the last row, and FD[1] is the node of the specific pixel 20 of the first row. The potential of FD, FD[N], is the potential of node FD of the particular pixel 20 of the last row.

首先,對第一攝像資料的獲取以及在上一圖框中獲取的攝像資料的讀出進行說明。 First, the acquisition of the first image data and the reading of the image data acquired in the previous frame will be described.

第一攝像資料是用來判斷攝像物件的照度(低照度或高照度)的資料。在第一攝像資料的攝像模式中,由於在節點FD中只與電容器C71連接的低電容值的條件下進行攝像,所以在高照度環境下節點FD飽和。因此,藉由判定節點FD的飽和的有無,可以判斷攝像物件的照度。在圖38的時序圖中,示出第一行的節點FD未被第一攝像資料飽和且第N行(最後行)的節點FD被第一攝像資料飽和時的工作。 The first camera data is information for determining the illuminance (low illuminance or high illuminance) of the image pickup article. In the imaging mode of the first imaging data, since the imaging is performed under the condition that the node FD is only connected to the capacitor C71 with a low capacitance value, the node FD is saturated in a high illumination environment. Therefore, by determining the presence or absence of saturation of the node FD, it is possible to determine the illuminance of the image pickup article. In the timing chart of FIG. 38, the operation when the node FD of the first row is not saturated by the first image data and the node FD of the Nth row (last row) is saturated by the first image data is shown.

在時刻T1,當將GWRS設定為“H”時,AN[1:N]被重設而成為“H”(佈線772(VRS)的電位)(S1)。 At time T1, when GWRS is set to "H", AN[1:N] is reset to become "H" (potential of wiring 772 (VRS)) (S1).

在時刻T2,當將GWRS設定為“L”時,AN[1:N]根據照度開始降低(第一次曝光,S2) At time T2, when GWRS is set to "L", AN[1:N] starts to decrease according to illuminance (first exposure, S2)

在時刻T3,當將RS[1:N]設定為“H”並且將CN[1:N]設定為“H”時,FD[1:N]被重設而成為“H”(佈線772(VRS)的電位)(S3)。此時,節點FD藉由電晶體744與電容器C72電連接。為了將CN[1:N]設定為“H”,可以將佈線765(SE2)[1:N]設定為“H”而使電晶體747為導通狀態,將判定輸出電路28的端子GCN的輸入信號設定為“H”。 At time T3, when RS[1:N] is set to "H" and CN[1:N] is set to "H", FD[1:N] is reset to become "H" (wiring 772 ( Potential of VRS) (S3). At this time, the node FD is electrically connected to the capacitor C72 via the transistor 744. In order to set CN[1:N] to "H", the wiring 765 (SE2)[1:N] can be set to "H" and the transistor 747 can be turned on, and the input of the terminal GCN of the output circuit 28 can be determined. The signal is set to "H".

在時刻T4,當將SE2[1:N]設定為“H”並且將CN[1:N]設定為“L”時,電晶體744成為非導通狀態,由此,節點FD與電容器C72之間的電連接被切斷。為了將CN[1:N]設定為“L”,可以使判定輸出電路28為重設狀態且將端子GCN設定為“L”。在時刻T4之後,藉由將SE2[1:N]設定為“L”而使電晶體747為非導通狀態,CN[1:N]被電容器C73等保持。 At time T4, when SE2[1:N] is set to "H" and CN[1:N] is set to "L", the transistor 744 becomes non-conductive, whereby between the node FD and the capacitor C72 The electrical connection was cut. In order to set CN[1:N] to "L", the determination output circuit 28 can be set to the reset state and the terminal GCN can be set to "L". After time T4, the transistor 747 is rendered non-conductive by setting SE2[1:N] to "L", and CN[1:N] is held by the capacitor C73 or the like.

此外,在時刻T4,當將RS[1:N]設定為“L”並且將TX設定為“H”時,節點AN的電位傳送到節點FD,該節點FD的電位開始下降(S4)。 Further, at time T4, when RS[1:N] is set to "L" and TX is set to "H", the potential of the node AN is transmitted to the node FD, and the potential of the node FD starts to drop (S4).

在時刻T5,當將TX設定為“L”時,FD[1:N]被保持。到這裡是第一攝像資料的獲取工作。 At time T5, when TX is set to "L", FD[1:N] is held. Here is the acquisition of the first camera data.

在此,在時刻T1至T3之間,SE[1]至SE[N]在一定期間依次為“H”,在第(n-1)圖框中確定的攝像資料被讀出(S10’)。也就是說,上述第n圖框的第一攝像資料的獲取工作和在第(n-1)圖框中確定的攝像資料的讀出同時進行。藉由上述方式在下一圖框中讀出攝像資料,即使採用全域快門方式也可以延長用來曝光等的時間。因此,在低照度下也可以獲取動態範圍寬且雜訊低的影像。 Here, between time T1 and T3, SE[1] to SE[N] are sequentially "H" for a certain period, and the image data determined in the (n-1)th frame is read (S10'). . That is to say, the acquisition of the first image data of the nth frame described above is performed simultaneously with the reading of the image data determined in the (n-1)th frame. By reading the image data in the next frame by the above method, the time for exposure or the like can be extended even if the global shutter mode is employed. Therefore, an image with a wide dynamic range and low noise can be obtained under low illumination.

圖39A是說明第一行的攝像資料的讀出的時序圖。SH是供應到電路23中的電晶體752的閘極的電位,CL是供應到電路23中的電晶體751的閘極的電位,REF(RAMP)是供應到比較器電路27的參考電位,OUT2是佈線792(OUT2)的電位,COMP_OUT是比較器電路27的輸出端子的電位。 Fig. 39A is a timing chart for explaining reading of image data in the first line. SH is the potential of the gate of the transistor 752 supplied to the circuit 23, CL is the potential of the gate of the transistor 751 supplied to the circuit 23, and REF (RAMP) is the reference potential supplied to the comparator circuit 27, OUT2 It is the potential of the wiring 792 (OUT2), and COMP_OUT is the potential of the output terminal of the comparator circuit 27.

在圖38中,在時刻T3之前,RS[1]至RS[N]在一定期間依次為“H”,節點FD被重設。該工作是基於圖39A所示的電路23的工作而運行的。 In FIG. 38, before time T3, RS[1] to RS[N] are sequentially "H" for a certain period of time, and the node FD is reset. This operation is based on the operation of the circuit 23 shown in Fig. 39A.

接著,對第一攝像資料的判定及基於該判定結果而運行的工作進行說明。 Next, the determination of the first imaging material and the operation based on the determination result will be described.

在時刻T6至T8中,SE[1]至SE[N]在一定期間依次為“H”,第一攝像資料按行被讀出,由此,對所有的有效像素20的節點FD的飽和的有無進行判定(S5)。 In time T6 to T8, SE[1] to SE[N] are sequentially "H" for a certain period of time, and the first image data is read out in rows, thereby saturating the nodes FD of all the effective pixels 20. Whether or not determination is made (S5).

圖39B是說明時刻T6至T8中的第一攝像資料的讀出的時序圖。在第一攝像資料的讀出期間中,將EN_CDS設定為“H”並且將CL設定為“H”,迂回電路23將從像素20輸出的信號輸入到比較器電路27。將REF(CONST)設定為固定電位,且為比節點FD飽和時輸出到佈線791(OUT1)的電位稍微高的電位。藉由上述工作,可以根據比較器電路27的輸出而判定節點FD的飽和的有無。圖39B示出所選擇的特定像素20的節點FD飽和時的狀態,由此,從比較器電路27的輸出端子輸出的電位是“L”。此外,也可以將EN_CDS設定為“L”,不迂回電路23讀出第一攝像資料。此時,從比較器電路27的輸出端子輸出的電位是“H”。 Fig. 39B is a timing chart for explaining the reading of the first image data at times T6 to T8. In the readout period of the first image data, EN_CDS is set to "H" and CL is set to "H", and the bypass circuit 23 inputs the signal output from the pixel 20 to the comparator circuit 27. REF(CONST) is set to a fixed potential, and is a potential slightly higher than the potential output to the wiring 791 (OUT1) when the node FD is saturated. By the above operation, the presence or absence of saturation of the node FD can be determined based on the output of the comparator circuit 27. FIG. 39B shows a state when the node FD of the selected specific pixel 20 is saturated, whereby the potential output from the output terminal of the comparator circuit 27 is "L". Further, EN_CDS can also be set to "L", and the first image data can be read out without the circuit returning circuit 23. At this time, the potential output from the output terminal of the comparator circuit 27 is "H".

此時,第一攝像資料被用來判定節點FD的飽和的有無,而不被輸出到外部。因此,可以停止為了外部輸出所需要的電路25(列驅動器)等輸出電路的工作。 At this time, the first image data is used to determine the presence or absence of saturation of the node FD, and is not output to the outside. Therefore, the operation of the output circuit such as the circuit 25 (column driver) required for external output can be stopped.

第一攝像資料的判定結果藉由判定輸出電路28輸出到被讀出該第一攝像資料的像素20。在此,為了對像素20的節點CN輸入該判定結果,按該判定結果的輸出時序在固定期間將同一行的佈線765(SE2)設定為“H”。 The determination result of the first imaging data is output to the pixel 20 from which the first imaging material is read by the determination output circuit 28. Here, in order to input the determination result to the node CN of the pixel 20, the wiring 765 (SE2) of the same row is set to "H" for a fixed period in accordance with the output timing of the determination result.

在被判定節點FD未飽和的像素20中,“L”輸入到節點CN,由此電晶體744不成為導通狀態。因此,節點FD只與電容器C71電連接,節點FD的電容值不變。也就是說,該像素20被設定為適合於低照度攝像的攝像模式。 In the pixel 20 whose node FD is not saturated, "L" is input to the node CN, whereby the transistor 744 does not become in an on state. Therefore, the node FD is only electrically connected to the capacitor C71, and the capacitance value of the node FD does not change. That is, the pixel 20 is set to an imaging mode suitable for low illumination imaging.

在被判定節點FD飽和的像素20中,“H”輸入到節點CN,由此電晶體744成為導通狀態。因此,節點FD與電容器C71及電容器C72電連接,節點FD的電容值增大(S6)。也就是說,該像素20被設定為適合於高照度攝像的攝像模式。到這裡是第一攝像資料的判定及根據該判定結果的工作。 In the pixel 20 saturated by the determination node FD, "H" is input to the node CN, whereby the transistor 744 is turned on. Therefore, the node FD is electrically connected to the capacitor C71 and the capacitor C72, and the capacitance value of the node FD is increased (S6). That is, the pixel 20 is set to an imaging mode suitable for high illumination imaging. Here, it is the judgment of the first imaging material and the work based on the determination result.

接著,對第二攝像資料的獲取進行說明。 Next, the acquisition of the second imaging material will be described.

在得到所有判定結果之前,可以進行用來獲取第二攝像資料的曝光工作。例如,如圖38所示,在時刻T7,將GWRS設定為“H”而使AN[1:N]重設(S7)。然後,在時刻T8,將GWRS設定為“L”,並在時刻T10以前進行第二次曝光(S8)。第二次曝光的曝光時間可以與第一次曝光的曝光時間相同。或者,第二次曝光的曝光時間也可以短於第一次曝光的曝光時間。 The exposure work for acquiring the second image data can be performed before all the determination results are obtained. For example, as shown in FIG. 38, at time T7, GWRS is set to "H" and AN[1:N] is reset (S7). Then, at time T8, GWRS is set to "L", and a second exposure is performed before time T10 (S8). The exposure time of the second exposure may be the same as the exposure time of the first exposure. Alternatively, the exposure time of the second exposure may also be shorter than the exposure time of the first exposure.

在第二次曝光結束之前的時刻T9,當將RS[1:N]設定為“H”時,FD[1:N]被重設而成為“H”(佈線772(VRS)的電位)(S9)。 At time T9 before the end of the second exposure, when RS[1:N] is set to "H", FD[1:N] is reset to become "H" (potential of wiring 772 (VRS)) ( S9).

在時刻T10,當將佈線761(TX)設定為“H”時,節點AN的電位傳送到節點FD(S10)。 At time T10, when the wiring 761 (TX) is set to "H", the potential of the node AN is transmitted to the node FD (S10).

在時刻T11,當將佈線761(TX)設定為“L”時,FD[1:N]被保持。 到這裡是第二攝像資料的獲取工作。在第(n+1)圖框中,作為第n圖框的攝像資料讀出該第二攝像資料(S11)。 At time T11, when the wiring 761 (TX) is set to "L", FD[1:N] is held. Here is the acquisition of the second camera data. In the (n+1)th frame, the second image data is read as the image data of the nth frame (S11).

藉由上述工作,能夠在像素20的每一個中分別設定第二攝像資料的攝像模式,即使拍攝混有明暗部分的影像,也可以獲取灰階保持的寬動態範圍影像。 By the above operation, the imaging mode of the second imaging material can be set in each of the pixels 20, and even if the image with the light and dark portions is captured, the wide dynamic range image held by the grayscale can be acquired.

像素20也可以具有圖40所示的結構。圖40所示的像素20與圖33所示的像素20的不同之處是光電轉換元件PD的連接方向。圖40所示的像素20可以根據圖42的時序圖而工作。此時,佈線771(VPD)及佈線774(VPI)為高電位(“H”),佈線772(VRS)及佈線773(VSS)為低電位(“L”)。 The pixel 20 can also have the structure shown in FIG. The pixel 20 shown in FIG. 40 is different from the pixel 20 shown in FIG. 33 in the connection direction of the photoelectric conversion element PD. The pixel 20 shown in FIG. 40 can operate in accordance with the timing chart of FIG. At this time, the wiring 771 (VPD) and the wiring 774 (VPI) are at a high potential ("H"), and the wiring 772 (VRS) and the wiring 773 (VSS) are at a low potential ("L").

在此情況下,節點AN及節點FD在重設時處於電子飽和狀態,而在高照度環境下處於電子不足狀態。因此,節點AN及節點FD的電位變化與上述圖33所示的像素20的工作相反。 In this case, the node AN and the node FD are in an electronic saturation state at the time of resetting, and are in an electronically insufficient state in a high illuminance environment. Therefore, the potential changes of the node AN and the node FD are opposite to those of the pixel 20 shown in FIG. 33 described above.

另外,像素20也可以採用圖41A及圖41B所示的結構。圖41A是沒有設置電晶體742的結構。在該結構中,藉由將佈線771(VPD)的電位設定為高電位,可以使節點AN的電位重設。圖41B是電晶體745的源極和汲極中的一個與佈線791(OUT)連接的結構。 Further, the pixel 20 may have the configuration shown in FIGS. 41A and 41B. Fig. 41A shows a structure in which the transistor 742 is not provided. In this configuration, the potential of the node AN can be reset by setting the potential of the wiring 771 (VPD) to a high potential. 41B is a structure in which one of the source and the drain of the transistor 745 is connected to the wiring 791 (OUT).

另外,用於像素20的電晶體可以採用如圖43A及圖43B所示的在電晶體741至電晶體747中設置有背閘極的結構。圖43A是對背閘極施加恆電位的結構,可以控制臨界電壓。在圖43A中,作為一個例子,舉出背閘極與供應低電位的佈線771(VPD)、佈線773(VSS)或佈線775(VSS2)連接的情況,但是也可以採用背閘極與上述佈線中的一個連接的結構。另外,圖43B是與前閘極相同的電位施加到背閘極的結構,藉由採用該結構,可以增大通態電流(on-state current)且減少關態電流(off-state current)。另外,也可以以所希望的電晶體具有適當的電特性的方式組合圖43A及圖43B所示的結構等。另外,也可以具有沒有設置背閘極的電晶體。此外,根據需要,可以組合圖40、圖41A和圖41B以及圖43A和圖43B的結構。 In addition, the transistor for the pixel 20 may have a structure in which a back gate is provided in the transistor 741 to the transistor 747 as shown in FIGS. 43A and 43B. Fig. 43A shows a structure in which a constant potential is applied to the back gate, and the threshold voltage can be controlled. In FIG. 43A, as an example, a case where the back gate is connected to the wiring 771 (VPD), the wiring 773 (VSS), or the wiring 775 (VSS2) that supplies the low potential is mentioned, but the back gate and the above wiring may be employed. The structure of a connection in . In addition, FIG. 43B is a structure in which the same potential as the front gate is applied to the back gate, and by adopting this configuration, the on-state current can be increased and the off-state current can be reduced. Further, the structure and the like shown in FIGS. 43A and 43B may be combined in such a manner that the desired transistor has appropriate electrical characteristics. Alternatively, a transistor having no back gate may be provided. Further, the structures of FIGS. 40, 41A and 41B and FIGS. 43A and 43B can be combined as needed.

如圖44所示,像素20可以採用多個像素共同使用電晶體743至電晶體747的方式。圖44示出垂直方向的多個像素共同使用電晶體743至電晶體747的結構例子,也可以採用水平方向或水平垂直方向的多個像素共同使用電晶體743至電晶體747的結構。藉由採用上述結構,可以減少每一個像素所具有的電晶體的數量。 As shown in FIG. 44, the pixel 20 may adopt a manner in which a plurality of pixels collectively use the transistor 743 to the transistor 747. 44 shows a structural example in which a plurality of pixels in the vertical direction use the transistor 743 to the transistor 747 in common, and it is also possible to employ a structure in which the plurality of pixels in the horizontal direction or the horizontal vertical direction use the transistor 743 to the transistor 747 in common. By adopting the above structure, the number of transistors each pixel has can be reduced.

在圖44中,示出四個像素共同使用電晶體743至電晶體747的方式,也可以為兩個像素、三個像素或五個像素以上共同使用電晶體743至電晶體747的方式。另外,可以任意組合該結構與圖40、圖41A和圖41B以及圖43A和圖43B所示的結構。 In FIG. 44, the manner in which the four pixels collectively use the transistor 743 to the transistor 747 is shown, and the transistor 743 to the transistor 747 may be commonly used for two pixels, three pixels, or more than five pixels. Further, the structure and the structures shown in FIGS. 40, 41A and 41B and FIGS. 43A and 43B can be arbitrarily combined.

本實施方式可以與其他實施方式所記載的結構適當地組合而實施。 This embodiment can be implemented in appropriate combination with the structures described in the other embodiments.

實施方式3 Embodiment 3

在本實施方式中,參照圖式對能夠用於本發明的一個實施方式的具有氧化物半導體的電晶體進行說明。注意,在本實施方式的圖式中,為了明確起見,放大、縮小或省略部分組件。 In the present embodiment, a transistor having an oxide semiconductor which can be used in one embodiment of the present invention will be described with reference to the drawings. Note that in the drawings of the present embodiment, some components are enlarged, reduced, or omitted for the sake of clarity.

圖45A和圖45B是本發明的一個實施方式的電晶體101的俯視圖及剖面圖。圖45A是俯視圖,圖45A所示的點劃線B1-B2方向上的剖面相當於圖45B。另外,圖45A所示的點劃線B3-B4方向上的剖面相當於圖47A。另外,將點劃線B1-B2方向稱為通道長度方向,將點劃線B3-B4方向稱為通道寬度方向。 45A and 45B are a plan view and a cross-sectional view of a transistor 101 according to an embodiment of the present invention. 45A is a plan view, and a cross section in the direction of the alternate long and short dash line B1-B2 shown in FIG. 45A corresponds to FIG. 45B. In addition, the cross section in the direction of the alternate long and short dash line B3-B4 shown in FIG. 45A corresponds to FIG. 47A. Further, the direction of the alternate long and short dash line B1-B2 is referred to as a channel length direction, and the direction of the alternate long and short dash line B3-B4 is referred to as a channel width direction.

電晶體101包括與基板115接觸的絕緣層120、與絕緣層120接觸的氧化物半導體層130、與氧化物半導體層130電連接的導電層140及導電層150、與氧化物半導體層130、導電層140及導電層150接觸的絕緣層160、與絕緣層160接觸的導電層170、與導電層140、導電層150、絕緣層160及導電層170接觸的絕緣層175以及與絕緣層175接觸的絕緣層180。此外,根據需要也可以使絕緣層180具有平坦化膜的功能。 The transistor 101 includes an insulating layer 120 in contact with the substrate 115, an oxide semiconductor layer 130 in contact with the insulating layer 120, a conductive layer 140 and a conductive layer 150 electrically connected to the oxide semiconductor layer 130, and an oxide semiconductor layer 130, and a conductive layer. The insulating layer 160 in contact with the layer 140 and the conductive layer 150, the conductive layer 170 in contact with the insulating layer 160, the insulating layer 175 in contact with the conductive layer 140, the conductive layer 150, the insulating layer 160 and the conductive layer 170, and the insulating layer 175 are in contact with Insulation layer 180. Further, the insulating layer 180 may have a function of planarizing the film as needed.

在此,導電層140、導電層150、絕緣層160及導電層170分別可以用 作源極電極層、汲極電極層、閘極絕緣膜及閘極電極層。 Here, the conductive layer 140, the conductive layer 150, the insulating layer 160, and the conductive layer 170 can be used separately As a source electrode layer, a gate electrode layer, a gate insulating film, and a gate electrode layer.

另外,圖45B所示的區域231、區域232及區域233分別可以用作源極區域、汲極區域及通道形成區域。區域231與導電層140接觸且區域232與導電層150接觸,藉由作為導電層140及導電層150使用容易與氧鍵合的導電材料可以降低區域231及區域232的電阻。 In addition, the region 231, the region 232, and the region 233 shown in FIG. 45B can be used as a source region, a drain region, and a channel formation region, respectively. The region 231 is in contact with the conductive layer 140 and the region 232 is in contact with the conductive layer 150. By using the conductive material which is easily bonded to oxygen as the conductive layer 140 and the conductive layer 150, the electric resistance of the region 231 and the region 232 can be lowered.

明確而言,由於氧化物半導體層130與導電層140及導電層150接觸,在氧化物半導體層130中產生氧缺陷,該氧缺陷與殘留在氧化物半導體層130中或從外部擴散的氫之間的相互作用使區域231及區域232成為低電阻的n型。 Specifically, since the oxide semiconductor layer 130 is in contact with the conductive layer 140 and the conductive layer 150, oxygen defects are generated in the oxide semiconductor layer 130, and the oxygen defects and hydrogen remaining in the oxide semiconductor layer 130 or diffused from the outside The interaction between the regions 231 and 232 is a low resistance n-type.

另外,電晶體的“源極”和“汲極”的功能在使用極性不同的電晶體的情況下或在電路工作中電流方向變化的情況等下,有時互相調換。因此,在本說明書中,“源極”和“汲極”可以互相調換。此外,“電極層”也可以稱為“佈線”。 Further, the functions of the "source" and "dip" of the transistor may be interchanged when using a transistor having a different polarity or when the current direction changes during operation of the circuit. Therefore, in the present specification, "source" and "drum" can be interchanged. Further, the "electrode layer" may also be referred to as "wiring."

導電層170包括導電層171及導電層172的兩層,但也可以是一層或三層以上的疊層。同樣也可以應用於本實施方式所說明的其他電晶體。 The conductive layer 170 includes two layers of the conductive layer 171 and the conductive layer 172, but may be one or three or more layers. The same can be applied to other transistors described in the present embodiment.

導電層140及導電層150為單層,但也可以是兩層以上的疊層。同樣也可以應用於本實施方式所說明的其他電晶體。 The conductive layer 140 and the conductive layer 150 are a single layer, but may be a laminate of two or more layers. The same can be applied to other transistors described in the present embodiment.

本發明的一個實施方式的電晶體也可以採用圖45C和圖45D所示的結構。圖45C是電晶體102的俯視圖,圖45C所示的點劃線C1-C2方向上的剖面相當於圖45D。另外,圖45C所示的點劃線C3-C4方向上的剖面相當於圖47B。另外,將點劃線C1-C2方向稱為通道長度方向,將點劃線C3-C4方向稱為通道寬度方向。 The transistor of one embodiment of the present invention can also adopt the structure shown in Figs. 45C and 45D. 45C is a plan view of the transistor 102, and a cross section in the direction of the chain line C1-C2 shown in FIG. 45C corresponds to FIG. 45D. In addition, the cross section in the direction of the chain line C3-C4 shown in FIG. 45C corresponds to FIG. 47B. In addition, the direction of the chain line C1-C2 is referred to as the channel length direction, and the direction of the chain line C3-C4 is referred to as the channel width direction.

電晶體102除了用作閘極絕緣膜的絕緣層160的端部不與用作閘極電極層的導電層170的端部對齊之處以外其他結構與電晶體101相同。在電晶體102中,由於導電層140及導電層150的較寬的部分由絕緣層160覆蓋,所以在導電層140、導電層150與導電層170之間的電阻高,因此電晶 體102具有閘極漏電少的特徵。 The structure of the transistor 102 is the same as that of the transistor 101 except that the end portion of the insulating layer 160 serving as the gate insulating film is not aligned with the end portion of the conductive layer 170 serving as the gate electrode layer. In the transistor 102, since the wider portion of the conductive layer 140 and the conductive layer 150 is covered by the insulating layer 160, the electric resistance between the conductive layer 140, the conductive layer 150 and the conductive layer 170 is high, and thus the electric crystal The body 102 has a feature that the gate leakage is small.

電晶體101及電晶體102是具有導電層170與導電層140及導電層150重疊的區域的頂閘極結構。為了減少寄生電容,較佳為將該區域的通道長度方向上的寬度設定為3nm以上且小於300nm。在該結構中,由於在氧化物半導體層130中不形成偏置區域,所以容易形成通態電流高的電晶體。 The transistor 101 and the transistor 102 are top gate structures having regions in which the conductive layer 170 overlaps the conductive layer 140 and the conductive layer 150. In order to reduce the parasitic capacitance, it is preferable to set the width in the channel length direction of the region to be 3 nm or more and less than 300 nm. In this configuration, since the offset region is not formed in the oxide semiconductor layer 130, it is easy to form a transistor having a high on-state current.

本發明的一個實施方式的電晶體也可以採用圖45E和圖45F所示的結構。圖45E是電晶體103的俯視圖,圖45E所示的點劃線D1-D2方向上的剖面相當於圖45F。另外,圖45E所示的點劃線D3-D4方向上的剖面相當於圖47A。另外,將點劃線D1-D2方向稱為通道長度方向,將點劃線D3-D4方向稱為通道寬度方向。 The transistor of one embodiment of the present invention can also adopt the structure shown in Figs. 45E and 45F. 45E is a plan view of the transistor 103, and a cross section in the direction of the alternate long and short dash line D1-D2 shown in FIG. 45E corresponds to FIG. 45F. In addition, the cross section in the direction of the alternate long and short dash line D3-D4 shown in FIG. 45E corresponds to FIG. 47A. In addition, the direction of the alternate long and short dash line D1-D2 is referred to as a channel length direction, and the direction of the alternate long and short dash line D3-D4 is referred to as a channel width direction.

電晶體103包括與基板115接觸的絕緣層120、與絕緣層120接觸的氧化物半導體層130、與氧化物半導體層130接觸的絕緣層160、與絕緣層160接觸的導電層170、覆蓋氧化物半導體層130、絕緣層160及導電層170的絕緣層175、與絕緣層175接觸的絕緣層180、藉由設置在絕緣層175及絕緣層180中的開口部與氧化物半導體層130電連接的導電層140及導電層150。此外,根據需要也可以包括與絕緣層180、導電層140及導電層150接觸的絕緣層(平坦化膜)等。 The transistor 103 includes an insulating layer 120 in contact with the substrate 115, an oxide semiconductor layer 130 in contact with the insulating layer 120, an insulating layer 160 in contact with the oxide semiconductor layer 130, a conductive layer 170 in contact with the insulating layer 160, and a capping oxide. The insulating layer 175 of the semiconductor layer 130, the insulating layer 160 and the conductive layer 170, and the insulating layer 180 in contact with the insulating layer 175 are electrically connected to the oxide semiconductor layer 130 through openings provided in the insulating layer 175 and the insulating layer 180. Conductive layer 140 and conductive layer 150. Further, an insulating layer (planarizing film) or the like which is in contact with the insulating layer 180, the conductive layer 140, and the conductive layer 150 may be included as needed.

導電層140、導電層150、絕緣層160及導電層170分別可以用作源極電極層、汲極電極層、閘極絕緣膜及閘極電極層。 The conductive layer 140, the conductive layer 150, the insulating layer 160, and the conductive layer 170 can be used as a source electrode layer, a gate electrode layer, a gate insulating film, and a gate electrode layer, respectively.

圖45F所示的區域231、區域232及區域233分別可以用作源極區域、汲極區域及通道形成區域。區域231及區域232與絕緣層175接觸,例如藉由作為絕緣層175使用含氫的絕緣材料可以降低區域231及區域232的電阻。 A region 231, a region 232, and a region 233 shown in Fig. 45F can be used as a source region, a drain region, and a channel formation region, respectively. The regions 231 and 232 are in contact with the insulating layer 175, and the electrical resistance of the regions 231 and 232 can be reduced, for example, by using an insulating material containing hydrogen as the insulating layer 175.

明確而言,經過直到形成絕緣層175為止的製程在區域231及區域232中產生的氧缺陷與從絕緣層175擴散到區域231及區域232的氫之間的相互作用,區域231及區域232成為低電阻的n型。此外,作為含氫的絕緣材料,例如可以使用氮化矽、氮化鋁等。 Specifically, the region 231 and the region 232 become the interaction between the oxygen defects generated in the regions 231 and 232 and the hydrogen diffused from the insulating layer 175 to the regions 231 and 232 through the process until the insulating layer 175 is formed. Low resistance n-type. Further, as the hydrogen-containing insulating material, for example, tantalum nitride, aluminum nitride, or the like can be used.

本發明的一個實施方式的電晶體也可以採用圖46A和圖46B所示的結構。圖46A是電晶體104的俯視圖,圖46A所示的點劃線E1-E2方向上的剖面相當於圖46B。另外,圖46A所示的點劃線E3-E4方向上的剖面相當於圖47A。另外,將點劃線E1-E2方向稱為通道長度方向,將點劃線E3-E4方向稱為通道寬度方向。 The transistor of one embodiment of the present invention can also adopt the structure shown in Figs. 46A and 46B. Fig. 46A is a plan view of the transistor 104, and a cross section in the direction of the alternate long and short dash line E1-E2 shown in Fig. 46A corresponds to Fig. 46B. In addition, the cross section in the direction of the alternate long and short dash line E3-E4 shown in FIG. 46A corresponds to FIG. 47A. In addition, the direction of the alternate long and short dash line E1-E2 is referred to as a channel length direction, and the direction of the alternate long and short dash line E3-E4 is referred to as a channel width direction.

電晶體104除了導電層140及導電層150覆蓋氧化物半導體層130的端部且與其接觸之處以外其他結構與電晶體103相同。 The transistor 104 has the same structure as the transistor 103 except that the conductive layer 140 and the conductive layer 150 cover the end portion of the oxide semiconductor layer 130 and are in contact therewith.

圖46B所示的區域331及區域334可以用作源極區域,區域332及區域335可以用作汲極區域,區域333可以用作通道形成區域。 A region 331 and a region 334 shown in FIG. 46B can be used as a source region, a region 332 and a region 335 can be used as a drain region, and a region 333 can be used as a channel formation region.

可以以與電晶體101中的區域231及區域232相同的方式降低區域331及區域332的電阻。 The resistance of the regions 331 and 332 can be reduced in the same manner as the regions 231 and 232 in the transistor 101.

可以以與電晶體103中的區域231及區域232相同的方式降低區域334及區域335的電阻。另外,當通道長度方向上的區域334及區域335的長度為100nm以下,較佳為50nm以下時,由於閘極電場有助於防止通態電流大幅度地下降,所以也可以不降低區域334及區域335的電阻。 The resistance of the regions 334 and 335 can be reduced in the same manner as the regions 231 and 232 in the transistor 103. Further, when the length of the region 334 and the region 335 in the channel length direction is 100 nm or less, preferably 50 nm or less, since the gate electric field contributes to prevention of a large drop in the on-state current, the region 334 may not be lowered. The resistance of region 335.

電晶體103及電晶體104的結構是不具有導電層170與導電層140及導電層150重疊的區域的自對準結構。自對準結構的電晶體由於閘極電極層與源極電極層及汲極電極層之間的寄生電容極小,所以適合於高速工作。 The structure of the transistor 103 and the transistor 104 is a self-aligned structure having no region in which the conductive layer 170 overlaps the conductive layer 140 and the conductive layer 150. The self-aligned transistor is suitable for high speed operation because the parasitic capacitance between the gate electrode layer and the source electrode layer and the gate electrode layer is extremely small.

本發明的一個實施方式的電晶體也可以採用圖46C和圖46D所示的結構。圖46C是電晶體105的俯視圖,圖46C所示的點劃線F1-F2方向上的剖面相當於圖46D。另外,圖46C所示的點劃線F3-F4方向上的剖面相當於圖47A。另外,將點劃線F1-F2方向稱為通道長度方向,將點劃線F3-F4方向稱為通道寬度方向。 The transistor of one embodiment of the present invention can also adopt the structure shown in Figs. 46C and 46D. Fig. 46C is a plan view of the transistor 105, and a cross section in the direction of the chain line F1-F2 shown in Fig. 46C corresponds to Fig. 46D. In addition, the cross section in the direction of the chain line F3-F4 shown in FIG. 46C corresponds to FIG. 47A. In addition, the direction of the chain line F1-F2 is referred to as the channel length direction, and the direction of the chain line F3-F4 is referred to as the channel width direction.

電晶體105包括與基板115接觸的絕緣層120、與絕緣層120接觸的氧化物半導體層130、與氧化物半導體層130電連接的導電層141及導電層 151、與氧化物半導體層130、導電層141及導電層151接觸的絕緣層160、與絕緣層160接觸的導電層170、與氧化物半導體層130、導電層141、導電層151、絕緣層160及導電層170接觸的絕緣層175、與絕緣層175接觸的絕緣層180、藉由設置在絕緣層175及絕緣層180中的開口部分別與導電層141及導電層151電連接的導電層142及導電層152。此外,根據需要也可以具有與絕緣層180、導電層142及導電層152接觸的絕緣層等。 The transistor 105 includes an insulating layer 120 in contact with the substrate 115, an oxide semiconductor layer 130 in contact with the insulating layer 120, a conductive layer 141 electrically connected to the oxide semiconductor layer 130, and a conductive layer. 151. An insulating layer 160 that is in contact with the oxide semiconductor layer 130, the conductive layer 141, and the conductive layer 151, a conductive layer 170 that is in contact with the insulating layer 160, and an oxide semiconductor layer 130, a conductive layer 141, a conductive layer 151, and an insulating layer 160. The insulating layer 175 in contact with the conductive layer 170, the insulating layer 180 in contact with the insulating layer 175, and the conductive layer 142 electrically connected to the conductive layer 141 and the conductive layer 151 through openings provided in the insulating layer 175 and the insulating layer 180, respectively. And a conductive layer 152. Further, an insulating layer or the like which is in contact with the insulating layer 180, the conductive layer 142, and the conductive layer 152 may be provided as needed.

在此,導電層141及導電層151與氧化物半導體層130的頂面接觸而不與側面接觸。 Here, the conductive layer 141 and the conductive layer 151 are in contact with the top surface of the oxide semiconductor layer 130 without being in contact with the side surface.

電晶體105除了包括導電層141及導電層151、以及包括設置在絕緣層175及絕緣層180中的開口部、包括藉由該開口部分別與導電層141及導電層151電連接的導電層142及導電層152之處以外,其他結構與電晶體101相同。可以將導電層140(導電層141及導電層142)用作源極電極層,且可以將導電層150(導電層151及導電層152)用作汲極電極層。 The transistor 105 includes a conductive layer 141 and a conductive layer 151, and an opening portion including the insulating layer 175 and the insulating layer 180, and a conductive layer 142 electrically connected to the conductive layer 141 and the conductive layer 151 through the opening portion, respectively. Other than the conductive layer 152, the other structure is the same as that of the transistor 101. The conductive layer 140 (the conductive layer 141 and the conductive layer 142) may be used as the source electrode layer, and the conductive layer 150 (the conductive layer 151 and the conductive layer 152) may be used as the gate electrode layer.

本發明的一個實施方式的電晶體也可以採用圖46E和圖46F所示的結構。圖46E是電晶體106的俯視圖,圖46E所示的點劃線G1-G2方向上的剖面相當於圖46F。另外,圖46A所示的點劃線G3-G4方向上的剖面相當於圖47A。另外,將點劃線G1-G2方向稱為通道長度方向,將點劃線G3-G4方向稱為通道寬度方向。 The transistor of one embodiment of the present invention can also adopt the structure shown in Figs. 46E and 46F. 46E is a plan view of the transistor 106, and a cross section in the direction of the alternate long and short dash line G1-G2 shown in FIG. 46E corresponds to FIG. 46F. In addition, the cross section in the direction of the alternate long and short dash line G3-G4 shown in FIG. 46A corresponds to FIG. 47A. Further, the direction of the alternate long and short dash line G1-G2 is referred to as a channel length direction, and the direction of the alternate long and short dash line G3-G4 is referred to as a channel width direction.

電晶體106包括與基板115接觸的絕緣層120、與絕緣層120接觸的氧化物半導體層130、與氧化物半導體層130電連接的導電層141及導電層151、與氧化物半導體層130接觸的絕緣層160、與絕緣層160接觸的導電層170、與絕緣層120、氧化物半導體層130、導電層141、導電層151、絕緣層160及導電層170接觸的絕緣層175、與絕緣層175接觸的絕緣層180、藉由設置在絕緣層175及絕緣層180中的開口部分別與導電層141及導電層151電連接的導電層142及導電層152。此外,根據需要也可以具有與絕緣層180、導電層142及導電層152接觸的絕緣層(平坦化膜)等。 The transistor 106 includes an insulating layer 120 in contact with the substrate 115, an oxide semiconductor layer 130 in contact with the insulating layer 120, a conductive layer 141 electrically connected to the oxide semiconductor layer 130, and a conductive layer 151 in contact with the oxide semiconductor layer 130. The insulating layer 160, the conductive layer 170 in contact with the insulating layer 160, the insulating layer 175 in contact with the insulating layer 120, the oxide semiconductor layer 130, the conductive layer 141, the conductive layer 151, the insulating layer 160, and the conductive layer 170, and the insulating layer 175 The insulating layer 180 that is in contact with the conductive layer 142 and the conductive layer 152 that are electrically connected to the conductive layer 141 and the conductive layer 151 by openings provided in the insulating layer 175 and the insulating layer 180, respectively. Further, an insulating layer (planarizing film) or the like which is in contact with the insulating layer 180, the conductive layer 142, and the conductive layer 152 may be provided as needed.

導電層141及導電層151與氧化物半導體層130的頂面接觸而不與側面接觸。 The conductive layer 141 and the conductive layer 151 are in contact with the top surface of the oxide semiconductor layer 130 without being in contact with the side surface.

電晶體106除了包括導電層141及導電層151之處以外其他結構與電晶體103相同。可以將導電層140(導電層141及導電層142)用作源極電極層,且可以將導電層150(導電層151及導電層152)用作汲極電極層。 The structure of the transistor 106 is the same as that of the transistor 103 except that the conductive layer 141 and the conductive layer 151 are included. The conductive layer 140 (the conductive layer 141 and the conductive layer 142) may be used as the source electrode layer, and the conductive layer 150 (the conductive layer 151 and the conductive layer 152) may be used as the gate electrode layer.

在電晶體105及電晶體106中,由於導電層140及導電層150不與絕緣層120接觸,所以絕緣層120中的氧不容易被導電層140及導電層150奪取,容易將氧從絕緣層120供應給氧化物半導體層130中。 In the transistor 105 and the transistor 106, since the conductive layer 140 and the conductive layer 150 are not in contact with the insulating layer 120, oxygen in the insulating layer 120 is not easily taken up by the conductive layer 140 and the conductive layer 150, and oxygen is easily removed from the insulating layer. 120 is supplied to the oxide semiconductor layer 130.

此外,也可以對電晶體103中的區域231及區域232、電晶體104及電晶體106中的區域334及區域335添加用來形成氧缺陷來提高導電率的雜質。作為在氧化物半導體層中形成氧缺陷的雜質,例如可以使用選自磷、砷、銻、硼、鋁、矽、氮、氦、氖、氬、氪、氙、銦、氟、氯、鈦、鋅及碳中的一種以上。作為該雜質的添加方法,可以使用電漿處理法、離子植入法、離子摻雜法、電漿浸沒離子佈植技術(Plasma-immersion ion implantation method)等。 Further, impurities for forming oxygen defects to increase conductivity may be added to the regions 231 and 232 in the transistor 103, the transistor 104, and the regions 334 and 335 in the transistor 106. As the impurity which forms oxygen defects in the oxide semiconductor layer, for example, phosphorus, arsenic, antimony, boron, aluminum, antimony, nitrogen, antimony, krypton, argon, krypton, neon, indium, fluorine, chlorine, titanium, or the like can be used. More than one of zinc and carbon. As a method of adding the impurities, a plasma treatment method, an ion implantation method, an ion doping method, a plasma-immersion ion implantation method, or the like can be used.

藉由將上述元素作為雜質元素添加到氧化物半導體層,氧化物半導體層中的金屬元素與氧之間的鍵合被切斷,形成氧缺陷。藉由包含在氧化物半導體層中的氧缺陷與殘留在氧化物半導體層中或在後面添加的氫之間的相互作用,可以提高氧化物半導體層的導電率。 By adding the above element as an impurity element to the oxide semiconductor layer, the bond between the metal element and oxygen in the oxide semiconductor layer is cut to form an oxygen defect. The conductivity of the oxide semiconductor layer can be improved by the interaction between the oxygen defects contained in the oxide semiconductor layer and the hydrogen remaining in the oxide semiconductor layer or added later.

當對添加雜質元素形成有氧缺陷的氧化物半導體添加氫時,氫進入氧缺陷處而在導帶附近形成施體能階。其結果是,可以形成氧化物導電體。這裡氧化物導電體是指導電體化的氧化物半導體。另外,氧化物導電體與氧化物半導體同樣地具有透光性。 When hydrogen is added to an oxide semiconductor in which an impurity element is added to form an oxygen defect, hydrogen enters an oxygen defect to form a donor energy level in the vicinity of the conduction band. As a result, an oxide conductor can be formed. Here, the oxide conductor is an oxide semiconductor that directs electrochemistry. Further, the oxide conductor has translucency similar to that of the oxide semiconductor.

氧化物導電體是簡併半導體,可以推測其導帶端與費米能階一致或大致一致。因此,氧化物導電體層與用作源極電極層及汲極電極層的導電層之間的接觸是歐姆接觸,可以降低氧化物導電體層與用作源極電極層及汲極電極層的導電層之間的接觸電阻。 The oxide conductor is a degenerate semiconductor, and it can be inferred that the conduction band end is identical or substantially identical to the Fermi level. Therefore, the contact between the oxide conductor layer and the conductive layer serving as the source electrode layer and the gate electrode layer is an ohmic contact, and the oxide conductor layer and the conductive layer serving as the source electrode layer and the gate electrode layer can be reduced. Contact resistance between.

如圖48A至圖48F的通道長度方向的剖面圖以及圖47C和圖47D的通 道寬度方向的剖面圖所示,本發明的一個實施方式的電晶體也可以包括氧化物半導體層130與基板115之間的導電層173。藉由將導電層173用作第二閘極電極層(背閘極),能夠增加通態電流或控制臨界電壓。此外,在圖48A至圖48F所示的剖面圖中,導電層173的寬度可以比氧化物半導體層130短。再者,導電層173的寬度可以比導電層170短。 A cross-sectional view of the channel length direction as shown in FIGS. 48A to 48F and the passage of FIGS. 47C and 47D As shown in the cross-sectional view in the width direction of the track, the transistor of one embodiment of the present invention may also include a conductive layer 173 between the oxide semiconductor layer 130 and the substrate 115. By using the conductive layer 173 as the second gate electrode layer (back gate), the on-state current or the control threshold voltage can be increased. Further, in the cross-sectional views shown in FIGS. 48A to 48F, the width of the conductive layer 173 may be shorter than that of the oxide semiconductor layer 130. Furthermore, the width of the conductive layer 173 may be shorter than that of the conductive layer 170.

當想要增加通態電流時,例如,可以對導電層170及導電層173供應相同的電位來實現雙閘極電晶體。另外,當想要控制臨界電壓時,可以對導電層173供應與導電層170不同的恆電位。為了對導電層170及導電層173供應相同的電位,例如,如圖47D所示,可以藉由接觸孔使導電層170與導電層173電連接。 When it is desired to increase the on-state current, for example, the same potential can be supplied to the conductive layer 170 and the conductive layer 173 to realize a double gate transistor. In addition, when it is desired to control the threshold voltage, the conductive layer 173 may be supplied with a constant potential different from that of the conductive layer 170. In order to supply the same potential to the conductive layer 170 and the conductive layer 173, for example, as shown in FIG. 47D, the conductive layer 170 may be electrically connected to the conductive layer 173 by a contact hole.

圖45A至圖46F中的電晶體101至電晶體106是氧化物半導體層130為單層的例子,但是氧化物半導體層130也可以為疊層。電晶體101至電晶體106的氧化物半導體層130可以與圖49B、圖49C或圖49D、圖49E所示的氧化物半導體層130調換。 The transistor 101 to the transistor 106 in FIGS. 45A to 46F are examples in which the oxide semiconductor layer 130 is a single layer, but the oxide semiconductor layer 130 may also be a laminate. The oxide semiconductor layer 130 of the transistor 101 to the transistor 106 can be exchanged with the oxide semiconductor layer 130 shown in FIG. 49B, FIG. 49C or FIG. 49D, FIG. 49E.

圖49A是氧化物半導體層130的俯視圖,圖49B和圖49C是兩層結構的氧化物半導體層130的剖面圖。另外,圖49D和圖49E是三層結構的氧化物半導體層130的剖面圖。 49A is a plan view of the oxide semiconductor layer 130, and FIGS. 49B and 49C are cross-sectional views of the oxide semiconductor layer 130 of a two-layer structure. In addition, FIG. 49D and FIG. 49E are cross-sectional views of the oxide semiconductor layer 130 of a three-layer structure.

作為氧化物半導體層130a、氧化物半導體層130b、氧化物半導體層130c可以使用其組成彼此不同的氧化物半導體層等。 As the oxide semiconductor layer 130a, the oxide semiconductor layer 130b, and the oxide semiconductor layer 130c, an oxide semiconductor layer or the like having different compositions from each other can be used.

本發明的一個實施方式的電晶體也可以採用圖50A和圖50B所示的結構。圖50A是電晶體107的俯視圖,圖50A所示的點劃線H1-H2方向上的剖面相當於圖50B。另外,圖50A所示的點劃線H3-H4方向上的剖面相當於圖52A。另外,將點劃線H1-H2方向稱為通道長度方向,將點劃線H3-H4方向稱為通道寬度方向。 The transistor of one embodiment of the present invention can also adopt the structure shown in Figs. 50A and 50B. Fig. 50A is a plan view of the transistor 107, and a cross section in the direction of the chain line H1-H2 shown in Fig. 50A corresponds to Fig. 50B. In addition, the cross section in the direction of the alternate long and short dash line H3-H4 shown in FIG. 50A corresponds to FIG. 52A. In addition, the direction of the chain line H1-H2 is referred to as the channel length direction, and the direction of the chain line H3-H4 is referred to as the channel width direction.

電晶體107包括與基板115接觸的絕緣層120、與絕緣層120接觸的由氧化物半導體層130a及氧化物半導體層130b形成的疊層、與該疊層電連接的導電層140及導電層150、與該疊層、導電層140及導電層150接觸的 氧化物半導體層130c、與氧化物半導體層130c接觸的絕緣層160、與絕緣層160接觸的導電層170、與導電層140、導電層150、氧化物半導體層130c、絕緣層160及導電層170接觸的絕緣層175、與絕緣層175接觸的絕緣層180。此外,根據需要也可以使絕緣層180具有平坦化膜的功能。 The transistor 107 includes an insulating layer 120 in contact with the substrate 115, a laminate formed of the oxide semiconductor layer 130a and the oxide semiconductor layer 130b in contact with the insulating layer 120, and a conductive layer 140 and a conductive layer 150 electrically connected to the laminate. Contacting the laminate, the conductive layer 140, and the conductive layer 150 The oxide semiconductor layer 130c, the insulating layer 160 in contact with the oxide semiconductor layer 130c, the conductive layer 170 in contact with the insulating layer 160, the conductive layer 140, the conductive layer 150, the oxide semiconductor layer 130c, the insulating layer 160, and the conductive layer 170 The insulating layer 175 is in contact with the insulating layer 180 in contact with the insulating layer 175. Further, the insulating layer 180 may have a function of planarizing the film as needed.

電晶體107除了在區域231及區域232中氧化物半導體層130為兩層(氧化物半導體層130a、氧化物半導體層130b)、在區域233中氧化物半導體層130為三層(氧化物半導體層130a、氧化物半導體層130b、氧化物半導體層130c)、以及在導電層140及導電層150與絕緣層160之間夾有氧化物半導體層的一部分(氧化物半導體層130c)之處以外其他結構與電晶體101相同。 The transistor 107 has two layers (the oxide semiconductor layer 130a, the oxide semiconductor layer 130b) in the region 231 and the region 232, and three layers of the oxide semiconductor layer 130 in the region 233 (the oxide semiconductor layer). 130a, the oxide semiconductor layer 130b, the oxide semiconductor layer 130c), and other structures other than the portion where the oxide semiconductor layer (the oxide semiconductor layer 130c) is interposed between the conductive layer 140 and the conductive layer 150 and the insulating layer 160 The same as the transistor 101.

本發明的一個實施方式的電晶體也可以採用圖50C和圖50D所示的結構。圖50C是電晶體108的俯視圖,圖50C所示的點劃線I1-I2方向上的剖面相當於圖50D。另外,圖50C所示的點劃線I3-I4方向上的剖面相當於圖52B。另外,將點劃線I1-I2方向稱為通道長度方向,將點劃線I3-I4方向稱為通道寬度方向。 The transistor of one embodiment of the present invention can also adopt the structure shown in Figs. 50C and 50D. 50C is a plan view of the transistor 108, and a cross section in the direction of the chain line I1-I2 shown in FIG. 50C corresponds to FIG. 50D. In addition, the cross section in the direction of the alternate long and short dash line I3-I4 shown in FIG. 50C corresponds to FIG. 52B. Further, the direction of the chain line I1-I2 is referred to as the channel length direction, and the direction of the chain line I3-I4 is referred to as the channel width direction.

電晶體108與電晶體107不同之處是如下:絕緣層160及氧化物半導體層130c的端部與導電層170的端部不一致。 The transistor 108 differs from the transistor 107 in that the ends of the insulating layer 160 and the oxide semiconductor layer 130c do not coincide with the ends of the conductive layer 170.

本發明的一個實施方式的電晶體也可以採用圖50E和圖50F所示的結構。圖50E是電晶體109的俯視圖,圖50E所示的點劃線J1-J2方向上的剖面相當於圖50F。另外,圖50E所示的點劃線J3-J4方向上的剖面相當於圖52A。另外,將點劃線J1-J2方向稱為通道長度方向,將點劃線J3-J4方向稱為通道寬度方向。 The transistor of one embodiment of the present invention can also adopt the structure shown in Figs. 50E and 50F. 50E is a plan view of the transistor 109, and a cross section in the direction of the chain line J1-J2 shown in FIG. 50E corresponds to FIG. 50F. In addition, the cross section in the direction of the chain line J3-J4 shown in FIG. 50E corresponds to FIG. 52A. In addition, the direction of the chain line J1-J2 is referred to as the channel length direction, and the direction of the chain line J3-J4 is referred to as the channel width direction.

電晶體109包括與基板115接觸的絕緣層120、與絕緣層120接觸的由氧化物半導體層130a及氧化物半導體層130b形成的疊層、與該疊層接觸的氧化物半導體層130c、與氧化物半導體層130c接觸的絕緣層160、與絕緣層160接觸的導電層170、覆蓋該疊層、氧化物半導體層130c、絕緣層160及導電層170的絕緣層175、與絕緣層175接觸的絕緣層180、藉由設置在絕緣層175及絕緣層180中的開口部與該疊層電連接的導電層140及 導電層150。此外,根據需要也可以包括與絕緣層180、導電層140及導電層150接觸的絕緣層(平坦化膜)等。 The transistor 109 includes an insulating layer 120 in contact with the substrate 115, a laminate formed of the oxide semiconductor layer 130a and the oxide semiconductor layer 130b in contact with the insulating layer 120, an oxide semiconductor layer 130c in contact with the laminate, and oxidation. The insulating layer 160 in contact with the semiconductor layer 130c, the conductive layer 170 in contact with the insulating layer 160, the insulating layer 175 covering the laminate, the oxide semiconductor layer 130c, the insulating layer 160 and the conductive layer 170, and the insulating layer 175 in contact with the insulating layer 175 a layer 180, a conductive layer 140 electrically connected to the stack by an opening provided in the insulating layer 175 and the insulating layer 180, and Conductive layer 150. Further, an insulating layer (planarizing film) or the like which is in contact with the insulating layer 180, the conductive layer 140, and the conductive layer 150 may be included as needed.

電晶體109除了在區域231及區域232中氧化物半導體層130為兩層(氧化物半導體層130a、氧化物半導體層130b)、在區域233中氧化物半導體層130為三層(氧化物半導體層130a、氧化物半導體層130b、氧化物半導體層130c)之處以外其他結構與電晶體103相同。 The transistor 109 has two layers (the oxide semiconductor layer 130a, the oxide semiconductor layer 130b) in the region 231 and the region 232, and three layers of the oxide semiconductor layer 130 in the region 233 (the oxide semiconductor layer). The structure other than the 130a, the oxide semiconductor layer 130b, and the oxide semiconductor layer 130c) is the same as that of the transistor 103.

本發明的一個實施方式的電晶體也可以採用圖51A和圖51B所示的結構。圖51A是電晶體110的俯視圖,圖51A所示的點劃線K1-K2方向上的剖面相當於圖51B。另外,圖51A所示的點劃線K3-K4方向上的剖面相當於圖52A。另外,將點劃線K1-K2方向稱為通道長度方向,將點劃線K3-K4方向稱為通道寬度方向。 The transistor of one embodiment of the present invention can also adopt the structure shown in Figs. 51A and 51B. Fig. 51A is a plan view of the transistor 110, and a cross section in the direction of the chain line K1-K2 shown in Fig. 51A corresponds to Fig. 51B. In addition, the cross section in the direction of the chain line K3-K4 shown in FIG. 51A corresponds to FIG. 52A. In addition, the direction of the chain line K1-K2 is referred to as the channel length direction, and the direction of the chain line K3-K4 is referred to as the channel width direction.

電晶體110除了在區域331及區域332中氧化物半導體層130為兩層(氧化物半導體層130a、氧化物半導體層130b)、在區域333中氧化物半導體層130為三層(氧化物半導體層130a、氧化物半導體層130b、氧化物半導體層130c)之處以外其他結構與電晶體104相同。 The transistor 110 has two layers of the oxide semiconductor layer 130 (the oxide semiconductor layer 130a, the oxide semiconductor layer 130b) in the region 331 and the region 332, and three layers of the oxide semiconductor layer 130 in the region 333 (the oxide semiconductor layer) The structure other than the 130a, the oxide semiconductor layer 130b, and the oxide semiconductor layer 130c) is the same as that of the transistor 104.

本發明的一個實施方式的電晶體也可以採用圖51C和圖51D所示的結構。圖51C是電晶體111的俯視圖,圖51C所示的點劃線L1-L2方向上的剖面相當於圖51D。另外,圖51C所示的點劃線L3-L4方向上的剖面相當於圖52A。另外,將點劃線L1-L2方向稱為通道長度方向,將點劃線L3-L4方向稱為通道寬度方向。 The transistor of one embodiment of the present invention can also adopt the structure shown in Figs. 51C and 51D. 51C is a plan view of the transistor 111, and a cross section in the direction of the alternate long and short dash line L1-L2 shown in FIG. 51C corresponds to FIG. 51D. In addition, the cross section in the direction of the alternate long and short dash line L3-L4 shown in FIG. 51C corresponds to FIG. 52A. Further, the direction of the alternate long and short dash line L1-L2 is referred to as a channel length direction, and the direction of the alternate long and short dash line L3-L4 is referred to as a channel width direction.

電晶體111包括與基板115接觸的絕緣層120、與絕緣層120接觸的由氧化物半導體層130a及氧化物半導體層130b形成的疊層、與該疊層電連接的導電層141及導電層151、與該疊層、導電層141及導電層151接觸的氧化物半導體層130c、與氧化物半導體層130c接觸的絕緣層160、與絕緣層160接觸的導電層170、與該疊層、導電層141、導電層151、氧化物半導體層130c、絕緣層160及導電層170接觸的絕緣層175、與絕緣層175接觸的絕緣層180、藉由設置在絕緣層175及絕緣層180中的開口部分別與導電層141及導電層151電連接的導電層142及導電層152。此外,根據需 要也可以具有與絕緣層180、導電層142及導電層152接觸的絕緣層(平坦化膜)等。 The transistor 111 includes an insulating layer 120 in contact with the substrate 115, a laminate formed of the oxide semiconductor layer 130a and the oxide semiconductor layer 130b in contact with the insulating layer 120, a conductive layer 141 electrically connected to the laminate, and a conductive layer 151. An oxide semiconductor layer 130c in contact with the laminate, the conductive layer 141 and the conductive layer 151, an insulating layer 160 in contact with the oxide semiconductor layer 130c, a conductive layer 170 in contact with the insulating layer 160, and the laminate and the conductive layer 141, the conductive layer 151, the oxide semiconductor layer 130c, the insulating layer 160 and the conductive layer 170 are in contact with the insulating layer 175, the insulating layer 180 in contact with the insulating layer 175, and the opening portion provided in the insulating layer 175 and the insulating layer 180. The conductive layer 142 and the conductive layer 152 are not electrically connected to the conductive layer 141 and the conductive layer 151. In addition, according to needs It is also possible to have an insulating layer (planarizing film) or the like which is in contact with the insulating layer 180, the conductive layer 142, and the conductive layer 152.

電晶體111除了在區域231及區域232中氧化物半導體層130為兩層(氧化物半導體層130a、氧化物半導體層130b)、在區域233中氧化物半導體層130為三層(氧化物半導體層130a、氧化物半導體層130b、氧化物半導體層130c)、以及在導電層141及導電層151與絕緣層160之間夾有氧化物半導體層的一部分(氧化物半導體層130c)之處以外其他結構與電晶體105相同。 The transistor 111 has two layers of the oxide semiconductor layer 130 (the oxide semiconductor layer 130a, the oxide semiconductor layer 130b) in the regions 231 and 232, and three layers of the oxide semiconductor layer 130 in the region 233 (the oxide semiconductor layer). 130a, the oxide semiconductor layer 130b, the oxide semiconductor layer 130c), and other structures other than the portion where the oxide semiconductor layer (the oxide semiconductor layer 130c) is interposed between the conductive layer 141 and the conductive layer 151 and the insulating layer 160 The same as the transistor 105.

本發明的一個實施方式的電晶體也可以採用圖51E和圖51F所示的結構。圖51E是電晶體112的俯視圖,圖51E所示的點劃線M1-M2方向上的剖面相當於圖51F。另外,圖51E所示的點劃線M3-M4方向上的剖面相當於圖52A。另外,將點劃線M1-M2方向稱為通道長度方向,將點劃線M3-M4方向稱為通道寬度方向。 The transistor of one embodiment of the present invention can also adopt the structure shown in Figs. 51E and 51F. 51E is a plan view of the transistor 112, and a cross section in the direction of the chain line M1-M2 shown in FIG. 51E corresponds to FIG. 51F. In addition, the cross section in the direction of the chain line M3-M4 shown in FIG. 51E corresponds to FIG. 52A. In addition, the direction of the chain line M1-M2 is referred to as the channel length direction, and the direction of the chain line M3-M4 is referred to as the channel width direction.

電晶體112除了在區域331、區域332、區域334及區域335中氧化物半導體層130為兩層(氧化物半導體層130a、氧化物半導體層130b)、在區域333中氧化物半導體層130為三層(氧化物半導體層130a、氧化物半導體層130b、氧化物半導體層130c)之處以外其他結構與電晶體106相同。 The transistor 112 has two layers of the oxide semiconductor layer 130 (the oxide semiconductor layer 130a, the oxide semiconductor layer 130b) in the region 331, the region 332, the region 334, and the region 335, and the oxide semiconductor layer 130 is three in the region 333. The structure other than the layer (the oxide semiconductor layer 130a, the oxide semiconductor layer 130b, and the oxide semiconductor layer 130c) is the same as that of the transistor 106.

如圖53A至圖53F的通道長度方向的剖面圖以及圖52C和圖52D的通道寬度方向的剖面圖所示,本發明的一個實施方式的電晶體也可以包括氧化物半導體層130與基板115之間的導電層173。當將該導電層用作第二閘極電極層(背閘極)時,能夠進一步增加通態電流或控制臨界電壓。此外,在圖53A至圖53F所示的剖面圖中,導電層173的寬度可以比氧化物半導體層130短。再者,導電層173的寬度可以比導電層170短。 As shown in the cross-sectional view of the channel length direction of FIGS. 53A to 53F and the cross-sectional view of the channel width direction of FIGS. 52C and 52D, the transistor of one embodiment of the present invention may also include the oxide semiconductor layer 130 and the substrate 115. Conductive layer 173 between. When the conductive layer is used as the second gate electrode layer (back gate), the on-state current or the control threshold voltage can be further increased. Further, in the cross-sectional views shown in FIGS. 53A to 53F, the width of the conductive layer 173 may be shorter than that of the oxide semiconductor layer 130. Furthermore, the width of the conductive layer 173 may be shorter than that of the conductive layer 170.

另外,本發明的一個實施方式的電晶體可以採用圖54A及圖54B所示的結構。圖54A是俯視圖,圖54B是對應於圖54A所示的點劃線N1-N2及點劃線N3-N4的剖面圖。另外,在圖54A的俯視圖中,為了明確起見,省略組件的一部分。 Further, the transistor of one embodiment of the present invention can adopt the structure shown in FIGS. 54A and 54B. 54A is a plan view, and FIG. 54B is a cross-sectional view corresponding to the chain line N1-N2 and the chain line N3-N4 shown in FIG. 54A. In addition, in the plan view of Fig. 54A, a part of the assembly is omitted for the sake of clarity.

圖54A及圖54B所示的電晶體113包括:基板115;基板115上的絕緣層120;絕緣層120上的氧化物半導體層130(氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c);與氧化物半導體層130接觸且彼此相隔的導電層140及導電層150;與氧化物半導體層130c接觸的絕緣層160;以及與絕緣層160接觸的導電層170。另外,氧化物半導體層130c、絕緣層160及導電層170設置在開口部中,該開口部形成在電晶體113上的絕緣層190中且到達氧化物半導體層130a、氧化物半導體層130b及絕緣層120。 The transistor 113 shown in FIGS. 54A and 54B includes a substrate 115, an insulating layer 120 on the substrate 115, and an oxide semiconductor layer 130 on the insulating layer 120 (the oxide semiconductor layer 130a, the oxide semiconductor layer 130b, and the oxide semiconductor). The layer 130c); the conductive layer 140 and the conductive layer 150 in contact with the oxide semiconductor layer 130 and spaced apart from each other; the insulating layer 160 in contact with the oxide semiconductor layer 130c; and the conductive layer 170 in contact with the insulating layer 160. Further, the oxide semiconductor layer 130c, the insulating layer 160, and the conductive layer 170 are provided in the opening portion which is formed in the insulating layer 190 on the transistor 113 and reaches the oxide semiconductor layer 130a, the oxide semiconductor layer 130b, and the insulating layer. Layer 120.

與上述電晶體的結構相比,在電晶體113的結構中,成為源極電極或汲極電極的導電體與成為閘極電極的導電體重疊的區域少,由此可以使寄生電容小。由此,電晶體113適合於需要高速工作的電路的組件。如圖54B所示,電晶體113的頂面較佳為利用CMP法等進行平坦化,但是也可以不進行平坦化。 In the structure of the transistor 113, in the structure of the transistor 113, the region where the conductor serving as the source electrode or the drain electrode overlaps with the conductor serving as the gate electrode is small, whereby the parasitic capacitance can be made small. Thus, the transistor 113 is suitable for components of circuits that require high speed operation. As shown in FIG. 54B, the top surface of the transistor 113 is preferably planarized by a CMP method or the like, but it may not be planarized.

如圖55A和圖55B所示的俯視圖(僅示出氧化物半導體層130、導電層140及導電層150)那樣,可以使本發明的一個實施方式的電晶體中的導電層140(源極電極層)及導電層150(汲極電極層)的寬度(WSD)比氧化物半導體層130的寬度(WOS)長或短。當滿足WOS WSD(WSD為WOS以下)的關係時,閘極電場容易施加到氧化物半導體層整體,可以提高電晶體的電特性。此外,如圖55C所示,導電層140及導電層150也可以僅形成於與氧化物半導體層130重疊的區域。 As shown in the top view shown in FIGS. 55A and 55B (only the oxide semiconductor layer 130, the conductive layer 140, and the conductive layer 150 are shown), the conductive layer 140 (source electrode) in the transistor of one embodiment of the present invention can be made. The width (W SD ) of the layer) and the conductive layer 150 (the drain electrode layer) is longer or shorter than the width (W OS ) of the oxide semiconductor layer 130. When meeting W OS When W SD (W SD is W OS or less), the gate electric field is easily applied to the entire oxide semiconductor layer, and the electrical characteristics of the transistor can be improved. Further, as shown in FIG. 55C, the conductive layer 140 and the conductive layer 150 may be formed only in a region overlapping the oxide semiconductor layer 130.

在本發明的一個實施方式的電晶體(電晶體101至電晶體113)中的任何結構中,作為閘極電極層的導電層170隔著作為閘極絕緣膜的絕緣層160在通道寬度方向上電性上包圍氧化物半導體層130,由此可以提高通態電流。將這種電晶體結構稱為surrounded channel(s-channel)結構。 In any of the transistors (the transistor 101 to the transistor 113) of one embodiment of the present invention, the conductive layer 170 as the gate electrode layer is interposed as the insulating layer 160 of the gate insulating film in the channel width direction. The oxide semiconductor layer 130 is electrically surrounded, whereby the on-state current can be increased. This transistor structure is referred to as a surrounded channel (s-channel) structure.

在具有氧化物半導體層130a及氧化物半導體層130b的電晶體以及具有氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c的電晶體中,藉由適當地選擇構成氧化物半導體層130的兩層或三層的材料,可以將電流流過在氧化物半導體層130b中。由於電流流過氧化物半導體層130b,因此不容易受到介面散射的影響,所以可以獲得很大的通態電流。 由此,有時藉由增加氧化物半導體層130b的厚度增加通態電流。 In the transistor having the oxide semiconductor layer 130a and the oxide semiconductor layer 130b and the transistor having the oxide semiconductor layer 130a, the oxide semiconductor layer 130b, and the oxide semiconductor layer 130c, the oxide semiconductor layer is appropriately selected by arranging Two or three layers of material of 130 may flow current through the oxide semiconductor layer 130b. Since the current flows through the peroxide semiconductor layer 130b, it is not easily affected by the interface scattering, so that a large on-state current can be obtained. Thereby, the on-state current is sometimes increased by increasing the thickness of the oxide semiconductor layer 130b.

藉由採用上述結構,可以提高電晶體的電特性。 By adopting the above structure, the electrical characteristics of the transistor can be improved.

本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。 The structure shown in this embodiment can be implemented in appropriate combination with the structure shown in the other embodiment.

實施方式4 Embodiment 4

在本實施方式中對實施方式2所示的電晶體的組件進行詳細的說明。 In the present embodiment, the module of the transistor shown in the second embodiment will be described in detail.

作為基板115,可以使用玻璃基板、石英基板、半導體基板、陶瓷基板、對表面進行了絕緣處理的金屬基板等。或者,作為基板115,可以使用形成有電晶體或光電二極體的矽基板,該矽基板上形成有絕緣層、佈線、用作接觸插頭的導電體等。另外,當對矽基板形成p通道型電晶體時,較佳為使用具有n-型導電型的矽基板。另外,也可以使用包括n-型或i型矽層的SOI基板。另外,當對矽基板設置的電晶體為p通道型電晶體時,較佳為使用如下矽基板:形成電晶體的表面的晶體配向為(110)面。藉由在(110)面形成p通道型電晶體,可以提高移動率。 As the substrate 115, a glass substrate, a quartz substrate, a semiconductor substrate, a ceramic substrate, a metal substrate on which the surface is insulated, or the like can be used. Alternatively, as the substrate 115, a germanium substrate on which a transistor or a photodiode is formed may be used, and an insulating layer, a wiring, a conductor used as a contact plug, and the like are formed on the substrate. Further, when a p-channel type transistor is formed for the germanium substrate, it is preferable to use a germanium substrate having an n - -type conductivity type. In addition, an SOI substrate including an n - type or i-type germanium layer can also be used. Further, when the transistor provided for the germanium substrate is a p-channel type transistor, it is preferable to use a germanium substrate in which the crystal alignment of the surface on which the transistor is formed is the (110) plane. The mobility can be improved by forming a p-channel type transistor on the (110) plane.

絕緣層120除了防止雜質從包含在基板115中的組件擴散的功能以外,還可以具有對氧化物半導體層130供應氧的功能。因此,絕緣層120較佳為含氧的絕緣膜,更佳為包含比化學計量組成多的氧的絕緣膜。在絕緣層120中,利用TDS(Thermal Desorption Spectroscopy:熱脫附譜)法而測量的換算為氧原子的氧釋放量較佳為1.0×1019atoms/cm3以上。注意,上述TDS分析時的膜的表面溫度為100℃以上且700℃以下或為100℃以上且500℃以下。此外,當基板115是形成有其他裝置的基板時,絕緣層120還用作層間絕緣膜。在此情況下,較佳為利用CMP法等進行平坦化處理,以使其表面平坦。 The insulating layer 120 may have a function of supplying oxygen to the oxide semiconductor layer 130 in addition to a function of preventing impurities from diffusing from components included in the substrate 115. Therefore, the insulating layer 120 is preferably an oxygen-containing insulating film, more preferably an insulating film containing more oxygen than a stoichiometric composition. In the insulating layer 120, the amount of oxygen released in terms of oxygen atoms measured by a TDS (Thermal Desorption Spectroscopy) method is preferably 1.0 × 10 19 atoms/cm 3 or more. Note that the surface temperature of the film at the time of the above TDS analysis is 100 ° C or more and 700 ° C or less or 100 ° C or more and 500 ° C or less. Further, when the substrate 115 is a substrate on which other devices are formed, the insulating layer 120 also functions as an interlayer insulating film. In this case, it is preferable to perform a planarization process by a CMP method or the like to flatten the surface.

例如,作為絕緣層120可以使用氧化鋁、氧化鎂、氧化矽、氧氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿和氧化鉭等氧化物絕緣膜、氮化矽、氮氧化矽、氮化鋁和氮氧化鋁等氮化物絕緣膜或 者這些的混合材料。此外,也可以使用上述材料的疊層。 For example, as the insulating layer 120, an oxide insulating film such as aluminum oxide, magnesium oxide, cerium oxide, cerium oxynitride, gallium oxide, cerium oxide, cerium oxide, zirconium oxide, cerium oxide, cerium oxide, cerium oxide or cerium oxide can be used. a nitride insulating film such as tantalum nitride, niobium oxynitride, aluminum nitride or aluminum oxynitride or These are the mixed materials. Further, a laminate of the above materials can also be used.

在本實施方式中,以電晶體所具有的氧化物半導體層130具有從絕緣層120一側依次層疊氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c的三層結構的情況為主而進行詳細的說明。 In the present embodiment, the oxide semiconductor layer 130 of the transistor has a three-layer structure in which the oxide semiconductor layer 130a, the oxide semiconductor layer 130b, and the oxide semiconductor layer 130c are stacked in this order from the insulating layer 120 side. The main and detailed description.

此外,當氧化物半導體層130為單層時,可以使用相當於本實施方式所示的氧化物半導體層130b的層。 Further, when the oxide semiconductor layer 130 is a single layer, a layer corresponding to the oxide semiconductor layer 130b described in the present embodiment can be used.

此外,當氧化物半導體層130為兩層時,可以使用從絕緣層120一側依次層疊相當於本實施方式所示的氧化物半導體層130a的層及相當於氧化物半導體層130b的層的疊層。當採用該結構時,也可以調換氧化物半導體層130a與氧化物半導體層130b。 Further, when the oxide semiconductor layer 130 is two layers, a stack of a layer corresponding to the oxide semiconductor layer 130a and the layer corresponding to the oxide semiconductor layer 130b stacked in this order from the insulating layer 120 side may be used. Floor. When this structure is employed, the oxide semiconductor layer 130a and the oxide semiconductor layer 130b can also be exchanged.

當氧化物半導體層130為四層以上時,例如可以採用對本實施方式所說明的三層結構的氧化物半導體層130追加其他氧化物半導體層的結構。 When the oxide semiconductor layer 130 is four or more layers, for example, a structure in which another oxide semiconductor layer is added to the oxide semiconductor layer 130 having the three-layer structure described in the present embodiment can be employed.

例如,氧化物半導體層130b使用其電子親和力(真空能階與導帶底之間的能量差)大於氧化物半導體層130a及氧化物半導體層130c的氧化物半導體。電子親和力是從真空能階與價帶頂之間的能量差(游離電位)減去導帶底與價帶頂之間的能量差(能隙)而得到的值。 For example, the oxide semiconductor layer 130b uses an electron affinity (energy difference between the vacuum level and the conduction band bottom) to be larger than that of the oxide semiconductor layer 130a and the oxide semiconductor layer 130c. The electron affinity is a value obtained by subtracting the energy difference (energy gap) between the bottom of the conduction band and the top of the valence band from the energy difference (free potential) between the vacuum level and the top of the valence band.

氧化物半導體層130a及氧化物半導體層130c較佳為包含一種以上的構成氧化物半導體層130b的金屬元素。例如,氧化物半導體層130a及氧化物半導體層130c較佳為使用其導帶底的能量比氧化物半導體層130b的導帶底的能量更接近真空能階0.05eV、0.07eV、0.1eV或0.15eV以上且2eV、1eV、0.5eV或0.4eV以下的氧化物半導體形成。 The oxide semiconductor layer 130a and the oxide semiconductor layer 130c preferably contain one or more metal elements constituting the oxide semiconductor layer 130b. For example, the oxide semiconductor layer 130a and the oxide semiconductor layer 130c preferably have an energy of a conduction band bottom closer to a vacuum energy level of 0.05 eV, 0.07 eV, 0.1 eV or 0.15 than the conduction band bottom of the oxide semiconductor layer 130b. An oxide semiconductor having an eV or more and 2 eV, 1 eV, 0.5 eV, or 0.4 eV or less is formed.

在上述結構中,當對導電層170施加電場時,通道形成在氧化物半導體層130中的導帶底的能量最低的氧化物半導體層130b中。由此,可以說:氧化物半導體層130b具有被用作半導體的區域,而氧化物半導體層130a及氧化物半導體層130c具有被用作絕緣體或半絕緣體的功能。 In the above structure, when an electric field is applied to the conductive layer 170, the channel is formed in the oxide semiconductor layer 130b having the lowest energy of the conduction band bottom in the oxide semiconductor layer 130. Thus, it can be said that the oxide semiconductor layer 130b has a region to be used as a semiconductor, and the oxide semiconductor layer 130a and the oxide semiconductor layer 130c have a function of being used as an insulator or a semi-insulator.

另外,氧化物半導體層130a包含一種以上的構成氧化物半導體層130b的金屬元素,因此,與氧化物半導體層130b與絕緣層120接觸時的兩者的介面相比,在氧化物半導體層130b與氧化物半導體層130a的介面不容易形成介面能階。上述介面能階有時形成通道,因此有時導致電晶體的臨界電壓的變動。所以,藉由設置氧化物半導體層130a,能夠抑制電晶體的臨界電壓等電特性的偏差。此外,可以提高該電晶體的可靠性。 Further, since the oxide semiconductor layer 130a includes one or more metal elements constituting the oxide semiconductor layer 130b, the oxide semiconductor layer 130b is compared with the interface between the oxide semiconductor layer 130b and the insulating layer 120. The interface of the oxide semiconductor layer 130a does not easily form an interface level. The above-mentioned interface energy level sometimes forms a channel, and thus sometimes causes a variation in the threshold voltage of the transistor. Therefore, by providing the oxide semiconductor layer 130a, variation in electrical characteristics such as threshold voltage of the transistor can be suppressed. In addition, the reliability of the transistor can be improved.

另外,氧化物半導體層130c包含一種以上的構成氧化物半導體層130b的金屬元素,因此,與氧化物半導體層130b與閘極絕緣膜(絕緣層160)接觸時的兩者的介面相比,在氧化物半導體層130b與氧化物半導體層130c的介面不容易發生載子散射。所以,藉由設置氧化物半導體層130c,能夠提高電晶體的場效移動率。 Further, since the oxide semiconductor layer 130c includes one or more metal elements constituting the oxide semiconductor layer 130b, compared with the interface between the oxide semiconductor layer 130b and the gate insulating film (insulating layer 160), Carrier scattering is less likely to occur in the interface between the oxide semiconductor layer 130b and the oxide semiconductor layer 130c. Therefore, by providing the oxide semiconductor layer 130c, the field effect mobility of the transistor can be improved.

例如,氧化物半導體層130a及氧化物半導體層130c可以使用如下材料:包含Al、Ti、Ga、Ge、Y、Zr、Sn、La、Ce或Hf且該元素的原子數比高於氧化物半導體層130b的材料。明確而言,上述元素的原子數比為氧化物半導體層130b的1.5倍以上,較佳為2倍以上,更佳為3倍以上。上述元素與氧堅固地鍵合,所以具有抑制在氧化物半導體層中產生氧缺陷的功能。由此可說,與氧化物半導體層130b相比,在氧化物半導體層130a及氧化物半導體層130c中不容易產生氧缺陷。 For example, the oxide semiconductor layer 130a and the oxide semiconductor layer 130c may use a material containing Al, Ti, Ga, Ge, Y, Zr, Sn, La, Ce, or Hf and having an atomic ratio of the element higher than that of the oxide semiconductor The material of layer 130b. Specifically, the atomic ratio of the above element is 1.5 times or more, preferably 2 times or more, and more preferably 3 times or more of the oxide semiconductor layer 130b. Since the above element is strongly bonded to oxygen, it has a function of suppressing generation of oxygen defects in the oxide semiconductor layer. From this, it can be said that oxygen defects are less likely to occur in the oxide semiconductor layer 130a and the oxide semiconductor layer 130c than the oxide semiconductor layer 130b.

另外,能夠用於氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c的氧化物半導體較佳為至少包含In或Zn。或者,較佳為包含In和Zn的兩者。另外,為了減少使用該氧化物半導體的電晶體的電特性偏差,除了上述元素以外,較佳為還包含穩定劑(stabilizer)。 Further, the oxide semiconductor which can be used for the oxide semiconductor layer 130a, the oxide semiconductor layer 130b, and the oxide semiconductor layer 130c preferably contains at least In or Zn. Alternatively, it is preferred to contain both In and Zn. Further, in order to reduce variations in electrical characteristics of the transistor using the oxide semiconductor, it is preferable to further include a stabilizer in addition to the above elements.

作為穩定劑,可以舉出Ga、Sn、Hf、Al或Zr等。另外,作為其他穩定劑,可以舉出鑭系元素的La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等。 Examples of the stabilizer include Ga, Sn, Hf, Al, and Zr. Further, examples of the other stabilizer include La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

例如,作為氧化物半導體,可以使用氧化銦、氧化錫、氧化鎵、氧化鋅、In-Zn氧化物、Sn-Zn氧化物、Al-Zn氧化物、Zn-Mg氧化物、Sn-Mg氧化物、In-Mg氧化物、In-Ga氧化物、In-Ga-Zn氧化物、In-Al-Zn氧化物、 In-Sn-Zn氧化物、Sn-Ga-Zn氧化物、Al-Ga-Zn氧化物、Sn-Al-Zn氧化物、In-Hf-Zn氧化物、In-La-Zn氧化物、In-Ce-Zn氧化物、In-Pr-Zn氧化物、In-Nd-Zn氧化物、In-Sm-Zn氧化物、In-Eu-Zn氧化物、In-Gd-Zn氧化物、In-Tb-Zn氧化物、In-Dy-Zn氧化物、In-Ho-Zn氧化物、In-Er-Zn氧化物、In-Tm-Zn氧化物、In-Yb-Zn氧化物、In-Lu-Zn氧化物、In-Sn-Ga-Zn氧化物、In-Hf-Ga-Zn氧化物、In-Al-Ga-Zn氧化物、In-Sn-Al-Zn氧化物、In-Sn-Hf-Zn氧化物、In-Hf-Al-Zn氧化物。 For example, as the oxide semiconductor, indium oxide, tin oxide, gallium oxide, zinc oxide, In-Zn oxide, Sn-Zn oxide, Al-Zn oxide, Zn-Mg oxide, Sn-Mg oxide can be used. , In-Mg oxide, In-Ga oxide, In-Ga-Zn oxide, In-Al-Zn oxide, In-Sn-Zn oxide, Sn-Ga-Zn oxide, Al-Ga-Zn oxide, Sn-Al-Zn oxide, In-Hf-Zn oxide, In-La-Zn oxide, In- Ce-Zn oxide, In-Pr-Zn oxide, In-Nd-Zn oxide, In-Sm-Zn oxide, In-Eu-Zn oxide, In-Gd-Zn oxide, In-Tb- Zn oxide, In-Dy-Zn oxide, In-Ho-Zn oxide, In-Er-Zn oxide, In-Tm-Zn oxide, In-Yb-Zn oxide, In-Lu-Zn oxidation , In-Sn-Ga-Zn oxide, In-Hf-Ga-Zn oxide, In-Al-Ga-Zn oxide, In-Sn-Al-Zn oxide, In-Sn-Hf-Zn oxidation , In-Hf-Al-Zn oxide.

在此,例如In-Ga-Zn氧化物是指作為主要成分包含In、Ga和Zn的氧化物。另外,也可以包含In、Ga、Zn以外的金屬元素。此外,在本說明書中,將由In-Ga-Zn氧化物構成的膜稱為IGZO膜。 Here, for example, In—Ga—Zn oxide refers to an oxide containing In, Ga, and Zn as a main component. Further, a metal element other than In, Ga, or Zn may be contained. Further, in the present specification, a film made of an In—Ga—Zn oxide is referred to as an IGZO film.

另外,也可以使用以InMO3(ZnO)m(m>0,且m不是整數)表示的材料。M表示選自Ga、Y、Zr、La、Ce或Nd中的一種金屬元素或多種金屬元素。另外,也可以使用以In2SnO5(ZnO)n(n>0,且n是整數)表示的材料。 Further, a material represented by InMO 3 (ZnO) m (m>0, and m is not an integer) may also be used. M represents one metal element or a plurality of metal elements selected from Ga, Y, Zr, La, Ce or Nd. Further, a material represented by In 2 SnO 5 (ZnO) n (n>0, and n is an integer) may also be used.

另外,較佳的是,氧化物半導體層130b的銦含量多於氧化物半導體層130a及氧化物半導體層130c的銦含量。在氧化物半導體中,重金屬的s軌域主要有助於載子傳導,並且,藉由增加In的比率來增加s軌域的重疊,由此In的比率多於M的氧化物的移動率比In的比率等於或少於M的氧化物高。因此,藉由將銦含量高的氧化物用於氧化物半導體層130b,可以實現高場效移動率的電晶體。 Further, it is preferable that the indium content of the oxide semiconductor layer 130b is larger than the indium content of the oxide semiconductor layer 130a and the oxide semiconductor layer 130c. In an oxide semiconductor, the s-orbital domain of a heavy metal mainly contributes to carrier conduction, and the overlap of the s-orbital domain is increased by increasing the ratio of In, whereby the ratio of In is more than that of M. The ratio of In is equal to or less than the oxide of M. Therefore, by using an oxide having a high indium content for the oxide semiconductor layer 130b, a transistor having a high field efficiency mobility can be realized.

氧化物半導體層130a的厚度為3nm以上且100nm以下,較佳為5nm以上且50nm以下,更佳為5nm以上且25nm以下。另外,氧化物半導體層130b的厚度為3nm以上且200nm以下,較佳為5nm以上且150nm以下,更佳為10nm以上且100nm以下。此外,氧化物半導體層130c的厚度為1nm以上且50nm以下,較佳為2nm以上且30nm以下,更佳為3nm以上且15nm以下。另外,氧化物半導體層130b較佳為比氧化物半導體層130c厚。 The thickness of the oxide semiconductor layer 130a is 3 nm or more and 100 nm or less, preferably 5 nm or more and 50 nm or less, and more preferably 5 nm or more and 25 nm or less. The thickness of the oxide semiconductor layer 130b is 3 nm or more and 200 nm or less, preferably 5 nm or more and 150 nm or less, and more preferably 10 nm or more and 100 nm or less. Further, the thickness of the oxide semiconductor layer 130c is 1 nm or more and 50 nm or less, preferably 2 nm or more and 30 nm or less, and more preferably 3 nm or more and 15 nm or less. Further, the oxide semiconductor layer 130b is preferably thicker than the oxide semiconductor layer 130c.

為了對將氧化物半導體層用作通道的電晶體賦予穩定的電特性,較有效的是藉由降低氧化物半導體層中的雜質濃度來使氧化物半導體層成為本質(i型)或實質上本質。在此,“實質上本質”是指氧化物半導體層的載 子密度低於1×1019/cm3,低於1×1015/cm3,低於1×1013/cm3,或低於1×108/cm3且1×10-9/cm3以上。 In order to impart stable electrical characteristics to a transistor using an oxide semiconductor layer as a channel, it is effective to make the oxide semiconductor layer essential (i-type) or substantially essential by reducing the impurity concentration in the oxide semiconductor layer. . Here, "substantially essential" means that the oxide semiconductor layer has a carrier density of less than 1 × 10 19 /cm 3 , less than 1 × 10 15 /cm 3 , less than 1 × 10 13 /cm 3 , or low. It is 1 × 10 8 /cm 3 and 1 × 10 -9 /cm 3 or more.

此外,對氧化物半導體層來說,氫、氮、碳、矽以及主要成分以外的金屬元素是雜質。例如,氫和氮引起施體能階的形成,而增高載子密度。此外,矽引起氧化物半導體層中的雜質能階的形成。該雜質能階成為陷阱,有可能使電晶體的電特性劣化。因此,較佳為降低氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c中或各層的介面的雜質濃度。 Further, for the oxide semiconductor layer, hydrogen, nitrogen, carbon, germanium, and a metal element other than the main component are impurities. For example, hydrogen and nitrogen cause the formation of a donor energy level and increase the carrier density. Further, germanium causes formation of an impurity level in the oxide semiconductor layer. This impurity level becomes a trap, and it is possible to deteriorate the electrical characteristics of the transistor. Therefore, it is preferable to reduce the impurity concentration of the interface in the oxide semiconductor layer 130a, the oxide semiconductor layer 130b, and the oxide semiconductor layer 130c or in each layer.

為了使氧化物半導體層成為本質或實質上本質,以使氧化物半導體層具有如下區域的方式進行控制:藉由SIMS(Secondary Ion Mass Spectrometry:二次離子質譜)分析測定出的氫濃度為2×1020atoms/cm3以下,較佳為5×1019atoms/cm3以下,更佳為1×1019atoms/cm3以下,進一步較佳為5×1018atoms/cm3以下,並且為1×1017atoms/cm3以上的區域;氮濃度低於5×1019atoms/cm3,較佳為5×1018atoms/cm3以下,更佳為1×1018atoms/cm3以下,進一步較佳為5×1017atoms/cm3以下,並且為5×1016atoms/cm3以上的區域。 In order to make the oxide semiconductor layer essentially or substantially intrinsic, the oxide semiconductor layer is controlled in such a manner that the hydrogen concentration measured by SIMS (Secondary Ion Mass Spectrometry) is 2×. 10 20 atoms/cm 3 or less, preferably 5 × 10 19 atoms/cm 3 or less, more preferably 1 × 10 19 atoms / cm 3 or less, further preferably 5 × 10 18 atoms / cm 3 or less, and a region of 1 × 10 17 atoms/cm 3 or more; a nitrogen concentration of less than 5 × 10 19 atoms/cm 3 , preferably 5 × 10 18 atoms / cm 3 or less, more preferably 1 × 10 18 atoms / cm 3 or less. Further, it is preferably 5 × 10 17 atoms / cm 3 or less, and is a region of 5 × 10 16 atoms / cm 3 or more.

此外,當以高濃度包含矽或碳時,有可能降低氧化物半導體層的結晶性。為了不使氧化物半導體層的結晶性降低,以使氧化物半導體層具有如下區域的方式進行控制:矽濃度低於1×1019atoms/cm3,較佳為低於5×1018atoms/cm3,並且為1×1018atoms/cm3以上的區域;碳濃度低於1×1019atoms/cm3,較佳為低於5×1018atoms/cm3,更佳為低於1×1018atoms/cm3,並且為6×1017atoms/cm3以上的區域。 Further, when ruthenium or carbon is contained at a high concentration, it is possible to lower the crystallinity of the oxide semiconductor layer. In order not to lower the crystallinity of the oxide semiconductor layer, the oxide semiconductor layer is controlled so as to have a germanium concentration of less than 1 × 10 19 atoms/cm 3 , preferably less than 5 × 10 18 atoms / cm 3, and is 1 × 10 18 atoms or more regions of the 3 / cm; a carbon concentration less than 1 × 10 19 atoms / cm 3 , preferably less than 5 × 10 18 atoms / cm 3 , more preferably less than 1 ×10 18 atoms/cm 3 and a region of 6 × 10 17 atoms/cm 3 or more.

此外,將如上述那樣的被高度純化了的氧化物半導體層用於通道形成區域的電晶體的關態電流極小。例如,可以使以源極與汲極之間的電壓為0.1V、5V或10V左右時的電晶體的每通道寬度的關態電流降低到幾yA/μm至幾zA/μm。 Further, the off-state current of the transistor in which the highly purified oxide semiconductor layer is used for the channel formation region as described above is extremely small. For example, it is possible to reduce the off-state current per channel width of the transistor when the voltage between the source and the drain is about 0.1 V, 5 V, or 10 V to several yA/μm to several zA/μm.

作為電晶體的閘極絕緣膜,大多使用包含矽的絕緣膜,因此較佳為如本發明的一個實施方式的電晶體那樣不使氧化物半導體層的用作通道的區域與閘極絕緣膜接觸。另外,當通道形成在閘極絕緣膜與氧化物半導體層 的介面時,有時在該介面產生載子散射而使電晶體的場效移動率降低。從上述觀點來看,可以說較佳為使氧化物半導體層的用作通道的區域與閘極絕緣膜分開。 As the gate insulating film of the transistor, an insulating film containing germanium is often used. Therefore, it is preferable that the region serving as a channel of the oxide semiconductor layer is not in contact with the gate insulating film as in the transistor of one embodiment of the present invention. . In addition, when the channel is formed in the gate insulating film and the oxide semiconductor layer In the case of the interface, carrier scattering occurs at the interface, and the field effect mobility of the transistor is lowered. From the above viewpoint, it can be said that it is preferable to separate the region serving as the channel of the oxide semiconductor layer from the gate insulating film.

因此,藉由使氧化物半導體層130具有氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c的疊層結構,能夠將通道形成在氧化物半導體層130b中,由此能夠形成具有高場效移動率及穩定的電特性的電晶體。 Therefore, by providing the oxide semiconductor layer 130 with a laminated structure of the oxide semiconductor layer 130a, the oxide semiconductor layer 130b, and the oxide semiconductor layer 130c, it is possible to form a channel in the oxide semiconductor layer 130b, thereby being able to form A transistor with high field-effect mobility and stable electrical characteristics.

在氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c的能帶結構中,導帶底的能量連續地變化。這從由於氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c的組成相互相似,氧容易在上述三者中互相擴散的情況上,也可以得到理解。由此可以說,雖然氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c是組成互不相同的疊層體,但是在物性上是連續的。因此,在圖式中,被層疊的各氧化物半導體層的介面由虛線表示。 In the energy band structure of the oxide semiconductor layer 130a, the oxide semiconductor layer 130b, and the oxide semiconductor layer 130c, the energy of the conduction band bottom continuously changes. This is also understood from the case where the compositions of the oxide semiconductor layer 130a, the oxide semiconductor layer 130b, and the oxide semiconductor layer 130c are similar to each other, and oxygen is easily diffused in the above three. In this way, the oxide semiconductor layer 130a, the oxide semiconductor layer 130b, and the oxide semiconductor layer 130c are laminates having different compositions, but they are continuous in physical properties. Therefore, in the drawing, the interface of each of the stacked oxide semiconductor layers is indicated by a broken line.

主要成分相同而層疊的氧化物半導體層130不是簡單地將各層層疊,而以形成連續結合(在此,尤其是指各層之間的導帶底的能量連續地變化的U型井(U-shape well)結構)的方式形成。換言之,以在各層的介面之間不存在會形成俘獲中心或再結合中心等缺陷能階的雜質的方式形成疊層結構。如果,雜質混入被層疊的氧化物半導體層的層間,能帶則失去連續性,因此載子在介面被俘獲或者再結合而消失。 The oxide semiconductor layer 130 in which the main components are the same and laminated is not simply laminated, but to form a continuous bond (here, especially a U-shape in which the energy of the conduction band bottom between the layers continuously changes) (U-shape) Well) structure) formed in a way. In other words, the laminated structure is formed in such a manner that impurities of a defect level such as a trapping center or a recombination center are not formed between the interfaces of the respective layers. If impurities are mixed between the layers of the stacked oxide semiconductor layers, the energy band loses continuity, and thus the carriers are trapped or recombined at the interface to disappear.

例如,氧化物半導體層130a及氧化物半導體層130c可以使用In:Ga:Zn=1:3:2、1:3:3、1:3:4、1:3:6、1:4:5、1:6:4、1:9:6、1:10:1或其附近的值(原子數比)等的In-Ga-Zn氧化物、Ga:Zn=10:1或其附近的值(原子數比)等的Ga-Zn氧化物。氧化物半導體層130b可以使用In:Ga:Zn=1:1:1、2:1:3、5:5:6、3:1:2、4:2:3、4:2:4.1或其附近的值(原子數比)等的In-Ga-Zn氧化物等。另外,當以上述氧化物為濺射靶材進行成膜時,濺射靶材的原子數比與所形成的氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c的原子數比不一定相同。 For example, the oxide semiconductor layer 130a and the oxide semiconductor layer 130c may use In:Ga:Zn=1:3:2, 1:3:3, 1:3:4, 1:3:6, 1:4:5 , In:Ga-Zn oxide such as 1:6:4, 1:9:6, 1:10:1 or a value (atomic ratio), or Ga:Zn=10:1 or a value in the vicinity thereof Ga-Zn oxide such as (atomic ratio). The oxide semiconductor layer 130b may use In:Ga:Zn=1:1:1, 2:1:3, 5:5:6, 3:1:2, 4:2:3, 4:2:4.1 or In-Ga-Zn oxide or the like having a value (atomic ratio) in the vicinity. In addition, when the film is formed by using the oxide as a sputtering target, the atomic ratio of the sputtering target and the atomic ratio of the oxide semiconductor layer 130a, the oxide semiconductor layer 130b, and the oxide semiconductor layer 130c are formed. Not necessarily the same.

氧化物半導體層130中的氧化物半導體層130b用作井(well),通道形成在氧化物半導體層130b中。氧化物半導體層130的導帶底的能量連續地變化,因此,也可以將氧化物半導體層130稱為U型井。另外,也可以將具有上述結構的通道稱為埋入通道。 The oxide semiconductor layer 130b in the oxide semiconductor layer 130 serves as a well, and a channel is formed in the oxide semiconductor layer 130b. The energy of the conduction band bottom of the oxide semiconductor layer 130 is continuously changed. Therefore, the oxide semiconductor layer 130 may be referred to as a U-type well. Further, the channel having the above structure may also be referred to as a buried channel.

另外,雖然在氧化物半導體層130a與氧化矽膜等絕緣層之間以及氧化物半導體層130c與氧化矽膜等絕緣層的介面附近有可能形成起因於雜質或缺陷的陷阱能階,但是藉由設置氧化物半導體層130a及氧化物半導體層130c,可以使氧化物半導體層130b和該陷阱能階相隔。 Further, although it is possible to form a trap level due to impurities or defects between the insulating layer such as the oxide semiconductor layer 130a and the hafnium oxide film and the interface between the insulating layer such as the oxide semiconductor layer 130c and the hafnium oxide film, The oxide semiconductor layer 130a and the oxide semiconductor layer 130c are provided to separate the oxide semiconductor layer 130b from the trap level.

注意,氧化物半導體層130a及氧化物半導體層130c的導帶底的能量與氧化物半導體層130b的導帶底的能量之間的能量差小時,有時氧化物半導體層130b的電子越過該能量差到達陷阱能階。當電子被陷阱能階俘獲時,在絕緣層介面產生負電荷,使得電晶體的臨界電壓向正方向漂移。 Note that the energy difference between the energy of the conduction band bottom of the oxide semiconductor layer 130a and the oxide semiconductor layer 130c and the energy of the conduction band bottom of the oxide semiconductor layer 130b is small, and the electrons of the oxide semiconductor layer 130b sometimes pass the energy. The difference reaches the trap level. When electrons are trapped by the trap level, a negative charge is generated at the interface of the insulating layer, causing the threshold voltage of the transistor to drift in the positive direction.

氧化物半導體層130a、氧化物半導體層130b及氧化物半導體層130c較佳為包含結晶部。尤其是,藉由使用c軸配向結晶,能夠對電晶體賦予穩定的電特性。另外,c軸配向的結晶抗彎曲,由此可以提高使用撓性基板的半導體裝置的可靠性。 The oxide semiconductor layer 130a, the oxide semiconductor layer 130b, and the oxide semiconductor layer 130c preferably include a crystal portion. In particular, by using c-axis alignment crystallization, it is possible to impart stable electrical characteristics to the transistor. Further, the crystal of the c-axis alignment is resistant to bending, whereby the reliability of the semiconductor device using the flexible substrate can be improved.

作為用作源極電極層的導電層140及用作汲極電極層的導電層150,例如可以使用選自Al、Cr、Cu、Ta、Ti、Mo、W、Ni、Mn、Nd、Sc及該金屬材料的合金中的材料的單層或疊層。典型的是,特別較佳為使用容易與氧鍵合的Ti或在後面能以較高的溫度進行處理的熔點高的W。此外,也可以使用低電阻的Cu或Cu-Mn等合金與上述材料的疊層。在電晶體105、電晶體106、電晶體111、電晶體112中,例如可以作為導電層141及導電層151使用W,作為導電層142及導電層152使用Ti及Al的疊層膜等。 As the conductive layer 140 serving as the source electrode layer and the conductive layer 150 serving as the gate electrode layer, for example, Al, Cr, Cu, Ta, Ti, Mo, W, Ni, Mn, Nd, Sc, and the like can be used. A single layer or laminate of materials in the alloy of the metallic material. Typically, it is particularly preferable to use Ti which is easily bonded to oxygen or a W which has a high melting point which can be treated at a higher temperature later. Further, it is also possible to use a low-resistance alloy such as Cu or Cu-Mn and a laminate of the above materials. In the transistor 105, the transistor 106, the transistor 111, and the transistor 112, for example, W can be used as the conductive layer 141 and the conductive layer 151, and a laminated film of Ti and Al can be used as the conductive layer 142 and the conductive layer 152.

上述材料具有從氧化物半導體層抽出氧的性質。由此,在與上述材料接觸的氧化物半導體層的一部分的區域中,氧化物半導體層中的氧被脫離,而在氧化物半導體層中形成氧缺陷。包含於膜中的微量的氫與該氧缺陷鍵合而使該區域明顯地n型化。因此,可以將該n型化的區域用作電晶體的源極或汲極。 The above material has a property of extracting oxygen from the oxide semiconductor layer. Thereby, in a region of a part of the oxide semiconductor layer in contact with the above material, oxygen in the oxide semiconductor layer is desorbed, and oxygen defects are formed in the oxide semiconductor layer. A trace amount of hydrogen contained in the film is bonded to the oxygen defect to make the region significantly n-type. Therefore, the n-type region can be used as the source or drain of the transistor.

此外,當導電層140及導電層150使用W形成時,也可以對導電層140及導電層150摻雜氮。藉由摻雜氮可以適度地降低抽出氧的性質,由此可以防止n型化的區域擴展到通道區域。另外,藉由在n型半導體層上層疊上述導電層140及導電層150,使n型半導體層與氧化物半導體層接觸,可以防止n型化的區域擴展到通道區域。作為n型半導體層可以使用添加有氮的In-Ga-Zn氧化物、氧化鋅、氧化銦、氧化錫、氧化銦錫等。 In addition, when the conductive layer 140 and the conductive layer 150 are formed using W, the conductive layer 140 and the conductive layer 150 may be doped with nitrogen. By doping nitrogen, the nature of the extracted oxygen can be moderately reduced, whereby the n-type region can be prevented from expanding to the channel region. Further, by laminating the conductive layer 140 and the conductive layer 150 on the n-type semiconductor layer to bring the n-type semiconductor layer into contact with the oxide semiconductor layer, it is possible to prevent the n-type region from spreading to the channel region. As the n-type semiconductor layer, an In-Ga-Zn oxide to which nitrogen is added, zinc oxide, indium oxide, tin oxide, indium tin oxide, or the like can be used.

作為用作閘極絕緣膜的絕緣層160,可以使用包含氧化鋁、氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿和氧化鉭中的一種以上的絕緣膜。此外,絕緣層160也可以是上述材料的疊層。另外,絕緣層160也可以包含La、N、Zr等作為雜質。 As the insulating layer 160 used as the gate insulating film, aluminum oxide, magnesium oxide, cerium oxide, cerium oxynitride, cerium oxynitride, cerium nitride, gallium oxide, cerium oxide, cerium oxide, zirconium oxide, or oxidation may be used. One or more insulating films of cerium, cerium oxide, cerium oxide and cerium oxide. Further, the insulating layer 160 may also be a laminate of the above materials. Further, the insulating layer 160 may contain La, N, Zr or the like as an impurity.

另外,說明絕緣層160的疊層結構的一個例子。絕緣層160例如包含氧、氮、矽、鉿等。具體地,較佳為包含氧化鉿及氧化矽或者氧化鉿及氧氮化矽。 Further, an example of a laminated structure of the insulating layer 160 will be described. The insulating layer 160 contains, for example, oxygen, nitrogen, helium, neon, or the like. Specifically, it is preferable to contain cerium oxide and cerium oxide or cerium oxide and cerium oxynitride.

氧化鉿及氧化鋁的相對介電常數比氧化矽或氧氮化矽高。因此,與使用氧化矽的情況相比可以使絕緣層160的厚度更大,由此可以減少穿隧電流引起的洩漏電流。也就是說,可以實現關態電流小的電晶體。再者,與包括非晶結構的氧化鉿相比,包括結晶結構的氧化鉿具有高相對介電常數。因此,為了形成關態電流小的電晶體,較佳為使用具有結晶結構的氧化鉿。作為結晶結構的例子,可以舉出單斜晶結構或立方體晶結構等。但是,本發明的一個實施方式不侷限於此。 The relative dielectric constant of cerium oxide and aluminum oxide is higher than that of cerium oxide or cerium oxynitride. Therefore, the thickness of the insulating layer 160 can be made larger than in the case of using yttrium oxide, whereby the leakage current caused by the tunneling current can be reduced. That is to say, a transistor having a small off-state current can be realized. Further, cerium oxide including a crystalline structure has a high relative dielectric constant as compared with cerium oxide including an amorphous structure. Therefore, in order to form a transistor having a small off-state current, it is preferable to use ruthenium oxide having a crystal structure. Examples of the crystal structure include a monoclinic crystal structure, a cubic crystal structure, and the like. However, one embodiment of the present invention is not limited thereto.

此外,作為與氧化物半導體層130接觸的絕緣層120及絕緣層160較佳為使用氮氧化物的釋放量少的膜。當氮氧化物的釋放量多的絕緣層與氧化物半導體接觸時,有時因氮氧化物導致能階密度變高。作為絕緣層120及絕緣層160,例如可以使用氮氧化物的釋放量少的氧氮化矽膜或氧氮化鋁膜等的氧化物絕緣層。 Further, as the insulating layer 120 and the insulating layer 160 that are in contact with the oxide semiconductor layer 130, a film having a small amount of release of nitrogen oxides is preferably used. When the insulating layer having a large amount of released nitrogen oxides is in contact with the oxide semiconductor, the energy density may be increased due to the nitrogen oxide. As the insulating layer 120 and the insulating layer 160, for example, an oxide insulating layer such as a hafnium oxynitride film or an aluminum oxynitride film having a small amount of release of nitrogen oxides can be used.

氮氧化物的釋放量少的氧氮化矽膜是在TDS分析法中氨釋放量比氮氧 化物的釋放量多的膜,典型的是氨釋放量為1×1018cm-3以上且5×1019cm-3以下。此外,上述氨釋放量是藉由膜表面溫度為50℃以上且650℃以下,較佳為50℃以上且550℃以下的加熱處理而得到的釋放量。 The yttrium oxynitride film having a small amount of released nitrogen oxides is a film having a larger amount of ammonia released than the amount of nitrogen oxides released by TDS analysis, and typically has an ammonia release amount of 1 × 10 18 cm -3 or more and 5 ×10 19 cm -3 or less. Further, the amount of ammonia released is a release amount obtained by heat treatment of a film surface temperature of 50 ° C or more and 650 ° C or less, preferably 50 ° C or more and 550 ° C or less.

藉由作為絕緣層120及絕緣層160使用上述氧化物絕緣層,可以降低電晶體的臨界電壓的漂移,由此可以降低電晶體的電特性變動。 By using the above oxide insulating layer as the insulating layer 120 and the insulating layer 160, the drift of the threshold voltage of the transistor can be reduced, whereby the variation in the electrical characteristics of the transistor can be reduced.

作為用作閘極電極層的導電層170例如可以使用Al、Ti、Cr、Co、Ni、Cu、Y、Zr、Mo、Ru、Ag、Mn、Nd、Sc、Ta及W等的導電膜。另外,也可以使用上述材料的合金或上述材料的導電氮化物。此外,也可以使用選自上述材料、上述材料的合金及上述材料的導電氮化物中的多種材料的疊層。典型的是,可以使用鎢、鎢與氮化鈦的疊層、鎢與氮化鉭的疊層等。另外,也可以使用低電阻的Cu或Cu-Mn等合金或者上述材料與Cu或Cu-Mn等合金的疊層。在本實施方式中,作為導電層171使用氮化鉭,作為導電層172使用鎢,以便形成導電層170。 As the conductive layer 170 used as the gate electrode layer, for example, a conductive film of Al, Ti, Cr, Co, Ni, Cu, Y, Zr, Mo, Ru, Ag, Mn, Nd, Sc, Ta, and W can be used. Further, an alloy of the above materials or a conductive nitride of the above materials may also be used. Further, a laminate of a plurality of materials selected from the above materials, alloys of the above materials, and conductive nitrides of the above materials may be used. Typically, a laminate of tungsten, tungsten, and titanium nitride, a laminate of tungsten and tantalum nitride, or the like can be used. Further, an alloy such as low-resistance Cu or Cu-Mn or a laminate of the above materials and an alloy such as Cu or Cu-Mn may be used. In the present embodiment, tantalum nitride is used as the conductive layer 171, and tungsten is used as the conductive layer 172 to form the conductive layer 170.

作為絕緣層175可以使用含氫的氮化矽膜或氮化鋁膜等。在實施方式2所示的電晶體103、電晶體104、電晶體106、電晶體109、電晶體110及電晶體112中,藉由作為絕緣層175使用含氫的絕緣膜可以使氧化物半導體層的一部分n型化。另外,氮化絕緣膜還用作阻擋水分等的膜,可以提高電晶體的可靠性。 As the insulating layer 175, a hydrogen-containing tantalum nitride film or an aluminum nitride film or the like can be used. In the transistor 103, the transistor 104, the transistor 106, the transistor 109, the transistor 110, and the transistor 112 shown in Embodiment 2, an oxide semiconductor layer can be formed by using an insulating film containing hydrogen as the insulating layer 175. Part of the n-type. Further, the nitride insulating film is also used as a film for blocking moisture or the like, and the reliability of the transistor can be improved.

此外,作為絕緣層175也可以使用氧化鋁膜。尤其是,較佳為在實施方式2所示的電晶體101、電晶體102、電晶體105、電晶體107、電晶體108及電晶體111中作為絕緣層175使用氧化鋁膜。氧化鋁膜的不使氫、水分等雜質以及氧透過的阻擋效果高。因此,將氧化鋁膜適合用作具有如下效果的保護膜:在電晶體的製程中及製造電晶體之後,防止氫、水分等雜質向氧化物半導體層130混入;防止從氧化物半導體層釋放氧;防止氧的從絕緣層120的不需要的釋放。此外,也可以將包含於氧化鋁膜的氧擴散到氧化物半導體層中。 Further, an aluminum oxide film can also be used as the insulating layer 175. In particular, it is preferable to use an aluminum oxide film as the insulating layer 175 in the transistor 101, the transistor 102, the transistor 105, the transistor 107, the transistor 108, and the transistor 111 shown in the second embodiment. The aluminum oxide film has a high barrier effect of not transmitting impurities such as hydrogen and moisture and oxygen. Therefore, the aluminum oxide film is suitably used as a protective film having an effect of preventing impurities such as hydrogen and moisture from being mixed into the oxide semiconductor layer 130 in the process of manufacturing the transistor and after manufacturing the transistor; preventing release of oxygen from the oxide semiconductor layer Preventing unwanted release of oxygen from the insulating layer 120. Further, oxygen contained in the aluminum oxide film may be diffused into the oxide semiconductor layer.

另外,在絕緣層175上較佳為形成有絕緣層180。作為該絕緣層可以使用包含氧化鎂、氧化矽、氧氮化矽、氮氧化矽、氮化矽、氧化鎵、氧化鍺、 氧化釔、氧化鋯、氧化鑭、氧化釹、氧化鉿及氧化鉭中的一種以上的絕緣膜。此外,該絕緣層也可以是上述材料的疊層。 Further, an insulating layer 180 is preferably formed on the insulating layer 175. As the insulating layer, magnesium oxide, cerium oxide, cerium oxynitride, cerium oxynitride, cerium nitride, gallium oxide, cerium oxide, or the like may be used. One or more insulating films of cerium oxide, zirconium oxide, cerium oxide, cerium oxide, cerium oxide, and cerium oxide. Further, the insulating layer may also be a laminate of the above materials.

在此,絕緣層180較佳為與絕緣層120同樣地包含比化學計量組成多的氧。能夠將從絕緣層180釋放的氧穿過絕緣層160擴散到氧化物半導體層130的通道形成區域,因此能夠對形成在通道形成區域中的氧缺陷填補氧。由此,能夠獲得穩定的電晶體電特性。 Here, the insulating layer 180 preferably contains more oxygen than the stoichiometric composition as the insulating layer 120. Oxygen released from the insulating layer 180 can be diffused through the insulating layer 160 to the channel forming region of the oxide semiconductor layer 130, so that oxygen can be filled in the oxygen deficiency formed in the channel forming region. Thereby, stable transistor electrical characteristics can be obtained.

為了實現半導體裝置的高集成化,必須進行電晶體的微型化。另一方面,已知伴隨著電晶體的微型化,電晶體的電特性劣化,尤其是通道寬度的縮短導致通態電流的降低。 In order to achieve high integration of a semiconductor device, it is necessary to perform miniaturization of the transistor. On the other hand, it is known that with the miniaturization of the transistor, the electrical characteristics of the transistor are deteriorated, and in particular, the shortening of the channel width causes a decrease in the on-state current.

在本發明的一個實施方式的電晶體107至電晶體112中,以覆蓋其中形成通道的氧化物半導體層130b的方式形成有氧化物半導體層130c,通道形成層與閘極絕緣膜沒有接觸。因此,能夠抑制在通道形成層與閘極絕緣膜的介面產生的載子散射,而可以增高電晶體的通態電流。 In the transistor 107 to the transistor 112 of one embodiment of the present invention, the oxide semiconductor layer 130c is formed in such a manner as to cover the oxide semiconductor layer 130b in which the channel is formed, and the channel forming layer is not in contact with the gate insulating film. Therefore, carrier scattering generated at the interface between the channel formation layer and the gate insulating film can be suppressed, and the on-state current of the transistor can be increased.

此外,在本發明的一個實施方式的電晶體中,如上所述,以在通道寬度方向上電性上包圍氧化物半導體層130的方式形成有閘極電極層(導電層170),因此氧化物半導體層130除了垂直於頂面的方向上被施加閘極電場之外,垂直於側面的方向上也被施加閘極電場。換言之,對通道形成層整體施加閘極電場而實效通道寬度擴大,由此可以進一步提高通態電流。 Further, in the transistor of one embodiment of the present invention, as described above, the gate electrode layer (conductive layer 170) is formed so as to electrically surround the oxide semiconductor layer 130 in the channel width direction, and thus the oxide The semiconductor layer 130 is applied with a gate electric field in addition to a gate electric field in a direction perpendicular to the top surface, and a direction perpendicular to the side surface. In other words, a gate electric field is applied to the entire channel forming layer and the effective channel width is enlarged, whereby the on-state current can be further increased.

另外,在本發明的一個實施方式的氧化物半導體層130具有兩層或三層結構的電晶體中,藉由將形成有通道的氧化物半導體層130b形成於氧化物半導體層130a上,可以獲得不容易形成介面能階的效果。此外,在本發明的一個實施方式的氧化物半導體層130具有三層結構的電晶體中,藉由將氧化物半導體層130b位於三層結構的中間,來同時得到消除從上下方混入的雜質的影響的效果等。因此,除了可以增高上述電晶體的通態電流之外,還可以實現臨界電壓的穩定化及S值(次臨界值)的下降。因此,可以降低閘極電壓VG為0V時的電流,而可以降低功耗。另外,由於電晶體的臨界電壓穩定,所以可以提高半導體裝置的長期可靠性。此外,本發明的一個實施方式的電晶體可以抑制隨著微細化導致的電特性劣化,由此可 以說適合於集成度高的半導體裝置。 Further, in the transistor in which the oxide semiconductor layer 130 of the embodiment of the present invention has a two-layer or three-layer structure, by forming the oxide semiconductor layer 130b on which the channel is formed on the oxide semiconductor layer 130a, it is possible to obtain It is not easy to form an interface level effect. Further, in the transistor in which the oxide semiconductor layer 130 of the embodiment of the present invention has a three-layer structure, by disposing the oxide semiconductor layer 130b in the middle of the three-layer structure, it is simultaneously obtained to eliminate impurities mixed from above and below. The effect of the effect, etc. Therefore, in addition to increasing the on-state current of the above transistor, stabilization of the threshold voltage and a decrease in the S value (sub-critical value) can be achieved. Therefore, the current when the gate voltage VG is 0 V can be reduced, and the power consumption can be reduced. In addition, since the threshold voltage of the transistor is stabilized, the long-term reliability of the semiconductor device can be improved. Further, the transistor of one embodiment of the present invention can suppress deterioration of electrical characteristics due to miniaturization, thereby It is said to be suitable for a semiconductor device with high integration.

雖然本實施方式所說明的金屬膜、半導體膜及無機絕緣膜等各種膜可以典型地利用濺射法或電漿CVD法形成,但是也可以利用熱CVD法等其他方法形成。作為熱CVD法的例子,可以舉出MOCVD(Metal Organic Chemical Vapor Deposition:有機金屬化學氣相沉積)法或ALD(Atomic Layer Deposition:原子層沉積)法等。 Although various films such as a metal film, a semiconductor film, and an inorganic insulating film described in the present embodiment can be typically formed by a sputtering method or a plasma CVD method, they may be formed by other methods such as a thermal CVD method. Examples of the thermal CVD method include a MOCVD (Metal Organic Chemical Vapor Deposition) method and an ALD (Atomic Layer Deposition) method.

由於熱CVD法是不使用電漿的成膜方法,因此具有不產生電漿損傷所引起的缺陷的優點。 Since the thermal CVD method is a film formation method that does not use plasma, it has an advantage of not causing defects caused by plasma damage.

此外,可以以如下方法進行利用熱CVD法的成膜:將源氣體及氧化劑同時供應到腔室內,將腔室內的壓力設定為大氣壓或減壓,使其在基板附近或在基板上起反應。 Further, film formation by a thermal CVD method may be performed by simultaneously supplying a source gas and an oxidant into a chamber, and setting a pressure in the chamber to atmospheric pressure or a reduced pressure to cause a reaction in the vicinity of the substrate or on the substrate.

可以以如下方法進行利用ALD法的成膜:將腔室內的壓力設定為大氣壓或減壓,將用於反應的源氣體引入腔室並起反應,並且按該順序反復地引入氣體。也可以將源氣體與惰性氣體(氬或氮等)用作載子氣體一併地進行引入。例如,也可以將兩種以上的源氣體依次供應到腔室內。此時,在第一源氣體起反應之後引入惰性氣體,然後引入第二源氣體,以防止多種源氣體混合。或者,也可以不引入惰性氣體而藉由真空抽氣將第一源氣體排出,然後引入第二源氣體。第一源氣體附著到基板表面且起反應來形成第一層,之後引入的第二源氣體附著且起反應,由此第二層層疊在第一層上而形成薄膜。藉由按該順序反復多次地引入氣體直到獲得所希望的厚度為止,可以形成步階覆蓋性良好的薄膜。由於薄膜的厚度可以根據反復引入氣體的次數來進行調節,因此,ALD法可以準確地調節厚度而適用於製造微型FET。 Film formation by the ALD method can be carried out by setting the pressure in the chamber to atmospheric pressure or reduced pressure, introducing the source gas for the reaction into the chamber and reacting, and repeatedly introducing the gas in this order. It is also possible to introduce the source gas together with an inert gas (argon or nitrogen, etc.) as a carrier gas. For example, two or more source gases may be sequentially supplied into the chamber. At this time, an inert gas is introduced after the first source gas reacts, and then a second source gas is introduced to prevent mixing of the plurality of source gases. Alternatively, the first source gas may be discharged by vacuum evacuation without introducing an inert gas, and then the second source gas may be introduced. The first source gas adheres to the surface of the substrate and reacts to form a first layer, and the second source gas introduced thereafter adheres and reacts, whereby the second layer is laminated on the first layer to form a thin film. By introducing the gas a plurality of times in this order repeatedly until a desired thickness is obtained, a film having good step coverage can be formed. Since the thickness of the film can be adjusted according to the number of times the gas is repeatedly introduced, the ALD method can accurately adjust the thickness and is suitable for manufacturing a micro FET.

利用MOCVD法或ALD法等熱CVD法可以形成以上所示的實施方式所公開的金屬膜、半導體膜、無機絕緣膜等各種膜,例如,當形成In-Ga-Zn-O膜時,可以使用三甲基銦(In(CH3)3)、三甲基鎵(Ga(CH3)3)及二甲基鋅(Zn(CH3)2)。不侷限於上述組合,也可以使用三乙基鎵(Ga(C2H5)3)代替三甲基鎵,並使用二乙基鋅(Zn(C2H5)2)代替二甲基鋅。 Various films such as a metal film, a semiconductor film, and an inorganic insulating film disclosed in the above-described embodiments can be formed by a thermal CVD method such as an MOCVD method or an ALD method. For example, when an In-Ga-Zn-O film is formed, it can be used. Trimethyl indium (In(CH 3 ) 3 ), trimethylgallium (Ga(CH 3 ) 3 ), and dimethyl zinc (Zn(CH 3 ) 2 ). Not limited to the above combination, triethylgallium (Ga(C 2 H 5 ) 3 ) may be used instead of trimethylgallium, and diethyl zinc (Zn(C 2 H 5 ) 2 ) may be used instead of dimethyl zinc. .

例如,在使用利用ALD法的成膜裝置形成氧化鉿膜時,使用如下兩種氣體:藉由使包含溶劑和鉿前體的液體(鉿醇鹽、四二甲基醯胺鉿(TDMAH,Hf[N(CH3)2]4)或四(乙基甲基醯胺)鉿等鉿醯胺)氣化而得到的源氣體;以及用作氧化劑的臭氧(O3)。 For example, when a ruthenium oxide film is formed using a film forming apparatus using an ALD method, the following two gases are used: by a liquid containing a solvent and a ruthenium precursor (nonyl alkoxide, tetramethylammonium oxime (TDMAH, Hf) a source gas obtained by gasification of [N(CH 3 ) 2 ] 4 ) or a guanamine such as tetrakis(ethylmethylguanamine); and ozone (O 3 ) used as an oxidizing agent.

例如,在使用利用ALD法的成膜裝置形成氧化鋁膜時,使用如下兩種氣體:藉由使包含溶劑和鋁前體的液體(三甲基鋁(TMA,Al(CH3)3)等)氣化而得到的源氣體;以及用作氧化劑的H2O。作為其他材料有三(二甲基醯胺)鋁、三異丁基鋁、鋁三(2,2,6,6-四甲基-3,5-庚二酮酸)等。 For example, when an aluminum oxide film is formed using a film forming apparatus using an ALD method, the following two gases are used: by a liquid containing a solvent and an aluminum precursor (trimethylaluminum (TMA, Al(CH 3 ) 3 ), etc.) a source gas obtained by gasification; and H 2 O used as an oxidizing agent. Other materials include tris(dimethylammonium)aluminum, triisobutylaluminum, and aluminumtris(2,2,6,6-tetramethyl-3,5-heptanedionate).

例如,在使用利用ALD法的成膜裝置形成氧化矽膜時,使六氯乙矽烷附著在被成膜面上,供應氧化氣體(O2、一氧化二氮)的自由基使其與附著物起反應。 For example, when a silicon oxide film is formed using a ALD deposition method means that hexachloro-disilane is attached to the deposition surface, supplying an oxidizing gas (O 2, nitrous oxide) is reacted with a radical deposit Reacts.

例如,在使用利用ALD法的成膜裝置形成鎢膜時,依次引入WF6氣體和B2H6氣體形成初始鎢膜,然後依次引入WF6氣體和H2氣體形成鎢膜。注意,也可以使用SiH4氣體代替B2H6氣體。 For example, when a tungsten film is formed using a film forming apparatus using an ALD method, WF 6 gas and B 2 H 6 gas are sequentially introduced to form an initial tungsten film, and then WF 6 gas and H 2 gas are sequentially introduced to form a tungsten film. Note that it is also possible to use SiH 4 gas instead of B 2 H 6 gas.

例如,在使用利用ALD法的成膜裝置形成氧化物半導體層如In-Ga-Zn-O層時,依次引入In(CH3)3氣體和O3氣體形成In-O層,然後依次引入Ga(CH3)3氣體和O3氣體形成GaO層,之後依次引入Zn(CH3)2氣體和O3氣體形成ZnO層。注意,這些層的順序不侷限於上述例子。也可以使用這些氣體來形成混合化合物層如In-Ga-O層、In-Zn-O層、Ga-Zn-O層等。注意,雖然也可以使用利用Ar等惰性氣體進行起泡而得到的H2O氣體代替O3氣體,但是較佳為使用不包含H的O3氣體。 For example, when an oxide semiconductor layer such as an In-Ga-Zn-O layer is formed using a film forming apparatus using an ALD method, In(CH 3 ) 3 gas and O 3 gas are sequentially introduced to form an In-O layer, and then Ga is sequentially introduced. The (CH 3 ) 3 gas and the O 3 gas form a GaO layer, and then Zn(CH 3 ) 2 gas and O 3 gas are sequentially introduced to form a ZnO layer. Note that the order of these layers is not limited to the above examples. These gases may also be used to form a mixed compound layer such as an In-Ga-O layer, an In-Zn-O layer, a Ga-Zn-O layer, or the like. Note that although H 2 O gas obtained by bubbling with an inert gas such as Ar may be used instead of O 3 gas, it is preferable to use O 3 gas not containing H.

當形成氧化物半導體層時,也可以使用對向靶材式濺射裝置。也可以將使用該對向靶材式濺射裝置的成膜方法稱為VDSP(vapor deposition SP)。 When an oxide semiconductor layer is formed, a counter target sputtering apparatus can also be used. The film forming method using the counter target sputtering apparatus may also be referred to as VDSP (vapor deposition SP).

藉由使用對向靶材式濺射裝置形成氧化物半導體層,可以減少在形成氧化物半導體層時產生的電漿損傷。因此,可以減少膜中的氧缺陷。此外, 藉由使用對向靶材式濺射裝置可以在低壓下進行成膜,從而可以減少所形成的氧化物半導體層中的雜質濃度(例如,氫、稀有氣體(氬等)、水等)。 By forming the oxide semiconductor layer using the opposite target sputtering apparatus, it is possible to reduce plasma damage generated when the oxide semiconductor layer is formed. Therefore, oxygen deficiency in the film can be reduced. In addition, By using a counter target sputtering apparatus, film formation can be performed at a low pressure, whereby the impurity concentration (for example, hydrogen, rare gas (argon or the like), water, and the like) in the formed oxide semiconductor layer can be reduced.

本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。 The structure shown in this embodiment can be implemented in appropriate combination with the structure shown in the other embodiment.

實施方式5 Embodiment 5

以下,對可用於本發明的一個實施方式的氧化物半導體層的結構進行說明。 Hereinafter, the structure of the oxide semiconductor layer which can be used in one embodiment of the present invention will be described.

在本說明書中,“平行”是指兩條直線形成的角度為-10°以上且10°以下的狀態。因此,還包括該角度為-5°以上且5°以下的狀態。此外,“垂直”是指兩條直線的角度為80°以上且100°以下的狀態。因此,還包括該角度為85°以上且95°以下的狀態。 In the present specification, "parallel" means a state in which the angle formed by two straight lines is -10° or more and 10° or less. Therefore, the state in which the angle is -5 or more and 5 or less is also included. Further, "vertical" means a state in which the angle of the two straight lines is 80° or more and 100° or less. Therefore, the state in which the angle is 85° or more and 95° or less is also included.

注意,在本說明書中,六方晶系包括三方晶系和菱方晶系。 Note that in the present specification, the hexagonal system includes a trigonal system and a rhombohedral system.

〈氧化物半導體的結構〉 <Structure of Oxide Semiconductor>

下面,對氧化物半導體的結構進行說明。 Next, the structure of the oxide semiconductor will be described.

氧化物半導體被分為單晶氧化物半導體和非單晶氧化物半導體。作為非單晶氧化物半導體有CAAC-OS(c-axis-aligned crystalline oxide semiconductor)、多晶氧化物半導體、nc-OS(nanocrystalline oxide semiconductor)、a-like OS(amorphous-like oxide semiconductor)及非晶氧化物半導體等。 Oxide semiconductors are classified into single crystal oxide semiconductors and non-single crystal oxide semiconductors. As non-single-crystal oxide semiconductors, there are CAAC-OS (c-axis-aligned crystalline oxide semiconductor), polycrystalline oxide semiconductor, nc-OS (nanocrystalline oxide semiconductor), a-like OS (amorphous-like oxide semiconductor), and non- A crystalline oxide semiconductor or the like.

從其他觀點看來,氧化物半導體被分為非晶氧化物半導體和結晶氧化物半導體。作為結晶氧化物半導體,有單晶氧化物半導體、CAAC-OS、多晶氧化物半導體以及nc-OS等。 From other viewpoints, oxide semiconductors are classified into amorphous oxide semiconductors and crystalline oxide semiconductors. Examples of the crystalline oxide semiconductor include a single crystal oxide semiconductor, a CAAC-OS, a polycrystalline oxide semiconductor, and an nc-OS.

一般而言,非晶結構具有如下特徵:具有各向同性而不具有不均勻結構;處於準穩態且原子的配置沒有被固定化;鍵角不固定;具有短程有序 性而不具有長程有序性;等。 In general, an amorphous structure has the following characteristics: isotropic and has an uneven structure; is in a quasi-steady state and the atomic configuration is not immobilized; the bond angle is not fixed; and has a short-range order Sex without long-term order; etc.

從相反的觀點來看,不能將穩定的氧化物半導體稱為完全非晶(completely amorphous)氧化物半導體。另外,不能將不具有各向同性(例如,在微小區域中具有週期結構)的氧化物半導體稱為完全非晶氧化物半導體。另一方面,a-like OS不具有各向同性但卻是具有空洞(void)的不穩定結構。在不穩定這一點上,a-like OS在物性上接近於非晶氧化物半導體。 From the opposite point of view, a stable oxide semiconductor cannot be referred to as a completely amorphous oxide semiconductor. In addition, an oxide semiconductor which is not isotropic (for example, has a periodic structure in a minute region) cannot be referred to as a completely amorphous oxide semiconductor. On the other hand, a-like OS does not have an isotropic but unstable structure with voids. On the point of instability, the a-like OS is close in physical properties to the amorphous oxide semiconductor.

〈CAAC-OS〉 <CAAC-OS>

首先,說明CAAC-OS。 First, explain CAAC-OS.

CAAC-OS是包含多個c軸配向的結晶部(也稱為顆粒)的氧化物半導體之一。 CAAC-OS is one of oxide semiconductors containing a plurality of c-axis aligned crystal portions (also referred to as particles).

說明使用X射線繞射(XRD:X-Ray Diffraction)裝置對CAAC-OS進行分析時的情況。例如,當利用out-of-plane法分析包含分類為空間群R-3m的InGaZnO4結晶的CAAC-OS的結構時,如圖56A所示,在繞射角(2θ)為31°附近出現峰值。由於該峰值來源於InGaZnO4結晶的(009)面,由此可確認到在CAAC-OS中結晶具有c軸配向性,並且c軸朝向大致垂直於形成CAAC-OS的膜的面(也稱為被形成面)或頂面的方向。注意,除了2θ為31°附近的峰值以外,有時在2θ為36°附近時也出現峰值。2θ為36°附近的峰值起因於分類為空間群Fd-3m的結晶結構。因此,較佳的是,在CAAC-OS中不出現該峰值。 A case where the CAAC-OS is analyzed using an X-ray Diffraction (XRD) apparatus will be described. For example, when the structure of the CAAC-OS including the InGaZnO 4 crystal classified into the space group R-3m is analyzed by the out-of-plane method, as shown in Fig. 56A, a peak appears around the diffraction angle (2θ) of 31°. . Since this peak is derived from the (009) plane of the InGaZnO 4 crystal, it can be confirmed that the crystal has a c-axis orientation in CAAC-OS, and the c-axis faces a plane substantially perpendicular to the film forming CAAC-OS (also referred to as The direction in which the face is formed or the top surface. Note that in addition to the peak in the vicinity of 31° of 2θ, a peak may occur even when 2θ is around 36°. The peak in the vicinity of 2θ of 36° is caused by the crystal structure classified into the space group Fd-3m. Therefore, it is preferable that the peak does not occur in the CAAC-OS.

另一方面,當利用從平行於被形成面的方向使X射線入射到樣本的in-plane法分析CAAC-OS的結構時,在2θ為56°附近出現峰值。該峰值來源於InGaZnO4結晶的(110)面。並且,即使將2θ固定為56°附近並在以樣本面的法線向量為軸(Φ軸)旋轉樣本的條件下進行分析(Φ掃描),也如圖56B所示的那樣觀察不到明確的峰值。另一方面,當對單晶InGaZnO4將2θ固定為56°附近來進行Φ掃描時,如圖56C所示,觀察到來源於相等於(110)面的結晶面的六個峰值。因此,由使用XRD的結構分析可以確認到CAAC-OS中的a軸和b軸的配向沒有規律性。 On the other hand, when the structure of the CAAC-OS is analyzed by the in-plane method in which X-rays are incident on the sample in a direction parallel to the surface to be formed, a peak appears in the vicinity of 2θ of 56°. This peak is derived from the (110) plane of the InGaZnO 4 crystal. Further, even if 2θ is fixed at around 56° and analysis is performed under the condition that the sample is rotated by the normal vector of the sample surface (Φ axis), the Φ scan is not observed as shown in FIG. 56B. Peak. On the other hand, when the single crystal InGaZnO 4 is fixed to the 2θ near 56 ° to Φ scan, as shown in FIG observed a peak derived from crystal plane equivalent to six of the (110) plane 56C. Therefore, it was confirmed by structural analysis using XRD that the alignment of the a-axis and the b-axis in CAAC-OS has no regularity.

接著,說明利用電子繞射分析的CAAC-OS。例如,當對包含InGaZnO4結晶的CAAC-OS在平行於CAAC-OS的被形成面的方向上入射束徑為300nm的電子束時,有可能出現圖56D所示的繞射圖案(也稱為選區電子繞射圖案)。在該繞射圖案中包含起因於InGaZnO4結晶的(009)面的斑點。因此,電子繞射也示出CAAC-OS所包含的顆粒具有c軸配向性,並且c軸朝向大致垂直於被形成面或頂面的方向。另一方面,圖56E示出對相同的樣本在垂直於樣本面的方向上入射束徑為300nm的電子束時的繞射圖案。從圖56E觀察到環狀的繞射圖案。因此,使用束徑為300nm的電子束的電子繞射也示出CAAC-OS所包含的顆粒的a軸和b軸不具有配向性。可以認為圖56E中的第一環起因於InGaZnO4結晶的(010)面和(100)面等。另外,可以認為圖56E中的第二環起因於(110)面等。 Next, CAAC-OS using electron diffraction analysis will be described. For example, when an electron beam having a beam diameter of 300 nm is incident on a CAAC-OS containing InGaZnO 4 crystal in a direction parallel to the formed face of CAAC-OS, a diffraction pattern shown in FIG. 56D may occur (also referred to as Selected area electronic diffraction pattern). Spots resulting from the (009) plane of the InGaZnO 4 crystal are included in the diffraction pattern. Therefore, electron diffraction also shows that the particles contained in the CAAC-OS have a c-axis orientation, and the c-axis faces a direction substantially perpendicular to the surface to be formed or the top surface. On the other hand, Fig. 56E shows a diffraction pattern when an electron beam having a beam diameter of 300 nm is incident on the same sample in a direction perpendicular to the sample face. An annular diffraction pattern is observed from Fig. 56E. Therefore, electron diffraction using an electron beam having a beam diameter of 300 nm also shows that the a-axis and the b-axis of the particles contained in the CAAC-OS do not have an orientation. It can be considered that the first ring in Fig. 56E is caused by the (010) plane and the (100) plane of the InGaZnO 4 crystal. In addition, it can be considered that the second ring in FIG. 56E is caused by a (110) plane or the like.

另外,在利用穿透式電子顯微鏡(TEM:Transmission Electron Microscope)觀察所獲取的CAAC-OS的明視野影像與繞射圖案的複合分析影像(也稱為高解析度TEM影像)中,可以觀察到多個顆粒。然而,即使在高解析度TEM影像中,有時也觀察不到顆粒與顆粒之間的明確的邊界,亦即晶界(grain boundary)。因此,可以說在CAAC-OS中,不容易發生起因於晶界的電子移動率的降低。 In addition, observation of a composite analysis image (also referred to as high-resolution TEM image) of the obtained bright-field image of CAAC-OS and a diffraction pattern by a transmission electron microscope (TEM: Transmission Electron Microscope) can be observed. Multiple particles. However, even in high-resolution TEM images, a clear boundary between particles and particles, that is, a grain boundary, is sometimes not observed. Therefore, it can be said that in the CAAC-OS, the decrease in the electron mobility due to the grain boundary is less likely to occur.

圖57A示出從大致平行於樣本面的方向觀察所獲取的CAAC-OS的剖面的高解析度TEM影像。利用球面像差校正(Spherical Aberration Corrector)功能得到高解析度TEM影像。尤其將利用球面像差校正功能獲取的高解析度TEM影像稱為Cs校正高解析度TEM影像。例如可以使用日本電子株式會社製造的原子解析度分析型電子顯微鏡JEM-ARM200F等觀察Cs校正高解析度TEM影像。 Fig. 57A shows a high-resolution TEM image of a cross section of the acquired CAAC-OS viewed from a direction substantially parallel to the sample surface. High-resolution TEM images are obtained using the Spherical Aberration Corrector function. In particular, a high-resolution TEM image acquired by the spherical aberration correction function is referred to as a Cs-corrected high-resolution TEM image. For example, a Cs-corrected high-resolution TEM image can be observed using an atomic resolution analysis electron microscope JEM-ARM200F manufactured by JEOL Ltd.

從圖57A可確認到其中金屬原子排列為層狀的顆粒。並且可知一個顆粒的尺寸為1nm以上或者3nm以上。因此,也可以將顆粒稱為奈米晶(nc:nanocrystal)。另外,也可以將CAAC-OS稱為具有CANC(C-Axis Aligned nanocrystals:c軸配向奈米晶)的氧化物半導體。顆粒反映CAAC-OS的被形成面或頂面的凸凹並平行於CAAC-OS的被形成面或頂面。 From Fig. 57A, particles in which metal atoms are arranged in a layer shape can be confirmed. Further, it is understood that the size of one particle is 1 nm or more or 3 nm or more. Therefore, the particles can also be referred to as nanocrystals (nc: nanocrystal). Further, CAAC - OS may also be referred to as an oxide semiconductor having CANC (C-Axis Aligned nanocrystals). The particles reflect the convex or concave of the formed face or top surface of the CAAC-OS and are parallel to the formed face or top face of the CAAC-OS.

另外,圖57B及圖57C示出從大致垂直於樣本面的方向觀察所獲取的CAAC-OS的平面的Cs校正高解析度TEM影像。圖57D及圖57E是藉由對圖57B及圖57C進行影像處理得到的影像。下面說明影像處理的方法。首先,藉由對圖57B進行快速傳立葉變換(FFT:Fast Fourier Transform)處理,獲取FFT影像。接著,以保留所獲取的FFT影像中的離原點2.8nm-1至5.0nm-1的範圍的方式進行遮罩處理。接著,對經過遮罩處理的FFT影像進行快速傅立葉逆變換(IFFT:Inverse Fast Fourier Transform)處理而獲取經過處理的影像。將所獲取的影像稱為FFT濾波影像。FFT濾波影像是從Cs校正高解析度TEM影像中提取出週期分量的影像,其示出晶格排列。 57B and 57C show Cs-corrected high-resolution TEM images of the plane of the acquired CAAC-OS viewed from a direction substantially perpendicular to the sample surface. 57D and 57E are images obtained by performing image processing on Figs. 57B and 57C. The method of image processing will be described below. First, an FFT image is acquired by performing a Fast Fourier Transform (FFT) process on FIG. 57B. Next, the mask processing is performed so as to preserve the range from the origin of 2.8 nm -1 to 5.0 nm -1 in the acquired FFT image. Then, the masked FFT image is subjected to Inverse Fast Fourier Transform (IFFT) processing to obtain a processed image. The acquired image is referred to as an FFT filtered image. The FFT filtered image is an image from which a periodic component is extracted from a Cs corrected high resolution TEM image, which shows a lattice arrangement.

在圖57D中,以虛線示出晶格排列被打亂的部分。由虛線圍繞的區域是一個顆粒。並且,以虛線示出的部分是顆粒與顆粒的聯結部。虛線呈現六角形,由此可知顆粒為六角形。注意,顆粒的形狀並不侷限於正六角形,不是正六角形的情況較多。 In Fig. 57D, the portion where the lattice arrangement is disturbed is shown by a broken line. The area surrounded by the dotted line is a particle. Also, the portion shown by a broken line is a junction of particles and particles. The dotted line shows a hexagon, and it is thus known that the particles are hexagonal. Note that the shape of the particles is not limited to a regular hexagon, and it is not a case of a regular hexagon.

在圖57E中,以點線示出晶格排列一致的區域與其他晶格排列一致的區域之間的部分。。在點線附近也無法確認到明確的晶界。當以點線附近的晶格點為中心周圍的晶格點相接時,可以形成畸變的六角形、五角形及/或七角形等。亦即,可知藉由使晶格排列畸變,可抑制晶界的形成。這可能是由於CAAC-OS可容許因如下原因而發生的畸變:在a-b面方向上的原子排列的低密度或因金屬元素被取代而使原子間的鍵合距離產生變化等。 In Fig. 57E, a portion between the regions in which the lattice arrangement is uniform and the regions in which the lattice arrangements are identical is shown by dotted lines. . A clear grain boundary cannot be confirmed near the dotted line. When the lattice points around the lattice point near the dotted line are connected, a distorted hexagon, a pentagon, and/or a heptagon may be formed. That is, it can be seen that the formation of grain boundaries can be suppressed by distorting the lattice arrangement. This may be because CAAC-OS can tolerate distortion due to the low density of the atomic arrangement in the a-b plane direction or the change in the bonding distance between atoms due to the substitution of the metal element.

如上所示,CAAC-OS具有c軸配向性,其多個顆粒(奈米晶)在a-b面方向上連結而結晶結構具有畸變。因此,也可以將CAAC-OS稱為具有CAAcrystal(c-axis-aligned a-b-plane-anchored crystal)的氧化物半導體。 As described above, CAAC-OS has a c-axis orientation, and a plurality of particles (nanocrystals) are connected in the a-b plane direction to have a crystal structure having distortion. Therefore, CAAC-OS can also be referred to as an oxide semiconductor having CAA crystal (c-axis-aligned a-b-plane-anchored crystal).

CAAC-OS是結晶性高的氧化物半導體。氧化物半導體的結晶性有時因雜質的混入或缺陷的生成等而降低,從相反的觀點來看,可以說CAAC-OS是雜質或缺陷(氧缺陷等)少的氧化物半導體。 CAAC-OS is an oxide semiconductor having high crystallinity. The crystallinity of the oxide semiconductor may be lowered by the incorporation of impurities or the formation of defects, etc. From the opposite viewpoint, it can be said that CAAC-OS is an oxide semiconductor having few impurities or defects (oxygen defects, etc.).

此外,雜質是指氧化物半導體的主要成分以外的元素,諸如氫、碳、矽和過渡金屬元素等。例如,與氧的鍵合力比構成氧化物半導體的金屬元 素強的矽等元素會奪取氧化物半導體中的氧,由此打亂氧化物半導體的原子排列,導致結晶性下降。另外,由於鐵或鎳等重金屬、氬、二氧化碳等的原子半徑(或分子半徑)大,所以會打亂氧化物半導體的原子排列,導致結晶性下降。 Further, the impurities refer to elements other than the main components of the oxide semiconductor, such as hydrogen, carbon, ruthenium, and transition metal elements. For example, the bonding force with oxygen is greater than the metal element constituting the oxide semiconductor An element such as a strong lanthanum robs oxygen in the oxide semiconductor, thereby disturbing the atomic arrangement of the oxide semiconductor, resulting in a decrease in crystallinity. Further, since the atomic radius (or molecular radius) of heavy metals such as iron or nickel, argon, carbon dioxide, and the like is large, the atomic arrangement of the oxide semiconductor is disturbed, and the crystallinity is lowered.

當氧化物半導體包含雜質或缺陷時,其特性有時會因光或熱等發生變動。例如,包含於氧化物半導體的雜質有時會成為載子陷阱或載子發生源。例如,氧化物半導體中的氧缺陷有時會成為載子陷阱或因俘獲氫而成為載子發生源。 When an oxide semiconductor contains impurities or defects, its characteristics sometimes fluctuate due to light or heat. For example, impurities contained in an oxide semiconductor may sometimes become a carrier trap or a carrier generation source. For example, an oxygen defect in an oxide semiconductor may become a carrier trap or a carrier generating source due to trapping hydrogen.

雜質及氧缺陷少的CAAC-OS是載子密度低的氧化物半導體。明確而言,可以使用載子密度小於8×1011cm-3,較佳為小於1×1011cm-3,更佳為小於1×1010cm-3,且是1×10-9cm3以上的氧化物半導體。將這樣的氧化物半導體稱為高純度本質或實質上高純度本質的氧化物半導體。CAAC-OS的雜質濃度和缺陷態密度低。亦即,可以說CAAC-OS是具有穩定特性的氧化物半導體。 CAAC-OS having less impurities and oxygen defects is an oxide semiconductor having a low carrier density. Specifically, a carrier density of less than 8 × 10 11 cm -3 , preferably less than 1 × 10 11 cm -3 , more preferably less than 1 × 10 10 cm -3 , and 1 × 10 -9 cm can be used. 3 or more oxide semiconductors. Such an oxide semiconductor is referred to as an oxide semiconductor of high purity nature or substantially high purity. CAAC-OS has low impurity concentration and defect state density. That is, it can be said that CAAC-OS is an oxide semiconductor having stable characteristics.

〈nc-OS〉 <nc-OS>

接著,對nc-OS進行說明。 Next, the nc-OS will be described.

說明使用XRD裝置對nc-OS進行分析的情況。例如,當利用out-of-plane法分析nc-OS的結構時,不出現表示配向性的峰值。換言之,nc-OS的結晶不具有配向性。 The case where the nc-OS is analyzed using an XRD apparatus will be described. For example, when the structure of the nc-OS is analyzed by the out-of-plane method, no peak indicating the orientation is present. In other words, the crystallization of nc-OS does not have an orientation.

另外,例如,當使包含InGaZnO4結晶的nc-OS薄片化,並在平行於被形成面的方向上使束徑為50nm的電子束入射到厚度為34nm的區域時,觀察到如圖58A所示的環狀繞射圖案(奈米束電子繞射圖案)。另外,圖58B示出將束徑為1nm的電子束入射到相同的樣本時的繞射圖案(奈米束電子繞射圖案)。從圖58B觀察到環狀區域內的多個斑點。因此,nc-OS在入射束徑為50nm的電子束時觀察不到秩序性,但是在入射束徑為1nm的電子束時確認到秩序性。 Further, for example, when an nc-OS containing InGaZnO 4 crystal is thinned, and an electron beam having a beam diameter of 50 nm is incident on a region having a thickness of 34 nm in a direction parallel to the surface to be formed, it is observed as shown in Fig. 58A. An annular diffraction pattern (nano beam electron diffraction pattern) is shown. In addition, FIG. 58B shows a diffraction pattern (nano beam electron diffraction pattern) when an electron beam having a beam diameter of 1 nm is incident on the same sample. A plurality of spots in the annular region are observed from Fig. 58B. Therefore, nc-OS does not observe order when an electron beam having a beam diameter of 50 nm is incident, but order is confirmed when an electron beam having a beam diameter of 1 nm is incident.

另外,當使束徑為1nm的電子束入射到厚度小於10nm的區域時,如圖58C所示,有時觀察到斑點被配置為準正六角形的電子繞射圖案。由此可 知,nc-OS在厚度小於10nm的範圍內包含秩序性高的區域,亦即結晶。注意,因為結晶朝向各種各樣的方向,所以也有觀察不到有規律性的電子繞射圖案的區域。 Further, when an electron beam having a beam diameter of 1 nm is incident on a region having a thickness of less than 10 nm, as shown in Fig. 58C, an electron diffraction pattern in which a spot is arranged in a quasi-negative hexagon shape is sometimes observed. From this It is known that nc-OS contains a highly ordered region, that is, crystallization, in a range of thickness less than 10 nm. Note that since the crystals are oriented in various directions, there is also no area where the regular electronic diffraction pattern is observed.

圖58D示出從大致平行於被形成面的方向觀察到的nc-OS的剖面的Cs校正高解析度TEM影像。在nc-OS的高解析度TEM影像中有如由輔助線所示的部分那樣能夠觀察到結晶部的區域和觀察不到明確的結晶部的區域。nc-OS所包含的結晶部的尺寸為1nm以上且10nm以下,尤其大多為1nm以上且3nm以下。注意,有時將其結晶部的尺寸大於10nm且是100nm以下的氧化物半導體稱為微晶氧化物半導體(micro crystalline oxide semiconductor)。例如,在nc-OS的高解析度TEM影像中,有時無法明確地觀察到晶界。注意,奈米晶的來源有可能與CAAC-OS中的顆粒相同。因此,下面有時將nc-OS的結晶部稱為顆粒。 Fig. 58D shows a Cs-corrected high-resolution TEM image of a cross section of the nc-OS viewed from a direction substantially parallel to the surface to be formed. In the high-resolution TEM image of the nc-OS, a region where the crystal portion can be observed and a region where the crystal portion is not observed can be observed as indicated by the auxiliary line. The size of the crystal portion included in the nc-OS is 1 nm or more and 10 nm or less, and particularly preferably 1 nm or more and 3 nm or less. Note that an oxide semiconductor whose crystal portion has a size larger than 10 nm and is 100 nm or less is sometimes referred to as a micro crystalline oxide semiconductor. For example, in a high-resolution TEM image of nc-OS, grain boundaries may not be clearly observed. Note that the source of nanocrystals may be the same as the particles in CAAC-OS. Therefore, the crystal portion of the nc-OS is sometimes referred to as a pellet below.

如此,在nc-OS中,微小的區域(例如1nm以上且10nm以下的區域,特別是1nm以上且3nm以下的區域)中的原子排列具有週期性。另外,nc-OS在不同的顆粒之間觀察不到結晶定向的規律性。因此,在膜整體中觀察不到配向性。所以,有時nc-OS在某些分析方法中與a-like OS或非晶氧化物半導體沒有差別。 As described above, in the nc-OS, the atomic arrangement in a minute region (for example, a region of 1 nm or more and 10 nm or less, particularly a region of 1 nm or more and 3 nm or less) has periodicity. In addition, nc-OS does not observe the regularity of crystal orientation between different particles. Therefore, no alignment property was observed in the entire film. Therefore, sometimes nc-OS does not differ from a-like OS or amorphous oxide semiconductor in some analytical methods.

另外,由於在顆粒(奈米晶)之間結晶定向沒有規律性,所以也可以將nc-OS稱為包含RANC(Random Aligned nanocrystals:無規配向奈米晶)的氧化物半導體或包含NANC(Non-Aligned nanocrystals:無配向奈米晶)的氧化物半導體。 In addition, since the crystal orientation is irregular between particles (nanocrystals), nc-OS can also be referred to as an oxide semiconductor including RANC (Random Aligned nanocrystals) or NANC (Non) -Aligned nanocrystals: oxide semiconductors with no aligned nanocrystals.

nc-OS是規律性比非晶氧化物半導體高的氧化物半導體。因此,nc-OS的缺陷態密度比a-like OS或非晶氧化物半導體低。但是,在nc-OS中的不同的顆粒之間觀察不到晶體配向的規律性。所以,nc-OS的缺陷態密度比CAAC-OS高。 nc-OS is an oxide semiconductor having a higher regularity than an amorphous oxide semiconductor. Therefore, the defect state density of nc-OS is lower than that of a-like OS or amorphous oxide semiconductor. However, the regularity of crystal alignment was not observed between different particles in nc-OS. Therefore, the density state of the defect state of nc-OS is higher than that of CAAC-OS.

〈a-like OS〉 <a-like OS>

a-like OS是具有介於nc-OS與非晶氧化物半導體之間的結構的氧化物半導體。 The a-like OS is an oxide semiconductor having a structure between nc-OS and an amorphous oxide semiconductor.

圖59A和圖59B示出a-like OS的高解析度剖面TEM影像。圖59A示出電子照射開始時的a-like OS的高解析度剖面TEM影像。圖59B示出照射4.3×108e-/nm2的電子(e-)之後的a-like OS的高解析度剖面TEM影像。由圖59A和圖59B可知,a-like OS從電子照射開始時被觀察到在縱向方向上延伸的條狀明亮區域。另外,可知明亮區域的形狀在照射電子之後變化。明亮區域被估計為空洞或低密度區域。 Figures 59A and 59B show high resolution cross-sectional TEM images of a-like OS. Fig. 59A shows a high-resolution cross-sectional TEM image of the a-like OS at the start of electron irradiation. Fig. 59B shows a high-resolution cross-sectional TEM image of the a-like OS after irradiation of electrons (e - ) of 4.3 × 10 8 e - /nm 2 . As can be seen from Fig. 59A and Fig. 59B, the a-like OS is observed as a strip-shaped bright region extending in the longitudinal direction from the start of electron irradiation. In addition, it is understood that the shape of the bright region changes after the electrons are irradiated. Bright areas are estimated to be empty or low density areas.

由於a-like OS包含空洞,所以其結構不穩定。為了證明與CAAC-OS及nc-OS相比a-like OS具有不穩定的結構,下面示出電子照射所導致的結構變化。 Since the a-like OS contains holes, its structure is unstable. In order to demonstrate that the a-like OS has an unstable structure compared to CAAC-OS and nc-OS, the structural changes caused by electron irradiation are shown below.

作為樣本,準備a-like OS、nc-OS和CAAC-OS。每個樣本都是In-Ga-Zn氧化物。 As a sample, a-like OS, nc-OS, and CAAC-OS were prepared. Each sample is an In-Ga-Zn oxide.

首先,取得各樣本的高解析度剖面TEM影像。由高解析度剖面TEM影像可知,每個樣本都具有結晶部。 First, a high-resolution cross-sectional TEM image of each sample was obtained. It can be seen from the high-resolution cross-sectional TEM image that each sample has a crystal portion.

已知InGaZnO4結晶的單位晶格具有所包括的三個In-O層和六個Ga-Zn-O層共計九個層在c軸方向上以層狀層疊的結構。這些彼此靠近的層之間的間隔與(009)面的晶格表面間隔(也稱為d值)幾乎相等,由結晶結構分析求出其值為0.29nm。由此,以下可以將晶格條紋的間隔為0.28nm以上且0.30nm以下的部分看作InGaZnO4結晶部。晶格條紋對應於InGaZnO4結晶的a-b面。 It is known that a unit cell of InGaZnO 4 crystal has a structure in which a total of nine layers of three In-O layers and six Ga-Zn-O layers are laminated in a c-axis direction. The spacing between the layers close to each other is almost equal to the lattice surface spacing (also referred to as d value) of the (009) plane, and the value is 0.29 nm as determined by crystal structure analysis. Therefore, in the following, a portion in which the interval between lattice fringes is 0.28 nm or more and 0.30 nm or less can be regarded as a crystal portion of InGaZnO 4 . The lattice fringes correspond to the ab plane of the InGaZnO 4 crystal.

圖60示出調查了各樣本的結晶部(22至30處)的平均尺寸的例子。注意,結晶部尺寸對應於上述晶格條紋的長度。由圖60可知,在a-like OS中,結晶部根據有關取得TEM影像等的電子的累積照射量逐漸變大。由圖60可知,在利用TEM的觀察初期尺寸為1.2nm左右的結晶部(也稱為初始晶核)在電子(e-)的累積照射量為4.2×108e-/nm2時生長到1.9nm左右。另一方面,可知nc-OS和CAAC-OS在開始電子照射時到電子的累積照射量為4.2×108e-/nm2的範圍內,結晶部的尺寸都沒有變化。由圖60可知,無論電子的累積照射量如何,nc-OS及CAAC-OS的結晶部尺寸分別為1.3nm左右 及1.8nm左右。此外,使用日立穿透式電子顯微鏡H-9000NAR進行電子束照射及TEM的觀察。作為電子束照射條件,加速電壓為300kV;電流密度為6.7×105e-/(nm2.s);照射區域的直徑為230nm。 Fig. 60 shows an example in which the average size of the crystal portions (22 to 30) of each sample was investigated. Note that the crystal portion size corresponds to the length of the above lattice fringe. As can be seen from FIG. 60, in the a-like OS, the crystal portion gradually increases in accordance with the cumulative irradiation amount of electrons for acquiring a TEM image or the like. As can be seen from FIG. 60, a crystal portion (also referred to as an initial crystal nucleus) having an initial size of about 1.2 nm observed by TEM is grown when the cumulative irradiation amount of electrons (e - ) is 4.2 × 10 8 e - / nm 2 . About 1.9nm. On the other hand, it is understood that nc-OS and CAAC-OS have a cumulative irradiation amount of electrons of 4.2 × 10 8 e - /nm 2 at the start of electron irradiation, and the size of the crystal portion does not change. As is clear from Fig. 60, the crystal portion sizes of nc-OS and CAAC-OS are about 1.3 nm and about 1.8 nm, respectively, regardless of the cumulative irradiation amount of electrons. Further, electron beam irradiation and TEM observation were performed using a Hitachi transmission electron microscope H-9000 NAR. As the electron beam irradiation conditions, the acceleration voltage was 300 kV; the current density was 6.7 × 10 5 e - / (nm 2 .s); and the diameter of the irradiation region was 230 nm.

如此,有時電子照射引起a-like OS中的結晶部的生長。另一方面,在nc-OS和CAAC-OS中,幾乎沒有電子照射所引起的結晶部的生長。也就是說,a-like OS與CAAC-OS及nc-OS相比具有不穩定的結構。 As such, electron irradiation sometimes causes the growth of the crystal portion in the a-like OS. On the other hand, in nc-OS and CAAC-OS, there is almost no growth of crystal parts caused by electron irradiation. That is to say, the a-like OS has an unstable structure compared to CAAC-OS and nc-OS.

此外,由於a-like OS包含空洞,所以其密度比nc-OS及CAAC-OS低。具體地,a-like OS的密度為具有相同組成的單晶氧化物半導體的78.6%以上且小於92.3%。nc-OS的密度及CAAC-OS的密度為具有相同組成的單晶氧化物半導體的92.3%以上且小於100%。注意,難以形成其密度小於單晶氧化物半導體的密度的78%的氧化物半導體。 In addition, since the a-like OS contains holes, its density is lower than that of nc-OS and CAAC-OS. Specifically, the density of the a-like OS is 78.6% or more and less than 92.3% of the single crystal oxide semiconductor having the same composition. The density of nc-OS and the density of CAAC-OS are 92.3% or more and less than 100% of the single crystal oxide semiconductor having the same composition. Note that it is difficult to form an oxide semiconductor whose density is less than 78% of the density of the single crystal oxide semiconductor.

例如,在原子數比滿足In:Ga:Zn=1:1:1的氧化物半導體中,具有菱方晶系結構的單晶InGaZnO4的密度為6.357g/cm3。因此,例如,在原子數比滿足In:Ga:Zn=1:1:1的氧化物半導體中,a-like OS的密度為5.0g/cm3以上且小於5.9g/cm3。另外,例如,在原子數比滿足In:Ga:Zn=1:1:1的氧化物半導體中,nc-OS的密度和CAAC-OS的密度為5.9g/cm3以上且小於6.3g/cm3For example, in an oxide semiconductor having an atomic ratio of In:Ga:Zn=1:1:1, the density of single crystal InGaZnO 4 having a rhombohedral structure is 6.357 g/cm 3 . Therefore, for example, in an oxide semiconductor whose atomic ratio satisfies In:Ga:Zn=1:1:1, the density of the a-like OS is 5.0 g/cm 3 or more and less than 5.9 g/cm 3 . Further, for example, in an oxide semiconductor whose atomic ratio satisfies In:Ga:Zn=1:1:1, the density of nc-OS and the density of CAAC-OS are 5.9 g/cm 3 or more and less than 6.3 g/cm. 3 .

注意,當不存在相同組成的單晶氧化物半導體時,藉由以任意比例組合組成不同的單晶氧化物半導體,可以估計出相當於所希望的組成的單晶氧化物半導體的密度。根據組成不同的單晶氧化物半導體的組合比例使用加權平均估計出相當於所希望的組成的單晶氧化物半導體的密度即可。注意,較佳為儘可能減少所組合的單晶氧化物半導體的種類來估計密度。 Note that when a single crystal oxide semiconductor of the same composition is not present, the density of a single crystal oxide semiconductor corresponding to a desired composition can be estimated by combining different single crystal oxide semiconductors in an arbitrary ratio. The density of the single crystal oxide semiconductor corresponding to the desired composition may be estimated using a weighted average according to the combination ratio of the single crystal oxide semiconductors having different compositions. Note that it is preferable to estimate the density by reducing the kind of the combined single crystal oxide semiconductor as much as possible.

如上所述,氧化物半導體具有各種結構及各種特性。注意,氧化物半導體例如可以是包括非晶氧化物半導體、a-like OS、nc-OS和CAAC-OS中的兩種以上的疊層膜。 As described above, the oxide semiconductor has various structures and various characteristics. Note that the oxide semiconductor may be, for example, a laminated film including two or more of an amorphous oxide semiconductor, a-like OS, nc-OS, and CAAC-OS.

本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。 The structure shown in this embodiment can be implemented in appropriate combination with the structure shown in the other embodiment.

實施方式6 Embodiment 6

在本實施方式中,對容納影像感測器晶片的封裝及相機模組的一個例子進行說明。可以將本發明的一個實施方式的攝像裝置的結構用於該影像感測器晶片。 In the present embodiment, an example of a package accommodating an image sensor wafer and a camera module will be described. The structure of the image pickup apparatus of one embodiment of the present invention can be applied to the image sensor wafer.

圖61A是容納影像感測器晶片的封裝的頂面一側的外觀透視圖。該封裝包括固定影像感測器晶片850的封裝基板810、玻璃蓋板820以及黏合兩者的黏合劑830等。 Figure 61A is a perspective view showing the appearance of the top side of the package accommodating the image sensor wafer. The package includes a package substrate 810 that fixes the image sensor wafer 850, a cover glass 820, and an adhesive 830 that bonds both.

圖61B是該封裝的底面一側的外觀透視圖。封裝的底面有以焊球為凸塊(bump)840的BGA(Ball grid array:球柵陣列)結構。但是,不侷限於BGA結構,還可以採用LGA(Land grid array:地柵陣列)或PGA(Pin Grid Array:針柵陣列)等結構。 Fig. 61B is a perspective view showing the appearance of the bottom surface side of the package. The bottom surface of the package has a BGA (Ball Grid Array) structure in which the solder balls are bumps 840. However, it is not limited to the BGA structure, and a structure such as an LGA (Land Grid Array) or a PGA (Pin Grid Array) may be employed.

圖61C是省略玻璃蓋板820及黏合劑830的一部分的封裝的透視圖,圖61D是該封裝的剖面圖。在封裝基板810上形成有盤狀電極860,盤狀電極860藉由通孔880及焊盤885與凸塊840電連接。盤狀電極860藉由線870與影像感測器晶片850所具有的電極電連接。 61C is a perspective view of a package omitting a portion of the glass cover 820 and the adhesive 830, and FIG. 61D is a cross-sectional view of the package. A disk electrode 860 is formed on the package substrate 810, and the disk electrode 860 is electrically connected to the bump 840 through the via 880 and the pad 885. The disk electrode 860 is electrically connected to the electrode of the image sensor wafer 850 by a wire 870.

另外,圖62A是相機模組的頂面一側的外觀透視圖,其模組中將影像感測器晶片容納於透鏡一體型的封裝中。該相機模組包括固定影像感測器晶片851的封裝基板811、透鏡蓋板821及透鏡835等。另外,在封裝基板811與影像感測器晶片851之間也設置有具有攝像裝置的驅動電路及信號轉換電路等功能的IC晶片890。封由此,形成SiP(System in Package:系統封裝)。 In addition, FIG. 62A is a perspective view showing the appearance of the top surface side of the camera module, in which the image sensor wafer is housed in a lens-integrated package. The camera module includes a package substrate 811 that fixes the image sensor wafer 851, a lens cover 821, a lens 835, and the like. Further, an IC chip 890 having functions such as a drive circuit of an image pickup device and a signal conversion circuit is also provided between the package substrate 811 and the image sensor wafer 851. Thus, a SiP (System in Package) is formed.

圖62B是該相機模組的底面一側的外觀透視圖。在封裝基板811的底面及其四個側面上具有用來安裝的焊盤841的QFN(Quad flat no-lead package:四側無引腳扁平封裝)的結構。另外,該結構為一個例子,也可以採用QFP(Quad flat package:四面扁平封裝)及上述BGA等。 Fig. 62B is a perspective view showing the appearance of the bottom surface side of the camera module. A QFN (Quad flat no-lead package) having a pad 841 for mounting is provided on the bottom surface of the package substrate 811 and its four side faces. Further, the configuration is an example, and a QFP (Quad flat package) and the above BGA may be used.

圖62C是省略透鏡蓋板821及透鏡835的一部分的模組的透視圖,圖62D是該相機模組的剖面圖。將焊盤841的一部分用作盤狀電極861,盤狀電極861藉由線871與影像感測器晶片851及IC晶片890所包括的電極電連接。 62C is a perspective view of a module omitting a part of the lens cover 821 and the lens 835, and FIG. 62D is a cross-sectional view of the camera module. A portion of the pad 841 is used as the disk electrode 861, and the disk electrode 861 is electrically connected to the electrodes included in the image sensor wafer 851 and the IC wafer 890 by the wire 871.

藉由將影像感測器晶片容納於上述方式的封裝中,可以容易實現安裝於印刷電路板等,將影像感測器晶片安裝在各種半導體裝置及電子裝置中。 By accommodating the image sensor wafer in the package of the above-described type, it is easy to mount on a printed circuit board or the like, and the image sensor wafer is mounted in various semiconductor devices and electronic devices.

本實施方式所示的結構可以與其他實施方式所示的結構適當地組合而實施。 The structure shown in this embodiment can be implemented in appropriate combination with the structure shown in the other embodiment.

實施方式7 Embodiment 7

作為可以使用本發明的一個實施方式的攝像裝置及包含該攝像裝置的半導體裝置的電子裝置,可以舉出顯示裝置、個人電腦、具備儲存媒體的影像記憶體裝置及影像再現裝置、行動電話、包括可攜式的遊戲機、可攜式資料終端、電子書閱讀器、拍攝裝置諸如視頻攝影機或數位相機等、護目鏡型顯示器(頭戴式顯示器)、導航系統、音頻再生裝置(汽車音響系統、數位聲訊播放機等)、影印機、傳真機、印表機、多功能印表機、自動櫃員機(ATM)以及自動販賣機等。圖63A至圖63F示出這些電子裝置的具體例子。 Examples of the electronic device that can use the imaging device according to one embodiment of the present invention and the semiconductor device including the imaging device include a display device, a personal computer, an image memory device and a video reproduction device including a storage medium, and a mobile phone, including Portable game consoles, portable data terminals, e-book readers, camera devices such as video cameras or digital cameras, goggle-type displays (head-mounted displays), navigation systems, audio reproduction devices (car audio systems, Digital audio players, etc.), photocopiers, fax machines, printers, multifunction printers, automatic teller machines (ATMs), and vending machines. Specific examples of these electronic devices are shown in Figs. 63A to 63F.

圖63A是監控攝影機,該監控攝影機包括外殼951、透鏡952及支撐部953等。作為在該監控攝影機中用來取得影像的構件中的一個,可以具備本發明的一個實施方式的攝像裝置。注意,“監控攝影機”是一般名稱,不侷限於其用途。例如,具有監控攝影機的功能的裝置被稱為攝影機或視頻攝影機。 Fig. 63A is a surveillance camera including a housing 951, a lens 952, a support portion 953, and the like. As one of the members for acquiring an image in the surveillance camera, an imaging device according to an embodiment of the present invention may be provided. Note that "monitor camera" is a generic name and is not limited to its purpose. For example, a device having the function of monitoring a camera is called a camera or a video camera.

圖63B是視頻攝影機,該視頻攝影機包括第一外殼971、第二外殼972、顯示部973、操作鍵974、透鏡975、連接部976等。操作鍵974及透鏡975設置在第一外殼971中,顯示部973設置在第二外殼972中。作為在該視頻攝影機中用來取得影像的構件中的一個,可以具備本發明的一個實施方式的攝像裝置。 Fig. 63B is a video camera including a first housing 971, a second housing 972, a display portion 973, operation keys 974, a lens 975, a connecting portion 976, and the like. The operation keys 974 and the lens 975 are disposed in the first housing 971, and the display portion 973 is disposed in the second housing 972. As one of the members for acquiring video in the video camera, an imaging device according to an embodiment of the present invention may be provided.

圖63C是數位相機,該數位相機包括外殼961、快門按鈕962、麥克風963、發光部967以及透鏡965等。作為在該數位相機中用來取得影像的構件中的一個,可以具備本發明的一個實施方式的攝像裝置。 Fig. 63C is a digital camera including a housing 961, a shutter button 962, a microphone 963, a light emitting portion 967, a lens 965, and the like. As one of the members for acquiring an image in the digital camera, an imaging device according to an embodiment of the present invention may be provided.

圖63D是手錶型資訊終端,該手錶型資訊終端包括外殼931、顯示部932、腕帶933、操作按鈕935、表冠936以及相機939等。顯示部932也可以為觸控面板。作為在該資訊終端中用來取得影像的構件中的一個,可以具備本發明的一個實施方式的攝像裝置。 Fig. 63D is a watch type information terminal including a housing 931, a display portion 932, a wristband 933, an operation button 935, a crown 936, a camera 939, and the like. The display portion 932 may also be a touch panel. As one of the means for acquiring an image in the information terminal, an imaging device according to an embodiment of the present invention may be provided.

圖63E是可攜式遊戲機,該可攜式遊戲機包括外殼901、外殼902、顯示部903、顯示部904、麥克風905、揚聲器906、操作鍵907、觸控筆908以及相機909等。注意,雖然圖63E所示的可攜式遊戲機包括兩個顯示部903和顯示部904,但是可攜式遊戲機所包括的顯示部的個數不限於此。作為在該可攜式遊戲機中用來取得影像的構件中的一個,可以具備本發明的一個實施方式的攝像裝置。 63E is a portable game machine including a housing 901, a housing 902, a display portion 903, a display portion 904, a microphone 905, a speaker 906, operation keys 907, a stylus pen 908, a camera 909, and the like. Note that although the portable game machine illustrated in FIG. 63E includes two display portions 903 and a display portion 904, the number of display portions included in the portable game machine is not limited thereto. As one of the members for acquiring images in the portable game machine, an image pickup apparatus according to an embodiment of the present invention may be provided.

圖63F是可攜式資料終端,該可攜式資料終端包括外殼911、顯示部912、相機919等。藉由顯示部912所具有的觸控面板功能可以輸入且輸出資訊。作為在該可攜式資料終端中用來取得影像的構件中的一個,可以具備本發明的一個實施方式的攝像裝置。 FIG. 63F is a portable data terminal. The portable data terminal includes a housing 911, a display portion 912, a camera 919, and the like. Information can be input and output by the touch panel function of the display unit 912. As one of the means for acquiring an image in the portable data terminal, an image pickup apparatus according to an embodiment of the present invention may be provided.

本實施方式可以與本說明書所示的其他實施方式適當地組合。 This embodiment can be combined as appropriate with other embodiments shown in the present specification.

10‧‧‧像素 10‧‧‧ pixels

41‧‧‧電晶體 41‧‧‧Optoelectronics

42‧‧‧電晶體 42‧‧‧Optoelectronics

43‧‧‧電晶體 43‧‧‧Optoelectronics

44‧‧‧電晶體 44‧‧‧Optoelectronics

45‧‧‧電晶體 45‧‧‧Optoelectronics

46‧‧‧電晶體 46‧‧‧Optoelectronics

61‧‧‧佈線 61‧‧‧Wiring

62‧‧‧佈線 62‧‧‧Wiring

63‧‧‧佈線 63‧‧‧Wiring

64‧‧‧佈線 64‧‧‧Wiring

65‧‧‧佈線 65‧‧‧Wiring

71‧‧‧佈線 71‧‧‧Wiring

72‧‧‧佈線 72‧‧‧Wiring

73‧‧‧佈線 73‧‧‧Wiring

74‧‧‧佈線 74‧‧‧Wiring

91‧‧‧佈線 91‧‧‧Wiring

Claims (20)

一種攝像裝置,包括:第一電晶體、第二電晶體、第三電晶體、第四電晶體、第五電晶體及第六電晶體;光電轉換元件;以及第一電容器及第二電容器,其中:該光電轉換元件的一個電極與該第一電晶體的源極和汲極中的一個及該第二電晶體的源極和汲極中的一個電連接,該第一電晶體的源極和汲極中的另一個與該第三電晶體的源極和汲極中的一個、該第四電晶體的源極和汲極中的一個、該第五電晶體的閘極電極及該第一電容器的一個電極電連接,該第四電晶體的源極和汲極中的另一個與該第二電容器的一個電極電連接,該第五電晶體的源極和汲極中的一個與該第六電晶體的源極和汲極中的一個電連接,該第一電晶體、該第二電晶體、該第三電晶體及該第四電晶體包括氧化物半導體。 An image pickup apparatus comprising: a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, and a sixth transistor; a photoelectric conversion element; and a first capacitor and a second capacitor, wherein An electrode of the photoelectric conversion element is electrically connected to one of a source and a drain of the first transistor and a source and a drain of the second transistor, a source of the first transistor One of the other of the drain and one of the source and the drain of the third transistor, one of the source and the drain of the fourth transistor, the gate electrode of the fifth transistor, and the first One electrode of the capacitor is electrically connected, and the other of the source and the drain of the fourth transistor is electrically connected to one electrode of the second capacitor, and one of a source and a drain of the fifth transistor The source of the six transistors is electrically connected to one of the drains, and the first transistor, the second transistor, the third transistor, and the fourth transistor comprise an oxide semiconductor. 根據申請專利範圍第1項之攝像裝置,其中該第五電晶體及該第六電晶體都包括該氧化物半導體。 The image pickup device of claim 1, wherein the fifth transistor and the sixth transistor each comprise the oxide semiconductor. 根據申請專利範圍第1項之攝像裝置,其中該氧化物半導體包含In、Zn及M(M為Al、Ti、Ga、Sn、Y、Zr、La、Ce、Nd和Hf中的一種)。 The image pickup device according to claim 1, wherein the oxide semiconductor contains In, Zn, and M (M is one of Al, Ti, Ga, Sn, Y, Zr, La, Ce, Nd, and Hf). 根據申請專利範圍第1項之攝像裝置,其中該光電轉換元件在光電轉換層中包括硒或包含硒的化合物。 The image pickup device according to claim 1, wherein the photoelectric conversion element includes selenium or a compound containing selenium in the photoelectric conversion layer. 一種包括申請專利範圍第1項之攝像裝置及透鏡的模組。 A module comprising a camera device and a lens of claim 1 of the patent application. 一種包括申請專利範圍第1項之攝像裝置及顯示裝置的電子裝置。 An electronic device comprising the imaging device and the display device of claim 1 of the patent application. 一種攝像裝置,包括:包括電荷存儲部及電荷檢測部的像素;以及第一電路、第二電路、第三電路、第四電路及第五電路,其中:該像素與該第一電路及該第五電路電連接,該第一電路與該第二電路電連接,該第二電路與該第三電路及該第四電路電連接, 該第三電路與該第五電路電連接,該像素獲取第一攝像資料或第二攝像資料,將該第一攝像資料或該第二攝像資料存儲在該電荷存儲部中,將存儲在該電荷存儲部中的該第一攝像資料或該第二攝像資料傳送到該電荷檢測部,該第一電路輸出將與該第二攝像資料對應的第一電位和與該電荷檢測部的重設電位對應的第二電位之間的差值的絕對值加到參考電位而得到的第一信號或者從該參考電位減去該絕對值而得到的第一信號,該第二電路判定該電荷檢測部是否由於該第一攝像資料被電子飽和,該第三電路在該電荷檢測部未被電子飽和的情況下藉由該第五電路將不獲取該第二攝像資料的第二信號輸出到該像素,在該電荷檢測部被電子飽和的情況下消除該電荷檢測部的飽和並藉由該第五電路將獲取該第二攝像資料的第三信號輸出到該像素,該第二電路及該第四電路將從該第一電路輸出的信號轉換為數位資料。 An imaging device includes: a pixel including a charge storage portion and a charge detecting portion; and a first circuit, a second circuit, a third circuit, a fourth circuit, and a fifth circuit, wherein: the pixel and the first circuit and the first The fifth circuit is electrically connected, the first circuit is electrically connected to the second circuit, and the second circuit is electrically connected to the third circuit and the fourth circuit, The third circuit is electrically connected to the fifth circuit, and the pixel acquires the first image data or the second image data, and stores the first image data or the second image data in the charge storage portion, and stores the charge The first imaging data or the second imaging data in the storage unit is transmitted to the charge detecting unit, and the first circuit outputs a first potential corresponding to the second imaging data and a reset potential corresponding to the charge detecting unit. a first signal obtained by adding an absolute value of the difference between the second potentials to the reference potential or a first signal obtained by subtracting the absolute value from the reference potential, the second circuit determining whether the charge detecting portion is due to The first image data is saturated with electrons, and the third circuit outputs a second signal that does not acquire the second image data to the pixel by the fifth circuit when the charge detecting portion is not electronically saturated. Dissolving the saturation of the charge detecting portion when the charge detecting portion is saturated by the electron, and outputting the third signal for acquiring the second image data to the pixel by the fifth circuit, the second circuit and the Four circuit converts the signal from the bit number data output by the first circuit. 一種包括申請專利範圍第7項之攝像裝置及透鏡的模組。 A module comprising a camera device and a lens of claim 7 of the patent application. 一種包括申請專利範圍第7項之攝像裝置及顯示裝置的電子裝置。 An electronic device comprising the image pickup device and the display device of claim 7 of the patent application. 一種攝像裝置的工作方法,包括如下步驟:在第n圖框期間(n為1以上的自然數)中,使電荷存儲部的電位重設;將電荷存儲在該電荷存儲部中;使電荷檢測部的電位重設;將該電荷存儲部的第一電位傳送到該電荷檢測部;以及讀出與該第一電位對應的第一信號,並且根據該第一信號判定該電荷檢測部是否被電子飽和,當該電荷檢測部被電子飽和時,本工作方法包括如下步驟:使該電荷存儲部的該第一電位重設;將電荷存儲在該電荷存儲部中;增大該電荷檢測部的容量,以消除該電荷檢測部的飽和;以及將該電荷存儲部的第二電位傳送到該電荷檢測部,在第(n+1)圖框期間中,當該電荷檢測部被電子飽和時,本工作方法還包括如下步驟:在使該電荷存儲部的電位重設並存儲電荷的同時讀出與該第二電位對應的第二信號, 當該電荷檢測部未被電子飽和時,本工作方法還包括如下步驟:在使該電荷存儲部的電位重設並存儲電荷的同時讀出該第一信號。 A method of operating an image pickup apparatus, comprising the steps of: resetting a potential of a charge storage portion during an nth frame period (n is a natural number of 1 or more); storing a charge in the charge storage portion; and performing charge detection Resetting the potential of the portion; transferring the first potential of the charge storage portion to the charge detecting portion; and reading a first signal corresponding to the first potential, and determining whether the charge detecting portion is electronically based on the first signal Saturation, when the charge detecting portion is saturated with electrons, the working method includes the steps of: resetting the first potential of the charge storage portion; storing the charge in the charge storage portion; increasing the capacity of the charge detecting portion And eliminating the saturation of the charge detecting portion; and transmitting the second potential of the charge storage portion to the charge detecting portion, in the (n+1)th frame period, when the charge detecting portion is saturated with electrons, The working method further includes the steps of: reading a second signal corresponding to the second potential while resetting the potential of the charge storage portion and storing the charge, When the charge detecting portion is not saturated with electrons, the working method further includes the step of reading the first signal while resetting the potential of the charge storing portion and storing the electric charge. 一種攝像裝置,包括:第一電晶體、第二電晶體、第三電晶體、第四電晶體、第五電晶體、第六電晶體及第七電晶體;光電轉換元件;以及第一電容器、第二電容器及第三電容器,其中:該光電轉換元件的一個電極與該第一電晶體的源極和汲極中的一個及該第二電晶體的源極和汲極中的一個電連接,該第一電晶體的源極和汲極中的另一個與該第三電晶體的源極和汲極中的一個、該第四電晶體的源極和汲極中的一個、該第五電晶體的閘極電極及該第一電容器的一個電極電連接,該第四電晶體的源極和汲極中的另一個與該第二電容器的一個電極電連接,該第五電晶體的源極和汲極中的一個與該第六電晶體的源極和汲極中的一個電連接,該第七電晶體的源極和汲極中的一個與該第四電晶體的閘極電極及該第三電容器的一個電極電連接,該第一電晶體、該第二電晶體、該第三電晶體、該第四電晶體及該第七電晶體包括氧化物半導體。 An image pickup apparatus comprising: a first transistor, a second transistor, a third transistor, a fourth transistor, a fifth transistor, a sixth transistor, and a seventh transistor; a photoelectric conversion element; and a first capacitor, a second capacitor and a third capacitor, wherein: one electrode of the photoelectric conversion element is electrically connected to one of a source and a drain of the first transistor and one of a source and a drain of the second transistor, One of a source and a drain of the first transistor and one of a source and a drain of the third transistor, one of a source and a drain of the fourth transistor, the fifth The gate electrode of the crystal is electrically connected to one electrode of the first capacitor, and the other of the source and the drain of the fourth transistor is electrically connected to one electrode of the second capacitor, and the source of the fifth transistor One of the drain and the drain is electrically connected to one of the source and the drain of the sixth transistor, one of the source and the drain of the seventh transistor and the gate electrode of the fourth transistor and the gate electrode One electrode of the third capacitor is electrically connected, the first transistor, the Two transistors, the third transistor, the fourth transistor and the seventh transistor including an oxide semiconductor. 根據申請專利範圍第11項之攝像裝置,其中該第五電晶體及該第六電晶體都包括該氧化物半導體。 The image pickup device of claim 11, wherein the fifth transistor and the sixth transistor both comprise the oxide semiconductor. 根據申請專利範圍第11項之攝像裝置,其中該氧化物半導體包含In、Zn及M(M為Al、Ti、Ga、Sn、Y、Zr、La、Ce、Nd和Hf中的一種)。 The image pickup device according to claim 11, wherein the oxide semiconductor comprises In, Zn, and M (M is one of Al, Ti, Ga, Sn, Y, Zr, La, Ce, Nd, and Hf). 根據申請專利範圍第11項之攝像裝置,其中該光電轉換元件在光電轉換層中包括硒或包含硒的化合物。 The image pickup device according to claim 11, wherein the photoelectric conversion element includes selenium or a compound containing selenium in the photoelectric conversion layer. 一種包括申請專利範圍第11項之攝像裝置及透鏡的模組。 A module comprising a camera device and a lens of claim 11 of the patent application. 一種包括申請專利範圍第11項之攝像裝置及顯示裝置的電子裝置。 An electronic device comprising the image pickup device and the display device of claim 11 of the patent application. 一種攝像裝置,包括:包括電荷存儲部、電荷檢測部、第一電容器及第二電容器的像素;以及第一電路、第二電路、第三電路及第四電路, 其中:該電荷檢測部與該第一電容器及該第二電容器電連接,該像素與該第一電路及該第三電路電連接,該第一電路與該第二電路電連接,該第二電路與該第三電路及該第四電路電連接,該像素獲取第一攝像資料或第二攝像資料,將該第一攝像資料或該第二攝像資料存儲在該電荷存儲部中,將存儲在該電荷存儲部中的該第一攝像資料或該第二攝像資料傳送到該電荷檢測部,該第一電路輸出將與該第二攝像資料對應的第一電位和與該電荷檢測部的重設電位對應的第二電位之間的差值的絕對值加到參考電位而得到的第一信號或者從該參考電位減去該絕對值而得到的第一信號,該第二電路判定該電荷檢測部是否由於該第一攝像資料被電子飽和,該第三電路在該電荷檢測部未被電子飽和的情況下將不使該電荷檢測部與該第二電容器電連接的第二信號輸出到該像素,在該電荷檢測部被電子飽和的情況下將使該電荷檢測部與該第二電容器電連接的第三信號輸出到該像素,該像素在該判定後將該第二攝像資料從該電荷存儲部傳送到該電荷檢測部,該第二電路及該第四電路將從該第一電路輸出的信號轉換為數位資料。 An imaging device includes: a pixel including a charge storage portion, a charge detecting portion, a first capacitor, and a second capacitor; and a first circuit, a second circuit, a third circuit, and a fourth circuit, Wherein: the charge detecting portion is electrically connected to the first capacitor and the second capacitor, the pixel is electrically connected to the first circuit and the third circuit, and the first circuit is electrically connected to the second circuit, the second circuit Electrically connecting with the third circuit and the fourth circuit, the pixel acquires a first camera data or a second camera data, and stores the first camera data or the second camera data in the charge storage unit, where the pixel is stored The first image data or the second image data in the charge storage portion is transferred to the charge detecting portion, and the first circuit outputs a first potential corresponding to the second image data and a reset potential of the charge detecting portion a first signal obtained by adding an absolute value of a difference between the corresponding second potentials to the reference potential or a first signal obtained by subtracting the absolute value from the reference potential, the second circuit determining whether the charge detecting portion is Since the first imaging material is electronically saturated, the third circuit outputs a second signal that does not electrically connect the charge detecting portion and the second capacitor to the case where the charge detecting portion is not electronically saturated. a pixel, when the charge detecting portion is electronically saturated, outputs a third signal electrically connecting the charge detecting portion and the second capacitor to the pixel, and the pixel receives the second image data from the charge after the determining The storage unit is transferred to the charge detecting unit, and the second circuit and the fourth circuit convert the signal output from the first circuit into digital data. 一種包括申請專利範圍第17項之攝像裝置及透鏡的模組。 A module comprising a camera device and a lens of claim 17 of the patent application. 一種包括申請專利範圍第17項之攝像裝置及顯示裝置的電子裝置。 An electronic device comprising the image pickup device and the display device of claim 17 of the patent application. 一種攝像裝置的工作方法,包括如下步驟:在第n圖框期間(n為1以上的自然數)中,使電荷存儲部的電位重設;將電荷存儲在該電荷存儲部中;使電荷檢測部的電位重設;將該電荷存儲部的第一電位傳送到該電荷檢測部;以及讀出與該第一電位對應的第一信號,並且根據該第一信號判定該電荷檢測部是否被電子飽和,當該電荷檢測部被電子飽和時,本工作方法包括如下步驟:增大該電荷檢測部的容量;使該電荷檢測部的該第一電位重設;以及 將該電荷存儲部的第二電位傳送到該電荷檢測部,當該電荷檢測部未被電子飽和時,本工作方法還包括如下步驟:使該電荷檢測部的該第一電位重設;使該電荷存儲部的該第一電位重設;將電荷存儲在該電荷存儲部中;以及將該電荷存儲部的第二電位傳送到該電荷檢測部,在第(n+1)圖框期間中,在使該電荷存儲部的電位重設並存儲電荷的同時讀出與該第二電位對應的第二信號。 A method of operating an image pickup apparatus, comprising the steps of: resetting a potential of a charge storage portion during an nth frame period (n is a natural number of 1 or more); storing a charge in the charge storage portion; and performing charge detection Resetting the potential of the portion; transferring the first potential of the charge storage portion to the charge detecting portion; and reading a first signal corresponding to the first potential, and determining whether the charge detecting portion is electronically based on the first signal Saturated, when the charge detecting portion is saturated with electrons, the working method includes the steps of: increasing a capacity of the charge detecting portion; resetting the first potential of the charge detecting portion; Transmitting the second potential of the charge storage portion to the charge detecting portion, and when the charge detecting portion is not saturated with electrons, the working method further includes the step of resetting the first potential of the charge detecting portion; The first potential of the charge storage portion is reset; the charge is stored in the charge storage portion; and the second potential of the charge storage portion is transferred to the charge detection portion, during the (n+1)th frame period, The second signal corresponding to the second potential is read while the potential of the charge storage portion is reset and the charge is stored.
TW105128811A 2015-09-10 2016-09-06 Imaging device, module, electronic device, and method of operating the imaging device TWI812583B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015178407 2015-09-10
JP2015178420 2015-09-10
JP2015-178420 2015-09-10
JP2015-178407 2015-09-10

Publications (2)

Publication Number Publication Date
TW201719874A true TW201719874A (en) 2017-06-01
TWI812583B TWI812583B (en) 2023-08-21

Family

ID=58239150

Family Applications (2)

Application Number Title Priority Date Filing Date
TW110136357A TWI830067B (en) 2015-09-10 2016-09-06 Imaging device, module, electronic device, and method of operating the imaging device
TW105128811A TWI812583B (en) 2015-09-10 2016-09-06 Imaging device, module, electronic device, and method of operating the imaging device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW110136357A TWI830067B (en) 2015-09-10 2016-09-06 Imaging device, module, electronic device, and method of operating the imaging device

Country Status (5)

Country Link
US (1) US10033952B2 (en)
JP (6) JP6755756B2 (en)
KR (5) KR102618850B1 (en)
TW (2) TWI830067B (en)
WO (1) WO2017042658A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI683300B (en) * 2018-08-29 2020-01-21 恆景科技股份有限公司 Pixel circuit
TWI728504B (en) * 2018-11-13 2021-05-21 日商索尼半導體解決方案公司 Solid-state imaging element, solid-state imaging device, and electronic equipment
TWI738257B (en) * 2019-03-28 2021-09-01 日商索尼半導體解決方案公司 Camera and electronic equipment
TWI774803B (en) * 2017-06-26 2022-08-21 美商元平台公司 Pixel cell with stack structure
TWI793531B (en) * 2020-07-10 2023-02-21 大陸商廣州印芯半導體技術有限公司 Dynamic vision sensor
US11595598B2 (en) 2018-06-28 2023-02-28 Meta Platforms Technologies, Llc Global shutter image sensor
TWI800636B (en) * 2018-04-20 2023-05-01 日商索尼股份有限公司 Imaging element, multilayer imaging element, and solid-state imaging device
US11676415B2 (en) 2021-04-09 2023-06-13 Innolux Corporation Sensing device capable of improving sensing effect thereof
US11744091B2 (en) 2017-12-05 2023-08-29 Sony Corporation Imaging element, stacked-type imaging element, and solid-state imaging apparatus to improve charge transfer
US11902685B1 (en) 2020-04-28 2024-02-13 Meta Platforms Technologies, Llc Pixel sensor having hierarchical memory
US11910119B2 (en) 2017-06-26 2024-02-20 Meta Platforms Technologies, Llc Digital pixel with extended dynamic range
US11906353B2 (en) 2018-06-11 2024-02-20 Meta Platforms Technologies, Llc Digital pixel with extended dynamic range
US11927475B2 (en) 2017-08-17 2024-03-12 Meta Platforms Technologies, Llc Detecting high intensity light in photo sensor
US11936998B1 (en) 2019-10-17 2024-03-19 Meta Platforms Technologies, Llc Digital pixel sensor having extended dynamic range
US11943561B2 (en) 2019-06-13 2024-03-26 Meta Platforms Technologies, Llc Non-linear quantization at pixel sensor
US11956560B2 (en) 2020-10-09 2024-04-09 Meta Platforms Technologies, Llc Digital pixel sensor having reduced quantization operation
US12022218B2 (en) 2020-12-29 2024-06-25 Meta Platforms Technologies, Llc Digital image sensor using a single-input comparator based quantizer

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI738569B (en) 2015-07-07 2021-09-01 日商半導體能源研究所股份有限公司 Imaging device and operating method thereof
US10896923B2 (en) * 2015-09-18 2021-01-19 Semiconductor Energy Laboratory Co., Ltd. Method of operating an imaging device with global shutter system
KR102654485B1 (en) * 2016-12-30 2024-04-03 삼성전자주식회사 Image sensor and method for fabricating the same
US11375145B2 (en) * 2017-05-10 2022-06-28 Brillnics Singapore Pte. Ltd. Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
JP2019022173A (en) * 2017-07-21 2019-02-07 ソニーセミコンダクタソリューションズ株式会社 Solid state imaging device and control method thereof, and electronic equipment
FR3074991B1 (en) * 2017-12-07 2019-11-22 Teledyne E2V Semiconductors Sas HIGH DYNAMIC IMAGE SENSOR
US11330218B2 (en) 2018-08-22 2022-05-10 Gigajot Technology, Inc. Split-readout image sensor
JP7460601B2 (en) * 2018-08-22 2024-04-02 ギガジョット テクノロジー,インコーポレイテッド Split readout image sensor
JP2020047734A (en) 2018-09-18 2020-03-26 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic device
CN109327666B (en) * 2018-11-20 2020-11-06 京东方科技集团股份有限公司 Pixel sensing circuit, driving method thereof, image sensor and electronic equipment
WO2020229910A1 (en) * 2019-05-10 2020-11-19 株式会社半導体エネルギー研究所 Information processing device
JP2021082775A (en) * 2019-11-22 2021-05-27 株式会社半導体エネルギー研究所 Imaging device and manufacturing method for the same
TWI792958B (en) * 2022-03-24 2023-02-11 瑞昱半導體股份有限公司 Source follower circuit

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3592106B2 (en) 1998-11-27 2004-11-24 キヤノン株式会社 Solid-state imaging device and camera
US6850278B1 (en) 1998-11-27 2005-02-01 Canon Kabushiki Kaisha Solid-state image pickup apparatus
JP3592107B2 (en) 1998-11-27 2004-11-24 キヤノン株式会社 Solid-state imaging device and camera
JP3558589B2 (en) 2000-06-14 2004-08-25 Necエレクトロニクス株式会社 MOS type image sensor and driving method thereof
JP3984814B2 (en) 2001-10-29 2007-10-03 キヤノン株式会社 Imaging device, radiation imaging apparatus using the imaging device, and radiation imaging system using the imaging device
JP4392492B2 (en) 2003-06-02 2010-01-06 国立大学法人静岡大学 Wide dynamic range image sensor
JP2005150521A (en) 2003-11-18 2005-06-09 Canon Inc Imaging apparatus and manufacturing method thereof
KR101105617B1 (en) * 2004-02-27 2012-01-18 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Solid-state imagine device, line sensor, optical sensor, and method for operating solid-state imaging device
CN100525401C (en) 2004-04-12 2009-08-05 国立大学法人东北大学 Solid-state imaging device, optical sensor, and solid-state imaging device operation method
JP4317115B2 (en) 2004-04-12 2009-08-19 国立大学法人東北大学 Solid-state imaging device, optical sensor, and operation method of solid-state imaging device
JP4497366B2 (en) 2005-02-04 2010-07-07 国立大学法人東北大学 Optical sensor and solid-state imaging device
JP5064747B2 (en) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 Semiconductor device, electrophoretic display device, display module, electronic device, and method for manufacturing semiconductor device
JP5078246B2 (en) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
EP1998373A3 (en) 2005-09-29 2012-10-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
TWI585955B (en) * 2008-11-28 2017-06-01 半導體能源研究所股份有限公司 Photosensor and display device
JP2010161624A (en) * 2009-01-08 2010-07-22 Fujifilm Corp Radiation image capturing apparatus, radiation image capturing system, and image processing apparatus
JP4715931B2 (en) * 2009-02-10 2011-07-06 ソニー株式会社 CHARGE DETECTION DEVICE, CHARGE DETECTION METHOD, SOLID-STATE IMAGING DEVICE, ITS DRIVING METHOD, AND IMAGING DEVICE
KR101952065B1 (en) * 2009-11-06 2019-02-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and operating method thereof
KR101707159B1 (en) * 2009-11-06 2017-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP5663925B2 (en) 2010-03-31 2015-02-04 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and electronic apparatus
US8803164B2 (en) 2010-08-06 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Solid-state image sensing device and semiconductor display device
JP6081694B2 (en) 2010-10-07 2017-02-15 株式会社半導体エネルギー研究所 Photodetector
JP6024103B2 (en) * 2011-06-30 2016-11-09 ソニー株式会社 Image sensor, image sensor drive method, image sensor manufacturing method, and electronic device
JP5739763B2 (en) 2011-08-02 2015-06-24 日本放送協会 Photoconductive element and imaging device
WO2013042643A1 (en) 2011-09-22 2013-03-28 Semiconductor Energy Laboratory Co., Ltd. Photodetector and method for driving photodetector
JP5909975B2 (en) 2011-10-06 2016-04-27 ソニー株式会社 Imaging apparatus and electronic apparatus
JP6151530B2 (en) * 2012-02-29 2017-06-21 株式会社半導体エネルギー研究所 Image sensor, camera, and surveillance system
US9236408B2 (en) 2012-04-25 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device including photodiode
JP2014116429A (en) 2012-12-07 2014-06-26 Japan Display Inc Image-capturing device and image display system
JP2014236151A (en) * 2013-06-04 2014-12-15 シャープ株式会社 Semiconductor device and manufacturing method of the same
US9035301B2 (en) 2013-06-19 2015-05-19 Semiconductor Energy Laboratory Co., Ltd. Imaging device
TWI635750B (en) * 2013-08-02 2018-09-11 半導體能源研究所股份有限公司 Imaging device and operation method thereof
KR102288238B1 (en) * 2013-09-03 2021-08-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device
TWI642186B (en) * 2013-12-18 2018-11-21 日商半導體能源研究所股份有限公司 Semiconductor device
US9443876B2 (en) * 2014-02-05 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic device including the semiconductor device, the display device, and the display module
WO2016030801A1 (en) * 2014-08-29 2016-03-03 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
KR102545592B1 (en) 2014-09-02 2023-06-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device and electronic device
WO2016046685A1 (en) 2014-09-26 2016-03-31 Semiconductor Energy Laboratory Co., Ltd. Imaging device
US9548327B2 (en) 2014-11-10 2017-01-17 Semiconductor Energy Laboratory Co., Ltd. Imaging device having a selenium containing photoelectric conversion layer
US9584707B2 (en) 2014-11-10 2017-02-28 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
TWI710124B (en) 2015-01-30 2020-11-11 日商半導體能源研究所股份有限公司 Imaging device and electronic device
US9634048B2 (en) 2015-03-24 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
KR102514007B1 (en) 2015-04-22 2023-03-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Image capture device, method for driving image capture device, and electronic device
US9848146B2 (en) 2015-04-23 2017-12-19 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
JP6777421B2 (en) 2015-05-04 2020-10-28 株式会社半導体エネルギー研究所 Semiconductor device
JP6681780B2 (en) 2015-05-07 2020-04-15 株式会社半導体エネルギー研究所 Display systems and electronic devices
US11728356B2 (en) 2015-05-14 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element and imaging device
KR102553553B1 (en) 2015-06-12 2023-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device, method for operating the same, and electronic device
US9860465B2 (en) 2015-06-23 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US9754980B2 (en) 2015-06-30 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element and imaging device
US9887218B2 (en) 2015-07-16 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Imaging device, operating method thereof, and electronic device
US10163948B2 (en) 2015-07-23 2018-12-25 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10090344B2 (en) 2015-09-07 2018-10-02 Semiconductor Energy Laboratory Co., Ltd. Imaging device, method for operating the same, module, and electronic device
US10896923B2 (en) 2015-09-18 2021-01-19 Semiconductor Energy Laboratory Co., Ltd. Method of operating an imaging device with global shutter system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI774803B (en) * 2017-06-26 2022-08-21 美商元平台公司 Pixel cell with stack structure
US11910119B2 (en) 2017-06-26 2024-02-20 Meta Platforms Technologies, Llc Digital pixel with extended dynamic range
US11927475B2 (en) 2017-08-17 2024-03-12 Meta Platforms Technologies, Llc Detecting high intensity light in photo sensor
US11744091B2 (en) 2017-12-05 2023-08-29 Sony Corporation Imaging element, stacked-type imaging element, and solid-state imaging apparatus to improve charge transfer
TWI800636B (en) * 2018-04-20 2023-05-01 日商索尼股份有限公司 Imaging element, multilayer imaging element, and solid-state imaging device
US11906353B2 (en) 2018-06-11 2024-02-20 Meta Platforms Technologies, Llc Digital pixel with extended dynamic range
US11595598B2 (en) 2018-06-28 2023-02-28 Meta Platforms Technologies, Llc Global shutter image sensor
US10791291B2 (en) 2018-08-29 2020-09-29 Himax Imaging Limited Pixel circuit
US11172153B2 (en) 2018-08-29 2021-11-09 Himax Imaging Limited Pixel circuit
TWI683300B (en) * 2018-08-29 2020-01-21 恆景科技股份有限公司 Pixel circuit
US11128829B2 (en) 2018-08-29 2021-09-21 Himax Imaging Limited Pixel circuit
US10917596B2 (en) 2018-08-29 2021-02-09 Himax Imaging Limited Pixel circuit for generating output signals in response to incident radiation
TWI728504B (en) * 2018-11-13 2021-05-21 日商索尼半導體解決方案公司 Solid-state imaging element, solid-state imaging device, and electronic equipment
TWI738257B (en) * 2019-03-28 2021-09-01 日商索尼半導體解決方案公司 Camera and electronic equipment
US11943561B2 (en) 2019-06-13 2024-03-26 Meta Platforms Technologies, Llc Non-linear quantization at pixel sensor
US11936998B1 (en) 2019-10-17 2024-03-19 Meta Platforms Technologies, Llc Digital pixel sensor having extended dynamic range
US11902685B1 (en) 2020-04-28 2024-02-13 Meta Platforms Technologies, Llc Pixel sensor having hierarchical memory
TWI793531B (en) * 2020-07-10 2023-02-21 大陸商廣州印芯半導體技術有限公司 Dynamic vision sensor
US11956560B2 (en) 2020-10-09 2024-04-09 Meta Platforms Technologies, Llc Digital pixel sensor having reduced quantization operation
US12022218B2 (en) 2020-12-29 2024-06-25 Meta Platforms Technologies, Llc Digital image sensor using a single-input comparator based quantizer
TWI813219B (en) * 2021-04-09 2023-08-21 群創光電股份有限公司 Sensing device
US11676415B2 (en) 2021-04-09 2023-06-13 Innolux Corporation Sensing device capable of improving sensing effect thereof

Also Published As

Publication number Publication date
JP2022082642A (en) 2022-06-02
KR102698685B1 (en) 2024-08-23
JP7117466B2 (en) 2022-08-12
JP7511705B2 (en) 2024-07-05
JP2023090772A (en) 2023-06-29
KR20240060832A (en) 2024-05-08
TW202205656A (en) 2022-02-01
KR20230175354A (en) 2023-12-29
WO2017042658A1 (en) 2017-03-16
JP2024120939A (en) 2024-09-05
TWI830067B (en) 2024-01-21
US10033952B2 (en) 2018-07-24
KR20230135165A (en) 2023-09-22
KR102618850B1 (en) 2023-12-27
KR102578673B1 (en) 2023-09-13
KR20180051551A (en) 2018-05-16
JP2022145770A (en) 2022-10-04
JP7268231B2 (en) 2023-05-02
KR102660456B1 (en) 2024-04-23
JP7049413B2 (en) 2022-04-06
JP2020198446A (en) 2020-12-10
JP6755756B2 (en) 2020-09-16
JP2017055403A (en) 2017-03-16
TWI812583B (en) 2023-08-21
KR20230088856A (en) 2023-06-20
US20170078606A1 (en) 2017-03-16
KR102544169B1 (en) 2023-06-14

Similar Documents

Publication Publication Date Title
JP7511705B2 (en) Imaging device
KR102364879B1 (en) Imaging device and electronic device
JP6960025B2 (en) Imaging device
JP6811342B2 (en) Photoelectric converter
JP6737633B2 (en) Imaging device and electronic device
TW201644265A (en) Imaging device, method for driving imaging device, and electronic device
JP2017005713A (en) Imaging apparatus, operation method therefor, and electronic apparatus
JP6903413B2 (en) Imaging equipment, modules, and electronics