TW201710248A - 做為nr2b nmda受體拮抗劑之3,3-二氟哌啶胺基甲酸酯雜環化合物 - Google Patents

做為nr2b nmda受體拮抗劑之3,3-二氟哌啶胺基甲酸酯雜環化合物 Download PDF

Info

Publication number
TW201710248A
TW201710248A TW105117083A TW105117083A TW201710248A TW 201710248 A TW201710248 A TW 201710248A TW 105117083 A TW105117083 A TW 105117083A TW 105117083 A TW105117083 A TW 105117083A TW 201710248 A TW201710248 A TW 201710248A
Authority
TW
Taiwan
Prior art keywords
chemical entity
ring
alkyl
group
compound
Prior art date
Application number
TW105117083A
Other languages
English (en)
Other versions
TWI721987B (zh
Inventor
吉登 夏皮洛
Original Assignee
盧郡控股(開曼)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 盧郡控股(開曼)有限公司 filed Critical 盧郡控股(開曼)有限公司
Publication of TW201710248A publication Critical patent/TW201710248A/zh
Application granted granted Critical
Publication of TWI721987B publication Critical patent/TWI721987B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4965Non-condensed pyrazines
    • A61K31/497Non-condensed pyrazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本文揭示式(I)之化學實體, □ 其中R1及Z係本文所定義,其係做為NR2B亞型選擇性受體拮抗劑。本文亦揭示包含式(I)之化學實體之醫藥組合物,及藉由投與式(I)之化學實體治療與NR2B拮抗作用相關之各種疾病及病症(例如CNS之疾病及病症,例如抑鬱症)之方法。

Description

做為NR2B NMDA受體拮抗劑之3,3-二氟哌啶胺基甲酸酯雜環化合物
最初在中風及頭部外傷中研發之非選擇性NMDA受體拮抗劑最近已在治療抑鬱症中顯示臨床效能。非選擇性NMDA受體拮抗劑氯胺酮已顯示在耐標準單胺再攝取抑制劑療法之抑鬱症中具有快速起效及效能(Mathews及Zarate,2013,J.Clin.Psychiatry 74:516-158)。然而,諸如氯胺酮等非選擇性NMDA受體拮抗劑具有一系列不合意之藥理學活性,從而限制在人類中應用。具體而言,解離性或精神性副作用對於非選擇性NMDA受體拮抗劑而言尤其顯著。最近,NR2B亞型選擇性NMDA受體拮抗劑已證實在寬範圍之臨床適應症中均有潛力。具體而言,NR2B拮抗劑亦已在早期臨床試驗中證實抗抑鬱活性(Ibrahim等人,2012,J.Clin.Psychopharmacol.32,551-557;Preskorn等人,2008,J.Clin.Psychopharmacol.28,631-637)。此外,選擇性NR2B拮抗劑因大大削弱之解離性副作用而具有優於非選擇性NMDA受體拮抗劑(例如氯胺酮)之優點。然而,迄今已闡述之NR2B拮抗劑通常展現其他藥物性質方面之缺點,從而限制在人類藥物療法中使用之潛力。
對於在一系列臨床適應症(包括抑鬱症)中之寬泛應用範圍及安全人類使用,需要改良之NR2B亞型選擇性拮抗劑。除其他方面以外, 本發明亦解決了對在一或多個態樣(例如藥物動力學性能、經口活性、心血管安全性及活體外及活體內治療安全指數量度)方面有所改良之NR2B受體拮抗劑之需要。
在一些實施例中,本發明涵蓋其中R1及Z係本文所定義之式(I)之化學實體 係NR2B亞型選擇性受體拮抗劑之理解。式(I)之化學實體及其醫藥上可接受之組合物可用於治療與NR2B受體拮抗作用相關之各種疾病及病症。該等疾病及病症包括彼等在本文闡述者。
圖1A顯示小鼠中強迫游泳測試之結果,如實例2.4.1中利用化合物E1-1.2所闡述。圖1B顯示小鼠中強迫游泳測試之結果,如實例2.4.2中利用化合物E1-8.2藉由i.p.投與所闡述。圖1C顯示小鼠中強迫游泳測試之結果,如實例2.4.3中利用化合物E1-21.26藉由i.p.投與所闡述。圖1D顯示小鼠中強迫游泳測試之結果,如實例2.4.4中利用化合物E1-1.2藉由經口(p.o.)投與所闡述。圖1E顯示大鼠中強迫游泳測試之結果,如實例2.4.5中利用化合物E1-1.2藉由i.p.投與所闡述。圖1F顯示大鼠中強迫游泳測試之結果,如實例2.4.6中利用化合物E1-1.2藉由p.o.投與所闡述。圖1G顯示強迫游泳測試之結果,如實例2.4.7中利用化合物E1-1.2所闡述。
圖2顯示電驚厥性臨限值測試(ECT)之結果,如實例2.5.1中利用化合物E1-1.2所闡述。
圖3顯示電驚厥性臨限值測試(ECT)之結果,如實例2.5.2中利用化合物E1-8.2所闡述。
圖4顯示電驚厥性臨限值測試(ECT)之結果,如實例2.5.3中利用化合物E1-21.26所闡述。
圖5A顯示在戊烯四唑(PTZ)癲癇發作測試中顯示陣攣性驚厥之動物之數量,如實例2.6.1中利用化合物E1-1.2所闡述。圖5B顯示在利用化合物E1-1.2之PTZ癲癇發作測試中顯示緊張性驚厥之動物之數量。圖5C顯示在利用化合物E1-1.2之PTZ癲癇發作測試中死亡動物之數量。圖5D顯示在利用化合物E1-1.2之PTZ癲癇發作測試中陣攣性驚厥之潛伏期。圖5E顯示在利用化合物E1-1.2之PTZ癲癇發作測試中緊張性驚厥之潛伏期。圖5F顯示在利用化合物E1-1.2之PTZ癲癇發作測試中死亡之潛伏期。
圖6A顯示在戊烯四唑(PTZ)癲癇發作測試中顯示陣攣性驚厥之動物之數量,如實例2.6.2中利用化合物E1-21.26所闡述。圖6B顯示在利用化合物E1-21.26之PTZ癲癇發作測試中顯示緊張性驚厥之動物之數量。圖6C顯示在利用化合物E1-21.26之PTZ癲癇發作測試中死亡動物之數量。圖6D顯示在利用化合物E1-21.26之PTZ癲癇發作測試中陣攣性驚厥之潛伏期。圖6E顯示在利用化合物E1-21.26之PTZ癲癇發作測試中緊張性驚厥之潛伏期。圖6F顯示在利用化合物E1-21.26之PTZ癲癇發作測試中死亡之潛伏期。
圖7A顯示6Hz癲癇發作測試中之前肢陣攣分值,如實例2.7.1針對化合物E1-1.2所闡述。圖7B顯示在6Hz癲癇發作測試中具有斯特勞布舉尾(Straub tail)之小鼠之數量,如實例2.7.1針對化合物E1-1.2所闡述。
圖8A顯示氟派醇(haloperidol)誘發之強直性昏厥模型之結果,如實例2.8.1針對化合物E1-1.2所闡述。圖8B顯示於安非他命(amphetamine)而言氟派醇誘發之強直性昏厥模型之結果。圖8C顯示氟派醇誘發之強直性昏厥模型之結果,如實例2.8.2針對化合物E1- 21.26所闡述。
圖9A顯示階段I之大鼠福馬林(formalin)模型傷害感受行為,如實例2.9針對化合物E1-1.2所闡述。圖9B顯示階段II之大鼠福馬林模型傷害感受行為,如實例2.9針對化合物E1-1.2所闡述。
圖10顯示在皮層擴散性抑鬱症(偏頭痛)模型中於化合物E1-1.2而言DC電位之數量,如實例2.10中所闡述。
圖11顯示顯示表A-D中所用編號方案之中間體(R)-XVIa之球棍圖。
化學實體之一般闡述
在一些實施例中,本發明提供式I之化學實體: 其中:R1係烷基、環烷基、(環烷基)烷基、雜環基、(雜環基)烷基、芳基、(芳基)烷基、雜芳基或(雜芳基)烷基,其中環烷基、(環烷基)烷基、雜環基、(雜環基)烷基、芳基、(芳基)烷基、雜芳基及(雜芳基)烷基中之每一者獨立地視情況經1至3個獨立地選自以下之基團取代:-F、-Cl、C1-C4烷基、環丙基、-C≡CH、-CFH2、-CF2H、-CF3、-CF2CH3、-CH2CF3、C1-C4烷氧基、-OCFH2、-OCF2H、-OCF3、-CN、-N(R2)(R3)、-NO2,C1-C4烷硫基、C1-C4烷基磺醯基及-S(O)2CF3;其中R2及R3之每一實例獨立地為-H或C1-C4烷基,或-N(R2)(R3)為 ; Z係具有環碳原子、1個氮環原子及0至3個獨立地選自N、O及S之其他環雜原子之5員或6員單環雜芳基或9員或10員二環雜芳基,其視情況經1個或2個Rx基團取代且視情況經1個Ra基團取代,其中每一Rx附接至環碳原子且Ra附接至環氮原子;其中:Rx之每一實例獨立地為-F、-Cl、-CH3、-CFH2、-CF2H、-CF3、-OH、-OCH3、-OCF3或-CN;且Ra係C1-4烷基、C3-4環烷基或-S(O)2-C1-4烷基。
除非上下文另外規定或可自上下文明了,否則術語「化學實體」係指具有所指示結構之化合物,無論係呈其「游離」形式(例如,「游離化合物」或「游離鹼」或「游離酸」形式,若適用)抑或呈鹽形式,尤其醫藥上可接受之鹽形式,且此外無論係呈固態形式抑或其他形式。在一些實施例中,固態形式係非晶形(即,非結晶)形式;在一些實施例中,固態形式係結晶型。在一些實施例中,結晶型(例如,多形體,偽水合物或水合物)。類似地,該術語涵蓋無論係以固體形式抑或其他形式提供之化合物。除非另外規定,否則本文關於「化合物」所作出之所有陳述皆適於如所定義之相關化學實體。
化學實體及定義
除非另外規定,否則詞語「包括(includes)」(或其任一變化形式,例如「include」、「including」等)意欲具有開放性。舉例而言,「A包括1、2及3」意味著A包括(但不限於)1、2及3。
除非另外規定,否則片語「例如(such as)」意欲具有開放性。舉例而言,「A可為鹵素,例如氯或溴」意味著A可為(但不限於)氯或溴。
本發明之化學實體包括彼等在上文通常闡述者,且進一步由本文所揭示之種類、子類、及物質加以闡釋。如本文中所使用,除非另 有說明,否則以下定義應適用。出於本發明之目的,根據元素週期表CAS版本,Handbook of Chemistry and Physics,第75版內封面鑑別化學元素,且特定官能基通常係如其中所闡述來定義。另外,有機化學之一般原理以及特定官能部分及反應性係闡述於以下文獻中:Thomas Sorrell,Organic Chemistry,University Science Books,Sausalito,1999;Smith及March,March's Advanced Organic Chemistry,第5版,John Wiley & Sons,Inc.,New York,2001;Larock,Comprehensive Organic Transformations,VCH Publishers,Inc.,New York,1989;及Carruthers,Some Modern Methods of Organic Synthesis,第3版,Cambridge University Press,Cambridge,1987。
術語「烷基」在單獨使用或作為更大部分之一部分使用時意指完全飽和或含有一或多個不飽和單元之經取代或未經取代之直鏈或具支鏈單價烴鏈。除非另外規定,否則烷基含有1至7個碳原子(「C1-C7烷基」)。在一些實施例中,烷基含有1至6個碳原子(「C1-C6烷基」)。在一些實施例中,烷基含有1至5碳原子("C1-C5烷基")。在一些實施例中,烷基含有1至4個碳原子(「C1-C4烷基」)。在一些實施例中,烷基含有3至7個碳原子(「C3-C7烷基」)。飽和烷基之實例包括甲基、乙基、正丙基、異丙基、正丁基、第三丁基、異丁基、第二丁基、(例如)正戊基、正己基、正庚基、正辛基之同系物及異構物,及諸如此類。不飽和烷基係具有一或多個碳-碳雙鍵或碳-碳三鍵之烷基。不飽和烷基之實例包括烯丙基、乙烯基、2-丙烯基、巴豆基、2-異戊烯基、2-(丁二烯基)、2,4-戊二烯基、3-(1,4-戊二烯基)、乙炔基、1-丙炔基及3-丙炔基、3-丁炔基及諸如此類。術語「低碳數烷基」係指具有1至4個(若飽和)或2至4個(若不飽和)碳原子之烷基。實例性低碳數烷基包括甲基、乙基、正丙基、異丙基、正丁基、第二丁基、異丁基、第三丁基及諸如此類。術語「烯基」係指具有至少兩個 碳原子及至少一個碳-碳雙鍵之烷基。術語「炔基」係指具有至少兩個碳原子及至少一個碳-碳三鍵之烷基。
術語「環烷基」在單獨使用或作為更大部分(例如「(環烷基)烷基」)之一部分使用時係指完全飽和或含有一或多個不飽和單元但不為芳香族或二環[2.2.1]庚基(亦稱為降莰基)或二環[2.2.2]辛基之單價單環烴。在一些實施例中,環烷基含有3至8個環碳原子(「C3-C8環烷基」)。環烷基之實例包括環丙基、環丁基、環戊基、環己基、1-環己烯基、3-環己烯基、環庚基及諸如此類,以及二環[2.2.1]庚基及二環[2.2.2]辛基。
術語「烷氧基」在單獨使用或作為更大部分之一部分使用時係指基團-O-烷基。
術語「鹵素」或「鹵基」在單獨使用或作為更大部分之一部分使用時係指氟、氯、溴或碘。
術語「芳基」在單獨使用或作為更大部分(例如「(芳基)烷基」)之一部分使用時係指單價單環或二環碳環芳香族環系統。除非另外規定,否則芳基含有6個或10個環成員。芳基之實例包括苯基、萘基及諸如此類。
術語「雜芳基」在單獨使用或作為更大部分(例如,「(雜芳基)烷基」)之一部分使用時係指具有5至10個環原子、較佳地5個、6個、9個或10個環原子之單價單環或二環基團,其具有6個、10個或14個以環狀陣列共享之π電子,且除環碳原子外具有1至4個環雜原子。雜芳基之實例包括噻吩基、呋喃基、吡咯基、咪唑基、吡唑基、三唑基、四唑基、噁唑基、異噁唑基、噁二唑基、噻唑基、異噻唑基、噻二唑基、吡啶基、噠嗪基、嘧啶基、吡嗪基、吲嗪基、嘌呤基、萘啶基、蝶啶基及諸如此類。
術語「雜環基」在單獨使用或作為更大部分(例如「(雜環基)烷 基」)之一部分使用時係指單價穩定之5員至7員單環或7員至10員二環雜環部分,其係飽和或部分不飽和的且除環碳原子以外具有1至4個雜原子。雜環基之實例包括四氫呋喃基、吡咯啶基、四氫吡喃基、哌啶基、嗎啉基及諸如此類。
如本文所用,術語「醫藥上可接受之鹽」係指彼等在合理醫學判斷範圍內適用於接觸人類及低等動物組織而沒有過度毒性、刺激、過敏反應及諸如此類且與合理益處/風險比相稱之鹽。醫藥上可接受之鹽為業內所熟知。舉例而言,S.M.Berge等人在J.Pharmaceutical Sciences,1977,66:1-19中詳細闡述醫藥上可接受之鹽,其係以引用方式併入本文中。本發明化合物之醫藥上可接受之鹽包括彼等衍生自適宜無機及有機酸及鹼者。醫藥上可接受之無毒酸加成鹽之實例係無機酸(例如,鹽酸、氫溴酸、磷酸、硫酸及過氯酸)或有機酸(例如,乙酸、草酸、馬來酸、酒石酸、檸檬酸、琥珀酸或丙二酸)或藉由使用業內所用之其他方法(例如,離子交換)與胺基形成之鹽。其他醫藥上可接受之鹽包括己二酸鹽、海藻酸鹽、抗壞血酸鹽、天門冬胺酸鹽、苯磺酸鹽、苯甲酸鹽、硫酸氫鹽、硼酸鹽、丁酸鹽、樟腦酸鹽、樟腦磺酸鹽、檸檬酸鹽、環戊烷丙酸鹽、二葡萄糖酸鹽、十二烷基硫酸鹽、乙磺酸鹽、甲酸鹽、富馬酸鹽、葡庚糖酸鹽、甘油磷酸鹽、葡萄糖酸鹽、半硫酸鹽、庚酸鹽、已酸鹽、氫碘酸鹽、2-羥基-乙磺酸鹽、乳糖酸鹽、乳酸鹽、月桂酸鹽、月桂基硫酸鹽、蘋果酸鹽、馬來酸鹽、丙二酸鹽、甲磺酸鹽、2-萘磺酸鹽、菸酸鹽、硝酸鹽、油酸鹽、草酸鹽、棕櫚酸鹽、雙羥萘酸鹽、果膠酸鹽、過硫酸鹽、3-苯基丙酸鹽、磷酸鹽、新戊酸鹽、丙酸鹽、硬脂酸鹽、琥珀酸鹽、硫酸鹽、酒石酸鹽、硫氰酸鹽、對-甲苯磺酸鹽、十一烷酸鹽、戊酸鹽及諸如此類。
衍生自適當鹼之鹽包括鹼金屬鹽、鹼土金屬鹽、銨鹽及N+(C1-4 烷基)4鹽。代表性鹼金屬或鹼土金屬鹽包括鈉鹽、鋰鹽、鉀鹽、鈣鹽、鎂鹽及諸如此類。若適宜,其他醫藥上可接受之鹽包括無毒銨、四級銨及胺陽離子,其係使用諸如鹵離子、氫氧根、羧酸根、硫酸根、磷酸根、硝酸根、低碳數烷基磺酸根及芳基磺酸根等抗衡離子來形成。
如本文所用術語「個體」包括哺乳動物(例如,人類,在一些實施例中包括出生前人類形式)。在一些實施例中,個體正罹患相關疾病、病症或病況。在一些實施例中,個體易患疾病、病症或病況。在一些實施例中,個體展示疾病、病症或病況之一或多個症狀或特徵。在一些實施例中,個體不展示疾病、病症或病況之任一症狀或特徵。在一些實施例中,個體係具有一或多個特徵在於易患疾病、病症或病況或具有該疾病、病症或病況之風險之特徵之個體。在一些實施例中,個體系人類。在一些實施例中,個體係向其投與及/或已投與診斷及/或療法之個體。在一些實施例中,個體係胎兒、嬰兒、兒童、青少年、成人或老年人(即,個體具有高齡,例如大於50歲)。在一些實施例中,兒童係指介於2歲與18歲年齡之間之人類。在一些實施例中,成人係指年齡為18歲或更大之人類。
除非另有說明,否則本文中繪示之結構亦意欲包括結構之所有異構物(例如,鏡像異構物、非鏡像異構物及幾何(或構形))形式;例如,每一不對稱中心之R及S構型,Z及E雙鍵異構物,及Z及E構形異構物。因此,本發明化合物之單一立體化學異構物以及鏡像異構物、非鏡像異構物及幾何(或構形)混合物均在本發明之範圍內。除非另有說明,否則本發明化合物之所有互變異構物形式皆在本發明之範圍內。另外,除非另有說明,否則本文所繪示之結構亦意欲包括僅在一或多個同位素富集原子存在下不同之化合物。舉例而言,包括氫、碳、氮、氧、氯或氟分別經2H、3H、11C、13C、14C、13N、15N、 17O、18O、36Cl或18F替代且具有本發明結構之化合物在本發明之範圍內。根據本發明,該等化合物可用作(例如)分析工具、生物分析中之探針或治療劑。另外,納入諸如氘(2H)等較重同位素可能因更強代謝穩定性而提供某些治療優點,例如延長活體內半衰期或降低劑量需求。
非鏡像異構物過量表示為de%,亦即對於非鏡像異構物X及Y,非鏡像異構物過量之X=((x-y)/(x+y))*100,其中x及y分別係X及Y之分數。
鏡像異構物過量表示為ee%,亦即對於鏡像異構物X及Y,鏡像異構物過量之X=((x-y)/(x+y))*100,其中x及y分別係X及Y之分數。
化學實體之實例性實施例
在一實施例中,本發明提供式(I)之化學實體: 其中R1及Z係如上文所定義。
在一些實施例中,R1係視情況經取代之烷基。
在一些實施例中,R1係視情況經取代之環烷基或視情況經取代之(環烷基)烷基。在一些實施例中,R1係視情況經取代之環烷基。在一些實施例中,R1係視情況經取代之環己基。在一些實施例中,R1係環己基。在一些實施例中,R1係4,4-二氟環己基。在一些實施例中,R1係4,4-二甲基環己基。在一些實施例中,R1係4-甲基環己基。在一些實施例中,R1係4-乙基環己基。在一些實施例中,R1係4-環丙基環己基。在一些實施例中,R1係視情況經取代之降莰烷基。在一些實施例中,R1係視情況經取代之(環烷基)烷基。在一些實施例中,R1係二環[2.2.1]庚-2-基甲基。在一些實施例中,R1係視情況經取代之環己基甲 基。在一些實施例中,R1係環己基甲基。在一些實施例中,R1係(4,4-二甲基環己基)甲基。在一些實施例中,R1係(4,4-二氟環己基)甲基。
在一些實施例中,R1係視情況經取代之雜環基或視情況經取代之(雜環基)烷基。在一些實施例中,R1係視情況經取代之雜環基。在一些實施例中,R1係視情況經取代之四氫吡喃基。在一些實施例中,R1係四氫吡喃-4-基。在一些實施例中,R1係視情況經取代之(雜環基)烷基。在一些實施例中,R1係視情況經取代之四氫吡喃基甲基。在一些實施例中,R1係四氫吡喃-4-基甲基。
在一些實施例中,R1係視情況經取代之芳基或視情況經取代之(芳基)烷基。在一些實施例中,R1係視情況經取代之(芳基)烷基。在一些實施例中,R1係視情況經取代之苄基。在一些實施例中,R1係4-甲基苄基。在一些實施例中,R1係4-乙基苄基。在一些實施例中,R1係4-異丙基苄基。在一些實施例中,R1係4-(2,2,2-三氟乙基)苄基。在一些實施例中,R1係4-(1,1-二氟乙基)苄基。在一些實施例中,R1係4-第三丁基苄基。在一些實施例中,R1係4-氯苄基。在一些實施例中,R1係4-氟苄基。在一些實施例中,R1係4-二氟甲基苄基。在一些實施例中,R1係4-三氟甲基苄基。在一些實施例中,R1係4-二氟甲氧基苄基。在一些實施例中,R1係4-三氟甲氧基苄基。在一些實施例中,R1係4-甲基硫苄基。在一些實施例中,R1係4-乙基硫苄基。在一些實施例中,R1係4-甲基磺醯基苄基。在一些實施例中,R1係4-乙基磺醯基苄基。在一些實施例中,R1係4-三氟甲基磺醯基苄基。
在一些實施例中,R1係視情況經取代之雜芳基或視情況經取代之(雜芳基)烷基。在一些實施例中,R1係視情況經取代之(雜芳基)烷基。在一些實施例中,R1係視情況經取代之(吡啶-2-基)甲基。在一些實施例中,R1視情況係(5-氯-吡啶-2-基)甲基。在一些實施例中,R1視情況係(5-甲基-吡啶-2-基)甲基。在一些實施例中,R1係視情況經取代 之(吡啶-3-基)甲基。在一些實施例中,R1係(5-甲基-吡啶-3-基)甲基。
在一些實施例中,Z係具有環碳原子、1個環氮原子及0至3個獨立地選自N、O及S之其他環雜原子之5員或6員單環雜芳基或9員或10員二環雜芳基,其視情況經1個或2個Rx基團取代且視情況經1個Ra基團取代,其中每一Rx附接至環碳原子且Ra附接至環氮原子。
在一些實施例中,Z係具有環碳原子、1個環氮原子及0至3個獨立地選自N、O及S之其他環雜原子之視情況經取代之9員二環雜芳香族環系統。
在一些實施例中,Z係具有環碳原子、1個環氮雜原子及1個氧環雜原子之視情況經取代之9員二環雜芳香族環系統。
在一些實施例中,Z係具有環碳原子及2個環氮雜原子之視情況經取代之9員二環雜芳香族環系統。
在一些實施例中,Z係具有環碳原子及3個環氮雜原子之視情況經取代之9員二環雜芳香族環系統。
在一些實施例中,Z係具有環碳原子及4個環氮雜原子之視情況經取代之9員二環雜芳香族環系統。
在一些實施例中,Z係具有環碳原子、1個環氮原子及0至2個獨立地選自N、O及S之其他環雜原子之視情況經取代之5員或6員單環雜芳香族環系統。
在一些實施例中,Z係具有環碳原子、1個環氮雜原子及0個或1個其他環氮原子之6員視情況經取代之單環雜芳香族環系統。在一些實施例中,Z係吡啶基。在一些實施例中,Z係嘧啶基。在一些實施例中,Z係嗒嗪基。
在一些實施例中,Z係具有環碳原子及2個環氮原子之6員視情況經取代之單環雜芳香族環系統。在一些實施例中,Z係具有環碳原子及2個環氮原子之6員單環雜芳香族環系統,其中Z經1個或2個Rx基團 取代。在某些實施例中,Z係具有環碳原子及2個環氮原子之6員單環雜芳香族環系統,其中Z經1個Rx基團取代。因此,在某些實施例中,Z係具有環碳原子及2個環氮原子之6員單環雜芳香族環系統,其中Z經Rx單取代。在一些實施例中,Z係經Rx單取代之吡啶基。在一些實施例中,Z係經Rx單取代之嘧啶基。在一些實施例中,Z係經Rx單取代之嗒嗪基。在一些實施例中,Z係具有環碳原子、1個環氮原子及0至2個獨立地選自N、O及S之其他環雜原子之視情況經取代之5員單環雜芳香族環系統。
在一些實施例中,Z係具有環碳原子、1個環氮原子及0或1個獨立地選自N、O及S之其他環雜原子之視情況經取代之5員單環雜芳香族環系統。在一些實施例中,Z係咪唑基或噻唑基。在一些實施例中,Z係咪唑基。在一些實施例中,Z係噻唑基。
在一些實施例中,Z係具有環碳原子、1個環氮原子及0至2個獨立地選自N、O及S之其他環雜原子之視情況經取代之5員單環雜芳香族環系統。在一些實施例中,Z係三唑基、噁二唑基或噻二唑基。在一些實施例中,Z係三唑基。在一些實施例中,Z係噁二唑基。在一些實施例中,Z係噻二唑基。
在一些實施例中,Z視情況經1個或2個Rx基團取代且視情況經1個Ra基團取代,其中每一Rx附接至環碳原子且Ra附接至環氮原子。在一些實施例中,每一Rx獨立地選自-F、-Cl、-CH3、-CFH2、-CF2H、-CF3、-OH、-OCH3、-OCF3或-CN。在一些實施例中,Rx係-F或-Cl。在一些實施例中,Rx係-F、-Cl或-CN。在一些實施例中,Rx係-CH3、-CFH2、-CF2H或-CF3。在一些該等實施例中,Rx係-CFH2、-CF2H或-CF3。在一些實施例中,Rx係-CH3或-CF3。在一些實施例中,Rx係-OH、-OCH3或-OCF3
在一些實施例中,每一Ra獨立地選自C1-4烷基、C3-4環烷基或- S(O)2-C1-4烷基。在一些實施例中,Ra係C1-4烷基或C3-4環烷基。在一些實施例中,Ra係C1-4烷基。在一些實施例中,Ra係-S(O)2-C1-4烷基。
在一些實施例中,Z具有式Z1至Z36中之一者,其中Z視情況經1或2個Rx基團取代,其中每一Rx附接至環碳原子: 其中:Rx之每一實例獨立地為-F、-Cl、-CH3、-CFH2、-CF2H、-CF3、-OH、-OCH3、-OCF3或-CN;且Ra係C1-4烷基、C3-4環烷基或-S(O)2-C1-4烷基。
在一些實施例中,Z係Z1、Z2、Z3、Z4、Z5、Z6、Z7、Z8、Z9、Z10、Z11、Z12、Z13、Z14、Z15、Z16、Z17、Z18、Z19、Z20、Z21、Z22、Z23、Z24、Z25、Z26、Z27、Z28、Z29、Z30、Z31、Z32、Z33、Z34、Z35或Z36。
在一些實施例中,Z係Z1、Z2、Z3、Z4、Z5、Z6、Z7、Z8、Z9、Z10、Z11、Z12、Z13、Z14、Z15、Z16、Z17、Z18、Z19或Z20。
在一些實施例中,Z係Z1、Z2、Z5、Z6、Z8、Z17或Z19。在一 些實施例中,Z係Z1或Z2。在一些實施例中,Z係Z1。在一些實施例中,Z係Z2。在一些實施例中,Z係Z6或Z8。在一些實施例中,Z係Z6。在一些實施例中,Z係Z8。
在一些實施例中,Z係Z3、Z4、Z7、Z9、Z10、Z11、Z12、Z13、Z14或Z18。在一些實施例中,Z係Z7或Z9。在一些實施例中,Z係Z7。在一些實施例中,Z係Z9。
在一些實施例中,Z係Z15、Z16或Z20。在一些實施例中,Z係Z15或Z16。在一些實施例中,Z係Z15。在一些實施例中,Z係Z16。在一些實施例中,Z係20。
在一些實施例中,Z係Z21、Z22、Z23、Z24、Z25、Z26、Z27、Z28、Z29、Z30、Z31、Z32、Z33、Z34、Z35或Z36。在一些實施例中,Z係Z21、Z22、Z23或Z24。在一些實施例中,Z係Z25、Z26、Z27、Z28、Z29、Z30、Z31、Z32、Z33、Z34、Z35或Z36。
在一些實施例中,Z係Z23。
在一些實施例中,Z係Z21、Z22、Z24、Z29、Z30、Z35或Z36。在一些實施例中,Z係Z21、Z22、Z24、Z35或Z36。在一些實施例中,Z係Z21或Z22。在一些實施例中,Z係Z21。在一些實施例中,Z係Z22。在一些實施例中,Z係Z29或Z30。
在一些實施例中,Z係Z25、Z26、Z27、Z28、Z31、Z32、Z33或Z34。在一些實施例中,Z係Z25或Z26。在一些實施例中,Z係Z25。在一些實施例中,Z係Z26。在一些實施例中,Z係Z27、Z31或Z32。在一些實施例中,Z係Z28、Z33或Z34。
在一些實施例中,Z係Z27、Z29、Z30、Z31或Z32。在一些實施例中,Z係Z29或Z30。在一些實施例中,Z係Z27、Z31或Z32。
在一些實施例中,Z係Z28、Z33或Z34。在一些實施例中,Z係Z28。
在一些實施例中,Rx之每一實例獨立地為-F、-Cl、-CH3、-CF3或-CN。在一些實施例中,Rx之每一實例獨立地為-CH3或-CF3
在一些實施例中,Ra為-CH3
在一些實施例中,式(I)之化學實體係式(II)之化學實體: 其中Z係如上文文獻在式(I)之實施例中所闡述,或如本文在實施例中以單一形式及以組合形式所闡述;且其中R5、R6及R7獨立地為-H、-F、-Cl、C1-C4烷基、環丙基、-C≡CH、-CFH2、-CF2H、-CF3、-CF2CH3、-CH2CF3、C1-C4烷氧基、-OCFH2、-OCF2H,-OCF3、-CN、-N(R2)(R3)、-NO2,C1-C4烷硫基、C1-C4烷基磺醯基或-S(O)2CF3;其中R2及R3之每一實例獨立地為-H或C1-C4烷基,或-N(R2)(R3)係
在一些實施例中,Z係選自式Z1至Z36,其中:Rx及Ra係如上文文獻在式Z1至Z36之實施例中所闡述,或如本文在實施例中以單一形式及以組合形式所闡述。
在一些實施例中,所提供之化學實體係式(II)之化學實體,其中R5、R6及R7中之每一者獨立地為-H、-F、-Cl、-CH3、-CFH2、-CF2H、-CF3、-CH2CH3、-CF2CH3、-CH2CF3、異丙基、第三丁基、環丙基、-OCF3、-OCF2H、-SCH3、-SCH2CH3、-S(O)2CH3、-S(O)2CH2CH3、-S(O)2CF3或-C≡CH。
在一些實施例中,所提供之化學實體係式(II)之化學實體,其中R5、R6及R7中之每一者獨立地為-H、-F、-Cl、-CH3、-CFH2、-CF2H、-CF3、-CH2CH3、-CF2CH3、-CH2CF3、環丙基、-OCF3、-OCF2H、-SCH3、-S(O)2CH3或-C≡CH。
在一些實施例中,所提供之化學實體係式(II)之化學實體,其中:R5係-H、-F、-Cl、-CH3、-CFH2、-CF2H、-CF3、-CH2CH3、-CF2CH3、-CH2CF3、環丙基、-OCF3、-OCF2H、-SCH3、-S(O)2CH3或-C≡CH;R6係-H或-F;且R7係-H、-F、-Cl或-CH3
在一些實施例中,所提供之化學實體係式(II)之化學實體,其中R5、R6及R7中之每一者獨立地為-H、-F、-Cl、-CH3、-CFH2、-CF2H、-CF3、-CH2CH3、-CF2CH3、-CH2CF3、異丙基、第三丁基、環丙基、-OCF3、-OCF2H、-SCH3、-SCH2CH3、-S(O)2CH3、-S(O)2CH2CH3、-S(O)2CF3或-C≡CH;且Z係Z1、Z2、Z6、Z7、Z8、Z9、Z21或Z22。在一些實施例中,Z係Z1、Z2、Z8、Z9、Z21或Z22。在一些實施例中,Z係Z1或Z2。在一些實施例中,Z係Z1。在一些實施例中,Z係Z2。
在一些實施例中,所提供之化學實體係式(II)之化學實體,其中R5、R6及R7中之每一者獨立地為-H、-F、-Cl、-CH3、-CFH2、-CF2H、-CF3、-CH2CH3、-CF2CH3、-CH2CF3、環丙基、-OCF3、-OCF2H、-SCH3、-S(O)2CH3或-C≡CH;且Z係Z1、Z2、Z8、Z9、Z21或Z22。在一些實施例中,Z係Z1或Z2。在一些實施例中,Z係Z1。在一些實施例中,Z係Z2。
在一些實施例中,所提供之化學實體係式(II)之化學實體,其中:R5係-H、-F、-Cl、-CH3、-CFH2、-CF2H、-CF3、-CH2CH3、-CF2CH3、-CH2CF3、環丙基、-OCF3、-OCF2H、-SCH3、-S(O)2CH3或-C≡CH; R6係-H或-F;R7係-H、-F、-Cl或-CH3;且Z係Z1、Z2、Z8、Z9、Z21或Z22。在一些實施例中,Z係Z1或Z2。在一些實施例中,Z係Z1。在一些實施例中,Z係Z2。
指定立體中心為R指示R異構物係以大於相應S異構物之量存在。舉例而言,相對於S異構物,R異構物可以50%、60%、70%、80%、85%、90%、92%、94%、96%或98%之鏡像異構物過量存在。類似地,在其中可指示一個以上立體中心之合成中間體中,相對於S異構物,R異構物可以50%、60%、70%、80%、85%、90%、92%、94%、96%或98%之非鏡像異構物過量存在。
指定立體中心為S指示S異構物係以大於相應R異構物之量存在。舉例而言,相對於R異構物,S異構物可以50%、60%、70%、80%、85%、90%、92%、94%、96%或98%之鏡像異構物過量存在。類似地,在其中可指示一個以上立體中心之合成中間體中,相對於R異構物,S異構物可以50%、60%、70%、80%、85%、90%、92%、94%、96%或98%之非鏡像異構物過量存在。
對化學實體之旋光性之指定指示所指示鏡像異構物係以大於相對鏡像異構物之量存在。舉例而言,相對於(+)異構物,(-)異構物可以50%、60%、70%、80%、85%、90%、92%、94%、96%或98%之鏡像異構物過量存在。類似地,相對於(-)異構物,(+)異構物可以50%、60%、70%、80%、85%、90%、92%、94%、96%或98%之鏡像異構物過量存在。
式(I)之實例性化學實體顯示於以下表1.C、1.E1及1.E2中。
藥理學
麩胺酸鹽(GLU)係哺乳動物大腦及中樞神經系統(CNS)中之基本興奮性神經傳遞質。此內源性神經傳遞質之效應係藉助GLU至麩胺酸受體(GLUR)之結合及活化介導的,該等受體在廣義上分類為代謝型G蛋白偶聯受體(mGluR)及配體門控型離子通道或離子移變型GluR。基於選擇性受體激動劑之作用,將離子移變型GLUR在藥理學上分類為三種主要類型:NMDA(選擇性N-甲基D-天冬胺酸鹽)、KA(選擇性海人酸)及AMPA(α-胺基-3-羥基-5-甲基-4-異噁唑丙酸)受體,該等之結構及藥理學功能最近已經詳細概述(S.F.Traynelis等人Pharmacology Reviews,2010,62,405-496)。電生理學研究已證實NMDAR為陽離子型離子通道,其係因內源性Mg2+而經受電壓依賴性通道阻斷。在作為協同激動劑之甘胺酸存在下藉由麩胺酸鹽活化NMDAR可引起受體離子通道之打開。此繼而容許Na+及Ca2+流動至生成興奮性突觸後電位(EPSP)之細胞及神經元中Ca2+活化之第二傳訊者信號傳導路徑中。由於NMDA受體可滲透至Ca2+中,故該等NMDA受體之活化調控神經元通訊(例如學習及記憶體及突觸可塑性)之長期變化。
自最初藥理學描述選擇性配體以來,分子生物學及選殖研究已使得能夠在分子水準上詳細描述NMDAR(Paoletti等人,2013,Nat.Rev.Neurosci.14:383-400)。因此,NMDAR係包括兩個NR1亞單位及兩個NR2亞單位之異四聚體。NR1亞單位含有甘胺酸協同激動劑之結 合位點,而NR2亞單位含有麩胺酸鹽之結合位點。來自不同基因之NR1之多種剪接變體及NR2之四種同種型(NR2A、NR2B、NR2C及NR2D)之存在產生多樣性分子陣列及多種NMDAR。NMDAR之藥理學及電生理學性質端視具體NR1同種型及NR2亞型組成變化。此外,NR2亞型同種型遍及細胞類型及大腦區域之表現有所不同。因此,選擇性地與NR2亞單位相互作用之化合物可在具體而言大腦區域中發揮特定藥理學效應且有可能以高度特異性及選擇性治療CNS疾病(例如vz副作用)。例如,相對於其他大腦結構,NR2B亞型在小腦中之表現較低(Cull-Candy等人,1998,Neuropharmacol.37:1369-1380)指示此亞型之運動副作用較低。
NMDA受體拮抗作用已由於其治療各種CNS疾病(包括中風、癲癇、疼痛、抑鬱症帕金森氏病(Parkinson's Disease)及阿茲海默氏病(Alzheimer's disease))之潛力而得到廣泛研究(Paoletti等人,Nat.Rev.Neurosci 14:383-400;Sancora,2008,Nature Rev.Drug Disc.,7,426-437)。NMDA受體提供多個藥理學切入點用於研發受體抑制劑。NMDAR離子通道孔之直接阻斷劑代表拮抗劑化合物之一個家族,該等化合物之效能可在多種活體外及活體內CNS疾病模型(包括癲癇、疼痛及神經退化/中風)中得到證實。然而,來自此類別之化合物(如藉由苯環己哌啶(phencyclidine,PCP)、MK-801及氯胺酮(ketamine)所例示)通常歸類為遍及各種NMDA受體亞型均具有非選擇性。
在人類中,非選擇性高親和性NMDAR拮抗劑通常與嚴重臨床副作用(包括幻覺、焦慮及缺乏協調)相關。然而,最近已證實氯胺酮(最 初經批準用於麻醉之靜脈內藥物(Haas等人,1992,Anesthesia Prog.,39,61-68))作為抗抑鬱藥療法之臨床效能(Katalinic等人2013,Aust.N.Z.J.Psychiatry,47,710-727)。與標準血清素再攝取抑制劑(SSRI)藥物療法所需要之約6週相比,急性氯胺酮療法之抗抑鬱作用基本上立即起效。因此,已顯示藥物之靜脈內投與可快速起效,且在繼續間歇投與下可維持延長之效能(Zarate等人,2006,Arch.Gen.Psychiatry 63,856-864)。最後,已顯示氯胺酮在耐標準藥物療法之抑鬱症之情形下係有效的(Murrough等人,2013,American J.Psychiatry,170,1134-1142),包括雙極性抑鬱症(Zarate等人2012,Biol.Psychiatry,71,939-946)。然而,作為具有嚴重副作用(Gianni等人1985,Psychiatric Medicine,3,197-217;Curran等人2000,Addiction,95,575-590)及潛在慢性毒性(Hardy等人,2012,J.Clin.Oncol.30:3611-3617;Noppers等人,2011,Pain 152:2173-2178)之靜脈內藥物,氯胺酮療法具有有限效用且限於短期或間歇投與。為加寬應用範圍及用作用於抑鬱症及其他CNS疾病之療法,需要可長期投與之具有降低之副作用之口服活性選擇性NMDA拮抗劑。
確定艾芬地爾(ifenprodil)(血管舒張劑α1-腎上腺素性拮抗劑藥物)在NR2B NMDA受體亞型處具有新穎別位調節劑作用機制(Reynolds等人1989,Mol.Pharmacol.,36,758-765)。此新穎機制為具有治療效能而無亞型非選擇性離子通道阻斷劑之有限副作用之新類別NMDA拮抗劑藥物帶來了希望。在此發現後,針對不合意α1-腎上腺素性活性最佳化之艾芬地爾之NR2B選擇性拮抗劑類似物(Borza等人,2006,Current Topics in Medicinal Chemistry,6,687-695;Layton等人Current Topics in Medicinal Chemistry,6,697-709)包括Ro-25,6981(Fischer等人1997,J.Pharmacol.Exp.Ther.,283,1285-1292)及CP-101,606(本來稱為曲索羅地(traxoprodil))(Chenard等人1995,Journal of Medicinal Chemistry,38,3138-3145;Menniti等人1998,CNS Drug Reviews.,4,307-322)。在臨床研究中,相對於非選擇性NMDA拮抗劑,CP-101,606證實在人類中在靜脈內投與後具有抗抑鬱活性以及有利解離性副作用譜(Preskorn等人2008,Journal of Clinical Psychopharmacology,28,631-637)。然而,CP-101,606具有次最佳藥物動力學性質且需要限制靜脈內投與。在上文所提及之抗抑鬱臨床研究中,對於CP-101,606需要緩慢靜脈內輸注方案來達成最佳結果(Preskorn等人2008,Journal of Clinical Psychopharmacology,28,631-637)。
已如由B.Ruppa等人(K.B.Ruppa等人,Annual Reports in Medicinal Chemistry 2012,47:89-103)概述所闡述之其他NR2B拮抗劑包括MK0657(J.A.McCauley等人,第3屆盎格魯-瑞典醫藥化學研討會(3 rd Anglo-Swedish Medicinal Chemistry Symposium),Åre,Sweden,3月11日至14日,2007;L.Mony等人,British J.of Pharmacology 2009,157:1301-1317;亦參見國際申請公開案第WO 2004/108705號;美國專利第7,592,360號)及下式LX之化合物(國際申請公開案第WO 2006/113471號),包括下文所繪示之特定類似物LX-1。
由具有鹼性胺部分之NR2B拮抗劑關於克服hERG及CYP2D6安全性缺點同時維持NR2B活體外及活體內功效所呈現之困難係如由Kawai等人(M.Kawai等人,Bioorganic and Medicinal Chem.Lett.2007,v17:5533-5536)及Brown等人(Brown等人,Bioorganic and Medicinal Chem.Lett.2011,v21:3399-3403)所闡述充分確立。心電圖(ECG)中hERG通道及相關QT延長之化合物抑制代表公認之嚴重人類心血管安全風險(Hancox等人,Molecular Pharmacology 2008,73:1592-1595)。QT延長可導致尖端扭轉型室性心動過速(TdP)心律不整,此可退化成室性心動過速及猝死。
人類代謝細胞色素P-450酶(包括CYP2D6)之化合物抑制代表由藥物間相互作用引起之關於人類藥物安全性之風險(Drug Metabolism Handbook:Concepts and Applications編者Ala F.Nassar版權2009 Wiley & Sons,Hoboken,NJ)。因此,抑制CYP2D6之化合物可降低為CYP2D6受質之藥物之清除。結果可為由給定CYP2D6藥物受質之累積引起之毒性或副作用超載。包括抗抑鬱藥之CNS藥物之特徵在所確立CYP2D6受質中較顯著。因此,於尤其在CNS適應症(包括抑鬱症)中以通常應用之結合給藥或複方用藥給出之NR2B拮抗劑藥物而言,CYP2D6抑制高度不合意。CY2D6受質之實例包括來自SSRI類之抗抑 鬱藥(例如氟西汀(fluoxetine)、帕羅西汀(paroxetine)及氟伏沙明(fluvoxamine)、度洛西汀(duloxetine))、來自SSNI類之抗抑鬱藥、諸多抗精神病藥(包括氟派醇(haloperidol)、利培酮(risperidone)及阿立哌唑(aripiperazole))、諸多β-阻斷劑抗高血壓劑(包括美托洛爾(metaprolol)、普萘洛爾(propranolol)、噻嗎洛爾(timolol)及阿普洛爾(alprenolol))及阿茲海默氏病抗膽鹼酯酶抑制劑藥物多奈派齊(donepezil)(Flockhart DA(2007).「Drug Interactions:Cytochrome P450 Drug Interaction Table」,Indiana University School of Medicine,在<<http://medicine.iupui.edu/clinpharm/ddis/>>處取得,2014年5月28日)。
MK0657及密切相關之類似物(Liverton等人,J.Med.Chem.2007,v50:807-819)代表關於人類經口生物利用度之NR2B拮抗劑有所改良之一代。然而,已在患有帕金森氏病之患者中之公開臨床效能試驗研究中闡述對於MK0657在經口投藥後與藥物相關之收縮壓以及舒張壓升高心血管副作用(Addy等人,J.Clin.Pharm.2009,v49:856-864)。已報導亦已在利用健康個體之安全性研究中在MK0657之單一劑量後觀察到類似血壓效應。(Peterson等人,「A randomized,double-blind,placebo-controlled,parallel-group,three-part safety,pharmacokinetic,and pharmacodynamic study of CERC-301 in healthy subjects」,National Network of Depression Centers Annual Conference,Ann Arbor,2015年11月5日至6日)。有趣地,MK0657及其鏡像異構物(3R,4S化合物)顯示類似之抵抗NR2B之功效(MK0657=13.8nM;3R,4S鏡像異構物=25.5nM)。甚至更值得注意的是順式及反式非鏡像異構物之功效顯示類似之抵抗NR2B之功效(參見Koudih等人,European J.Med.Chem.53(2012),408-415)。
化合物LX-1顯示在動物中之經口生物利用度且缺乏可危害人類 中之經口生物利用度之酚系基團。然而,與具有鹼性胺部分之其他NR2B拮抗劑一致,具有鹼性哌啶氮原子之化合物LX-1儘管具有減弱鹼性之位於此氮β位之相鄰二氟部分,但其展現人類hERG通道抑制(IC50<10μM(約4.5μM)),且展現人類CYP2D6代謝酶抑制活性(IC50為約1.0μM)。
對於寬泛應用範圍及安全人類使用,需要改良之NR2B選擇性拮抗劑,亦如在K.B.Ruppa等人,Annual Reports in Medicinal Chemistry 2012,47:89-103中所闡述。業內需要在一或多個態樣(例如藥物動力學、吸收、代謝、排泄(ADME,例如經口活性)、改良之效能、脫靶活性、與長期經口療法相關且相容之改良之治療安全指數)方面有所改良之NR2B拮抗劑化合物。舉例而言,已在患有帕金森氏病之患者中之公開臨床效能試驗研究中闡述對於MK0657在經口投藥後與藥物相關之收縮壓以及舒張壓升高心血管副作用(Addy等人,J.Clin.Pharm.2009,v49:856-864)。已報導亦已在利用健康老人個體之安全性研究中在MK0657之單一劑量後觀察到類似血壓效應。
所提供之化學實體係NR2B受體之拮抗劑且在一或多種醫藥藥物性質(例如經口生物利用度、藥物動力學參數、ADME性質(例如,CYP抑制、代謝物形成)、活體內及/或活體外藥理學安全性)方面具有技術優點。
在一些實施例中,所提供之化學實體具有400之相對於NR2A之NR2B功能NMDA受體選擇性(「NR2B選擇性」,經確定為比率NR2A IC50/NR2B IC50,其中IC50值係根據實例2.1之程序測得)。在一些實施例中,所提供之化學實體具有300之NR2B選擇性。在一些實施例中,所提供之化學實體具有200之NR2B選擇性。在一些實施例中,所提供之化學實體具有100之NR2B選擇性。在一些實施例中,所提供之化學實體具有50之NR2B選擇性。在一些實施例 中,所提供之化學實體具有20之NR2B選擇性。
在一些實施例中,所提供之化學實體具有5μM之hERG活性(經確定為hERG IC50,其係根據實例2.2之程序測得)。在一些實施例中,所提供之化學實體具有10μM之hERG IC50。在一些實施例中,所提供之化學實體具有15μM之hERG IC50。在一些實施例中,所提供之化學實體具有20μM之hERG IC50。在一些實施例中,所提供之化學實體具有25μM之hERG IC50。在一些實施例中,所提供之化學實體具有30μM之hERG IC50。在一些實施例中,所提供之化學實體具有40μM之hERG IC50
在一些實施例中,所提供之化學實體具有200nM之NR2B功能拮抗劑活性(經確定為NR2B IC50,其係根據實例2.1之程序測得)及5μM之hERG活性(經確定為hERG IC50根據實例2.2之程序測得)。在一些實施例中,所提供之化學實體具有200nM之NR2B IC5010μM之hERG IC50。在一些實施例中,所提供之化學實體具有200nM之NR2B IC5015μM之hERG IC50。在一些實施例中,所提供之化學實體具有200nM之NR2B IC5020μM之hERG IC50。在一些實施例中,所提供之化學實體具有200nM之NR2B IC5025μM之hERG IC50。在一些實施例中,所提供之化學實體具有200nM之NR2B IC5030μM之hERG IC50。在一些實施例中,所提供之化學實體具有200nM之NR2B IC5040μM之hERG IC50。在一些實施例中,所提供之化學實體具有100nM之NR2B IC505μM之hERG IC50。在一些實施例中,所提供之化學實體具有100nM之NR2B IC5010μM之hERG IC50。在一些實施例中,所提供之化學實體具有50nM之NR2B IC505μM之hERG IC50。在一些實施例中,所提供之化學實體具有50nM之NR2B IC5010μM之hERG IC50
在一些實施例中,所提供之化學實體具有200nM之NR2B功能拮抗劑活性(確定為NR2B IC50,其係根據實例2.1之程序測得)及2μM之CYP2D6抑制(作為CYP2D6 IC50量測,其係根據實例2.3之程序測定)。在一些實施例中,所提供之化學實體具有200nM之NR2B IC503μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有200nM之NR2B IC504μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有200nM之NR2B IC505μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有200nM之NR2B IC50及約5μM至10μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有200nM之NR2B IC5010μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有100nM之NR2B IC502μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有100nM之NR2B IC503μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有100nM之NR2B IC504μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有100nM之NR2B IC505μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有100nM之NR2B IC50及約5μM至10μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有100nM之NR2B IC5010μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有50nM之NR2B IC502μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有50nM之NR2B IC503μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有50nM之NR2B IC504μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有50nM之NR2B IC505μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有50nM之NR2B IC50及約5μM至10μM之CYP2D6 IC50。在一些實施例中,所提供之化學實體具有 50nM之NR2B IC5010μM之CYP2D6 IC50
使用、調配及投與及醫藥上可接受之組合物
在一些實施例中,本發明提供組合物,其包含本發明之化學實體或其醫藥上可接受之衍生物及醫藥上可接受之載劑、佐劑或媒劑。本發明組合物中化學實體之量使得可在生物試樣中或在患者中有效地以可量測程度抑制NR2B。在一些實施例中,本發明組合物中化學實體之量使得可在生物試樣中或在患者中有效地以可量測程度抑制NR2B。在一些實施例中,本發明組合物經調配以投與需要該組合物之患者。在一些實施例中,本發明組合物經調配以經口投與患者。
本文所用之術語「患者」意指動物,較佳地哺乳動物,且最佳地人類。
術語「醫藥上可接受之載劑、佐劑或媒劑」係指無毒載劑、佐劑或媒劑,其不會破壞與其一起調配之化學實體之藥理學活性。可用於本發明組合物中之醫藥上可接受之載劑包括離子交換劑、氧化鋁、硬脂酸鋁、卵磷脂、血清蛋白(例如人類血清白蛋白)、緩衝物質(例如磷酸鹽)、甘胺酸、山梨酸、山梨酸鉀、飽和植物脂肪酸的偏甘油酯混合物、水、鹽或電解質(例如硫酸魚精蛋白、磷酸氫二鈉、磷酸氫鉀、氯化鈉、鋅鹽、膠質二氧化矽、三矽酸鎂、聚乙烯基吡咯啶酮、基於纖維素之物質、聚乙二醇、羧甲基纖維素鈉、聚丙烯酸酯、蠟、聚乙烯-聚氧丙烯-嵌段共聚物、聚乙二醇及羊毛脂。
「醫藥上可接受之鹽」意指在投與接受者後能夠直接或間接提供本發明之化學實體或其抑制性活性代謝物或殘餘物的任一無毒的本發明化學實體之酯、酯鹽或其他衍生物。
本文所用術語「其抑制性活性代謝物或殘餘物」意指其代謝物或殘餘物亦係NR2B之抑制劑。
本發明組合物可經口、非經腸、藉由吸入噴霧、經局部、經直 腸、經鼻、經頰、經陰道或經由植入型藥盒投與。如本文所用術語「非經腸」包括皮下、靜脈內、肌內、關節內、滑膜內、胸骨內、鞘內、肝內、病灶內及顱內注射或輸注技術。較佳地,經口、腹膜腔內或靜脈內投與該等組合物。本發明組合物之無菌可注射形式可為水性或油性懸浮液。該等懸浮液可根據業內已知技術使用適宜之分散或濕潤劑及懸浮劑進行調配。無菌可注射製劑亦可為存於無毒性非經腸可接受之稀釋劑或溶劑中之無菌可注射溶液或懸浮液,例如作為於1,3-丁二醇中之溶液。可採用之可接受媒劑及溶劑尤其係水、林格氏溶液(Ringer's solution)及等滲氯化鈉溶液。此外,通常採用無菌不揮發性油作為溶劑或懸浮介質。
出於此目的,可採用任一溫和不揮發性油,包括合成之單甘油酯或二甘油酯。脂肪酸(例如油酸及其甘油酯衍生物)可用於製備可注射物,例如天然之醫藥上可接受之油類,例如橄欖油或蓖麻油,其尤其呈其聚氧乙烯化形式。該等油溶液或懸浮液亦可含有長鏈醇稀釋劑或分散劑,例如羧甲基纖維素或類似分散劑,其通常用於調配包括乳液及懸浮液在內之醫藥上可接受之劑型。亦可將其他常用表面活性劑(例如吐溫(Tween)、司盤(Span)及其他通常用於製造醫藥上可接受之固體、液體或其他劑型之乳化劑或生物利用度增強劑)用於調配目的。
本發明之醫藥上可接受之組合物可以任一經口可接受劑型經口投與,該劑型包括膠囊、錠劑、水性懸浮液或溶液。在用於經口使用之錠劑之情形下,通常使用之載劑包括乳糖及玉米澱粉。通常亦添加潤滑劑,例如硬脂酸鎂。對於以膠囊形式經口投與而言,有用稀釋劑包括乳糖及乾玉米澱粉。在需經口使用水性懸浮液時,可將活性成份與乳化劑及懸浮劑組合。若需要,則亦可添加某些甜味劑、矯味劑或著色劑。
另一選擇為,本發明之醫藥上可接受之組合物可以直腸投與之栓劑形式投與。可藉由將藥劑與適宜非刺激性賦形劑混合來製備該等組合物,該賦形劑在室溫下為固體但在直腸溫度下為液體,且因此可在直腸中融化而釋放藥物。該等材料包括可可脂、蜂蠟及聚乙二醇。
本發明之醫藥上可接受之組合物亦可局部投與,尤其在治療靶包括可藉由局部施加易於達到之區域或器官(包括眼睛、皮膚或下腸道)時。易於製備針對該等區域或器官中之每一者之適宜局部調配物。
可以直腸栓劑調配物(參見上文)或適宜灌腸調配物來實現下腸道之局部施加。亦可使用局部經皮貼片。
對於局部施用,可將所提供之醫藥可接受組合物調配於含有懸浮或溶解於一或多種載劑中之活性組份的適宜軟膏中。用於本發明化合物局部投與之載劑包括礦物油、液體礦脂、白礦脂、丙二醇、聚氧乙烯、聚氧丙烯化合物、乳化蠟及水。另一選擇為,可將所提供之醫藥可接受組合物調配於含有懸浮或溶解於一或多種醫藥上可接受載劑中之活性組份之適宜洗劑或乳霜中。適宜載劑包括礦物油、山梨醇酐單硬脂酸酯、聚山梨醇酯60、鯨蠟基酯蠟、鯨蠟硬脂醇、2-辛基十二烷醇、苯甲醇及水。
對於眼部使用,可將所提供之醫藥可接受組合物調配為存於等滲、pH經調節之無菌鹽水中之微粒化懸浮液,或較佳調配為存於等滲、pH經調節之無菌鹽水中之溶液,其含有或不含防腐劑,例如氯苄烷銨。另一選擇為,對於眼部使用而言,可將醫藥可接受組合物調配於軟膏(例如礦脂)中。
亦可藉由經鼻氣溶膠或吸入劑來投與本發明之醫藥可接受組合物。該等組合物係根據醫藥調配領域熟知之技術來製備且可製備為鹽水溶液,其採用苯甲醇或其他適宜防腐劑、吸收促進劑(用於增強生 物可用度)、碳氟化合物及/或其他習用增溶劑或分散劑。
最佳地,將醫藥上可接受之本發明組合物調配用於經口投與。該等調配物可與食物一起或不與食物一起投與。在一些實施例中,醫藥上可接受之本發明組合物不與食物一起投與。在其他實施例中,醫藥上可接受之本發明組合物係與食物一起投與。
可與載劑材料組合以產生呈單一劑型之組合物之本發明化合物之量將端視各種因素(包括所治療宿主及具體投與方式)而變化。較佳地,所提供之組合物應經調配使得可將介於0.01mg/kg體重/天至100mg/kg體重/天間之劑量之抑制劑投與接受該等組合物之患者。
亦應瞭解,用於任一具體患者之特定劑量及治療方案將取決於各種因素,包括所採用特定化合物之活性、年齡、體重、一般健康、性別、飲食、投與時間、排泄速率、藥物組合及治療醫師之判斷及所治療具體疾病之嚴重性。組合物中本發明化合物之量亦將取決於組合物中之具體化合物。
化學實體及醫藥上可接受之組合物之用途
NR2B受體拮抗劑之人類治療應用已概括於Traynelis等人(S.F.Traynelis等人,Pharmacology Reviews,2010,62:405-496)、Beinat等人(C.Beinat等人,Current Medicinal Chemistry,2010,17:4166-4190)及Mony等人(L.Mony等人,British J.of Pharmacology,2009,157:1301-1317)之概述中。NR2B之拮抗作用可用於治療以下疾病及病症:包括抑鬱症、疼痛、帕金森氏病、亨廷頓氏病(Huntington's disease),阿茲海默氏病、腦缺血、創傷性腦損傷、癲癇發作病症(例如,癲癇)及偏頭痛。(S.B.Bausch等人,Epilepsia,2010,51:102-105;P.Mares,Naunyn-Schmiedeberg's Arch Pharmacol,2014,387:753-761;E.Szczurowska等人,Brain Research Bulletin,2015,111:1-8)。
可在活體外或活體內分析作為NR2B之拮抗劑或用於中樞神經系統(CNS)疾病或病症之治療用於本發明中之化學實體之活性。可使用CNS疾病或病症之動物模型(例如齧齒類動物或靈長類動物模型)活體內評價本發明化合物之效能。可使用(例如)自表現NR2B之組織分離之細胞系或以重組方式表現NR2B之細胞系實施基於細胞之分析。另外,可實施基於生物化學或機制之分析,例如量測cAMP或cGMP含量,北方墨點(Northern blot)、RT-PCR等。活體外分析包括確定細胞形態、蛋白質表現及/或細胞毒性、酶抑制活性及/或利用本發明化學實體治療細胞之後續功能結果之分析。替代活體外分析對抑制劑結合細胞內之蛋白質或核酸分子之能力進行定量。抑制劑結合可藉由在結合之前對抑制劑進行放射性標記、分離抑制劑/靶標分子複合物及測定所結合放射性標記之量來測量。或者,可藉由運行競爭實驗來測定抑制劑結合,其中新抑制劑係與結合至已知放射性配體之經純化蛋白質或核酸一起培育。分析作為NR2B之拮抗劑用於本發明中之化合物之詳細條件闡述於下文實例中。上文所提及之分析具有實例性且並非意欲限制本發明之範圍。熟習此項技術者可明瞭,可對習用分析作出改變以研發獲得相同結果之等效分析。
熟習此項技術者可明瞭,合意或有效化合物之鑑別及/或表徵通常涉及在動物模型中評價一或多種活性。熟習此項技術者可進一步明瞭,該等動物模型並非總是精確重述人類經驗。(Bezard等人Neuroscience 211:1,2012)。尤其通常研發動物模型以模仿具體人類病況之一或多種症狀,但並非總是可確保在動物中觀察到之症狀係由與在人類中造成症狀之機制相同之機制引起或歸因於該機制或甚至可測定是否由該機制引起或歸因於該機制。此外,針對相同疾病、病症或病況研發多種動物模型屢見不鮮,該等動物模型中之每一者均可反映或模仿該疾病、病症或病況之一或多個特徵;熟習此項技術者可明 瞭,在該等模型中結果並非總是完全一致,且可能需要判斷及/或解譯來得出合理地預測人類反應之結論。此外,尤其對於如本文所闡述之動物神經病況模型而言,在該模型內觀察到不同量測結果或反應較處於建模中或預測人類反應之其他模型可能更加可靠。
僅舉少數幾個實例,業內已知抑鬱症之可用動物模型具有不同程度之面容、構念及針對抑鬱症之預測有效性且不同地有助於吾人對抗抑鬱過程之瞭解。(Duman C.H.Vitamins & Hormones 82:1-21,2010)。
與本文所闡述工作相關之通常使用之模型包括(例如)齧齒類動物強迫游泳測試,該模型通常用於評估抗抑鬱效能。(Can等人J.Vis.Exp.2012,59:3638;Bogdanova等人Physiol.Behav.118:227,2013)。可利用不同方案實施強迫游泳測試。(Slattery及Cryan Nature Protocols 7:1009,2012;Lucki等人,2001,Psychopharmacology 155:315-322)。
已使用氟派醇誘發之強直性昏厥(HIC)模型來表徵用於治療某些神經病況及/或症狀之治療劑。舉例而言,尤其已推薦HIC模型用於表徵可用於保護免受與PD相關之強直性昏厥之治療劑。(Steece-Collier等人Exp.Neurol.163:239,2000)。另外,已使用HIC模型表徵抗抑鬱藥,且已報導該模型能夠揭露可能已在一或多個其他分析中(例如,在強迫游泳測試中)可比較地實施之抗抑鬱藥之不同活性。(Khisti等人Indian J.Exp.Biol.35:1297,1997)。
已報導各種不同模型均可提供與癲癇之治療相關之資訊,但癲癇症候群之多樣性及其病因可排除使用任一單一模型或測試來確定效能。用於癲癇研究中之大多數動物模型係癲癇發作之模型而非癲癇之模型。癲癇之特徵為自發性反覆癲癇發作,因此,其中在正常非癲癇性動物中電誘導急性癲癇發作之測試(例如本文所闡述之6Hz癲癇發 作測試)可能不能充分代表癲癇之模型。(Löscher Seizure 2011,20:359-368)。相反,認為6Hz癲癇發作測試為用於療法抗性癲癇之潛在篩選。本文所闡述之6Hz癲癇發作測試分析使用44mA之電流,其通常導致大多數抗癲癇藥物喪失其效能。因此,已表明6Hz癲癇發作測試為療法抗性邊緣癲癇發作之有用模型。(Barton等人Epilepsy Res.47(3):217-27,2001)。
認為本文所闡述之PTZ測試可預測抵抗非驚厥性(失神性或肌陣攣性)癲癇發作之抗痙攣藥活性。如在Löscher之概述中所闡述,在PTZ測試中保護癲癇患者免受非驚厥性癲癇發作之各種抗癲癇藥物係失敗的。(Löscher W.Seizure 20:359-368,2011)。因此,由PTZ測試引起之非決定性或負面數據未必意味著所測試療法(例如,化合物)在癲癇患者中將無效。此外,該等化合物在癲癇之不同動物模型中可能有效。舉例而言,抗癲癇藥在6Hz癲癇發作測試(電誘導之癲癇發作)中可能失敗但證明在PTZ測試(化學誘導之癲癇發作)中有效。
熟習此項技術者將明瞭在特定動物模型測試中觀察到之任一效應均可係顯著的。此外,熟習此項技術者將明瞭使用多種不同的動物疾病模型可有益於表徵具體藥劑或治療之效能。此外,熟習此項技術者將明瞭並不要求在動物模型中對具體藥劑之每個評價均提供活性之有力證據;在一些情形下,在一種情況中活性的正面證據可較另一情況中不存在活性之證據更重要,尤其因為應理解,反應條件的最佳化可揭露在初始研究中未觀察到之活性。
如本文所使用,術語「治療(treatment、treat及treating)」係指逆轉、減輕、延遲如本文所闡述之疾病或病症或其一或多種症狀之發作或抑制其進展。在一些實施例中,可在已發生一或多種症狀後投與治療。在其他實施例中,可在不存在症狀下投與治療。例如,可在症狀發作前(例如,鑒於症狀之歷史及/或鑒於遺傳或其他易感性因素)向易 感個別投與治療。亦可在已解決症狀後繼續治療以(例如)阻止或延遲其復發。
根據本發明之方法,可使用有效治療CNS疾病或病症或減輕該疾病或病症之嚴重性之任一量及任一投與途徑投與化學實體及組合物。
在一些實施例中,根據本發明之方法,可使用有效治療與NR2B相關之疾病或病症或減輕該疾病或病症之嚴重性之任一量及任一投與途徑投與化學實體及組合物。
在一些實施例中,根據本發明之方法,可使用有效治療或減輕CNS疾病或病症之嚴重性之任一量及任一投與途徑投與化學實體及組合物。
在一些實施例中,該疾病或病症係具有或沒有伴隨焦慮症之抑鬱症,例如單次癲癇發作及反覆抑鬱病症、神經官能性憂鬱病症、重度抑鬱症、精神病性抑鬱症、經前情緒低落症、產後抑鬱症、季節性情感病症(SAD)、情緒病症、治療抗性抑鬱症(TRD,亦即一直不響應其他藥物療法之重度抑鬱症)、由慢性醫學病況(例如癌症或慢性疼痛、化學療法、慢性應力及創傷後精神壓力病症)造成之抑鬱症。
在一些實施例中,該疾病或病症係急性情感病症,例如選自雙極性病症,包括雙極性I及雙極性II躁狂性病症。
在一些實施例中,本發明提供治療物質濫用病症及/或治療(例如)酒精、類鴉片、海洛因(heroin)及古柯鹼(cocaine)之戒斷症候群之方法,其中治療使得對疼痛之類鴉片(opioid)治療之耐受性及/或依賴性有所降低。如本文所用術語「物質濫用病症」包括具有或沒有生理依賴性之物質依賴或濫用。與該等病症相關之物質包括:酒精、安非他命(或安非他命樣物質)、咖啡因(caffeine)、大麻(cannabis)、古柯鹼、幻覺劑、吸入劑、大麻(marijuana)、尼古丁(nicotine)、類鴉片、苯環己哌啶(或苯環己哌啶樣化合物)、鎮靜劑-安眠藥或苯并二氮呯及 其他(或未知)物質及所有上述物質之組合。
在一些實施例中,物質濫用病症包括停藥病症,例如具有或沒有知覺擾動之酒精戒斷;酒精戒斷譫妄;安非他命戒斷;古柯鹼戒斷;尼古丁戒斷;類鴉片戒斷;具有或沒有知覺擾動之鎮靜劑、安眠藥或抗焦慮戒斷;鎮靜劑、安眠藥或抗焦慮戒斷譫妄;及由其他物質引起之戒斷症狀。應瞭解,所提及之尼古丁戒斷治療包括與戒菸相關之症狀之治療。其他物質濫用病症包括在戒斷期間發作之物質誘發之焦慮症;在戒斷期間發作之物質誘發之情緒病症;及在戒斷期間發作之物質誘發之睡眠病症。
在一些實施例中,該疾病或病症係(例如)選自由各種來源引起之疼痛狀態之疼痛,包括神經病性疼痛(例如皰疹後神經痛、神經損傷/損害、「dynia類疼痛」(例如陰唇痛症)、幻肢痛、根性撕脫傷、疼痛性糖尿病神經病變、壓迫性單神經病變、缺血性神經病變、疼痛性創傷性單神經病變或疼痛性多發性神經病變)、中樞性疼痛症候群(可能由實際上神經系統之任一層面下之任一病灶造成)及術後疼痛症候群(例如,乳房切除術後症候群、開胸術後症候群、殘肢痛)、骨關節疼痛(骨關節炎、類風濕性關節炎、僵直性脊椎炎)、反覆性動作疼痛、腕隧道症候群、牙痛、癌症疼痛、肌筋膜疼痛(肌肉損傷、纖維肌痛)、圍手術期疼痛(一般手術、婦科)、慢性疼痛、痛經以及與心絞痛相關之疼痛,及不同起源之發炎性疼痛(例如骨關節炎、類風濕性關節炎、風濕性疾病、腱鞘炎及痛風)、頭痛、偏頭痛及叢集性頭痛。在一些實施例中,該疾病或病症與頑固性疼痛(例如偏頭痛、纖維肌痛及三叉神經痛)相關。
在一些實施例中,該疾病或病症係偏頭痛病症。偏頭痛係最常見之神經病症,其中全世界盛行率為10%至15%。三分之一患有偏頭痛之患者亦遭受短暫性局灶性神經症狀(稱作先兆)。先兆通常在頭痛 前數分鐘至數小時開始,但可在頭痛期間或甚至在不存在頭痛下發生。先兆之最有趣態樣係「擴散」特徵,其表明沿毗鄰大腦組織緩慢傳播之潛在機制。
已積累大量數據,表明擴散性抑鬱症(SD)(亦可指皮層擴散性抑鬱症(CSD))係偏頭痛先兆之電生理學基質及頭痛之潛在觸發。偶爾,先兆可在其後具有極少頭痛或無頭痛下發生。除具有先兆之偏頭痛以外亦在大量主要神經病症中發生SD,例如中風及腦外傷。此外,SD能夠在偏頭痛患者中活化在先兆與頭痛之間出現潛伏期匹配之中樞及周邊三叉神經血管傷害感受路徑。最後一點但並非最不重要的是,已顯示偏頭痛預防性藥物可阻抑SD,表明SD係偏頭痛中之相關藥理學靶標。(Shatillo等人Neuropharm.2015,93:164-170)。
SD係神經元及神經膠膜在大腦組織中以約3mm/min之速率傳播之強烈去極化。將藉由在經麻醉大鼠中在皮質上記錄之DC(直流電)識別去極化波。同時,可測得硬腦膜上CBF(腦血流量)有所增加,指示硬腦膜靜脈之血管擴張。SD係在局部細胞外K+濃度超過臨界臨限值時經激發,SD與膜離子梯度之破壞相關,且據信大量K+及麩胺酸鹽流出物首先去極化且然後超極化毗鄰神經元以促進擴散。可藉由施加麩胺酸鹽、K+及Na+/K+-幫浦抑制劑、藉由電刺激及藉由組織損傷(例如外傷、出血或缺血)以藥理學方式激發SD。已使用硬膜下電生理學記錄及皮層內多參數電極獲得在人類大腦中原位出現SD之直接證據。(Ayata等人Ann.Neurol.2006,59:652-61)。
在一些實施例中,該疾病或病症係無先兆之偏頭痛。在一些實施例中,該疾病或病症係具有先兆之偏頭痛。在一些實施例中,該疾病或病症係具有典型先兆之偏頭痛。在一些實施例中,該疾病或病症包括具有腦幹先兆之偏頭痛、偏癱型偏頭痛、視網膜型偏頭痛及/或慢性偏頭痛。
在一些實施例中,偏頭痛可為應力型偏頭痛、沉默型或非頭痛性偏頭痛、竇性偏頭痛、眼性偏頭痛、季節性偏頭痛、週期性偏頭痛症候群、胃滯留型偏頭痛及/或緊張性偏頭痛。
在一些實施例中,該疾病或病症係原發性頭痛病症特徵為中等至嚴重之反覆頭痛。頭痛可影響半邊頭且持續一小時至若干天。在一些實施例中,該疾病或病症係緊張性頭痛及/或三叉神經自主性頭痛。
在一些實施例中,該疾病或病狀係叢集性頭痛。叢集性頭痛係在一段時間內復發之頭痛類型。通常,罹患頭痛群之患者在一段時間期間(叢集時段)每天癲癇發作一次至三次,此可持續兩週至三個月。叢集性頭痛通常自入睡至睡覺後一個小時至兩小時驚醒人。頭痛群可能消失或進入緩解階段達數月或數年,但會無任何預兆的復發。在一些實施例中,叢集性頭痛係慢性的(例如,叢集時段係藉由月或年而非週量測)。在某些實施例中,叢集性頭痛係間歇性的。
在一些實施例中,頭痛可造成包含噁心、嘔吐及對光、聲音或氣味敏感之症狀。在一些實施例中,偏頭痛可造成包含噁心、嘔吐及對光、聲音或氣味敏感之症狀。在一些實施例中,偏頭痛之併發症包括偏頭痛持續狀態、無梗塞之持續先兆、偏頭痛性梗塞及/或偏頭痛先兆觸發之癲癇發作。
在一些實施例中,該疾病或病症係選自睡眠病症及其後遺症,包括失眠、嗜睡病及特發性睡眠過度。
在一些實施例中,該疾病或病症係選自特徵在於神經元過度興奮之CNS病症,例如癲癇、驚厥、癲癇發作、部分性癲癇發作、全身性癲癇發作病症(例如失神性癲癇發作、失張性癲癇發作、肌陣攣性癲癇發作、強直性癲癇發作、強直陣攣性癲癇發作或「大癲癇發作型」癲癇、癲癇連續狀態)、皮層擴散性抑鬱症、偏頭痛性頭痛、腦 性麻痺、大田原症候群(Ohtahara Syndrome)、X染色體易裂症候群、小兒癲癇發作或遺傳性癲癇發作(例如韋斯特症候群(West syndrome)、勒-格二氏症候群(Lennox-Gastaut syndrome)及安格曼症候群(Angleman syndrome))、結節性硬化症、顱內高血壓、中樞神經系統水腫、神經元毒性(例如由酒精暴露誘導之毒性),頭部外傷、中風、缺血、低氧及由中樞神經系統中之離子不平衡引起或在樞神經系統中產生離子不平衡之其他病況之病理生理學效應,或神經元群體之同步放電。
在一些實施例中,該疾病或病症之特徵在於癲癇發作之出現。癲癇發作係大腦中電活動之不受控放電之結果。癲癇發作通常顯現為突然、不隨意、分裂性及通常破壞性感覺、運動及認知的現象。癲癇發作通常與對身體之身體傷害(例如,咬舌、肢體折斷及燒傷)、完全喪失意識及失禁相關。典型癲癇發作例如可始於臂或腿之自發搖晃且在數秒或數分鐘內進展至節律性移動整個身體、喪失意識及排泄尿液或糞便。存在驚厥性及非驚厥性癲癇發作。驚厥性癲癇發作可為全身性癲癇發作或部分性癲癇發作。存在六種主要類型之全身性癲癇發作:強直陣攣性癲癇發作、強直性癲癇發作、陣攣性癲癇發作、肌陣攣性癲癇發作、失神性癲癇發作及失張性癲癇發作。非驚厥性癲癇發作(例如失神性癲癇發作)呈現為意識水平下降且通常持續約10秒。
在一些實施例中,該疾病或病症係癲癇。癲癇係特徵在於持續性傾向於生成癲癇發作且在於此病況之神經生物、認知、心理及社會結果之大腦病症。(R.S.Fisher等人,Epilepsia,2005,46(4):470-472)。癲癇可為出現至少一種癲癇發作。癲癇發作係由大腦中異常過度或同步之神經元活性引起之體徵及/或症狀之短暫性出現。癲癇影響所有年齡的人;然而,癲癇最通常在兒童期及老年期發生(Institute of Medicine 2012)。不確定癲癇之確切病因。癲癇之一些已知病因包 括頭部外傷、中風、腫瘤、感染或大腦異常。
將癲癇分類為特發性(遺傳原因)或症狀性(病因未知),且將其進一步分組至全身性癲癇(其影響大腦兩個半球)或部分性癲癇(其影響大腦之一個半球)中。特發性全身性癲癇之實例包括兒童期失神性癲癇、青少年肌陣攣性癲癇及具有大癲癇發作型癲癇之癲癇。特發性部分性癲癇之實例包括兒童期之良性局灶性癲癇。症狀性全身性癲癇包括韋斯特症候群、勒-格二氏症候群及其他。症狀性部分性癲癇包括顳葉癲癇、額葉癲癇及其他。
在一些實施例中,癲癇發作病症係小兒癲癇發作病症。更通常能夠在兒童下將癲癇發作病症之病例(例如癲癇)分類為特異性症候群,乃因癲癇發作之發作通常較早。較不嚴重實例係良性羅蘭多(rolandic)癲癇、兒童期失神性癲癇及青少年肌陣攣性癲癇(A.Neligan等人,Handbook of clinical neurology 2012,107:113-33)。小兒癲癇發作之其他實例包括熱性癲癇發作、嬰兒痙攣及新生兒癲癇發作。
在一些實施例中,癲癇發作病症係額葉癲癇、青少年肌陣攣性癲癇、肌陣攣性癲癇、失神性癲癇、勒-格二氏症候群、拉-科二氏症候群(Landau-Kleffner syndrome)、德拉韋症候群、進展性肌陣攣癲癇、反射性癲癇、拉斯穆森氏症候群(Rasmussen's syndrome)、顳葉癲癇、邊緣癲癇、癲癇連續狀態、腹部癲癇、大量雙側肌陣攣、月經癲癇、傑克遜氏癲癇發作病症(Jacksonian seizure disorde)、拉弗拉病(Lafora disease)或光敏性癲癇或該等疾病中之一者或多者之組合。
對於癲癇之大多數病例,疾病係慢性的且需要長期醫藥進行治療。抗癲癇藥(AED)通常藉由各種機制阻抑神經活動,包括改變細胞膜離子通道之活性及動作電位之傾向或突然生成動作電位。該等期望之治療效應通常伴有不期望鎮靜副作用。其他醫藥具有顯著之非神經副作用,例如齒齦增生、妝容上不合意之牙齦過度生長及/或顱骨增 厚,如利用苯妥英(phenytoin)所發生。儘管已證明長期使用AED對於罹患癲癇之大多數患者係有效的,但持續副作用可顯著損害患者之生活質量。此外,儘管當前可獲得老的及新的AED之庫存,但幾乎三分之一之癲癇性患者對所有藥理學方案皆無響應(例如難治)。(M.M.Castel-Branco等人,Methods Find Exp Clin Pharmacol,2009,31(2):101-106)。因此,業內實質上需要研發新穎且更加有效之AED。
在一些實施例中,癲癇發作病症難以治療。具有彌散性大腦功能病症之嚴重症候群(亦稱作癲癇性腦病)對於當前治療難治。癲癇性腦病構成一組病症,其中認為癲癇活動本身促成高於且超出可僅自潛在病狀預料之嚴重認知損害或下降。在其他實施例中,難治性癲癇發作病症係與神經元遷移相關之病症,例如人類小腦迴畸形。(S.Bandyopadhyay等人,Epilepsy Research,2006,72:127-139)。針對頑固性癲癇發作以手術方式治療之患者子群中之另一重要干擾係大腦皮質之局灶性發育不良。抗痙攣劑藥物療法在具有該等皮層畸形之患者中通常係無效的。在一些實施例中,癲癇發作病症在局灶性皮質發育不良(畸形)中涉及皮層超興奮性。(S.Bandyopadhyay等人,Epilepsy Research,2006,72:127-139)。
在一些實施例中,癲癇發作或癲癇病症係由遺傳異常造成。據信遺傳學藉由多種機制在癲癇中起重要作用。已針對該等機制中之一些機制鑑別出簡單及複雜之遺傳模式。最近外顯子及基因體測序研究已開始揭露負責一些癲癇性腦病之多種從頭形成之基因突變(包括CHD2及SYNGAP1及DMN1、GABBR2、FASN及RYR3)。患有癲癇性腦病韋斯特症候群之患者呈現通常在3個月與12個月之間顯現為嬰兒痙攣(IS)簇之不同臨床電生理學特徵及特徵腦電圖(EEG)圖案(稱為高心律不整)。韋斯特症候群與ARX、CDKL5、STXBP1及ST3GAL3中 之突變以及各種拷貝數變異(CNV)相關。(J.R.Lemke等人,Ann Neurol,2014,75(1),147-154)。GRIN2A及GRIN2B中編碼NMDA受體之NR2A及NR2B之突變與若干神經發展病症相關。最近已在以下疾病中檢測到GRIN2A之突變:具有羅蘭多尖峰之特發性局灶性癲癇及相關癲癇性腦病(亦即在拉-科二氏症候群中)、緩慢睡眠症候群期間具有連續尖峰及波之癲癇,及與智力失能相關之非症候群型癲癇。相比之下,GRIN2B迄今尚未闡述為癲癇基因但已反覆視為癲癇發作之公認候選基因,且已在患有ID及精神分裂症之患者中檢測到突變。(J.R.Lemke等人,Ann Neurol,2014,75(1),147-154)。
在一些實施例中,該疾病或病症係運動病症。運動病症包括帕金森氏病、運動困難(包括正常劑量L-多巴(L-Dopa)伴隨性副作用)、遲發性運動病症、藥物誘發之帕金森症、腦炎後帕金森症、進行性核上性麻痺、多系統萎縮、皮質基底核退化症、帕金森病-ALS失智症候群、基底神經節鈣化、運動不能、運動不能-僵硬症候群、運動徐緩、緊張不足、醫藥誘發之帕金森病、日勒德拉圖雷特症候群(Gilles de la Tourette syndrome)、亨廷頓氏病、顫抖、舞蹈症、肌陣攣、抽搐病症及緊張不足。
在一些實施例中,運動病症係以下疾病中之一者或多者:運動不能及運動不能-僵硬症候群、運動困難及醫藥誘發之帕金森症(例如抗精神病藥誘發之帕金森症、抗精神病藥惡性症候群、抗精神病藥誘發之急性緊張不足、抗精神病藥誘發之急性靜坐不能、抗精神病藥誘發之遲發性運動病症及醫藥誘發之姿勢性顫抖)。「運動不能-僵硬症候群」之實例包括帕金森氏病、藥物誘發之帕金森症、腦炎後帕金森症、進行性核上性麻痺、多系統萎縮、皮質基底核退化症、帕金森症-ALS失智症候群及基底神經節鈣化。運動困難之實例包括顫抖(包括休息顫抖、姿勢性顫抖及意向性顫抖)、舞蹈症(例如席登罕氏舞蹈 症、亨廷頓氏病、良性遺傳性舞蹈症、神經棘紅細胞增多症、症狀性舞蹈症、藥物誘發之舞蹈症及偏側顫搐)、肌陣攣(包括全身性肌陣攣及局灶性肌陣攣)、抽搐(包括單純性抽搐、複雜性抽搐及症狀性抽搐)及緊張不足(包括全身性緊張不足,例如特發性緊張不足、藥物誘發之緊張不足、症狀性緊張不足及陣發性緊張不足及局灶性緊張不足(例如瞼痙攣、口顎肌緊張不足、痙攣性發音困難、痙攣性斜頸、軸性肌緊張不足、肌緊張不足指痙攣及偏癱型緊張不足))。
在一些實施例中,該疾病或病症係帕金森氏病。
在一些實施例中,該疾病或病症係亨廷頓氏病。
在一些實施例中,該疾病或病症係與包括精神分裂症、阿茲海默氏病、額顳葉型失智症、皮克氏病(Pick's disease)、路易氏體病(Lewy body disease)及其他老年失智症(例如,血管型失智症)之病症相關之認知功能病症。
在一些實施例中,本發明提供治療本文所闡述病症之方法,其包含連同一或多種醫藥藥劑一起投與本發明之化學實體。可與本發明之化學實體組合使用之適宜醫藥藥劑包括選擇性血清素再攝取抑制劑(SSRI),例如在治療抑鬱症中;多巴胺替代療法方案及多巴胺激動劑,例如在治療帕金森氏病中;典型抗精神病藥;非典型抗精神病藥;抗痙攣劑;刺激劑;阿茲海默氏病療法;抗偏頭痛劑;及抗焦慮劑。
適宜SSRI包括西酞普蘭(citalopram)、達泊西汀(dapoxetine)、依地普侖(escitalopram)、氟西汀(fluoxetine)、氟伏沙明(fluvoxamine)、吲達品(indalpine)、帕羅西汀(paroxetine)、舍曲林(sertraline)、維拉佐酮(vilazodone)及苯吡烯胺(zimelidine)。
適宜多巴胺替代療法方案包括利用DOPA去羧酶抑制劑(例如卡比多巴)替代L-DOPA。
適宜多巴胺受體激動劑包括阿林多爾(aplindore)、阿樸嗎啡(apomorphine)、溴隱亭(bromocriptine)、卡麥角林(cabergoline)、西拉多巴(ciladopa)、二氫麥角克普汀(dihydroergocryptine)、麥角乙脲(lisuride)、帕多蘆諾(pardoprunox)、培高利特(pergolide)、吡貝地爾(piribedil)、普拉克索(pramipexole)、羅匹尼羅(ropinirole)及羅替戈汀(rotigotine)。
適宜典型抗精神病藥包括氯丙嗪(chlorpromazine)、硫利達嗪(thioridazine)、美索達嗪(mesoridazine)、左美丙嗪(levomepromazine)、洛沙平(loxapine)、嗎茚酮(molindone)、奮乃靜(perphenazine)、胺碸噻噸(thiothixene)、三氟拉嗪(trifluoperazine)、氟派醇(haloperidol)、氟奮乃靜(fluphenazine)、氟哌利多(droperidol)、珠氯噻醇(zuclopenthixol)、氟哌噻噸(flupentixol)及丙氯拉嗪(prochlorperazine)。
適宜非典型抗精神病藥包括胺磺必利(amisulpride)、阿立哌唑(aripiprazole)、阿塞那平(asenapine)、布南色林(blonanserin)、氯噻平(clotiapine)、氯氮平(clozapine)、伊潘立酮(iloperidone)、魯拉西酮(lurasidone)、莫沙帕明(mosapramine)、奧氮平(olanzapine)、帕利哌酮(paliperidone)、哌羅匹隆(perospirone)、喹硫平(quetiapine)、瑞莫必利(remoxipride)、利培酮(risperidone)、舍吲哚(sertindole)、舒必利(sulpiride)、齊拉西酮(ziprasidone)、佐替平(zotepine)、聯苯蘆諾(bifeprunox)、匹莫范色林(pimavanserin)及戊卡色林(vabicaserin)。
適宜抗痙攣劑包括苯妥英、卡巴馬平(carbamazepine)、巴比妥酸鹽(barbiturate)、苯巴比妥(phenobarbital)、甲苯巴比妥(mephobarbital)、三甲雙酮(trimethadione)、美芬妥英(mephenytoin)、甲乙雙酮(paramethadione)、苯噻妥英鈉(phenthenylate)、苯乙醯脲(phenacemide)、美沙比妥(metharbital)、苄氯丙醯胺 (benzchlorpropamide)、苯琥胺(phensuximide)、普裡米酮(priraidone)、甲琥按(methsuximide)、乙苯妥英(ethotoin)、胺基島眠能(aminoglutethinide)、二氮平(diazepam)、可那氮平(clonazepam)、氯拉卓酸(clorazepate)、磷苯妥英(fosphenytoin)、乙琥胺(ethosuximide)、丙戊酸鹽(valproate)、非爾胺酯(felbamate)、加巴噴丁(gabapentin)、樂命達錠(lamotrigine)、托吡酯(topiramate)、赦癲易(vigrabatrin)、噻加賓(tiagabine)、子醯胺(ziamide)、氯巴佔(clobazam)、硫噴妥(thiopental)、咪達唑侖(midazolam)、丙泊酚(propofol)、左乙拉西坦(levetiracetam)、奧卡西平(oxcarbazepine)、CCPene及GYKI 52466。
適宜刺激劑包括阿迪羅(Adderall)(安非他命、右旋安非他命混合鹽)、哌醋甲酯(methylphenidate)、右旋安非他命、右哌醋甲酯及二甲磺酸賴右苯丙胺(lisdexamfetamine)。
適宜阿茲海默氏病療法包括乙醯膽鹼酯酶抑制劑,例如利凡斯的明(rivastigmine),多奈派齊(donepezil),加蘭他敏(galanthamine)及胡泊拉嗪(huperazine);α-7菸鹼(α-7 nicotinic)激動劑,例如恩色尼林(encenicline);及使Aβ42減少之藥物,例如BACE抑制劑、γ分泌酶調節劑及β類澱粉肽抗體。
適宜抗偏頭痛藥物包括麥角生物鹼(例如,麥角胺及甲磺酸二氫麥角胺)。其他適宜抗偏頭痛藥物包括5-HT1D激動劑曲普坦類藥(triptans),例如舒米曲普坦(sumitriptan)、阿莫曲普坦(almotriptan)、依來曲普坦(eletriptan)、夫羅曲普坦(frovatriptan)、那拉曲普坦(naratriptan)、利紮曲普坦(rizatriptan)及佐米曲普坦(zolmitriptan)。
適用於治療或預防頭痛或偏頭痛之其他藥劑包括疼痛醫藥(例如,阿斯匹林(aspirin)、萘普生(naproxen)、布洛芬(ibuprofen)及乙醯胺酚(acetaminophen))、噁心用醫藥、咖啡因(caffeine)、抗組織胺、 黏液酸異美汀(isometheptene mucate)、(雙丙戊酸鈉/丙戊酸鈉)、托吡酯(topiramate)、美托洛爾(metoprolol)、普萘洛爾(propranolol)、噻嗎洛爾(timolol)、賴諾普利(lisinopril)、坎地沙坦(candesartan)、阿替洛爾(atenolol)、納多洛爾(nadolol)、地爾硫卓(diltiazem)、尼莫地平(nimodipine)、維拉帕米(verapamil)、阿米替林(amitriptyline)、去甲替林(nortriptyline)、伊米帕明(imipramine)、多慮平(doxepin)、普羅替林(protriptyline)、帕羅西汀(paroxetine)、氟西汀(fluoxetine)、舍曲林(sertraline)、托吡酯(topiramate)、加巴噴丁(gabapentin)及雙丙戊酸鈉。
在一些實施例中,可將一或多種其他適宜藥劑與本發明之化學實體組合來預防及/或治療頭痛。在一些實施例中,可將一或多種其他適宜藥劑與本發明之化學實體組合來預防及/或治療偏頭痛。在一些實施例中,可將一或多種其他適宜藥劑與本發明之化學實體組合來預防及/或治療具有先兆之偏頭痛。
在一些實施例中,可將一或多種其他適宜藥劑與本發明之化學實體組合來預防及/或治療叢集性頭痛。已顯示降壓醫藥可治療叢集性頭痛。因此,在一些該等實施例中,可將本發明之化學實體與(例如)維拉帕米、鋰、雙丙戊酸鈉、普賴松(prednisone)、酒石酸麥角胺、褪黑激素、曲普坦(例如,舒馬曲普坦)、氧、鼻內利多卡因(lidocaine)或任何其他適宜藥劑組合來預防及/或治療叢集性頭痛。
適宜抗焦慮藥物包括苯并二氮呯受體調節劑,例如二氮平(diazepam)、阿普唑侖(alprazolam)、氯羥去甲安定(lorazepam)及可那氮平(clonazepam)。
適於與本發明之化學實體結合使用之其他藥劑包括美金剛(memantine)及莫達非尼(modafinil)。
端視個體物種、年齡及整體狀況、感染嚴重度、具體藥劑、其 投與模式及諸如此類,所需確切量將隨個體而變化。本發明之化學實體較佳調配為劑量單位形式以便於投與及統一劑量。本文所用表達「劑量單位形式」係指適於擬治療患者之藥劑之物理離散單位。然而,將瞭解,本發明之化學實體及組合物之總日用量將由主治醫師在合理醫學判斷範圍內決定。任一具體患者或生物體之特定有效劑量量將取決於各種因素,包括所治療病症及病症之嚴重程度;所用特定化學實體之活性;所用特定組合物;患者之年齡、體重、整體健康狀況、性別及飲食;所用特定化學實體之投與時間、投與途徑及排泄速率;治療持續時間;與所用特定化學實體組合或同時使用之藥物;及醫學技術中熟知之類似因素。本文所用之術語「患者」意指動物,較佳係哺乳動物,且最佳係人類。
在一些實施例中,投與可涉及為間歇投藥(例如,在時間上分開之複數個(即,至少兩個)劑量)及/或週期投藥(例如,相隔共同時間段之個別劑量)之投藥。在一些實施例中,具體活性藥劑之投藥方案可涉及間歇或連續投與,例如以在接受療法之個體中在一或多種目標組織或流體中達成具體期望藥物動力學特性或其他暴露型式。在一些實施例中,間歇投藥可包括每天一次、每隔一天一次、每週一次、每兩週一次或每月一次實施之投藥。
在一些實施例中,投與可涉及隨時間逐步增加以便達成目標劑量之投藥。在一些實施例中,可基於個體之臨床反應及耐受性以每週間隔增加投藥量及/或時間表。
在一些實施例中,可隨時間改變投藥方案之一或多個特徵(例如,增加或降低在任一個別劑量下均具有活性之量,增加或降低劑量間之時間間隔等),例如以便最佳化期望之治療效應或反應。
在一些實施例中,可每週一次投與醫藥上可接受之本發明組合物。在一些實施例中,可每天一次投與醫藥上可接受之本發明組合 物。在一些實施例中,可每天兩次投與醫藥上可接受之本發明組合物。在一些實施例中,可每天三次投與醫藥上可接受之本發明組合物。在一些實施例中,可考慮或不考慮食物投與醫藥上可接受之本發明組合物。
在一些實施例中,可投與醫藥上可接受之本發明組合物來治療急性病況。急性病況可之發作較突然。急性病況症狀可快速顯現及改變或惡化。在一些實施例中,可投與醫藥上可接受之本發明組合物來治療慢性病況。慢性病況可為長期發生之病況。慢性病況可在延長之時間段內發生及惡化。
在一些實施例中,可在癲癇發作之前投與醫藥上可接受之本發明組合物。在一些實施例中,可在癲癇發作之後投與醫藥上可接受之本發明組合物。在一些實施例中,可將醫藥上可接受之本發明組合物投與具有癲癇發作風險之患者。
端視所治療感染之嚴重程度,本發明之醫藥上可接受之組合物可以下列方式投與人類及其他動物:經口、經直腸、非經腸、腦池內、陰道內、腹膜腔內、局部(以粉劑、軟膏、或滴劑形式)、經頰(以經口或鼻噴霧形式)或諸如此類。在某些實施例中,可以約0.01mg/kg至約50mg/kg個體體重/天且較佳約1mg/kg至約25mg/kg個體體重/天之劑量量每天一次或一次以上經口或非經腸投與本發明之化學實體以獲得期望之治療效應。
用於經口投與之液體劑型包括醫藥上可接受之乳液、微乳液、溶液、懸浮液、糖漿及酏劑。除活性化合物以外,液體劑型可含有業內常用之惰性稀釋劑,例如,水或其他溶劑;增溶劑及乳化劑,例如,乙醇、異丙醇、碳酸乙酯、乙酸乙酯、苯甲醇、苯甲酸苄酯、丙二醇、1,3-丁二醇、二甲基甲醯胺、油(具體而言,棉籽油、花生油、玉米油、胚芽油、橄欖油、蓖麻油及芝麻油)、甘油、四氫糠醇、聚 乙二醇及山梨糖醇酐之脂肪酸酯及其混合物。除惰性稀釋劑外,口服組合物亦可包括佐劑,例如,潤濕劑、乳化及懸浮劑、甜味劑、矯味劑及芳香劑。
可注射製劑(例如無菌可注射水性或油性懸浮液)可根據已知技術使用適宜分散或潤濕劑及懸浮劑來調配。無菌可注射製劑也可為存於無毒非經腸可接受稀釋劑或溶劑中之無菌可注射溶液、懸浮液或乳液,例如存於1,3-丁二醇中之溶液。可採用之可接受媒劑及溶劑尤其係水、林格氏溶液、U.S.P.及等滲氯化鈉溶液。此外,通常採用無菌不揮發性油作為溶劑或懸浮介質。出於此目的,可採用包括合成甘油單酸酯或甘油二酸酯之任何溫和的不揮發性油。此外,在可注射製劑中使用諸如油酸等脂肪酸。
可注射調配物可(例如)藉由經由細菌截留過濾器過濾或藉由納入殺菌劑來滅菌,該等殺菌劑呈可在使用前溶解或分散於無菌水或其他無菌可注射介質中之無菌固體組合物形式。
為延長本發明之化學實體之效應,通常合意地自皮下或肌內注射來減緩該化學實體之吸收。此可藉由使用具有較差水溶性之結晶或非晶型材料之液體懸浮液來達成。化學實體之吸收速率則取決於其溶解速率,且此溶解速率進而可取決於晶體大小及結晶形式。或者,藉由將非經腸投與之化學實體形式溶解或懸浮於油媒劑中實現該化學實體形式之延遲吸收。藉由在生物可降解聚合物(例如聚乳酸-聚乙醇酸)中形成化學實體之微膠囊基質製備可注射儲積形式。端視化學實體對聚合物之比率及所用具體聚合物之性質,可控制化學實體之速率。其他生物可降解聚合物之實例包括聚(原酸酯)及聚(酸酐)。亦可藉由將化學實體俘獲入與身體組織相容之脂質體或微乳液中製備儲積可注射調配物。
用於直腸或陰道投與之組合物較佳為栓劑,其可藉由將本發明 之化學實體與適宜無刺激性賦形劑或載劑(例如可可油、聚乙二醇或栓劑蠟)混合來製備,該等賦形劑或載劑在環境溫度下為固體但在體溫下為液體,且因此可在直腸或陰道腔內融化並釋放活性化學實體。
經口投與之固體劑型包括膠囊、錠劑、丸劑、粉劑及顆粒。在該等固體劑型中,活性化學實體係與以下物質混合:至少一種醫藥上可接受之惰性載劑,例如檸檬酸鈉或磷酸二鈣及/或a)填充劑或增容劑,例如澱粉、乳糖、蔗糖、葡萄糖、甘露醇及矽酸;b)黏合劑,例如羧甲基纖維素、海藻酸鹽、明膠、聚乙烯基吡咯啶酮、蔗糖及阿拉伯膠(acacia);c)保濕劑,例如甘油;d)崩解劑,例如瓊脂-瓊脂、碳酸鈣、馬鈴薯澱粉或木薯澱粉、海藻酸、某些矽酸鹽及碳酸鈉;e)溶液阻滯劑,例如石蠟;f)吸收促進劑,例如四級銨化合物;g)潤濕劑,例如鯨蠟醇及單硬脂酸甘油酯;h)吸收劑,例如高嶺土及膨潤土;以及i)潤滑劑,例如滑石粉、硬脂酸鈣、硬脂酸鎂、固體聚乙二醇、月桂基硫酸鈉及其混合物。在膠囊、錠劑及丸劑之情形下,劑型亦可包含緩衝劑。
在使用諸如乳糖(lactose或milk sugar)以及高分子量聚乙二醇及諸如此類等賦形劑之軟質及硬質填充明膠膠囊中,亦可採用類似類型之固體組合物作為填充劑。錠劑、糖衣錠、膠囊、丸劑及顆粒之固體劑型可製備有包衣及外殼,例如腸溶包衣及醫藥調配領域熟知之其他包衣。其可視情況含有遮光劑且亦可為視情況以延遲方式僅僅或較佳在腸道的某一部分中釋放活性成份之組合物。可使用之包埋用組合物之實例包括聚合物質及蠟。在使用諸如乳糖(lactose或milk sugar)以及高分子量聚乙二醇及諸如此類等賦形劑的軟質及硬質填充明膠膠囊中,亦可採用相似類型之固體組合物作為填充劑。
活性化學實體亦可呈具有一或多種上述賦形劑之微囊封形式。錠劑、糖衣錠、膠囊、丸劑及顆粒之固體劑型可製備有包衣及外殼, 例如腸溶包衣、釋放控制包衣及醫藥調配領域熟知之其他包衣。在該等固體劑型中,可將活性化學實體與至少一種惰性稀釋劑(例如蔗糖、乳糖或澱粉)混合。該等劑型除惰性稀釋劑以外亦可包含如通常實踐之其他物質,例如壓錠潤滑劑及其他壓錠助劑(例如硬脂酸鎂及微晶纖維素)。在膠囊、錠劑及丸劑之情形下,該等劑型亦可包含緩衝劑。其可視情況含有遮光劑且亦可為視情況以延遲方式僅僅或較佳在腸道之某一部分中釋放活性成份之組合物。可使用之包埋用組合物之實例包括聚合物質及蠟。
用於局部或經皮投與本發明化學實體之劑型包括軟膏、膏糊、乳膏、洗劑、凝膠、粉劑、溶液、噴霧劑、吸入劑或貼片。若需要,可在無菌條件下將活性化學實體與醫藥上可接受之載劑及任何所需防腐劑或緩衝劑混合。眼用調配物、滴耳劑及滴眼劑亦涵蓋於本發明之範圍內。此外,本發明涵蓋使用經皮貼片,其具有提供化學實體至身體之受控遞送的額外優點。該等劑型可藉由將化學實體溶解或分散於適當介質中來製備。亦可使用吸收增強劑來增加化學實體透過皮膚之通量。可藉由提供速率控制膜或藉由將化學實體分配於聚合物基質或凝膠中來控制速率。
如本文所用術語「組合」、「經組合」及相關術語係指根據本發明同時或依序投與治療劑。舉例而言,可將本發明之化學實體與另一治療劑以單獨單位劑型或一起以單一單位劑型同時或依序投與。因此,本發明提供單一單位劑型,其包含式(I)之化學實體、另一治療劑及醫藥上可接受之載劑、佐劑或媒劑。
在一些實施例中,可經由不同遞送途徑及/或根據不同時間表投與以組合投與之不同藥劑。或者或另外,在一些實施例中,一或多個劑量之第一活性藥劑實質上與一或多種其他活性藥劑同時投與,且在一些實施例中經由常用途徑及/或作為單一組合物之一部分與一或多 種其他活性藥劑一起投與。
可與載劑材料組合產生單一劑型之所提供化學實體及其他治療劑(在彼等包含如上文所闡述之其他治療劑之組合物中)之量將端視所治療宿主及具體投與方式而變化。較佳地,本發明組合物應經調配使得可投與介於0.01mg/kg體重/天至100mg/kg體重/天之間之劑量之所提供化學實體。
在彼等包含另一治療劑之組合物中,該其他治療劑及本發明之化學實體可協同地作用。因此,該等組合物中其他治療劑之量將小於僅利用該治療劑之單療法中所需要之量。在該等組合物中,可投與介於0.01μg/kg體重/天至100μg/kg體重/天之間之劑量之其他治療劑。
存於本發明組合物中之其他治療劑之量將不超過在包含該治療劑作為唯一活性藥劑之組合物中正常投與之量。較佳地,本文所揭示組合物中其他治療藥劑之量將在包含該藥劑作為唯一治療活性藥劑之組合物中正常存在量的約50%至100%之範圍內。
在一些實施例中,本發明提供藥劑,其包含至少一種式(I)之化學實體及醫藥上可接受之載劑、佐劑或媒劑。
在一些實施例中,本發明提供式(I)之化學實體之用途,其用於製造用以治療CNS疾病或病症之藥劑。
一般合成方法
可根據方案1及/或使用業內已知之方法合成式(I)之化學實體。
方案1
a. 鹼(例如,二異丙基乙胺),有機溶劑(例如,正丁醇),熱或Buchwald偶合條件(例如,Pd觸媒,鹼,有機溶劑,熱)b. 去保護條件(例如,CF3CO2H或HCl,室溫,當R1'=第三丁基時)c. 胺基甲酸酯形成條件(例如,羰基二咪唑、R1-OH、DMSO,室溫)。
在方案1中所繪示之方法中,在第一步驟中,可藉由使式X中間體(其中R1'=R1或保護基團(例如,其中R1'係第三丁基,部分R1'-OC(O)-係Boc基團))與中間體式XI之Z-LG偶合製備式XII化合物。對於式XI化合物,Z係如上文所定義之雜環基且LG係適於偶合反應之基團(例如氯或溴)。在某些情形下,偶合反應可作為鹼介導之親核芳香族取代反應執行。在某些情形下,偶合反應可作為由鈀催化介導之Buchwald反應執行。可在環境至160℃之溫度下(例如,介於50℃與120℃之間)在適宜鹼(例如,三乙胺、二異丙基乙胺)存在下在適宜質子溶劑(例如,異丙醇、正丁醇)或非質子溶劑(例如,CH2Cl2、DMF、DMSO、CH3CN)中利用式Z-Cl中間體執行芳香族取代偶合反應。可在70℃至150℃之溫度下(例如,在80℃與130℃之間)在惰性(例如,氮)氣氛下在適宜鹼(例如,Cs2CO3)存在下在適宜有機溶劑(例如,第三丁醇、甲苯、DMF、DMSO、CH3CN)存在下在適宜鈀觸媒 及膦配體系統(例如,Brettphos/Brettphos前觸媒,BINAP/Pd2(dba)3)中利用式Z-Br中間體執行Buchwald偶合反應(Buchwald,S.;Muci,A.Top.Curr.Chem. 2002;219,133-209)。在其中R1'=R1之情形下,式XII化合物等效於式I化合物。在其中R1'係保護基團之情形下,則可使用業內已知之去保護條件將式XII之中間體化合物轉化為式XIII之中間體化合物。舉例而言,當R1'係第三丁基(即,其中R1'-OC(O)-部分係Boc基團)時,可使用多種已知方法將式XII之中間體化合物轉化為式XIII之中間體化合物。通常,在酸性條件下在介於0℃與50℃間之溫度下使用HCl(例如,於適宜有機溶劑(例如二氯甲烷、甲醇或THF)中之醚或二噁烷中之1-4N HCl)或在介於0℃與室溫間之溫度下使用於非質子溶劑(例如,二氯甲烷)中之三氟乙酸執行Boc去保護。後者尤其可用於對氯化物介導之副反應敏感之化合物。可藉由胺甲醯化反應利用式R1OC(O)X之胺甲醯化試劑(其中X係適宜脫離基(例如,Cl、咪唑基、羥基琥珀醯基))將式XIII之中間體化合物轉化為式I化合物。式R1OC(O)X之試劑可以分離形式實施或原位生成。舉例而言,可在0℃與室溫之間於非質子有機溶劑中利用羰基二咪唑處理式R1OH之醇,以首先形成R1OC(O)咪唑基胺甲醯化試劑。R1OC(O)咪唑基胺甲醯化試劑與式XIII之中間體化合物(呈游離鹼或酸加成鹽形式,在0℃與70℃之間之溫度下)在非質子溶劑(例如,DMSO)中發生原位反應,得到式I化合物。
雜芳基氯化物或溴化物偶合劑Z-LG可自市面購得,可根據已知文獻針對確切化合物之程序來製備或可使用業內已知用於合成雜芳基氯化物及溴化物之方法來製備。舉例而言,可使用業內已知之方法(例如藉由利用溴或N-溴琥珀醯亞胺或另一溴化試劑處理,或利用氯化試劑(例如硫醯氯)處理)溴化或氯化雜芳基化合物Z-H,然後可藉由適當程序(例如藉由為分離區域異構物所需要之層析)分離期望Z-Br或 Z-Cl雜芳基偶合劑。可在標準條件下(例如,在升高之溫度下使用三氯一氧化磷作為溶劑本身或在適宜非質子有機溶劑中)自具有相應醯胺基互變異構物亞結構之相應Z-OH起始材料製備其中氯基團係亞胺基氯化物亞結構之一部分之雜芳基偶合劑Z-Cl。可在業內公認之Sandmeyer反應型條件下(即,重氮化反應,隨後利用CuCl或CuBr進行氯化或溴化)自相應Z-NH2起始材料製備其他雜芳基偶合劑。在一些情形下,可使用業內已知用於合成雜芳基化合物之方法製備所需要之Z-H、Z-OH或Z-NH2起始材料。
可使用業內已知之方法(例如非鏡像異構物酸加成鹽之手性層析或重結晶)以個體鏡像異構物形式自外消旋混合物獲得式(I)之化學實體。或者,可藉由不對稱合成以個體鏡像異構物形式或自相應個體鏡像異構物中間體獲得式(I)之化學實體。舉例而言,可自在哌啶環系統之C-4處具有相應絕對立體化學構形之式X中間體之鏡像異構物製備式(I)化學實體之個別鏡像異構物。可藉由如方案2中所繪示之不對稱合成製程繼而製備式X中間體。在此製程中,在三個步驟中將已知之起始材料XIV(Madaiah M.等人Tetrahedron Lett. 2013,54,1424-27)轉化為經光學純之R=(XVa)S=(XVb)噁唑啶酮對掌性輔助系統取代之α,β-不飽和醯基中間體XV。在XVa之情形下,利用R-絕對立體化學對掌性輔助物,使用於乙酸乙酯中之10% Pd-C進行標準催化氫化得到非鏡像異構物產物(R)-XVIa(主要)及(S)-XVIa(次要)之約5:1混合物。可藉由在矽膠上進行標準層析分離此混合物,從而得到呈純淨形式之(R)-XVIa。如方案2中所繪示,水解純中間體(R)-XVIa之對掌性輔助物得到純鏡像異構物酸中間體(R)-XVII。自(R)-XVII,兩步驟式Curtius反應製程得到(-)-(R)-X鏡像異構物。可自中間體XVb起始以類似方式製備(+)-(S)-X鏡像異構物。亦可藉由業內之標準對掌性酸加成鹽形成及重結晶(例如,使用對掌性純之酒石酸)方法自鏡像異構物富 集之混合物或外消旋混合物製備純淨之式X鏡像異構物。
a. (三苯基正膦亞基)乙酸甲酯,甲苯,rt b. NaOH,THF,水,50℃ c. 三乙胺,特戊醯氯,THF,-78℃,R-4-苄基-3-鋰基-2-噁唑啶酮d. 10% Pd/C,H2,乙酸乙酯rt,藉由在矽膠上管柱層析分離產物非鏡像異構物e. LiOH,30% H2SO2,THF,50℃ f. 疊氮磷酸二苯酯,PhCH2OH,三甲胺,甲苯,回流g. 10% Pd/C,H2,乙酸乙酯rt h. 不對稱氫化
亦可藉由催化式XV中間體之不對稱氫化(其中Y單純形成對掌性酯基團(例如,Y=OMe、OEt))製備式XVI之鏡像異構物中間體。為此,在升高之溫度及壓力下在不對稱催化氫化條件下可使用包含對掌 性膦配體(例如,Waldphos配體)及過渡金屬(例如,Ir、Rh或Ru)之對掌性觸媒,從而得到具有高鏡像異構物純度之簡單酯中間體XVI。可使用業內之標準方法(例如彼等在上文所闡述者)將該酯中間體轉化為X之純鏡像異構物。Tang等人(Tang W.等人,Chem Rev. 2003,103,3029)已概述α,β-不飽和酸及酯系統之氫化,且Krska等人(Krska S.W.等人,Tetrahedron 2009,65,8987-8994)及Tudge等人(Tudge M.等人,Organic Process Research and Development 2010,14,787-798)已闡述其他有用催化不對稱氫化方法。
亦可如方案3中所例示藉由上述方法之變體使用具有替代保護基團之中間體或雙鍵異構物製備用於合成式I化合物之鏡像異構物之純淨鏡像異構物中間體。
a. R=CH2Ph,R’=氫或烷基(例如,Me或Et),不對稱催化氫化b. H2 10% Pd/C以去除苄基保護基團,從而得到R=H c. 胺甲醯 化,例如羰基二咪唑、R1-OH、DMSO,從而得到R=R1-OC(O)-d. 酯皂化,例如NaOH,THF e. Hofmann降解或Curtius重排方案。
舉例而言,可使其中R=苄基之式XXI中間體經受上述還原製程(例如,催化不對稱氫化)以生成在C-4哌啶立體中心處對掌性純之式(R)-XXII之中間體。在後續步驟中,可將苄基去除並交換為另一保護基團(例如,Boc)或存於式I化合物中之CO2R1基團。或者,可經由雙鍵異構物起始材料XXX之不對稱氫化實施相同反應方案。
實例1. 化學實體。
如以下實例中所繪示,在某些實例性實施例中,根據以下程序製備化學實體。應瞭解,儘管一般方法繪示本發明之某些化學實體之合成,但可將熟習此項技術者已知之以下方法及其他方法應用至所有化學實體及該等化學實體中之每一者之子類及物質,如本文所闡述。
溫度係以攝氏度給出。若無另外提及,則所有蒸發皆係在較佳介於約15mmH g與100mm Hg之間之減壓下實施。藉由標準分析方法(例如,質譜及NMR光譜)證實中間體及最終產物之結構。在鈉D線下量測旋光度且其係以度給出。可經由對掌性HPLC方法(例如,使用對掌性PAK AD-H4.6*150mm,5μm管柱及適宜移動相選擇(例如己烷/異丙醇(80:20))及流速(例如1.5mL/min))測定鏡像異構物過量。
縮寫:
實例1.A. (-)-R-4-(胺基甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯
步驟1:3,3-二氟-4,4-二羥基哌啶-1-甲酸第三丁基酯
向1-苄基-3,3-二氟哌啶-4,4-二醇(100.0g,412mmol)於乙醇(1850mL)中之溶液中添加10% Pd/C(10.0g)及HCl(6.0M,69mL,414mmol)。用H2將混合物吹掃三次並在室溫下在大氣壓下氫化。在耗盡起始材料之後,藉助矽藻土過濾混合物並用EtOH萃取濾液。在減壓下濃縮合併之濾液且粗製3,3-二氟哌啶-4,4-二醇鹽酸鹽產物未經純化即直接用於下一步驟中。藉由Na2CO3將粗產物3,3-二氟哌啶-4,4-二醇鹽酸鹽(78g)於水(1000mL)及丙酮(500mL)中之攪拌溶液鹼化至pH 9。然後添加二碳酸二第三丁基酯(98.9g,453mmol)並將混合物在rt下攪拌4h。在減壓下濃縮混合物以去除丙酮共溶劑。用EtOAc萃取所得混合物。將合併之有機層經Na2SO4乾燥並濃縮以得到褐色油狀粗產物。用己烷處理該油狀物並研磨經沈澱固體材料並過濾,從而得到白色粉末狀標題化合物(94.3g,90%總體)。1H NMR(400MHz,CD3OD)δ 3.72(t,J=11.6Hz,2H),3.56-3.46(m,2H),1.83-1.77(m,2H),1.42(s,9H)。
步驟2:3,3-二氟-4-(2-甲氧基-2-側氧基亞乙基)哌啶-1-甲酸第三丁基酯
向3,3-二氟-4,4-二羥基哌啶-1-甲酸第三丁基酯(80.0g,314mmol)於甲苯(1000mL)中之攪拌溶液中添加(三苯基正膦亞基)乙酸甲酯(126 g,377mmol)並將反應混合物在室溫下攪拌4h。在真空中濃縮反應混合物並藉由在矽膠上管柱層析(EtOAc/己烷=1/5)純化殘餘物,以得到無色油狀標題化合物(79.6g,87%)。1H NMR(400MHz,CDCl3)δ 6.23(s,1H),3.83-3.71(m,2H),3.76(s,3H),3.58-3.47(m,2H),3.13-3.05(m,2H),1.48(s,9H)。
步驟3:2-(1-(第三丁氧基羰基)-3,3-二氟哌啶-4-亞基)乙酸
在室溫下向3,3-二氟-4-(2-甲氧基-2-側氧基亞乙基)哌啶-1-甲酸第三丁基酯(590g,2.03mol)於THF(1.5L)中之攪拌溶液中添加NaOH(40.1g,1.0mol)於水(1.5L)中之溶液。將所得混合物加熱至50℃,並攪拌1h。在耗盡起始材料之後,在減壓下濃縮THF。用乙酸乙酯萃取水性濃縮物並在冰水浴冷卻下用4.0M HCl水溶液酸化至pH 5。用乙酸乙酯將水相萃取三次。用水、鹽水洗滌合併之有機相,經Na2SO4乾燥,並在減壓下濃縮。用己烷研磨殘餘物並過濾懸浮液,以得到灰白色粉末狀標題產物(492g,87%)。1H NMR(400MHz,DMSO-d6)δ 12.99(s,1H),6.11(s,1H),3.81(t,J=11.6Hz,2H),3.50-3.42(m,2H),2.94-2.88(m,2H),1.42(s,9H)。
步驟4:(R)-4-(2-(4-苄基-2-側氧基噁唑啶-3-基)-2-側氧基亞乙基)-3,3-二氟哌啶-1-甲酸第三丁基酯
在0℃下向2-(1-(第三丁氧基羰基)-3,3-二氟哌啶-4-亞基)乙酸(23.5g,84.8mmol)於無水THF(250mL)中之攪拌溶液中添加Et3N(11.7mL,85.7mmol)。逐滴添加特戊醯氯(10.5mL,89.0mmol)並將混合物在0 ℃下攪拌2h。在-78℃下向混合物中添加一個當量之(R)-4-苄基-3-鋰基-2-噁唑啶酮之THF溶液(在-78℃下自於THF(150mL)中之(R)-4-苄基-2-噁唑啶酮(15.0g,84.7mmol)及n-BuLi(2.5M於己烷中,34mL,85mmol)製備)。使所得混合物升溫至0℃,在0℃下攪拌30分鐘並用飽和NH4Cl淬滅。用乙酸乙酯萃取混合物。用水、鹽水洗滌合併之有機層,經Na2SO4乾燥並在真空中濃縮。使殘餘物自乙酸乙酯/己烷(60mL/400mL)重結晶,以得到白色粉末狀標題化合物(24.5g,66%)。針對C22H26F2N2O5計算之MS(ESI):436.2;理論值[459.3][M+Na];1H NMR(400MHz,CDCl3)δ 7.39-7.32(m,3H),7.31-7.29(m,1H),7.22(d,J=8.0Hz,2H),4.76-4.70(m,1H),4.27-4.19(m,2H),3.84-3.79(m,2H),3.63-3.52(m,2H),3.35(dd,J=3.2及13.2Hz,1H),3.08-2.97(m,2H),2.80(dd,J=10.0及13.2Hz,1H),1.49(s,9H)。
步驟5:R-4-(2-((R)-4-苄基-2-側氧基噁唑啶-3-基)-2-側氧基乙基)-3,3-二氟哌啶-1-甲酸第三丁基酯
向((R)-4-(2-(4-苄基-2-側氧基噁唑啶-3-基)-2-側氧基亞乙基)-3,3-二氟哌啶-1-甲酸第三丁基酯(10.0g,22.8mmol)於乙酸乙酯(150mL)中之懸浮液中添加10%碳載鈀(1.0g)。在大氣壓下將混合物在室溫下氫化13hr。藉助矽藻土過濾混合物並用乙酸乙酯萃取濾液。在真空中濃縮合併之濾液,以得到12.0g R標題化合物連同相應次要S非鏡像異構物一起之約5:1混合物。藉由在矽膠上管柱層析(乙酸乙酯/己烷=1/3)分離非鏡像異構物。主要非鏡像異構物首先洗脫出來且係以白色粉末獲得(5.20g,52%,>99% de)(管柱:對掌性PAKAD-H 4.6*150mm,5um;移動相:A:己烷B:乙醇=70:30;t=9.07)。針對C22H28F2N2O5 計算之MS(ESI):438.2;理論值:461.2[M+Na]1H NMR(400MHz,CDCl3)δ 7.37-7.32(m,2H),7.31-7.28(m,1H),7.20(d,J=8.0Hz,2H),4.72-4.66(m,1H),4.48-4.00(m,4H),3.38-3.27(m,2H),3.11-2.72(m,4H),2.66-2.53(m,1H),1.93-1.89(m,1H),1.63-1.51(m,1H),1.47(s,9H)。
步驟6:R-2-(1-(第三丁氧基羰基)-3,3-二氟哌啶-4-基)乙酸
在0℃下向R-第三丁基4-(2-((R)-4-苄基-2-側氧基噁唑啶-3-基)-2-側氧基乙基)-3,3-二氟哌啶-1-甲酸酯(5.20g,11.8mmol)於THF/H2O(45mL/45mL)中之攪拌混合物中添加30% H2O2水溶液(4.9mL,48mmol)及氫氧化鋰單水合物(800mg,19.0mmol)。在0℃下攪拌90min之後,用1M Na2SO3溶液(40mL)處理反應混合物且然後用乙酸乙酯(2×100mL)萃取以去除對掌性輔助物。用1M HCl水溶液將水相酸化至pH=2至3且然後用乙酸乙酯(2×100mL)萃取。將合併之乙酸乙酯經Na2SO4乾燥並在真空中濃縮。使殘餘物自乙酸乙酯/己烷(5mL/50mL)重結晶,以得到白色粉末狀標題化合物(3.70g,79%)。針對C12H19F2NO4計算之MS(ESI):279.1;理論值224[M+H-56(第三丁基)];1H NMR(400MHz,CDCl3)δ 4.51-4.01(m,2H),3.10-2.70(m,3H),2.45-2.28(m,2H),1.93-1.89(m,1H),1.58-1.50(m,1H),1.46(s,9H)。
步驟7:R-4-((苄基氧基羰基胺基)甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯
在氮下向R-2-(1-(第三丁氧基羰基)-3,3-二氟哌啶-4-基)乙酸(6.05 g,21.7mmol)於無水甲苯(50mL)中之攪拌溶液中添加三乙胺(4.6mL,34mmol)及疊氮磷酸二苯酯(5.2mL,24mmol)。在80℃下攪拌20min之後,添加苄醇(1.4mL,25mmol)並將反應物在100℃下攪拌過夜。使混合物冷卻至室溫,濃縮並用DCM(200mL)稀釋。用0.5M HCl水溶液(2×50mL)、水(2×50mL)及鹽水(50mL)洗滌有機相,經Na2SO4乾燥並在真空中濃縮。使殘餘物自乙醇/H2O(30mL/90mL)重結晶,以得到白色粉末狀標題化合物(6.91g,84%)。針對Cl9H26F2N2O4計算之MS(ESI):384.2;理論值:407.2[M+Na]。1H NMR(400MHz,CDCl3)δ 7.39-7.30(m,5H),5.10(s,2H),5.02(brs,1H),4.51-3.99(m,2H),3.55-3.44(m,1H),3.39-3.26(m,1H),3.04-2.65(m,2H),2.18-2.02(m,1H),1.78-1.75(m,1H),1.58-1.48(m,1H),1.46(s,9H)。
步驟8:(-)-R-4-(胺基甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯
向R-第三丁基4-((苄基氧基羰基胺基)甲基)-3,3-二氟哌啶-1-甲酸酯(7.01g,24.7mmol)於乙酸乙酯(45mL)中之懸浮液中添加10%碳載鈀(700mg)。將混合物在室溫下在大氣氫壓力下氫化13hr。藉助矽藻土過濾混合物並用乙酸乙酯萃取濾液。在真空中濃縮合併之濾液,以得到褐色油狀標題化合物(4.60g,93%)。[α]D=-18.3°(c=10mg/mL,甲醇,20℃),針對C11H20F2N2O2計算之MS(ESI):250.2;理論值:195.2[M+H-56(第三丁基)];1H NMR(400MHz,CDCl3)δ 4.45-4.01(m,2H),3.15(dd,J=5.2,12.8Hz,1H),3.05-2.75(m,2H),2.68(dd,J=6.4,12.8Hz,1H)1.96-1.74(m,2H),1.58-1.48(m,1H),1.46(s,9H),1.40(brs,2H)。
實例1.B. 碳酸2,5-二側氧基吡咯啶-1-基酯4-甲基苄基酯
用4-二甲基胺基吡啶(1.20g,9.8mmol)處理對甲苯基甲醇(2.40g,19.6mmol)及碳酸雙(2,5-二側氧基吡咯啶-1-基)酯(5.03g,19.6mmol)於包括乙腈(30mL)及CH2Cl2(30mL)之混合溶劑中之混合物。將反應混合物在室溫下攪拌2h。在耗盡醇後,將混合物倒入水(100mL)中,並分離有機層,經無水硫酸鈉乾燥並在真空下濃縮。用乙醚研磨由此獲得之固體並乾燥,以得到白色固體狀標題化合物(3.40g,66%)。1H NMR(400MHz,CDCl3)7.29(d,J=8.0Hz,2H),7.20(d,J=8.0Hz,2H),5.28(s,2H),2.82(s,4H),2.36(s,3H)。
實例1.C. 碳酸2,5-二側氧基吡咯啶-1-基酯4-乙基苄基酯
用4-二甲基胺基吡啶(446mg,3.65mmol)處理4-乙基苄醇(1.0g,7.3mmol)及碳酸雙(2,5-二側氧基吡咯啶-1-基)酯(1.88g,7.3mmol)於乙腈(15.0mL)及CH2Cl2(15.0mL)之溶劑混合物中之混合物。將反應混合物在室溫下攪拌2h。然後,用乙酸乙酯稀釋混合物,用水、鹽水洗滌,經無水Na2SO4乾燥並在減壓下濃縮,以得到灰白色粉末狀標題化合物(2.0g,99%),其未經進一步純化即使用。
實例1.D. (+)-S-4-(胺基甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯
該標題化合物可以與(-)-R-4-(胺基甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯類似之方式(如實例1.A.中所闡述),但使用(S)-4-苄基-3-鋰基-2-噁唑啶酮(自(S)-4-苄基-2-噁唑啶酮及n-BuLi製備)代替具有(R)構形之相應試劑來製備。
實例1.1. (+)-R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟 哌啶-1-甲酸4-甲基苄基酯(E1-1.2)
步驟1:R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯
在氮下將(-)-R-4-(胺基甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯(230mg,0.92mmol)、8-氯-[1,2,4]三唑并[4,3-a]吡嗪(127mg,0.83mmol)及DIPEA(0.30mL,1.8mmol)於n-BuOH(5mL)中之攪拌混合物加熱至95℃並保持13hr。使反應混合物冷卻至室溫並在真空中濃縮。藉由在矽膠上管柱層析(乙酸乙酯/己烷=1/1)純化殘餘物,以得到白色粉末狀標題化合物(210mg,62%)。針對C16H22F2N6O2計算之MS(ESI):368.2;理論值:369.1[M+H]。1H NMR(400MHz,CDCl3)δ 8.72(s,1H),7.41(d,J=4.8Hz,1H),7.35(d,J=4.8Hz,1H),6.50-6.45(m,1H),4.47-4.09(m,2H),4.02-3.96(m,1H),3.79-3.72(m,1H),3.09-2.69(m,2H),2.45-2.29(m,1H),1.92-1.87(m,1H),1.68-1.58(m,1H),1.47(s,9H)。
步驟2:R-N-((3,3-二氟哌啶-4-基)甲基)-[1,2,4]三唑并[4,3-a]吡嗪-8-胺三氟乙酸鹽
向R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)-甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯(1.01g,2.72mmol)於二氯甲烷(15mL)中之攪拌懸浮液中添加TFA(3mL)。然後將溶液在環境溫度下攪拌30min。在減壓下濃縮所得反應混合物,以得到黃色殘餘物形式之標題化合物,其未經進一步純化即用於下一步驟中。針對C11H14F2N6計算之MS(ESI):268.1;理論值:269.1[M+H]。1H NMR(400MHz,CD3OD)δ 9.26(s,1H),7.87(d,J=4.8Hz,1H),7.33(d,J=4.8Hz,1H),4.16-4.05(m,1H),3.82-3.75(m,2H),3.52-3.46(m,2H),3.20-3.13(m,1H),2.92-2.76(m,1H),2.36-2.26(m,1H),1.95-1.87(m,1H)。
步驟3:(+)-R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯
向來自先前步驟之R-N-((3,3-二氟哌啶-4-基)甲基)-[1,2,4]三唑并[4,3-a]吡嗪-8-胺三氟乙酸鹽(約2.72mmol)及三乙胺(2.1mL,15mmol)於乙腈(20mL)中之攪拌溶液中添加碳酸2,5-二側氧基吡咯啶-1-基酯4-甲基苄基酯(750mg,2.85mmol)。將所得混合物於室溫下攪拌1hr。然後,用乙酸乙酯(100mL)稀釋混合物,用水、鹽水洗滌,經無水Na2SO4乾燥並在減壓下濃縮。藉由在矽膠上管柱層析(DCM/MeOH=35/1)純化殘餘物,以得到灰白色粉末狀標題化合物(840mg,75%)。[α]D=+13.5°(c=10mg/mL,MeOH,20℃)。HPLC對掌性純度>99% ee(對掌性PAKAD-H 4.6*150mm,5um;移動相:己烷:異丙醇=80:20;rt=6.88min)。針對C20H22F2N6O6計算之MS(ESI):416.2;理論值:417.5[M+H]。1H NMR(400MHz,CD3OD)δ 9.11(s,1H),7.71(d,J= 4.8Hz,1H),7.34(d,J=4.8Hz,1H),7.26(d,J=8.0Hz,2H),7.19(d,J=8.0Hz,2H),5.11(s,2H),4.38-4.26(m,1H),4.18-4.14(m,1H),4.01(dd,J=5.2,13.6Hz,1H),3.62(dd,J=8.8,13.6Hz,1H),3.29-3.11(m,1H),3.03-2.89(m,1H),2.65-2.50(m,1H),2.35(s,3H),2.00-1.94(m,1H),1.62-1.52(m,1H)。
實例1.1a. R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯甲磺酸酯(E1-1.2a)
向(+)-R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)-甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯(1.8g,4.32mmol)於30mL DCM/MeOH(1/1)中之攪拌溶液中添加甲磺酸(420mg,4.32mmol)。將所得溶液在室溫下攪拌30min。蒸發溶劑,並用乙醚(25mL)研磨由此獲得之固體,從而得到白色固體狀標題化合物(1.90g,86%)。針對C20H22F2N6O6計算之MS(ESI):416.2;理論值:417.5[M+H]。1H NMR(400MHz,CD3OD)δ 9.33(s,1H),7.96(d,J=4.8Hz,1H),7.27(d,J=4.8Hz,1H),7.26(d,J=8.0Hz,2H),7.19(d,J=8.0Hz,2H),5.12(s,2H),4.47-4.33(m,1H),4.27-4.21(m,1H),4.07-3.99(m,1H),3.75-3.65(m,1H),3.30-3.14(m,1H),3.08-2.92(m,1H),2.72(s,3H),2.70-2.60(m,1H),2.35(s,3H),2.08-2.00(m,1H),1.67-1.56(m,1H)。
實例1.2. (±)--4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯(C-1.2)
步驟1:2-(1-苄基-3,3-二氟哌啶-4-亞基)乙酸甲酯
在室溫下向1-苄基-3,3-二氟哌啶-4,4-二醇(10.9g,44.8mmol)於甲苯(350mL)中之攪拌溶液中添加(三苯基正膦亞基)乙酸甲酯(18.0g,52mmol)。將反應混合物在室溫下攪拌2hr。在真空中濃縮反應混合物並藉由在矽膠上管柱層析(EtOAc/己烷=1/6)純化,以得到白色粉末狀標題化合物(10.9g,86%)。針對C15H17F2NO2計算之MS(ESI):281.1;理論值:282.3[M+H]。1H NMR(400MHz,CDCl3)δ 7.36-7.27(m,5H),6.19(br s,1H),3.74(s,3H),3.64(s,2H),3.14-3.11(m,2H),2.79(t,J=11.2Hz,2H),2.60(t,J=5.6Hz,2H)。
步驟2:2-(3,3-二氟哌啶-4-基)乙酸甲酯
向2-(1-苄基-3,3-二氟哌啶-4-亞基)乙酸甲酯(10.9g,39mmol)於MeOH(200mL)中之攪拌溶液中添加10% Pd/C(1.0g,10%)。用H2將反應混合物吹掃三次,並在室溫下在大氣壓下氫化。在耗盡起始材料之後,藉助矽藻土過濾混合物並用MeOH萃取濾液。濃縮合併之濾液並藉由在矽膠上管柱層析(EtOAc/己烷=1/6)純化殘餘物,以得到澄清油狀標題化合物(5.30g,70%)。針對C8H13F2NO2計算之MS(ESI):193.1;理論值:194.4[M+H]。1HNMR(400MHz,CDCl3)δ 3.67(s,3H),3.20-3.11(m,1H),3.03-2.99(m,1H),2.83-2.70(m,2H),2.66-2.56 (m,1H),2.46-2.29(m,1H),2.25-2.19(m,1H),1.90-1.82(m,1H),1.64(br s,1H),1.45-1.34(m,1H)。
步驟3:3,3-二氟-4-(2-甲氧基-2-側氧基乙基)哌啶-1-甲酸4-甲基苄基酯
在室溫下在N2氣氛下向對甲苯基甲醇(1.5g,12mmol)於DMSO(20mL)中之攪拌溶液中添加CDI(1.9g,11mmol)。將混合物攪拌1hr並在室溫下在DMSO(10mL)中添加2-(3,3-二氟哌啶-4-基)乙酸甲酯(2.0g,10mmol)。將混合物在50℃下加熱過夜,使其冷卻至室溫並用EtOAc稀釋。用水、鹽水洗滌有機層,經Na2SO4乾燥並濃縮。藉由在矽膠上管柱層析(EtOAc/己烷=1/6)純化濃縮物,以得到澄清油狀標題化合物(1.5g,43%)。1H NMR(400MHz,CDCl3)δ 7.26(d,J=8.0Hz,2H),7.17(d,J=8.0Hz,2H),5.09(br s,2H),4.64(d,J=5.2Hz,1H),4.54-4.06(m,2H),3.69(d,J=12.0Hz,2H),3.12-2.73(m,2H),2.35(s,3H),2.29-2.22(m,1H),1.92-1.65(m,1H),1.59(s,3H)。
步驟4:2-(3,3-二氟-1-((4-甲基苄基氧基)羰基)哌啶-4-基)乙酸
向3,3-二氟-4-(2-甲氧基-2-側氧基乙基)哌啶-1-甲酸4-甲基苄基酯(1.5g,4.4mmol)於THF(20mL)中之攪拌溶液中添加NaOH水溶液(1M,20mL)。將反應混合物在室溫下攪拌5hr並在冰水浴冷卻下用1N HCl淬滅。濃縮該混合物並使用乙酸乙酯萃取。用水、鹽水洗滌乙酸乙酯層,經Na2SO4乾燥並濃縮,以得到白色固體狀標題化合物(650mg,46%)。1H NMR(400MHz,CDCl3)δ 7.25(d,J=8.0Hz,2H),7.16 (d,J=8.0Hz,2H),5.08(s,2H),4.16(br s,2H),2.91-2.71(m,2H),2.35(s,3H),2.31-2.26(m,1H),2.01-1.88(m,1H),1.80-1.69(m,1H),1.25-1.14(m,2H)。
步驟5:4-(胺基甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯
向2-(3,3-二氟-1-((4-甲基苄基氧基)羰基)哌啶-4-基)乙酸(650mg,1.98mmol)於甲苯(3mL)中之攪拌溶液中添加三乙胺(93mg,1.0mmol)及DPPA(187mg,2.98mmol)。在70℃下將反應混合物攪拌1hr。添加二噁烷(3mL)及1M NaOH水溶液(3mL)之混合物並使反應混合物冷卻至室溫。在減壓下濃縮混合物並用EtOAc稀釋。用水、鹽水洗滌有機層,經Na2SO4乾燥並濃縮。將殘餘物吸收於二氯甲烷中並過濾。濃縮濾液以得到黃色油狀粗製產物(600mg)。針對C15H20F2N2O2計算之MS(ESI):298.2;理論值:299.2[M+H]。
步驟6:(±)-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯
將粗製4-(胺基甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯(600mg,2.0mmol)、8-氯-[1,2,4]三唑并[4,3-a]吡嗪(360mg,2.0mmol)及DIPEA(0.76mL,4.0mmol)於丁基醇(10mL)中之混合物在130℃下加熱過夜。使混合物冷卻至室溫且在減壓下濃縮。藉由在矽膠上管柱層析(100%乙酸乙酯)純化濃縮物,以得到淺灰色粉末狀標題化合物(150mg,18%)。針對C20H22F2N6O2計算之MS(ESI):416.2;理論值:417.3 [M+H]。1H NMR(400MHz,CD3OD)δ 9.16(s,1H),7.77(d,J=4.8Hz,1H),7.29(d,J=4.8Hz,1H),7.24(d,J=8.0Hz,2H),7.17(d,J=8.0Hz,2H),5.09(s,2H),4.33(br s,1H),4.19-4.15(m,1H),4.05-3.95(m,1H),3.72-3.58(m,1H),3.25-2.90(m,2H),2.67-2.51(m,1H),2.33(s,3H),1.99-1.93(m,1H),1.62-1.52(m,1H)。
實例1.3. (-)-S-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯(E2-1.2)
藉由對掌性HPLC[對掌性PAKAD-H4.6*150mm,5um。移動相:A:己烷B:(乙醇/甲醇=2:1)=70:30]分離(±)-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯,從而得到各別純鏡像異構物,其中(+)-R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯首先洗脫出來(rt=7.065min),隨後(-)-S-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯洗脫出來(rt=9.160min)。
(+)-R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯。對掌性PAKAD rt=7.065min,α20D=+13.5°(c=10mg/mL,MeOH)。
(-)-S-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯。對掌性PAKAD rt=9.160min,α20D=-12.0°(c=10mg/mL,MeOH)。
實例1.4. 4-(([1,2,4]三唑并[4,3-a]吡嗪-5-基胺基)甲基)-3,3-二氟哌啶-1-甲酸酯(E1-2.2)
步驟1:R-4-(([1,2,4]三唑并[4,3-a]吡嗪-5-基胺基)甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯
將R-4-(胺基甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯(300mg,1.20mmol)、5-溴-[1,2,4]三唑并[4,3-a]吡嗪(356mg,1.80mmol)及DIPEA(0.42mL,2.40mmol)於NMP(9mL)中之混合物在攪拌下加熱至130℃並過夜。使橙色溶液冷卻至rt並用乙酸乙酯稀釋。用水、鹽水洗滌有機相,經Na2SO4乾燥並在真空下濃縮。藉由在矽膠上管柱層析(己烷/乙酸乙酯=1/3)純化濃縮物,以得到黃色粉末狀標題化合物(210mg,48%)。1H NMR(400MHz,CDCl3)δ 9.25(s,1H),8.85(s,1H),7.27(s,1H),6.17-6.01(m,1H),4.51-4.17(m,2H),3.93-3.84(m,1H),3.52-3.44(m,1H),3.11-2.71(m,2H),2.52-2.37(m,1H),2.03-1.92(m,1H),1.73-1.63(m,1H),1.48(s,9H)。
步驟2:R-N-((3,3-二氟哌啶-4-基)甲基)-[1,2,4]三唑并[4,3-a]吡嗪-5-胺三氟乙酸鹽
在室溫下向R-4-(([1,2,4]三唑并[4,3-a]吡嗪-5-基胺基)甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯(256mg,0.69mmol)於二氯甲烷(5mL)中 之溶液中添加TFA(2mL)。在攪拌30min後,濃縮混合物,以得到黃色油狀標題化合物,其係作為粗製鹽直接用於下一步驟中。1H NMR(400MHz,CD3OD)δ 9.38(s,1H),8.71(s,1H),7.33(s,1H),3.99-3.92(m,1H),3.84-3.75(m,1H),3.57-3.46(m,3H),3.18-3.11(m,1H),2.83-2.69(m,1H),2.40-2.33(m,1H),1.92-1.81(m,1H)。
步驟3:R-4-(([1,2,4]三唑并[4,3-a]吡嗪-5-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯
在室溫下向2,5-二側氧基環戊基4-甲基苄基碳酸酯(201mg,0.76mmol)於MeCN(5mL)中之溶液中添加R-N-((3,3-二氟哌啶-4-基)甲基)-[1,2,4]三唑并[4,3-a]吡嗪-5-胺三氟乙酸鹽(470mg,0.69mmol)及三乙胺(0.32mL,2.30mmol)。在攪拌1hr後,用EtOAc稀釋混合物。用水、鹽水洗滌有機相,經Na2SO4乾燥並在真空下濃縮。藉由在矽膠上管柱層析(DCM/MeOH=40/1)純化濃縮物,以得到黃色粉末狀標題化合物(126mg,兩個步驟產率43.6%)。針對C20H22F2N6O2計算之MS(ESI):416.2;理論值:417.5[M+H]。1H NMR(400MHz,CD3OD)δ 9.33(s,1H),8.64(s,1H),7.24(d,J=8.0Hz,2H),7.23(s,1H),7.16(d,J=8.0Hz,2H),5.10(s,2H),4.40-4.29(m,1H),4.23-4.14(m,1H),3.86(dd,J=4.8及14.4Hz,1H),3.41(dd,J=4.8及14.4Hz,1H),3.30-2.15(m,1H),3.05-2.88(m,1H),2.61-2.47(m,1H),2.33(s,3H),2.10-2.00(m,1H),1.65-1.53(m,1H)。
實例1.4a. R-4-(([1,2,4]三唑并[4,3-a]吡嗪-5-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯甲磺酸酯(E1-2.2a)
向R-4-(([1,2,4]三唑并[4,3-a]吡嗪-5-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯(127mg,0.31mmol)於MeOH(3mL)中之溶液中添加甲磺酸(29mg,0.30mmol)。在rt下攪拌1h後,濃縮混合物,以得到白色粉末狀標題化合物(131mg,84%)。針對C20H22F2N6O2計算之MS(ESI):416.2;理論值:417.5[M+H]。1H NMR(400MHz,CD3OD)δ 9.58(s,1H),8.85(s,1H),7.70(s,1H),7.24(d,J=8.0Hz,2H),7.17(d,J=8.0Hz,2H),5.10(s,2H),4.45-4.30(m,1H),4.24-4.18(m,1H),3.95(dd,J=5.2及14.0Hz,1H),3.57(dd,J=8.0及14.0Hz,1H),3.26-2.90(m,2H),2.70(s,3H),2.64-2.51(m,1H),2.33(s,3H),2.11-2.02(m,1H),1.67-1.54(m,1H)。
實例1.5. (+)-R-4-(([1,2,4]三唑并[1,5-a]吡啶-2-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯(E1-9.2)
步驟1:R-4-(([1,2,4]三唑并[1,5-a]吡啶-2-基胺基)甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯
在室溫下在氮下向2-溴-[1,2,4]三唑并[1,5-a]吡啶(500mg,2.53mmol)於第三丁基醇(15mL)中之攪拌懸浮液中添加(-)-R-4-(胺基甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯(758mg,3.03mmol)、Brettphos 前觸媒(75mg)、Brettphos(75mg)及Cs2CO3(2.25g,5.06mmol)。將反應混合物加熱至100℃過夜。使混合物冷卻至室溫,用DCM稀釋並藉助矽藻土過濾。用水洗滌濾液,經Na2SO4乾燥並在真空中濃縮。藉由在矽膠上管柱層析(50%己烷於EtOAc中)純化殘餘物,以得到灰白色粉末狀標題化合物(298mg,32%)。針對C17H23F2N5O2計算之MS(ESI):367.2;理論值:368.5[M+H]。1H NMR(400MHz,CD3OD)δ 8.45(d,J=6.8Hz,1H),7.53-7.48(m,1H),7.37(d,J=8.8Hz,1H),6.96-6.92(m,1H),4.28-4.14(m,1H),4.12-4.04(m,1H),3.77(dd,J=14,4.8Hz,1H),3.36-3.33(m,1H),3.18-3.07(m,1H),2.92-2.84(m,1H),2.48-2.35(m,1H),1.98-1.91(m,1H),1.56-1.48(m,1H),1.47(s,9H)。
步驟2:(+)-R-4-(([1,2,4]三唑并[1,5-a]吡啶-2-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯
向R-4-(([1,2,4]三唑并[1,5-a]吡啶-2-基胺基)甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯(230mg,0.63mmol)於DCM(6mL)中之溶液中添加TFA(2mL)。將反應溶液在室溫下攪拌30min。蒸發溶劑,以得到黃色油狀中間體R-N-((3,3-二氟哌啶-4-基)甲基)-[1,2,4]-三唑并[1,5-a]吡啶-2-胺三氟乙酸鹽(260mg),其未經進一步純化即用於下一步驟中。向R-N-((3,3-二氟哌啶-4-基)甲基)-[1,2,4]-三唑并[1,5-a]吡啶-2-胺三氟乙酸鹽(260mg)於乙腈(5mL)中之攪拌溶液中添加三乙胺(0.26mL)及碳酸2,5-二側氧基吡咯啶-1-基酯4-甲基苄基酯(181mg,0.69mmol)。在室溫下攪拌1h後,在真空中濃縮反應混合物並將殘餘物吸收於EtOAc中。用水、鹽水洗滌該溶液,經Na2SO4乾燥並在真空中濃縮。 藉由在矽膠上管柱層析(於EtOAc中之50%己烷)來純化殘餘物,得到白色粉末狀標題化合物(234mg,90%)。[α]D=+26.2°(c=7.5mg/mL,MeOH,28℃)。針對C21H23F2N5O2計算之MS(ESI):415.2;理論值:416.6[M+H]。1H NMR(400MHz,CD3OD)δ 8.44(d,J=6.4Hz,1H),7.52-7.48(m,1H),7.36(d,J=8.8Hz,1H),7.24(d,J=8.0Hz,2H),7.17(d,J=8.0Hz,2H),6.95-6.92(m,1H),5.12-5.06(m,2H),4.34-4.22(m,1H),4.16-4.11(m,1H),3.77(dd,J=14,4.8Hz,1H),3.36-3.31(m,1H),3.25-3.09(m,1H),3.00-2.89(m,1H),2.51-2.38(m,1H),2.33(s,3H),2.00-1.92(m,1H),1.57-1.46(m,1H)。
實例1.6. (+)-R--4-((1H-吡唑并[3,4-d]嘧啶-6-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯(E1-8.2)
步驟1:R-4-((1H-吡唑并[3,4-d]嘧啶-6-基胺基)甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯
將R-4-(胺基甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯(440mg,1.60mmol)、6-氯-1H-吡唑并[3,4-d]嘧啶(272mg,1.76mmol)及DIPEA(0.84mL,4.80mmol)於i-PrOH(10mL)中之混合物在85℃下加熱過夜。使混合物冷卻至室溫且在減壓下濃縮。藉由在矽膠上管柱層析(己烷/乙酸乙酯=1/3)純化濃縮物,以得到黃色粉末狀標題化合物(510mg,86%)。針對C16H22F2N6O2計算之MS(ESI):368.2;理論值:369.4[M+H]。1H NMR(400MHz,CDCl3)δ 10.88(brs,1H),8.78(s,1H),7.92(s,1H),5.77-5.67(m,1H),4.50-4.00(m,2H),3.90-3.84(m, 1H),3.67-3.58(m,1H),3.07-2.68(m,2H),2.38-2.23(m,1H),1.91-1.85(m,1H),1.62-1.56(m,1H),1.46(s,9H)。
步驟2:R-N-((3,3-二氟哌啶-4-基)甲基)-1H-吡唑并[3,4-d]嘧啶-6-胺鹽酸鹽
在室溫下向R-4-((1H-吡唑并[3,4-d]嘧啶-6-基胺基)甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯(510mg,1.39mmol)於DCM(4mL)中之溶液中添加於MeOH中之HCl(10mL,2.0M)。在攪拌過夜後,濃縮混合物,以得到淺黃色粉末狀標題化合物(504mg,100%),其未經進一步純化即用於下一步驟中。針對C11H14F2N6計算之MS(ESI):268.1;理論值:269.2[M+H]。1H NMR(400MHz,CD3OD)δ 9.09(s,1H),8.33(s,1H),4.04(dd,J=5.2,14.0Hz,1H),3.81-3.73(m,1H),3.63-3.46(m,3H),3.21-3.13(m,1H),2.83-2.69(m,1H),2.33-2.24(m,1H),1.90-1.79(m,1H)。
步驟3:(+)-R--4-((1H-吡唑并[3,4-d]嘧啶-6-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯
在室溫下向對甲苯基甲醇(263mg,2.15mmol)於DMSO(4mL)中之溶液中添加CDI(349mg,2.15mmol)。在攪拌1hr後,添加R-N-((3,3-二氟哌啶-4-基)-甲基)-1H-吡唑并[3,4-d]嘧啶-6-胺鹽酸鹽(504mg,1.66mmol)。在N2氣氛下將混合物加熱至80℃。在攪拌過夜後,用EtOAc稀釋混合物。用水及鹽水洗滌有機相,經Na2SO4乾燥並在真 空下濃縮。藉由在矽膠上管柱層析(DCM/MeOH=40/1)純化濃縮物,以得到白色粉末狀標題化合物(306mg,49%)。[α]D=+22°(c=8.5mg/mL,於MeOH中之50% DCM,26℃)。針對C20H22F2N6O2計算之MS(ESI):416.2;理論值:417.4[M+H]。1H NMR(400MHz,CD3OD)δ 8.77(s,1H),7.92(s,1H),7.24(d,J=8.0Hz,2H),7.17(d,J=8.0Hz,2H),5.09(s,2H),4.33-4.23(m,1H),4.16-4.10(m,1H),3.87(dd,J=5.2及14.0Hz,1H),3.47-3.39(m,1H),3.25-3.10(m,1H),3.02-2.87(m,1H),2.54-2.40(m,1H),2.33(s,3H),1.95-1.88(m,1H),1.58-1.47(m,1H)。
實例1.6a. (+)-R-4-((1H-吡唑并[3,4-d]嘧啶-6-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯甲磺酸酯(E1-8.2a)
向R-4-((1H-吡唑并[3,4-d]嘧啶-6-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯(184mg,0.44mmol)於DCM/MeOH(12mL/4mL)中之溶液中添加甲磺酸(43mg,0.44mmol)。在rt下攪拌1h後,濃縮混合物,以得到白色粉末狀標題化合物(191mg,84%)。[α]D=+11.2°(c=10mg/mL,於MeOH中之50% DCM,26℃)。針對C20H22F2N6O2計算之MS(ESI):416.2;理論值:417.5[M+H]。1H NMR(400MHz,CD3OD)δ 9.03(s,1H),8.29(s,1H),7.24(d,J=8.0Hz,2H),7.17(d,J=8.0Hz,2H),5.09(s,2H),4.37-4.27(m,1H),4.20-4.13(m,1H),3.94(dd,J=5.2及14.0Hz,1H),3.58-3.53(m,1H),3.24-3.10(m,1H),3.03-2.92(m,1H),2.72(s,3H),2.56-2.44(m,1H),2.33(s,3H),1.99-1.90(m,1H),1.61-1.50(m,1H)。
實例1.7. R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-氯苄基酯(E1-1.3)
向4-氯苄醇(115mg,0.81mmol)及碳酸雙-(2,5-二側氧基吡咯啶-1-基)酯(207mg,0.81mmol)於乙腈(3.0mL)及CH2Cl2(3.0mL)中之攪拌溶液中添加4-二甲基胺基吡啶(49mg,0.40mmol)並將混合物在室溫下攪拌2h。添加於MeCN(2mL)及TEA(0.3mL,2.2mmol)中之N-((3,3-二氟哌啶-4-基)甲基)-[1,2,4]三唑并[4,3-a]吡嗪-8-胺三氟乙酸鹽(280mg,0.73mmol)並在室溫下將所得混合物攪拌1小時。然後用乙酸乙酯(5mL)稀釋混合物並用水、鹽水洗滌有機相,經無水Na2SO4乾燥並在減壓下濃縮。藉由在矽膠上管柱層析(DCM/MeOH=50/1)純化殘餘物,以得到淺黃色粉末狀標題化合物(190mg,59%)。針對C19H19ClF2N6O2計算之MS(ESI):436.1,438.1;理論值:437.4,439.4[M+H]。1H NMR(400MHz,CD3OD)δ 9.08(s,1H),7.69(d,J=4.8Hz,1H),7.39-7.33(m,4H),7.32(d,J=4.8Hz,1H),5.16-5.09(m,2H),4.37-4.26(m,1H),4.19-4.11(m,1H),4.01-3.95(m,1H),3.65-3.57(m,1H),3.27-3.07(m,1H),3.07-2.88(m,1H),2.65-2.47(m,1H),1.99-1.91(m,1H),1.63-1.49(m,1H)。
實例1.7a. R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-氯苄基酯甲磺酸酯(E1-1.3a)
在rt下向R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-氯苄基酯(99mg,0.23mmol)於MeOH(2.0mL)中之攪拌溶液中添加CH3SO3H(22mg,0.23mmol)。在攪拌30min後,濃縮混合物,以得到灰白色粉末狀標題化合物(116mg,96%)。針對C19H19ClF2N6O2計算之MS(ESI):436.1,438.4;理論值:437.4,439.4[M+H]。1H NMR(400MHz,CD3OD)δ 9.31(s,1H),7.94(d,J=4.8Hz,1H),7.36(s,4H),7.25(d,J=4.8Hz,1H),5.19-5.09(m,2H),4.44-4.33(m,1H),4.26-4.18(m,1H),4.06-3.96(m,1H),3.73-3.62(m,1H),3.29-3.14(m,1H),3.11-2.91(m,1H),2.70(s,3H),2.68-2.58(m,1H),2.07-1.99(m,1H),1.66-1.53(m,1H)。
實例1.8. R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-氟苄基酯(E1-1.4)
在環境溫度下向4-氟苄醇(300mg,2.38mmol)於DCM-MeCN(1:1 v/v,10mL)中之攪拌溶液中添加碳酸N,N'-二琥珀醯亞胺基酯(610mg,2.38mmol)及DMAP(145mg,1.19mmol)。逐漸獲得澄清溶液,並將混合物在室溫下攪拌1h。然後添加三乙胺(1.0mL,7.1mmol),隨後於乙腈(3mL)中之R-N-((3,3-二氟哌啶-4-基)甲基)-[1,2,4]三唑并[4,3-a]吡嗪-8-胺TFA鹽(780mg,2.14mmol)。在室溫下將所得混合物攪拌1hr 且在真空中濃縮混合物。將殘餘物溶解於乙酸乙酯中並用水、鹽水洗滌有機相,經Na2SO4乾燥,並在真空中濃縮。藉由在矽膠上管柱層析(乙酸乙酯)純化濃縮物,以得到物灰白色粉末狀標題化合(446mg,50%)。針對C19H19F3N6O2計算之MS(ESI):420.2;理論值:421.5[M+H]。1H NMR(400MHz,CDCl3)δ 8.71(s,1H),7.40(d,J=4.8Hz,1H),7.36-7.31(m,3H),7.04(t,J=8.4Hz,2H),6.51-6.51(m,1H),5.11(s,2H),4.54-4.10(m,2H),4.04-3.96(m,1H),3.82-3.72(m,1H),3.14-2.96(m,1H),2.94-2.78(m,1H),2.49-2.33(m,1H),1.95-1.87(m,1H),1.71-1.61(m,1H)。
實例1.8a. R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-氟苄基酯甲磺酸酯(E1-1.4a)
向R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)-甲基)-3,3-二氟哌啶-1-甲酸4-氟苄基酯(446mg,1.06mmol)於DCM/MeOH(6mL,1:1)中之攪拌溶液中添加甲磺酸(102mg,1.06mmol)在室溫下。在攪拌30min後,濃縮混合物。用乙醚洗滌所獲得之固體,以得到淺褐色固體狀標題化合物(510mg,93%)。針對C19H19F3N6O2計算之MS(ESI):420.2;理論值:421.5[M+H]。1H NMR(400MHz,CD3OD)δ 9.31(s,1H),7.94(d,J=5.6Hz,1H),7.43-7.37(m,2H),7.25(d,J=5.6Hz,1H),7.09(t,J=8.8Hz,2H),5.13(s,2H),4.43-4.32(m,1H),4.24-4.17(m,1H),4.06-3.95(m,1H),3.73-3.63(m,1H),3.32-3.10(m,1H),3.09-2.92(m,1H),2.70(s,3H),2.68-2.58(m,1H),2.06-1.98(m,1H),1.65-1.53(m,1H)。
實例1.9. (+)-R-3,3-二氟-4-((嘧啶-2-基胺基)甲基)-哌啶-1-甲酸4-甲基苄基酯(E1-22.2)
步驟1:R-3,3-二氟-4-((嘧啶-2-基胺基)甲基)哌啶-1-甲酸第三丁基酯
在密封管中在攪拌下將2-氯嘧啶(206mg,1.8mmol)、R-4-(胺基甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯(500mg,1.8mmol)及DIPEA(0.63mL,3.6mmol)於n-BuOH(5mL)中之溶液加熱至95℃並過夜。使混合物冷卻至rt並在減壓下濃縮。將殘餘物溶解於乙酸乙酯中並用水及鹽水洗滌有機相。經硫酸鈉乾燥有機相並在真空中濃縮。用己烷及乙酸乙酯(1.5mL+5mL)處理濃縮物。過濾所得懸浮液,以得到灰白色粉末狀標題化合物(420mg,71%)。針對C15H22F2N4O2計算之MS(ESI):328.2;理論值:329.3[M+H]。1H NMR(400MHz,CDCl3)δ 8.27(d,J=4.8Hz,2H),6.55(t,J=4.8Hz,1H),5.35-5.29(m,1H),4.45-4.03(m,2H),3.82-3.75(m,1H),3.57-3.47(m,1H),3.06-2.67(m,2H),2.31-2.16(m,1H),1.88-1.79(m,1H),1.62-1.52(m,1H),1.46(s,9H)。
步驟2:R-N-((3,3-二氟哌啶-4-基)甲基)嘧啶-2-胺鹽酸鹽
在室溫下向R-3,3-二氟-4-((嘧啶-2-基胺基)甲基)哌啶-1-甲酸第三丁基酯(410mg,1.24mmol)於二氯甲烷(2mL)中之溶液中添加2N甲醇 HCl(7mL)。在環境溫度下攪拌過夜後,在真空中濃縮混合物,以得到標題化合物(285mg,76%),其係直接用於下一步驟中。針對C10H14F2N4計算之MS(ESI):228.1;理論值:229.3[M+H]。1H NMR(400MHz,CD3OD)δ 8.95-8.43(m,2H),7.10(t,J=5.6Hz,1H),4.03(dd,J=14.0,5.6Hz,1H),3.82-3.74(m,1H),3.68(dd,J=14.0,5.6Hz,1H),3.59-3.48(m,2H),3.23-3.15(m,1H),2.82-2.67(m,1H),2.34-2.24(m,1H),1.91-1.78(m,1H)。
步驟3:(+)-R-3,3-二氟-4-((嘧啶-2-基胺基)甲基)-哌啶-1-甲酸4-甲基苄基酯
向4-甲基苄醇(199mg,1.62mmol)於DMSO(5mL)中之攪拌溶液中添加CDI(263mg,1.62mmol)。在rt下攪拌1h後,添加(3,3-二氟-哌啶-4-基甲基)-嘧啶-2-基-胺二鹽酸鹽(285mg,0.95mmol),並在80℃下將反應混合物攪拌過夜。用乙酸乙酯稀釋反應混合物,並用水及鹽水洗滌有機相。將有機層經硫酸鈉乾燥,並在真空中濃縮。藉由在矽膠上管柱層析(己烷/EtOAc=1:1)純化濃縮物,以得到白色粉末狀標題化合物(135mg,38%)。%).[α]D=+10.5°(c=3.7mg/mL,MeOH,26℃)。針對C19H22F2N4O2計算之MS(ESI):376.2;理論值:377.4[M+H]。1H NMR(400MHz,CDCl3)δ 8.27(d,J=4.8Hz,2H),7.25(d,J=8.0Hz,2H),7.17(d,J=8.0Hz,2H),6.55(t,J=4.8Hz,1H),5.37-5.26(m,1H),5.16-5.05(m,2H),4.57-4.10(m,2H),3.84-3.74(m,1H),3.59-3.47(m,1H),3.12-2.76(m,2H),2.35(s,3H),2.32-2.17(m,1H),1.92-1.78(m,1H),1.62-1.52(m,1H)。
實例1.9a. R-3,3-二氟-4-((嘧啶-2-基胺基)甲基)哌啶-1-甲酸4-甲基苄基酯甲磺酸酯(E1-22.2a)
在rt下向(+)-R-4-甲基苄基3,3-二氟-4-((嘧啶-2-基胺基)甲基)-哌啶-1-甲酸酯(123mg,0.33mmol)於MeOH(2.0mL)中之攪拌溶液中添加CH3SO3H(32mg,0.33mmol)。在攪拌30min後,濃縮混合物,以得到灰白色粉末狀標題化合物(150mg,97%)。針對C19H22F2N4O2計算之MS(ESI):376.2;理論值:377.4[M+H]。1H NMR(400MHz,CD3OD)δ 8.90-8.40(m,2H),7.24(d,J=8.0Hz,2H),7.17(d,J=8.0Hz,2H),7.00(t,J=5.6Hz,1H),5.09(s,2H),4.39-4.25(m,1H),4.21-4.12(m,1H),3.91(dd,J=5.6及14.0Hz,1H),3.57(dd,J=7.6及14.0Hz,1H),3.27-3.08(m,1H),3.06-2.87(m,1H),2.71(s,3H),2.54-2.39(m,1H),2.33(s,3H),1.97-1.89(m,1H),1.60-1.48(m,1H)。
實例1.10. R-3,3-二氟-4-((吡嗪-2-基胺基)甲基)哌啶-1-甲酸4-甲基苄基酯(E1-21.2)
步驟1:R-3,3-二氟-4-((吡嗪-2-基胺基)甲基)哌啶-1-甲第三丁基酸酯
在130℃下在攪拌下將R-4-(胺基甲基)-3,3-二氟哌啶-1-甲酸第三 丁基酯(200mg,0.80mmol)、2-溴吡嗪(140mg,0.88mmol)及DIPEA(0.42mL,2.40mmol)於NMP(6mL)中之混合物加熱過夜。使混合物冷卻至rt,並用乙酸乙酯稀釋。用水及鹽水洗滌有機相,經Na2SO4乾燥並在真空下濃縮。藉由在矽膠上管柱層析(己烷/乙酸乙酯=1/1)純化濃縮物,以得到黃色油狀標題化合物(196mg,50%)。針對C15H22F2N4O2計算之MS(ESI):328.2;理論值:329.2[M+H]。1H NMR(400MHz,CDCl3)δ 7.98(dd,J=2.8及1.2Hz,1H),7.89(d,J=1.2Hz,1H),7.81(d,J=2.8Hz,1H),4.80-4.70(m,1H),4.45-4.10(m,2H),3.76-3.69(m,1H),3.57-3.49(m,1H),3.04-2.70(m,2H),2.31-2.16(m,1H),1.87-1.79(m,1H),1.63-1.53(m,1H),1.47(s,9H)。
步驟2:R-3,3-二氟-4-((吡嗪-2-基胺基)甲基)哌啶-1-甲酸4-甲基苄基酯
在室溫下向R-3,3-二氟-4-((吡嗪-2-基胺基)甲基)-哌啶-1-甲酸第三丁基酯(196mg,0.59mmol)於DCM(3mL)中之溶液中添加TFA(2mL)。在攪拌30min後,濃縮混合物,以得到黃色油狀粗製產物R-N-((3,3-二氟哌啶-4-基)甲基)吡嗪-2-胺三氟乙酸鹽,其係未經進一步純化直接用於下一步驟中。在室溫下向粗製R-N-((3,3-二氟哌啶-4-基)甲基)吡嗪-2-胺三氟乙酸鹽於MeCN(6mL)中之溶液中添加三乙胺(0.8mL,5.8mmol)及碳酸2,5-二側氧基環戊基酯4-甲基苄基酯(386mg,1.44mmol)。在攪拌1hr後,用EtOAc稀釋混合物。用水、鹽水洗滌有機相,經Na2SO4乾燥並在真空下濃縮。藉由在矽膠上管柱層析(100% EtOAc)純化濃縮物,以得到黃色油狀標題化合物(167mg,52%)。針對C19H22F2N4O2計算之MS(ESI):376.2;理論值:377.5[M+H]。1H NMR(400MHz,CD3OD)δ 7.97(dd,J=2.8及1.2Hz,1H),7.88(d,J= 1.2Hz,1H),7.64(d,J=2.8Hz,1H),7.24(d,J=8.0Hz,2H),7.17(d,J=8.0Hz,2H),5.09(s,2H),4.31-4.21(m,1H),4.17-4.07(m,1H),3.76(dd,J=14.0及5.2Hz,1H),3.35(dd,J=14.0及5.2Hz,1H),3.27-2.85(m,2H),2.44-2.34(m,1H),2.33(s,3H),1.96-1.85(m,1H),1.54-1.43(m,1H)。
實例1.10a. R-3,3-二氟-4-((吡嗪-2-基胺基)甲基)哌啶-1-甲酸4-甲基苄基酯甲磺酸酯(E1-21.2a)
向R-3,3-二氟-4-((吡嗪-2-基胺基)甲基)哌啶-1-甲酸4-甲基苄基酯(118mg,0.31mmol)於MeOH中(2mL)中之溶液中添加甲磺酸(27mg,0.28mmol)。在rt下攪拌1h後,濃縮混合物,以得到黃色粉末狀標題化合物(127mg,87%)。針對C19H22F2N4O2計算之MS(ESI):376.2;理論值:377.4[M+H]。1H NMR(400MHz,CD3OD)δ 8.6(dd,J=2.8及1.2Hz,1H),8.23(d,J=1.2Hz,1H),7.85(d,J=2.8Hz,1H),7.24(d,J=8.0Hz,2H),7.17(d,J=8.0Hz,2H),5.09(s,2H),4.40-4.27(m,1H),4.22-4.14(m,1H),3.85(dd,J=14.0及5.2Hz,1H),3.49(dd,J=14.0及5.2Hz,1H),3.30-2.90(m,2H),2.72(s,3H),2.55-2.36(m,1H),2.33(s,3H),1.99-1.89(m,1H),1.60-1.47(m,1H)。
實例1.11. R-3,3-二氟-4-((5-甲基吡嗪-2-基胺基)-甲基)哌啶-1-甲酸4-甲基苄基酯(E1-21.26)
步驟1:R-3,3-二氟-4-((5-甲基吡嗪-2-基胺基)甲基)-哌啶-1-甲酸第三 丁基酯
向R-4-(胺基甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯(188mg,0.75mmol)於二噁烷(3mL)中之溶液中添加2-氯-5-甲基吡嗪(100mg,0.78mmol),Pd2(dba)3CHCl3(21mg,0.02mmol)、Xantphos(23mg,0.04mmol)及Cs2CO3(329mg,1.0mmol)。在N2下將混合物加熱至90℃。在攪拌過夜後,用乙酸乙酯處理反應溶液。用水、鹽水洗滌有機相,經Na2SO4乾燥並在真空中濃縮。藉由在矽膠上管柱層析(乙酸乙酯/己烷=1/1)純化殘餘物,以得到淺黃色粉末狀標題化合物(115mg,45%)。針對C16H24F2N4O2計算之MS(ESI):342.2;理論值:343.4[M+H]。1H NMR(400MHz,CDCl3)δ 7.86(s,1H),7.83(s,1H),4.63-4.53(m,1H),4.48-4.04(m,2H),3.73-3.67(m,1H),3.52-3.45(m,1H),3.00-2.89(m,1H),2.79-2.70(m,1H),2.38(s,3H),2.28-2.15(m,1H),1.85-1.80(m,1H),1.47(s,9H)。
步驟2:R-3,3-二氟-4-((5-甲基吡嗪-2-基胺基)-甲基)哌啶-1-甲酸4-甲基苄基酯
在室溫下向R-3,3-二氟-4-((5-甲基吡嗪-2-基胺基)甲基)哌啶-1-甲酸第三丁基酯(115mg,0.34mmol)於DCM(3mL)中之溶液中添加TFA(1mL)。在攪拌30min後,濃縮混合物,以得到黃色油狀R-N-((3,3-二氟哌啶-4-基)甲基)-5-甲基吡嗪-2-胺三氟乙酸鹽,其係未經進一步純化直接用於下一步驟中。在室溫下向粗製R-N-((3,3-二氟哌啶-4-基)甲 基)-5-甲基吡嗪-2-胺三氟乙酸鹽於MeCN(4mL)中之溶液中添加三乙胺(1mL)及碳酸2,5-二側氧基環戊基酯4-甲基苄基酯(98mg,0.37mmol)。在攪拌1hr後,用EtOAc稀釋混合物。用水、鹽水洗滌有機相,經Na2SO4乾燥並在真空下濃縮。藉由在矽膠上管柱層析(乙酸乙酯/己烷=2/1)純化濃縮物,以得到淺黃色粉末狀標題化合物(61mg,46%)。針對C20H24F2N4O2計算之MS(ESI):390.2;理論值:391.2[M+H]。1H NMR(400MHz,CDCl3)δ 7.86(s,1H),7.82(s,1H),7.24(d,J=8.0Hz,2H),7.17(d,J=8.0Hz,2H),5.10(s,2H),4.66-4.60(m,1H),4.49-4.16(m,2H),3.73-3.67(m,1H),3.51-3.44(m,1H),3.07-2.95(m,1H),2.87-2.79(m,1H),2.38(s,3H),2.35(s,3H),2.30-2.18(m,1H),1.85-1.81(m,1H),1.63-1.53(m,1H)。
實例1.11a. R-3,3-二氟-4-((5-甲基吡嗪-2-基胺基)甲基)-哌啶-1-甲酸4-甲基苄基酯甲磺酸酯(E1-21.26a)
向R-3,3-二氟-4-((5-甲基吡嗪-2-基胺基)-甲基)哌啶-1-甲酸4-甲基苄基酯(54mg,0.138mmol)於DCM(2mL)中之溶液中添加於MeOH中之甲磺酸(0.14mL,1.0M,0.14mmol)。在rt下攪拌15min後,濃縮混合物,以得到淺黃色粉末狀標題化合物(127mg,87%)。針對C20H24F2N4O2計算之MS(ESI):390.2;理論值:391.2[M+H]。1H NMR(400MHz,CD3OD)δ 8.22(s,1H),8.10(s,1H),7.24(d,J=8.0Hz,2H),7.17(d,J=8.0Hz,2H),5.09(s,2H),4.37-4.26(m,1H),4.19-4.15(m,1H),3.82(dd,J=14.0及5.6Hz,1H),3.46(dd,J=14.0及5.6Hz,1H),3.30-3.12(m,1H),3.02-2.91(m,1H),2.71(s,3H),2.48(s, 3H),2.46-2.36(m,1H),2.33(s,3H),1.95-1.91(m,1H),1.58-1.48(m,1H)。
實例1.12. R-4-((1H-吡唑并[3,4-d]嘧啶-6-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-氟苄基酯(E1-8.4)
步驟1:R-N-((3,3-二氟哌啶-4-基)甲基)-1H-吡唑并[3,4-d]嘧啶-6-胺三氟乙酸鹽
在室溫下向R-4-((1H-吡唑并[3,4-d]嘧啶-6-基胺基)甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯(340mg,0.92mmol)於DCM(5mL)中之溶液中添加TFA(3mL)。在攪拌30min後,濃縮混合物,以得到淺黃色油狀標題化合物,其未經進一步純化即用於下一步驟中。
步驟2:R-4-((1H-吡唑并[3,4-d]嘧啶-6-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-氟苄基酯
向來自先前步驟之R-N-((3,3-二氟哌啶-4-基)甲基)-1H-吡唑并[3,4-d]嘧啶-6-胺三氟乙酸鹽(約0.92mmol)於MeCN(5mL)中之溶液中添加三乙胺(0.6mL,4.6mmol),隨後添加碳酸2,5-二側氧基吡咯啶-1-基酯4-氟苄基酯(296mg,1.10mmol)。在室溫下將所得混合物攪拌1小時。用乙酸乙酯稀釋混合物,用水、鹽水洗滌,經無水Na2SO4乾燥且 在減壓下濃縮。藉由在矽膠上管柱層析(乙酸乙酯/己烷=1/1)純化殘餘物,以得到灰白色粉末狀標題化合物(160mg,41%,對於兩個步驟而言)。針對C19H19F3N6O2計算之MS(ESI):420.2;理論值:421.4[M+H]。1H NMR(400MHz,CD3OD)δ 8.77(s,1H),7.92(s,1H),7.42-7.36(m,2H),7.12-7.05(m,2H),5.12(s,2H),4.33-4.21(m,1H),4.16-4.10(m,1H),3.86(dd,J=13.6及4.4Hz,1H),3.50-3.43(m,1H),3.25-2.85(m,2H),2.54-2.40(m,1H),1.95-1.88(m,1H),1.58-1.47(m,1H)。
實例1.13. R-4-((1H-吡唑并[3,4-d]嘧啶-4-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯(E1-6.2)
步驟1:R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯
向R-4-(胺基甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯(600mg,2.4mmol)於n-BuOH(5mL)中之攪拌溶液中添加4-氯-1-(四氫-2H-吡喃-2-基)-1H-吡唑并[3,4-d]嘧啶(571mg,2.4mmol)及DIPEA(0.84mL,4.8mmol)。在氮下將混合物加熱至100℃並保持13小時。使反應混合物冷卻至室溫並在真空中濃縮。將殘餘物溶解於乙酸乙酯中並有機相用水、鹽水洗滌,經Na2SO4乾燥,並在減壓下濃縮。藉由在矽膠上管柱層析(乙酸乙酯/己烷=1/1)純化濃縮物,以得到黃色粉末狀標題化合物(800mg,80%)。針對C21H30F2N6O3計算之MS(ESI):452.2;理論值:453.6[M+H]。1H NMR(400MHz,CDCl3)δ 8.42(s,1H),7.95(s, 1H),5.98-5.95(m,1H),5.81-5.60(brs,1H),4.49-4.09(m,3H),3.99-3.87(m,1H),3.83-3.76(m,2H),3.06-2.67(m,2H),2.63-2.53(m,1H),2.40-2.23(m,1H),2.16-2.08(m,1H),1.96-1.92(m,1H),1.93-1.54(m,6H),1.47(s,9H)。
步驟2:R-N-((3,3-二氟哌啶-4-基)甲基)-1H-吡唑并[3,4-d]嘧啶-4-胺二鹽酸鹽
在室溫下將R-3,3-二氟-4-((1-(四氫-2H-吡喃-2-基)-1H-吡唑并[3,4-d]-嘧啶-4-基胺基)甲基)哌啶-1-甲酸第三丁基酯(0.80g,1.76mmol)溶解於甲醇HCl溶液(2N,15mL)中。在攪拌過夜後,在減壓下濃縮所得反應混合物,以得到黃色固體狀標題化合物(600mg,99%),其未經進一步純化即用於下一步驟中。針對C11H14F2N6計算之MS(ESI):268.1;理論值:269.2[M+H]。1H NMR(400MHz,CD3OD)δ 8.72(s,1H),8.64(s,1H),4.19(dd,J=14.0及5.6Hz,1H),3.90(dd,J=14.0及5.6Hz,1H),3.83-3.75(m,1H),3.61-3.48(m,2H),3.24-3.18(m,1H),2.93-2.78(m,1H),2.35-2.29(m,1H),1.94-1.84(m,1H)。
步驟3:R-4-((1H-吡唑并[3,4-d]嘧啶-4-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯
向R-N-((3,3-二氟哌啶-4-基)甲基)-1H-吡唑并[3,4-d]嘧啶-4-胺二鹽酸鹽(400mg,1.17mmol)及TEA(0.37mL,2.6mmol)於MeCN(15mL)及DMF(4mL)溶劑混合物中之攪拌溶液中添加碳酸2,5-二側氧基 吡咯啶-1-基酯4-甲基苄基酯(307mg,1.17mmol)。在室溫下將所得混合物攪拌1小時且然後用乙酸乙酯(50ml)稀釋。用水、鹽水洗滌有機相,經無水Na2SO4乾燥並在減壓下濃縮。藉由在矽膠上管柱層析(DCM/MeOH=35/1)純化殘餘物,以得到黃色粉末狀標題化合物(250mg,51%)。針對C20H22F2N6O6計算之MS(ESI):416.2;理論值:417.5[M+H]。1H NMR(400MHz,CD3OD)δ 8.27(s,1H),8.09(s,1H),7.26(d,J=8.0Hz,2H),7.18(d,J=8.0Hz,2H),5.11(s,2H),4.38-4.26(brs,1H),4.18-4.12(m,1H),3.99-3.95(m,1H),3.67-3.61(m,1H),3.28-3.10(m,1H),3.03-2.89(m,1H),2.60-2.44(m,1H),2.35(s,3H),1.96-1.93(m,1H),1.60-1.49(m,1H)。
實例1.13a. (+)-R-4-((1H-吡唑并[3,4-d]嘧啶-4-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯甲磺酸酯(E1-6.2a)
向R-4-((1H-吡唑并[3,4-d]嘧啶-4-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯(230mg,0.55mmol)於DCM(3mL)中之攪拌溶液中添加甲磺酸(53mg,0.55mmol)於甲醇(3mL)中之溶液。將混合物在室溫下攪拌30min。蒸發溶劑,並用乙醚(10mL)研磨由此獲得之固體並過濾,從而得到黃色粉末狀標題化合物(270mg,95%)。[α]D=+13.5(c=10mg/mL,MeOH,20℃)。針對C20H22F2N6O6計算之MS(ESI):416.2;理論值:417.5[M+H]。1H NMR(400MHz,CD3OD)δ 8.55(s,1H),8.50(s,1H),7.26(d,J=8.0Hz,2H),7.19(d,J=8.0Hz,2H),5.11(s,2H),4.41-4.29(m,1H),4.23-4.15(m,1H),4.11-4.06(m,1H),3.84-3.78(m,1H),3.26-3.14(m,1H),3.07-2.91(m,1H),2.72(s,3H), 2.63-2.50(m,1H),2.35(s,3H),2.00-1.92(m,1H),1.64-1.53(m,1H)。
實例1.14. (+)-R-4-((7H-吡咯並[2,3-d]嘧啶-4-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯(E1-7.2)
步驟1:R-3,3-二氟-4-((7-甲苯磺醯基-7H-吡咯並[2,3-d]嘧啶-4-基胺基)甲基)哌啶-1-甲酸第三丁基酯
在氮氣氛下將4-氯-7-甲苯磺醯基-7H-吡咯並[2,3-d]嘧啶(615mg,1.99mmol)、R-4-(胺基甲基)-3,3-二氟哌啶-1-甲酸第三丁基酯(600mg,2.39mmol)及DIPEA(0.66mL,3.99mmol)於n-BuOH(8mL)中之混合物加熱至130℃並過夜。使混合物冷卻至rt並在真空下濃縮。將濃縮物分配至乙酸乙酯與水中。用水、鹽水洗滌有機層,經Na2SO4乾燥並在真空中濃縮。藉由在矽膠上管柱層析(己烷/EtOAc=3/2)純化殘餘物,以得到灰白色粉末狀標題化合物(850mg,82%)。針對C24H29F2N5O4S計算之MS(ESI):521.2;理論值:522.5[M+H]。1H NMR(400MHz,CDCl3)δ 8.44(s,1H),8.07(d,J=8.0Hz,2H),7.47(d,J=4.0Hz,1H),7.29(d,J=8.0Hz,2H),6.41(d,J=4.0Hz,1H),5.23-5.16(m,1H),4.45-4.25(m,2H),3.88-3.70(m,2H),3.02-2.67(m,2H),2.39(s,3H),2.35-2.19(m,1H),1.85-1.77(m,1H),1.62-1.50(m,1H),1.46(s,9H)。
步驟2:R-N-((3,3-二氟哌啶-4-基)甲基)-7-甲苯磺醯基-7H-吡咯並[2,3-d]嘧啶-4-胺三氟乙酸鹽
向R-3,3-二氟-4-((7-甲苯磺醯基-7H-吡咯並[2,3-d]嘧啶-4-基胺基)甲基)哌啶-1-甲酸第三丁基酯(850mg,1.63mmol)於DCM(8mL)中之溶液中添加TFA(4mL)。將所得溶液在室溫下攪拌30min且然後在真空下濃縮,從而得到標題化合物(2.19g),其係未經進一步純化即直接用於下一步驟中。針對C19H21F2N5O2S計算之MS(ESI):421.1;理論值:422.7[M+H]。
步驟3:R-3,3-二氟-4-((7-甲苯磺醯基-7H-吡咯並[2,3-d]嘧啶-4-基胺基)甲基)哌啶-1-甲酸4-甲基苄基酯
將粗製R-N-((3,3-二氟哌啶-4-基)甲基)-7-甲苯磺醯基-7H-吡咯並[2,3-d]嘧啶-4-胺三氟乙酸鹽(2.19g,約1.6mmol)溶解於乙腈(9mL)中,隨後添加三乙胺(1.2mL,8.16mmol)。然後,添加碳酸2,5-二側氧基環戊基酯4-甲基苄基酯(515mg,1.95mmol)並將所得混合物在室溫下攪拌過夜。濃縮混合物,並將濃縮物溶解於乙酸乙酯中。用水、鹽水洗滌有機相,經Na2SO4乾燥並在真空中濃縮。藉由在矽膠上管柱層析(己烷/EtOAc=3/2)純化殘餘物,以得到白色粉末狀標題化合物(847mg,80%)。針對C28H29F2N5O4S計算之MS(ESI):569.2;理論值:570.5[M+H]。1H NMR(400MHz,CDCl3)δ 8.43(s,1H),8.06(d,J=8.0Hz,2H),7.47(d,J=4.0Hz,1H),7.29(d,J=8.0Hz,2H),7.24(d,J=8.0Hz,2H),7.16(d,J=8.0Hz,2H),6.40(d,J=4.0Hz,1H),5.23-5.15(m,1H),5.13-5.05(m,2H),4.55-4.10(m,2H),3.87-3.71(m, 1H),3.07-2.90(m,1H),2.87-2.74(m,1H),2.39(s,3H),2.35(s,3H),2.37-2.22(m,2H),1.87-1.77(m,1H),1.64-1.51(m,1H)。
步驟4:(+)-R-4-((7H-吡咯並[2,3-d]嘧啶-4-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-甲基苄基酯
向R-3,3-二氟-4-((7-甲苯磺醯基-7H-吡咯並[2,3-d]嘧啶-4-基胺基)甲基)哌啶-1-甲酸4-甲基苄基酯(777mg,1.36mmol)於THF(8mL中之溶液中)添加50% NaOH水溶液(2mL)。將所得混合物在環境溫度下攪拌過夜並在真空下濃縮以去除THF溶劑。在冰水浴冷卻下用HCl(6N)將殘餘溶液調節至pH=9。用乙酸乙酯萃取水相。用鹽水洗滌合併之有機相,經Na2SO4乾燥並在真空中濃縮。藉由在矽膠上管柱層析(己烷/丙酮=1/1)純化殘餘物,以得到淺褐色粉末狀標題化合物(390mg,70%)。[α]D=+22.5°(c=10mg/mL,MeOH,26℃)。針對C21H23F2N5O2計算之MS(ESI):415.2;理論值:416.5[M+H]。1H NMR(400MHz,CDCl3)δ 10.08-9.98(brs,1H),8.34(s,1H),7.25(d,J=8.0Hz,2H),7.17(d,J=8.0Hz,2H),7.07(d,J=2.7Hz,1H),6.37(d,J=2.7Hz,1H),5.31-5.25(m,1H),5.14-5.07(s,2H),4.56-4.10(m,2H),3.98-3.89(m,1H),3.88-3.77(m,1H),3.12-2.93(m,1H),2.91-2.77(m,1H),2.45-2.28(m,1H),2.35(s,3H),1.95-1.85(m,1H),1.70-1.56(m,1H)。
實例1.15. R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-乙基苄基酯(E1-1.5)
向先前所闡述之粗製N-((3,3-二氟哌啶-4-基)甲基)-[1,2,4]三唑并[4,3-a]吡嗪-8-胺三氟乙酸鹽(373mg,約1.0mmol)於MeCN(5mL)中之溶液中添加TEA(0.7mL,5.05mmol),隨後添加碳酸2,5-二側氧基吡咯啶-1-基酯4-乙基苄基酯(335.8mg,1.21mmol)。在室溫下將所得混合物攪拌1小時。用乙酸乙酯稀釋混合物,且用水、鹽水洗滌有機相,經無水Na2SO4乾燥並在減壓下濃縮。藉由在矽膠上管柱層析(乙酸乙酯/己烷=1/1)純化殘餘物,以得到灰白色粉末狀標題化合物(302mg)。針對C21H24F2N6O2計算之MS(ESI):430.2;理論值:431.4[M+H]。1H NMR(400MHz,CD3OD)δ 9.08(s,1H),7.69(d,J=4.8Hz,1H),7.32(d,J=4.8Hz,1H),7.26(d,J=8.0Hz,2H),7.19(d,J=8.0Hz,2H),5.10(s,2H),4.37-4.26(m,1H),4.19-4.11(m,1H),3.98(dd,J=14.0及5.2Hz,1H),3.62(dd,J=14.0及8.4Hz,1H),3.27-3.07(m,1H),3.07-2.88(m,1H),2.64(q,J=7.6Hz,2H),2.59-2.48(m,1H),1.98-1.93(m,1H),1.61-1.51(m,1H),1.22(t,J=7.6Hz,3H)。
實例1.15a. (+)-R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)甲基)-3,3-二氟哌啶-1-甲酸4-乙基苄基酯甲磺酸酯(E1-1.5a)
在rt下向R-4-(([1,2,4]三唑并[4,3-a]吡嗪-8-基胺基)-甲基)-3,3-二氟哌啶-1-甲酸4-乙基苄基酯(302mg,0.70mmol)於MeOH中/DCM(4.0mL,v/v=1:1)中之攪拌溶液中添加CH3SO3H(68mg,0.70mmol)於甲醇(1mL)中之溶液。在攪拌30min後,濃縮混合物,以得到灰白色粉末狀產物(335mg,90.6%)。[α]D=+2.4°(c=10mg/mL,MeOH,23℃)。針對C21H24F2N6O2計算之MS(ESI):430.2;理論值:431.5[M+H]。1H NMR(400MHz,CD3OD)δ 9.32(s,1H),7.95(d,J=5.6Hz,1H),7.27(d,J=8.0Hz,2H),7.24(d,J=5.6Hz,1H),7.19(d,J=8.0Hz,2H),5.10(s,2H),4.45-4.36(m,1H),4.24-4.20(m,1H),4.04-3.99(m,1H),3.71-3.66(m,1H),3.25-2.93(m,2H),2.70(s,3H),2.68-2.60(m,3H),2.08-1.98(m,1H),1.65-1.55(m,1H),1.22(t,J=7.6Hz,3H)。
實例1.16 (R)-XVIa之單晶X射線繞射(SCXRD)
在配備有Oxford Cryosystems Cobra冷卻裝置之牛津繞射超新星雙源,零銅,阿特拉斯CCD繞射儀(Oxford Diffraction Supernova Dual Source,Cu at Zero,Atlas CCD diffractometer)上收集數據。使用CuKα輻射收集數據。通常使用SHELXS或SHELXD程式解析結構且利用作為Bruker AXS SHELXTL套件(V6.10)之一部分之SHELXL程式精修。除非另有說明,否則附接至碳之氫原子係按幾何方式放置且容許利用引導式各向同性位移參數(riding isotropic displacement parameter)進行精修。附接至雜原子之氫原子位於差分傅裡葉合成(difference Fourier synthesis)中且使其以各向同性位移參數自由精修。
藉由在室溫下緩慢蒸發使(R)-XVIa之試樣自2-甲基-1-丙醇(400μL,40vol.)重結晶(約10mg)。用於藉由單晶X射線繞射分析之具有充足大小及品質之晶體經分離具有大約尺寸0.20×0.15×0.10mm。
在100K下在斜方系統、空間群P212121中測定結構,且最終R1[I>σ2(I)]=4.52%。所有結構數據之綜述皆可參見表A至D。該化合物經鑑別為(R)-XVIa之非溶劑合物形式。
不對稱單元含有(R)-XVIa之單一完全有序分子。在50%機率水準 下顯示非氫原子之各向異性原子位移橢圓體。以任意小半徑展示氫原子(圖11)。對於如在R構形中利用C8及C15呈現之結構,Flack參數=-0.04(6)(Parsons及Flack,Acta Cryst.2004,A60,s61)。對於在S構形中具有C8及C15之反轉結構,Flack參數=1.04(6)。使用貝氏統計學(Bayesian statistics)在Bijvoet差異上確定絕對結構(Hooft等人,J.Appl.Cryst.,2008,41,96-103),揭露所呈現絕對結構正確之機率為1.000,而絕對結構係外消旋攣晶或錯誤之機率均為0.000。藉助此程式算得Flack當量及其不確定度為-0.01(5)。該計算係基於1853個Bijvoet對以及100%之覆蓋率。基於Flack參數、貝氏統計分析及C15處之對掌性為R之先驗知識,該絕對立體化學係如圖11所描繪。
實例2. 分析。
實例2.1. NR2B拮抗劑活性。
根據先前所闡述之標準方法建立分別穩定表現經選殖人類NR1/NR2B及NR1/NR2A之HEK293細胞系(Hansen等人,Comb.Chem High Throughput Screen.11:304,2008)。在該等細胞上利用麩胺酸鹽作為激動劑及甘胺酸協同激動劑活化NMDA受體之NR2A或NR2B亞型引起鈣流入,此可利用螢光指示劑Fluo-4監測。已實施基於細胞之分析來藉由量測螢光變化評估化合物對NR2A及NR2B受體之效應(Hansen等人,Comb.Chem High Throughput Screen.11:304,2008)。
在37℃下在增濕CO2培育箱中在補充有10%胎牛血清(FBS)(Hyclone)、10μM MK801(Sigma-Aldrich)及50μM AP-5(Tocris)之DMEM中培養穩定表現NR2A或NR2B受體之HEK293細胞。為進行實驗,將該等細胞以約50,000個細胞/孔之密度接種至聚-D-離胺酸塗佈之具有透明底部之96孔黑色板(Corning)上。在過夜培養後,自孔去除生長培養基並將該等細胞在37℃下在含有4μM fluo-4-AM(Invitrogen)及0.1%牛血清白蛋白(BSA)之漢克氏緩衝液中(Hanks buffer)培育60 min。在負載染料後,用漢克氏緩衝液將細胞洗滌三次,並在室溫下利用各種濃度之在具有0.1% BSA之漢克氏緩衝液中製備之測試化合物培育10min。將細胞板置於FDSS μCell螢光讀取器(Hamamatsu)上。在讀取背景螢光20sec後,將最終100μM之激動劑麩胺酸鹽及最終50μM之協同激動劑甘胺酸添加至細胞中以活化受體,並記錄所得螢光變化並進行定量。基於螢光強度之變化,分析測試化合物之藥理學效應,且使用Prism(Graphpad,Inc)自濃度依賴性反應至標準邏輯斯諦方程式(logistic equation)之非線性最小平方擬合導出IC50值:幅值=最大幅值/(1+(IC50/[拮抗劑])n)。
結果顯示於表2.1中。
實例2.1.1. 放射性配體結合分析
此實例闡述使用兩種不同放射性配體[3H]MK-801及[3H](E)-N1-(2-甲氧基苄基)-肉桂脒之NMDA受體結合分析(見下文)。使用非選擇 性NMDA受體配體[3H]MK-801之經確立結合分析可量測原始大鼠大腦受體中遍及所有NMD受體亞型之總NMDA受體結合活性。自先前闡述之細胞人類NR2B選殖之受體分析(Kiss等人,Neurochemistry International.46,第453頁至第464頁,2005)改編使用NR2B選擇性受體配體[3H](E)-N1-(2-甲氧基苄基)-肉桂脒之結合分析方法以適於大鼠大腦組織。此分析可選擇性量測原始大鼠大腦受體中之NR2B受體結合活性。簡言之,均質化雄性維斯塔大鼠(Wistar rat)之大腦(Polytron),之後在4℃下以40,000×g離心15分鐘。在2次洗滌之後,均質化最終糰粒並在-80℃下儲存。藉由Bradford分析測定蛋白質濃度。
[3H](E)-N1-(2-甲氧基苄基)-肉桂脒
使用一個濃度2nM下之[3H]MK-801,其中膜蛋白為400μg。在存在過量(10μM)未標記MK-801下評價非特異性結合(NS)。觀察到單一結合位點具有5.75nM之Ki值。
使用2個不同濃度0.5nM及30nM下之[3H](E)-N1-(2-甲氧基苄基)-肉桂脒,其中膜蛋白為30μg。在存在過量(10μM)(E)-N1-(2-甲氧基苄基)-肉桂脒下評價非特異性結合(NS)。鑑別高親和性位點,針對該位點針對(E)-N1-(2-甲氧基苄基)-肉桂脒測得Ki值為0.18nM。因此,使用[3H](E)-N1-(2-甲氧基苄基)-肉桂脒作為NR2B受體放射性配體(Kiss等人,Neurochemistry International.46,第453頁至第464頁,2005),測得經選殖NR2B受體下之Ki值為1.0nM。(Clairborne,C.F.Bioorganic and Medicinal Chemistry Letters,13,697-700,2003),當使用[3H]-艾芬地爾作為NR2B受體放射性配體時,經選殖NR2B受體下之Ki值為0.7nM(Curtis N.R.等人,Bioorganic and Medicinal Chemistry Letters,13,693-696,2003)。
將測試化合物以10mM溶解於DMSO中。然後,在該分析中利用恆定溶劑濃度(1% DMSO)實施稀釋。
在室溫下培育4.5h後,在經0.3%(v/v)PEI預處理之GF/B過濾器上針對[3H]MK-801利用Brandel系統及針對[3H](E)-N1-(2-甲氧基苄基)-肉桂脒利用Packard系統過濾分析物。一式兩份(n=2)實施該實驗。
化合物E1-1.2對[3H]MK-801結合僅展現部分效應(40%),此與選擇性結合至NR2B受體亞型一致。化合物E1-1.2展現在NR2B受體高親和性位點處完全置換[3H](E)-N1-(2-甲氧基苄基)-肉桂脒(96%;Ki=5.23nM)。
化合物E2-1.2對[3H]MK-801結合僅展現部分效應(36%),此與選擇性結合至NR2B受體亞型一致。化合物E2-1.2在NR2B受體高親和性位點處展現完全置換[3H](E)-N1-(2-甲氧基苄基)-肉桂脒(98%;Ki=74.3nM)。
化合物E1-1.3對[3H]MK-801結合僅展現部分效應(41%),此與選擇性結合至NR2B受體亞型一致。化合物E1-1.3在NR2B受體高親和性位點處展現完全置換[3H](E)-N1-(2-甲氧基苄基)-肉桂脒(97%;Ki=2.34nM)。
化合物E1-1.4對[3H]MK-801結合僅展現部分效應(32%),此與選擇性結合至NR2B受體亞型一致。化合物E1-1.4在NR2B受體高親和性位點處展現完全置換[3H](E)-N1-(2-甲氧基苄基)-肉桂脒(98%;Ki=18.2nM)。
化合物E1-1.5對[3H]MK-801結合僅展現部分效應(48%),此與選擇性結合至NR2B受體亞型一致。化合物E1-1.5在NR2B受體高親和性位點處展現完全置換[3H](E)-N1-(2-甲氧基苄基)-肉桂脒(97%;Ki=0.854nM)。
化合物E1-8.2對[3H]MK-801結合僅展現部分效應(33%),此與選擇性結合至NR2B受體亞型一致。化合物E1-8.2在NR2B受體高親和性位點處展現完全置換[3H](E)-N1-(2-甲氧基苄基)-肉桂脒(95%;Ki=1.71nM)。
化合物E1-9.2對[3H]MK-801結合僅展現部分效應(34%),此與選擇性結合至NR2B受體亞型一致。化合物E1-9.2在NR2B受體高親和性位點處展現完全置換[3H](E)-N1-(2-甲氧基苄基)-肉桂脒(97%;Ki=11.3nM)。
化合物E1-21.2對[3H]MK-801結合僅展現部分效應(49%),此與選擇性結合至NR2B受體亞型一致。化合物E1-21.2在NR2B受體高親和性位點處展現完全置換[3H](E)-N1-(2-甲氧基苄基)-肉桂脒(98%;Ki=0.716nM)。
化合物E1-21.26對[3H]MK-801結合僅展現部分效應(41%),此與選擇性結合至NR2B受體亞型一致。化合物E1-21.26在NR2B受體高親和性位點處展現完全置換[3H](E)-N1-(2-甲氧基苄基)-肉桂脒(99%;Ki=1.02nM)。
實例2.2. hERG通道抑制。
在穩定表現於HEK293細胞中之hERG通道上實施分析。在37℃下在增濕CO2培育箱中在由DMEM、10%胎牛血清及抗生素組成之生長培養基中培養細胞。在分析之前,將該等細胞接種至12mm PDL塗佈之玻璃蓋玻片上並在35mm皮氏培養皿(Petri dish)中進行培養。在培養16hr至40hr後,將蓋玻片轉移至OctaFlow灌注系統(ALA Instrument)之室中及細胞外溶液(140mM NaCl,4mM KCl,1mM MgCl2,2mM CaCl2,10mM HEPES,10mM D-葡萄糖,pH 7.35,滲透度290)之恆定流下。利用填充有細胞內溶液(120mM KCl,1.75mM MgCl2,5.4mM CaCl2,10mM HEPES,10mM EGTA,及4mM ATP-K2, PH 7.2,滲透度310)之玻璃微量吸量管實施全細胞膜片箝。在測試期間維持密封(Giga-seal)。使用Axon放大器700B、Digidata 1440A及CLAMPEX10軟體(Molecular Devices)實施電壓控制及電流量測。遵循Petroski方案記錄全細胞hERG電流:在-80mV下保持細胞,且電壓階躍自-80mV跳躍至30mV且在-40mV下利用20ms之預脈衝保持2sec。在去極化後,電壓降低至-40mV且保持2sec,且返回至-80mV。藉由石英毛細管尖端(200μm內徑)施加測試化合物,且利用OctaFlow灌注系統將流速控制為2ml/min至3ml/min。將不同濃度之化合物施加至細胞達5min,且在處理化合物之前、期間及之後將hERG電流量測三次。使用Clampfit 10軟體(Molecular Devices)分析數據以生成IC50值。結果示顯示表2.2中。
實例2.3. CYP P450酶抑制。
藉由使用彙集之人類肝微粒體(HLM,購自BD Gentest)及針對彼等同種型之選擇性受質評估測試化合物對CYP P450之5種主要同種型之抑制活性。彼等CYP同種型及其相應探針受質係如下:CYP1A2(非那西汀(phenacetin),30μM)、CYP2C9(甲磺丁脲(tolutamide),100μM)、CYP2C19(S-美芬妥英,40μM)、CYP2D6(右旋美沙芬(dextromethorphan),5μM)及CYP3A4(咪達唑侖,1μM)。所有探針受質皆以接近或低於其Kms之濃度使用。為進行實驗,一式三份將10μM或連續稀釋下之測試化合物、上述CYP探針受質及於磷酸鹽緩衝液(pH 7.4)中之0.2mg/mL彙集之HLM之最終體積200μL之反應混合物在37℃下預培育10分鐘。藉由添加最終濃度1mM之NADPH開始反應。10分鐘(CYP1A2,CYP2D6及CYP3A4)或30分鐘(CYP2C9及CYP2C19)後藉由添加100μL冰冷乙腈以及內標準品(IS)終止反應。然後以13,000rpm對試樣實施離心,且將上清液注射至LC-MS/MS(Agilent Technologies)中以對由個別CYP450同種型形成之探針受質特定代謝物之濃度進行定量。如下計算抑制比率:(Mt-M0)/M×100%
其中Mt及M0代表特定探針受質代謝物之濃度,該代謝物係在測試化合物存在下在反應開始及結束時由個別CYP450同種型形成的;而M代表在不存在測試化合物下在反應結束時特定代謝物之濃度。一式三份實施測試化合物濃度依賴性反應數據實驗。自劑量依賴性反應數據至邏輯斯諦方程式(Prism,GraphPad Software,Inc)之非線性最小平方擬合導出平均CYP2D6 IC50值,以生成CYP2D6 IC50結果,其係顯示於表2.3中。
實例2.4. 強迫游泳測試(FST)。
使用亦在行為絕望測試下已知之強迫游泳測試(FST)來評估抗抑鬱活性(Porsolt等人,1977 Arch.Int.Pharmacodyn.229:327-336,Porsolt等人,1977,Eur.J.Pharmacol.47:379-391)。在無法逃脫之情形下強迫游泳之小鼠或大鼠迅速變得不動。具有抗抑鬱活性之藥物(例如伊米帕明)可減少在不動狀態下所消耗時間之量。因此,在投與藥物後執行之測試期間不動時間之量代表抗抑鬱活性之有用指標(Lucki等人2001 Psychopharmacology 155:315-322;Porsolt等人,1977,Nature 266:730-732)。
以甲磺酸鹽形式投與測試化合物E1-1.2及E1-21.26(mpk,基於游離鹼之分子量)。以游離鹼形式投與測試化合物E1-8.2。
在大鼠或小鼠中根據下文一般程序測試抗抑鬱活性。
在6分鐘之單一游泳測試階段評估小鼠。將小鼠置於含有10cm水且高24cm且直徑為13cm之透明塑膠圓柱體中,且通常將環境溫度控制為22±2℃。將小鼠置於水中達6分鐘,並在最後4分鐘期間量測不動之持續時間。
使用稱重197g至251g之雄性維斯塔大鼠進行大鼠測試。根據兩階段程序評估大鼠,其中在實驗之第一天15分鐘之游泳階段(階段1),隨後24小時後5分鐘之游泳測試(階段2)。在維持在25℃下之含有15cm水之40cm×18cm垂直透明塑膠玻璃圓柱體內側個別地強迫大鼠游泳(階段1)。在水中15min後,去除大鼠並使其在經加熱封閉體(32℃)中乾燥15min,之後使其返回至其籠。24h後將大鼠置於水中達5分鐘(階段2),並量測不動之持續時間。
由盲化觀察者觀察動物。當動物停止所有活動(掙扎、游泳、跳躍等)且在水頂上被動浮動時,觀察者判斷該動物係不動的。記錄每一動物在不動狀態下所消耗時間之量(及第一輪不動之潛伏期)且使用其來統計分析化合物效應。藉由司徒登氏t測試(student’s t-test)(參考物質)或單因子ANOVA隨後事後鄧奈特氏測試(post-hoc Dunnett’s test)(測試物質)評估組間差異。
在所給實驗(對於小鼠及大鼠實驗而言)中,投與測試化合物、媒劑對照溶液及陽性對照參考化合物伊米帕明。在溶解於作為媒劑之0.5%二甲亞碸、4%羥基丙基-b-環糊精水中之後,藉由經口胃管灌食(p.o.)或藉由腹膜腔內注射(i.p.)投藥途徑在一或多個劑量中投與測試化合物。測試化合物劑量在內1毫克/公斤至30毫克/公斤之範圍(在附圖中以mpk或mg/kg表示)。
將伊米帕明對照化合物溶解於生理鹽水溶液中。如具體實例中所指示投與伊米帕明。
在將動物置於水圓柱體中之前20分鐘投與測試化合物投藥溶液及媒劑對照溶液以進行經口及腹膜腔內實驗。如下文具體實例中所指示投與伊米帕明。
使用稱重25g至35g之雄性小鼠(品種NLMN)進行測試。所有動物皆在溫度(22-24℃)及濕度(50-60%)控制之環境下在12小時之明-暗循環下圈養,且其自由進食及飲水。將測試化合物溶解於0.5%二甲亞碸、4%羥基丙基-b-環糊精水中以生成適當投藥溶液。藉由腹膜腔內注射以10mL/kg之劑量體積投與藥物。在投藥後20分鐘至60分鐘開始測試。如Darci等人(Darci等人,2004,Eur.J.Pharmacol.499:135-146)所闡述測試抗抑鬱活性。將小鼠置於在25±2℃下之含有10cm水且高20cm且直徑21cm之白色塑膠圓柱體中。將小鼠錄製6分鐘,且由離線盲化觀察者分析最後4分鐘之視訊。當動物停止所有活動(掙扎、游泳、跳躍等)且在水頂上被動地浮動時,觀察者判斷該動物係不動的。記錄每一動物在不動狀態下所消耗時間之量且使用其來統計分析化合物效應。藉由司徒登氏t測試或單因子ANOVA隨後事後鄧奈特氏測試評估組間差異。
實例2.4.1. 小鼠中之化合物E1-1.2。
結果顯示於圖1A中。槓代表每一劑量組之平均值±SEM不動時間(n=10,***:與媒劑組不同,p<0.001,單因子ANOVA,鄧奈特氏事後測試)。劑量係以毫克/公斤(mpk)給出。伊米帕明之劑量為32mpk。
實例2.4.2. 在小鼠中藉由腹膜腔內注射投與化合物E1-8.2。
結果顯示於圖1B中。槓代表每一劑量組之平均值±SEM不動時間(***:與媒劑組不同,p<0.001,單因子ANOVA,鄧奈特氏事後測試)。在本發明實例中,在測試前30min投與陽性對照化合物伊米帕明(32mpk i.p.)一次顯示預期抗抑鬱活性。
實例2.4.3. 在小鼠中藉由腹膜腔內注射投與化合物E1-21.26。
結果顯示於圖1C中。槓代表每一劑量組之平均值±SEM不動時間(***:與媒劑組不同,p<0.001,單因子ANOVA,鄧奈特氏事後測試)。在本發明實例中,在測試前30min投與陽性對照化合物伊米帕明(32mpk i.p.)一次顯示預期抗抑鬱活性。
實例2.4.4. 在小鼠中經口投與化合物E1-1.2。
結果顯示於圖1D中。槓代表每一劑量組之平均值±SEM不動時間(***:與媒劑組不同,p<0.001,單因子ANOVA,鄧奈特氏事後測試)。在本發明實例中,在測試前60min投與陽性對照化合物伊米帕明(64mpk p.o.)一次顯示預期抗抑鬱活性。
實例2.4.5. 在大鼠中藉由腹膜腔內注射投與化合物E1-1.2。
結果顯示於圖1E中。槓代表每一劑量組之平均值±SEM不動時間(***:與媒劑組不同,p<0.001,單因子ANOVA,鄧奈特氏事後測試).)。在本發明實例中,在測試(階段2)前24h、4h及30min投與陽性對照化合物伊米帕明(32mpk i.p.)3次顯示預期抗抑鬱活性。
實例2.4.6. 在大鼠中經口投與化合物E1-21.26。
結果顯示於圖1F中。槓代表每一劑量組之平均值±SEM不動時間(***:與媒劑組不同,p<0.001,單因子ANOVA,鄧奈特氏事後測試)。在本發明實例中,在測試(階段2)前24h、4h及60min投與陽性對照化合物伊米帕明(64mpk p.o.)3次顯示預期抗抑鬱活性。
實例2.4.7. 在強迫游泳測試中對小鼠長期投藥。
將小鼠個別地置於含有10cm水(22℃)之圓柱體(高度=24cm;直徑=13cm)中,該等小鼠無法自該圓柱體逃脫。將小鼠置於水中達6分鐘並量測最後4分鐘期間之不動持續時間。亦自開始測試開始記錄第一輪不動之潛伏期。
在2個劑量(3mg/kg及10mg/kg)下,在第7天在測試前20分鐘短期 p.o.投與或在7天期間每天投與(其中最後一次投與係在第7天在測試前20分鐘進行),且與媒劑對照組相比,評估化合物。當藥物不應當時,每天投與媒劑。使用在第7天在測試前60分鐘投與一次之伊米帕明(128mg/kg p.o.)作為參考物質。
結果顯示於圖1G中。槓代表每一劑量組之平均值±SEM不動時間(**/***:與媒劑組不同,p<0.01/p<0.001,單因子ANOVA,鄧奈特氏事後測試)。在本發明實例中,在第7天在測試前60分鐘投與陽性對照化合物伊米帕明(128mpk p.o.)一次顯示預期抗抑鬱活性。
該等結果指示,當在人類抑鬱症之標準模型中測試時,所提供化合物展現抗抑鬱活性。該等數據證實測試化合物在長期投藥時展現抗抑鬱活性。此外,該等結果指示,所提供化合物在短期及長期投藥時展現抗抑鬱活性。
實例2.5. 電驚厥性臨限值測試(ECT)。
電驚厥性臨限值測試檢測促驚厥或抗痙攣劑活性,其通常如Swinyard等人(J.Pharmacol.Exp.Ther.,106,319-330,1952)所闡述來執行。以甲磺酸鹽形式投與測試化合物E1-1.2及E1-21.26(mpk,基於游離鹼之分子量)。以游離鹼形式投與測試化合物E1-8.2。
投與大鼠ECS(矩形電流:0.6ms脈衝寬度,1.5s持續時間,200Hz)經由連接至恆定電流衝擊生成器(Ugo Basile:型號7801)之耳夾電極。在測試前1小時藉由經口胃管灌食(p.o.)以5mL/kg之劑量體積投與測試化合物。
將20隻大鼠之治療組暴露於ECS,如下所示:將第一隻動物暴露於30mA ECS。若此動物在最長5秒內未抽搐(緊張性驚厥),將動物n°2暴露於35mA等...(5mA之增加)直至觀察到第一次緊張性驚厥為止。在觀察到第一次緊張性驚厥後,針對下一隻動物使ECS之強度降低2mA且然後端視前一動物驚厥抑或不驚厥在下一動物中降低或增 加2mA。若第一隻動物在5秒內未驚厥(緊張性驚厥),則將動物n°2暴露於25mA等...(5mA之降低),直至觀察到不存在緊張性驚厥為止。此時,針對下一隻動物使ECS之強度增加2mA且然後端視前一動物驚厥抑或不驚厥在下一動物中降低或增加2mA。所施加之最小電流強度為5mA且最大為95mA。前5隻動物用於接近臨限值電流且不包括在分析中。結果呈現為向群組之最後15隻動物投與之平均電流強度。該測試係盲實施。正性百分比變化指示抗痙攣劑效應。負性百分比改變指示促驚厥效應。在4個劑量下,通常使用0.5%二甲亞碸、4%羥基丙基-b-環糊精水作為媒劑,且在ECS前60分鐘p.o.投與且與媒劑對照組相比,評估測試物質。使用在相同實驗條件下投與之二氮平(Diazepam)(16mg/kg p.o.)作為參考物質。該實驗包括6個組。藉由使用單因子ANOVA隨後鄧奈特氏t測試將治療組與媒劑對照相比來分析測試物質之數據。
在實例2.5.1中,抗痙攣劑陽性對照化合物二氮平(16mpk p.o.)顯示預期抗痙攣劑活性。促驚厥陽性對照化合物茶鹼(128mpk p.o.)顯示預期促驚厥活性。在實例2.5.2中,在研究中僅包括抗痙攣劑陽性對照。
實例2.5.1. 化合物E1-1.2。
結果顯示於圖2中。槓代表每一劑量組之平均值±SEM電驚厥性臨限值(n=15,***:與媒劑組不同,p<0.001,單因子ANOVA,鄧奈特氏事後測試)。劑量係以毫克/公斤(mpk)給出。二氮平之劑量為16mpk。茶鹼之劑量為128mpk。
化合物E1-1.2在所測試劑量3mpk、10mpk及30mpk下顯示穩健抗痙攣劑活性。
實例2.5.2. 化合物E1-8.2。
結果顯示於圖3中。槓代表每一劑量組之平均值±SEM電驚厥 性臨限值(n=15,***/*:與媒劑組不同,p<0.001/0.05分別,單因子ANOVA,鄧奈特氏事後測試)。劑量係以毫克/公斤(mpk)給出。二氮平之劑量為16mpk。
化合物E1-8.2在投與0.5mpk及2mpk後顯示中等促驚厥活性且在10mpk及20mpk劑量下顯示抗痙攣劑活性。
實例2.5.3. 化合物E1-21.26。
結果顯示於圖4中。槓代表每一劑量組之平均值±SEM電驚厥性臨限值(n=15,***/*:與媒劑組不同,p<0.001/0.05分別,單因子ANOVA,鄧奈特氏事後測試)。
化合物E1-21.26在3mpk及10mpk劑量下顯示抗痙攣劑活性。
實例2.6. 戊烯四唑(PTZ)癲癇發作測試。
該方法檢測與GABAergic機制相關之促驚厥或抗痙攣劑活性,其遵循Krall(Epilepsia,19,409-428,1978)所闡述之方法。利用戊烯四唑(PTZ)(100mg/kg s.c.)注射置於個別模克隆籠(macrolon cage)(25×19×13cm)中之大鼠。在30分鐘時段內記錄陣攣性及緊張性驚厥及死亡之發生率及潛伏期。每組研究15隻大鼠。該測試係盲實施。
以甲磺酸鹽形式投與測試化合物E1-1.2及E1-21.26(mpk,基於游離鹼之分子量)。以游離鹼形式投與測試化合物E1-8.2。
通常使用0.5%二甲亞碸、4%羥基丙基-b-環糊精水作為媒劑,在1或多個劑量(例如,1mg/kg、3mg/kg及10mg/kg)下,在PTZ前30分鐘p.o.投與,且與媒劑對照組相比,評估化合物。使用在PTZ前60分鐘投與之二氮平(16mg/kg p.o.)作為參考物質。該實驗係藉由2個單獨子實驗實施,N=每組及每個子實驗7隻至8隻動物。藉由使用克魯斯卡爾-沃利斯測試(Kruskal-Wallis test)隨後曼-惠特尼測試(Mann-Whitney U test)將治療組與媒劑對照相比較來分析測試物質之定量數據(潛伏期)。使用曼-惠特尼U測試分析參考物質之定量數據。藉由將 治療組與媒劑對照相比較使用費希爾精確機率測試(Fisher's Exact Probability test)分析數量數據(頻率)(*=p<0.05;**=p<0.01;***=p<0.001)。
實例2.6.1. 化合物E1-1.2。
結果顯示於圖5A、圖5B、圖5C、圖5D、圖5E及圖5F中。
如與媒劑對照相比,10mg/kg p.o.劑量下之化合物E1-1.2可降低顯示緊張性驚厥之大鼠之數量(-82%,p<0.01)及死亡之數量(-91%,p<0.001)。化合物E1-1.2亦可增加誘導陣攣性及緊張性驚厥之潛伏期及死亡之潛伏期(分別為+72%,p<0.05;+39%,p<0.01及+35%,p<0.001)。該等結果證實在大鼠中在戊烯四唑癲癇發作測試中10mg/kg p.o.下之化合物E1-1.2具有抗痙攣劑活性。
實例2.6.2. 化合物E1-21.26。
結果顯示於圖6A、圖6B、圖6C、圖6D、圖6E及圖6F中。
如與媒劑對照相比,10mg/kg p.o.劑量下之化合物E1-21.26可降低顯示緊張性驚厥之大鼠之數量(-82%,p<0.01)及死亡之數量(-82%,p<0.01)。化合物E1-21.26亦可增加誘導陣攣性及緊張性驚厥之潛伏期及死亡之潛伏期(分別為+45%,p<0.05;+40%,p<0.01及+31%,p<0.01)。該等結果證實在大鼠中在戊烯四唑癲癇發作測試中10mg/kg p.o.下之化合物E1-21.26具有抗痙攣劑活性。
實例2.7. 6Hz癲癇發作測試
6Hz癲癇發作測試可檢測測試化合物之抗痙攣劑活性,其係根據Brown等人(J.Pharmacol.Exp.Ther.107,273-283,1953)及Barton等人(Epilepsy Res.47,217-227,2001)所闡述之方法來執行。經由連接至恆定電流衝擊生成器(Ugo Basile:型號7801)之角膜電極投與小鼠矩形電流(44mA,矩形脈衝:0.2ms脈衝寬度,3s持續時間,6Hz)。在投與電流後在第一分鐘期間記錄如藉由前肢陣攣所反映之癲癇發作之 數量之結果。將前肢陣攣評分為物(0)、輕度(1)及強(2)。每組研究15隻小鼠。該測試係部分盲的實施(測試物質對媒劑)。通常在測試前30分鐘且與媒劑對照組相比,使用0.5%二甲亞碸、4%羥基丙基-b-環糊精水作為媒劑p.o.投與測試物質。以甲磺酸鹽形式投與測試化合物E1-1.2及E1-21.26(mpk,基於游離鹼之分子量)。以游離鹼形式投與測試化合物E1-8.2。
使用在測試前60分鐘投與之二氮平作為陽性對照參考物質。藉由使用克魯斯卡爾-沃利斯測試隨後曼-惠特尼U測試將治療組與媒劑對照相比較來分析測試物質之定量數據(分值)。
實例2.7.1. 化合物E1-1.2。
結果顯示於圖7A中。槓代表每一劑量組之平均值±SEM前肢陣攣分值(任意單位)(*/**/***:與媒劑組不同,p<0.05/0.01/0.001,單因子ANOVA,鄧奈特氏事後測試)。劑量係以毫克/公斤(mpk)給出。二氮平之劑量為8mpk(p.o.)。化合物E1-1.2顯示前肢陣攣之劑量反應降低。如與媒劑對照相比,在測試前30分鐘p.o.投與之(10及30mg/kg)可顯著且劑量依賴性的降低前肢癲癇發作分值(分別為-50%,p<0.05及-70%,p<0.01)。其亦可劑量依賴性的降低具有斯特勞布舉尾之小鼠之數量,其中在30mg/kg下觀察到之效應較顯著(10mg/kg:-13%,NS及30mg/kg:-40%,p<0.05)(圖7B)。
實例2.8. 氟派醇誘發之強直性昏厥(HIC)模型。
氟派醇誘發之強直性昏厥(HIC)模型檢測抗精神病藥活性及NR2B選擇性拮抗劑之作用(Steece-Collier等人Exp.Neurol.163:239,2000)且係基於Chermat及Simon(J.Pharmacol.,6,493-496,1975)所闡述之方法。誘導強直性昏厥之能力用作測試物質誘導錐體外副作用(具體而言帕金森症)之傾向性之指數。因此,抗精神病藥誘發之強直性昏厥之拮抗作用可用於檢測抗帕金森症潛力。
利用氟派醇(1mg/kg i.p.)注射大鼠且以30分鐘間隔檢查強直性昏厥直至360分鐘。藉由三個程序評價強直性昏厥之存在(+)或不存在(-):1)強制使同側前肢及後肢交叉;2)將動物置於佛位(Buddha position);3)將大鼠定位後5秒,傾斜板(一種自動裝置)將大鼠自水平位置放置至垂直位置並返回,同時該大鼠利用其前爪緊緊抓住金屬柵。端視在操作板之前(運動不能)或在操作板期間(強直性昏厥)動物是否移動來評價運動不能及強直性昏厥。
隨時間累積4分,從而得到每隻動物之總體強直性昏厥分值。每組研究六隻大鼠。該測試係盲實施(測試物質對媒劑)。在1或多個劑量下,通常在氟派醇前15分鐘(即在第一量測前45分鐘)使用0.5%二甲亞碸、4%羥基丙基-b-環糊精水作為媒劑進行p.o.投與,且與媒劑對照組相比,評估測試物質。以甲磺酸鹽形式投與測試化合物E1-1.2及E1-21.26(mpk,基於游離鹼之分子量)。
使用在測試前60分鐘(即在第一量測前90分鐘)投與之安非他命(8mg/kg p.o.)作為參考物質。在每一時間藉由使用克魯斯卡爾-沃利斯測試及隨後的曼-惠特尼U測試將治療組與媒劑對照相比較來分析測試物質之數據且分析其累積分值。使用曼-惠特尼U測試分析參考物質之數據。
實例2.8.1. 化合物E1-1.2。
結果顯示於圖8A中。劑量係以毫克/公斤(mpk)給出。安非他命之劑量為8mpk(圖8B)。
陽性對照化合物安非他命(8mg/kg p.o.)顯示預期之穩健抗強直性昏厥活性(圖8B)。如與媒劑對照相比,化合物E1-1.2在360min內顯著降低強直性昏厥之累積分值(2.0,p<0.01)。在1mg/kg及3mg/kg下,化合物E1-1.2意欲在360min內降低強直性昏厥之累積分值(分別為17.0,p=0.0898及15.8,p=0.0526),且在2.5小時在1mg/kg下(p< 0.05)及在2.5小時及3.5小時在3mg/kg(分別p<0.05及p<0.01)具有顯著效應。在10mg/kg下在4小時與6小時之間觀察到強直性昏厥。該等結果表明在大鼠中在氟派醇誘發之強直性昏厥測試中於化合物E1-1.2而言存在顯著抗強直性昏厥活性。
實例2.8.2. 化合物E1-21.26。
結果顯示於圖8C中。劑量係以毫克/公斤(mpk)給出。陽性對照化合物安非他命(8mg/kg p.o.)顯示預期之穩健抗強直性昏厥活性(圖8B)。如與媒劑對照相比,在3mg/kg及10mg/kg下之化合物E1-21.26在360min內顯著且劑量依賴性地降低強直性昏厥之累積分值(分別為11.7及1.0,p<0.01)。在3mg/kg下在1.5小時與6小時之間觀察到強直性昏厥。在10mg/kg下在5小時與6小時之間亦觀察到強直性昏厥。該等結果表明在大鼠中在氟派醇誘發之強直性昏厥測試中於化合物E1-21.26而言存在顯著抗強直性昏厥活性。
實例2.9. 大鼠福馬林模型
大鼠福馬林模型係由福馬林誘發之自發傷害感受行為引起之連續疼痛之緊張性模型。爪內注射福馬林係量測齧齒類動物中自發傷害感受行為之常用模型(Dubuisson,D.及Dennis,S.G.Pain 4:161,1977)。皮下足底注射福馬林在齧齒類動物中引起二階段防傷害行為反應。在注射福馬林後,早期階段(階段-I)持續約5min至10min,此後出現無任何可辨別傷害感受性反應之間期,此後隨之產生持續約20min至60min之晚期(階段-II)傷害感受性反應。福馬林模型係強直性持續疼痛之模型,且其廣泛用於快速篩選新穎止痛化合物。該模型涵蓋傷害感受之發炎性、神經性及中樞機制,且具體而言將晚期視為中樞敏化之藥效學替代者。在本發明實例中,在福馬林誘發之傷害感受行為之早期階段(階段-I)之0分鐘至5分鐘及晚期階段(階段-II)之20分鐘至35分鐘評價測試項目之效應。在注射福馬林前20min,利用媒劑、測試化 合物(10mpk,30mpk,60mpk i.p.)(通常使用0.5%二甲亞碸、4%羥基丙基-b-環糊精水作為媒劑)及陽性對照度洛西汀(30mpk)投與動物。
對於所有群組,在即將注射福馬林前使動物適應觀察室達15分鐘。所有動物皆接受足底內皮下注射50μL 5%福馬林至左後爪中,且然後立即將其置於觀察室中,且使用商業攝錄影機連續記錄大鼠中福馬林激發之自發傷害感受行為達0至60min。
經驗證可對齧齒類動物中該傷害感受行為評分之觀察者使用PC離線實施自所記錄視訊檔案進行評分。針對以下傷害感受行為使用秒表記錄在5min間隔中消耗之總時間:畏縮、搖動、咬及舔經注射爪。
以甲磺酸鹽形式投與測試化合物E1-1.2(mpk,基於游離鹼之分子量)。
在以下時段評價測試化合物之效應:早期階段(階段-I)之0至5分鐘及晚期階段(階段-II)之20分鐘至35分鐘。
結果顯示於圖9A及9B中。槓代表每一劑量組之平均值±SEM(n=8,****:與媒劑組不同,p<0.0001,單因子ANOVA,鄧奈特氏事後測試)。劑量係以毫克/公斤(mpk)給出。
在劑量(10mpk,30mpk及60mpk i.p.)中之每一者下,化合物E1-1.2可降低階段I(0-5min)(圖9A)及階段II(20-35min)(圖9B)中傷害感受行為所消耗之累積時間。
實例2.10. 皮層擴散性抑鬱症(CSD),偏頭痛模型之先兆階段。
利用皮層擴散性抑鬱症模型研究利用本發明化合物之治療是否影響大鼠偏頭痛模型中之電生理學及血液動力學事件。
利用5%異氟醚(於70% N2O及30% O2中;流量300ml/min)將大鼠麻醉並將其置於立體定位框架中。在操作及CSD期間,麻醉劑之濃度降低至1%至1.5%。利用恒溫覆蓋系統使直腸溫度維持在37.0±1.0℃ 下。藉由內側切口將皮膚打開並使其橫向縮回。在右半球上在以下坐標(距前囟mm)處在鹽水冷卻下鑽出三個鑽孔:(1)後部4.5,側部2.0(枕葉皮質):KCl施加位點;(2)後部0.5,側部2.0(頂葉皮質):LDF記錄位點;(3)前部2,側部2(額葉皮質):DC電位記錄位點。將用於監測CBF之雷射多普勒流量探針(laser-Doppler flow probe)(Oxyflow,Oxford Optronics,UK)及用於量測直流電(DC)電位位移之侵入性Ag/AgCl電極分別在完整硬腦膜上及皮質中置於顱頂骨及額葉皮質鑽孔中。將雷射多普勒流量探針定位在不含大軟膜及硬腦膜血管之區域中以最小化大血管對信號之貢獻。對於DC電位量測,將參考電極安裝在頸部。輕輕去除覆蓋枕葉皮質之硬腦膜且多加注意以避免出血。在術前準備後,使皮質在鹽水灌注下恢復15分鐘。將浸泡有1M KCl之棉球(2mm直徑)置於軟膜表面上且藉由每15分鐘放置5μl KCl溶液保持濕潤。在CSD起始前十(10)分鐘投與測試化合物或媒劑。在CSD起始前30min投與陽性對照MK-801。對KCl誘發之CSD之數量實施計數達2小時。自KCl暴露前5分鐘開始連續監測CBF及DC電位。
以甲磺酸鹽形式投與測試化合物E1-1.2(mpk,基於甲磺酸鹽之分子量)。
在Windaq採集軟體(Dataq Instruments,USA)中在20kHz下收集數據。在Clampfit程式(Axon Instruments,USA)中分析原始數據。低通過濾信號(截止範圍5Hz至10000Hz),那麼可在DC及CBF方面證實CSD癲癇發作。分析以下參數:i)DC電位之數量、持續時間及幅值,及ii)CBF事件之數量及幅值。
DC電位之數量之結果顯示於圖10中。劑量係以毫克/公斤(mpk)給出。陽性對照MK-801之劑量為1.25mg/kg。槓代表平均值±平均值之標準誤差(SEM),且認為差異在P<0.05水準下係統計顯著的(n=8,*與媒劑組不同)。使用StatsDirect統計軟體實施統計分析。藉由使 用單因子ANOVA及鄧奈特氏事後測試分析組間差異。
與媒劑相比,各個劑量下之化合物E1-1.2及MK-801之DC電位之幅值並非在統計學上不同(未顯示)。與媒劑相比,各個劑量下之化合物E1-1.2之DC電位之持續時間並非在統計學上不同(未顯示)。與媒劑相比,MK-801之DC電位之持續時間有所增加(p<0.05,未顯示)。
與媒劑相比,對於化合物E1-1.2而言CBF之量級未發生改變。對於10mg/kg下之化合物E1-1.2而言及對於1.25mg/kg下之MK-801而言,CBF事件之數量有所降低,且與媒劑之差異統計顯著(* p<0.05對媒劑組)(未顯示)。
當與媒劑組相比時,化合物E1-1.2(在3mpk、10mpk及30mpk下)顯著降低DC電位之數量(* p<0.05,對於所有劑量對媒劑組,數據表示為平均值±SEM)。本發明數據證實化合物E1-1.2在偏頭痛之模型中係有效的。

Claims (25)

  1. 一種化學實體,其係式I之化合物: 其中:R1係烷基、環烷基、(環烷基)烷基、雜環基、(雜環基)烷基、芳基、(芳基)烷基、雜芳基或(雜芳基)烷基,其中環烷基、(環烷基)烷基、雜環基、(雜環基)烷基、芳基、(芳基)烷基、雜芳基及(雜芳基)烷基中之每一者獨立地視情況經1至3個獨立地選自以下之基團取代:-F、-Cl、C1-C4烷基、環丙基、-C≡CH、-CFH2、-CF2H、-CF3、-CF2CH3、-CH2CF3、C1-C4烷氧基、-OCFH2、-OCF2H、-OCF3、-CN、-N(R2)(R3)、-NO2,C1-C4烷硫基、C1-C4烷基磺醯基及-S(O)2CF3;其中R2及R3之每一實例獨立地為-H或C1-C4烷基,或- N(R2)(R3)係;Z係具有環碳原子、1個氮環原子及0至3個獨立地選自N、O及S之其他環雜原子之5員或6員單環雜芳基或9員或10員二環雜芳基,其視情況經1或2個Rx基團取代且視情況經1個Ra基團取代,其中每一Rx附接至環碳原子且Ra附接至環氮原子;其中:Rx之每一實例獨立地為-F、-Cl、-CH3、-CFH2、-CF2H、-CF3、-OH、-OCH3、-OCF3或-CN;且 Ra係C1-4烷基、C3-4環烷基或-S(O)2-C1-4烷基。
  2. 如請求項1之化學實體,其中Z係具有環碳原子及2個環氮雜原子之視情況經取代之9員二環雜芳香族環系統。
  3. 如請求項1之化學實體,其中Z係具有環碳原子及3個環氮雜原子之視情況經取代之9員二環雜芳香族環系統。
  4. 如請求項1之化學實體,其中Z係具有環碳原子及4個環氮雜原子之視情況經取代之9員二環雜芳香族環系統。
  5. 如請求項1之化學實體,其中Z係具有環碳原子、1個環氮原子及0或1個其他環氮原子之視情況經取代之6員單環雜芳香族環系統。
  6. 如請求項5之化學實體,其中Z係具有環碳原子及2個環氮原子之視情況經取代之6員單環雜芳香族環系統。
  7. 如請求項6之化學實體,其中Z係具有環碳原子及2個環氮原子之6員單環雜芳香族環系統,其中Z視情況經1或2個Rx基團取代。
  8. 如請求項7之化學實體,其中Z係具有環碳原子及2個環氮原子之6員單環雜芳香族環系統,其中Z經1或2個Rx基團取代。
  9. 如請求項8之化學實體,其中Z係具有環碳原子及2個環氮原子之6員單環雜芳香族環系統,其中Z經1個Rx基團取代。
  10. 如請求項7至9中任一項之化學實體,其中Rx係選自-CH3、-CFH2、-CF2H或-CF3
  11. 如請求項1至10中任一項之化學實體,其中R1係視情況經取代之(芳基)烷基。
  12. 如請求項11之化學實體,其中R1係視情況經取代之苄基。
  13. 如請求項12之化學實體,其具有式(II): 其中R5、R6及R7獨立地係-H、-F、-Cl、C1-C4烷基、環丙基、-C≡CH、-CFH2、-CF2H、-CF3、-CF2CH3、-CH2CF3、C1-C4烷氧基、-OCFH2、-OCF2H、-OCF3、-CN、-N(R2)(R3)、-NO2,C1-C4烷硫基、C1-C4烷基磺醯基或-S(O)2CF3;其中R2及R3之每一實例獨立地為-H或C1-C4烷基,或- N(R2)(R3)係
  14. 如請求項13之化學實體,其中R5、R6及R7中之每一者獨立地為-H、-F、-Cl、-CH3、-CFH2、-CF2H、-CF3、-CH2CH3、-CF2CH3、-CH2CF3、異丙基、第三丁基、環丙基、-OCF3、-OCF2H、-SCH3、-SCH2CH3、-S(O)2CH3、-S(O)2CH2CH3、-S(O)2CF3或-C≡CH。
  15. 如請求項14之化學實體,其中R5、R6及R7中之每一者獨立地為-H、-F、-Cl、-CH3、-CFH2、-CF2H、-CF3、-CH2CH3、-CF2CH3、-CH2CF3、環丙基、-OCF3、-OCF2H、-SCH3、-S(O)2CH3或-C≡CH。
  16. 如請求項15之化學實體,其中:R5係-H、-F、-Cl、-CH3、-CFH2、-CF2H、-CF3、-CH2CH3、-CF2CH3、-CH2CF3、環丙基、-OCF3、-OCF2H、-SCH3、-S(O)2CH3或-C≡CH;R6係-H或-F;且R7係-H、-F、-Cl或-CH3
  17. 如請求項13至16中任一項之化學實體,其中Z係Z1、Z2、Z3、Z4、Z5、Z6、Z7、Z8、Z9、Z10、Z11、Z12、Z13、Z14、 Z15、Z16、Z17、Z18、Z19或Z20。
  18. 如請求項17之化學實體,其中Z係Z1、Z2、Z5、Z6、Z8、Z17或Z19。
  19. 如請求項13至16中任一項之化學實體,其中Z係Z21、Z22、Z23、Z24、Z25、Z26、Z27、Z28、Z29、Z30、Z31、Z32、Z33、Z34、Z35或Z36。
  20. 如請求項19之化學實體,其中Z係Z21、Z22、Z24、Z29、Z30、Z35或Z36。
  21. 一種醫藥組合物,其包含如請求項1至20中任一項之化學實體及醫藥上可接受之載劑。
  22. 如請求項21之醫藥組合物,其適於經口投與。
  23. 一種治療需要該治療之個體之對NR2B拮抗作用反應之疾病或病症之方法,其包含投與有效量之如請求項1至20中任一項之化學實體。
  24. 如請求項23之方法,其中該疾病或病症係抑鬱症、疼痛、帕金森氏病(Parkinson's disease)、亨廷頓氏病(Huntington's disease)、阿茲海默氏病(Alzheimer's disease)、腦缺血、創傷性腦損傷、癲癇或偏頭痛。
  25. 如請求項24之方法,其中該疾病或病症係抑鬱症。
TW105117083A 2015-06-01 2016-05-31 做為nr2b nmda受體拮抗劑之3,3-二氟哌啶胺基甲酸酯雜環化合物 TWI721987B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562169107P 2015-06-01 2015-06-01
US62/169,107 2015-06-01

Publications (2)

Publication Number Publication Date
TW201710248A true TW201710248A (zh) 2017-03-16
TWI721987B TWI721987B (zh) 2021-03-21

Family

ID=57441824

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105117083A TWI721987B (zh) 2015-06-01 2016-05-31 做為nr2b nmda受體拮抗劑之3,3-二氟哌啶胺基甲酸酯雜環化合物

Country Status (18)

Country Link
US (4) US10584127B2 (zh)
EP (1) EP3303323B1 (zh)
JP (1) JP6876625B2 (zh)
KR (1) KR102613179B1 (zh)
CN (1) CN107849010B (zh)
AR (1) AR104837A1 (zh)
AU (1) AU2016270677B2 (zh)
BR (1) BR112017025023B1 (zh)
CA (1) CA2987606C (zh)
DK (1) DK3303323T3 (zh)
ES (1) ES2784398T3 (zh)
HK (1) HK1253023A1 (zh)
IL (1) IL255937B (zh)
MX (1) MX2017015370A (zh)
RU (1) RU2735277C2 (zh)
TW (1) TWI721987B (zh)
WO (1) WO2016196513A1 (zh)
ZA (1) ZA201708006B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2723436T3 (es) 2014-09-15 2019-08-27 Rugen Holdings Cayman Ltd Derivados de pirrolopirimidina como antagonistas del receptor NMDA NR2B
WO2016126869A1 (en) 2015-02-04 2016-08-11 Rugen Holdings (Cayman) Limited 3,3-difluoro-piperidine derivatives as nr2b nmda receptor antagonists
TWI721987B (zh) 2015-06-01 2021-03-21 開曼群島商盧郡控股(開曼)有限公司 做為nr2b nmda受體拮抗劑之3,3-二氟哌啶胺基甲酸酯雜環化合物
CN106986874B (zh) * 2016-01-20 2019-09-24 西华大学 (1H-吡唑[3,4-d]嘧啶)-4-氨基衍生物及其作为IDO抑制剂在药物制备中的用途
EP3544610A1 (en) 2016-11-22 2019-10-02 Rugen Holdings (Cayman) Limited Treatment of autism spectrum disorders, obsessive-compulsive disorder and anxiety disorders
CN116134048A (zh) 2020-04-17 2023-05-16 Hb生物科技有限公司 用于治疗神经精神障碍的组合物和方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3717867A1 (de) 1987-05-26 1988-12-15 Schiepe Stapelautomaten Gmbh Stapelvorrichtung
WO1997007098A1 (en) 1995-08-11 1997-02-27 Pfizer Inc. (1s,2s)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidin-1-yl)-1-propanolmethanesulfonate trihydrate
GB9805977D0 (en) * 1998-03-19 1998-05-20 Silver Joshua D Improvements in variable focus optical devices
US6476041B1 (en) 1999-10-29 2002-11-05 Merck & Co., Inc. 1,4 substituted piperidinyl NMDA/NR2B antagonists
HU227197B1 (en) 2000-10-24 2010-10-28 Richter Gedeon Nyrt Nmda receptor antagonist carboxylic acid amide derivatives and pharmaceutical compositions containing them
NZ527365A (en) 2001-02-23 2005-08-26 Merck & Co Inc N-substituted nonaryl-heterocyclic NMDA/NR2B antagonists
US7592360B2 (en) 2003-06-04 2009-09-22 Merck & Co., Inc. 3-fluoro-piperidines as NMDA/NR2B antagonists
DK1648882T3 (da) * 2003-06-04 2008-11-24 Merck & Co Inc 3-fluor-piperidiner som NMDA/NR2B-antagonister
WO2005102390A2 (en) 2004-04-22 2005-11-03 Pfizer Japan, Inc. Combinations comprising alpha-2-delta ligands and nmda receptor antagonists
AU2005271669A1 (en) 2004-08-03 2006-02-16 Merck & Co., Inc. 1,3-disubstituted heteroaryl NMDA/NR2B antagonists
CN101084191A (zh) * 2004-12-22 2007-12-05 默克公司 用于制备取代哌啶类化合物的方法
AU2006236625A1 (en) 2005-04-19 2006-10-26 Merck & Co., Inc. N-alkyl-azacycloalkyl NMDA/NR2B antagonists
WO2007061868A2 (en) 2005-11-17 2007-05-31 Trustees Of Tufts College Treatment of stereotypic, self-injurious and compulsive behaviors using specific serotonin reuptake inhibitors and antagonists of nmda receptors
EP2520567A3 (en) 2006-02-23 2012-12-12 Shionogi & Co., Ltd. Nitrogen-containing heterocycle derivatives substituted with cyclic group
DE602007012272D1 (de) * 2006-09-07 2011-03-10 Merck Sharp & Dohme Difluorierte piperidine zur behandlung von morbus alzheimer und verwandten leiden
MX2009006517A (es) * 2006-12-27 2009-06-26 Sanofi Aventis Nuevos derivados de isoquinolina e isoquinolinona sustituidos.
JP2011516417A (ja) 2008-03-27 2011-05-26 エヴォテック・ノイロサイエンシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Nmdanr2b−サブタイプ選択的アンタゴニストを使用する障害の処置方法
US20100010565A1 (en) * 2008-07-09 2010-01-14 Samuel Victor Lichtenstein Extended range wireless muscular and neural stimulation
WO2010015637A1 (en) 2008-08-06 2010-02-11 Novartis Ag New antiviral modified nucleosides
US20130096115A1 (en) 2009-12-28 2013-04-18 Afraxis, Inc. Methods for treating autism
CA2794808C (en) * 2010-04-16 2019-08-20 Ac Immune S.A. Compounds for the treatment of diseases associated with amyloid or amyloid-like proteins
EP2580213A4 (en) 2010-06-09 2013-12-25 Afraxis Holdings Inc 8- (HETEROARYLMETHYL) PYRIDO [2,3-D] PYRIMIDIN-7 (8H) -ONES FOR THE TREATMENT OF CNS DISORDERS
WO2011159945A2 (en) 2010-06-16 2011-12-22 Afraxis, Inc. Methods for treating neurological conditions
US9737531B2 (en) 2012-07-12 2017-08-22 Glytech, Llc Composition and method for treatment of depression and psychosis in humans
JP2014507458A (ja) 2011-03-11 2014-03-27 グラクソ グループ リミテッド Sykインヒビターとしてのピリド[3,4−B]ピラジン誘導体
EP2713722B1 (en) 2011-05-31 2017-03-15 Receptos, LLC Novel glp-1 receptor stabilizers and modulators
JP6042968B2 (ja) * 2012-04-20 2016-12-14 ユセベ ファルマ ソシエテ アノニム パーキンソン病の処置方法
UA115156C2 (uk) * 2012-12-11 2017-09-25 Такеда Фармасьютікал Компані Лімітед Гетероциклічна сполука
BR112015018094A2 (pt) 2013-01-29 2017-07-18 Naurex Inc moduladores de receptor nmda de espiro-lactama e usos dos mesmos
CA2929502A1 (en) * 2013-11-06 2015-05-14 Bristol-Myers Squibb Company Substituted pyridine derivatives useful as gsk-3 inhibitors
WO2015171770A1 (en) 2014-05-06 2015-11-12 Northwestern University Combinations of nmdar modulating compounds
TW201609741A (zh) 2014-06-04 2016-03-16 盧郡控股(開曼)有限公司 作為nr2b nmda受體拮抗劑之二氟乙基吡啶衍生物
ES2723436T3 (es) 2014-09-15 2019-08-27 Rugen Holdings Cayman Ltd Derivados de pirrolopirimidina como antagonistas del receptor NMDA NR2B
WO2016049048A1 (en) 2014-09-22 2016-03-31 Rugen Holdings (Cayman) Limited Treatment of anxiety disorders and autism spectrum disorders
WO2016100349A2 (en) 2014-12-16 2016-06-23 Rugen Holdings (Cayman) Limited Bicyclic azaheterocyclic compounds as nr2b nmda receptor antagonists
WO2016126869A1 (en) 2015-02-04 2016-08-11 Rugen Holdings (Cayman) Limited 3,3-difluoro-piperidine derivatives as nr2b nmda receptor antagonists
TWI721987B (zh) 2015-06-01 2021-03-21 開曼群島商盧郡控股(開曼)有限公司 做為nr2b nmda受體拮抗劑之3,3-二氟哌啶胺基甲酸酯雜環化合物
EP3544610A1 (en) 2016-11-22 2019-10-02 Rugen Holdings (Cayman) Limited Treatment of autism spectrum disorders, obsessive-compulsive disorder and anxiety disorders

Also Published As

Publication number Publication date
IL255937A (en) 2018-01-31
KR20180032533A (ko) 2018-03-30
MX2017015370A (es) 2018-03-15
KR102613179B1 (ko) 2023-12-14
JP2018522831A (ja) 2018-08-16
EP3303323A4 (en) 2019-01-02
WO2016196513A1 (en) 2016-12-08
ZA201708006B (en) 2021-07-28
CN107849010B (zh) 2021-11-09
ES2784398T3 (es) 2020-09-24
US11136328B2 (en) 2021-10-05
IL255937B (en) 2021-06-30
HK1253023A1 (zh) 2019-06-06
RU2017142005A3 (zh) 2019-11-19
US10294230B2 (en) 2019-05-21
AU2016270677B2 (en) 2020-11-12
AU2016270677A1 (en) 2017-12-14
DK3303323T3 (da) 2020-03-23
BR112017025023A2 (pt) 2018-08-07
US20200299300A1 (en) 2020-09-24
US20180170935A1 (en) 2018-06-21
CA2987606C (en) 2024-02-20
CA2987606A1 (en) 2016-12-08
JP6876625B2 (ja) 2021-05-26
BR112017025023B1 (pt) 2024-01-30
US20220024937A1 (en) 2022-01-27
TWI721987B (zh) 2021-03-21
EP3303323B1 (en) 2020-01-08
AR104837A1 (es) 2017-08-16
US10584127B2 (en) 2020-03-10
US20180346476A1 (en) 2018-12-06
RU2017142005A (ru) 2019-07-09
EP3303323A1 (en) 2018-04-11
RU2735277C2 (ru) 2020-10-29
CN107849010A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
TWI721987B (zh) 做為nr2b nmda受體拮抗劑之3,3-二氟哌啶胺基甲酸酯雜環化合物
DK3194403T3 (en) PYRROLOPYRIMIDINE DERIVATIVES AS NR2B NMDA RECEPTOR ANTAGONISTS
JP7120549B2 (ja) Trek(twik関連kチャネル)チャネルのアクチベータ
JP2014505688A (ja) オキサジン誘導体および神経障害の処置におけるその使用
EP3642195A1 (en) Substituted 5-cyanoindole compounds and uses thereof
TW201609741A (zh) 作為nr2b nmda受體拮抗劑之二氟乙基吡啶衍生物
WO2016100349A2 (en) Bicyclic azaheterocyclic compounds as nr2b nmda receptor antagonists
JP2022516685A (ja) ホスファターゼ結合化合物およびそれらを使用する方法
TW200810752A (en) Modulators of muscarinic receptors
WO2018098128A1 (en) Treatment of autism spectrum disorders, obsessive-compulsive disorder and anxiety disorders
WO2016126869A1 (en) 3,3-difluoro-piperidine derivatives as nr2b nmda receptor antagonists
KR20190066052A (ko) 나프티리디논 유도체 및 부정맥의 치료에서의 이들의 용도
JP2022553282A (ja) Trek(twik関連k+チャネル)チャネル機能のモジュレータ
WO2003078441A1 (fr) Derive de thiazolobenzimidazole substitue par aminomethyle
BR112017004868B1 (pt) Derivados de pirrolopirimidina como antagonistas do receptor nmda nr2b e composição farmacêutica que os compreende